WorldWideScience

Sample records for wild-type virus infected

  1. Transplacental and oral transmission of wild-type bluetongue virus serotype 8 in cattle after experimental infection

    NARCIS (Netherlands)

    Backx, A.; Heutink, C.G.; Rooij, van E.M.A.; Rijn, van P.A.

    2009-01-01

    Potential vertical transmission of wild-type bluetongue virus serotype 8 (BTV-8) in cattle was explored in this experiment. We demonstrated transplacental transmission of wild-type BTV-8 in one calf and oral infection with BTV-8 in another calf. Following the experimental BTV-8 infection of seven

  2. The fusion protein of wild-type canine distemper virus is a major determinant of persistent infection

    International Nuclear Information System (INIS)

    Plattet, Philippe; Rivals, Jean-Paul; Zuber, BenoIt; Brunner, Jean-Marc; Zurbriggen, Andreas; Wittek, Riccardo

    2005-01-01

    The wild-type A75/17 canine distemper virus (CDV) strain induces a persistent infection in the central nervous system but infects cell lines very inefficiently. In contrast, the genetically more distant Onderstepoort CDV vaccine strain (OP-CDV) induces extensive syncytia formation. Here, we investigated the roles of wild-type fusion (F WT ) and attachment (H WT ) proteins in Vero cells expressing, or not, the canine SLAM receptor by transfection experiments and by studying recombinants viruses expressing different combinations of wild-type and OP-CDV glycoproteins. We show that low fusogenicity is not due to a defect of the envelope proteins to reach the cell surface and that H WT determines persistent infection in a receptor-dependent manner, emphasizing the role of SLAM as a potent enhancer of fusogenicity. However, importantly, F WT reduced cell-to-cell fusion independently of the cell surface receptor, thus demonstrating that the fusion protein of the neurovirulent A75/17-CDV strain plays a key role in determining persistent infection

  3. Lymphotropism and host responses during acute wild-type canine distemper virus infections in a highly susceptible natural host

    DEFF Research Database (Denmark)

    Nielsen, Line; Søgaard, Mette; Jensen, Trine Hammer

    2009-01-01

    The mechanisms behind the in vivo virulence of immunosuppressive wild-type Morbillivirus infections are still not fully understood. To investigate lymphotropism and host responses we have selected the natural host model of canine distemper virus (CDV) infection in mink. This model displays...

  4. DNA vaccines encoding proteins from wild-type and attenuated canine distemper virus protect equally well against wild-type virus challenge.

    Science.gov (United States)

    Nielsen, Line; Jensen, Trine Hammer; Kristensen, Birte; Jensen, Tove Dannemann; Karlskov-Mortensen, Peter; Lund, Morten; Aasted, Bent; Blixenkrone-Møller, Merete

    2012-10-01

    Immunity induced by DNA vaccines containing the hemagglutinin (H) and nucleoprotein (N) genes of wild-type and attenuated canine distemper virus (CDV) was investigated in mink (Mustela vison), a highly susceptible natural host of CDV. All DNA-immunized mink seroconverted, and significant levels of virus-neutralizing (VN) antibodies were present on the day of challenge with wild-type CDV. The DNA vaccines also primed the cell-mediated memory responses, as indicated by an early increase in the number of interferon-gamma (IFN-γ)-producing lymphocytes after challenge. Importantly, the wild-type and attenuated CDV DNA vaccines had a long-term protective effect against wild-type CDV challenge. The vaccine-induced immunity induced by the H and N genes from wild-type CDV and those from attenuated CDV was comparable. Because these two DNA vaccines were shown to protect equally well against wild-type virus challenge, it is suggested that the genetic/antigenic heterogeneity between vaccine strains and contemporary wild-type strains are unlikely to cause vaccine failure.

  5. A duck hepatitis B virus strain with a knockout mutation in the putative X ORF shows similar infectivity and in vivo growth characteristics to wild-type virus

    International Nuclear Information System (INIS)

    Meier, P.; Scougall, C.A.; Will, H.; Burrell, C.J.; Jilbert, A.R.

    2003-01-01

    Hepadnaviruses including human hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) express X proteins, HBx and DHBx, respectively. Both HBx and DHBx are transcriptional activators and modulate cellular signaling in in vitro assays. To test whether the DHBx protein plays a role in virus infection, we compared the in vivo infectivity and growth characteristics of a DHBV3 strain with a stop codon in the X-like ORF (DHBV3-X-K.O.) to those of the wild-type DHBV3 strain. Here we report that the two strains showed no significant difference in (i) their ability to induce infection that resulted in stable viraemia measured by serum surface antigen (DHBsAg) and DHBV DNA, and detection of viral proteins and replicative DNA intermediates in the liver; (ii) the rate of spread of infection in liver and extrahepatic sites after low-dose virus inoculation; and (iii) the ability to produce transient or persistent infection under balanced age/dose conditions designed to detect small differences between the strains. Thus, none of the infection parameters assayed were detectably affected by the X-ORF knockout mutation, raising the question whether DHBx expression plays a physiological role during in vivo infection with wild-type DHBV

  6. Wild type measles virus attenuation independent of type I IFN

    Directory of Open Access Journals (Sweden)

    Horvat Branka

    2008-02-01

    Full Text Available Abstract Background Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt. Results The adaptation of a measles virus isolate (G954-PBL by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13 differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene. While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Conclusion Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the α/β IFN system.

  7. Comparison of the nucleotide sequence of wild-type hepatitis - A virus and its attenuated candidate vaccine derivative

    International Nuclear Information System (INIS)

    Cohen, J.I.; Rosenblum, B.; Ticehurst, J.R.; Daemer, R.; Feinstone, S.; Purcell, R.H.

    1987-01-01

    Development of attenuated mutants for use as vaccines is in progress for other viruses, including influenza, rotavirus, varicella-zoster, cytomegalovirus, and hepatitis-A virus (HAV). Attenuated viruses may be derived from naturally occurring mutants that infect human or nonhuman hosts. Alternatively, attenuated mutants may be generated by passage of wild-type virus in cell culture. Production of attenuated viruses in cell culture is a laborious and empiric process. Despite previous empiric successes, understanding the molecular basis for attenuation of vaccine viruses could facilitate future development and use of live-virus vaccines. Comparison of the complete nucleotide sequences of wild-type (virulent) and vaccine (attenuated) viruses has been reported for polioviruses and yellow fever virus. Here, the authors compare the nucleotide sequence of wild-type HAV HM-175 with that of a candidate vaccine derivative

  8. Epizootic canine distemper virus infection among wild mammals.

    Science.gov (United States)

    Kameo, Yuki; Nagao, Yumiko; Nishio, Yohei; Shimoda, Hiroshi; Nakano, Hitoshi; Suzuki, Kazuo; Une, Yumi; Sato, Hiroshi; Shimojima, Masayuki; Maeda, Ken

    2012-01-27

    In the spring of 2007, seven raccoon dogs and a weasel were captured near the city of Tanabe in Wakayama prefecture, Japan. The causative agent of the animals' death 1-2 days after capture was identified as canine distemper virus (CDV) by virus isolation, immunostaining with an anti-CDV polyclonal antibody, and a commercially available CDV antigen-detection kit. Sequence analysis of hemagglutinin genes indicated the isolated viruses belong to genotype Asia-1 and possess the substitution from tyrosine (Y) to histidine (H) at position 549 that is associated with the spread of CDV to non-canine hosts. A serosurvey for CDV was then conducted among wild animals in the region. The animals assayed consisted of 104 raccoons, 41 wild boars, 19 raccoon dogs, five Sika deer, two badgers, one weasel, one marten, one Siberian weasel and one fox. Virus-neutralization (VN) tests showed that, except for fox and weasel, all of the species assayed had VN antibodies to CDV. Interestingly, 11 of the 41 wild boars (27%) and two of the five Sika deer assayed possessed VN antibodies to CDV. These findings indicate that CDV infection was widespread among wild mammals during this epizootic. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Establishment of new transmissible and drug-sensitive human immunodeficiency virus type 1 wild types due to transmission of nucleoside analogue-resistant virus.

    Science.gov (United States)

    de Ronde, A; van Dooren, M; van Der Hoek, L; Bouwhuis, D; de Rooij, E; van Gemen, B; de Boer, R; Goudsmit, J

    2001-01-01

    Sequence analysis of human immunodeficiency virus type 1 (HIV-1) from 74 persons with acute infections identified eight strains with mutations in the reverse transcriptase (RT) gene at positions 41, 67, 68, 70, 215, and 219 associated with resistance to the nucleoside analogue zidovudine (AZT). Follow-up of the fate of these resistant HIV-1 strains in four newly infected individuals revealed that they were readily replaced by sensitive strains. The RT of the resistant viruses changed at amino acid 215 from tyrosine (Y) to aspartic acid (D) or serine (S), with asparagine (N) as a transient intermediate, indicating the establishment of new wild types. When we introduced these mutations and the original threonine (T)-containing wild type into infectious molecular clones and assessed their competitive advantage in vitro, the order of fitness was in accord with the in vivo observations: 215Y types with D, S, or N residues at position 215 may be warranted in order to estimate the threat to long-term efficacy of regimens including nucleoside analogues.

  10. Attenuated, oncolytic, but not wild-type measles virus infection has pleiotropic effects on human neutrophil function.

    Science.gov (United States)

    Zhang, Yu; Patel, Bella; Dey, Aditi; Ghorani, Ehsan; Rai, Lena; Elham, Mohammed; Castleton, Anna Z; Fielding, Adele K

    2012-02-01

    We previously showed that neutrophils play a role in regression of human tumor xenografts in immunodeficient mice following oncolytic vaccine measles virus (MV-Vac) treatment. In this study, we sought, using normal human neutrophils, to identify potential neutrophil-mediated mechanisms for the attenuated MV-Vac induced effects seen in vivo, by comparison with those consequent on wild-type (WT-MV) infection. Both MV-Vac and WT-MV infected and replicated within neutrophils, despite lack of SLAM expression. In both cases, neutrophils survived longer ex vivo postinfection. Furthermore, MV-Vac (but not WT-MV) infection activated neutrophils and stimulated secretion of several specific antitumor cytokines (IL-8, TNF-α, MCP-1, and IFN-α) via induction of de novo RNA and protein synthesis. In addition, MV-Vac (but not WT-MV) infection caused TRAIL secretion in the absence of de novo synthesis by triggering release of prefabricated TRAIL, via a direct effect upon degranulation. The differences between the outcome of infection by MV-Vac and WT-MV were not entirely explained by differential infection and replication of the viruses within neutrophils. To our knowledge, this is the first demonstration of potential mechanisms of oncolytic activity of an attenuated MV as compared with its WT parent. Furthermore, our study suggests that neutrophils have an important role to play in the antitumor effects of oncolytic MV.

  11. Virus-like particles activate type I interferon pathways to facilitate post-exposure protection against Ebola virus infection.

    Directory of Open Access Journals (Sweden)

    Natarajan Ayithan

    Full Text Available Ebola virus (EBOV causes a severe hemorrhagic disease with high fatality. Virus-like particles (VLPs are a promising vaccine candidate against EBOV. We recently showed that VLPs protect mice from lethal EBOV infection when given before or after viral infection. To elucidate pathways through which VLPs confer post-exposure protection, we investigated the role of type I interferon (IFN signaling. We found that VLPs lead to accelerated induction of IFN stimulated genes (ISGs in liver and spleen of wild type mice, but not in Ifnar-/- mice. Accordingly, EBOV infected Ifnar-/- mice, unlike wild type mice succumbed to death even after VLP treatment. The ISGs induced in wild type mice included anti-viral proteins and negative feedback factors known to restrict viral replication and excessive inflammatory responses. Importantly, proinflammatory cytokine/chemokine expression was much higher in WT mice without VLPs than mice treated with VLPs. In EBOV infected Ifnar-/- mice, however, uninhibited viral replication and elevated proinflammatory factor expression ensued, irrespective of VLP treatment, supporting the view that type I IFN signaling helps to limit viral replication and attenuate inflammatory responses. Further analyses showed that VLP protection requires the transcription factor, IRF8 known to amplify type I IFN signaling in dendritic cells and macrophages, the probable sites of initial EBOV infection. Together, this study indicates that VLPs afford post-exposure protection by promoting expeditious initiation of type I IFN signaling in the host.

  12. Molecular ecology and natural history of simian foamy virus infection in wild-living chimpanzees.

    Directory of Open Access Journals (Sweden)

    Weimin Liu

    2008-07-01

    Full Text Available Identifying microbial pathogens with zoonotic potential in wild-living primates can be important to human health, as evidenced by human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2 and Ebola virus. Simian foamy viruses (SFVs are ancient retroviruses that infect Old and New World monkeys and apes. Although not known to cause disease, these viruses are of public health interest because they have the potential to infect humans and thus provide a more general indication of zoonotic exposure risks. Surprisingly, no information exists concerning the prevalence, geographic distribution, and genetic diversity of SFVs in wild-living monkeys and apes. Here, we report the first comprehensive survey of SFVcpz infection in free-ranging chimpanzees (Pan troglodytes using newly developed, fecal-based assays. Chimpanzee fecal samples (n = 724 were collected at 25 field sites throughout equatorial Africa and tested for SFVcpz-specific antibodies (n = 706 or viral nucleic acids (n = 392. SFVcpz infection was documented at all field sites, with prevalence rates ranging from 44% to 100%. In two habituated communities, adult chimpanzees had significantly higher SFVcpz infection rates than infants and juveniles, indicating predominantly horizontal rather than vertical transmission routes. Some chimpanzees were co-infected with simian immunodeficiency virus (SIVcpz; however, there was no evidence that SFVcpz and SIVcpz were epidemiologically linked. SFVcpz nucleic acids were recovered from 177 fecal samples, all of which contained SFVcpz RNA and not DNA. Phylogenetic analysis of partial gag (616 bp, pol-RT (717 bp, and pol-IN (425 bp sequences identified a diverse group of viruses, which could be subdivided into four distinct SFVcpz lineages according to their chimpanzee subspecies of origin. Within these lineages, there was evidence of frequent superinfection and viral recombination. One chimpanzee was infected by a foamy virus from a Cercopithecus monkey

  13. Can preening contribute to influenza A virus infection in wild waterbirds?

    Directory of Open Access Journals (Sweden)

    Mauro Delogu

    Full Text Available Wild aquatic birds in the Orders Anseriformes and Charadriiformes are the main reservoir hosts perpetuating the genetic pool of all influenza A viruses, including pandemic viruses. High viral loads in feces of infected birds permit a fecal-oral route of transmission. Numerous studies have reported the isolation of avian influenza viruses (AIVs from surface water at aquatic bird habitats. These isolations indicate aquatic environments have an important role in the transmission of AIV among wild aquatic birds. However, the progressive dilution of infectious feces in water could decrease the likelihood of virus/host interactions. To evaluate whether alternate mechanisms facilitate AIV transmission in aquatic bird populations, we investigated whether the preen oil gland secretions by which all aquatic birds make their feathers waterproof could support a natural mechanism that concentrates AIVs from water onto birds' bodies, thus, representing a possible source of infection by preening activity. We consistently detected both viral RNA and infectious AIVs on swabs of preened feathers of 345 wild mallards by using reverse transcription-polymerase chain reaction (RT-PCR and virus-isolation (VI assays. Additionally, in two laboratory experiments using a quantitative real-time (qR RT-PCR assay, we demonstrated that feather samples (n = 5 and cotton swabs (n = 24 experimentally impregnated with preen oil, when soaked in AIV-contaminated waters, attracted and concentrated AIVs on their surfaces. The data presented herein provide information that expands our understanding of AIV ecology in the wild bird reservoir system.

  14. Real-time reverse transcription polymerase chain reaction method for detection of Canine distemper virus modified live vaccine shedding for differentiation from infection with wild-type strains.

    Science.gov (United States)

    Wilkes, Rebecca P; Sanchez, Elena; Riley, Matthew C; Kennedy, Melissa A

    2014-01-01

    Canine distemper virus (CDV) remains a common cause of infectious disease in dogs, particularly in high-density housing situations such as shelters. Vaccination of all dogs against CDV is recommended at the time of admission to animal shelters and many use a modified live virus (MLV) vaccine. From a diagnostic standpoint for dogs with suspected CDV infection, this is problematic because highly sensitive diagnostic real-time reverse transcription polymerase chain reaction (RT-PCR) tests are able to detect MLV virus in clinical samples. Real-time PCR can be used to quantitate amount of virus shedding and can differentiate vaccine strains from wild-type strains when shedding is high. However, differentiation by quantitation is not possible in vaccinated animals during acute infection, when shedding is low and could be mistaken for low level vaccine virus shedding. While there are gel-based RT-PCR assays for differentiation of vaccine strains from field strains based on sequence differences, the sensitivity of these assays is unable to match that of the real-time RT-PCR assay currently used in the authors' laboratory. Therefore, a real-time RT-PCR assay was developed that detects CDV MLV vaccine strains and distinguishes them from wild-type strains based on nucleotide sequence differences, rather than the amount of viral RNA in the sample. The test is highly sensitive, with detection of as few as 5 virus genomic copies (corresponding to 10(-1) TCID(50)). Sequencing of the DNA real-time products also allows phylogenetic differentiation of the wild-type strains. This test will aid diagnosis during outbreaks of CDV in recently vaccinated animals.

  15. Characteristics of alpha/beta interferon induction after infection of murine fibroblasts with wild-type and mutant alphaviruses

    International Nuclear Information System (INIS)

    Burke, Crystal W.; Gardner, Christina L.; Steffan, Joshua J.; Ryman, Kate D.; Klimstra, William B.

    2009-01-01

    We examined the characteristics of interferon alpha/beta (IFN-α/β) induction after alphavirus or control Sendai virus (SeV) infection of murine fibroblasts (MEFs). As expected, SeV infection of wild-type (wt) MEFs resulted in strong dimerization of IRF3 and the production of high levels of IFN-α/β. In contrast, infection of MEFs with multiple alphaviruses failed to elicit detectable IFN-α/β. In more detailed studies, Sindbis virus (SINV) infection caused dimerization and nuclear migration of IRF3, but minimal IFN-β promoter activity, although surprisingly, the infected cells were competent for IFN production by other stimuli early after infection. A SINV mutant defective in host macromolecular synthesis shutoff induced IFN-α/β in the MEF cultures dependent upon the activities of the TBK1 IRF3 activating kinase and host pattern recognition receptors (PRRs) PKR and MDA5 but not RIG-I. These results suggest that wild-type alphaviruses antagonize IFN induction after IRF3 activation but also may avoid detection by host PRRs early after infection.

  16. Unique Safety Issues Associated with Virus Vectored Vaccines: Potential for and Theoretical Consequences of Recombination with Wild Type Virus Strains

    Science.gov (United States)

    Condit, Richard C.; Williamson, Anna-Lise; Sheets, Rebecca; Seligman, Stephen J.; Monath, Thomas P.; Excler, Jean-Louis; Gurwith, Marc; Bok, Karin; Robertson, James S.; Kim, Denny; Hendry, Michael; Singh, Vidisha; Mac, Lisa M.; Chen, Robert T.

    2016-01-01

    In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains. PMID:27346303

  17. Infectivity, transmission and pathogenicity of avian influenza viruses for domestic and wild birds

    Science.gov (United States)

    Individual avian influenza (AI) virus strains vary in their ability to infect, transmit and cause disease and death in different bird species. Low pathogenicity AI (LPAI) viruses are maintained in wild birds, and must be adapted to pass to domestic poultry, where they replicate in respiratory and in...

  18. Global impact of Torque teno virus infection in wild and domesticated animals.

    Science.gov (United States)

    Manzin, Aldo; Mallus, Francesca; Macera, Lisa; Maggi, Fabrizio; Blois, Sylvain

    2015-07-04

    Infection with Torque teno viruses (TTVs) is not restricted to humans. Different domestic and wild animal species are naturally infected with species-specific TTVs worldwide. Due to the global spread of the infection, it is likely that essentially all animals are naturally infected with species-specific TTVs, and that co-evolution of TTVs with their hosts probably occurred. Although TTVs are potentially related to many diseases, the evidence of the widespread infection in healthy human and nonhuman hosts raised doubts about their pathogenic potential. Nonetheless, their role as superimposed agents of other diseases or as triggers for impairment of immune surveillance is currently under debate. The possible contribution of animal TT viruses to interspecies transmission and their role as zoonotic agents are currently topics of discussion.

  19. A multiplex reverse transcription-nested polymerase chain reaction for detection and differentiation of wild-type and vaccine strains of canine distemper virus

    Directory of Open Access Journals (Sweden)

    Cui Shang-jin

    2010-05-01

    Full Text Available Abstract A multiplex reverse transcription-nested polymerase chain reaction (RT-nPCR method was developed for the detection and differentiation of wild-type and vaccine strains of canine distemper virus (CDV. A pair of primers (P1 and P4 specific for CDV corresponding to the highly conserved region of the CDV genome were used as a common primer pair in the first-round PCR of the nested PCR. Primers P2 specific for CDV wild-type strains, were used as the forward primer together with the common reverse primer P4 in the second round of nested PCR. Primers P3, P5 specific for CDV wild-type strain or vaccine strain, were used as the forward primer together with the common reverse primer P4+P6 in the second round of nested PCR. A fragment of 177 bp was amplified from vaccine strain genomic RNA, and a fragment of 247 bp from wild-type strain genomic RNA in the RT-nPCR, and two fragments of 247 bp and 177 bp were amplified from the mixed samples of vaccine and wild-type strains. No amplification was achieved for uninfected cells, or cells infected with Newcastle disease virus (NDV, canine parvovirus (CPV, canine coronavirus (CCV, rabies virus (RV, or canine adenovirus (CAV. The RT-nPCR method was used to detect 30 field samples suspected of canine distemper from Heilongjiang and Jilin Provinces, and 51 samples in Shandong province. As a result of 30 samples, were found to be wild-type-like, and 5 to be vaccine-strain-like. The RT-nPCR method can be used to effectively detect and differentiate wild-type CDV-infected dogs from dogs vaccinated with CDV vaccine, and thus can be used in clinical detection and epidemiological surveillance.

  20. A multiplex reverse transcription-nested polymerase chain reaction for detection and differentiation of wild-type and vaccine strains of canine distemper virus

    Science.gov (United States)

    2010-01-01

    A multiplex reverse transcription-nested polymerase chain reaction (RT-nPCR) method was developed for the detection and differentiation of wild-type and vaccine strains of canine distemper virus (CDV). A pair of primers (P1 and P4) specific for CDV corresponding to the highly conserved region of the CDV genome were used as a common primer pair in the first-round PCR of the nested PCR. Primers P2 specific for CDV wild-type strains, were used as the forward primer together with the common reverse primer P4 in the second round of nested PCR. Primers P3, P5 specific for CDV wild-type strain or vaccine strain, were used as the forward primer together with the common reverse primer P4+P6 in the second round of nested PCR. A fragment of 177 bp was amplified from vaccine strain genomic RNA, and a fragment of 247 bp from wild-type strain genomic RNA in the RT-nPCR, and two fragments of 247 bp and 177 bp were amplified from the mixed samples of vaccine and wild-type strains. No amplification was achieved for uninfected cells, or cells infected with Newcastle disease virus (NDV), canine parvovirus (CPV), canine coronavirus (CCV), rabies virus (RV), or canine adenovirus (CAV). The RT-nPCR method was used to detect 30 field samples suspected of canine distemper from Heilongjiang and Jilin Provinces, and 51 samples in Shandong province. As a result of 30 samples, were found to be wild-type-like, and 5 to be vaccine-strain-like. The RT-nPCR method can be used to effectively detect and differentiate wild-type CDV-infected dogs from dogs vaccinated with CDV vaccine, and thus can be used in clinical detection and epidemiological surveillance. PMID:20433759

  1. Type I interferons instigate fetal demise after Zika virus infection.

    Science.gov (United States)

    Yockey, Laura J; Jurado, Kellie A; Arora, Nitin; Millet, Alon; Rakib, Tasfia; Milano, Kristin M; Hastings, Andrew K; Fikrig, Erol; Kong, Yong; Horvath, Tamas L; Weatherbee, Scott; Kliman, Harvey J; Coyne, Carolyn B; Iwasaki, Akiko

    2018-01-05

    Zika virus (ZIKV) infection during pregnancy is associated with adverse fetal outcomes, including microcephaly, growth restriction, and fetal demise. Type I interferons (IFNs) are essential for host resistance against ZIKV, and IFN-α/β receptor (IFNAR)-deficient mice are highly susceptible to ZIKV infection. Severe fetal growth restriction with placental damage and fetal resorption is observed after ZIKV infection of type I IFN receptor knockout ( Ifnar1 -/- ) dams mated with wild-type sires, resulting in fetuses with functional type I IFN signaling. The role of type I IFNs in limiting or mediating ZIKV disease within this congenital infection model remains unknown. In this study, we challenged Ifnar1 -/- dams mated with Ifnar1 +/- sires with ZIKV. This breeding scheme enabled us to examine pregnant dams that carry a mixture of fetuses that express ( Ifnar1 +/- ) or do not express IFNAR ( Ifnar1 -/- ) within the same uterus. Virus replicated to a higher titer in the placenta of Ifnar1 -/- than within the Ifnar1 +/- concepti. Yet, rather unexpectedly, we found that only Ifnar1 +/- fetuses were resorbed after ZIKV infection during early pregnancy, whereas their Ifnar1 -/- littermates continue to develop. Analyses of the fetus and placenta revealed that, after ZIKV infection, IFNAR signaling in the conceptus inhibits development of the placental labyrinth, resulting in abnormal architecture of the maternal-fetal barrier. Exposure of midgestation human chorionic villous explants to type I IFN, but not type III IFNs, altered placental morphology and induced cytoskeletal rearrangements within the villous core. Our results implicate type I IFNs as a possible mediator of pregnancy complications, including spontaneous abortions and growth restriction, in the context of congenital viral infections. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Fatal H5N6 Avian Influenza Virus Infection in a Domestic Cat and Wild Birds in China.

    Science.gov (United States)

    Yu, Zhijun; Gao, Xiaolong; Wang, Tiecheng; Li, Yanbing; Li, Yongcheng; Xu, Yu; Chu, Dong; Sun, Heting; Wu, Changjiang; Li, Shengnan; Wang, Haijun; Li, Yuanguo; Xia, Zhiping; Lin, Weishi; Qian, Jun; Chen, Hualan; Xia, Xianzhu; Gao, Yuwei

    2015-06-02

    H5N6 avian influenza viruses (AIVs) may pose a potential human risk as suggested by the first documented naturally-acquired human H5N6 virus infection in 2014. Here, we report the first cases of fatal H5N6 avian influenza virus (AIV) infection in a domestic cat and wild birds. These cases followed human H5N6 infections in China and preceded an H5N6 outbreak in chickens. The extensive migration routes of wild birds may contribute to the geographic spread of H5N6 AIVs and pose a risk to humans and susceptible domesticated animals, and the H5N6 AIVs may spread from southern China to northern China by wild birds. Additional surveillance is required to better understand the threat of zoonotic transmission of AIVs.

  3. Ebola Virus Infection Modelling and Identifiability Problems

    Directory of Open Access Journals (Sweden)

    Van-Kinh eNguyen

    2015-04-01

    Full Text Available The recent outbreaks of Ebola virus (EBOV infections have underlined the impact of the virus as a major threat for human health. Due to the high biosafety classification of EBOV (level 4, basic research is very limited. Therefore, the development of new avenues of thinking to advance quantitative comprehension of the virus and its interaction with the host cells is urgently neededto tackle this lethal disease. Mathematical modelling of the EBOV dynamics can be instrumental to interpret Ebola infection kinetics on quantitative grounds. To the best of our knowledge, a mathematical modelling approach to unravel the interaction between EBOV and the host cells isstill missing. In this paper, a mathematical model based on differential equations is used to represent the basic interactions between EBOV and wild-type Vero cells in vitro. Parameter sets that represent infectivity of pathogens are estimated for EBOV infection and compared with influenza virus infection kinetics. The average infecting time of wild-type Vero cells in EBOV is slower than in influenza infection. Simulation results suggest that the slow infecting time of EBOV could be compensated by its efficient replication. This study reveals several identifiability problems and what kind of experiments are necessary to advance the quantification of EBOV infection. A first mathematical approach of EBOV dynamics and the estimation of standard parametersin viral infections kinetics is the key contribution of this work, paving the way for future modelling work on EBOV infection.

  4. Virus-Induced Type I Interferon Deteriorates Control of Systemic Pseudomonas Aeruginosa Infection

    Directory of Open Access Journals (Sweden)

    Katja Merches

    2015-07-01

    Full Text Available Background: Type I interferon (IFN-I predisposes to bacterial superinfections, an important problem during viral infection or treatment with interferon-alpha (IFN-α. IFN-I-induced neutropenia is one reason for the impaired bacterial control; however there is evidence that more frequent bacterial infections during IFN-α-treatment occur independently of neutropenia. Methods: We analyzed in a mouse model, whether Pseudomonas aeruginosa control is influenced by co-infection with the lymphocytic choriomeningitis virus (LCMV. Bacterial titers, numbers of neutrophils and the gene-expression of liver-lysozyme-2 were determined during a 24 hours systemic infection with P. aeruginosa in wild-type and Ifnar-/- mice under the influence of LCMV or poly(I:C. Results: Virus-induced IFN-I impaired the control of Pseudomonas aeruginosa. This was associated with neutropenia and loss of lysozyme-2-expression in the liver, which had captured P. aeruginosa. A lower release of IFN-I by poly(I:C-injection also impaired the bacterial control in the liver and reduced the expression of liver-lysozyme-2. Low concentration of IFN-I after infection with a virulent strain of P. aeruginosa alone impaired the bacterial control and reduced lysozyme-2-expression in the liver as well. Conclusion: We found that during systemic infection with P. aeruginosa Kupffer cells quickly controlled the bacteria in cooperation with neutrophils. Upon LCMV-infection this cooperation was disturbed.

  5. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.

    Directory of Open Access Journals (Sweden)

    Mary B Crabtree

    Full Text Available BACKGROUND: Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. METHODOLOGY AND PRINCIPAL FINDINGS: Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. CONCLUSIONS/SIGNIFICANCE: In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.

  6. Infection and transmission of Rift Valley fever viruses lacking the NSs and/or NSm genes in mosquitoes: potential role for NSm in mosquito infection.

    Science.gov (United States)

    Crabtree, Mary B; Kent Crockett, Rebekah J; Bird, Brian H; Nichol, Stuart T; Erickson, Bobbie Rae; Biggerstaff, Brad J; Horiuchi, Kalanthe; Miller, Barry R

    2012-01-01

    Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors. Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus. In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.

  7. A mouse model for studying viscerotropic disease caused by yellow fever virus infection.

    Directory of Open Access Journals (Sweden)

    Kathryn C Meier

    2009-10-01

    Full Text Available Mosquito-borne yellow fever virus (YFV causes highly lethal, viscerotropic disease in humans and non-human primates. Despite the availability of efficacious live-attenuated vaccine strains, 17D-204 and 17DD, derived by serial passage of pathogenic YFV strain Asibi, YFV continues to pose a significant threat to human health. Neither the disease caused by wild-type YFV, nor the molecular determinants of vaccine attenuation and immunogenicity, have been well characterized, in large part due to the lack of a small animal model for viscerotropic YFV infection. Here, we describe a small animal model for wild-type YFV that manifests clinical disease representative of that seen in primates without adaptation of the virus to the host, which was required for the current hamster YF model. Investigation of the role of type I interferon (IFN-alpha/beta in protection of mice from viscerotropic YFV infection revealed that mice deficient in the IFN-alpha/beta receptor (A129 or the STAT1 signaling molecule (STAT129 were highly susceptible to infection and disease, succumbing within 6-7 days. Importantly, these animals developed viscerotropic disease reminiscent of human YF, instead of the encephalitic signs typically observed in mice. Rapid viremic dissemination and extensive replication in visceral organs, spleen and liver, was associated with severe pathologies in these tissues and dramatically elevated MCP-1 and IL-6 levels, suggestive of a cytokine storm. In striking contrast, infection of A129 and STAT129 mice with the 17D-204 vaccine virus was subclinical, similar to immunization in humans. Although, like wild-type YFV, 17D-204 virus amplified within regional lymph nodes and seeded a serum viremia in A129 mice, infection of visceral organs was rarely established and rapidly cleared, possibly by type II IFN-dependent mechanisms. The ability to establish systemic infection and cause viscerotropic disease in A129 mice correlated with infectivity for A129

  8. A mouse model for studying viscerotropic disease caused by yellow fever virus infection.

    Science.gov (United States)

    Meier, Kathryn C; Gardner, Christina L; Khoretonenko, Mikhail V; Klimstra, William B; Ryman, Kate D

    2009-10-01

    Mosquito-borne yellow fever virus (YFV) causes highly lethal, viscerotropic disease in humans and non-human primates. Despite the availability of efficacious live-attenuated vaccine strains, 17D-204 and 17DD, derived by serial passage of pathogenic YFV strain Asibi, YFV continues to pose a significant threat to human health. Neither the disease caused by wild-type YFV, nor the molecular determinants of vaccine attenuation and immunogenicity, have been well characterized, in large part due to the lack of a small animal model for viscerotropic YFV infection. Here, we describe a small animal model for wild-type YFV that manifests clinical disease representative of that seen in primates without adaptation of the virus to the host, which was required for the current hamster YF model. Investigation of the role of type I interferon (IFN-alpha/beta) in protection of mice from viscerotropic YFV infection revealed that mice deficient in the IFN-alpha/beta receptor (A129) or the STAT1 signaling molecule (STAT129) were highly susceptible to infection and disease, succumbing within 6-7 days. Importantly, these animals developed viscerotropic disease reminiscent of human YF, instead of the encephalitic signs typically observed in mice. Rapid viremic dissemination and extensive replication in visceral organs, spleen and liver, was associated with severe pathologies in these tissues and dramatically elevated MCP-1 and IL-6 levels, suggestive of a cytokine storm. In striking contrast, infection of A129 and STAT129 mice with the 17D-204 vaccine virus was subclinical, similar to immunization in humans. Although, like wild-type YFV, 17D-204 virus amplified within regional lymph nodes and seeded a serum viremia in A129 mice, infection of visceral organs was rarely established and rapidly cleared, possibly by type II IFN-dependent mechanisms. The ability to establish systemic infection and cause viscerotropic disease in A129 mice correlated with infectivity for A129-derived, but not WT

  9. Genotyping assay for differentiation of wild-type and vaccine viruses in subjects immunized with live attenuated influenza vaccine.

    Directory of Open Access Journals (Sweden)

    Victoria Matyushenko

    Full Text Available Live attenuated influenza vaccines (LAIVs are considered as safe and effective tool to control influenza in different age groups, especially in young children. An important part of the LAIV safety evaluation is the detection of vaccine virus replication in the nasopharynx of the vaccinees, with special attention to a potential virus transmission to the unvaccinated close contacts. Conducting LAIV clinical trials in some geographical regions with year-round circulation of influenza viruses warrants the development of robust and reliable tools for differentiating vaccine viruses from wild-type influenza viruses in nasal pharyngeal wash (NPW specimens of vaccinated subjects. Here we report the development of genotyping assay for the detection of wild-type and vaccine-type influenza virus genes in NPW specimens of young children immunized with Russian-backbone seasonal trivalent LAIV using Sanger sequencing from newly designed universal primers. The new primer set allowed amplification and sequencing of short fragments of viral genes in NPW specimens and appeared to be more sensitive than conventional real-time RT-PCR protocols routinely used for the detection and typing/subtyping of influenza virus in humans. Furthermore, the new assay is capable of defining the origin of wild-type influenza virus through BLAST search with the generated sequences of viral genes fragments.

  10. SURVEILLANCE FOR ANTIBODIES AGAINST SIX CANINE VIRUSES IN WILD RACCOONS (PROCYON LOTOR) IN JAPAN.

    Science.gov (United States)

    Aoki, Emiko; Soma, Takehisa; Yokoyama, Mayumi; Matsubayashi, Makoto; Sasai, Kazumi

    2017-10-01

    Raccoons (Procyon lotor) are found worldwide. They are frequently seen in crowded inner cities as well as in forests or wooded areas, often living in proximity to humans and their pets. We examined sera from 100 wild raccoons in Japan for antibodies to six canine viruses with veterinary significance to assess their potential as reservoirs. We also aimed to understand the distribution of potentially infected wildlife. We found that 7% of samples were seropositive for canine distemper virus (CDV), 10% for canine parvovirus type 2, 2% for canine adenovirus type 1, 6% for canine adenovirus type 2, and 7% for canine coronavirus. No samples were found to be seropositive for canine parainfluenza virus. Seropositivity rates for canine distemper virus and canine parvovirus type 2 were significantly different between areas, and younger raccoons (Canis lupus familiaris), our results suggest that they can act as reservoirs for some of these important canine viruses and might be involved in viral transmission. Further study should include isolation and analysis of canine viruses in wild raccoons from a wider area.

  11. Susceptibility of different leukocyte cell types to Vaccinia virus infection

    Directory of Open Access Journals (Sweden)

    Sánchez-Puig Juana M

    2004-11-01

    Full Text Available Abstract Background Vaccinia virus, the prototype member of the family Poxviridae, was used extensively in the past as the Smallpox vaccine, and is currently considered as a candidate vector for new recombinant vaccines. Vaccinia virus has a wide host range, and is known to infect cultures of a variety of cell lines of mammalian origin. However, little is known about the virus tropism in human leukocyte populations. We report here that various cell types within leukocyte populations have widely different susceptibility to infection with vaccinia virus. Results We have investigated the ability of vaccinia virus to infect human PBLs by using virus recombinants expressing green fluorescent protein (GFP, and monoclonal antibodies specific for PBL subpopulations. Flow cytometry allowed the identification of infected cells within the PBL mixture 1–5 hours after infection. Antibody labeling revealed that different cell populations had very different infection rates. Monocytes showed the highest percentage of infected cells, followed by B lymphocytes and NK cells. In contrast to those cell types, the rate of infection of T lymphocytes was low. Comparison of vaccinia virus strains WR and MVA showed that both strains infected efficiently the monocyte population, although producing different expression levels. Our results suggest that MVA was less efficient than WR in infecting NK cells and B lymphocytes. Overall, both WR and MVA consistently showed a strong preference for the infection of non-T cells. Conclusions When infecting fresh human PBL preparations, vaccinia virus showed a strong bias towards the infection of monocytes, followed by B lymphocytes and NK cells. In contrast, very poor infection of T lymphocytes was detected. These finding may have important implications both in our understanding of poxvirus pathogenesis and in the development of improved smallpox vaccines.

  12. Bovine Herpes Virus 1 (BHV-1) and Herpes Simplex Virus Type 1 (HSV-1) Promote Survival of Latently Infected Sensory Neurons, in Part by Inhibiting Apoptosis

    Science.gov (United States)

    Jones, Clinton

    2013-01-01

    α-Herpesvirinae subfamily members, including herpes simplex virus type 1 (HSV-1) and bovine herpes virus 1 (BHV-1), initiate infection in mucosal surfaces. BHV-1 and HSV-1 enter sensory neurons by cell-cell spread where a burst of viral gene expression occurs. When compared to non-neuronal cells, viral gene expression is quickly extinguished in sensory neurons resulting in neuronal survival and latency. The HSV-1 latency associated transcript (LAT), which is abundantly expressed in latently infected neurons, inhibits apoptosis, viral transcription, and productive infection, and directly or indirectly enhances reactivation from latency in small animal models. Three anti-apoptosis genes can be substituted for LAT, which will restore wild type levels of reactivation from latency to a LAT null mutant virus. Two small non-coding RNAs encoded by LAT possess anti-apoptosis functions in transfected cells. The BHV-1 latency related RNA (LR-RNA), like LAT, is abundantly expressed during latency. The LR-RNA encodes a protein (ORF2) and two microRNAs that are expressed in certain latently infected neurons. Wild-type expression of LR gene products is required for stress-induced reactivation from latency in cattle. ORF2 has anti-apoptosis functions and interacts with certain cellular transcription factors that stimulate viral transcription and productive infection. ORF2 is predicted to promote survival of infected neurons by inhibiting apoptosis and sequestering cellular transcription factors which stimulate productive infection. In addition, the LR encoded microRNAs inhibit viral transcription and apoptosis. In summary, the ability of BHV-1 and HSV-1 to interfere with apoptosis and productive infection in sensory neurons is crucial for the life-long latency-reactivation cycle in their respective hosts. PMID:25278776

  13. Substitution of wild-type yellow fever Asibi sequences for 17D vaccine sequences in ChimeriVax-dengue 4 does not enhance infection of Aedes aegypti mosquitoes.

    Science.gov (United States)

    McGee, Charles E; Tsetsarkin, Konstantin; Vanlandingham, Dana L; McElroy, Kate L; Lang, Jean; Guy, Bruno; Decelle, Thierry; Higgs, Stephen

    2008-03-01

    To address concerns that a flavivirus vaccine/wild-type recombinant virus might have a high mosquito infectivity phenotype, the yellow fever virus (YFV) 17D backbone of the ChimeriVax-dengue 4 virus was replaced with the corresponding gene sequences of the virulent YFV Asibi strain. Field-collected and laboratory-colonized Aedes aegypti mosquitoes were fed on blood containing each of the viruses under investigation and held for 14 days after infection. Infection and dissemination rates were based on antigen detection in titrated body or head triturates. Our data indicate that, even in the highly unlikely event of recombination or substantial backbone reversion, virulent sequences do not enhance the transmissibility of ChimeriVax viruses. In light of the low-level viremias that have been observed after vaccination in human volunteers coupled with low mosquito infectivity, it is predicted that the risk of mosquito infection and transmission of ChimeriVax vaccine recombinant/revertant viruses in nature is minimal.

  14. West Nile Virus and Usutu Virus Monitoring of Wild Birds in Germany

    Science.gov (United States)

    Michel, Friederike; Fast, Christine; Reuschel, Maximilian; Müller, Kerstin; Urbaniak, Sylvia; Brandes, Florian; Schwehn, Rebekka; Groschup, Martin H.; Ziegler, Ute

    2018-01-01

    By systematically setting up a unique nation-wide wild bird surveillance network, we monitored migratory and resident birds for zoonotic arthropod-borne virus infections, such as the flaviviruses West Nile virus (WNV) and Usutu virus (USUV). More than 1900 wild bird blood samples, from 20 orders and 136 different bird species, were collected between 2014 and 2016. Samples were investigated by WNV and USUV-specific real-time polymerase chain reactions as well as by differentiating virus neutralization tests. Dead bird surveillance data, obtained from organ investigations in 2016, were also included. WNV-specific RNA was not detected, whereas four wild bird blood samples tested positive for USUV-specific RNA. Additionally, 73 USUV-positive birds were detected in the 2016 dead bird surveillance. WNV neutralizing antibodies were predominantly found in long-distance, partial and short-distance migrants, while USUV neutralizing antibodies were mainly detected in resident wild bird species, preferentially with low seroprevalences. To date, WNV-specific RNA has neither been detected in wild birds, nor in mosquitoes, thus, we conclude that WNV is not yet present in Germany. Continued wild bird and mosquito monitoring studies are essential to detect the incursion of zoonotic viruses and to allow risk assessments for zoonotic pathogens. PMID:29361762

  15. Assessing the potential spread and maintenance of foot-and-mouth disease virus infection in wild ungulates: general principles and application to a specific scenario in Thrace

    DEFF Research Database (Denmark)

    Dhollander, S.; Belsham, Graham; Lange, M.

    2016-01-01

    Foot-and-mouth disease (FMD), due to infection with serotype O virus, occurred in wild boar and within eleven outbreaks in domestic livestock in the south-east of Bulgaria, Thrace region, in 2011. Hence, the issue of the potential for the spread and maintenance of FMD virus (FMDV) infection...... in a population of wild ungulates became important. This assessment focused on the spread and maintenance of FMDV infection within a hypothetical wild boar and deer population in an environment, which is characterized by a climate transitional between Mediterranean and continental and variable wildlife population...... densities. The assessment was based on three aspects: (i) a systematic review of the literature focusing on experimental infection studies to identify the parameters describing the duration of FMDV infection in deer and wild boar, as well as observational studies assessing the occurrence of FMDV infection...

  16. Characterization of Yellow Fever Virus Infection of Human and Non-human Primate Antigen Presenting Cells and Their Interaction with CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Yu Cong

    2016-05-01

    Full Text Available Humans infected with yellow fever virus (YFV, a mosquito-borne flavivirus, can develop illness ranging from a mild febrile disease to hemorrhagic fever and death. The 17D vaccine strain of YFV was developed in the 1930s, has been used continuously since development and has proven very effective. Genetic differences between vaccine and wild-type viruses are few, yet viral or host mechanisms associated with protection or disease are not fully understood. Over the past 20 years, a number of cases of vaccine-associated disease have been identified following vaccination with 17D; these cases have been correlated with reduced immune status at the time of vaccination. Recently, several studies have evaluated T cell responses to vaccination in both humans and non-human primates, but none have evaluated the response to wild-type virus infection. In the studies described here, monocyte-derived macrophages (MDM and dendritic cells (MoDC from both humans and rhesus macaques were evaluated for their ability to support infection with either wild-type Asibi virus or the 17D vaccine strain and the host cytokine and chemokine response characterized. Human MoDC and MDM were also evaluated for their ability to stimulate CD4+ T cells. It was found that MoDC and MDM supported viral replication and that there were differential cytokine responses to infection with either wild-type or vaccine viruses. Additionally, MoDCs infected with live 17D virus were able to stimulate IFN-γ and IL-2 production in CD4+ T cells, while cells infected with Asibi virus were not. These data demonstrate that wild-type and vaccine YFV stimulate different responses in target antigen presenting cells and that wild-type YFV can inhibit MoDC activation of CD4+ T cells, a critical component in development of protective immunity. These data provide initial, but critical insight into regulatory capabilities of wild-type YFV in development of disease.

  17. Identification of Gene Resistance to Avian InfluenzaVirus (Mx Gene among Wild Waterbirds

    Directory of Open Access Journals (Sweden)

    Dewi Elfidasari

    2013-04-01

    Full Text Available The Mx gene is an antiviral gene used to determine the resistance or the susceptibility to different types of viruses, including the Avian Influenza (AI virus subtype H5N1. The AI virus subtype H5N1 infection in chickens causes Mx gene polymorphism. The Mx+ gene shows resistant to the AIvirus subtype H5N1, whereas the Mx-gene shows signs of susceptible. The objective of thisresearch was to detect the Mxgene in wild aquatic birds using the Polymerase Chain Reaction Restriction Fragment Length Polymorphism (PCR-RFLP method with the primer pairs F2 and NE-R2/R and the RsaI restriction enzyme. DNA samples were obtained from eight species of wild waterbirds with positive and negative exposure to the AI virus subtype H5N1. DNA amplification results showed that the Mxgene in wild aquatic birds is found in a 100 bp fragment, which is the same as the Mx gene found in chickens. However, unlike chickens, the Mxgene in wild aquatic birds did not show any polymorphism. This study proves that Mx- based resistance to AI virus subtype H5N1 in different in wild birds than in chickens.

  18. Role of natural killer cells in innate protection against lethal ebola virus infection.

    Science.gov (United States)

    Warfield, Kelly L; Perkins, Jeremy G; Swenson, Dana L; Deal, Emily M; Bosio, Catharine M; Aman, M Javad; Yokoyama, Wayne M; Young, Howard A; Bavari, Sina

    2004-07-19

    Ebola virus is a highly lethal human pathogen and is rapidly driving many wild primate populations toward extinction. Several lines of evidence suggest that innate, nonspecific host factors are potentially critical for survival after Ebola virus infection. Here, we show that nonreplicating Ebola virus-like particles (VLPs), containing the glycoprotein (GP) and matrix protein virus protein (VP)40, administered 1-3 d before Ebola virus infection rapidly induced protective immunity. VLP injection enhanced the numbers of natural killer (NK) cells in lymphoid tissues. In contrast to live Ebola virus, VLP treatment of NK cells enhanced cytokine secretion and cytolytic activity against NK-sensitive targets. Unlike wild-type mice, treatment of NK-deficient or -depleted mice with VLPs had no protective effect against Ebola virus infection and NK cells treated with VLPs protected against Ebola virus infection when adoptively transferred to naive mice. The mechanism of NK cell-mediated protection clearly depended on perforin, but not interferon-gamma secretion. Particles containing only VP40 were sufficient to induce NK cell responses and provide protection from infection in the absence of the viral GP. These findings revealed a decisive role for NK cells during lethal Ebola virus infection. This work should open new doors for better understanding of Ebola virus pathogenesis and direct the development of immunotherapeutics, which target the innate immune system, for treatment of Ebola virus infection.

  19. Severity of Bovine Tuberculosis Is Associated with Co-Infection with Common Pathogens in Wild Boar

    Science.gov (United States)

    Risco, David; Serrano, Emmanuel; Fernández-Llario, Pedro; Cuesta, Jesús M.; Gonçalves, Pilar; García-Jiménez, Waldo L.; Martínez, Remigio; Cerrato, Rosario; Velarde, Roser; Gómez, Luis; Segalés, Joaquím; Hermoso de Mendoza, Javier

    2014-01-01

    Co-infections with parasites or viruses drive tuberculosis dynamics in humans, but little is known about their effects in other non-human hosts. This work aims to investigate the relationship between Mycobacterium bovis infection and other pathogens in wild boar (Sus scrofa), a recognized reservoir of bovine tuberculosis (bTB) in Mediterranean ecosystems. For this purpose, it has been assessed whether contacts with common concomitant pathogens are associated with the development of severe bTB lesions in 165 wild boar from mid-western Spain. The presence of bTB lesions affecting only one anatomic location (cervical lymph nodes), or more severe patterns affecting more than one location (mainly cervical lymph nodes and lungs), was assessed in infected animals. In addition, the existence of contacts with other pathogens such as porcine circovirus type 2 (PCV2), Aujeszky's disease virus (ADV), swine influenza virus, porcine reproductive and respiratory syndrome virus, Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, Haemophilus parasuis and Metastrongylus spp, was evaluated by means of serological, microbiological and parasitological techniques. The existence of contacts with a structured community of pathogens in wild boar infected by M. bovis was statistically investigated by null models. Association between this community of pathogens and bTB severity was examined using a Partial Least Squares regression approach. Results showed that adult wild boar infected by M. bovis had contacted with some specific, non-random pathogen combinations. Contact with PCV2, ADV and infection by Metastrongylus spp, was positively correlated to tuberculosis severity. Therefore, measures against these concomitant pathogens such as vaccination or deworming, might be useful in tuberculosis control programmes in the wild boar. However, given the unexpected consequences of altering any community of organisms, further research should evaluate the impact of such measures under

  20. Severity of bovine tuberculosis is associated with co-infection with common pathogens in wild boar.

    Directory of Open Access Journals (Sweden)

    David Risco

    Full Text Available Co-infections with parasites or viruses drive tuberculosis dynamics in humans, but little is known about their effects in other non-human hosts. This work aims to investigate the relationship between Mycobacterium bovis infection and other pathogens in wild boar (Sus scrofa, a recognized reservoir of bovine tuberculosis (bTB in Mediterranean ecosystems. For this purpose, it has been assessed whether contacts with common concomitant pathogens are associated with the development of severe bTB lesions in 165 wild boar from mid-western Spain. The presence of bTB lesions affecting only one anatomic location (cervical lymph nodes, or more severe patterns affecting more than one location (mainly cervical lymph nodes and lungs, was assessed in infected animals. In addition, the existence of contacts with other pathogens such as porcine circovirus type 2 (PCV2, Aujeszky's disease virus (ADV, swine influenza virus, porcine reproductive and respiratory syndrome virus, Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, Haemophilus parasuis and Metastrongylus spp, was evaluated by means of serological, microbiological and parasitological techniques. The existence of contacts with a structured community of pathogens in wild boar infected by M. bovis was statistically investigated by null models. Association between this community of pathogens and bTB severity was examined using a Partial Least Squares regression approach. Results showed that adult wild boar infected by M. bovis had contacted with some specific, non-random pathogen combinations. Contact with PCV2, ADV and infection by Metastrongylus spp, was positively correlated to tuberculosis severity. Therefore, measures against these concomitant pathogens such as vaccination or deworming, might be useful in tuberculosis control programmes in the wild boar. However, given the unexpected consequences of altering any community of organisms, further research should evaluate the impact of such measures

  1. Assessing the potential spread and maintenance of foot-and-mouth disease virus infection in wild ungulates: general principles and application to a specific scenario in Thrace.

    Science.gov (United States)

    Dhollander, S; Belsham, G J; Lange, M; Willgert, K; Alexandrov, T; Chondrokouki, E; Depner, K; Khomenko, S; Özyörük, F; Salman, M; Thulke, H H; Bøtner, A

    2016-04-01

    Foot-and-mouth disease (FMD), due to infection with serotype O virus, occurred in wild boar and within eleven outbreaks in domestic livestock in the south-east of Bulgaria, Thrace region, in 2011. Hence, the issue of the potential for the spread and maintenance of FMD virus (FMDV) infection in a population of wild ungulates became important. This assessment focused on the spread and maintenance of FMDV infection within a hypothetical wild boar and deer population in an environment, which is characterized by a climate transitional between Mediterranean and continental and variable wildlife population densities. The assessment was based on three aspects: (i) a systematic review of the literature focusing on experimental infection studies to identify the parameters describing the duration of FMDV infection in deer and wild boar, as well as observational studies assessing the occurrence of FMDV infection in wild deer and wild boar populations, (ii) prevalence survey data of wild boar and deer in Bulgaria and Turkey and (iii) an epidemiological model, simulating the host-to-host spread of FMDV infections. It is concluded, based on all three aspects, that the wildlife population in Thrace, and so wildlife populations in similar ecological settings, are probably not able to maintain FMD in the long term in the absence of FMDV infection in the domestic host population. However, limited spread of FMDV infection in time and space in the wildlife populations can occur. If there is a continued cross-over of FMDV between domestic and wildlife populations or a higher population density, virus circulation may be prolonged. © 2014 Blackwell Verlag GmbH.

  2. Virus Diseases Infecting Almond Germplasm in Lebanon

    OpenAIRE

    Adeeb Saad; Yusuf Abou-Jawdah; Zahi Kanaan-Atallah

    2000-01-01

    Cultivated and wild almond species were surveyed for virus diseases. Four viruses infected cultivated almonds (Prunus dulcis): Prunus necrotic ringspot virus (PNRSV), Prune dwarf virus (PDV), Apple chlorotic leaf spot virus (ACLSV) and Apple mosaic virus (ApMV). Only ACLSV and ApMV were detected on wild almonds, (Prunus orientalis and P. korschinskii). The occurence of PNRSV or PDV on seeds used for the production of rootstocks, on seedlings in nurseries, and on mother plants reve...

  3. O-GlcNAc modification of the coat protein of the potyvirus Plum pox virus enhances viral infection.

    Science.gov (United States)

    Pérez, José de Jesús; Udeshi, Namrata D; Shabanowitz, Jeffrey; Ciordia, Sergio; Juárez, Silvia; Scott, Cheryl L; Olszewski, Neil E; Hunt, Donald F; García, Juan Antonio

    2013-08-01

    O-GlcNAcylation is a dynamic protein modification which has been studied mainly in metazoans. We reported previously that an Arabidopsis thaliana O-GlcNAc transferase modifies at least two threonine residues of the Plum pox virus (PPV) capsid protein (CP). Now, six additional residues were shown to be involved in O-GlcNAc modification of PPV CP. CP O-GlcNAcylation was abolished in the PPV CP7-T/A mutant, in which seven threonines were mutated. PPV CP7-T/A infected Nicotiana clevelandii, Nicotiana benthamiana, and Prunus persica without noticeable defects. However, defects in infection of A. thaliana were readily apparent. In mixed infections of wild-type arabidopsis, the CP7-T/A mutant was outcompeted by wild-type virus. These results indicate that CP O-GlcNAcylation has a major role in the infection process. O-GlcNAc modification may have a role in virion assembly and/or stability as the CP of PPV CP7-T/A was more sensitive to protease digestion than that of the wild-type virus. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Natural and experimental hepatitis E virus genotype 3-infection in European wild boar is transmissible to domestic pigs.

    Science.gov (United States)

    Schlosser, Josephine; Eiden, Martin; Vina-Rodriguez, Ariel; Fast, Christine; Dremsek, Paul; Lange, Elke; Ulrich, Rainer G; Groschup, Martin H

    2014-11-26

    Hepatitis E virus (HEV) is the causative agent of acute hepatitis E in humans in developing countries, but sporadic and autochthonous cases do also occur in industrialised countries. In Europe, food-borne zoonotic transmission of genotype 3 (gt3) has been associated with domestic pig and wild boar. However, little is known about the course of HEV infection in European wild boar and their role in HEV transmission to domestic pigs. To investigate the transmissibility and pathogenesis of wild boar-derived HEVgt3, we inoculated four wild boar and four miniature pigs intravenously. Using quantitative real-time RT-PCR viral RNA was detected in serum, faeces and in liver, spleen and lymph nodes. The antibody response evolved after fourteen days post inoculation. Histopathological findings included mild to moderate lymphoplasmacytic hepatitis which was more prominent in wild boar than in miniature pigs. By immunohistochemical methods, viral antigens were detected mainly in Kupffer cells and liver sinusoidal endothelial cells, partially associated with hepatic lesions, but also in spleen and lymph nodes. While clinical symptoms were subtle and gross pathology was inconspicuous, increased liver enzyme levels in serum indicated hepatocellular injury. As the faecal-oral route is supposed to be the most likely transmission route, we included four contact animals to prove horizontal transmission. Interestingly, HEVgt3-infection was also detected in wild boar and miniature pigs kept in contact to intravenously inoculated wild boar. Given the high virus loads and long duration of viral shedding, wild boar has to be considered as an important HEV reservoir and transmission host in Europe.

  5. Endogenous Murine BST-2/Tetherin Is Not a Major Restriction Factor of Influenza A Virus Infection.

    Directory of Open Access Journals (Sweden)

    Sarah L Londrigan

    Full Text Available BST-2 (tetherin, CD317, HM1.24 restricts virus growth by tethering enveloped viruses to the cell surface. The role of BST-2 during influenza A virus infection (IAV is controversial. Here, we assessed the capacity of endogenous BST-2 to restrict IAV in primary murine cells. IAV infection increased BST-2 surface expression by primary macrophages, but not alveolar epithelial cells (AEC. BST-2-deficient AEC and macrophages displayed no difference in susceptibility to IAV infection relative to wild type cells. Furthermore, BST-2 played little role in infectious IAV release from either AEC or macrophages. To examine BST-2 during IAV infection in vivo, we infected BST-2-deficient mice. No difference in weight loss or in viral loads in the lungs and/or nasal tissues were detected between BST-2-deficient and wild type animals. This study rules out a major role for endogenous BST-2 in modulating IAV in the mouse model of infection.

  6. Evidence of bovine viral diarrhea virus infection in three species of sympatric wild ungulates in Nevada: life history strategies may maintain endemic infections in wild populations

    Directory of Open Access Journals (Sweden)

    Peregrine Lee Wolff

    2016-03-01

    Full Text Available Evidence for bovine viral diarrhea virus (BVDV infection was detected in 2009-10 while investigating a pneumonia die-off in Rocky Mountain bighorn sheep (Ovis canadensis canadensis, and sympatric mountain goats (Oreamnos americanum in adjacent mountain ranges in Elko County, Nevada. Seroprevalence to BVDV-1 was 81% (N=32 in the bighorns and 100% (N=3 in the mountain goats. Serosurveillance from 2011 to 2015 of surviving bighorns and mountain goats as well as sympatric mule deer (Odocoileus hemionus, indicated a prevalence of 72% (N=45, 45% (N=51, and 51% (N=342 respectively. All species had antibody titers to BVDV1 and BVDV2. BVDV1 was isolated in cell culture from three bighorn sheep and a mountain goat kid. BVDV2 was isolated from two mule deer. Six deer (N=96 sampled in 2013 were positive for BVDV by antigen-capture ELISA on ear notch. Wild ungulates and cattle concurrently graze public and private lands in these two mountain ranges, thus providing potential for interspecies viral transmission. Like cattle, mule deer, mountain goats, and bighorn sheep can be infected with BVDV and can develop clinical disease including immunosuppression. Winter migration patterns that increase densities and species interaction during the first and second trimester of gestation may contribute to the long term maintenance of the virus in these wild ungulates. More studies are needed to determine the population level impacts of BVDV infection on these three species.

  7. Monitoring of West Nile virus, Usutu virus and Meaban virus in waterfowl used as decoys and wild raptors in southern Spain.

    Science.gov (United States)

    Jurado-Tarifa, E; Napp, S; Lecollinet, S; Arenas, A; Beck, C; Cerdà-Cuéllar, M; Fernández-Morente, M; García-Bocanegra, I

    2016-12-01

    In the last decade, the number of emerging flaviviruses described worldwide has increased considerably, with wild birds acting as the main reservoir hosts of these viruses. We carried out an epidemiological survey to determine the seroprevalence of antigenically related flaviviruses, particularly West Nile virus (WNV), Usutu virus (USUV) and Meaban virus (MBV), in waterfowl used as decoys and wild raptors in Andalusia (southern Spain), the region considered to have the highest risk of flaviviruses circulation in Spain. The overall flaviviruses seroprevalence according to bELISA was 13.0% in both in decoys (n=1052) and wild raptors (n=123). Specific antibodies against WNV, USUV and MBV were confirmed by micro virus neutralization tests in 12, 38 and 4 of the seropositive decoys, respectively. This is the first study on WNV and USUV infections in decoys and the first report of MBV infections in waterfowl and raptors. Moreover we report the first description of WNV infections in short-toed snake eagle (Circaetus gallicus) and Montagu's harrier (Circus pygargus). The seropositivity obtained indicates widespread but not homogeneous distribution of WNV and USUV in Andalusia. The results also confirm endemic circulation of WNV, USUV and MBV in both decoys and wild raptors in southern Spain. Our results highlight the need to implement surveillance and control programs not only for WNV but also for other related flaviviruses. Further research is needed to determine the eco-epidemiological role that waterfowl and wild raptors play in the transmission of emerging flaviviruses, especially in decoys, given their close interactions with humans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Persistent Bovine Viral Diarrhea Virus infection in domestic and wild small ruminants and camelids including the mountain goat (Oreamnos americanus

    Directory of Open Access Journals (Sweden)

    Danielle Darracq Nelson

    2016-01-01

    Full Text Available Bovine viral diarrhea virus (BVDV is a Pestivirus best known for causing a variety of disease syndromes in cattle, including gastrointestinal disease, reproductive insufficiency, immunosuppression, mucosal disease, and hemorrhagic syndrome. The virus can be spread by transiently infected individuals and by persistently infected animals that may be asymptomatic while shedding large amounts of virus throughout their lifetime. BVDV has been reported in over 40 domestic and free-ranging species, and persistent infection has been described in eight of those species: white-tailed deer, mule deer, eland, mousedeer, mountain goats, alpacas, sheep, and domestic swine. This paper reviews the various aspects of BVDV transmission, disease syndromes, diagnosis, control, and prevention, as well as examines BVDV infection in domestic and wild small ruminants and camelids including mountain goats (Oreamnos americanus.

  9. Novel Reassortant Influenza A(H5N8) Viruses among Inoculated Domestic and Wild Ducks, South Korea, 2014

    Science.gov (United States)

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Jeong, Jipseol; Choi, Jun-Gu; Jeong, Joojin; Moon, Oun-Kyong; Yoon, Hachung; Cho, Youngmi; Kang, Young-Myong; Lee, Hee-Soo

    2015-01-01

    An outbreak of highly pathogenic avian influenza, caused by a novel reassortant influenza A (H5N8) virus, occurred among poultry and wild birds in South Korea in 2014. The aim of this study was to evaluate the pathogenesis in and mode of transmission of this virus among domestic and wild ducks. Three of the viruses had similar pathogenicity among infected domestic ducks: the H5N8 viruses were moderately pathogenic (0%–20% mortality rate); in wild mallard ducks, the H5N8 and H5N1 viruses did not cause severe illness or death; viral replication and shedding were greater in H5N8-infected mallards than in H5N1-infected mallards. Identification of H5N8 viruses in birds exposed to infected domestic ducks and mallards indicated that the viruses could spread by contact. We propose active surveillance to support prevention of the spread of this virus among wild birds and poultry, especially domestic ducks. PMID:25625281

  10. Zika Virus Antagonizes Type I Interferon Responses during Infection of Human Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    James R Bowen

    2017-02-01

    Full Text Available Zika virus (ZIKV is an emerging mosquito-borne flavivirus that is causally linked to severe neonatal birth defects, including microcephaly, and is associated with Guillain-Barre syndrome in adults. Dendritic cells (DCs are an important cell type during infection by multiple mosquito-borne flaviviruses, including dengue virus, West Nile virus, Japanese encephalitis virus, and yellow fever virus. Despite this, the interplay between ZIKV and DCs remains poorly defined. Here, we found human DCs supported productive infection by a contemporary Puerto Rican isolate with considerable variability in viral replication, but not viral binding, between DCs from different donors. Historic isolates from Africa and Asia also infected DCs with distinct viral replication kinetics between strains. African lineage viruses displayed more rapid replication kinetics and infection magnitude as compared to Asian lineage viruses, and uniquely induced cell death. Infection of DCs with both contemporary and historic ZIKV isolates led to minimal up-regulation of T cell co-stimulatory and MHC molecules, along with limited secretion of inflammatory cytokines. Inhibition of type I interferon (IFN protein translation was observed during ZIKV infection, despite strong induction at the RNA transcript level and up-regulation of other host antiviral proteins. Treatment of human DCs with RIG-I agonist potently restricted ZIKV replication, while type I IFN had only modest effects. Mechanistically, we found all strains of ZIKV antagonized type I IFN-mediated phosphorylation of STAT1 and STAT2. Combined, our findings show that ZIKV subverts DC immunogenicity during infection, in part through evasion of type I IFN responses, but that the RLR signaling pathway is still capable of inducing an antiviral state, and therefore may serve as an antiviral therapeutic target.

  11. Snapshot of Viral Infections in Wild Carnivores Reveals Ubiquity of Parvovirus and Susceptibility of Egyptian Mongoose to Feline Panleukopenia Virus

    Science.gov (United States)

    Duarte, Margarida D.; Henriques, Ana Margarida; Barros, Sílvia Carla; Fagulha, Teresa; Mendonça, Paula; Carvalho, Paulo; Monteiro, Madalena; Fevereiro, Miguel; Basto, Mafalda P.; Rosalino, Luís Miguel; Barros, Tânia; Bandeira, Victor; Fonseca, Carlos; Cunha, Mónica V.

    2013-01-01

    The exposure of wild carnivores to viral pathogens, with emphasis on parvovirus (CPV/FPLV), was assessed based on the molecular screening of tissue samples from 128 hunted or accidentally road-killed animals collected in Portugal from 2008 to 2011, including Egyptian mongoose (Herpestes ichneumon, n = 99), red fox (Vulpes vulpes, n = 19), stone marten (Martes foina, n = 3), common genet (Genetta genetta, n = 3) and Eurasian badger (Meles meles, n = 4). A high prevalence of parvovirus DNA (63%) was detected among all surveyed species, particularly in mongooses (58%) and red foxes (79%), along with the presence of CPV/FPLV circulating antibodies that were identified in 90% of a subset of parvovirus-DNA positive samples. Most specimens were extensively autolysed, restricting macro and microscopic investigations for lesion evaluation. Whenever possible to examine, signs of active disease were not present, supporting the hypothesis that the parvovirus vp2 gene fragments detected by real-time PCR possibly correspond to viral DNA reminiscent from previous infections. The molecular characterization of viruses, based on the analysis of the complete or partial sequence of the vp2 gene, allowed typifying three viral strains of mongoose and four red fox’s as feline panleukopenia virus (FPLV) and one stone marten’s as newCPV-2b type. The genetic similarity found between the FPLV viruses from free-ranging and captive wild species originated in Portugal and publicly available comparable sequences, suggests a closer genetic relatedness among FPLV circulating in Portugal. Although the clinical and epidemiological significance of infection could not be established, this study evidences that exposure of sympatric wild carnivores to parvovirus is common and geographically widespread, potentially carrying a risk to susceptible populations at the wildlife-domestic interface and to threatened species, such as the wildcat (Felis silvestris) and the critically

  12. The evolutionary genetics and emergence of avian influenza viruses in wild birds.

    Directory of Open Access Journals (Sweden)

    Vivien G Dugan

    2008-05-01

    Full Text Available We surveyed the genetic diversity among avian influenza virus (AIV in wild birds, comprising 167 complete viral genomes from 14 bird species sampled in four locations across the United States. These isolates represented 29 type A influenza virus hemagglutinin (HA and neuraminidase (NA subtype combinations, with up to 26% of isolates showing evidence of mixed subtype infection. Through a phylogenetic analysis of the largest data set of AIV genomes compiled to date, we were able to document a remarkably high rate of genome reassortment, with no clear pattern of gene segment association and occasional inter-hemisphere gene segment migration and reassortment. From this, we propose that AIV in wild birds forms transient "genome constellations," continually reshuffled by reassortment, in contrast to the spread of a limited number of stable genome constellations that characterizes the evolution of mammalian-adapted influenza A viruses.

  13. Differential induction of Toll-like receptors & type 1 interferons by Sabin attenuated & wild type 1 polioviruses in human neuronal cells.

    Science.gov (United States)

    Mohanty, Madhu C; Deshpande, Jagadish M

    2013-01-01

    Polioviruses are the causative agent of paralytic poliomyelitis. Attenuated polioviruses (Sabin oral poliovirus vaccine strains) do not replicate efficiently in neurons as compared to the wild type polioviruses and therefore do not cause disease. This study was aimed to investigate the differential host immune response to wild type 1 poliovirus (wild PV) and Sabin attenuated type 1 poliovirus (Sabin PV) in cultured human neuronal cells. By using flow cytometry and real time PCR methods we examined host innate immune responses and compared the role of toll like receptors (TLRs) and cytoplasmic RNA helicases in cultured human neuronal cells (SK-N-SH) infected with Sabin PV and wild PV. Human neuronal cells expressed very low levels of TLRs constitutively. Sabin PV infection induced significantly higher expression of TLR3, TLR7 and melanoma differentiation-associated protein-5 (MDA-5) m-RNA in neuronal cells at the beginning of infection (up to 4 h) as compared to wild PV. Further, Sabin PV also induced the expression of interferon α/β at early time point of infection. The induced expression of IFN α/β gene by Sabin PV in neuronal cells could be suppressed by inhibiting TLR7. Neuronal cell innate immune response to Sabin and wild polioviruses differ significantly for TLR3, TLR7, MDA5 and type 1 interferons. Effects of TLR7 activation and interferon production and Sabin virus replication in neuronal cells need to be actively investigated in future studies.

  14. Reduced incorporation of the influenza B virus BM2 protein in virus particles decreases infectivity

    International Nuclear Information System (INIS)

    Jackson, David; Zuercher, Thomas; Barclay, Wendy

    2004-01-01

    BM2 is the fourth integral membrane protein encoded by the influenza B virus genome. It is synthesized late in infection and transported to the plasma membrane from where it is subsequently incorporated into progeny virus particles. It has recently been reported that BM2 has ion channel activity and may be the functional homologue of the influenza A virus M2 protein acting as an ion channel involved in viral entry. Using a reverse genetic approach it was not possible to recover virus which lacked BM2. A recombinant influenza B virus was generated in which the BM2 AUG initiation codon was mutated to GUG. This decreased the efficiency of translation of BM2 protein such that progeny virions contained only 1/8 the amount of BM2 seen in wild-type virus. The reduction in BM2 incorporation resulted in a reduction in infectivity although there was no concomitant decrease in the numbers of virions released from the infected cells. These data imply that the incorporation of sufficient BM2 protein into influenza B virions is required for infectivity of the virus particles

  15. West Nile virus meningitis in a patient with human immunodeficiency virus type 1 infection

    Directory of Open Access Journals (Sweden)

    D. Pilalas

    2017-09-01

    Full Text Available The emergence of West Nile virus lineage 2 in central Macedonia, Greece, in 2010 resulted in large outbreaks for 5 consecutive years. We report a case of viral meningitis in an individual infected with human immunodeficiency virus type 1, which preceded the recognition of the outbreak and was confirmed retrospectively as West Nile virus neuroinvasive disease.

  16. Genome Sequences of Three Vaccine Strains and Two Wild-Type Canine Distemper Virus Strains from a Recent Disease Outbreak in South Africa.

    Science.gov (United States)

    Loots, Angelika K; Du Plessis, Morné; Dalton, Desiré Lee; Mitchell, Emily; Venter, Estelle H

    2017-07-06

    Canine distemper virus causes global multihost infectious disease. This report details complete genome sequences of three vaccine and two new wild-type strains. The wild-type strains belong to the South African lineage, and all three vaccine strains to the America 1 lineage. This constitutes the first genomic sequences of this virus from South Africa. Copyright © 2017 Loots et al.

  17. Antibody escape kinetics of equine infectious anemia virus infection of horses.

    Science.gov (United States)

    Schwartz, Elissa J; Nanda, Seema; Mealey, Robert H

    2015-07-01

    Lentivirus escape from neutralizing antibodies (NAbs) is not well understood. In this work, we quantified antibody escape of a lentivirus, using antibody escape data from horses infected with equine infectious anemia virus. We calculated antibody blocking rates of wild-type virus, fitness costs of mutant virus, and growth rates of both viruses. These quantitative kinetic estimates of antibody escape are important for understanding lentiviral control by antibody neutralization and in developing NAb-eliciting vaccine strategies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Molecular characterization of AI viruses from poultry and wild bird surveillance in Denmark

    DEFF Research Database (Denmark)

    Larsen, Lars Erik; Krog, Jesper Schak; Madsen, Jesper J.

    Infection with avian influenza virus (AIV) in poultry may cause devastating disease although the same virus may not cause disease in wild birds. Since AI viruses can be exchanged between poultry and wild birds, surveillance in wild birds provides important knowledge for control of disease...... in poultry. AIV’s from the Danish wild bird active surveillance were characterized, focusing on viruses from 2012, and from outbreaks of AI in poultry in Denmark. The matrix (M) gene from more than 50 viruses of different subtypes and the hemagglutinin (HA) gene from more than 30 subtype H5 low pathogenic...... viruses were sequenced and compared by alignment and phylogenetic analyses. The aim was to evaluate: the origin of viruses from outbreaks of AI in Danish poultry, the design of active surveillance in Denmark, and the suitability of the molecular diagnostic RT-PCR tests employed. All M-genes from Danish...

  19. Canine distemper virus infection in a lesser grison (Galictis cuja: first report and virus phylogeny

    Directory of Open Access Journals (Sweden)

    Jane Megid

    2013-02-01

    Full Text Available Infectious diseases in wild animals have been increasing as a result of their habitat alterations and closer contact with domestic animals. Canine distemper virus (CDV has been reported in several species of wild carnivores, presenting a threat to wildlife conservation. We described the first case of canine distemper virus infection in lesser grison (Galictis cuja. A free-ranging individual, with no visible clinical sigs, presented sudden death after one day in captivity. Molecular diagnosis for CDV infection was performed using whole blood collected by postmortem intracardiac puncture, which resulted positive. The virus phylogeny indicated that domestic dogs were the probable source of infection.

  20. Differential induction of Toll-like receptors & type 1 interferons by Sabin attenuated & wild type 1 polioviruses in human neuronal cells

    Directory of Open Access Journals (Sweden)

    Madhu C Mohanty

    2013-01-01

    Full Text Available Background & objectives: Polioviruses are the causative agent of paralytic poliomyelitis. Attenuated polioviruses (Sabin oral poliovirus vaccine strains do not replicate efficiently in neurons as compared to the wild type polioviruses and therefore do not cause disease. This study was aimed to investigate the differential host immune response to wild type 1 poliovirus (wild PV and Sabin attenuated type 1 poliovirus (Sabin PV in cultured human neuronal cells. Methods: By using flow cytometry and real time PCR methods we examined host innate immune responses and compared the role of toll like receptors (TLRs and cytoplasmic RNA helicases in cultured human neuronal cells (SK-N-SH infected with Sabin PV and wild PV. Results: Human neuronal cells expressed very low levels of TLRs constitutively. Sabin PV infection induced significantly higher expression of TLR3, TLR7 and melanoma differentiation-associated protein-5 (MDA-5 m-RNA in neuronal cells at the beginning of infection (up to 4 h as compared to wild PV. Further, Sabin PV also induced the expression of interferon α/β at early time point of infection. The induced expression of IFN α/β gene by Sabin PV in neuronal cells could be suppressed by inhibiting TLR7. Interpretation & conclusions: Neuronal cell innate immune response to Sabin and wild polioviruses differ significantly for TLR3, TLR7, MDA5 and type 1 interferons. Effects of TLR7 activation and interferon production and Sabin virus replication in neuronal cells need to be actively investigated in future studies.

  1. Differential gene expression in porcine SK6 cells infected with wild-type and SAP domain-mutant foot-and-mouth disease virus.

    Science.gov (United States)

    Ni, Zixin; Yang, Fan; Cao, Weijun; Zhang, Xiangle; Jin, Ye; Mao, Ruoqing; Du, Xiaoli; Li, Weiwei; Guo, Jianhong; Liu, Xiangtao; Zhu, Zixiang; Zheng, Haixue

    2016-06-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious disease in livestock. The viral proteinase L(pro) of FMDV is involved in pathogenicity, and mutation of the L(pro) SAP domain reduces FMDV pathogenicity in pigs. To determine the gene expression profiles associated with decreased pathogenicity in porcine cells, we performed transcriptome analysis using next-generation sequencing technology and compared differentially expressed genes in SK6 cells infected with FMDV containing L(pro) with either a wild-type or mutated version of the SAP domain. This analysis yielded 1,853 genes that exhibited a ≥ 2-fold change in expression and was validated by real-time quantitative PCR detection of several differentially expressed genes. Many of the differentially expressed genes correlated with antiviral responses corresponded to genes associated with transcription factors, immune regulation, cytokine production, inflammatory response, and apoptosis. Alterations in gene expression profiles may be responsible for the variations in pathogenicity observed between the two FMDV variants. Our results provided genes of interest for the further study of antiviral pathways and pathogenic mechanisms related to FMDV L(pro).

  2. Virus load in chimpanzees infected with human immunodeficiency virus type 1: effect of pre-exposure vaccination

    NARCIS (Netherlands)

    ten Haaft, P.; Cornelissen, M.; Goudsmit, J.; Koornstra, W.; Dubbes, R.; Niphuis, H.; Peeters, M.; Thiriart, C.; Bruck, C.; Heeney, J. L.

    1995-01-01

    Many reports indicate that a long-term asymptomatic state following human immunodeficiency virus type 1 (HIV-1) infection is associated with a low amount of circulating virus. To evaluate the possible effect of stabilizing a low virus load by non-sterilizing pre-exposure vaccination, a quantitative

  3. Characterization of Lethal Zika Virus Infection in AG129 Mice.

    Directory of Open Access Journals (Sweden)

    Matthew T Aliota

    2016-04-01

    Full Text Available Mosquito-borne Zika virus (ZIKV typically causes a mild and self-limiting illness known as Zika fever, which often is accompanied by maculopapular rash, headache, and myalgia. During the current outbreak in South America, ZIKV infection during pregnancy has been hypothesized to cause microcephaly and other diseases. The detection of ZIKV in fetal brain tissue supports this hypothesis. Because human infections with ZIKV historically have remained sporadic and, until recently, have been limited to small-scale epidemics, neither the disease caused by ZIKV nor the molecular determinants of virulence and/or pathogenicity have been well characterized. Here, we describe a small animal model for wild-type ZIKV of the Asian lineage.Using mice deficient in interferon α/β and Ɣ receptors (AG129 mice, we report that these animals were highly susceptible to ZIKV infection and disease, succumbing within seven to eight days. Rapid viremic dissemination was observed in visceral organs and brain; but only was associated with severe pathologies in the brain and muscle. Finally, these results were consistent across challenge routes, age of mice, and inoculum doses. These data represent a mouse model for ZIKV that is not dependent on adapting ZIKV to intracerebral passage in mice.Foot pad injection of AG129 mice with ZIKV represents a biologically relevant model for studying ZIKV infection and disease development following wild-type virus inoculation without the requirement for adaptation of the virus or intracerebral delivery of the virus. This newly developed Zika disease model can be exploited to identify determinants of ZIKV virulence and reveal molecular mechanisms that control the virus-host interaction, providing a framework for rational design of acute phase therapeutics and for vaccine efficacy testing.

  4. Herpes Simplex Virus type 2 Infection among Females in Enugu ...

    African Journals Online (AJOL)

    Herpes simplex virus type 2 has recently been found to have synergistic effect with human immunodeficiency virus (HIV) and co-infection of the two presents more severe burden to the immunity of the victim. This leads to much morbidity and mortality with negative economic impact. In this study, we set out to determine ...

  5. Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection.

    Science.gov (United States)

    Fernandez, Estefania; Dejnirattisai, Wanwisa; Cao, Bin; Scheaffer, Suzanne M; Supasa, Piyada; Wongwiwat, Wiyada; Esakky, Prabagaran; Drury, Andrea; Mongkolsapaya, Juthathip; Moley, Kelle H; Mysorekar, Indira U; Screaton, Gavin R; Diamond, Michael S

    2017-11-01

    The Zika virus (ZIKV) epidemic has resulted in congenital abnormalities in fetuses and neonates. Although some cross-reactive dengue virus (DENV)-specific antibodies can enhance ZIKV infection in mice, those recognizing the DENV E-dimer epitope (EDE) can neutralize ZIKV infection in cell culture. We evaluated the therapeutic activity of human monoclonal antibodies to DENV EDE for their ability to control ZIKV infection in the brains, testes, placentas, and fetuses of mice. A single dose of the EDE1-B10 antibody given 3 d after ZIKV infection protected against lethality, reduced ZIKV levels in brains and testes, and preserved sperm counts. In pregnant mice, wild-type or engineered LALA variants of EDE1-B10, which cannot engage Fcg receptors, diminished ZIKV burden in maternal and fetal tissues, and protected against fetal demise. Because neutralizing antibodies to EDE have therapeutic potential against ZIKV, in addition to their established inhibitory effects against DENV, it may be possible to develop therapies that control disease caused by both viruses.

  6. Loss of memory CD4+ T-cells in semi-wild mandrills (Mandrillus sphinx) naturally infected with species-specific simian immunodeficiency virus SIVmnd-1.

    Science.gov (United States)

    Greenwood, Edward J D; Schmidt, Fabian; Liégeois, Florian; Kondova, Ivanela; Herbert, Anaïs; Ngoubangoye, Barthelemy; Rouet, François; Heeney, Jonathan L

    2014-01-01

    Simian immunodeficiency virus (SIV) infection is found in a number of African primate species and is thought to be generally non-pathogenic. However, studies of wild primates are limited to two species, with SIV infection appearing to have a considerably different outcome in each. Further examination of SIV-infected primates exposed to their natural environment is therefore warranted. We performed a large cross-sectional study of a cohort of semi-wild mandrills with naturally occurring SIV infection, including 39 SIV-negative and 33 species-specific SIVmnd-1-infected animals. This study was distinguished from previous reports by considerably greater sample size, examination of exclusively naturally infected animals in semi-wild conditions and consideration of simian T-lymphotropic virus (STLV) status in addition to SIVmnd-1 infection. We found that SIVmnd-1 infection was associated with a significant and progressive loss of memory CD4(+) T-cells. Limited but significant increases in markers of immune activation in the T-cell populations, significant increases in plasma neopterin and changes to B-cell subsets were also observed in SIV-infected animals. However, no increase in plasma soluble CD14 was observed. Histological examination of peripheral lymph nodes suggested that SIVmnd-1 infection was not associated with a significant disruption of the lymph node architecture. Whilst this species has evolved numerous strategies to resist the development of AIDS, significant effects of SIV infection could be observed when examined in a natural environment. STLVmnd-1 infection also had significant effects on some markers relevant to understanding SIV infection and thus should be considered in studies of SIV infection of African primates where present.

  7. FELINE IMMUNODEFICIENCY VIRUS (FIV) IN WILD PALLAS’ CATS

    Science.gov (United States)

    Brown, Meredith A.; Munkhtsog, Bariushaa; Troyer, Jennifer L.; Ross, Steve; Sellers, Rani; Fine, Amanda E.; Swanson, William F.; Roelke, Melody E.; O’Brien1, Stephen J.

    2009-01-01

    Feline immunodeficiency virus (FIV), a feline lentivirus related to HIV, causes immune dysfunction in domestic and wild cats. The Pallas’ cat is the only species from Asia known to harbor a species-specific strain of FIV designated FIVOma in natural populations. Here, a 25% seroprevalence of FIV is reported from 28 wild Mongolian Pallas’ cats sampled from 2000-2008. Phylogenetic analysis of proviral RT-Pol from eight FIVOma isolates from Mongolia, Russia, China and Kazakhstan reveals a unique monophyletic lineage of the virus within the Pallas’ cat population, most closely related to the African cheetah and leopard FIV strains. Histopathological examination of lymph node and spleen from infected and uninfected Pallas’ cats suggests that FIVOma causes immune depletion in its’ native host. PMID:19926144

  8. A novel Cre recombinase imaging system for tracking lymphotropic virus infection in vivo.

    Directory of Open Access Journals (Sweden)

    Bernadette M Dutia

    2009-08-01

    Full Text Available Detection, isolation, and identification of individual virus infected cells during long term infection are critical to advance our understanding of mechanisms of pathogenesis for latent/persistent viruses. However, current approaches to study these viruses in vivo have been hampered by low sensitivity and effects of cell-type on expression of viral encoded reporter genes. We have designed a novel Cre recombinase (Cre-based murine system to overcome these problems, and thereby enable tracking and isolation of individual in vivo infected cells.Murine gammaherpesvirus 68 (MHV-68 was used as a prototypic persistent model virus. A Cre expressing recombinant virus was constructed and characterised. The virus is attenuated both in lytic virus replication, producing ten-fold lower lung virus titres than wild type virus, and in the establishment of latency. However, despite this limitation, when the sEGFP7 mouse line containing a Cre-activated enhanced green fluorescent protein (EGFP was infected with the Cre expressing virus, sites of latent and persistent virus infection could be identified within B cells and macrophages of the lymphoid system on the basis of EGFP expression. Importantly, the use of the sEGFP7 mouse line which expresses high levels of EGFP allowed individual virus positive cells to be purified by FACSorting. Virus gene expression could be detected in these cells. Low numbers of EGFP positive cells could also be detected in the bone marrow.The use of this novel Cre-based virus/mouse system allowed identification of individual latently infected cells in vivo and may be useful for the study and long-term monitoring of other latent/persistent virus infections.

  9. Genome-wide analysis of wild-type Epstein-Barr virus genomes derived from healthy individuals of the 1,000 Genomes Project.

    Science.gov (United States)

    Santpere, Gabriel; Darre, Fleur; Blanco, Soledad; Alcami, Antonio; Villoslada, Pablo; Mar Albà, M; Navarro, Arcadi

    2014-04-01

    Most people in the world (∼90%) are infected by the Epstein-Barr virus (EBV), which establishes itself permanently in B cells. Infection by EBV is related to a number of diseases including infectious mononucleosis, multiple sclerosis, and different types of cancer. So far, only seven complete EBV strains have been described, all of them coming from donors presenting EBV-related diseases. To perform a detailed comparative genomic analysis of EBV including, for the first time, EBV strains derived from healthy individuals, we reconstructed EBV sequences infecting lymphoblastoid cell lines (LCLs) from the 1000 Genomes Project. As strain B95-8 was used to transform B cells to obtain LCLs, it is always present, but a specific deletion in its genome sets it apart from natural EBV strains. After studying hundreds of individuals, we determined the presence of natural EBV in at least 10 of them and obtained a set of variants specific to wild-type EBV. By mapping the natural EBV reads into the EBV reference genome (NC007605), we constructed nearly complete wild-type viral genomes from three individuals. Adding them to the five disease-derived EBV genomic sequences available in the literature, we performed an in-depth comparative genomic analysis. We found that latency genes harbor more nucleotide diversity than lytic genes and that six out of nine latency-related genes, as well as other genes involved in viral attachment and entry into host cells, packaging, and the capsid, present the molecular signature of accelerated protein evolution rates, suggesting rapid host-parasite coevolution.

  10. Characterizing wild bird contact and seropositivity to highly pathogenic avian influenza A (H5N1) virus in Alaskan residents.

    Science.gov (United States)

    Reed, Carrie; Bruden, Dana; Byrd, Kathy K; Veguilla, Vic; Bruce, Michael; Hurlburt, Debby; Wang, David; Holiday, Crystal; Hancock, Kathy; Ortiz, Justin R; Klejka, Joe; Katz, Jacqueline M; Uyeki, Timothy M

    2014-09-01

    Highly pathogenic avian influenza A (HPAI) H5N1 viruses have infected poultry and wild birds on three continents with more than 600 reported human cases (59% mortality) since 2003. Wild aquatic birds are the natural reservoir for avian influenza A viruses, and migratory birds have been documented with HPAI H5N1 virus infection. Since 2005, clade 2.2 HPAI H5N1 viruses have spread from Asia to many countries. We conducted a cross-sectional seroepidemiological survey in Anchorage and western Alaska to identify possible behaviors associated with migratory bird exposure and measure seropositivity to HPAI H5N1. We enrolled rural subsistence bird hunters and their families, urban sport hunters, wildlife biologists, and a comparison group without bird contact. We interviewed participants regarding their exposures to wild birds and collected blood to perform serologic testing for antibodies against a clade 2.2 HPAI H5N1 virus strain. Hunters and wildlife biologists reported exposures to wild migratory birds that may confer risk of infection with avian influenza A viruses, although none of the 916 participants had evidence of seropositivity to HPAI H5N1. We characterized wild bird contact among Alaskans and behaviors that may influence risk of infection with avian influenza A viruses. Such knowledge can inform surveillance and risk communication surrounding HPAI H5N1 and other influenza viruses in a population with exposure to wild birds at a crossroads of intercontinental migratory flyways. © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  11. Characterization of velogenic Newcastle disease viruses isolated from dead wild birds in Serbia during 2007.

    Science.gov (United States)

    Vidanović, Dejan; Sekler, Milanko; Asanin, Ruzica; Milić, Nenad; Nisavić, Jakov; Petrović, Tamas; Savić, Vladimir

    2011-04-01

    Avian paramyxoviruses type 1 or Newcastle disease viruses (NDV) are frequently recovered from wild birds and such isolates are most frequently of low virulence. Velogenic NDV are usually recovered from poultry and only occasionally from wild birds. Five NDV isolates were obtained from carcasses of four wild bird species during 2007 in Serbia: Mallard (Anas platyrhynchos), Eurasian Sparrowhawk (Accipiter nisus), feral Rock Pigeon (Columba livia), and Eurasian Collared Dove (Streptopelia decaocto). All the isolates have a typical fusion protein cleavage site motif of velogenic viruses ((112)R-R-Q-K-R-F(117)). The highest homology (99%) for the nucleotide sequences spanning the M and F gene of the studied isolates was with the genotype VII NDV isolate Muscovy duck/China(Fujian)/FP1/02. Phylogenetic analysis based on a partial F gene sequence showed that the isolates from wild birds cluster together with concurrent isolates from poultry in Serbia within the subgenotype VIId, which is the predominant pathogen involved currently in Newcastle disease outbreaks in poultry worldwide. It is unlikely that the wild birds played an important role in primary introduction or consequent spread of the velogenic NDV to domestic poultry in Serbia, and they probably contracted the virus from locally infected poultry.

  12. Canine distemper virus matrix protein influences particle infectivity, particle composition, and envelope distribution in polarized epithelial cells and modulates virulence.

    Science.gov (United States)

    Dietzel, Erik; Anderson, Danielle E; Castan, Alexandre; von Messling, Veronika; Maisner, Andrea

    2011-07-01

    In paramyxoviruses, the matrix (M) protein mediates the interaction between the envelope and internal proteins during particle assembly and egress. In measles virus (MeV), M mutations, such as those found in subacute sclerosing panencephalitis (SSPE) strains, and differences in vaccine and wild-type M proteins can affect the strength of interaction with the envelope glycoproteins, assembly efficiency, and spread. However, the contribution of the M protein to the replication and pathogenesis of the closely related canine distemper virus (CDV) has not been characterized. To this end this, we generated a recombinant wild-type CDV carrying a vaccine strain M protein. The recombinant virus retained the parental growth phenotype in VerodogSLAMtag cells, but displayed an increased particle-to-infectivity ratio very similar to that of the vaccine strain, likely due to inefficient H protein incorporation. Even though infectious virus was released only from the apical surface, consistent with the release polarity of the wild-type CDV strain, envelope protein distribution in polarized epithelial cells reproduced the bipolar pattern seen in vaccine strain-infected cells. Most notably, the chimeric virus was completely attenuated in ferrets and caused only a mild and transient leukopenia, indicating that the differences in particle infectivity and envelope protein sorting mediated by the vaccine M protein contribute importantly to vaccine strain attenuation.

  13. Chandipura Virus infection in mice: the role of toll like receptor 4 in pathogenesis

    Directory of Open Access Journals (Sweden)

    Anukumar Balakrishnan

    2012-05-01

    Full Text Available Abstract Background The susceptibility of mice and humans to Chandipura virus infection is age-dependent. Upon experimental infection, mice secrete significant amounts of proinflammatory cytokines. Similarly, children who recover from natural infection with the virus show significant amounts of TNF-α production, suggesting that innate immunity plays a major role in the response to Chandipura virus. Toll-like receptors (TLR are key host molecules involved in innate immune responses in infections. Therefore, the aim of this study was to examine the role of TLR in the response to Chandipura virus infection. Methods The mouse monocyte-macrophage cell line, RAW 264.7, and C3H/HeJ mice were used as models. Micro array techniques were used to identify the type of TLR involved in the response to infection. The results were validated by examining TLR expression using flow cytometry and by measuring the levels of proinflammatory cytokines and nitric oxide (NO in the culture supernatants using bead assays and the Griess method, respectively. The pathogenic role of Toll-like receptor 4 (TLR4 was studied in a TLR4 mutant strain of mice -C3H/HeJ and the results compared with those from wild-type mice- C3H/CaJ. The pathogenic effects of NO were studied by treating experimentally infected mice with the NO inhibitor, aminoguanidine (AG. Results The micro array results showed that TLR4 was regulated after Chandipura virus infection. At high multiplicities of infection (10 MOI, RAW cells up- regulated cell surface expression of TLR4 and secreted significant amounts of TNF-α, MCP-1, IL-10 and IL-12 and NO. The survival rate of C3H/HeJ mice was higher than those of wild-type C3H/CaJ mice. The survived C3H/HeJ mice secreted significant quantity of MCP-1 and IFN-γ cytokines and cleared virus from brain. Similarly, the survival rate of AG-treated mice was higher than those of the untreated controls. Conclusions Chandipura virus regulates TLR4, which leads to the

  14. Autophagy interaction with herpes simplex virus type-1 infection

    Science.gov (United States)

    O'Connell, Douglas; Liang, Chengyu

    2016-01-01

    abstract More than 50% of the U.S. population is infected with herpes simplex virus type-I (HSV-1) and global infectious estimates are nearly 90%. HSV-1 is normally seen as a harmless virus but debilitating diseases can arise, including encephalitis and ocular diseases. HSV-1 is unique in that it can undermine host defenses and establish lifelong infection in neurons. Viral reactivation from latency may allow HSV-1 to lay siege to the brain (Herpes encephalitis). Recent advances maintain that HSV-1 proteins act to suppress and/or control the lysosome-dependent degradation pathway of macroautophagy (hereafter autophagy) and consequently, in neurons, may be coupled with the advancement of HSV-1-associated pathogenesis. Furthermore, increasing evidence suggests that HSV-1 infection may constitute a gradual risk factor for neurodegenerative disorders. The relationship between HSV-1 infection and autophagy manipulation combined with neuropathogenesis may be intimately intertwined demanding further investigation. PMID:26934628

  15. Immune Responses of Chickens Infected with Wild Bird-Origin H5N6 Avian Influenza Virus

    Directory of Open Access Journals (Sweden)

    Shimin Gao

    2017-06-01

    Full Text Available Since April 2014, new infections of H5N6 avian influenza virus (AIV in humans and domestic poultry have caused considerable economic losses in the poultry industry and posed an enormous threat to human health worldwide. In previous research using gene sequence and phylogenetic analysis, we reported that H5N6 AIV isolated in February 2015 (ZH283 in Pallas’s sandgrouse was highly similar to that isolated in a human in December 2015 (A/Guangdong/ZQ874/2015, whereas a virus (i.e., SW8 isolated in oriental magpie-robin in 2014 was highly similar to that of A/chicken/Dongguan/2690/2013 (H5N6. However, the pathogenicity, transmissibility, and host immune-related response of chickens infected by those wild bird-origin H5N6 AIVs remain unknown. In response, we examined the viral distribution and mRNA expression profiles of immune-related genes in chickens infected with both viruses. Results showed that the H5N6 AIVs were highly pathogenic to chickens and caused not only systemic infection in multiple tissues, but also 100% mortality within 3–5 days post-infection. Additionally, ZH283 efficiently replicated in all tested tissues and transmitted among chickens more rapidly than SW8. Moreover, quantitative real-time polymerase chain reaction analysis showed that following infection with H5N6, AIVs immune-related genes remained active in a tissue-dependent manner, as well as that ZH283 induced mRNA expression profiles such as TLR3, TLR7, IL-6, TNF-α, IL-1β, IL-10, IL-8, and MHC-II to a greater extent than SW8 in the tested tissues of infected chickens. Altogether, our findings help to illuminate the pathogenesis and immunologic mechanisms of H5N6 AIVs in chickens.

  16. Identification of equine influenza virus infection in Asian wild horses (Equus przewalskii).

    Science.gov (United States)

    Yin, Xin; Lu, Gang; Guo, Wei; Qi, Ting; Ma, Jian; Zhu, Chao; Zhao, Shihua; Pan, Jialiang; Xiang, Wenhua

    2014-05-01

    An outbreak of equine influenza was observed in the Asian wild horse population in Xinjiang Province, China, in 2007. Nasal swabs were collected from wild horses and inoculated into 9-10-day SPF embryonated eggs. The complete genome of the isolate was sequenced. A comparison of the amino acid sequence revealed that the isolate was an equine influenza virus strain, which we named A/equine/Xinjiang/4/2007. Each gene of the virus was found to have greater than 99 % homology to equine influenza virus strains of the Florida-2 sublineage, which were circulating simultaneously in China, and a lesser amount of homology was found to the strain A/equine/Qinghai/1/1994 (European lineage), which was isolated during the last outbreak in China. These observations were confirmed by phylogenetic analysis. In addition, the deduced amino acid sequence of the neuraminidase of the A/equine/Xinjiang/4/2007 strain was identical to that of A/equine/California/8560/2002, an American isolate, and was found to be similar to those of Florida-2 strains found in other countries by comparing them with nine other field strains that were isolated in China from 2007 to 2008. It is suggested that the neuraminidase segment of A/equine/Xinjiang/4/2007 may have been obtained from equine influenza virus strains from other countries. We report for the first time an outbreak of equine influenza in the Asian wild horse population, and the complete genome of the virus is provided and analyzed.

  17. Human immunodeficiency virus type 1 neutralization epitope with conserved architecture elicits early type-specific antibodies in experimentally infected chimpanzees

    NARCIS (Netherlands)

    Goudsmit, J.; Debouck, C.; Meloen, R. H.; Smit, L.; Bakker, M.; Asher, D. M.; Wolff, A. V.; Gibbs, C. J.; Gajdusek, D. C.

    1988-01-01

    Chimpanzees are susceptible to infection by divergent strains of human immunodeficiency virus type 1 (HIV-1), none of which cause clinical or immunological abnormalities. Chimpanzees were inoculated with one of four strains of HIV-1: human T-lymphotropic virus (HTLV) type IIIB, lymphadenopathy virus

  18. Detection and differentiation of wild-type and vaccine strains of canine distemper virus by a duplex reverse transcription polymerase chain reaction.

    Science.gov (United States)

    Dong, X Y; Li, W H; Zhu, J L; Liu, W J; Zhao, M Q; Luo, Y W; Chen, J D

    2015-01-01

    Canine distemper virus (CDV) is the cause of canine distemper (CD) which is a severe and highly contagious disease in dogs. In the present study, a duplex reverse transcription polymerase chain reaction (RT-PCR) method was developed for the detection and differentiation of wild-type and vaccine strains of CDV. Four primers were designed to detect and discriminate the two viruses by generating 638- and 781-bp cDNA products, respectively. Furthermore, the duplex RT-PCR method was used to detect 67 field samples suspected of CD from Guangdong province in China. Results showed that, 33 samples were to be wild-type-like. The duplex RT-PCR method exhibited high specificity and sensitivity which could be used to effectively detect and differentiate wild-type and vaccine CDV, indicating its use for clinical detection and epidemiological surveillance.

  19. Multiplex Amplification Refractory Mutation System Polymerase Chain Reaction (ARMS-PCR) for diagnosis of natural infection with canine distemper virus

    OpenAIRE

    Wong Min-Liang; Hsu Tien-Huan; Lin Fong-Yuan; Lin Kuan-Hsun; Chiou Shyan-Song; Wang Chi-Young; Lee Min-Shiuh; Chulakasian Songkhla; Chang Tien-Jye; Hsu Wei-Li

    2010-01-01

    Abstract Background Canine distemper virus (CDV) is present worldwide and produces a lethal systemic infection of wild and domestic Canidae. Pre-existing antibodies acquired from vaccination or previous CDV infection might interfere the interpretation of a serologic diagnosis method. In addition, due to the high similarity of nucleic acid sequences between wild-type CDV and the new vaccine strain, current PCR derived methods cannot be applied for the definite confirmation of CD infection. Hen...

  20. Interleukin-1 receptor type I gene-deficient mice are less susceptible to Staphylococcus epidermidis biomaterial-associated infection than are wild-type mice

    NARCIS (Netherlands)

    Boelens, J. J.; van der Poll, T.; Zaat, S. A.; Murk, J. L.; Weening, J. J.; Dankert, J.

    2000-01-01

    Elevated concentrations of interleukin-1 (IL-1) were found in tissue surrounding biomaterials infected with Staphylococcus epidermidis. To determine the role of IL-1 in biomaterial-associated infection (BAI), IL-1 receptor type I-deficient (IL-1R(-/-)) and wild-type mice received subcutaneous

  1. Establishment of New Transmissible and Drug-Sensitive Human Immunodeficiency Virus Type 1 Wild Types due to Transmission of Nucleoside Analogue-Resistant Virus

    NARCIS (Netherlands)

    Ronde, Anthony de; Dooren, Maaike van; Hoek, Lian van der; Bouwhuis, Denise; Rooij, Esther de; Gemen, Bob van; Boer, R.J. de; Goudsmit, Jaap

    2000-01-01

    Sequence analysis of human immunodeficiency virus type 1 (HIV-1) from 74 persons with acute infections identified eight strains with mutations in the reverse transcriptase (RT) gene at positions 41, 67, 68, 70, 215, and 219 associated with resistance to the nucleoside analogue zidovudine (AZT).

  2. Establishment of new transmissible and drug-sensitive human immunodeficiency virus type 1 wild types due to transmission of nucleoside analogue-resistant virus

    NARCIS (Netherlands)

    de Ronde, A.; van Dooren, M.; van der Hoek, L.; Bouwhuis, D.; de Rooij, E.; van Gemen, B.; de Boer, R.; Goudsmit, J.

    2001-01-01

    Sequence analysis of human immunodeficiency virus type 1 (HIV-1) from 74 persons with acute infections identified eight strains with mutations in the reverse transcriptase (RT) gene at positions 41, 67, 68, 70, 215, and 219 associated with resistance to the nucleoside analogue zidovudine (AZT).

  3. CD11c controls herpes simplex virus 1 responses to limit virus replication during primary infection.

    Science.gov (United States)

    Allen, Sariah J; Mott, Kevin R; Chentoufi, Aziz A; BenMohamed, Lbachir; Wechsler, Steven L; Ballantyne, Christie M; Ghiasi, Homayon

    2011-10-01

    CD11c is expressed on the surface of dendritic cells (DCs) and is one of the main markers for identification of DCs. DCs are the effectors of central innate immune responses, but they also affect acquired immune responses to infection. However, how DCs influence the efficacy of adaptive immunity is poorly understood. Here, we show that CD11c(+) DCs negatively orchestrate both adaptive and innate immunity against herpes simplex virus type 1 (HSV-1) ocular infection. The effectiveness and quantity of virus-specific CD8(+) T cell responses are increased in CD11c-deficient animals. In addition, the levels of CD83, CD11b, alpha interferon (IFN-α), and IFN-β, but not IFN-γ, were significantly increased in CD11c-deficient animals. Higher levels of IFN-α, IFN-β, and CD8(+) T cells in the CD11c-deficient mice may have contributed to lower virus replication in the eye and trigeminal ganglia (TG) during the early period of infection than in wild-type mice. However, the absence of CD11c did not influence survival, severity of eye disease, or latency. Our studies provide for the first time evidence that CD11c expression may abrogate the ability to reduce primary virus replication in the eye and TG via higher activities of type 1 interferon and CD8(+) T cell responses.

  4. Serological Evidence for Influenza A Virus Exposure in Wild Birds in Trinidad & Tobago

    Directory of Open Access Journals (Sweden)

    Arianne Brown Jordan

    2018-05-01

    Full Text Available Migratory waterfowl and shorebirds are known to be important reservoirs for influenza A viruses (IAV and they have been repeatedly implicated as causing avian influenza virus (AIV outbreaks in domestic poultry flocks worldwide. In recent years, wild birds have been implicated in spreading zoonotic H5 influenza viruses to many countries, which has generated high levels of public health concern. Trinidad and Tobago (T&T is positioned along the wintering route of migratory birds from the Americas; every year, many species of wild birds stopover on the islands of T&T, potentially carrying AIVs and exposing local populations of wild and domestic birds, including commercial poultry, to infection. The aim of this study was to trap, sample, and test as many wild bird species as possible to see whether they were actively infected or previously exposed to AIV. A total of 38 wild birds were trapped, sampled, and tested for IAV RNA, antibodies specific for influenza A nucleoprotein (NP and antibodies that were specific for H5 and H7 subtypes. Five of the samples tested antibody positive for IAV, while three of these samples had positive titres (≥16 for the H5 subtype, indicating that they were likely to have been previously infected with an H5 IAV subtype. One of the samples tested positive for IAV (M gene RNA. These results highlight the potential threat that is posed by wild birds to backyard and commercial poultry in T&T and emphasise the importance of maintaining high levels of biosecurity on poultry farms, ensuring that domestic and wild birds are not in direct or indirect contact. The results also underline the need to carry out routine surveillance for AIV in domestic and wild birds in T&T and the wider Caribbean region.

  5. Tomato Spotted Wilt Virus NSs Protein Supports Infection and Systemic Movement of a Potyvirus and Is a Symptom Determinant.

    Science.gov (United States)

    Garcia-Ruiz, Hernan; Gabriel Peralta, Sergio M; Harte-Maxwell, Patricia A

    2018-03-14

    Plant viruses are inducers and targets of antiviral RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressor proteins that interfere with antiviral RNA silencing. The NSs protein is an RNA silencing suppressor in orthotospoviruses, such as the tomato spotted wilt virus (TSWV). The mechanism of RNA silencing suppression by NSs and its role in virus infection and movement are poorly understood. Here, we cloned and tagged TSWV NSs and expressed it from a GFP-tagged turnip mosaic virus (TuMV-GFP) carrying either a wild-type or suppressor-deficient (AS9) helper component proteinase (HC-Pro). When expressed in cis, NSs restored pathogenicity and promoted systemic infection of suppressor-deficient TuMV-AS9-GFP in Nicotiana benthamiana and Arabidopsis thaliana . Inactivating mutations were introduced in NSs RNA-binding domain one. A genetic analysis with active and suppressor-deficient NSs, in combination with wild-type and mutant plants lacking essential components of the RNA silencing machinery, showed that the NSs insert is stable when expressed from a potyvirus. NSs can functionally replace potyviral HC-Pro, condition virus susceptibility, and promote systemic infection and symptom development by suppressing antiviral RNA silencing through a mechanism that partially overlaps that of potyviral HC-Pro. The results presented provide new insight into the mechanism of silencing suppression by NSs and its effect on virus infection.

  6. Genetic variability and evolutionary implications of RNA silencing suppressor genes in RNA1 of sweet potato chlorotic stunt virus isolates infecting sweetpotato and related wild species.

    Directory of Open Access Journals (Sweden)

    Arthur K Tugume

    Full Text Available BACKGROUND: The bipartite single-stranded RNA genome of Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus; Closteroviridae encodes a Class 1 RNase III (RNase3, a putative hydrophobic protein (p7 and a 22-kDa protein (p22 from genes located in RNA1. RNase3 and p22 suppress RNA silencing, the basal antiviral defence mechanism in plants. RNase3 is sufficient to render sweetpotato (Ipomoea batatas virus-susceptible and predisposes it to development of severe diseases following infection with unrelated virus. The incidence, strains and gene content of SPCSV infecting wild plant species have not been studied. METHODOLOGY/PRINCIPAL FINDINGS: Thirty SPCSV isolates were characterized from 10 wild Ipomoea species, Hewittia sublobata or Lepistemon owariensis (family Convolvulaceae in Uganda and compared with 34 local SPCSV isolates infecting sweetpotatoes. All isolates belonged to the East African (EA strain of SPCSV and contained RNase3 and p7, but p22 was not detected in six isolates. The three genes showed only limited genetic variability and the proteins were under purifying selection. SPCSV isolates lacking p22 synergized with Sweet potato feathery mottle virus (SPFMV, genus potyvirus; Potyviridae and caused severe symptoms in co-infected sweetpotato plants. One SPCSV isolate enhanced accumulation of SPFMV, but no severe symptoms developed. A new whitefly-transmitted virus (KML33b encoding an RNase3 homolog (<56% identity to SPCSV RNase3 able to suppresses sense-mediated RNA silencing was detected in I. sinensis. CONCLUSIONS/SIGNIFICANCE: SPCSV isolates infecting wild species and sweetpotato in Uganda were genetically undifferentiated, suggesting inter-species transmission of SPCSV. Most isolates in Uganda contained p22, unlike SPCSV isolates characterized from other countries and continents. Enhanced accumulation of SPFMV and increased disease severity were found to be uncoupled phenotypic outcomes of RNase3-mediated viral synergism in

  7. Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated Yellow Fever Virus Infection In Vivo

    Directory of Open Access Journals (Sweden)

    Florian Douam

    2017-08-01

    Full Text Available Yellow fever virus (YFV is an arthropod-borne flavivirus, infecting ~200,000 people worldwide annually and causing about 30,000 deaths. The live attenuated vaccine strain, YFV-17D, has significantly contributed in controlling the global burden of yellow fever worldwide. However, the viral and host contributions to YFV-17D attenuation remain elusive. Type I interferon (IFN-α/β signaling and type II interferon (IFN-γ signaling have been shown to be mutually supportive in controlling YFV-17D infection despite distinct mechanisms of action in viral infection. However, it remains unclear how type III IFN (IFN-λ integrates into this antiviral system. Here, we report that while wild-type (WT and IFN-λ receptor knockout (λR−/− mice were largely resistant to YFV-17D, deficiency in type I IFN signaling resulted in robust infection. Although IFN-α/β receptor knockout (α/βR−/− mice survived the infection, mice with combined deficiencies in both type I signaling and type III IFN signaling were hypersusceptible to YFV-17D and succumbed to the infection. Mortality was associated with viral neuroinvasion and increased permeability of the blood-brain barrier (BBB. α/βR−/− λR−/− mice also exhibited distinct changes in the frequencies of multiple immune cell lineages, impaired T-cell activation, and severe perturbation of the proinflammatory cytokine balance. Taken together, our data highlight that type III IFN has critical immunomodulatory and neuroprotective functions that prevent viral neuroinvasion during active YFV-17D replication. Type III IFN thus likely represents a safeguard mechanism crucial for controlling YFV-17D infection and contributing to shaping vaccine immunogenicity.

  8. Prevalence of Anti-Hepatitis E Virus Antibodies and First Detection of Hepatitis E Virus in Wild Boar in Slovenia

    NARCIS (Netherlands)

    Žele, Diana; Fernandes Barry, Aline; Honing-Hakze, van der Renate; Vengušt, Gorazd; Poel, Van Der W.H.M.

    2016-01-01

    Hepatitis E is an emerging zoonotic disease caused by hepatitis E virus (HEV). In this study, we investigated HEV presence in a wild boar (Sus scrofa) population of Slovenia. A total of 288 wild boar serum samples were collected throughout the country, and HEV infection was investigated by

  9. Establishment of a Zebrafish Infection Model for the Study of Wild-Type and Recombinant European Sheatfish Virus.

    Science.gov (United States)

    Martín, Verónica; Mavian, Carla; López Bueno, Alberto; de Molina, Antonio; Díaz, Eduardo; Andrés, Germán; Alcami, Antonio; Alejo, Alí

    2015-10-01

    Amphibian-like ranaviruses include pathogens of fish, amphibians, and reptiles that have recently evolved from a fish-infecting ancestor. The molecular determinants of host range and virulence in this group are largely unknown, and currently fish infection models are lacking. We show that European sheatfish virus (ESV) can productively infect zebrafish, causing a lethal pathology, and describe a method for the generation of recombinant ESV, establishing a useful model for the study of fish ranavirus infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Hydroxyurea-resistant vaccinia virus: overproduction of ribonucleotide reductase

    International Nuclear Information System (INIS)

    Slabaugh, M.B.; Mathews, C.K.

    1986-01-01

    Repeated passage of vaccinia virus in increasing concentrations of hydroxyurea followed by plaque purification resulted in the isolation of variants capable of growth in 5 mM hydroxyurea, a drug concentration which inhibited the reproduction of wild-type vaccinia virus 1000-fold. Analyses of viral protein synthesis by using [ 35 S]methionine pulse-labeling at intervals throughout the infection cycle revealed that all isolates overproduced a 34,000-molecular-weight (MW) early polypeptide. Measurement of ribonucleoside-diphosphate reductase activity after infection indicated that 4- to 10-fold more activity was induced by hydroxyurea-resistant viruses than by the wild-type virus. A two-step partial purification resulted in a substantial enrichment for the 34,000-MW protein from extracts of wild-type and hydroxyurea-resistant-virus-infected, but not mock-infected, cells. In the presence of the drug, the isolates incorporated [ 3 H]thymidine into DNA earlier and a rate substantially greater than that of the wild type, although the onset of DNA synthesis was delayed in both cases. The drug resistance trait was markedly unstable in all isolates. In the absence of selective pressure, plaque-purified isolated readily segregated progeny that displayed a wide range of resistance phenotypes. The results of this study indicate that vaccinia virus encodes a subunit of ribonucleotide reductase which is 34,000-MW early protein whose overproduction confers hydroxyurea resistance on reproducing viruses

  11. The Montana Wild Virus Hunt | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... on a combination of techniques from bioinformatics, genetics, biochemistry, and structural biology to understand the mechanisms that bacteria use to defend themselves from viral infection. What is the Montana Wild Virus Hunt? The aim of this project is to engage high school students and their ...

  12. A comparison of the immune responses of dogs exposed to canine distemper virus (CDV) - Differences between vaccinated and wild-type virus exposed dogs.

    Science.gov (United States)

    Perrone, Danielle; Bender, Scott; Niewiesk, Stefan

    2010-07-01

    Canine distemper virus (CDV)-specific immune response was measured in different dog populations. Three groups of vaccinated or wild-type virus exposed dogs were tested: dogs with a known vaccination history, dogs without a known vaccination history (shelter dogs), and dogs with potential exposure to wild-type CDV. The use of a T-cell proliferation assay demonstrated a detectable CDV-specific T-cell response from both spleen and blood lymphocytes of dogs. Qualitatively, antibody assays [enzyme-linked immunosorbent assay (ELISA) and neutralization assay] predicted the presence of a T-cell response well, although quantitatively neither antibody assays nor the T-cell assay correlated well with each other. An interesting finding from our study was that half of the dogs in shelters were not vaccinated (potentially posing a public veterinary health problem) and that antibody levels in dogs living in an environment with endemic CDV were lower than in vaccinated animals.

  13. Compromised virus control and augmented perforin-mediated immunopathology in IFN-gamma-deficient mice infected with lymphocytic choriomeningitis virus

    DEFF Research Database (Denmark)

    Nansen, A; Jensen, Teis; Christensen, Jan Pravsgaard

    1999-01-01

    To define the role of IFN-gamma in the control of acute infection with a noncytopathogenic virus, mice with targeted defects of the genes encoding IFN-gamma, perforin, or both were infected i.v. with two strains of lymphocytic choriomeningitis virus differing markedly in their capacity to spread...... in wild-type mice. Our results reveal that IFN-gamma is pivotal to T cell-mediated control of a rapidly invasive stain, whereas it is less important in the acute elimination of a slowly invasive strain. Moreover, the majority of mice infected with the rapidly invasive strain succumb to a wasting syndrome...... mediated by CD8+ effector cells. The primary effector mechanism underlying this disease is perforin-dependent lysis, but other mechanisms are also involved. Wasting disease can be prevented if naive CD8+ cells from mice transgenic for an MHC class I-restricted lymphocytic choriomeningitis virus...

  14. Experimental infection studies demonstrating Atlantic salmon as a host and reservoir of viral hemorrhagic septicemia virus type IVa with insights into pathology and host immunity

    Science.gov (United States)

    Lovy, Jan; Piesik, P.; Hershberger, P.K.; Garver, K.A.

    2013-01-01

    In British Columbia, Canada (BC), aquaculture of finfish in ocean netpens has the potential for pathogen transmission between wild and farmed species due to the sharing of an aquatic environment. Viral hemorrhagic septicemia virus (VHSV) is enzootic in BC and causes serious disease in wild Pacific herring, Clupea pallasii, which often enter and remain in Atlantic salmon, Salmo salar, netpens. Isolation of VHSV from farmed Atlantic salmon has been previously documented, but the effects on the health of farmed salmon and the wild fish sharing the environment are unknown. To determine their susceptibility, Atlantic salmon were exposed to a pool of 9 isolates of VHSV obtained from farmed Atlantic salmon in BC by IP-injection or by waterborne exposure and cohabitation with diseased Pacific herring. Disease intensity was quantified by recording mortality, clinical signs, histopathological changes, cellular sites of viral replication, expression of interferon-related genes, and viral tissue titers. Disease ensued in Atlantic salmon after both VHSV exposure methods. Fish demonstrated gross disease signs including darkening of the dorsal skin, bilateral exophthalmia, light cutaneous hemorrhage, and lethargy. The virus replicated within endothelial cells causing endothelial cell necrosis and extensive hemorrhage in anterior kidney. Infected fish demonstrated a type I interferon response as seen by up-regulation of genes for IFNα, Mx, and ISG15. In a separate trial infected salmon transmitted the virus to sympatric Pacific herring. The results demonstrate that farmed Atlantic salmon can develop clinical VHS and virus can persist in the tissues for at least 10 weeks. Avoiding VHS epizootics in Atlantic salmon farms would limit the potential of VHS in farmed Atlantic salmon, the possibility for further host adaptation in this species, and virus spillback to sympatric wild fishes.

  15. A Herpes Simplex Virus Type 1 Mutant Expressing a Baculovirus Inhibitor of Apoptosis Gene in Place of Latency-Associated Transcript Has a Wild-Type Reactivation Phenotype in the Mouse

    Science.gov (United States)

    Jin, Ling; Perng, Guey-Chuen; Mott, Kevin R.; Osorio, Nelson; Naito, Julia; Brick, David J.; Carpenter, Dale; Jones, Clinton; Wechsler, Steven L.

    2005-01-01

    The latency-associated transcript (LAT) is essential for the wild-type herpes simplex virus type 1 (HSV-1) high-reactivation phenotype since LAT− mutants have a low-reactivation phenotype. We previously reported that LAT can decrease apoptosis and proposed that this activity is involved in LAT's ability to enhance the HSV-1 reactivation phenotype. The first 20% of the primary 8.3-kb LAT transcript is sufficient for enhancing the reactivation phenotype and for decreasing apoptosis, supporting this proposal. For this study, we constructed an HSV-1 LAT− mutant that expresses the baculovirus antiapoptosis gene product cpIAP under control of the LAT promoter and in place of the LAT region mentioned above. Mice were ocularly infected with this mutant, designated dLAT-cpIAP, and the reactivation phenotype was determined using the trigeminal ganglion explant model. dLAT-cpIAP had a reactivation phenotype similar to that of wild-type virus and significantly higher than that of (i) the LAT− mutant dLAT2903; (ii) dLAT1.5, a control virus containing the same LAT deletion as dLAT-cpIAP, but with no insertion of foreign DNA, thereby controlling for potential readthrough transcription past the cpIAP insert; and (iii) dLAT-EGFP, a control virus identical to dLAT-cpIAP except that it contained the enhanced green fluorescent protein open reading frame (ORF) in place of the cpIAP ORF, thereby controlling for expression of a random foreign gene instead of the cpIAP gene. These results show that an antiapoptosis gene with no sequence similarity to LAT can efficiently substitute for the LAT function involved in enhancing the in vitro-induced HSV-1 reactivation phenotype in the mouse. PMID:16160155

  16. Investigation of avian influenza infection in wild birds in Ismailia and Damietta cities, Egypt

    Science.gov (United States)

    Fadel, Hanaa Mohamed; Afifi, Rabab

    2017-01-01

    Aim: This study was carried out to monitor avian influenza (AI) infection in wild birds in Egypt. Materials and Methods: A total of 135 wild birds were examined for the presence of H5, H7, and H9 hemagglutination inhibition antibodies. Organs and swab samples of 75 birds were screened by multiplex real-time reverse transcriptase-polymerase chain reaction (RRT-PCR) to detect AI subtypes H5, H7, and H9 matrix genes. Results: The highest seropositive result was recorded in cattle egrets (90.9%) followed by crows (88.6%), semi-captive pigeons (44.8%), and moorhens (39.1%). In cattle egrets, semi-captive pigeons and moorhens, H5 antibodies predominated. In crows, H9 antibodies predominated. Multiple infections with two or three virus subtypes were highest in crows (6/39, 15.4%) followed by cattle egrets (3/30, 10%) and moorhens’ (1/9, 11.1%) positive samples. Multiplex RRT-PCR results revealed two positive samples in cattle egrets and moorhens. Conclusion: The results indicated high seropositive rates against AI virus subtypes H5 and H9 in the examined wild birds. Multiple infections with more than one AI virus (AIV) subtypes were detected in some birds. This requires a collaboration of efforts to monitor AIV infection in wild birds and implement suitable early intervention measures. PMID:28717324

  17. Infections of nervous necrosis virus in wild and cage-reared marine fish from South China Sea with unexpected wide host ranges.

    Science.gov (United States)

    Liu, X D; Huang, J N; Weng, S P; Hu, X Q; Chen, W J; Qin, Z D; Dong, X X; Liu, X L; Zhou, Y; Asim, M; Wang, W M; He, J G; Lin, L

    2015-06-01

    The concerns about the impact of the nervous necrosis virus (NNV) infections in wild fish have been raised. This paper presents the results of quarterly surveys of NNV in wild and cage-reared marine fish from South China Sea. Samples of 892 wild fish belonging to 69 species and 381 cage-reared fish belonging to 11 species were collected and were detected by seminested PCR and nested PCR. In the case of seminested PCR, the positive signal was detected in 3.0% and 3.1% samples of wild and cage-reared fish, respectively. However, by nested RT-PCR, the positive signal was observed in 42.3% and 63.0% samples of wild and cage-reared fish, respectively. If the fish species were considered, the positive signal was detected in 21.7% and 72.7% species of wild and cage-reared fish by seminested PCR assay, respectively. However, by nested RT-PCR, the positive signal was observed in 65.2% and 100% species of wild and cage-reared fish, respectively. The nucleotide sequences of the nested PCR products were determined. Phylogenetic tree showed that all the obtained viral isolates belonged to the red-spotted grouper nervous necrosis virus (RGNNV) genotype. Thirty-five species of the marine fish were the new hosts of NNV. © 2014 John Wiley & Sons Ltd.

  18. Type III Interferon-Mediated Signaling Is Critical for Controlling Live Attenuated Yellow Fever Virus Infection In Vivo.

    Science.gov (United States)

    Douam, Florian; Soto Albrecht, Yentli E; Hrebikova, Gabriela; Sadimin, Evita; Davidson, Christian; Kotenko, Sergei V; Ploss, Alexander

    2017-08-15

    Yellow fever virus (YFV) is an arthropod-borne flavivirus, infecting ~200,000 people worldwide annually and causing about 30,000 deaths. The live attenuated vaccine strain, YFV-17D, has significantly contributed in controlling the global burden of yellow fever worldwide. However, the viral and host contributions to YFV-17D attenuation remain elusive. Type I interferon (IFN-α/β) signaling and type II interferon (IFN-γ) signaling have been shown to be mutually supportive in controlling YFV-17D infection despite distinct mechanisms of action in viral infection. However, it remains unclear how type III IFN (IFN-λ) integrates into this antiviral system. Here, we report that while wild-type (WT) and IFN-λ receptor knockout (λR -/- ) mice were largely resistant to YFV-17D, deficiency in type I IFN signaling resulted in robust infection. Although IFN-α/β receptor knockout (α/βR -/- ) mice survived the infection, mice with combined deficiencies in both type I signaling and type III IFN signaling were hypersusceptible to YFV-17D and succumbed to the infection. Mortality was associated with viral neuroinvasion and increased permeability of the blood-brain barrier (BBB). α/βR -/- λR -/- mice also exhibited distinct changes in the frequencies of multiple immune cell lineages, impaired T-cell activation, and severe perturbation of the proinflammatory cytokine balance. Taken together, our data highlight that type III IFN has critical immunomodulatory and neuroprotective functions that prevent viral neuroinvasion during active YFV-17D replication. Type III IFN thus likely represents a safeguard mechanism crucial for controlling YFV-17D infection and contributing to shaping vaccine immunogenicity. IMPORTANCE YFV-17D is a live attenuated flavivirus vaccine strain recognized as one of the most effective vaccines ever developed. However, the host and viral determinants governing YFV-17D attenuation and its potent immunogenicity are still unknown. Here, we analyzed the

  19. Characterization of H7 Influenza A Virus in Wild and Domestic Birds in Korea

    Science.gov (United States)

    Kang, Hyun-Mi; Park, Ha-Young; Lee, Kyu-Jun; Choi, Jun-Gu; Lee, Eun-Kyoung; Song, Byung-Min; Lee, Hee-Soo; Lee, Youn-Jeong

    2014-01-01

    During surveillance programs in Korea between January 2006 and March 2011, 31 H7 avian influenza viruses were isolated from wild birds and domestic ducks and genetically characterized using large-scale sequence data. All Korean H7 viruses belonged to the Eurasian lineage, which showed substantial genetic diversity, in particular in the wild birds. The Korean H7 viruses from poultry were closely related to those of wild birds. Interestingly, two viruses originating in domestic ducks in our study had the same gene constellations in all segment genes as viruses originating in wild birds. The Korean H7 isolates contained avian-type receptors (Q226 and G228), no NA stalk deletion (positions 69–73), no C-terminal deletion (positions 218–230) in NS1, and no substitutions in PB2-627, PB1-368, and M2-31, compared with H7N9 viruses. In pathogenicity experiments, none of the Korean H7 isolates tested induced clinical signs in domestic ducks or mice. Furthermore, while they replicated poorly, with low titers (10 0.7–1.3EID50/50 µl) in domestic ducks, all five viruses replicated well (up to 7–10 dpi, 10 0.7–4.3EID50/50 µl) in the lungs of mice, without prior adaptation. Our results suggest that domestic Korean viruses were transferred directly from wild birds through at least two independent introductions. Our data did not indicate that wild birds carried poultry viruses between Korea and China, but rather, that wild-type H7 viruses were introduced several times into different poultry populations in eastern Asia. PMID:24776918

  20. Characterization of H7 influenza A virus in wild and domestic birds in Korea.

    Directory of Open Access Journals (Sweden)

    Hyun-Mi Kang

    Full Text Available During surveillance programs in Korea between January 2006 and March 2011, 31 H7 avian influenza viruses were isolated from wild birds and domestic ducks and genetically characterized using large-scale sequence data. All Korean H7 viruses belonged to the Eurasian lineage, which showed substantial genetic diversity, in particular in the wild birds. The Korean H7 viruses from poultry were closely related to those of wild birds. Interestingly, two viruses originating in domestic ducks in our study had the same gene constellations in all segment genes as viruses originating in wild birds. The Korean H7 isolates contained avian-type receptors (Q226 and G228, no NA stalk deletion (positions 69-73, no C-terminal deletion (positions 218-230 in NS1, and no substitutions in PB2-627, PB1-368, and M2-31, compared with H7N9 viruses. In pathogenicity experiments, none of the Korean H7 isolates tested induced clinical signs in domestic ducks or mice. Furthermore, while they replicated poorly, with low titers (10⁰·⁷⁻¹·³ EID₅₀/50 µl in domestic ducks, all five viruses replicated well (up to 7-10 dpi, 10⁰·⁷⁻⁴·³EID₅₀/50 µl in the lungs of mice, without prior adaptation. Our results suggest that domestic Korean viruses were transferred directly from wild birds through at least two independent introductions. Our data did not indicate that wild birds carried poultry viruses between Korea and China, but rather, that wild-type H7 viruses were introduced several times into different poultry populations in eastern Asia.

  1. Infectious Maize rayado fino virus from Cloned cDNA.

    Science.gov (United States)

    Edwards, Michael C; Weiland, John J; Todd, Jane; Stewart, Lucy R

    2015-06-01

    A full-length cDNA clone was produced from a U.S. isolate of Maize rayado fino virus (MRFV), the type member of the genus Marafivirus within the family Tymoviridae. Infectivity of transcripts derived from cDNA clones was demonstrated by infection of maize plants and protoplasts, as well as by transmission via the known leafhopper vectors Dalbulus maidis and Graminella nigrifrons that transmit the virus in a persistent-propagative manner. Infection of maize plants through vascular puncture inoculation of seed with transcript RNA resulted in the induction of fine stipple stripe symptoms typical of those produced by wild-type MRFV and a frequency of infection comparable with that of the wild type. Northern and Western blotting confirmed the production of MRFV-specific RNAs and proteins in infected plants and protoplasts. An unanticipated increase in subgenomic RNA synthesis over levels in infected plants was observed in protoplasts infected with either wild-type or cloned virus. A conserved cleavage site motif previously demonstrated to function in both Oat blue dwarf virus capsid protein and tymoviral nonstructural protein processing was identified near the amino terminus of the MRFV replicase polyprotein, suggesting that cleavage at this site also may occur.

  2. Zika Virus Fatally Infects Wild Type Neonatal Mice and Replicates in Central Nervous System

    Directory of Open Access Journals (Sweden)

    Shuxuan Li

    2018-01-01

    Full Text Available Zika virus (ZIKV has been defined as a teratogenic pathogen behind the increased number of cases of microcephaly in French Polynesia, Brazil, Puerto Rico, and other South American countries. Experimental studies using animal models have achieved tremendous insight into understanding the viral pathogenesis, transmission, teratogenic mechanisms, and virus–host interactions. However, the animals used in published investigations are mostly interferon (IFN-compromised, either genetically or via antibody treatment. Herein, we studied ZIKV infection in IFN-competent mice using African (MR766 and Asian strains (PRVABC59 and SZ-WIV01. After testing four different species of mice, we found that BALB/c neonatal mice were resistant to ZIKV infection, that Kunming, ICR and C57BL/6 neonatal mice were fatally susceptible to ZIKV infection, and that the fatality of C57BL/6 neonates from 1 to 3 days old were in a viral dose-dependent manner. The size and weight of the brain were significantly reduced, and the ZIKV-infected mice showed neuronal symptoms such as hind-limb paralysis, tremor, and poor balance during walking. Pathologic and immunofluorescent experiments revealed that ZIKV infected different areas of the central nervous system (CNS including gray matter, hippocampus, cerebral cortex, and spinal cord, but not olfactory bulb. Interestingly, ZIKV replicated in multiple organs and resulted in pathogenesis in liver and testis, implying that ZIKV infection may engender a high health risk in neonates by postnatal infection. In summary, we investigated ZIKV pathogenesis using an animal model that is not IFN-compromised.

  3. Novel Eurasian highly pathogenic influenza A H5 viruses in wild birds, Washington, USA

    Science.gov (United States)

    Ip, Hon S.; Kim Torchetti, Mia; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G.; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara L.; Shearn-Bochsler, Valerie I.; Killian, Mary Lea; Pederson, Janice C.; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M.

    2015-01-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  4. Varroa destructor Macula-like virus, Lake Sinai virus and other new RNA viruses in wild bumblebee hosts (Bombus pascuorum, Bombus lapidarius and Bombus pratorum).

    Science.gov (United States)

    Parmentier, Laurian; Smagghe, Guy; de Graaf, Dirk C; Meeus, Ivan

    2016-02-01

    Pollinators such as bumblebees (Bombus spp.) are in decline worldwide which poses a threat not only for ecosystem biodiversity but also to human crop production services. One main cause of pollinator decline may be the infection and transmission of diseases including RNA viruses. Recently, new viruses have been discovered in honeybees, but information on the presence of these in wild bumblebees is largely not available. In this study, we investigated the prevalence of new RNA viruses in Bombus species, and can report for the first time Varroa destructor Macula-like virus (VdMLV) and Lake Sinai virus (LSV) infection in multiple wild bumblebee hosts of Bombus pascuorum, Bombus lapidarius and Bombus pratorum. We sampled in 4 locations in Flanders, Belgium. Besides, we confirmed Slow bee paralysis virus (SBPV) in wild bumblebees, but no positive samples were obtained for Big Sioux river virus (BSRV). Secondly, we screened for the influence of apiaries on the prevalence of these viruses. Our results indicated a location effect for the prevalence of VdMLV in Bombus species, with a higher prevalence in the proximity of honeybee apiaries mainly observed in one location. For LSV, the prevalence was not different in the proximity or at a 1.5 km-distance of apiaries, but we reported a different isolate with similarities to LSV-2 and "LSV-clade A" as described by Ravoet et al. (2015), which was detected both in Apis mellifera and Bombus species. In general, our results indicate the existence of a disease pool of new viruses that seems to be associated to a broad range of Apoidae hosts, including multiple Bombus species. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. CXCR3 Directs Antigen-Specific Effector CD4+ T Cell Migration to the Lung During Parainfluenza Virus Infection

    DEFF Research Database (Denmark)

    Kohlmeier, Jacob E; Cookenham, Tres; Miller, Shannon C

    2009-01-01

    effector CD4(+) T cell migration to the lungs. To assess the role of CCR5 and CXCR3 in vivo, we directly compared the migration of Ag-specific wild-type and chemokine receptor-deficient effector T cells in mixed bone marrow chimeric mice during a parainfluenza virus infection. CXCR3-deficient effector CD4......(+) T cells were 5- to 10-fold less efficient at migrating to the lung compared with wild-type cells, whereas CCR5-deficient effector T cells were not impaired in their migration to the lung. In contrast to its role in trafficking, CXCR3 had no impact on effector CD4(+) T cell proliferation, phenotype......, or function in any of the tissues examined. These findings demonstrate that CXCR3 controls virus-specific effector CD4(+) T cell migration in vivo, and suggest that blocking CXCR3-mediated recruitment may limit T cell-induced immunopathology during respiratory virus infections....

  6. Effects of cell culture and laboratory conditions on type 2 dengue virus infectivity.

    Science.gov (United States)

    Manning, J S; Collins, J K

    1979-01-01

    The stability of type 2 dengue virus to exposure to a variety of laboratory conditions was determined. Suckling mouse brain passage virus was adapted for growth in BHK-21 cells, and plaque assays were performed using a tragacanth gum overlay. A three- to fourfold increase in plaque size could be obtained if monolayers were subconfluent at time of inoculation. Incubation of virus for 24 h at 37 degrees C, pH 6.5, or in buffer containing 1 mM ethylenediaminetetraacetate considerably reduced virus infectivity as compared with virus incubated for the same period at 4 degrees C, pH 8.0, or in buffer with or without 1 mM CaCl2 and 1 mM MgCl2. Multiple freezing and thawing of virus tissue culture medium containing 10% fetal calf serum did not reduce virus infectivity. Images PMID:41848

  7. Differential gene expression related to Nora virus infection of Drosophila melanogaster.

    Science.gov (United States)

    Cordes, Ethan J; Licking-Murray, Kellie D; Carlson, Kimberly A

    2013-08-01

    Nora virus is a recently discovered RNA picorna-like virus that produces a persistent infection in Drosophila melanogaster, but the antiviral pathway or change in gene expression is unknown. We performed cDNA microarray analysis comparing the gene expression profiles of Nora virus infected and uninfected wild-type D. melanogaster. This analysis yielded 58 genes exhibiting a 1.5-fold change or greater and p-value less than 0.01. Of these genes, 46 were up-regulated and 12 down-regulated in response to infection. To validate the microarray results, qRT-PCR was performed with probes for Chorion protein 16 and Troponin C isoform 4, which show good correspondence with cDNA microarray results. Differential regulation of genes associated with Toll and immune-deficient pathways, cytoskeletal development, Janus Kinase-Signal Transducer and Activator of Transcription interactions, and a potential gut-specific innate immune response were found. This genome-wide expression profile of Nora virus infection of D. melanogaster can pinpoint genes of interest for further investigation of antiviral pathways employed, genetic mechanisms, sites of replication, viral persistence, and developmental effects. Copyright © 2013. Published by Elsevier B.V.

  8. Surveillance for Avian Influenza Viruses in Wild Birds in Denmark and Greenland, 2007–10

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Breum, Solvej Østergaard; Trebbien, Ramona

    2012-01-01

    healthy live birds in waterfowl reservoirs and along migratory flyways, birds living in proximity to domestic poultry, and hunted game birds. Dead birds were sampled by oropharyngeal swabbing. Healthy live wild birds were captured with nets, traps, or by hand and were sampled by swabbing...... America via Greenland and vice versa. In Denmark, the screenings for AI showed LPAI viruses to be naturally occurring in the wild bird population, particularly in waterfowl. The occurrence of AI viruses in the wild bird population may pose a risk for AI infections in Danish poultry....

  9. Detection by hemi-nested reverse transcription polymerase chain reaction and genetic characterization of wild type strains of Canine distemper virus in suspected infected dogs.

    Science.gov (United States)

    Di Francesco, Cristina E; Di Francesco, Daniela; Di Martino, Barbara; Speranza, Roberto; Santori, Domenico; Boari, Andrea; Marsilio, Fulvio

    2012-01-01

    A new highly sensitive and specific hemi-nested reverse transcription polymerase chain reaction (RT-PCR) assay was applied to detect nucleoprotein (NP) gene of Canine distemper virus (CDV) in samples collected from dogs showing respiratory, gastrointestinal, and neurological signs. Thirty-eight out of 86 samples were positive suggesting that despite the vaccination, canine distemper may still represent a high risk to the canine population. The 968 base pair (bp) fragments from the hemagglutinin (H) gene of 10 viral strains detected in positive samples were amplified and analyzed by restriction fragment length polymorphism (RFLP) using AluI and PsiI enzymes in order to differentiate among vaccine and wild-type CDV strains and to characterize the field viral strains. The products of the both enzymatic digestions allowed identification all viruses as wild strains of CDV. In addition, the RFLP analysis with AluI provided additional information about the identity level among the strains analyzed on the basis of the positions of the cleavage site in the nucleotide sequences of the H gene. The method could be a more useful and simpler method for molecular studies of CDV strains.

  10. Epidemiology of canine distemper virus in wild raccoon dogs (Nyctereutes procyonoides) from South Korea.

    Science.gov (United States)

    Cha, Se-Yeoun; Kim, Eun-Ju; Kang, Min; Jang, Sang-Ho; Lee, Hae-Beom; Jang, Hyung-Kwan

    2012-09-01

    Raccoon dogs (Nyctereutes procyonoides) are widespread and common in South Korea. In 2011, we obtained serum samples from 102 wild raccoon dogs to survey their exposure to canine distemper virus (CDV). Forty-five of the 102 animals (44.1%) were seropositive. Field cases of canine distemper in wild raccoon dogs from 2010 to 2011 were investigated. Fourteen cases of CDV infection were identified by a commercially available CDV antigen detection kit. These cases were used for virus isolation and molecular analysis. Sequence analysis of hemagglutinin genes indicated that all viruses isolated belonged to the Asia-2 genotype. H protein residues which are related to the receptor and host specificity (residues 530 and 549) were analyzed. A glutamic acid (E) residue is present at 530 in all isolates. At 549, a histidine (H) residue was found in five isolates and tyrosine (Y) residue was found in 6 isolates. Our study demonstrated that CDV infection was widespread in wild raccoon dogs in South Korea. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Relation of type-C RNA virus infectivity and leukemogenesis in rats and mice

    International Nuclear Information System (INIS)

    Nagao, Kenji; Ito, Takaaki; Yokoro, Kenjiro

    1976-01-01

    Observation was made as to movement of type-C RNA virus infectivity in the process of leukemogensis induced by Gross virus, N-nitrosoethylurea (NEU), or, x-ray. Total dose of 680 R in 4 times was given to the whole body or parts of the body at intervals of 5 days. Thymic leukemia occurred in 100% or rats which were inoculated with type-C RNA virus at the period of newborn 64 days after, on the average. Infectious titer of virus rose only in thymus toward leukemogenesis. Thymic leukemia was induced 100% in mice by NEU 122 days after, but its incidence was 9% of mice of which thymus was extracted. Leukemia virus was not detected in non-extracted thymus of mice, and pattern of virus infectivity in other organs did not show any difference with that of mice of which thymus was extracted. Virus showed high infectious titer in uterus of mice of both groups. Leukemia occurred 87% in the whole body irradiated mice, 15% in partially irradiated mice, and 39% in mice of which thymus was extracted and the whole body was irradiated. Virus did not show any homeostatic infectious titer in three kinds of leukemia, but it showed high infectious titer in uterus. (Kanao, N.)

  12. Immunobiotic Lactobacillus administered post-exposure averts the lethal sequelae of respiratory virus infection.

    Science.gov (United States)

    Percopo, Caroline M; Rice, Tyler A; Brenner, Todd A; Dyer, Kimberly D; Luo, Janice L; Kanakabandi, Kishore; Sturdevant, Daniel E; Porcella, Stephen F; Domachowske, Joseph B; Keicher, Jesse D; Rosenberg, Helene F

    2015-09-01

    We reported previously that priming of the respiratory tract with immunobiotic Lactobacillus prior to virus challenge protects mice against subsequent lethal infection with pneumonia virus of mice (PVM). We present here the results of gene microarray which document differential expression of proinflammatory mediators in response to PVM infection alone and those suppressed in response to Lactobacillus plantarum. We also demonstrate for the first time that intranasal inoculation with live or heat-inactivated L. plantarum or Lactobacillus reuteri promotes full survival from PVM infection when administered within 24h after virus challenge. Survival in response to L. plantarum administered after virus challenge is associated with suppression of proinflammatory cytokines, limited virus recovery, and diminished neutrophil recruitment to lung tissue and airways. Utilizing this post-virus challenge protocol, we found that protective responses elicited by L. plantarum at the respiratory tract were distinct from those at the gastrointestinal mucosa, as mice devoid of the anti-inflammatory cytokine, interleukin (IL)-10, exhibit survival and inflammatory responses that are indistinguishable from those of their wild-type counterparts. Finally, although L. plantarum interacts specifically with pattern recognition receptors TLR2 and NOD2, the respective gene-deleted mice were fully protected against lethal PVM infection by L. plantarum, as are mice devoid of type I interferon receptors. Taken together, L. plantarum is a versatile and flexible agent that is capable of averting the lethal sequelae of severe respiratory infection both prior to and post-virus challenge via complex and potentially redundant mechanisms. Published by Elsevier B.V.

  13. Neutralizing antibody response during human immunodeficiency virus type 1 infection: type and group specificity and viral escape

    DEFF Research Database (Denmark)

    Arendrup, M; Sönnerborg, A; Svennerholm, B

    1993-01-01

    The paradox that group-specific neutralizing antibodies (NA) exist in the majority of human immunodeficiency virus type 1 (HIV-1)-infected patients, whereas the NA response against autologous HIV-1 virus isolates is highly type-specific, motivated us to study the type- and group-specific NA...... demonstrated, suggesting that the majority of the change in neutralization sensitivity is driven by the selective pressure of type-specific NA. Furthermore, no differences were observed in sensitivity to neutralization by anti-carbohydrate neutralizing monoclonal antibodies or the lectin concanavalin A...

  14. Canine distemper virus infection among wildlife before and after the epidemic.

    Science.gov (United States)

    Suzuki, Junko; Nishio, Yohei; Kameo, Yuki; Terada, Yutaka; Kuwata, Ryusei; Shimoda, Hiroshi; Suzuki, Kazuo; Maeda, Ken

    2015-11-01

    In 2007-2008, a canine distemper virus (CDV) epidemic occurred among wild animals in Wakayama Prefecture, Japan, and many mammals, including the wild boar and deer, were infected. In this study, CDV prevalence among wild animals was surveyed before and after the epidemic. At first, an enzyme-linked immunosorbent assay (ELISA) with horseradish peroxidase-conjugated protein A/G was established to detect CDV antibodies in many mammalian species. This established ELISA was available for testing dogs, raccoons and raccoon dogs as well as virus-neutralization test. Next, a serological survey of wild mammalians was conducted, and it was indicated that many wild mammalians, particularly raccoons, were infected with CDV during the epidemic, but few were infected before and after the epidemic. On the other hand, many raccoon dogs died during the epidemic, but CDV remained prevalent in the remaining population, and a small epidemic occurred in raccoon dogs in 2012-2013. These results indicated that the epidemic of 2007-2008 may have been intensified by transmission to raccoons.

  15. Temperature-sensitive mutants of influenza A virus. XIV. Production and evaluation of influenza A/Georgia/74-ts-1[E] recombinant viruses in human adults.

    Science.gov (United States)

    Richman, D D; Murphy, B R; Belshe, R B; Rusten, H M; Chanock, R M; Blacklow, N R; Parrino, T A; Rose, F B; Levine, M M; Caplan, E

    1977-08-01

    The two temperature-sensitive (ts) lesions present in influenza A/Hong Kong/68-ts-1[E] (H3N2 68) virus were transferred via genetic reassortment to influenza A/Georgia/74 (H3N2 74) wild-type virus. A recombinant clone possessing both ts lesions and the shutoff temperature of 38 C of the Hong Kong/68 ts donor and the two surface antigens of the Georgia/74 wild-type virus was administered to 32 seronegative adult volunteers. Thirty-one volunteers were infected, of whom only five experienced mild afebrile upper respiratory tract illness. The wild-type recipient virus was a cloned population that induced illness in five of six infected volunteers. Therfore, the attenuation exhibited by the Georgia/74-ts-1[E] virus could reasonably be assumed to be due to the acquisition of the two ts-1[E] lesions by the Georgia/74 wild-type virus. The serum and nasal wash antibody responses of the ts-1[E] vaccinees were equivalent to those of the volunteers who received wild-type virus. The two ts lesions present in the Hong Kong/68-ts-1[E] virus have now been transferred three times to a wild-type virus bearing a new hemagglutinin, and in each instance the new ts recombination exhibited a similar, satisfactory level of attenuation and antigenicity for adults. It seems likely that the transfer of the ts-1[E] lesions to any new influenza virus will regularly result in attenuation of a recombinat virus possessing the new surface antigens.

  16. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses

    Directory of Open Access Journals (Sweden)

    Maria Dolores Fernandez-Garcia

    2016-02-01

    Full Text Available The live attenuated yellow fever virus (YFV vaccine 17D stands as a “gold standard” for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation.

  17. Susceptibility of Primary Human Choroid Plexus Epithelial Cells and Meningeal Cells to Infection by JC Virus.

    Science.gov (United States)

    O'Hara, Bethany A; Gee, Gretchen V; Atwood, Walter J; Haley, Sheila A

    2018-04-15

    JC polyomavirus (JCPyV) establishes a lifelong persistence in roughly half the human population worldwide. The cells and tissues that harbor persistent virus in vivo are not known, but renal tubules and other urogenital epithelial cells are likely candidates as virus is shed in the urine of healthy individuals. In an immunosuppressed host, JCPyV can become reactivated and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease of the central nervous system. Recent observations indicate that JCPyV may productively interact with cells in the choroid plexus and leptomeninges. To further study JCPyV infection in these cells, primary human choroid plexus epithelial cells and meningeal cells were challenged with virus, and their susceptibility to infection was compared to the human glial cell line, SVG-A. We found that JCPyV productively infects both choroid plexus epithelial cells and meningeal cells in vitro Competition with the soluble receptor fragment LSTc reduced virus infection in these cells. Treatment of cells with neuraminidase also inhibited both viral infection and binding. Treatment with the serotonin receptor antagonist, ritanserin, reduced infection in SVG-A and meningeal cells. We also compared the ability of wild-type and sialic acid-binding mutant pseudoviruses to transduce these cells. Wild-type pseudovirus readily transduced all three cell types, but pseudoviruses harboring mutations in the sialic acid-binding pocket of the virus failed to transduce the cells. These data establish a novel role for choroid plexus and meninges in harboring virus that likely contributes not only to meningoencephalopathies but also to PML. IMPORTANCE JCPyV infects greater than half the human population worldwide and causes central nervous system disease in patients with weakened immune systems. Several recent reports have found JCPyV in the choroid plexus and leptomeninges of patients with encephalitis. Due to their role in forming the blood

  18. GLUT-1-independent infection of the glioblastoma/astroglioma U87 cells by the human T cell leukemia virus type 1

    International Nuclear Information System (INIS)

    Jin Qingwen; Agrawal, Lokesh; VanHorn-Ali, Zainab; Alkhatib, Ghalib

    2006-01-01

    The human glucose transporter protein 1 (GLUT-1) functions as a receptor for human T cell leukemia virus (HTLV). GLUT-1 is a twelve-transmembrane cell surface receptor with six extracellular (ECL) and seven intracellular domains. To analyze HTLV-1 cytotropism, we utilized polyclonal antibodies to a synthetic peptide corresponding to the large extracellular domain of GLUT-1. The antibodies caused significant blocking of envelope (Env)-mediated fusion and pseudotyped virus infection of HeLa cells but had no significant effect on infection of U87 cells. This differential effect correlated with the detection of high-level surface expression of GLUT-1 on HeLa cells and very weak staining of U87 cells. To investigate this in terms of viral cytotropism, we cloned GLUT-1 cDNA from U87 cells and isolated two different versions of cDNA clones: the wild-type sequence (encoding 492 residues) and a mutant cDNA with a 5-base pair deletion (GLUT-1Δ5) between nucleotides 1329 and 1333. The deletion, also detected in genomic DNA, resulted in a frame-shift and premature termination producing a truncated protein of 463 residues. Transfection of the wild-type GLUT-1 but not GLUT-1Δ5 cDNA into CHO cells resulted in efficient surface expression of the human GLUT-1. Co-expression of GLUT-1 with GLUT-1Δ5 produces a trans-inhibition by GLUT-1Δ5 of GLUT-1-mediated HTLV-1 envelope (Env)-mediated fusion. Co-immunoprecipitation experiments demonstrated physical interaction of the wild-type and mutant proteins. Northern blot and RT-PCR analyses demonstrated lower GLUT-1 RNA expression in U87 cells. We propose two mechanisms to account for the impaired cell surface expression of GLUT-1 on U87 cells: low GLUT-1 RNA expression and the formation of GLUT-1/GLUT-1Δ5 heterodimers that are retained intracellularly. Significant RNAi-mediated reduction of endogenous GLUT-1 expression impaired HTLV-1 Env-mediated fusion with HeLa cells but not with U87 cells. We propose a GLUT-1-independent mechanism

  19. A comparison of the immune responses of dogs exposed to canine distemper virus (CDV) — Differences between vaccinated and wild-type virus exposed dogs

    Science.gov (United States)

    Perrone, Danielle; Bender, Scott; Niewiesk, Stefan

    2010-01-01

    Canine distemper virus (CDV)-specific immune response was measured in different dog populations. Three groups of vaccinated or wild-type virus exposed dogs were tested: dogs with a known vaccination history, dogs without a known vaccination history (shelter dogs), and dogs with potential exposure to wild-type CDV. The use of a T-cell proliferation assay demonstrated a detectable CDV-specific T-cell response from both spleen and blood lymphocytes of dogs. Qualitatively, antibody assays [enzyme-linked immunosorbent assay (ELISA) and neutralization assay] predicted the presence of a T-cell response well, although quantitatively neither antibody assays nor the T-cell assay correlated well with each other. An interesting finding from our study was that half of the dogs in shelters were not vaccinated (potentially posing a public veterinary health problem) and that antibody levels in dogs living in an environment with endemic CDV were lower than in vaccinated animals. PMID:20885846

  20. The Role of Type III Interferons in Hepatitis C Virus Infection and Therapy

    Directory of Open Access Journals (Sweden)

    Janina Bruening

    2017-01-01

    Full Text Available The human interferon (IFN response is a key innate immune mechanism to fight virus infection. IFNs are host-encoded secreted proteins, which induce IFN-stimulated genes (ISGs with antiviral properties. Among the three classes of IFNs, type III IFNs, also called IFN lambdas (IFNLs, are an essential component of the innate immune response to hepatitis C virus (HCV. In particular, human polymorphisms in IFNL gene loci correlate with hepatitis C disease progression and with treatment response. To date, the underlying mechanisms remain mostly elusive; however it seems clear that viral infection of the liver induces IFNL responses. As IFNL receptors show a more restricted tissue expression than receptors for other classes of IFNs, IFNL treatment has reduced side effects compared to the classical type I IFN treatment. In HCV therapy, however, IFNL will likely not play an important role as highly effective direct acting antivirals (DAA exist. Here, we will review our current knowledge on IFNL gene expression, protein properties, signaling, ISG induction, and its implications on HCV infection and treatment. Finally, we will discuss the lessons learnt from the HCV and IFNL field for virus infections beyond hepatitis C.

  1. Visualization of the African swine fever virus infection in living cells by incorporation into the virus particle of green fluorescent protein-p54 membrane protein chimera

    International Nuclear Information System (INIS)

    Hernaez, Bruno; Escribano, Jose M.; Alonso, Covadonga

    2006-01-01

    Many stages of African swine fever virus infection have not yet been studied in detail. To track the behavior of African swine fever virus (ASFV) in the infected cells in real time, we produced an infectious recombinant ASFV (B54GFP-2) that expresses and incorporates into the virus particle a chimera of the p54 envelope protein fused to the enhanced green fluorescent protein (EGFP). The incorporation of the fusion protein into the virus particle was confirmed immunologically and it was determined that p54-EGFP was fully functional by confirmation that the recombinant virus made normal-sized plaques and presented similar growth curves to the wild-type virus. The tagged virus was visualized as individual fluorescent particles during the first stages of infection and allowed to visualize the infection progression in living cells through the viral life cycle by confocal microscopy. In this work, diverse potential applications of B54GFP-2 to study different aspects of ASFV infection are shown. By using this recombinant virus it was possible to determine the trajectory and speed of intracellular virus movement. Additionally, we have been able to visualize for first time the ASFV factory formation dynamics and the cytophatic effect of the virus in live infected cells. Finally, we have analyzed virus progression along the infection cycle and infected cell death as time-lapse animations

  2. Recurrences after oral and genital herpes simplex virus infection. Influence of site of infection and viral type.

    Science.gov (United States)

    Lafferty, W E; Coombs, R W; Benedetti, J; Critchlow, C; Corey, L

    1987-06-04

    We prospectively followed 39 adults with concurrent primary herpes simplex virus (HSV) infection (12 with HSV type 1 and 27 with HSV type 2) of the oropharynx and genitalia, caused by the same virus in each person, to evaluate the influence of viral type (HSV-1 vs. HSV-2) and site of infection (oropharyngeal vs. genital) on the frequency of recurrence. The subsequent recurrence patterns of HSV infection differed markedly according to viral type and anatomical site. Oral-labial recurrences developed in 5 of 12 patients with HSV-1 and 1 of 27 patients with HSV-2 (P less than 0.001). Conversely, genital recurrences developed in 24 of 27 patients with HSV-2 and 3 of 12 patients with HSV-1 (P less than 0.01). The mean rate of subsequent genital recurrences (due to HSV-1 and HSV-2) was 0.23 per month, whereas the mean rate of oral-labial recurrences was only 0.04 per month (P less than 0.001). The mean monthly frequencies of recurrence were, in order, genital HSV-2 infections, 0.33 per month; oral-labial HSV-1 infections, 0.12 per month; genital HSV-1 infections, 0.020 per month; and oral HSV-2 infections, 0.001 per month (P less than 0.01 for each comparison). We conclude that the likelihood of reactivation of HSV infection differs between HSV-1 and HSV-2 infections and between the sacral and trigeminal anatomical sites. The sixfold more frequent clinical recurrence rate of genital HSV infections as compared with oral-labial HSV infections may account for the relatively rapid increase in the prevalence of clinically recognized genital herpes in recent years.

  3. Comparison of type 2 diabetes mellitus incidence in different phases of hepatitis B virus infection: A meta-analysis.

    Science.gov (United States)

    Shen, Yi; Zhang, Sheng; Wang, Xulin; Wang, Yuanyuan; Zhang, Jian; Qin, Gang; Li, Wenchao; Ding, Kun; Zhang, Lei; Liang, Feng

    2017-10-01

    Because whether hepatitis B virus infection increases the risk of type 2 diabetes mellitus has been a controversial topic, pair-wise and network meta-analyses of published literature were carried out to accurately evaluate the association between different phases of hepatitis B virus infection and the risk of type 2 diabetes mellitus. A comprehensive literature retrieval was conducted from the PubMed, Embase, Cochrane Library and Chinese Database to identify epidemiological studies on the association between hepatitis B virus infection and the risk of type 2 diabetes mellitus that were published from 1999 to 2015. A pair-wise meta-analysis of direct evidence was performed to estimate the pooled odds ratios and 95% confidence intervals. A network meta-analysis was conducted, including the construction of a network plot, inconsistency plot, predictive interval plot, comparison-adjusted funnel plot and rank diagram, to graphically link the direct and indirect comparisons between different hepatitis B virus infective phases. Eighteen publications (n=113 639) describing 32 studies were included in this meta-analysis. In the pair-wise meta-analysis, the pooled odds ratio for type 2 diabetes mellitus in chronic hepatitis B cirrhosis patients was 1.76 (95% confidence interval: 1.44-2.14) when compared with non-cirrhotic chronic hepatitis B patients. In the network meta-analysis, six comparisons of four hepatitis B virus infectious states indicated the following descending order for the risk of type 2 diabetes mellitus: hepatitis B cirrhosis patients, non-cirrhotic chronic hepatitis B patients, hepatitis B virus carriers and non-hepatitis B virus controls. This study suggests that hepatitis B virus infection is not an independent risk factor for type 2 diabetes mellitus, but the development of cirrhosis may increase the incidence of type 2 diabetes mellitus cirrhosis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Reproduction and fertility in human immunodeficiency virus type-1 infection

    NARCIS (Netherlands)

    van Leeuwen, E.; Prins, J. M.; Jurriaans, S.; Boer, K.; Reiss, P.; Repping, S.; van der Veen, F.

    2007-01-01

    Human immunodeficiency virus type-1 (HIV-1) affects mostly men and women in their reproductive years. For those who have access to highly active antiretroviral therapy (HAART), the course of HIV-1 infection has shifted from a lethal to a chronic disease. As a result of this, many patients with HIV-1

  5. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    Directory of Open Access Journals (Sweden)

    Xiaozhen Liang

    2009-11-01

    Full Text Available Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68 gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners that do not directly participate in virus replication, but rather facilitate virus

  6. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    Science.gov (United States)

    Liang, Xiaozhen; Collins, Christopher M; Mendel, Justin B; Iwakoshi, Neal N; Speck, Samuel H

    2009-11-01

    Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68) gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency) account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners) that do not directly participate in virus replication, but rather facilitate virus reactivation by

  7. Genetic Characterization of the Hemagglutinin Genes of Wild-Type Measles Virus Circulating in China, 1993–2009

    Science.gov (United States)

    Zhu, Zhen; Liu, Chunyu; Mao, Naiying; Ji, Yixin; Wang, Huiling; Jiang, Xiaohong; Li, Chongshan; Tang, Wei; Feng, Daxing; Wang, Changyin; Zheng, Lei; Lei, Yue; Ling, Hua; Zhao, Chunfang; Ma, Yan; He, Jilan; Wang, Yan; Li, Ping; Guan, Ronghui; Zhou, Shujie; Zhou, Jianhui; Wang, Shuang; Zhang, Hong; Zheng, Huanying; Liu, Leng; Ma, Hemuti; Guan, Jing; Lu, Peishan; Feng, Yan; Zhang, Yanjun; Zhou, Shunde; Xiong, Ying; Ba, Zhuoma; Chen, Hui; Yang, Xiuhui; Bo, Fang; Ma, Yujie; Liang, Yong; Lei, Yake; Gu, Suyi; Liu, Wei; Chen, Meng; Featherstone, David; Jee, Youngmee; Bellini, William J.; Rota, Paul A.; Xu, Wenbo

    2013-01-01

    Background China experienced several large measles outbreaks in the past two decades, and a series of enhanced control measures were implemented to achieve the goal of measles elimination. Molecular epidemiologic surveillance of wild-type measles viruses (MeV) provides valuable information about the viral transmission patterns. Since 1993, virologic surveillnace has confirmed that a single endemic genotype H1 viruses have been predominantly circulating in China. A component of molecular surveillance is to monitor the genetic characteristics of the hemagglutinin (H) gene of MeV, the major target for virus neutralizing antibodies. Principal Findings Analysis of the sequences of the complete H gene from 56 representative wild-type MeV strains circulating in China during 1993–2009 showed that the H gene sequences were clustered into 2 groups, cluster 1 and cluster 2. Cluster1 strains were the most frequently detected cluster and had a widespread distribution in China after 2000. The predicted amino acid sequences of the H protein were relatively conserved at most of the functionally significant amino acid positions. However, most of the genotype H1 cluster1 viruses had an amino acid substitution (Ser240Asn), which removed a predicted N-linked glycosylation site. In addition, the substitution of Pro397Leu in the hemagglutinin noose epitope (HNE) was identified in 23 of 56 strains. The evolutionary rate of the H gene of the genotype H1 viruses was estimated to be approximately 0.76×10−3 substitutions per site per year, and the ratio of dN to dS (dN/dS) was measles in China. PMID:24073194

  8. Pepino mosaic virus and Tomato chlorosis virus causing mixed infection in protected tomato crops in Sicily

    Directory of Open Access Journals (Sweden)

    SALVATORE DAVINO

    2008-07-01

    Full Text Available An unusual virus-like yellow leaf disorder associated with fruit marbling was observed during the winter of 2005 in some greenhouse tomato crops in the province of Ragusa Sicily (Southern Italy. Leaf samples from 250 symptomatic tomato plants were serologically tested by DAS-ELISA technique for 5 viruses: Tomato spotted wilt virus (TSWV, Impatiens necrotic spot virus (INSV, Tobacco mosaic virus (TMV, Cucumber mosaic virus (CMV and Pepino mosaic virus (PepMV. PepMV was detected in 215 of the samples. The virus was mechanically transmitted to cucumber, wild metel, wild tobacco and ‘Rio Grande’ tomato. The experimental host range of PepMV-Ragusa differed from that of the PepMV found in Sardinia in 2001, which infected ‘Camone’ tomato. By applying RT-PCR to 25 PepMV-infected tomato plants, the expected 844 bp DNA fragment for PepMV and the expected 439 bp DNA fragment for Tomato chlororis virus (ToCV were obtained from all the samples tested. Sequences of the obtained amplicons were used to study the phylogenetic relationships of the viruses with isolates from other countries. Nucleotide sequence alignments showed that the sequence CP-PepMV-Ragusa (Genbank acc. No. DQ 517884 were 99% homologous with both US2 and Spain-Murcia isolates, while those of ToCV-Ragusa (Genbank acc. No. DQ517885 isolate HSP70, were 99% homologous with the Florida isolate, and 98% with the Lebanon isolate. The results proved that the unusual disorder found in greenhouse tomatoes in Sicily can be associated with infections by PepMV and ToCV, reported for the first time in a mixed infection.

  9. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins

    Energy Technology Data Exchange (ETDEWEB)

    Maric, Martina; Haugo, Alison C. [Department of Microbiology, University of Iowa, Iowa City, IA 52242 (United States); Dauer, William [Department of Neurology, University of Michigan, Ann Arbor, MI 48109 (United States); Johnson, David [Department of Microbiology and Immunology, Oregon Health Sciences University, Portland, OR 97201 (United States); Roller, Richard J., E-mail: richard-roller@uiowa.edu [Department of Microbiology, University of Iowa, Iowa City, IA 52242 (United States)

    2014-07-15

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. - Highlights: • We show that wild-type HSV can induce breakdown of the nuclear envelope in a specific cell system. • The viral fusion proteins gB and gH are required for induction of nuclear envelope breakdown. • Nuclear envelope breakdown cannot compensate for deletion of the HSV UL34 gene.

  10. Role of Natural Killer Cells in Innate Protection against Lethal Ebola Virus Infection

    OpenAIRE

    Warfield, Kelly L.; Perkins, Jeremy G.; Swenson, Dana L.; Deal, Emily M.; Bosio, Catharine M.; Aman, M. Javad; Yokoyama, Wayne M.; Young, Howard A.; Bavari, Sina

    2004-01-01

    Ebola virus is a highly lethal human pathogen and is rapidly driving many wild primate populations toward extinction. Several lines of evidence suggest that innate, nonspecific host factors are potentially critical for survival after Ebola virus infection. Here, we show that nonreplicating Ebola virus-like particles (VLPs), containing the glycoprotein (GP) and matrix protein virus protein (VP)40, administered 1–3 d before Ebola virus infection rapidly induced protective immunity. VLP injectio...

  11. Role of Bunyamwera Orthobunyavirus NSs protein in infection of mosquito cells.

    Science.gov (United States)

    Szemiel, Agnieszka M; Failloux, Anna-Bella; Elliott, Richard M

    2012-01-01

    Bunyamwera orthobunyavirus is both the prototype and study model of the Bunyaviridae family. The viral NSs protein seems to contribute to the different outcomes of infection in mammalian and mosquito cell lines. However, only limited information is available on the growth of Bunyamwera virus in cultured mosquito cells other than the Aedes albopictus C6/36 line. To determine potential functions of the NSs protein in mosquito cells, replication of wild-type virus and a recombinant NSs deletion mutant was compared in Ae. albopictus C6/36, C7-10 and U4.4 cells, and in Ae. aegypti Ae cells by monitoring N protein production and virus yields at various times post infection. Both viruses established persistent infections, with the exception of NSs deletion mutant in U4.4 cells. The NSs protein was nonessential for growth in C6/36 and C7-10 cells, but was important for productive replication in U4.4 and Ae cells. Fluorescence microscopy studies using recombinant viruses expressing green fluorescent protein allowed observation of three stages of infection, early, acute and late, during which infected cells underwent morphological changes. In the absence of NSs, these changes were less pronounced. An RNAi response efficiently reduced virus replication in U4.4 cells transfected with virus specific dsRNA, but not in C6/36 or C7/10 cells. Lastly, Ae. aegypti mosquitoes were exposed to blood-meal containing either wild-type or NSs deletion virus, and at various times post-feeding, infection and disseminated infection rates were measured. Compared to wild-type virus, infection rates by the mutant virus were lower and more variable. If the NSs deletion virus was able to establish infection, it was detected in salivary glands at 6 days post-infection, 3 days later than wild-type virus. Bunyamwera virus NSs is required for efficient replication in certain mosquito cell lines and in Ae. aegypti mosquitoes.

  12. wMel limits zika and chikungunya virus infection in a Singapore Wolbachia-introgressed Ae. aegypti strain, wMel-Sg.

    Directory of Open Access Journals (Sweden)

    Cheong Huat Tan

    2017-05-01

    Full Text Available Zika (ZIKV and Chikungunya (CHIKV viruses are emerging Aedes-borne viruses that are spreading outside their known geographic range and causing wide-scale epidemics. It has been reported that these viruses can be transmitted efficiently by Ae. aegypti. Recent studies have shown that Ae. aegypti when transinfected with certain Wolbachia strains shows a reduced replication and dissemination of dengue (DENV, Chikungunya (CHIKV, and Yellow Fever (YFV viruses. The aim of this study was to determine whether the wMel strain of Wolbachia introgressed onto a Singapore Ae. aegypti genetic background was able to limit ZIKV and CHIKV infection in the mosquito.Five to seven-day old mosquitoes either infected or uninfected with wMel Wolbachia were orally infected with a Ugandan strain of ZIKV and several outbreak strains of CHIKV. The midgut and salivary glands of each mosquito were sampled at days 6, 9 and 13 days post infectious blood meal to determine midgut infection and salivary glands dissemination rates, respectively. In general, all wild type Ae. aegypti were found to have high ZIKV and CHIKV infections in their midguts and salivary glands, across all sampling days, compared to Wolbachia infected counterparts. Median viral titre for all viruses in Wolbachia infected mosquitoes were significantly lower across all time points when compared to wild type mosquitoes. Most significantly, all but two and one of the wMel infected mosquitoes had no detectable ZIKV and CHIKV, respectively, in their salivary glands at 14 days post-infectious blood meal.Our results showed that wMel limits both ZIKV and CHIKV infection when introgressed into a Singapore Ae. aegypti genetic background. These results also strongly suggest that female Aedes aegypti carrying Wolbachia will have a reduced capacity to transmit ZIKV and CHIKV.

  13. Experimental adaptation of wild-type canine distemper virus (CDV to the human entry receptor CD150.

    Directory of Open Access Journals (Sweden)

    Maria Bieringer

    Full Text Available Canine distemper virus (CDV, a close relative of measles virus (MV, is widespread and well known for its broad host range. When the goal of measles eradication may be achieved, and when measles vaccination will be stopped, CDV might eventually cross the species barrier to humans and emerge as a new human pathogen. In order to get an impression how fast such alterations may occur, we characterized required adaptive mutations to the human entry receptors CD150 (SLAM and nectin-4 as first step to infect human target cells. Recombinant wild-type CDV-A75/17(red adapted quickly to growth in human H358 epithelial cells expressing human nectin-4. Sequencing of the viral attachment proteins (hemagglutinin, H, and fusion protein, F genes revealed that no adaptive alteration was required to utilize human nectin-4. In contrast, the virus replicated only to low titres (10(2 pfu/ml in Vero cells expressing human CD150 (Vero-hSLAM. After three passages using these cells virus was adapted to human CD150 and replicated to high titres (10(5 pfu/ml. Sequence analyses revealed that only one amino acid exchange in the H-protein at position 540 Asp→Gly (D540G was required for functional adaptation to human CD150. Structural modelling suggests that the adaptive mutation D540G in H reflects the sequence alteration from canine to human CD150 at position 70 and 71 from Pro to Leu (P70L and Gly to Glu (G71E, and compensates for the gain of a negative charge in the human CD150 molecule. Using this model system our data indicate that only a minimal alteration, in this case one adaptive mutation, is required for adaptation of CDV to the human entry receptors, and help to understand the molecular basis why this adaptive mutation occurs.

  14. Piroxicam inhibits herpes simplex virus type 1 infection in vitro.

    Science.gov (United States)

    Astani, A; Albrecht, U; Schnitzler, P

    2015-05-01

    Piroxicam is a potent, nonsteroidal, anti-inflammatory agent (NSAID) which also exhibits antipyretic activity. The antiviral effect of piroxicam against herpes simplex virus type 1 (HSV-1) was examined in vitro on RC-37 monkey kidney cells using a plaque reduction assay. Piroxicam was dissolved in ethanol or dimethylsulfoxide (DMSO) and the 50% inhibitory concentration (IC50) was determined at 4 μg/ml and 75 μg/ml, respectively. The IC50 for the standard antiherpetic drug acyclovir was determined at 1.6 μM. At non-cytotoxic concentrations of these piroxicam solutions, plaque formation was significantly reduced by 62.4% for ethanolic piroxicam and 72.8% for piroxicam in DMSO. The mode of antiviral action of these drugs was assessed by time-on-addition assays. No antiviral effect was observed when cells were incubated with piroxicam prior to infection with HSV-1 or when HSV-1 infected cells were treated with dissolved piroxicam. Herpesvirus infection was, however, significantly inhibited when HSV-1 was incubated with piroxicam prior to the infection of cells. These results indicate that piroxicam affected the virus before adsorption, but not after penetration into the host cell, suggesting that piroxicam exerts a direct antiviral effect on HSV-1. Free herpesvirus was sensitive to piroxicam in a concentration-dependent manner and the inhibition of HSV-1 appears to occur before entering the cell but not after penetration of the virus into the cell. Considering the lipophilic nature of piroxicam, which enables it to penetrate the skin, it might be suitable for topical treatment of herpetic infections.

  15. Epizootic emergence of Usutu virus in wild and captive birds in Germany.

    Directory of Open Access Journals (Sweden)

    Norbert Becker

    Full Text Available This study aimed to identify the causative agent of mass mortality in wild and captive birds in southwest Germany and to gather insights into the phylogenetic relationship and spatial distribution of the pathogen. Since June 2011, 223 dead birds were collected and tested for the presence of viral pathogens. Usutu virus (USUV RNA was detected by real-time RT-PCR in 86 birds representing 6 species. The virus was isolated in cell culture from the heart of 18 Blackbirds (Turdus merula. USUV-specific antigen was demonstrated by immunohistochemistry in brain, heart, liver, and lung of infected Blackbirds. The complete polyprotein coding sequence was obtained by deep sequencing of liver and spleen samples of a dead Blackbird from Mannheim (BH65/11-02-03. Phylogenetic analysis of the German USUV strain BH65/11-02-03 revealed a close relationship with strain Vienna that caused mass mortality among birds in Austria in 2001. Wild birds from lowland river valleys in southwest Germany were mainly affected by USUV, but also birds kept in aviaries. Our data suggest that after the initial detection of USUV in German mosquitoes in 2010, the virus spread in 2011 and caused epizootics among wild and captive birds in southwest Germany. The data also indicate an increased risk of USUV infections in humans in Germany.

  16. A heritable antiviral RNAi response limits Orsay virus infection in Caenorhabditis elegans N2.

    Directory of Open Access Journals (Sweden)

    Mark G Sterken

    Full Text Available Orsay virus (OrV is the first virus known to be able to complete a full infection cycle in the model nematode species Caenorhabditis elegans. OrV is transmitted horizontally and its infection is limited by antiviral RNA interference (RNAi. However, we have no insight into the kinetics of OrV replication in C. elegans. We developed an assay that infects worms in liquid, allowing precise monitoring of the infection. The assay revealed a dual role for the RNAi response in limiting Orsay virus infection in C. elegans. Firstly, it limits the progression of the initial infection at the step of recognition of dsRNA. Secondly, it provides an inherited protection against infection in the offspring. This establishes the heritable RNAi response as anti-viral mechanism during OrV infections in C. elegans. Our results further illustrate that the inheritance of the anti-viral response is important in controlling the infection in the canonical wild type Bristol N2. The OrV replication kinetics were established throughout the worm life-cycle, setting a standard for further quantitative assays with the OrV-C. elegans infection model.

  17. Evaluating the role of wild songbirds or rodents in spreading avian influenza virus across an agricultural landscape

    Directory of Open Access Journals (Sweden)

    Derek D. Houston

    2017-12-01

    Full Text Available Background Avian influenza virus (AIV infections occur naturally in wild bird populations and can cross the wildlife-domestic animal interface, often with devastating impacts on commercial poultry. Migratory waterfowl and shorebirds are natural AIV reservoirs and can carry the virus along migratory pathways, often without exhibiting clinical signs. However, these species rarely inhabit poultry farms, so transmission into domestic birds likely occurs through other means. In many cases, human activities are thought to spread the virus into domestic populations. Consequently, biosecurity measures have been implemented to limit human-facilitated outbreaks. The 2015 avian influenza outbreak in the United States, which occurred among poultry operations with strict biosecurity controls, suggests that alternative routes of virus infiltration may exist, including bridge hosts: wild animals that transfer virus from areas of high waterfowl and shorebird densities. Methods Here, we examined small, wild birds (songbirds, woodpeckers, etc. and mammals in Iowa, one of the regions hit hardest by the 2015 avian influenza epizootic, to determine whether these animals carry AIV. To assess whether influenza A virus was present in other species in Iowa during our sampling period, we also present results from surveillance of waterfowl by the Iowa Department of Natural Resources and Unites Stated Department of Agriculture. Results Capturing animals at wetlands and near poultry facilities, we swabbed 449 individuals, internally and externally, for the presence of influenza A virus and no samples tested positive by qPCR. Similarly, serology from 402 animals showed no antibodies against influenza A. Although several species were captured at both wetland and poultry sites, the overall community structure of wild species differed significantly between these types of sites. In contrast, 83 out of 527 sampled waterfowl tested positive for influenza A via qPCR. Discussion

  18. Evaluating the role of wild songbirds or rodents in spreading avian influenza virus across an agricultural landscape.

    Science.gov (United States)

    Houston, Derek D; Azeem, Shahan; Lundy, Coady W; Sato, Yuko; Guo, Baoqing; Blanchong, Julie A; Gauger, Phillip C; Marks, David R; Yoon, Kyoung-Jin; Adelman, James S

    2017-01-01

    Avian influenza virus (AIV) infections occur naturally in wild bird populations and can cross the wildlife-domestic animal interface, often with devastating impacts on commercial poultry. Migratory waterfowl and shorebirds are natural AIV reservoirs and can carry the virus along migratory pathways, often without exhibiting clinical signs. However, these species rarely inhabit poultry farms, so transmission into domestic birds likely occurs through other means. In many cases, human activities are thought to spread the virus into domestic populations. Consequently, biosecurity measures have been implemented to limit human-facilitated outbreaks. The 2015 avian influenza outbreak in the United States, which occurred among poultry operations with strict biosecurity controls, suggests that alternative routes of virus infiltration may exist, including bridge hosts: wild animals that transfer virus from areas of high waterfowl and shorebird densities. Here, we examined small, wild birds (songbirds, woodpeckers, etc.) and mammals in Iowa, one of the regions hit hardest by the 2015 avian influenza epizootic, to determine whether these animals carry AIV. To assess whether influenza A virus was present in other species in Iowa during our sampling period, we also present results from surveillance of waterfowl by the Iowa Department of Natural Resources and Unites Stated Department of Agriculture. Capturing animals at wetlands and near poultry facilities, we swabbed 449 individuals, internally and externally, for the presence of influenza A virus and no samples tested positive by qPCR. Similarly, serology from 402 animals showed no antibodies against influenza A. Although several species were captured at both wetland and poultry sites, the overall community structure of wild species differed significantly between these types of sites. In contrast, 83 out of 527 sampled waterfowl tested positive for influenza A via qPCR. These results suggest that even though influenza A viruses

  19. Stability of the gorilla microbiome despite simian immunodeficiency virus infection

    OpenAIRE

    Moeller, A. H.; Peeters, Martine; Ayouba, Ahidjo; Ngole, E. M.; Esteban, A.; Hahn, B. H.; Ochman, H.

    2015-01-01

    Simian immunodeficiency viruses (SIVs) have been discovered in over 45 primate species; however, the pathogenic potential of most SIV strains remains unknown due to difficulties inherent in observing wild populations. Because those SIV infections that are pathogenic have been shown to induce changes in the host's gut microbiome, monitoring the microbiota present in faecal samples can provide a noninvasive means for studying the effects of SIV infection on the health of wild-living primates. H...

  20. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014.

    Science.gov (United States)

    Ip, Hon S; Torchetti, Mia Kim; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M

    2015-05-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  1. High-Throughput Quantitative Proteomic Analysis of Dengue Virus Type 2 Infected A549 Cells

    Science.gov (United States)

    Chiu, Han-Chen; Hannemann, Holger; Heesom, Kate J.; Matthews, David A.; Davidson, Andrew D.

    2014-01-01

    Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC) in combination with high-throughput mass spectrometry (MS). Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection. PMID:24671231

  2. High-throughput quantitative proteomic analysis of dengue virus type 2 infected A549 cells.

    Directory of Open Access Journals (Sweden)

    Han-Chen Chiu

    Full Text Available Disease caused by dengue virus is a global health concern with up to 390 million individuals infected annually worldwide. There are no vaccines or antiviral compounds available to either prevent or treat dengue disease which may be fatal. To increase our understanding of the interaction of dengue virus with the host cell, we analyzed changes in the proteome of human A549 cells in response to dengue virus type 2 infection using stable isotope labelling in cell culture (SILAC in combination with high-throughput mass spectrometry (MS. Mock and infected A549 cells were fractionated into nuclear and cytoplasmic extracts before analysis to identify proteins that redistribute between cellular compartments during infection and reduce the complexity of the analysis. We identified and quantified 3098 and 2115 proteins in the cytoplasmic and nuclear fractions respectively. Proteins that showed a significant alteration in amount during infection were examined using gene enrichment, pathway and network analysis tools. The analyses revealed that dengue virus infection modulated the amounts of proteins involved in the interferon and unfolded protein responses, lipid metabolism and the cell cycle. The SILAC-MS results were validated for a select number of proteins over a time course of infection by Western blotting and immunofluorescence microscopy. Our study demonstrates for the first time the power of SILAC-MS for identifying and quantifying novel changes in cellular protein amounts in response to dengue virus infection.

  3. CANINE DISTEMPER VIRUS IN A WILD FAR EASTERN LEOPARD ( PANTHERA PARDUS ORIENTALIS).

    Science.gov (United States)

    Sulikhan, Nadezhda S; Gilbert, Martin; Blidchenko, Ekaterina Yu; Naidenko, Sergei V; Ivanchuk, Galina V; Gorpenchenko, Tatiana Yu; Alshinetskiy, Mikhail V; Shevtsova, Elena I; Goodrich, John M; Lewis, John C M; Goncharuk, Mikhail S; Uphyrkina, Olga V; Rozhnov, Vyatcheslav V; Shedko, Sergey V; McAloose, Denise; Miquelle, Dale G

    2018-01-01

    The critically endangered population of Far Eastern leopards ( Panthera pardus orientalis) may number as few as 60 individuals and is at risk from stochastic processes such as infectious disease. During May 2015, a case of canine distemper virus (CDV) was diagnosed in a wild leopard exhibiting severe neurologic disease in the Russian territory of Primorskii Krai. Amplified sequences of the CDV hemagglutinin gene and phosphoprotein gene aligned within the Arctic-like clade of CDV, which includes viruses from elsewhere in Russia, China, Europe, and North America. Histologic examination of cerebral tissue revealed perivascular lymphoid cuffing and demyelination of the white matter consistent with CDV infection. Neutralizing antibodies against CDV were detected in archived serum from two wild Far Eastern leopards sampled during 1993-94, confirming previous exposure in the population. This leopard population is likely too small to maintain circulation of CDV, suggesting that infections arise from spillover from more-abundant domestic or wild carnivore reservoirs. Increasing the population size and establishment of additional populations of leopards would be important steps toward securing the future of this subspecies and reducing the risk posed by future outbreaks of CDV or other infectious diseases.

  4. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus)

    OpenAIRE

    Ramis , Antonio; van Amerongen , Geert; van de Bildt , Marco; Leijten , Loneke; Vanderstichel , Raphael; Osterhaus , Albert; Kuiken , Thijs

    2014-01-01

    Historically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental HPAIV H5N1 infection of black-headed gulls (Chroicocephalus ridibundus) to determine their susceptibility to infection and disease from this virus, pattern of viral shedding, clinical signs, pathological changes a...

  5. The central globular domain of the nucleocapsid protein of human immunodeficiency virus type 1 is critical for virion structure and infectivity.

    Science.gov (United States)

    Ottmann, M; Gabus, C; Darlix, J L

    1995-03-01

    The nucleocapsid protein NCp7 of human immunodeficiency virus type 1 (HIV-1) is a 72-amino-acid peptide containing two CCHC-type zinc fingers linked by a short basic sequence, 29RAPRKKG35, which is conserved in HIV-1 and simian immunodeficiency virus. The complete three-dimensional structure of NCp7 has been determined by 1H-nuclear magnetic resonance spectroscopy (N. Morellet, H. de Rocquigny, Y. Mely, N. Jullian, H. Demene, M. Ottmann, D. Gerard, J. L. Darlix, M. C. Fournié-Zaluski, and B. P. Roques, J. Mol. Biol. 235:287-301, 1994) and revealed a central globular domain where the two zinc fingers are brought in close proximity by the RAPRKKG linker. To examine the role of this globular structure and more precisely of the RAPRKKG linker in virion structure and infectivity, we generated HIV-1 DNA mutants in the RAPRKK sequence of NCp7 and analyzed the mutant virions produced by transfected cells. Mutations that probably alter the structure of NCp7 structure led to the formation of very poorly infectious virus (A30P) or noninfectious virus (P31L and R32G). In addition, the P31L mutant did not contain detectable amounts of reverse transcriptase and had an immature core morphology, as determined by electron microscopy. On the other hand, mutations changing the basic nature of NCp7 had poor effect. R29S had a wild-type phenotype, and the replacement of 32RKK34 by SSS (S3 mutant) resulted in a decrease by no more than 100-fold of the virus titer. These results clearly show that the RAPRKKG linker contains residues that are critical for virion structure and infectivity.

  6. Genomic analysis of influenza A virus from captive wild boars in Brazil reveals a human-like H1N2 influenza virus.

    Science.gov (United States)

    Biondo, Natalha; Schaefer, Rejane; Gava, Danielle; Cantão, Mauricio E; Silveira, Simone; Mores, Marcos A Z; Ciacci-Zanella, Janice R; Barcellos, David E S N

    2014-01-10

    Influenza is a viral disease that affects human and several animal species. In Brazil, H1N1, H3N2 and 2009 pandemic H1N1 A(H1N1)pdm09 influenza A viruses (IAV) circulate in domestic swine herds. Wild boars are also susceptible to IAV infection but in Brazil until this moment there are no reports of IAV infection in wild boars or in captive wild boars populations. Herein the occurrence of IAV in captive wild boars with the presence of lung consolidation lesions during slaughter was investigated. Lung samples were screened by RT-PCR for IAV detection. IAV positive samples were further analyzed by quantitative real-time PCR (qRRT-PCR), virus isolation, genomic sequencing, histopathology and immunohistochemistry (IHC). Eleven out of 60 lungs (18.3%) were positive for IAV by RT-PCR and seven out of the eleven were also positive for A(H1N1)pdm09 by qRRT-PCR. Chronic diffuse bronchopneumonia was observed in all samples and IHC analysis was negative for influenza A antigen. Full genes segments of H1N2 IAV were sequenced using Illumina's genome analyzer platform (MiSeq). The genomic analysis revealed that the HA and NA genes clustered with IAVs of the human lineage and the six internal genes were derived from the H1N1pdm09 IAV. This is the first report of a reassortant human-like H1N2 influenza virus infection in captive wild boars in Brazil and indicates the need to monitor IAV evolution in Suidae populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Survey for West Nile virus antibodies in wild ducks, 2004-06, USA

    Science.gov (United States)

    Hofmeister, Erik K.; Jankowski, Mark D.; Goldberg, Diana R.; Franson, J. Christian

    2016-01-01

    Detection of West Nile virus (WNV) in ducks has been reported in North America in isolated cases of mortality in wild waterbirds and following outbreaks in farmed ducks. Although the virus has been noted as an apparent incidental finding in several species of ducks, little is known about the prevalence of exposure or the outcome of infection with WNV in wild ducks in North America. From 2004–06, we collected sera from 1,406 wild-caught American Wigeon (Anas americana), Mallard (Anas platyrhynchos), and Northern Pintail (Anas acuta) ducks at national wildlife refuges (NWRs) in North Dakota and Wood Ducks (Aix sponsa) at NWRs in South Carolina and Tennessee. We measured the prevalence of previous exposure to WNV in these ducks by measuring WNV antibodies and evaluated variation in exposure among species, age, and year. Additionally, we evaluated the performance of a commercial antibody to wild bird immunoglobulin in duck species that varied in their phylogenetic relatedness to the bird species the antibody was directed against. As determined by a screening immunoassay and a confirmatory plaque reduction neutralization assay, the prevalence of WNV antibody was 10%. In light of experimental studies that show ducks to be relatively resistant to mortality caused by WNV, the antibody prevalence we detected suggests that wild ducks may be less-frequently exposed to WNV than expected for birds inhabiting wetlands where they may acquire infection from mosquitoes.

  8. Antibody Prevalence to Influenza Type A in Wild Boar of Northern Ukraine.

    Science.gov (United States)

    Kovalenko, Ganna; Molozhanova, Alona; Halka, Ihor; Nychyk, Serhiy

    2017-12-01

    A preliminary serological survey was carried out to assess the likelihood of influenza A (IA) infection in wild boar and begin to characterize the role of wild boar in the epidemiology of the IA virus (IAV). Sera collected from 120 wild boar that were hunted in 2014 were tested. To detect antibodies to IA, a blocking the enzyme-linked immunosorbent assay (ELISA) was used. Thirty boar were collected from each of four oblasts in the north central and northwestern regions of Ukraine. Antibodies against IAV were detected in 27 samples (22.5%; 95% confidence interval 16.0-30.8) and in at least some of the wild boar from all of the four oblasts. This preliminary survey of IA antibodies in wild boar populations of northern Ukraine indicates a substantial frequency of exposure to IAV throughout the region. Infection of wild boar populations could provide an alternative or additional route for spillover from wild populations to domestic animals and humans.

  9. The impact of envelope glycoprotein cleavage on the antigenicity, infectivity, and neutralization sensitivity of Env-pseudotyped human immunodeficiency virus type 1 particles

    International Nuclear Information System (INIS)

    Herrera, Carolina; Klasse, Per Johan; Michael, Elizabeth; Kake, Shivani; Barnes, Kelly; Kibler, Christopher W.; Campbell-Gardener, Lila; Si, Zhihai; Sodroski, Joseph; Moore, John P.; Beddows, Simon

    2005-01-01

    Endoproteolytic processing of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoproteins is an obligate part of the biosynthetic pathway that generates functional, fusion-competent Env complexes, which are then incorporated into infectious virions. We have examined the influence of cleavage on Env-specific antibody reactivity, Env incorporation into pseudovirions, and the infectivity and neutralization sensitivity of Env-pseudotyped viruses. To do so, we have used both incompletely processed wild-type (Wt) Env and engineered, cleavage-defective Env mutants. We find that there is no simple association between antibody reactivity to cell surface-expressed Env, and the ability of the same antibody to neutralize virus pseudotyped with the same Env proteins. One explanation for the absence of such an association is the diverse array of Env species present on the surface of transiently transfected cells. We also confirm that cleavage-defective mutants are antigenically different from Wt Env. These findings have implications for the use of Env binding assays as predictors of neutralizing activity, and for the development of cleavage-defective Env trimers for use as subunit immunogens

  10. Use of SLAM and PVRL4 and identification of pro-HB-EGF as cell entry receptors for wild type phocine distemper virus.

    Directory of Open Access Journals (Sweden)

    Mary M Melia

    Full Text Available Signalling lymphocyte activation molecule (SLAM has been identified as an immune cell receptor for the morbilliviruses, measles (MV, canine distemper (CDV, rinderpest and peste des petits ruminants (PPRV viruses, while CD46 is a receptor for vaccine strains of MV. More recently poliovirus like receptor 4 (PVRL4, also known as nectin 4, has been identified as a receptor for MV, CDV and PPRV on the basolateral surface of polarised epithelial cells. PVRL4 is also up-regulated by MV in human brain endothelial cells. Utilisation of PVRL4 as a receptor by phocine distemper virus (PDV remains to be demonstrated as well as confirmation of use of SLAM. We have observed that unlike wild type (wt MV or wtCDV, wtPDV strains replicate in African green monkey kidney Vero cells without prior adaptation, suggesting the use of a further receptor. We therefore examined candidate molecules, glycosaminoglycans (GAG and the tetraspan proteins, integrin β and the membrane bound form of heparin binding epithelial growth factor (proHB-EGF,for receptor usage by wtPDV in Vero cells. We show that wtPDV replicates in Chinese hamster ovary (CHO cells expressing SLAM and PVRL4. Similar wtPDV titres are produced in Vero and VeroSLAM cells but more limited fusion occurs in the latter. Infection of Vero cells was not inhibited by anti-CD46 antibody. Removal/disruption of GAG decreased fusion but not the titre of virus. Treatment with anti-integrin β antibody increased rather than decreased infection of Vero cells by wtPDV. However, infection was inhibited by antibody to HB-EGF and the virus replicated in CHO-proHB-EGF cells, indicating use of this molecule as a receptor. Common use of SLAM and PVRL4 by morbilliviruses increases the possibility of cross-species infection. Lack of a requirement for wtPDV adaptation to Vero cells raises the possibility of usage of proHB-EGF as a receptor in vivo but requires further investigation.

  11. Experimental infection of Artibeus intermedius with a vampire bat rabies virus.

    Science.gov (United States)

    Obregón-Morales, Cirani; Aguilar-Setién, Álvaro; Perea Martínez, Leonardo; Galvez-Romero, Guillermo; Martínez-Martínez, Flor Olivia; Aréchiga-Ceballos, Nidia

    2017-06-01

    Experimental infection of Artibeus intermedius, the great fruit-eating bat, was performed with vampire bat rabies isolates. Bats (n=35) were captured in the wild and quarantined prior to experimental infection. No rabies antibodies were detected by rapid fluorescent focus inhibition test (RFFIT) prior to infection. Three doses of rabies virus (RV) and three different routes of infection were used. One out of 35 bats died without showing any clinical signs at day 14 and was positive for rabies. None of the 34 other bats showed clinical signs for rabies, but high antibody titers were detected post-inoculation, suggesting either innate immune response to the vampire bat rabies virus or possible pre-exposure to RV and inoculation leading to a booster effect. Rabies virus was detected by hemi-nested RT-PCR (hnRT-PCR) in the brain (n=3), stomach (n=1) of bats that were negative by immunofluorescence and that survived rabies infection. The bat that died on day 14 was positive by hnRT-PCR on the brain, heart and liver. These results suggest that either previous non-lethal exposure to RV or natural low susceptibility to vampire bat viruses somehow protected Artibeus intermedius from clinical rabies infection leading to a marginal lethality effect on this bats species population in the wild. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A Novel Type of Polyhedral Viruses Infecting Hyperthermophilic Archaea.

    Science.gov (United States)

    Liu, Ying; Ishino, Sonoko; Ishino, Yoshizumi; Pehau-Arnaudet, Gérard; Krupovic, Mart; Prangishvili, David

    2017-07-01

    Encapsidation of genetic material into polyhedral particles is one of the most common structural solutions employed by viruses infecting hosts in all three domains of life. Here, we describe a new virus of hyperthermophilic archaea, Sulfolobus polyhedral virus 1 (SPV1), which condenses its circular double-stranded DNA genome in a manner not previously observed for other known viruses. The genome complexed with virion proteins is wound up sinusoidally into a spherical coil which is surrounded by an envelope and further encased by an outer polyhedral capsid apparently composed of the 20-kDa virion protein. Lipids selectively acquired from the pool of host lipids are integral constituents of the virion. None of the major virion proteins of SPV1 show similarity to structural proteins of known viruses. However, minor structural proteins, which are predicted to mediate host recognition, are shared with other hyperthermophilic archaeal viruses infecting members of the order Sulfolobales The SPV1 genome consists of 20,222 bp and contains 45 open reading frames, only one-fifth of which could be functionally annotated. IMPORTANCE Viruses infecting hyperthermophilic archaea display a remarkable morphological diversity, often presenting architectural solutions not employed by known viruses of bacteria and eukaryotes. Here we present the isolation and characterization of Sulfolobus polyhedral virus 1, which condenses its genome into a unique spherical coil. Due to the original genomic and architectural features of SPV1, the virus should be considered a representative of a new viral family, "Portogloboviridae." Copyright © 2017 American Society for Microbiology.

  13. Matrix Metalloproteinase Activity in Infections by an Encephalitic Virus, Mouse Adenovirus Type 1

    Science.gov (United States)

    Ashley, Shanna L.; Pretto, Carla D.; Stier, Matthew T.; Kadiyala, Padma; Castro-Jorge, Luiza; Hsu, Tien-Huei; Doherty, Robert; Carnahan, Kelly E.; Castro, Maria G.; Lowenstein, Pedro R.

    2017-01-01

    ABSTRACT Mouse adenovirus type 1 (MAV-1) infection causes encephalitis in susceptible strains of mice and alters the permeability of infected brains to small molecules, which indicates disruption of the blood-brain barrier (BBB). Under pathological conditions, matrix metalloproteinases (MMPs) can disrupt the BBB through their proteolytic activity on basement membrane and tight junction proteins. We examined whether MAV-1 infection alters MMP activity in vivo and in vitro. Infected MAV-1-susceptible SJL mice had higher MMP2 and MMP9 activity in brains, measured by gelatin zymography, than mock-infected mice. Infected MAV-1-resistant BALB/c mice had MMP activity levels equivalent to those in mock infection. Primary SJL mouse brain endothelial cells (a target of MAV-1 in vivo) infected ex vivo with MAV-1 had no difference in activities of secreted MMP2 and MMP9 from mock cells. We show for the first time that astrocytes and microglia are also infected in vivo by MAV-1. Infected mixed primary cultures of astrocytes and microglia had higher levels of MMP2 and MMP9 activity than mock-infected cells. These results indicate that increased MMP activity in the brains of MAV-1-infected susceptible mice may be due to MMP activity produced by endothelial cells, astrocytes, and microglia, which in turn may contribute to BBB disruption and encephalitis in susceptible mice. IMPORTANCE RNA and DNA viruses can cause encephalitis; in some cases, this is accompanied by MMP-mediated disruption of the BBB. Activated MMPs degrade extracellular matrix and cleave tight-junction proteins and cytokines, modulating their functions. MAV-1 infection of susceptible mice is a tractable small-animal model for encephalitis, and the virus causes disruption of the BBB. We showed that MAV-1 infection increases enzymatic activity of two key MMPs known to be secreted and activated in neuroinflammation, MMP2 and MMP9, in brains of susceptible mice. MAV-1 infects endothelial cells, astrocytes, and

  14. Mechanisms of human immunodeficiency virus type 2 RNA packaging

    DEFF Research Database (Denmark)

    Ni, Na; Nikolaitchik, Olga A; Dilley, Kari A

    2011-01-01

    do not support the cis-packaging hypothesis but instead indicate that trans packaging is the major mechanism of HIV-2 RNA packaging. To further characterize the mechanisms of HIV-2 RNA packaging, we visualized HIV-2 RNA in individual particles by using fluorescent protein-tagged RNA-binding proteins......Human immunodeficiency virus type 2 (HIV-2) has been reported to have a distinct RNA packaging mechanism, referred to as cis packaging, in which Gag proteins package the RNA from which they were translated. We examined the progeny generated from dually infected cell lines that contain two HIV-2...... proviruses, one with a wild-type gag/gag-pol and the other with a mutant gag that cannot express functional Gag/Gag-Pol. Viral titers and RNA analyses revealed that mutant viral RNAs can be packaged at efficiencies comparable to that of viral RNA from which wild-type Gag/Gag-Pol is translated. These results...

  15. Lambda Interferon (IFN-gamma), a Type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Bartholdy, C.

    2006-01-01

    Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN......-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN......-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral...

  16. Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo

    DEFF Research Database (Denmark)

    Ank, Nina; West, Hans; Bartholdy, Christina

    2006-01-01

    Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN......-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN......-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral...

  17. A serological survey on classical swine fever (CSF), Aujeszky's disease (AD) and porcine reproductive and respiratory syndrome (PRRS) virus infections in French wild boars from 1991 to 1998.

    Science.gov (United States)

    Albina, E; Mesplède, A; Chenut, G; Le Potier, M F; Bourbao, G; Le Gal, S; Leforban, Y

    2000-11-15

    In early 1992, a CSF epizootic was clinically recognised in a wild boar population of approximately 1300 animals within an area of 250km(2) located in the east of France. In order to check the CSF situation in wild boars outside this area, a serological survey was carried out in the rest of France, for 8 consecutive years (1991-1998). This paper reports on the results obtained during this survey which included wild boars shot during the hunting period but also boars reared within fences. Around 1000-2700 sera a year were tested for the presence of antibodies to classical swine fever virus (CSFV) and also to Aujeszky's disease virus (ADV). Out of 12025 sera tested over the whole period, 80 wild boars were found positive for CSF antibodies. Sixty of them were collected on wild boars shot during the years 1992-1994 in the epizootic area located in east of France and 10 were collected in Corsica during the years 1994-1996. The last four positive samples were single reactors coming from areas or farms, which were thereafter confirmed to be serologically negative. These results together with the fact that no disease has been reported so far illustrate that the French wild boar population is probably not concerned by CSF infection (excepted in the east of France where the disease has now become enzootic). Two hundred and forty nine sera were initially detected as CSF positive but confirmed secondarily as positive for border disease (BD) antibodies. This finding shows that wild boars are also susceptible to infection by ruminant pestiviruses. Four hundred and twenty three wild boars have been found positive for ADV antibodies. In addition, from 1993 to 1995, 909 samples were tested for the presence of antibodies to porcine reproductive and respiratory syndrome virus (PRRSV). Thirty three of them were positive. The results on AD and PRRS antibody detection show that wild boars may constitute a reservoir for various infectious diseases of pigs.

  18. CLINICAL AND VIROLOGIC FOUNDATION FOR PATHOGENETIC THERAPY OF HUMAN HERPES VIRUS TYPE 6 INFECTION IN CHILDREN

    Directory of Open Access Journals (Sweden)

    N.A. Myukke

    2006-01-01

    Full Text Available Information about an infection caused by human herpes virus type 6, its' epidemiology, pathogenesis and clinical variants, is reviewed. Clinical cases, diagnosed at a time of study, are briefly reviewed.Key words: human herpes virus type 6, exanthema subitum (roseola infantum, fever of unknown origin, mononucleosis like syndrome, meningoencephalitis, children.

  19. Experimental infection of macaques with a wild water bird-derived highly pathogenic avian influenza virus (H5N1.

    Directory of Open Access Journals (Sweden)

    Tomoko Fujiyuki

    Full Text Available Highly pathogenic avian influenza virus (HPAIV continues to threaten human health. Non-human primate infection models of human influenza are desired. To establish an animal infection model with more natural transmission and to determine the pathogenicity of HPAIV isolated from a wild water bird in primates, we administered a Japanese isolate of HPAIV (A/whooper swan/Hokkaido/1/2008, H5N1 clade 2.3.2.1 to rhesus and cynomolgus monkeys, in droplet form, via the intratracheal route. Infection of the lower and upper respiratory tracts and viral shedding were observed in both macaques. Inoculation of rhesus monkeys with higher doses of the isolate resulted in stronger clinical symptoms of influenza. Our results demonstrate that HPAIV isolated from a water bird in Japan is pathogenic in monkeys by experimental inoculation, and provide a new method for HPAIV infection of non-human primate hosts, a good animal model for investigation of HPAIV pathogenicity.

  20. Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus

    International Nuclear Information System (INIS)

    Huang Jialing; Lazear, Helen M.; Friedman, Harvey M.

    2011-01-01

    The morphology of alphaherpesviruses during anterograde axonal transport from the neuron cell body towards the axon terminus is controversial. Reports suggest that transport of herpes simplex virus type 1 (HSV-1) nucleocapsids and envelope proteins occurs in separate compartments and that complete virions form at varicosities or axon termini (subassembly transport model), while transport of a related alphaherpesvirus, pseudorabies virus (PRV) occurs as enveloped capsids in vesicles (assembled transport model). Transmission electron microscopy of proximal and mid-axons of primary superior cervical ganglion (SCG) neurons was used to compare anterograde axonal transport of HSV-1, HSV-2 and PRV. SCG cell bodies were infected with HSV-1 NS and 17, HSV-2 2.12 and PRV Becker. Fully assembled virus particles were detected intracellularly within vesicles in proximal and mid-axons adjacent to microtubules after infection with each virus, indicating that assembled virions are transported anterograde within axons for all three alphaherpesviruses.

  1. Molecular and Serological Survey of Selected Viruses in Free-Ranging Wild Ruminants in Iran.

    Directory of Open Access Journals (Sweden)

    Farhid Hemmatzadeh

    Full Text Available A molecular and serological survey of selected viruses in free-ranging wild ruminants was conducted in 13 different districts in Iran. Samples were collected from 64 small wild ruminants belonging to four different species including 25 Mouflon (Ovis orientalis, 22 wild goat (Capra aegagrus, nine Indian gazelle (Gazella bennettii and eight Goitered gazelle (Gazella subgutturosa during the national survey for wildlife diseases in Iran. Serum samples were evaluated using serologic antibody tests for Peste de petits ruminants virus (PPRV, Pestiviruses [Border Disease virus (BVD and Bovine Viral Diarrhoea virus (BVDV], Bluetongue virus (BTV, Bovine herpesvirus type 1 (BHV-1, and Parainfluenza type 3 (PI3. Sera were also ELISA tested for Pestivirus antigen. Tissue samples including spleen, liver, lung, tonsils, mesenteric and mediastinal lymph nodes and white blood cells (WBCs were tested using polymerase chain reaction (PCR for PPRV, Foot and Mouth Disease virus (FMDV, Pestivirus, BTV, Ovine herpesvirus type 2 (OvHV-2 and BHV-1. Serologic tests were positive for antibodies against PPRV (17%, Pestiviruses (2% and BTV (2%. No antibodies were detected for BHV-1 or PI3, and no Pestivirus antigen was detected. PCR results were positive for PPRV (7.8%, FMDV (11%, BTV (3%, OvHV-2 (31% and BHV-1 (1.5%. None of the samples were positive for Pestiviruses.

  2. Agrobacterium-mediated transformation of grapefruit with the wild-type and mutant RNA-dependent RNA polymerase genes of Citrus tristeza virus

    Science.gov (United States)

    Citrus paradisi Macf. cv. Duncan was transformed with constructs coding for the wild-type and mutant RNA-dependent RNA polymerase (RdRp) of Citrus tristeza virus (CTV) for exploring replicase-mediated pathogen-derived resistance (RM-PDR). The RdRp gene was amplified from CTV genome and used to gener...

  3. Near-Infrared Spectroscopy, a Rapid Method for Predicting the Age of Male and Female Wild-Type and Wolbachia Infected Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Maggy T Sikulu-Lord

    2016-10-01

    Full Text Available Estimating the age distribution of mosquito populations is crucial for assessing their capacity to transmit disease and for evaluating the efficacy of available vector control programs. This study reports on the capacity of the near-infrared spectroscopy (NIRS technique to rapidly predict the ages of the principal dengue and Zika vector, Aedes aegypti. The age of wild-type males and females, and males and females infected with wMel and wMelPop strains of Wolbachia pipientis were characterized using this method. Calibrations were developed using spectra collected from their heads and thoraces using partial least squares (PLS regression. A highly significant correlation was found between the true and predicted ages of mosquitoes. The coefficients of determination for wild-type females and males across all age groups were R2 = 0.84 and 0.78, respectively. The coefficients of determination for the age of wMel and wMelPop infected females were 0.71 and 0.80, respectively (P< 0.001 in both instances. The age of wild-type female Ae. aegypti could be identified as < or ≥ 8 days old with an accuracy of 91% (N = 501, whereas female Ae. aegypti infected with wMel and wMelPop were differentiated into the two age groups with an accuracy of 83% (N = 284 and 78% (N = 229, respectively. Our results also indicate NIRS can distinguish between young and old male wild-type, wMel and wMelPop infected Ae. aegypti with accuracies of 87% (N = 253, 83% (N = 277 and 78% (N = 234, respectively. We have demonstrated the potential of NIRS as a predictor of the age of female and male wild-type and Wolbachia infected Ae. aegypti mosquitoes under laboratory conditions. After field validation, the tool has the potential to offer a cheap and rapid alternative for surveillance of dengue and Zika vector control programs.

  4. TAM Receptors Are Not Required for Zika Virus Infection in Mice

    Directory of Open Access Journals (Sweden)

    Andrew K. Hastings

    2017-04-01

    Full Text Available Summary: Tyro3, Axl, and Mertk (TAM receptors are candidate entry receptors for infection with the Zika virus (ZIKV, an emerging flavivirus of global public health concern. To investigate the requirement of TAM receptors for ZIKV infection, we used several routes of viral inoculation and compared viral replication in wild-type versus Axl−/−, Mertk−/−, Axl−/−Mertk−/−, and Axl−/−Tyro3−/− mice in various organs. Pregnant and non-pregnant mice treated with interferon-α-receptor (IFNAR-blocking (MAR1-5A3 antibody and infected subcutaneously with ZIKV showed no reliance on TAMs for infection. In the absence of IFNAR-blocking antibody, adult female mice challenged intravaginally with ZIKV showed no difference in mucosal viral titers. Similarly, in young mice that were infected with ZIKV intracranially or intraperitoneally, ZIKV replication occurred in the absence of TAM receptors, and no differences in cell tropism were observed. These findings indicate that, in mice, TAM receptors are not required for ZIKV entry and infection. : TAM receptors have been implicated as entry receptors for the Zika virus. In this study, Hastings et al. used genetic knockout mouse models to demonstrate that they are not necessary for the infection of mice via multiple routes of viral challenge. These results suggest the existence of redundant entry receptors for ZIKV in mice. Keywords: viral entry, flavivirus, neurotropic virus, CNS, pregnancy, congenital infection

  5. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito's RNA interference pathway.

    Directory of Open Access Journals (Sweden)

    Irma Sánchez-Vargas

    2009-02-01

    Full Text Available A number of studies have shown that both innate and adaptive immune defense mechanisms greatly influence the course of human dengue virus (DENV infections, but little is known about the innate immune response of the mosquito vector Aedes aegypti to arbovirus infection. We present evidence here that a major component of the mosquito innate immune response, RNA interference (RNAi, is an important modulator of mosquito infections. The RNAi response is triggered by double-stranded RNA (dsRNA, which occurs in the cytoplasm as a result of positive-sense RNA virus infection, leading to production of small interfering RNAs (siRNAs. These siRNAs are instrumental in degradation of viral mRNA with sequence homology to the dsRNA trigger and thereby inhibition of virus replication. We show that although dengue virus type 2 (DENV2 infection of Ae. aegypti cultured cells and oral infection of adult mosquitoes generated dsRNA and production of DENV2-specific siRNAs, virus replication and release of infectious virus persisted, suggesting viral circumvention of RNAi. We also show that DENV2 does not completely evade RNAi, since impairing the pathway by silencing expression of dcr2, r2d2, or ago2, genes encoding important sensor and effector proteins in the RNAi pathway, increased virus replication in the vector and decreased the extrinsic incubation period required for virus transmission. Our findings indicate a major role for RNAi as a determinant of DENV transmission by Ae. aegypti.

  6. Recombination every day: abundant recombination in a virus during a single multi-cellular host infection.

    Directory of Open Access Journals (Sweden)

    Remy Froissart

    2005-03-01

    Full Text Available Viral recombination can dramatically impact evolution and epidemiology. In viruses, the recombination rate depends on the frequency of genetic exchange between different viral genomes within an infected host cell and on the frequency at which such co-infections occur. While the recombination rate has been recently evaluated in experimentally co-infected cell cultures for several viruses, direct quantification at the most biologically significant level, that of a host infection, is still lacking. This study fills this gap using the cauliflower mosaic virus as a model. We distributed four neutral markers along the viral genome, and co-inoculated host plants with marker-containing and wild-type viruses. The frequency of recombinant genomes was evaluated 21 d post-inoculation. On average, over 50% of viral genomes recovered after a single host infection were recombinants, clearly indicating that recombination is very frequent in this virus. Estimates of the recombination rate show that all regions of the genome are equally affected by this process. Assuming that ten viral replication cycles occurred during our experiment-based on data on the timing of coat protein detection-the per base and replication cycle recombination rate was on the order of 2 x 10(-5 to 4 x 10(-5. This first determination of a virus recombination rate during a single multi-cellular host infection indicates that recombination is very frequent in the everyday life of this virus.

  7. Begomoviruses infecting weeds in Cuba: increased host range and a novel virus infecting Sida rhombifolia.

    Science.gov (United States)

    Fiallo-Olivé, Elvira; Navas-Castillo, Jesús; Moriones, Enrique; Martínez-Zubiaur, Yamila

    2012-01-01

    As a result of surveys conducted during the last few years to search for wild reservoirs of begomoviruses in Cuba, we detected a novel bipartite begomovirus, sida yellow mottle virus (SiYMoV), infecting Sida rhombifolia plants. The complete genome sequence was obtained, showing that DNA-A was 2622 nucleotides (nt) in length and that it was most closely related (87.6% nucleotide identity) to DNA-A of an isolate of sida golden mosaic virus (SiGMV) that infects snap beans (Phaseolus vulgaris) in Florida. The DNA-B sequence was 2600 nt in length and shared the highest nucleotide identity (75.1%) with corchorus yellow spot virus (CoYSV). Phylogenetic relationship analysis showed that both DNA components of SiYMoV were grouped in the Abutilon clade, along with begomoviruses from Florida and the Caribbean islands. We also present here the complete nucleotide sequence of a novel strain of sida yellow vein virus found infecting Malvastrum coromandelianum and an isolate of euphorbia mosaic virus that was found for the first time infecting Euphorbia heterophylla in Cuba.

  8. Hampered foraging and migratory performance in swans infected with low-pathogenic avian influenza A virus.

    Directory of Open Access Journals (Sweden)

    Jan A van Gils

    Full Text Available It is increasingly acknowledged that migratory birds, notably waterfowl, play a critical role in the maintenance and spread of influenza A viruses. In order to elucidate the epidemiology of influenza A viruses in their natural hosts, a better understanding of the pathological effects in these hosts is required. Here we report on the feeding and migratory performance of wild migratory Bewick's swans (Cygnus columbianus bewickii Yarrell naturally infected with low-pathogenic avian influenza (LPAI A viruses of subtypes H6N2 and H6N8. Using information on geolocation data collected from Global Positioning Systems fitted to neck-collars, we show that infected swans experienced delayed migration, leaving their wintering site more than a month after uninfected animals. This was correlated with infected birds travelling shorter distances and fuelling and feeding at reduced rates. The data suggest that LPAI virus infections in wild migratory birds may have higher clinical and ecological impacts than previously recognised.

  9. Vaccine and Wild-Type Strains of Yellow Fever Virus Engage Distinct Entry Mechanisms and Differentially Stimulate Antiviral Immune Responses.

    Science.gov (United States)

    Fernandez-Garcia, Maria Dolores; Meertens, Laurent; Chazal, Maxime; Hafirassou, Mohamed Lamine; Dejarnac, Ophélie; Zamborlini, Alessia; Despres, Philippe; Sauvonnet, Nathalie; Arenzana-Seisdedos, Fernando; Jouvenet, Nolwenn; Amara, Ali

    2016-02-09

    The live attenuated yellow fever virus (YFV) vaccine 17D stands as a "gold standard" for a successful vaccine. 17D was developed empirically by passaging the wild-type Asibi strain in mouse and chicken embryo tissues. Despite its immense success, the molecular determinants for virulence attenuation and immunogenicity of the 17D vaccine are poorly understood. 17D evolved several mutations in its genome, most of which lie within the envelope (E) protein. Given the major role played by the YFV E protein during virus entry, it has been hypothesized that the residues that diverge between the Asibi and 17D E proteins may be key determinants of attenuation. In this study, we define the process of YFV entry into target cells and investigate its implication in the activation of the antiviral cytokine response. We found that Asibi infects host cells exclusively via the classical clathrin-mediated endocytosis, while 17D exploits a clathrin-independent pathway for infectious entry. We demonstrate that the mutations in the 17D E protein acquired during the attenuation process are sufficient to explain the differential entry of Asibi versus 17D. Interestingly, we show that 17D binds to and infects host cells more efficiently than Asibi, which culminates in increased delivery of viral RNA into the cytosol and robust activation of the cytokine-mediated antiviral response. Overall, our study reveals that 17D vaccine and Asibi enter target cells through distinct mechanisms and highlights a link between 17D attenuation, virus entry, and immune activation. The yellow fever virus (YFV) vaccine 17D is one of the safest and most effective live virus vaccines ever developed. The molecular determinants for virulence attenuation and immunogenicity of 17D are poorly understood. 17D was generated by serially passaging the virulent Asibi strain in vertebrate tissues. Here we examined the entry mechanisms engaged by YFV Asibi and the 17D vaccine. We found the two viruses use different entry

  10. Infection of endothelial cells by common human viruses.

    Science.gov (United States)

    Friedman, H M

    1989-01-01

    Common human viruses were evaluated for their ability to replicate in the endothelial cells of human umbilical vein and bovine thoracic aorta in vitro. Infection occurred with most viruses. The susceptibilities of endothelial cells derived from bovine aorta, pulmonary artery, and vena cava were compared. Among the viruses studied, no differences were noted in the ability to grow in endothelial cells from these three large vessels. One virus, herpes simplex virus type 1, was evaluated for its ability to produce persistent infection of endothelial cells. Infection developed and persisted for up to 3 months. After the first week, productive infection was found in less than 1% of cells. Nevertheless, the infection markedly affected the growth and morphology of the endothelial monolayer. Infection with any of several different viruses was noted to alter endothelial cell functions, including adherence of granulocytes, production of colony-stimulating factor, and synthesis of matrix protein. In addition, herpes simplex virus type 1 induced receptors for the Fc portion of IgG and for complement component C3b. These findings indicate that common human viruses can profoundly affect the biology of the endothelium.

  11. Parainfluenza Virus Infection Sensitizes Cancer Cells to DNA-Damaging Agents: Implications for Oncolytic Virus Therapy.

    Science.gov (United States)

    Fox, Candace R; Parks, Griffith D

    2018-04-01

    A parainfluenza virus 5 (PIV5) with mutations in the P/V gene (P/V-CPI - ) is restricted for spread in normal cells but not in cancer cells in vitro and is effective at reducing tumor burdens in mouse model systems. Here we show that P/V-CPI - infection of HEp-2 human laryngeal cancer cells results in the majority of the cells dying, but unexpectedly, over time, there is an emergence of a population of cells that survive as P/V-CPI - persistently infected (PI) cells. P/V-CPI - PI cells had elevated levels of basal caspase activation, and viability was highly dependent on the activity of cellular inhibitor-of-apoptosis proteins (IAPs) such as Survivin and XIAP. In challenge experiments with external inducers of apoptosis, PI cells were more sensitive to cisplatin-induced DNA damage and cell death. This increased cisplatin sensitivity correlated with defects in DNA damage signaling pathways such as phosphorylation of Chk1 and translocation of damage-specific DNA binding protein 1 (DDB1) to the nucleus. Cisplatin-induced killing of PI cells was sensitive to the inhibition of wild-type (WT) p53-inducible protein 1 (WIP1), a phosphatase which acts to terminate DNA damage signaling pathways. A similar sensitivity to cisplatin was seen with cells during acute infection with P/V-CPI - as well as during acute infections with WT PIV5 and the related virus human parainfluenza virus type 2 (hPIV2). Our results have general implications for the design of safer paramyxovirus-based vectors that cannot establish PI as well as the potential for combining chemotherapy with oncolytic RNA virus vectors. IMPORTANCE There is intense interest in developing oncolytic viral vectors with increased potency against cancer cells, particularly those cancer cells that have gained resistance to chemotherapies. We have found that infection with cytoplasmically replicating parainfluenza virus can result in increases in the killing of cancer cells by agents that induce DNA damage, and this is linked

  12. Evaluation of the infection and transmission of wild type and recombinant strains of Newcastle disease virus in Japanese Quail

    Science.gov (United States)

    Newcastle disease virus (NDV) causes a range of clinical disease ranging from asymptomatic infection to severe disease with high mortality. Vaccination for NDV is practiced almost worldwide in commercial chickens. Attenuated live vaccines are most commonly used, with recombinant vaccines becoming ...

  13. EPIDEMIOLOGY OF THE HERPES SIMPLEX VIRUS INFECTION

    Directory of Open Access Journals (Sweden)

    Ljiljana Kostadinović

    2002-07-01

    Full Text Available Over 150 sorts of viruses are capable of causing diseases of the respiratory ways. The virus infections have become the cost to be paid for urbanization and industrialization. The acute virus infections jeopardize mankind by their complications with numerous consequences. They open up the way to super infections, they provoke endogenous infections and lead to insufficiency of the vital organs. The viruses penetrate the organism mainly through the respiratory ways, digestive and urinary-sexual organs and skin. Some viruses immediately at the place of their entrance into the organism find receptive cells in which they can multiply (herpes virus and etc.. Some viruses must get through the blood, through the lymph or the nerve fibers to the target organs that they have affinity for.The changes that primarily occur in the mouth with manifest lymphadenopathy of the surrounding area emerge with respect to the type of the acute infection dis-ease.The human herpes viruses are responsible for a great number of diseases in people; that is why it can be said that the infections they induce are a very frequent cause of people's diseases in the world. Man is natural and the only host for the types I and II of the herpes simplex virus (HSV; that is why the infected person is regarded as the source of infection. The infection transmission can be by direct contact or over the contaminated secretions during the sexual intercourse. The age and the socioeconomic status (living conditions, level of medical culture, habits, etc. affect to agreat extent epidemiology of the HSV infection. The HSV distribution in the region of Niš in the five-year period (from 1987 to 1992 was the highest in the early and late summer (June and September.

  14. Radioimmunoassay of measles virus hemagglutinin protein G

    International Nuclear Information System (INIS)

    Lund, G.A.; Salmi, A.A.

    1982-01-01

    Guinea pig and rabbit antisera from animals immunized with purified measles virus hemagglutinin (G) protein were used to establish a solid-phase four-layer radioimmunoassay for quantitative measurement of the G protein. The sensitivity of the assay was 2 ng of purified G protein, and 200 μg of protein from uninfected Vero cells neither decreased the sensitivity nor reacted non-specifically in the assay. Radioimmunoassay standard dose-response curves were established and unknown values interpolated from these using the logit program of a desktop computer. Using this procedure, a measles virus growth curve in infected Vero cells was determined by measurement of G protein production. Under these same conditions, hemagglutination was not sensitive enough to detect early hemagglutinin production. Viral antigens in canine distemper virus, Newcastle disease virus, parainfluenza viruses 1-4, simian virus 5, and respiratory syncytial virus-infected cell lysates did not cross-react in the radioimmunoassay. A small degree of cross-reactivity was detected with mumps viral antigens, both with Vero cell-derived (wild-type strain) and egg-derived (Enders strain) purified virus preparations and with a cell lysate antigen prepared from wild-type mumps virus-infected Vero cells. (Auth.)

  15. Radioimmunoassay of measles virus hemagglutinin protein G

    Energy Technology Data Exchange (ETDEWEB)

    Lund, G A; Salmi, A A [Turku Univ. (Finland)

    1982-08-01

    Guinea pig and rabbit antisera from animals immunized with purified measles virus hemagglutinin (G) protein were used to establish a solid-phase four-layer radioimmunoassay for quantitative measurement of the G protein. The sensitivity of the assay was 2 ng of purified G protein, and 200 ..mu..g of protein from uninfected Vero cells neither decreased the sensitivity nor reacted non-specifically in the assay. Radioimmunoassay standard dose-response curves were established and unknown values interpolated from these using the logit program of a desktop computer. Using this procedure, a measles virus growth curve in infected Vero cells was determined by measurement of G protein production. Under these same conditions, hemagglutination was not sensitive enough to detect early hemagglutinin production. Viral antigens in canine distemper virus, Newcastle disease virus, parainfluenza viruses 1-4, simian virus 5, and respiratory syncytial virus-infected cell lysates did not cross-react in the radioimmunoassay. A small degree of cross-reactivity was detected with mumps viral antigens, both with Vero cell-derived (wild-type strain) and egg-derived (Enders strain) purified virus preparations and with a cell lysate antigen prepared from wild-type mumps virus-infected Vero cells.

  16. Bovine viral diarrhea virus in free-ranging wild ruminants in Switzerland: low prevalence of infection despite regular interactions with domestic livestock

    Science.gov (United States)

    2012-01-01

    Background In the frame of an eradication program for bovine viral diarrhea (BVD) in Swiss livestock, the question was raised whether free-ranging wildlife could threaten the success of this sanitary measure. Therefore, we conducted serological and virological investigations on BVD virus (BVDV) infections in the four indigenous wild ruminant species (roe deer, red deer, Alpine chamois and Alpine ibex) from 2009 to 2011, and gathered information on interactions between wild and domestic ruminants in an alpine environment by questionnaire survey. Results Thirty-two sera out of 1’877 (1.7%, 95% confidence interval [CI] 1.2-2.4) were seropositive for BVDV, and a BVDV1 sub genotype h virus was found in a seropositive chamois (0.05%, 95% CI 0.001-0.3). The seropositive animals originated from sub-alpine or alpine regions and significantly more seropositive red deer, chamois and ibex than roe deer were found. There were no statistically significant differences between sampling units, age classes, genders, and sampling years. The obtained prevalences were significantly lower than those documented in livestock, and most positive wild ruminants were found in proximity of domestic outbreaks. Additionally, BVDV seroprevalence in ibex was significantly lower than previously reported from Switzerland. The survey on interspecific interactions revealed that interactions expected to allow BVDV transmission, from physical contacts to non-simultaneous use of the same areas, regularly occur on pastures among all investigated ruminant species. Interactions involving cervids were more often observed with cattle than with small ruminants, chamois were observed with all three domestic species, and ibex interacted mostly with small ruminants. Interactions related to the use of anthropogenic food sources were frequently observed, especially between red deer and cattle in wintertime. Conclusions To our knowledge, this is the first report of BVDV RNA isolated from an Alpine chamois

  17. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses

    Directory of Open Access Journals (Sweden)

    Barik Sailen

    2001-12-01

    Full Text Available Abstract Background Post-transcriptional gene silencing (PTGS by short interfering RNA has opened up new directions in the phenotypic mutation of cellular genes. However, its efficacy on non-nuclear genes and its effect on the interferon pathway remain unexplored. Since directed mutation of RNA genomes is not possible through conventional mutagenesis, we have tested sequence-specific 21-nucleotide long double-stranded RNAs (dsRNAs for their ability to silence cytoplasmic RNA genomes. Results Short dsRNAs were generated against specific mRNAs of respiratory syncytial virus, a nonsegmented negative-stranded RNA virus with a cytoplasmic life cycle. At nanomolar concentrations, the dsRNAs specifically abrogated expression of the corresponding viral proteins, and produced the expected mutant phenotype ex vivo. The dsRNAs did not induce an interferon response, and did not inhibit cellular gene expression. The ablation of the viral proteins correlated with the loss of the specific mRNAs. In contrast, viral genomic and antigenomic RNA, which are encapsidated, were not directly affected. Conclusions Synthetic inhibitory dsRNAs are effective in specific silencing of RNA genomes that are exclusively cytoplasmic and transcribed by RNA-dependent RNA polymerases. RNA-directed RNA gene silencing does not require cloning, expression, and mutagenesis of viral cDNA, and thus, will allow the generation of phenotypic null mutants of specific RNA viral genes under normal infection conditions and at any point in the infection cycle. This will, for the first time, permit functional genomic studies, attenuated infections, reverse genetic analysis, and studies of host-virus signaling pathways using a wild type RNA virus, unencumbered by any superinfecting virus.

  18. Type C virus activation in nontransformed mouse cells by uv-irradiated herpes simplex virus

    Energy Technology Data Exchange (ETDEWEB)

    Hampar, B. (National Institutes of Health, Bethesda, MD); Hatanaka, M.; Aulakh, G.; Derge, J.G.; Lee, L.; Showalter, S.

    1977-02-01

    Infection of nontransformed mouse cells with uv-irradiated herpes simplex virus (uv-HSV) resulted in the activation of an endogenous xenotropic (x-tropic) type C virus. Synthesis of type C virus persisted for only a few days, with most of the virus remaining cell associated. The levels of type C virus activated by uv-HSV varied depending on the multiplicity of infection (m.o.i.) and the uv dose. At low uv doses, where cell killing occurred, little or no type C virus synthesis was observed. Maximum levels of type C virus synthesis were observed with the minimum uv dose which eliminated cell killing by HSV. Synthesis of type C virus, albeit at lower levels, was still observed at uv doses beyond those required to prevent cell killing.

  19. Type C virus activation in nontransformed mouse cells by uv-irradiated herpes simplex virus

    International Nuclear Information System (INIS)

    Hampar, B.; Hatanaka, M.; Aulakh, G.; Derge, J.G.; Lee, L.; Showalter, S.

    1977-01-01

    Infection of nontransformed mouse cells with uv-irradiated herpes simplex virus (uv-HSV) resulted in the activation of an endogenous xenotropic (x-tropic) type C virus. Synthesis of type C virus persisted for only a few days, with most of the virus remaining cell associated. The levels of type C virus activated by uv-HSV varied depending on the multiplicity of infection (m.o.i.) and the uv dose. At low uv doses, where cell killing occurred, little or no type C virus synthesis was observed. Maximum levels of type C virus synthesis were observed with the minimum uv dose which eliminated cell killing by HSV. Synthesis of type C virus, albeit at lower levels, was still observed at uv doses beyond those required to prevent cell killing

  20. Genetic recombination of tick-borne flaviviruses among wild-type strains.

    Science.gov (United States)

    Norberg, Peter; Roth, Anette; Bergström, Tomas

    2013-06-05

    Genetic recombination has been suggested to occur in mosquito-borne flaviviruses. In contrast, tick-borne flaviviruses have been thought to evolve in a clonal manner, although recent studies suggest that recombination occurs also for these viruses. We re-analyzed the data and found that previous conclusions on wild type recombination were probably falsely drawn due to misalignments of nucleotide sequences, ambiguities in GenBank sequences, or different laboratory culture histories suggestive of recombination events in laboratory. To evaluate if reliable predictions of wild type recombination of tick-borne flaviviruses can be made, we analyzed viral strains sequenced exclusively for this study, and other flavivirus sequences retrieved from GenBank. We detected genetic signals supporting recombination between viruses within the three clades of TBEV-Eu, TBEV-Sib and TBEV-Fe, respectively. Our results suggest that the tick-borne encephalitis viruses may undergo recombination under natural conditions, but that geographic barriers restrict most recombination events to involve only closely genetically related viruses. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. In vivo neutralization of hepatitis B virus infection by an anti-preS1 humanized antibody in chimpanzees

    International Nuclear Information System (INIS)

    Hong, Hyo Jeong; Ryu, Chun Jeih; Hur, Hyangsuk; Kim, Seho; Oh, Han Kyu; Oh, Mee Sook; Park, Song Yong

    2004-01-01

    Previously, we generated a murine monoclonal antibody (mAb), KR127, that recognizes amino acids (aa) 37-45 of the preS1 of hepatitis B virus (HBV). In this study, we have constructed a humanized version of KR127 and evaluated its HBV-neutralizing activity in chimpanzees. A study chimpanzee was given a single intravenous dose of the humanized antibody, followed by intravenous challenge with adr subtype of wild type HBV, while a control chimpanzee was only challenged with the virus. The result showed that the study chimpanzee did not develop HBV infection during 1 year, while the control chimpanzee was infected, indicating that the humanized antibody exhibited in vivo virus-neutralizing activity and thus protected the chimpanzee from HBV infection. In addition, the humanized antibody bound to the preS1 of all subtypes of HBV. We first demonstrate that an anti-preS1 mAb can neutralize HBV infection in vivo. This humanized antibody will be useful for the immunoprophylaxis of HBV infection

  2. The zoonotic potential of avian influenza viruses isolated from wild waterfowl in Zambia.

    Science.gov (United States)

    Simulundu, Edgar; Nao, Naganori; Yabe, John; Muto, Nilton A; Sithebe, Thami; Sawa, Hirofumi; Manzoor, Rashid; Kajihara, Masahiro; Muramatsu, Mieko; Ishii, Akihiro; Ogawa, Hirohito; Mweene, Aaron S; Takada, Ayato

    2014-10-01

    Whilst remarkable progress in elucidating the mechanisms governing interspecies transmission and pathogenicity of highly pathogenic avian influenza viruses (AIVs) has been made, similar studies focusing on low-pathogenic AIVs isolated from the wild waterfowl reservoir are limited. We previously reported that two AIV strains (subtypes H6N2 and H3N8) isolated from wild waterfowl in Zambia harbored some amino acid residues preferentially associated with human influenza virus proteins (so-called human signatures) and replicated better in the lungs of infected mice and caused more morbidity than a strain lacking such residues. To further substantiate these observations, we infected chickens and mice intranasally with AIV strains of various subtypes (H3N6, H3N8, H4N6, H6N2, H9N1 and H11N9) isolated from wild waterfowl in Zambia. Although some strains induced seroconversion, all of the tested strains replicated poorly and were nonpathogenic for chickens. In contrast, most of the strains having human signatures replicated well in the lungs of mice, and one of these strains caused severe illness in mice and induced lung injury that was characterized by a severe accumulation of polymorphonuclear leukocytes. These results suggest that some strains tested in this study may have the potential to infect mammalian hosts directly without adaptation, which might possibly be associated with the possession of human signature residues. Close monitoring and evaluation of host-associated signatures may help to elucidate the prevalence and emergence of AIVs with potential for causing zoonotic infections.

  3. Differences in pathogenicity, response to vaccination, and innate immune responses in different types of ducks infected with a virulent H5N1 highly pathogenic avian influenza virus from Vietnam.

    Science.gov (United States)

    Cagle, Caran; Wasilenko, Jamie; Adams, Sean C; Cardona, Carol J; To, Thanh Long; Nguyen, Tung; Spackman, Erica; Suarez, David L; Smith, Diane; Shepherd, Eric; Roth, Jason; Pantin-Jackwood, Mary J

    2012-09-01

    In a previous study, we found clear differences in pathogenicity and response to vaccination against H5N1 highly pathogenic avian influenza (HPAI; HA dade 2.3.4) between Pekin (Anas platyrhynchos var. domestica) and Muscovy (Cairina moschata) ducks vaccinated using a commercial inactivated vaccine (Re-1). The objective of the present study was to further investigate the pathogenicity of H5N1 HPAI viruses in different species of ducks by examining clinical signs and innate immune responses to infection with a different strain of H5N1 HPAI virus (HA clade 1) in two domestic ducks, Pekin and Muscovy, and one wild-type duck, mallard (Anas platyrhynchos). Protection conferred by vaccination using the Re-1 vaccine against infection with this virus was also compared between Pekin and Muscovy ducks. Differences in pathogenicity were observed among the virus-infected ducks, as the Muscovy ducks died 2 days earlier than did the Pekin and mallard ducks, and they presented more-severe neurologic signs. Conversely, the Pekin and mallard ducks had significantly higher body temperatures at 2 days postinfection (dpi) than did the Muscovy ducks, indicating possible differences in innate immune responses. However, similar expression of innate immune-related genes was found in the spleens of virus-infected ducks at this time point. In all three duck species, there was up-regulation of IFN-alpha, IFN-gamma, IL-6, CCL19, RIG-I, and MHC class I and down-regulation of MHC class II, but variable expression of IL-18 and TLR7. As in our previous study, vaccinated Muscovy ducks showed less protection against virus infection than did Pekin ducks, as evidenced by the higher mortality and higher number of Muscovy ducks shedding virus when compared to Pekin ducks. In conclusion, infection with an H5N1 HPAI virus produced a systemic infection with high mortality in all three duck species; however, the disease was more severe in Muscovy ducks, which also had a poor response to vaccination. The

  4. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection.

    Science.gov (United States)

    Guo, Yuanyuan; Xun, Zhe; Coffman, Stephanie R; Chen, Feng

    2017-01-01

    The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host-virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 ( ne219 ) strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 ( ne219 ) mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 ( ne219 ) mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.

  5. The Shift of the Intestinal Microbiome in the Innate Immunity-Deficient Mutant rde-1 Strain of C. elegans upon Orsay Virus Infection

    Directory of Open Access Journals (Sweden)

    Yuanyuan Guo

    2017-05-01

    Full Text Available The status of intestinal microbiota is a determinant of host health. However, the alteration of the gut microbiota caused by the innate immune response to virus infection is unclear. Caenorhabditis elegans and its natural virus Orsay provide an excellent model of host–virus interactions. We evaluated the intestinal microbial community complexity of the wild-type N2 and the innate immunity-deficient mutant rde-1 (ne219 strains of C. elegans upon Orsay virus infection. The gut microbiota diversity was decreased in rde-1 (ne219 mutant animals, and a large number of genes were associated with the difference between infected and uninfected rde-1 (ne219 mutant animals. Therefore, this study provides the first evaluation of the alterations caused by Orsay virus on intestinal microbiota in wildtype and innate immunity-deficient animals using C. elegans as the model species. Our findings indicate that virus infection may alters the microbiome in animals with defective immune response.

  6. Virulent variants emerging in mice infected with the apathogenic prototype strain of the parvovirus minute virus of mice exhibit a capsid with low avidity for a primary receptor.

    Science.gov (United States)

    Rubio, Mari-Paz; López-Bueno, Alberto; Almendral, José M

    2005-09-01

    The mechanisms involved in the emergence of virulent mammalian viruses were investigated in the adult immunodeficient SCID mouse infected by the attenuated prototype strain of the parvovirus Minute Virus of Mice (MVMp). Cloned MVMp intravenously inoculated in mice consistently evolved during weeks of subclinical infection to variants showing altered plaque phenotypes. All the isolated large-plaque variants spread systemically from the oronasal cavity and replicated in major organs (brain, kidney, liver), in sharp contrast to the absolute inability of the MVMp and small-plaque variants to productively invade SCID organs by this natural route of infection. The virulent variants retained the MVMp capacity to infect mouse fibroblasts, consistent with the lack of genetic changes across the 220-to-335 amino acid sequence of VP2, a capsid domain containing main determinants of MVM tropism. However, the capsid of the virulent variants shared a lower affinity than the wild type for a primary receptor used in the cytotoxic infection. The capsid gene of a virulent variant engineered in the MVMp background endowed the recombinant virus with a large-plaque phenotype, lower affinity for the receptor, and productive invasiveness by the oronasal route in SCID mice, eventually leading to 100% mortality. In the analysis of virulence in mice, both MVMp and the recombinant virus similarly gained the bloodstream 1 to 2 days postoronasal inoculation and remained infectious when adsorbed to blood cells in vitro. However, the wild-type MVMp was cleared from circulation a few days afterwards, in contrast to the viremia of the recombinant virus, which was sustained for life. Significantly, attachment to an abundant receptor of primary mouse kidney epithelial cells by both viruses could be quantitatively competed by wild-type MVMp capsids, indicating that virulence is not due to an extended receptor usage in target tissues. We conclude that the selection of capsid-receptor interactions of

  7. Identification of herpes simplex virus type 1 proteins encoded within the first 1.5 kb of the latency-associated transcript.

    Science.gov (United States)

    Henderson, Gail; Jaber, Tareq; Carpenter, Dale; Wechsler, Steven L; Jones, Clinton

    2009-09-01

    Expression of the first 1.5 kb of the latency-associated transcript (LAT) that is encoded by herpes simplex virus type 1 (HSV-1) is sufficient for wild-type (wt) levels of reactivation from latency in small animal models. Peptide-specific immunoglobulin G (IgG) was generated against open reading frames (ORFs) that are located within the first 1.5 kb of LAT coding sequences. Cells stably transfected with LAT or trigeminal ganglionic neurons of mice infected with a LAT expressing virus appeared to express the L2 or L8 ORF. Only L2 ORF expression was readily detected in trigeminal ganglionic neurons of latently infected mice.

  8. Isolation and genetic characterization of avian influenza viruses and a Newcastle disease virus from wild birds in Barbados: 2003-2004.

    Science.gov (United States)

    Douglas, Kirk O; Lavoie, Marc C; Kim, L Mia; Afonso, Claudio L; Suarez, David L

    2007-09-01

    Zoonotic transmission of an H5N1 avian influenza A virus to humans in 2003-present has generated increased public health and scientific interest in the prevalence and variability of influenza A viruses in wild birds and their potential threat to human health. Migratory waterfowl and shorebirds are regarded as the primordial reservoir of all influenza A viral subtypes and have been repeatedly implicated in avian influenza outbreaks in domestic poultry and swine. All of the 16 hemagglutinin and nine neuraminidase influenza subtypes have been isolated from wild birds, but waterfowl of the order Anseriformes are the most commonly infected. Using 9-to-11-day-old embryonating chicken egg culture, virus isolation attempts were conducted on 168 cloacal swabs from various resident, imported, and migratory bird species in Barbados during the months of July to October of 2003 and 2004. Hemagglutination assay and reverse transcription-polymerase chain reaction were used to screen all allantoic fluids for the presence of hemagglutinating agents and influenza A virus. Hemagglutination positive-influenza negative samples were also tested for Newcastle disease virus (NDV), which is also found in waterfowl. Two influenza A viruses and one NDV were isolated from Anseriformes (40/168), with isolation rates of 5.0% (2/40) and 2.5% (1/40), respectively, for influenza A and NDV. Sequence analysis of the influenza A virus isolates showed them to be H4N3 viruses that clustered with other North American avian influenza viruses. This is the first report of the presence of influenza A virus and NDV in wild birds in the English-speaking Caribbean.

  9. Photodynamic treatment of Herpes simplex virus infection in vitro

    International Nuclear Information System (INIS)

    Lytle, C.D.; Hester, L.D.

    1976-01-01

    The effects of photodynamic action on in vitro herpes simplex virus infections of CV-1 monkey kidney fibroblasts or human skin fibroblasts were determined using proflavine sulfate and white fluorescent lamps. Photodynamic treatment of confluent cell monolayers prior to virus infection inactivated cell capacity, i.e. the capacity of the treated cells to support subsequent virus growth as measured by plaque formation. The capacity of human cells was more sensitive to inactivation than the capacity of monkey cells when 6 μM proflavine was used. Treated cell monolayers recovered the capacity to support virus plaque formation when virus infection was delayed four days after the treatment. Experiments in which the photodynamically treated monolayers were infected with UV-irradiated virus demonstrated that this treatment induced Weigle reactivation in both types of cells. This reactivation occurred for virus infection just after treatment or 4 days later. A Luria-Latarjet-type experiment was also performed in which cultures infected with unirradiated virus were photodynamically treated at different times after the start of infection. The results showed that for the first several hours of the virus infection the infected cultures were more sensitive to inactivation by photodynamic treatment than cell capacity. By the end of the eclipse period the infected cultures were less sensitive to inactivation than cell capacity. Results from extracellular inactivation of virus growth in monkey cells at 6 μM proflavine indicated that at physiological pH the virus has a sensitivity to photodynamic inactivation similar to that for inactivation of cell capacity. The combined data indicated that photodynamic treatment of the cell before or after virus infection could prevent virus growth. Thus, photodynamic inactivation of infected and uninfected cells may be as important as inactivation of virus particles when considering possible mechanisms in clinical photodynamic therapy for herpes

  10. Identification of the peptide derived from S1 domain that inhibits type I and type II feline infectious peritonitis virus infection.

    Science.gov (United States)

    Doki, Tomoyoshi; Takano, Tomomi; Koyama, Yusuke; Hohdatsu, Tsutomu

    2015-06-02

    Feline infectious peritonitis virus (FIPV) can cause a lethal disease in cats, feline infectious peritonitis (FIP). A therapeutic drug that is effective against FIP has not yet been developed. Peptides based on viral protein amino acid sequences have recently been attracting attention as new antiviral drugs. In the present study, we synthesized 30 overlapping peptides based on the amino acid sequence of the S1 domain of the type I FIPV strain KU-2 S protein, and investigated their inhibitory effects on FIPV infection. To evaluate the inhibitory effects on type I FIPV infection of these peptides, we investigated a method to increase the infection efficiency of poorly replicative type I FIPV. The efficiency of type I FIPV infection was increased by diluting the virus with medium containing a polycation. Of the 30 peptides, I-S1-8 (S461-S480), I-S1-9 (S471-S490), I-S1-10 (S481-S500), I-S1-16 (S541-S560), and I-S1-22 (S601-S620) significantly decreased the infectivity of FIPV strain KU-2 while I-S1-9 and I-S1-16 exhibited marked inhibitory effects on FIPV infection. The inhibitory effects on FIPV infection of these 2 peptides on other type I and type II FIPV strains, feline herpesvirus (FHV), and feline calicivirus (FCV) were also examined. These 2 peptides specifically inhibited type I and type II FIPV, but did FHV or FCV infection. In conclusion, the possibility of peptides derived from the S protein of type I FIPV strain KU-2 as anti-FIPV agents effective not only for type I, but also type II FIPV was demonstrated in vitro. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Inhibition of herpes simplex virus infection by lactoferrin is dependent on interference with the virus binding to glycosaminoglycans

    International Nuclear Information System (INIS)

    Marchetti, Magda; Trybala, Edward; Superti, Fabiana; Johansson, Maria; Bergstroem, Tomas

    2004-01-01

    Previous reports have indicated that lactoferrin inhibits herpes simplex virus (HSV) infection during the very early phases of the viral replicative cycle. In the present work we investigated the mechanism of the antiviral activity of lactoferrin in mutant glycosaminoglycan (GAG)-deficient cells. Bovine lactoferrin (BLf) was a strong inhibitor of HSV-1 infection in cells expressing either heparan sulfate (HS) or chondroitin sulfate (CS) or both, but was ineffective or less efficient in GAG-deficient cells or in cells treated with GAG-degrading enzymes. In contrast to wild-type HSV-1, virus mutants devoid of glycoprotein C (gC) were significantly less inhibited by lactoferrin in GAG-expressing cells, indicating that lactoferrin interfered with the binding of viral gC to cell surface HS and/or CS. Finally, we demonstrated that lactoferrin bound directly to both HS and CS isolated from surfaces of the studied cells, as well as to commercial preparations of GAG chains. The results support the hypothesis that the inhibition of HSV-1 infectivity by lactoferrin is dependent on its interaction with cell surface GAG chains of HS and CS

  12. Activation of type I and III interferon signalling pathways occurs in lung epithelial cells infected with low pathogenic avian influenza viruses.

    Directory of Open Access Journals (Sweden)

    Richard Sutejo

    Full Text Available The host response to the low pathogenic avian influenza (LPAI H5N2, H5N3 and H9N2 viruses were examined in A549, MDCK, and CEF cells using a systems-based approach. The H5N2 and H5N3 viruses replicated efficiently in A549 and MDCK cells, while the H9N2 virus replicated least efficiently in these cell types. However, all LPAI viruses exhibited similar and higher replication efficiencies in CEF cells. A comparison of the host responses of these viruses and the H1N1/WSN virus and low passage pH1N1 clinical isolates was performed in A549 cells. The H9N2 and H5N2 virus subtypes exhibited a robust induction of Type I and Type III interferon (IFN expression, sustained STAT1 activation from between 3 and 6 hpi, which correlated with large increases in IFN-stimulated gene (ISG expression by 10 hpi. In contrast, cells infected with the pH1N1 or H1N1/WSN virus showed only small increases in Type III IFN signalling, low levels of ISG expression, and down-regulated expression of the IFN type I receptor. JNK activation and increased expression of the pro-apoptotic XAF1 protein was observed in A549 cells infected with all viruses except the H1N1/WSN virus, while MAPK p38 activation was only observed in cells infected with the pH1N1 and the H5 virus subtypes. No IFN expression and low ISG expression levels were generally observed in CEF cells infected with either AIV, while increased IFN and ISG expression was observed in response to the H1N1/WSN infection. These data suggest differences in the replication characteristics and antivirus signalling responses both among the different LPAI viruses, and between these viruses and the H1N1 viruses examined. These virus-specific differences in host cell signalling highlight the importance of examining the host response to avian influenza viruses that have not been extensively adapted to mammalian tissue culture.

  13. Spatial analysis of feline immunodeficiency virus infection in cougars.

    Science.gov (United States)

    Wheeler, David C; Waller, Lance A; Biek, Roman

    2010-07-01

    The cougar (Puma concolor) is a large predatory feline found widely in the Americas that is susceptible to feline immunodeficiency virus (FIV), a fast-evolving lentivirus found in wild feline species that is analogous to simian immunodeficiency viruses in wild primates and belongs to the same family of viruses as human immunodeficiency virus. FIV infection in cougars can lead to a weakened immune system that creates opportunities for other infecting agents. FIV prevalence and lineages have been studied previously in several areas in the western United States, but typically without spatially explicit statistical techniques. To describe the distribution of FIV in a sample of cougars located in the northern Rocky Mountain region of North America, we first used kernel density ratio estimation to map the log relative risk of FIV. The risk surface showed a significant cluster of FIV in northwestern Montana. We also used Bayesian cluster models for genetic data to investigate the spatial structure of the feline immunodeficiency virus with virus genetic sequence data. A result of the models was two spatially distinct FIV lineages that aligned considerably with an interstate highway in Montana. Our results suggest that the use of spatial information and models adds novel insight when investigating an infectious animal disease. The results also suggest that the influence of landscape features likely plays an important role in the spatiotemporal spread of an infectious disease within wildlife populations.

  14. Characterization of low pathogenicity avian influenza viruses isolated from wild birds in Mongolia 2005 through 2007

    Directory of Open Access Journals (Sweden)

    Sodnomdarjaa Ruuragchaa

    2009-11-01

    Full Text Available Abstract Background Since the emergence of H5N1 high pathogenicity (HP avian influenza virus (AIV in Asia, numerous efforts worldwide have focused on elucidating the relative roles of wild birds and domestic poultry movement in virus dissemination. In accordance with this a surveillance program for AIV in wild birds was conducted in Mongolia from 2005-2007. An important feature of Mongolia is that there is little domestic poultry production in the country, therefore AIV detection in wild birds would not likely be from spill-over from domestic poultry. Results During 2005-2007 2,139 specimens representing 4,077 individual birds of 45 species were tested for AIV by real time RT-PCR (rRT-PCR and/or virus isolation. Bird age and health status were recorded. Ninety rRT-PCR AIV positive samples representing 89 individual birds of 19 species including 9 low pathogenicity (LP AIVs were isolated from 6 species. A Bar-headed goose (Anser indicus, a Whooper swan (Cygnus cygnus and 2 Ruddy shelducks (Tadorna ferruginea were positive for H12N3 LP AIV. H16N3 and H13N6 viruses were isolated from Black-headed gulls (Larus ridibundus. A Red-crested pochard (Rhodonessa rufina and 2 Mongolian gulls (Larus vagae mongolicus were positive for H3N6 and H16N6 LP AIV, respectively. Full genomes of each virus isolate were sequenced and analyzed phylogenetically and were most closely related to recent European and Asian wild bird lineage AIVs and individual genes loosely grouped by year. Reassortment occurred within and among different years and subtypes. Conclusion Detection and/or isolation of AIV infection in numerous wild bird species, including 2 which have not been previously described as hosts, reinforces the wide host range of AIV within avian species. Reassortment complexity within the genomes indicate the introduction of new AIV strains into wild bird populations annually, however there is enough over-lap of infection for reassortment to occur. Further work is

  15. Virus Information Update CIAC-2301

    Science.gov (United States)

    1998-05-21

    a tune through a sound card. Byway is reported to be in the wild internationally, especially in Venezuela, Mexico , Bulgaria, UK and USA. REMOVAL NOTE...1482, Varicella Type: Program. Disk Location: Features: Damage: Size: See Also: Notes: v6-146: This virus was written to hurt users of the TBCLEAN...antivirus package. If you have a file infected with the Varicella virus, and if you tried to clean this virus infected file with tbclean, what would

  16. Evaluation of mixed infection cases with both herpes simplex virus types 1 and 2.

    Science.gov (United States)

    Kaneko, Hisatoshi; Kawana, Takashi; Ishioka, Ken; Ohno, Shigeaki; Aoki, Koki; Suzutani, Tatsuo

    2008-05-01

    Herpes simplex virus type 1 (HSV-1) is isolated principally from the upper half of the body innervated by the trigeminal ganglia whereas herpes simplex virus type 2 (HSV-2) is generally isolated from the lower half of the body innervated by the sacral ganglia. However, recent reports suggest that HSV-1 and HSV-2 can each infect both the upper and lower half of the body causing a variety of symptoms and there is a possibility that HSV-1 and HSV-2 infections can occur simultaneously with both causing symptoms. HSV type in clinical isolates from 87 patients with genital herpes and 57 with ocular herpes was determined by the polymerase chain reaction (PCR), and six cases of mixed infection with both HSV-1 and HSV-2 were identified. Of the six cases, three were patients with genital herpes and three were ocular herpes patients. Analysis of the copy number of the HSV-1 and HSV-2 genome by a quantitative real time PCR demonstrated that HSV-1 was dominant at a ratio of approximately 100:1 in the ocular infections. In contrast, the HSV-2 genome was present at a 4-40 times higher frequency in isolates from genital herpes patients. There was no obvious difference between the clinical course of mixed infection and those of single HSV-1 or HSV-2 infections. This study indicated that the frequency of mixed infection with both HSV-1 and HSV-2 is comparatively higher than those of previous reports. The genome ratio of HSV-1 and HSV-2 reflects the preference of each HSV type for the target organ.

  17. Human T-cell leukemia virus type 2 post-transcriptional control protein p28 is required for viral infectivity and persistence in vivo.

    Science.gov (United States)

    Yamamoto, Brenda; Li, Min; Kesic, Matthew; Younis, Ihab; Lairmore, Michael D; Green, Patrick L

    2008-05-12

    Human T-cell leukemia virus (HTLV) type 1 and type 2 are related but distinct pathogenic complex retroviruses. HTLV-1 is associated with adult T-cell leukemia and a variety of immune-mediated disorders including the chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraparesis. In contrast, HTLV-2 displays distinct biological differences and is much less pathogenic, with only a few reported cases of leukemia and neurological disease associated with infection. In addition to the structural and enzymatic proteins, HTLV encodes regulatory (Tax and Rex) and accessory proteins. Tax and Rex positively regulate virus production and are critical for efficient viral replication and pathogenesis. Using an over-expression system approach, we recently reported that the accessory gene product of the HTLV-1 and HTLV-2 open reading frame (ORF) II (p30 and p28, respectively) acts as a negative regulator of both Tax and Rex by binding to and retaining their mRNA in the nucleus, leading to reduced protein expression and virion production. Further characterization revealed that p28 was distinct from p30 in that it was devoid of major transcriptional modulating activity, suggesting potentially divergent functions that may be responsible for the distinct pathobiologies of HTLV-1 and HTLV-2. In this study, we investigated the functional significance of p28 in HTLV-2 infection, proliferation, and immortaliztion of primary T-cells in culture, and viral survival in an infectious rabbit animal model. An HTLV-2 p28 knockout virus (HTLV-2Deltap28) was generated and evaluated. Infectivity and immortalization capacity of HTLV-2Deltap28 in vitro was indistinguishable from wild type HTLV-2. In contrast, we showed that viral replication was severely attenuated in rabbits inoculated with HTLV-2Deltap28 and the mutant virus failed to establish persistent infection. We provide direct evidence that p28 is dispensable for viral replication and cellular immortalization of

  18. Investigation of avian influenza infections in wild birds, poultry and humans in Eastern Dongting Lake, China.

    Science.gov (United States)

    Shi, Jinghong; Gao, Lidong; Zhu, Yun; Chen, Tao; Liu, Yunzhi; Dong, Libo; Liu, Fuqiang; Yang, Hao; Cai, Yahui; Yu, Mingdong; Yao, Yi; Xu, Cuilin; Xiao, Xiangming; Shu, Yuelong

    2014-01-01

    We investigated avian influenza infections in wild birds, poultry, and humans at Eastern Dongting Lake, China. We analyzed 6,621 environmental samples, including fresh fecal and water samples, from wild birds and domestic ducks that were collected from the Eastern Dongting Lake area from November 2011 to April 2012. We also conducted two cross-sectional serological studies in November 2011 and April 2012, with 1,050 serum samples collected from people exposed to wild birds and/or domestic ducks. Environmental samples were tested for the presence of avian influenza virus (AIV) using quantitative PCR assays and virus isolation techniques. Hemagglutination inhibition assays were used to detect antibodies against AIV H5N1, and microneutralization assays were used to confirm these results. Among the environmental samples from wild birds and domestic ducks, AIV prevalence was 5.19 and 5.32%, respectively. We isolated 39 and 5 AIVs from the fecal samples of wild birds and domestic ducks, respectively. Our analysis indicated 12 subtypes of AIV were present, suggesting that wild birds in the Eastern Dongting Lake area carried a diverse array of AIVs with low pathogenicity. We were unable to detect any antibodies against AIV H5N1 in humans, suggesting that human infection with H5N1 was rare in this region.

  19. Search for infective mammalian type-C virus-related genes in the DNA of human sarcomas and leukemias.

    Science.gov (United States)

    Nicolson, M O; Gilden, R V; Charman, H; Rice, N; Heberling, R; McAllister, R M

    1978-06-15

    DNA was extracted from two human sarcoma cell lines, TE-32 and TE-418, and the leukemic cells from five children with acute myelocytic leukemia, three children with acute lymphocytic leukemia and four adults with acute myelocytic leukemia. The DNAs, assayed for infectivity by transfection techniques, induced no measurable virus by methods which would detect known mammalian C-type antigens or RNA-directed DNA polymerase in TE-32, D-17 dog cells and other indicator cells, nor did they recombine with or rescue endogenous human or exogenous murine or baboon type-C virus. Model systems used as controls were human sarcoma cells, TE-32 and HT-1080, and human lymphoma cells TE-543, experimentally infected with KiMuLV, GaLV or baboon type-C virus, all of which released infectious virus and whose DNAs were infectious for TE-32 and D-17 dog cells. Other model systems included two baboon placentas and one embryonic cell strain spontaneously releasing infectious endogenous baboon virus and yielding DNAs infectious for D-17 dog cells but not for TE-32 cells. Four other baboon embryonic tissues and two embryonic cell strains, releasing either low levels of virus or no virus, did not yield infectious DNA.

  20. Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation

    Science.gov (United States)

    Dolezal, Adam G.; Hendrix, Stephen D.; Scavo, Nicole A.; Carrillo-Tripp, Jimena; Harris, Mary A.; Wheelock, M. Joseph; O’Neal, Matthew E.; Toth, Amy L.

    2016-01-01

    Evidence of inter-species pathogen transmission from managed to wild bees has sparked concern that emerging diseases could be causing or exacerbating wild bee declines. While some pathogens, like RNA viruses, have been found in pollen and wild bees, the threat these viruses pose to wild bees is largely unknown. Here, we tested 169 bees, representing 4 families and 8 genera, for five common honey bee (Apis mellifera) viruses, finding that more than 80% of wild bees harbored at least one virus. We also quantified virus titers in these bees, providing, for the first time, an assessment of viral load in a broad spectrum of wild bees. Although virus detection was very common, virus levels in the wild bees were minimal—similar to or lower than foraging honey bees and substantially lower than honey bees collected from hives. Furthermore, when we experimentally inoculated adults of two different bee species (Megachile rotundata and Colletes inaequalis) with a mixture of common viruses that is lethal to honey bees, we saw no effect on short term survival. Overall, we found that honey bee RNA viruses can be commonly detected at low levels in many wild bee species, but we found no evidence that these pathogens cause elevated short-term mortality effects. However, more work on these viruses is greatly needed to assess effects on additional bee species and life stages. PMID:27832169

  1. Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation.

    Science.gov (United States)

    Dolezal, Adam G; Hendrix, Stephen D; Scavo, Nicole A; Carrillo-Tripp, Jimena; Harris, Mary A; Wheelock, M Joseph; O'Neal, Matthew E; Toth, Amy L

    2016-01-01

    Evidence of inter-species pathogen transmission from managed to wild bees has sparked concern that emerging diseases could be causing or exacerbating wild bee declines. While some pathogens, like RNA viruses, have been found in pollen and wild bees, the threat these viruses pose to wild bees is largely unknown. Here, we tested 169 bees, representing 4 families and 8 genera, for five common honey bee (Apis mellifera) viruses, finding that more than 80% of wild bees harbored at least one virus. We also quantified virus titers in these bees, providing, for the first time, an assessment of viral load in a broad spectrum of wild bees. Although virus detection was very common, virus levels in the wild bees were minimal-similar to or lower than foraging honey bees and substantially lower than honey bees collected from hives. Furthermore, when we experimentally inoculated adults of two different bee species (Megachile rotundata and Colletes inaequalis) with a mixture of common viruses that is lethal to honey bees, we saw no effect on short term survival. Overall, we found that honey bee RNA viruses can be commonly detected at low levels in many wild bee species, but we found no evidence that these pathogens cause elevated short-term mortality effects. However, more work on these viruses is greatly needed to assess effects on additional bee species and life stages.

  2. Detection of Severe Fever with Thrombocytopenia Syndrome Virus from Wild Animals and Ixodidae Ticks in the Republic of Korea.

    Science.gov (United States)

    Oh, Sung-Suck; Chae, Jeong-Byoung; Kang, Jun-Gu; Kim, Heung-Chul; Chong, Sung-Tae; Shin, Jeong-Hwa; Hur, Moon-Suk; Suh, Jae-Hwa; Oh, Myoung-Don; Jeong, Soo-Myoung; Shin, Nam-Shik; Choi, Kyoung-Seong; Chae, Joon-Seok

    2016-06-01

    Severe fever with thrombocytopenia syndrome (SFTS) is caused by SFTS virus (SFTSV), a novel bunyavirus reported to be endemic to central-northeastern China, southern Japan, and the Republic of Korea (ROK). To investigate SFTSV infections, we collected serum samples and ticks from wild animals. Using serum samples and ticks, SFTSV-specific genes were amplified by one-step RT-PCR and nested PCR and sequenced. Indirect immunofluorescence assay (IFA) was performed to analyze virus-specific antibody levels in wild animals. Serum samples were collected from a total of 91 animals: 21 Korean water deer (KWD), 3 Siberian roe deer, 5 gorals, 7 raccoon dogs, 54 wild boars (WBs), and 1 carrion crow. The SFTSV infection rate in wild animals was 3.30% (3 of 91 animals: 1 KWD and 2 WBs). The seropositive rate was 6.59% (6 of 91 animals: 5 KWD and 1 WB). A total of 891 ticks (3 species) were collected from 65 wild animals (9 species). Of the attached tick species, Haemaphysalis longicornis (74.86%) was the most abundant, followed by Haemaphysalis flava (20.20%) and Ixodes nipponensis (4.94%). The average minimum infection rate (MIR) of SFTSV in ticks was 4.98%. The MIRs of H. longicornis, H. flava, and I. nipponensis were 4.51%, 2.22%, and 22.73%, respectively. The MIRs of larvae, nymphs, and adult ticks were 0.68%, 6.88%, and 5.53%, respectively. In addition, the MIRs of fed and unfed ticks were 4.67% and 4.96%, respectively. We detected a low SFTSV infection rate in wild animals, no differences in SFTSV infection rate with respect to bloodsucking in ticks, and SFTSV infection for all developmental stages of ticks. This is the first report describing the detection of SFTSV in wild animals in the ROK.

  3. Deficient CD4+ T cell priming and regression of CD8+ T cell functionality in virus-infected mice lacking a normal B cell compartment

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Kauffmann, Susanne Ørding; Thomsen, Allan Randrup

    2003-01-01

    of virus-specific CD4(+) T cells was markedly impaired in B(-/-) mice infected with either virus strain. Thus, our results indicate that B cells play an important role in antiviral immunity not only as Ab producers, but also in promoting an optimal and sustained T cell response. The T cell defects......In this study, we investigate the state of T cell-mediated immunity in B cell-deficient (B(-/-)) mice infected with two strains of lymphocytic choriomeningitis virus known to differ markedly in their capacity to persist. In B(-/-) C57BL mice infected with the more persisting virus, virus......-specific CD8(+) T cells are initially generated that are qualitatively similar to those in wild-type mice. However, although cell numbers are well sustained over time, the capacity to produce cytokines is rapidly impaired. In similarly infected B(-/-) BALB/c mice, virus-specific CD8(+) T cells are completely...

  4. Prolonged influenza virus shedding and emergence of antiviral resistance in immunocompromised patients and ferrets.

    Directory of Open Access Journals (Sweden)

    Erhard van der Vries

    Full Text Available Immunocompromised individuals tend to suffer from influenza longer with more serious complications than otherwise healthy patients. Little is known about the impact of prolonged infection and the efficacy of antiviral therapy in these patients. Among all 189 influenza A virus infected immunocompromised patients admitted to ErasmusMC, 71 were hospitalized, since the start of the 2009 H1N1 pandemic. We identified 11 (15% cases with prolonged 2009 pandemic virus replication (longer than 14 days, despite antiviral therapy. In 5 out of these 11 (45% cases oseltamivir resistant H275Y viruses emerged. Given the inherent difficulties in studying antiviral efficacy in immunocompromised patients, we have infected immunocompromised ferrets with either wild-type, or oseltamivir-resistant (H275Y 2009 pandemic virus. All ferrets showed prolonged virus shedding. In wild-type virus infected animals treated with oseltamivir, H275Y resistant variants emerged within a week after infection. Unexpectedly, oseltamivir therapy still proved to be partially protective in animals infected with resistant virus. Immunocompromised ferrets offer an attractive alternative to study efficacy of novel antiviral therapies.

  5. IDENTIFICATION OF INFLUENZA VIRUSES IN HUMAN AND POULTRY IN THE AREA OF LARANGAN WET MARKET SIDOARJO-EAST JAVA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Edith Frederika

    2013-10-01

    Full Text Available Background: Influenza is a viral infection that attacks the respiratory system (nose, throat, and lungs that commonly known as “flu”. There are 3 types ofinfluenza viruses, such as type A, type B, and type C. Influenza virus type A is the type ofvirus that can infect both human and animals, virus type B are normally found only in human, and Influenza virus type C can cause mild illness in human and not causing any epidemics or pandemics. Among these 3 types of influenza viruses, only influenza A viruses infect birds, particularly wild bird that are the natural host for all subtypes ofinfluenza A virus. Generally, those wild birds do not get sick when they are infected with influenza virus, unlike chickens or ducks which may die from avian influenza. Aim: In this study, we are identifying the influenza viruses among poultry in Larangan wet market. Method: Around 500 kinds ofpoultry were examined from cloacal swab. Result: Those samples were restrained with symptoms ofsuspected H5. The people who worked as the poultry-traders intact with the animal everyday were also examined, by taking nasopharyngeal swab and blood serum. Conclusion: Identification of influenza viruses was obtained to define the type and subtype ofinfluenza virus by PCR.

  6. Vaginal Exposure to Zika Virus during Pregnancy Leads to Fetal Brain Infection.

    Science.gov (United States)

    Yockey, Laura J; Varela, Luis; Rakib, Tasfia; Khoury-Hanold, William; Fink, Susan L; Stutz, Bernardo; Szigeti-Buck, Klara; Van den Pol, Anthony; Lindenbach, Brett D; Horvath, Tamas L; Iwasaki, Akiko

    2016-08-25

    Zika virus (ZIKV) can be transmitted sexually between humans. However, it is unknown whether ZIKV replicates in the vagina and impacts the unborn fetus. Here, we establish a mouse model of vaginal ZIKV infection and demonstrate that, unlike other routes, ZIKV replicates within the genital mucosa even in wild-type (WT) mice. Mice lacking RNA sensors or transcription factors IRF3 and IRF7 resulted in higher levels of local viral replication. Furthermore, mice lacking the type I interferon (IFN) receptor (IFNAR) became viremic and died of infection after a high-dose vaginal ZIKV challenge. Notably, vaginal infection of pregnant dams during early pregnancy led to fetal growth restriction and infection of the fetal brain in WT mice. This was exacerbated in mice deficient in IFN pathways, leading to abortion. Our study highlights the vaginal tract as a highly susceptible site of ZIKV replication and illustrates the dire disease consequences during pregnancy. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Three Herpes Simplex Virus Type 1 Latency-Associated Transcript Mutants with Distinct and Asymmetric Effects on Virulence in Mice Compared with Rabbits

    Science.gov (United States)

    Perng, Guey-Chuen; Esmaili, Daniel; Slanina, Susan M.; Yukht, Ada; Ghiasi, Homayon; Osorio, Nelson; Mott, Kevin R.; Maguen, Barak; Jin, Ling; Nesburn, Anthony B.; Wechsler, Steven L.

    2001-01-01

    Herpes simplex virus type 1 latency-associated transcript (LAT)-null mutants have decreased reactivation but normal virulence in rabbits and mice. We report here on dLAT1.5, a mutant with LAT nucleotides 76 to 1667 deleted. Following ocular infection of rabbits, dLAT1.5 reactivated at a lower rate than its wild-type parent McKrae (6.1 versus 11.8%; P = 0.0025 [chi-square test]). Reactivation was restored in the marker-rescued virus dLAT1.5R (12.6%; P = 0.53 versus wild type), confirming the importance of the deleted region in spontaneous reactivation. Compared with wild-type or marker-rescued virus, dLAT1.5 had similar or slightly reduced virulence in rabbits (based on survival following ocular infection). In contrast, in mice, dLAT1.5 had increased virulence (P Wechsler, J. Virol. 73:920–929, 1999), had decreased virulence in mice (P = 0.03). In addition, we also found that dLAT371, a LAT mutant that we previously reported to have wild-type virulence in rabbits (G. C. Perng, S. M. Slanina, H. Ghiasi, A. B. Nesburn, and S. L. Wechsler, J. Virol. 70:2014–2018, 1996), had decreased virulence in mice (P < 0.05). Thus, these three mutants, each of which encodes a different LAT RNA, have different virulence phenotypes. dLAT1.5 had wild-type virulence in rabbits but increased virulence in mice. In contrast, LAT2.9A had increased virulence in rabbits but decreased virulence in mice, and dLAT371 had wild-type virulence in rabbits but decreased virulence in mice. Taken together, these results suggest that (i) the 5′ end of LAT and/or a gene that overlaps part of this region is involved in viral virulence, (ii) this virulence appears to have species-specific effects, and (iii) regulation of this virulence may be complex. PMID:11533165

  8. Influenza virus and endothelial cells: a species specific relationship

    Directory of Open Access Journals (Sweden)

    Kirsty Renfree Short

    2014-12-01

    Full Text Available Influenza A virus infection is an important cause of respiratory disease in humans. The original reservoirs of influenza A virus are wild waterfowl and shorebirds, where virus infection causes limited, if any, disease. Both in humans and in wild waterbirds, epithelial cells are the main target of infection. However, influenza virus can spread from wild bird species to terrestrial poultry. Here, the virus can evolve into highly pathogenic avian influenza (HPAI. Part of this evolution involves increased viral tropism for endothelial cells. HPAI virus infections not only cause severe disease in chickens and other terrestrial poultry species but can also spread to humans and back to wild bird populations. Here, we review the role of the endothelium in the pathogenesis of influenza virus infection in wild birds, terrestrial poultry and humans with a particular focus on HPAI viruses. We demonstrate that whilst the endothelium is an important target of virus infection in terrestrial poultry and some wild bird species, in humans the endothelium is more important in controlling the local inflammatory milieu. Thus, the endothelium plays an important, but species-specific, role in the pathogenesis of influenza virus infection.

  9. Epidemic Spread of Usutu Virus in Southwest Germany in 2011 to 2013 and Monitoring of Wild Birds for Usutu and West Nile Viruses.

    Science.gov (United States)

    Ziegler, Ute; Jöst, Hanna; Müller, Kerstin; Fischer, Dominik; Rinder, Monika; Tietze, Dieter Thomas; Danner, Klaus-Jürgen; Becker, Norbert; Skuballa, Jasmin; Hamann, Hans-Peter; Bosch, Stefan; Fast, Christine; Eiden, Martin; Schmidt-Chanasit, Jonas; Groschup, Martin H

    2015-08-01

    Mosquito-borne viruses are becoming an increasing threat for Europe. One of these viruses is Usutu virus (USUV), a single-stranded RNA virus belonging to the Japanese encephalitis virus group within the family Flaviviridae. Since the occurrence of USUV among wild birds in June, 2011, infected Blackbirds (Turdus merula) have frequently been found dead in southwest Germany, cumulating in a massive die-off. Moreover, other bird species (Strigiformes) in this region have been affected. In a first study, 209 of over 600 dead birds (wild birds and birds kept in aviaries) collected from 2011 to 2013 carried USUV, more than 88% of them Blackbirds. USUV had already been detected in 2010, one year before the epizooty, in a mosquito-based surveillance program in Germany. The main epidemic area of the USUV outbreak in wild birds in southwest Germany has been similar for the last three years. In a second study during 2011 to 2013, 902 live migratory and resident birds (representing 87 bird species belonging to 14 bird orders) from four different sampling sites were bled and tested serologically and by qPCR for West Nile virus (WNV) and USUV infections. No USUV or WNV genomes were detected. Some migratory birds (mainly long-distance migrants and some partial migrants) carried neutralizing antibodies against WNV as discriminated by USUV and WNV cross-neutralization tests. Only few resident birds showed relevant USUV-specific neutralizing antibodies. The occurrence of USUV in the Upper Rhine valley area of southwest Germany is a proof of principle for the incursion and spread of other arthropod-borne (arbo)-viruses along these routes. Therefore, monitoring studies in birds and mosquitoes for the presence of arboviruses in these areas are indispensable.

  10. Ferrets Infected with Bundibugyo Virus or Ebola Virus Recapitulate Important Aspects of Human Filovirus Disease.

    Science.gov (United States)

    Kozak, Robert; He, Shihua; Kroeker, Andrea; de La Vega, Marc-Antoine; Audet, Jonathan; Wong, Gary; Urfano, Chantel; Antonation, Kym; Embury-Hyatt, Carissa; Kobinger, Gary P; Qiu, Xiangguo

    2016-10-15

    Bundibugyo virus (BDBV) is the etiological agent of a severe hemorrhagic fever in humans with a case-fatality rate ranging from 25 to 36%. Despite having been known to the scientific and medical communities for almost 1 decade, there is a dearth of studies on this pathogen due to the lack of a small animal model. Domestic ferrets are commonly used to study other RNA viruses, including members of the order Mononegavirales To investigate whether ferrets were susceptible to filovirus infections, ferrets were challenged with a clinical isolate of BDBV. Animals became viremic within 4 days and succumbed to infection between 8 and 9 days, and a petechial rash was observed with moribund ferrets. Furthermore, several hallmarks of human filoviral disease were recapitulated in the ferret model, including substantial decreases in lymphocyte and platelet counts and dysregulation of key biochemical markers related to hepatic/renal function, as well as coagulation abnormalities. Virological, histopathological, and immunohistochemical analyses confirmed uncontrolled BDBV replication in the major organs. Ferrets were also infected with Ebola virus (EBOV) to confirm their susceptibility to another filovirus species and to potentially establish a virus transmission model. Similar to what was seen with BDBV, important hallmarks of human filoviral disease were observed in EBOV-infected ferrets. This study demonstrates the potential of this small animal model for studying BDBV and EBOV using wild-type isolates and will accelerate efforts to understand filovirus pathogenesis and transmission as well as the development of specific vaccines and antivirals. The 2013-2016 outbreak of Ebola virus in West Africa has highlighted the threat posed by filoviruses to global public health. Bundibugyo virus (BDBV) is a member of the genus Ebolavirus and has caused outbreaks in the past but is relatively understudied, likely due to the lack of a suitable small animal model. Such a model for BDBV is

  11. Discordant detection of avian influenza virus subtypes in time and space between poultry and wild birds; Towards improvement of surveillance programs

    NARCIS (Netherlands)

    Verhagen, Josanne H.; Lexmond, Pascal; Vuong, Oanh; Schutten, Martin; Guldemeester, Judith; Osterhaus, Albert D.M.E.; Elbers, Armin R.W.; Slaterus, Roy; Hornman, Menno; Koch, Guus; Fouchier, Ron A.M.; Lierz, Michael

    2017-01-01

    Avian influenza viruses from wild birds can cause outbreaks in poultry, and occasionally infect humans upon exposure to infected poultry. Identification and characterization of viral reservoirs and transmission routes is important to develop strategies that prevent infection of poultry, and

  12. Molecular tracing of classical swine fever viruses isolated from wild boars and pigs in France from 2002 to 2011.

    Science.gov (United States)

    Simon, Gaëlle; Le Dimna, Mireille; Le Potier, Marie-Frédérique; Pol, Françoise

    2013-10-25

    There were three outbreaks of classical swine fever (CSF) in north-eastern France between 2002 and 2011. The first two occurred in April 2002 in the Moselle department, in a wild boar and pig herd, respectively, while the third occurred in April 2003, in the Bas-Rhin department, in a wild boar. A survey was subsequently implemented in wild boar and domestic pig populations, during which 43 CSF viruses (CSFVs) were genetically characterized to provide information on virus sources, trace virus evolution and help in the monitoring of effective control measures. Phylogenetic analyses, based on fragments of the 5'NTR, E2 and NS5B genes, showed that all French CSFVs could be assigned to genotype 2, subgenotype 2.3. CSFVs isolated in Moselle were classified in the "Rostock" lineage, a strain first described in 2001 in wild boar populations in the Eifel region of north-western Rhineland-Palatinate in Germany, and in Luxemburg. In contrast, the CSFVs isolated in Bas-Rhin were homologous to strains from the "Uelzen" lineage, a strain previously isolated from wild boars in south-eastern Rhineland-Palatinate, Germany, as well as in Vosges du Nord, France, during a previous outbreak that had occurred in wild boars between 1992 and 2001. The outbreak in Moselle domestic pigs was quickly resolved as it concerned only one herd. The infection in wild boars from Moselle was extinguished after a few months whereas wild boars from Bas-Rhin remained infected until 2007. Molecular tracing showed that the Bas-Rhin index virus strain evolved slightly during the period but that no strain from a novel lineage was introduced until this outbreak ended after application of a vaccination scheme for six years. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States.

    Science.gov (United States)

    Bevins, S N; Dusek, R J; White, C L; Gidlewski, T; Bodenstein, B; Mansfield, K G; DeBruyn, P; Kraege, D; Rowan, E; Gillin, C; Thomas, B; Chandler, S; Baroch, J; Schmit, B; Grady, M J; Miller, R S; Drew, M L; Stopak, S; Zscheile, B; Bennett, J; Sengl, J; Brady, Caroline; Ip, H S; Spackman, E; Killian, M L; Torchetti, M K; Sleeman, J M; Deliberto, T J

    2016-07-06

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza surveillance in wild birds in the Pacific Flyway of the United States. A total of 4,729 hunter-harvested wild birds were sampled and highly pathogenic avian influenza virus was detected in 1.3% (n = 63). Three H5 clade 2.3.4.4 subtypes were isolated from wild birds, H5N2, H5N8, and H5N1, representing the wholly Eurasian lineage H5N8 and two novel reassortant viruses. Testing of 150 additional wild birds during avian morbidity and mortality investigations in Washington yielded 10 (6.7%) additional highly pathogenic avian influenza isolates (H5N8 = 3 and H5N2 = 7). The geographically widespread detection of these viruses in apparently healthy wild waterfowl suggest that the H5 clade 2.3.4.4 variant viruses may behave similarly in this taxonomic group whereby many waterfowl species are susceptible to infection but do not demonstrate obvious clinical disease. Despite these findings in wild waterfowl, mortality has been documented for some wild bird species and losses in US domestic poultry during the first half of 2015 were unprecedented.

  14. Filament-producing mutants of influenza A/Puerto Rico/8/1934 (H1N1 virus have higher neuraminidase activities than the spherical wild-type.

    Directory of Open Access Journals (Sweden)

    Jill Seladi-Schulman

    Full Text Available Influenza virus exhibits two morphologies - spherical and filamentous. Strains that have been grown extensively in laboratory substrates are comprised predominantly of spherical virions while clinical or low passage isolates produce a mixture of spheres and filamentous virions of varying lengths. The filamentous morphology can be lost upon continued passage in embryonated chicken eggs, a common laboratory substrate for influenza viruses. The fact that the filamentous morphology is maintained in nature but lost in favor of a spherical morphology in ovo suggests that filaments confer a selective advantage within the infected host that is not necessary for growth in laboratory substrates. Indeed, we have recently shown that filament-producing variant viruses are selected upon passage of the spherical laboratory strain A/Puerto Rico/8/1934 (H1N1 [PR8] in guinea pigs. Toward determining the nature of the selective advantage conferred by filaments, we sought to identify functional differences between spherical and filamentous particles. We compared the wild-type PR8 virus to two previously characterized recombinant PR8 viruses in which single point mutations within M1 confer a filamentous morphology. Our results indicate that these filamentous PR8 mutants have higher neuraminidase activities than the spherical PR8 virus. Conversely, no differences were observed in HAU:PFU or HAU:RNA ratios, binding avidity, sensitivity to immune serum in hemagglutination inhibition assays, or virion stability at elevated temperatures. Based on these results, we propose that the pleomorphic nature of influenza virus particles is important for the optimization of neuraminidase functions in vivo.

  15. MP-12 virus containing the clone 13 deletion in the NSs gene prevents lethal disease when administered after Rift Valley fever virus infection in hamsters.

    Science.gov (United States)

    Gowen, Brian B; Westover, Jonna B; Sefing, Eric J; Bailey, Kevin W; Nishiyama, Shoko; Wandersee, Luci; Scharton, Dionna; Jung, Kie-Hoon; Ikegami, Tetsuro

    2015-01-01

    Rift Valley fever virus (RVFV; Bunyaviridae, Phlebovirus) causes a range of illnesses that include retinitis, fulminant hepatitis, neurologic disease, and hemorrhagic fever. In hospitalized individuals, case fatality rates can be as high as 10-20%. There are no vaccines or antivirals approved for human use to prevent or treat severe RVFV infections. We previously tested the efficacy of the MP-12 vaccine strain and related variants with NSs truncations as a post-exposure prophylaxis in mice infected with wild-type pathogenic RVFV strain ZH501. Post-exposure efficacy of the rMP12-C13type, a recombinant MP-12 vaccine virus which encodes an in-frame truncation removing 69% of the NSs protein, resulted in 30% survival when administering the virus within 30 min of subcutaneous ZH501 challenge in mice, while the parental MP-12 virus conferred no protection by post-exposure vaccination. Here, we demonstrate uniform protection of hamsters by post-exposure vaccination with rMP12-C13type administered 6 h post-ZH501 infection while no efficacy was observed with the parental MP-12 virus. Notably, both the MP-12 and rMP12-C13type viruses were highly effective (100% protection) when administered 21 days prior to challenge. In a subsequent study delaying vaccination until 8, 12, and 24 h post-RVFV exposure, we observed 80, 70, and 30% survival, respectively. Our findings indicate that the rapid protective innate immune response elicited by rMP12-C13type may be due to the truncated NSs protein, suggesting that the resulting functional inactivation of NSs plays an important role in the observed post-exposure efficacy. Taken together, the data demonstrate that post-exposure vaccination with rMP12-C13type is effective in limiting ZH501 replication and associated disease in standard pre-exposure vaccination and post-challenge treatment models of RVFV infection, and suggest an extended post-exposure prophylaxis window beyond that initially observed in mice.

  16. Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome virus nucleocapsid protein attenuate virus replication

    International Nuclear Information System (INIS)

    Lee, Changhee; Hodgins, Douglas; Calvert, Jay G.; Welch, Siao-Kun W.; Jolie, Rika; Yoo, Dongwan

    2006-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus replicating in the cytoplasm, but the nucleocapsid (N) protein is specifically localized to the nucleus and nucleolus in virus-infected cells. A 'pat7' motif of 41-PGKK(N/S)KK has previously been identified in the N protein as the functional nuclear localization signal (NLS); however, the biological consequences of N protein nuclear localization are unknown. In the present study, the role of N protein nuclear localization during infection was investigated in pigs using an NLS-null mutant virus. When two lysines at 43 and 44 at the NLS locus were substituted to glycines, the modified NLS with 41-PGGGNKK restricted the N protein to the cytoplasm. This NLS-null mutation was introduced into a full-length infectious cDNA clone of PRRSV. Upon transfection of cells, the NLS-null full-length clone induced cytopathic effects and produced infectious progeny. The NLS-null virus grew to a titer 100-fold lower than that of wild-type virus. To examine the response to NLS-null PRRSV in the natural host, three groups of pigs, consisting of seven animals per group, were intranasally inoculated with wild-type, placebo, or NLS-null virus, and the animals were maintained for 4 weeks. The NLS-null-infected pigs had a significantly shorter mean duration of viremia than wild-type-infected pigs but developed significantly higher titers of neutralizing antibodies. Mutations occurred at the NLS locus in one pig during viremia, and four types of mutations were identified: 41-PGRGNKK, 41-PGGRNKK, and 41-PGRRNKK, and 41-PGKKSKK. Both wild-type and NLS-null viruses persisted in the tonsils for at least 4 weeks, and the NLS-null virus persisting in the tonsils was found to be mutated to either 41-PGRGNKK or 41-PGGRNKK in all pigs. No other mutation was found in the N gene. All types of reversions which occurred during viremia and persistence were able to translocate the mutated N proteins to the nucleus, indicating a

  17. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins.

    Science.gov (United States)

    Maric, Martina; Haugo, Alison C; Dauer, William; Johnson, David; Roller, Richard J

    2014-07-01

    Herpesvirus infection reorganizes components of the nuclear lamina usually without loss of integrity of the nuclear membranes. We report that wild-type HSV infection can cause dissolution of the nuclear envelope in transformed mouse embryonic fibroblasts that do not express torsinA. Nuclear envelope breakdown is accompanied by an eight-fold inhibition of virus replication. Breakdown of the membrane is much more limited during infection with viruses that lack the gB and gH genes, suggesting that breakdown involves factors that promote fusion at the nuclear membrane. Nuclear envelope breakdown is also inhibited during infection with virus that does not express UL34, but is enhanced when the US3 gene is deleted, suggesting that envelope breakdown may be enhanced by nuclear lamina disruption. Nuclear envelope breakdown cannot compensate for deletion of the UL34 gene suggesting that mixing of nuclear and cytoplasmic contents is insufficient to bypass loss of the normal nuclear egress pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Suppression of human papillomavirus gene expression in vitro and in vivo by herpes simplex virus type 2 infection

    International Nuclear Information System (INIS)

    Fang, L.; Ward, M.G.; Welsh, P.A.; Budgeon, L.R.; Neely, E.B.; Howett, M.K.

    2003-01-01

    Recent epidemiological studies have found that women infected with both herpes simplex virus type 2 (HSV-2) and human papillomavirus (HPV) type 16 or HPV-18 are at greater risk of developing cervical carcinoma compared to women infected with only one virus. However, it remains unclear if HSV-2 is a cofactor for cervical cancer or if HPV and HSV-2 interact in any way. We have studied the effect of HSV-2 infection on HPV-11 gene expression in an in vitro double-infection assay. HPV transcripts were down-regulated in response to HSV-2 infection. Two HSV-2 vhs mutants failed to reduce HPV-16 E1-circumflexE4 transcripts. We also studied the effect of HSV-2 infection on preexisting experimental papillomas in a vaginal epithelial xenograft model. Doubly infected grafts demonstrated papillomatous transformation and the classical cytopathic effect from HSV-2 infection. HPV and HSV DNA signals were mutually exclusive. These studies may have therapeutic applications for HPV infections and related neoplasms

  19. Absolute level of Epstein-Barr virus DNA in human immunodeficiency virus type 1 infection is not predictive of AIDS-related non-Hodgkin lymphoma

    NARCIS (Netherlands)

    van Baarle, Debbie; Wolthers, Katja C.; Hovenkamp, Egbert; Niesters, Hubert G. M.; Osterhaus, Albert D. M. E.; Miedema, Frank; van Oers, Marinus H. J.

    2002-01-01

    To study whether Epstein-Barr virus (EBV) load can be used to predict the occurrence of acquired immunodeficiency syndrome-related non-Hodgkin lymphoma (AIDS-NHL), we determined EBV load longitudinally for individuals infected with human immunodeficiency virus type 1. EBV load in peripheral blood

  20. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus)

    NARCIS (Netherlands)

    A. Ramis (Antonio); G. van Amerongen (Geert); M.W.G. van de Bildt (Marco); L.M.E. Leijten (Lonneke); R. Vanderstichel (R.); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2014-01-01

    textabstractHistorically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental

  1. Pathological manifestations of feline immunodeficiency virus (FIV) infection in wild African lions.

    Science.gov (United States)

    Roelke, Melody E; Brown, Meredith A; Troyer, Jennifer L; Winterbach, Hanlie; Winterbach, Christiaan; Hemson, Graham; Smith, Dahlem; Johnson, Randall C; Pecon-Slattery, Jill; Roca, Alfred L; Alexander, Kathleen A; Klein, Lin; Martelli, Paolo; Krishnasamy, Karthiyani; O'Brien, Stephen J

    2009-07-20

    Feline immunodeficiency virus (FIV) causes AIDS in the domestic cat (Felis catus) but has not been explicitly associated with AIDS pathology in any of the eight free-ranging species of Felidae that are endemic with circulating FIV strains. African lion (Panthera leo) populations are infected with lion-specific FIV strains (FIVple), yet there remains uncertainty about the degree to which FIV infection impacts their health. Reported CD4+ T-lymphocyte depletion in FIVple-infected lions and anecdotal reports of lion morbidity associated with FIV seroprevalence emphasize the concern as to whether FIVple is innocuous or pathogenic. Here we monitored clinical, biochemical, histological and serological parameters among FIVple-positive (N=47) as compared to FIVple-negative (N=17) lions anesthetized and sampled on multiple occasions between 1999 and 2006 in Botswana. Relative to uninfected lions, FIVple-infected lions displayed a significant elevation in the prevalence of AIDS-defining conditions: lymphadenopathy, gingivitis, tongue papillomas, dehydration, and poor coat condition, as well as displaying abnormal red blood cell parameters, depressed serum albumin, and elevated liver enzymes and gamma globulin. Spleen and lymph node biopsies from free-ranging FIVple-infected lions (N=9) revealed evidence of lymphoid depletion, the hallmark pathology documented in immunodeficiency virus infections of humans (HIV-1), macaques, and domestic cats. We conclude that over time FIVple infections in free-ranging lions can lead to adverse clinical, immunological, and pathological outcomes in some individuals that parallel sequelae caused by lentivirus infection in humans (HIV), Asian macaques (SIV) and domestic cats (FIVfca).

  2. PATHOLOGICAL MANIFESTATIONS OF FELINE IMMUNODEFICIENCY VIRUS (FIV) INFECTION IN WILD AFRICAN LIONS

    Science.gov (United States)

    Roelke, Melody E.; Brown, Meredith A.; Troyer, Jennifer L.; Winterbach, Hanlie; Winterbach, Christiaan; Hemson, Graham; Smith, Dahlem; Johnson, Randall C.; Pecon-Slattery, Jill; Roca, Alfred L.; Alexander, Katherine; Klein, Lin; Martinelli, Paulo; Krishnasamu, Karthiuani; O'Brien, Stephen J.

    2009-01-01

    Feline immunodeficiency virus (FIV) causes AIDS in the domestic cat (Felis catus) but has not been explicitly associated with AIDS pathology in any of the eight free-ranging species of Felidae that are endemic with circulating FIV strains. African lion (Panthera leo) populations are infected with lion-specific FIV strains (FIVple), yet there remains uncertainty about the degree to which FIV infection impacts their health. Reported CD4+ T-lymphocyte depletion in FIVple infected lions and anecdotal reports of lion morbidity associated with FIV sero-prevalence emphasize the concern as to whether FIVple is innocuous or pathogenic. Here we monitored clinical, biochemical, histological and serological parameters among FIVple-positive (N=47) as compared to FIVple negative (N=17) lions anesthetized and sampled on multiple occasions between 1999 and 2006 in Botswana. Relative to uninfected lions, FIVple infected lions displayed a significant elevation in the prevalence of AIDS defining conditions: lymphandenopathy, gingivitis, tongue papillomas, dehydration, and poor coat condition, as well as displaying abnormal red blood cell parameters and elevated liver enzymes and serum proteins. Spleen and lymph node laparoscopic biopsies from free-ranging FIVple infected lions (N=8) revealed evidence of lymphoid depletion, the hallmark pathology documented in immunodefieciency virus infections of humans (HIV-1), macaques, and domestic cats. We conclude that over time FIVple infections in free-ranging lions can lead to adverse clinical, immunological, and pathological outcomes in some individuals that parallel sequelae caused by lentivirus infection in humans (HIV), Asian macaques (SIV) and domestic cats (FIVfca). PMID:19464039

  3. [Construction and characterization of an epitope-mutated Asia 1 type foot-and-mouth disease virus].

    Science.gov (United States)

    Zhang, Yan; Hu, Yonghao; Yang, Fan; Yang, Bo; Wang, Songhao; Zhu, Zixiang; Zheng, Haixue

    2015-01-01

    To generate an epitope-mutated foot-and-mouth disease virus (FMDV) as a marker vaccine, the infectious clone pAsia 1-FMDV containing the complete genomic cDNA of Asia 1 type FMDV was used as backbone, the residues at positions 27 and 31 in the 3D gene were mutated (H27Y and N31R). The resulting plasmid pAsia 1-FMDV-3DM encoding a mutated epitope was transfected into BHK-21 cells and the recombinant virus rAsia 1-3DM was rescued. The recombinant virus showed similar biological characteristics comparable with the parental virus. In serological neutralization test the antisera against recombine virus have a good reactivity with parental virus. The antisera against the mutant virus were shown to be reactive with the mutated epitope but not the wild-type one. The results indicated that the two virus strains could be distinguished by western blotting using synthetic peptides. This epitope-mutated FMDV strain will be evaluated as a potential marker vaccine against FMDV infections.

  4. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors.

    Science.gov (United States)

    Bhattacharyya, Suchita; Zagórska, Anna; Lew, Erin D; Shrestha, Bimmi; Rothlin, Carla V; Naughton, John; Diamond, Michael S; Lemke, Greg; Young, John A T

    2013-08-14

    Upon activation by the ligands Gas6 and Protein S, Tyro3/Axl/Mer (TAM) receptor tyrosine kinases promote phagocytic clearance of apoptotic cells and downregulate immune responses initiated by Toll-like receptors and type I interferons (IFNs). Many enveloped viruses display the phospholipid phosphatidylserine on their membranes, through which they bind Gas6 and Protein S and engage TAM receptors. We find that ligand-coated viruses activate TAM receptors on dendritic cells (DCs), dampen type I IFN signaling, and thereby evade host immunity and promote infection. Upon virus challenge, TAM-deficient DCs display type I IFN responses that are elevated in comparison to wild-type cells. As a consequence, TAM-deficient DCs are relatively resistant to infection by flaviviruses and pseudotyped retroviruses, but infection can be restored with neutralizing type I IFN antibodies. Correspondingly, a TAM kinase inhibitor antagonizes the infection of wild-type DCs. Thus, TAM receptors are engaged by viruses in order to attenuate type I IFN signaling and represent potential therapeutic targets. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Characterization of Clade 2.3.2.1 H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Wild Birds (Mandarin Duck and Eurasian Eagle Owl in 2010 in Korea

    Directory of Open Access Journals (Sweden)

    Youn-Jeong Lee

    2013-04-01

    Full Text Available Starting in late November 2010, the H5N1 highly pathogenic avian influenza (HPAI virus was isolated from many types of wild ducks and raptors and was subsequently isolated from poultry in Korea. We assessed the genetic and pathogenic properties of the HPAI viruses isolated from a fecal sample from a mandarin duck and a dead Eurasian eagle owl, the most affected wild bird species during the 2010/2011 HPAI outbreak in Korea. These viruses have similar genetic backgrounds and exhibited the highest genetic similarity with recent Eurasian clade 2.3.2.1 HPAI viruses. In animal inoculation experiments, regardless of their originating hosts, the two Korean isolates produced highly pathogenic characteristics in chickens, ducks and mice without pre-adaptation. These results raise concerns about veterinary and public health. Surveillance of wild birds could provide a good early warning signal for possible HPAI infection in poultry as well as in humans.

  6. Diverse uses of feathers with emphasis on diagnosis of avian viral infections and vaccine virus monitoring

    Directory of Open Access Journals (Sweden)

    I Davidson

    2009-09-01

    Full Text Available The large amounts of feathers produced by the poultry industry, that is considered as a waste was explored for possible uses in various industries, such as meals for animals, biofuels, biodegradable plastic materials, combating water pollution and more. That review mentions these uses, but concentrate on the utilization of feathers for the diagnosis of viral infections and for monitoring vaccine viruses in chickens after vaccination. The viral diseases in which diagnosis using nucleic acids extracted from the feather shafts was described are, Marek's disease virus, circoviruses, chicken anemia virus, fowlpox virus, avian retroviruses, avian influenza virus and infectious laryngotracheitis virus. In two cases, of Marek's disease virus and of infectious laryngotracheitis virus, the differentiation of vaccine and wild-type viruses from feather shafts was made possible, thus allowing for monitoring the vaccination efficacy. The present review demonstrates also the stability of DNA viruses in feather shafts, and the possible evaluation of environmental dissemination of pathogens. When viruses are transmitted vertically, like in the cases of the retrovirus REV, a teratogenic effect on the development of feathers of the day-old newly hatched chick might occur in the case of avian influenza and the chicken anemia virus, which might indicate on a viral infection.

  7. Effects of myxoma virus and rabbit hemorrhagic disease virus on the physiological condition of wild European rabbits: Is blood biochemistry a useful monitoring tool?

    Science.gov (United States)

    Pacios-Palma, Isabel; Santoro, Simone; Bertó-Moran, Alejandro; Moreno, Sacramento; Rouco, Carlos

    2016-12-01

    Myxomatosis and rabbit hemorrhagic disease (RHD) are the major viral diseases that affect the wild European rabbit (Oryctolagus cuniculus). These diseases arrived in Europe within the last decades and have caused wild rabbit populations to decline dramatically. Both viruses are currently considered to be endemic in the Iberian Peninsula; periodic outbreaks that strongly impact wild populations regularly occur. Myxoma virus (MV) and rabbit hemorrhagic disease virus (RHDV) alter the physiology of infected rabbits, resulting in physical deterioration. Consequently, the persistence and viability of natural populations are affected. The main goal of our study was to determine if blood biochemistry is correlated with serostatus in wild European rabbits. We carried out seven live-trapping sessions in three wild rabbit populations over a two-year period. Blood samples were collected to measure anti-MV and anti-RHDV antibody concentrations and to measure biochemical parameters related to organ function, protein metabolism, and nutritional status. Overall, we found no significant relationships between rabbit serostatus and biochemistry. Our main result was that rabbits that were seropositive for both MV and RHDV had low gamma glutamyltransferase concentrations. Given the robustness of our analyses, the lack of significant relationships may indicate that the biochemical parameters measured are poor proxies for serostatus. Another explanation is that wild rabbits might be producing attenuated physiological responses to these viruses because the latter are now enzootic in the study area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Measles virus-specified polypeptides in infected cells

    International Nuclear Information System (INIS)

    Vainionpaepae, R.

    1979-01-01

    The synthesis of wild-type measles virus-specified polypeptides in Vero cells in pulse-chase experiments, in cells with synchronized protein synthesis by high salt concentration, and in the presence of proteolytic enzyme inhibitors was analyzed by polyacrylamide slab-gel electrophoresis. Six major (L, G, 2, NP, 5 and M) structural polypeptides were identified in infected cells. The results of pulse-chase experiments suggested that most of the structural polypeptides were synthesized at their final length. Polypeptide M was found to be sensitive to trypsin. In TLCK-treated cells its molecular weight was about 1000-2000 daltons higher than in untreated cells. A minor virus-specific polypeptide with a molecular weight of about 23,000 was found as a very faint and diffuse band. In addition, three nonstructural polypeptides with molecular weights of 65,000, 38,000 and 18,000 were also detected. The experiments with proteolytic enzyme inhibitors and with synchronized protein synthesis suggested that the polypeptide with a molecular weight of 65,000 might be a precursor of the structural polypeptide 5. (author)

  9. Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection

    International Nuclear Information System (INIS)

    Tsvitov, Marianna; Frampton, Arthur R.; Shah, Waris A.; Wendell, Steven K.; Ozuer, Ali; Kapacee, Zoher; Goins, William F.; Cohen, Justus B.; Glorioso, Joseph C.

    2007-01-01

    Herpes simplex virus type 1 (HSV-1) entry into permissive cells involves attachment to cell-surface glycosaminoglycans (GAGs) and fusion of the virus envelope with the cell membrane triggered by the binding of glycoprotein D (gD) to cognate receptors. In this study, we characterized the observation that soluble forms of the gD ectodomain (sgD) can mediate entry of gD-deficient HSV-1. We examined the efficiency and receptor specificity of this activity and used sequential incubation protocols to determine the order and stability of the initial interactions required for entry. Surprisingly, virus binding to GAGs did not increase the efficiency of sgD-mediated entry and gD-deficient virus was capable of attaching to GAG-deficient cells in the absence of sgD. These observations suggested a novel binding interaction that may play a role in normal HSV infection

  10. Replication of type 5 adenovirus promotes middle ear infection by Streptococcus pneumoniae in the chinchilla model of otitis media

    Science.gov (United States)

    Murrah, Kyle A.; Turner, Roberta L.; Pang, Bing; Perez, Antonia C.; Reimche, Jennifer L.; King, Lauren B.; Wren, John; Gandhi, Uma; Swords, W. Edward; Ornelles, David A.

    2015-01-01

    Adenoviral infection is a major risk factor for otitis media. We hypothesized that adenovirus promotes bacterial ascension into the middle ear through the disruption of normal function in the Eustachian tubes due to inflammation-induced changes. An intranasal infection model of the chinchilla was used to test the ability of type 5 adenovirus to promote middle ear infection by Streptococcus pneumoniae. The hyperinflammatory adenovirus mutant dl327 and the nonreplicating adenovirus mutant H5wt300ΔpTP were used to test the role of inflammation and viral replication, respectively, in promotion of pneumococcal middle ear infection. Precedent infection with adenovirus resulted in a significantly greater incidence of middle ear disease by S. pneumoniae as compared to nonadenovirus infected animals. Infection with the adenovirus mutant dl327 induced a comparable degree of bacterial ascension into the middle ear as did infection with the wild-type virus. By contrast, infection with the nonreplicating adenovirus mutant H5wt300ΔpTP resulted in less extensive middle ear infection compared to the wild-type adenovirus. We conclude that viral replication is necessary for adenoviral-induced pneumococcal middle ear disease. PMID:25251686

  11. Zika Virus Infection during Pregnancy in Mice Causes Placental Damage and Fetal Demise.

    Science.gov (United States)

    Miner, Jonathan J; Cao, Bin; Govero, Jennifer; Smith, Amber M; Fernandez, Estefania; Cabrera, Omar H; Garber, Charise; Noll, Michelle; Klein, Robyn S; Noguchi, Kevin K; Mysorekar, Indira U; Diamond, Michael S

    2016-05-19

    Zika virus (ZIKV) infection in pregnant women causes intrauterine growth restriction, spontaneous abortion, and microcephaly. Here, we describe two mouse models of placental and fetal disease associated with in utero transmission of ZIKV. Female mice lacking type I interferon signaling (Ifnar1(-/-)) crossed to wild-type (WT) males produced heterozygous fetuses resembling the immune status of human fetuses. Maternal inoculation at embryonic day 6.5 (E6.5) or E7.5 resulted in fetal demise that was associated with ZIKV infection of the placenta and fetal brain. We identified ZIKV within trophoblasts of the maternal and fetal placenta, consistent with a trans-placental infection route. Antibody blockade of Ifnar1 signaling in WT pregnant mice enhanced ZIKV trans-placental infection although it did not result in fetal death. These models will facilitate the study of ZIKV pathogenesis, in utero transmission, and testing of therapies and vaccines to prevent congenital malformations. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Evolution of a Cell Culture-Derived Genotype 1a Hepatitis C Virus (H77S.2) during Persistent Infection with Chronic Hepatitis in a Chimpanzee

    Science.gov (United States)

    Yi, MinKyung; Hu, Fengyu; Joyce, Michael; Saxena, Vikas; Welsch, Christoph; Chavez, Deborah; Guerra, Bernadette; Yamane, Daisuke; Veselenak, Ronald; Pyles, Rick; Walker, Christopher M.; Tyrrell, Lorne; Bourne, Nigel; Lanford, Robert E.

    2014-01-01

    ABSTRACT Persistent infection is a key feature of hepatitis C virus (HCV). However, chimpanzee infections with cell culture-derived viruses (JFH1 or related chimeric viruses that replicate efficiently in cell culture) have been limited to acute-transient infections with no pathogenicity. Here, we report persistent infection with chronic hepatitis in a chimpanzee challenged with cell culture-derived genotype 1a virus (H77S.2) containing 6 cell culture-adaptive mutations. Following acute-transient infection with a chimeric H77/JFH1 virus (HJ3-5), intravenous (i.v.) challenge with 106 FFU H77S.2 virus resulted in immediate seroconversion and, following an unusual 4- to 6-week delay, persistent viremia accompanied by alanine aminotransferase (ALT) elevation, intrahepatic innate immune responses, and diffuse hepatopathy. This first persistent infection with cell culture-produced HCV provided a unique opportunity to assess evolution of cell culture-adapted virus in vivo. Synonymous and nonsynonymous nucleotide substitution rates were greatest during the first 8 weeks of infection. Of 6 cell culture-adaptive mutations in H77S.2, Q1067R (NS3) had reverted to Q1067 and S2204I (NS5A) was replaced by T2204 within 8 weeks of infection. By 62 weeks, 4 of 6 mutations had reverted to the wild-type sequence, and all reverted to the wild-type sequence by 194 weeks. The data suggest H77S.2 virus has greater potential for persistence and pathogenicity than JFH1 and demonstrate both the capacity of a nonfit virus to persist for weeks in the liver in the absence of detectable viremia as well as strong selective pressure against cell culture-adaptive mutations in vivo. IMPORTANCE This study shows that mutations promoting the production of infectious genotype 1a HCV in cell culture have the opposite effect and attenuate replication in the liver of the only fully permissive animal species other than humans. It provides the only example to date of persistent infection in a chimpanzee

  13. Evolution of a cell culture-derived genotype 1a hepatitis C virus (H77S.2) during persistent infection with chronic hepatitis in a chimpanzee.

    Science.gov (United States)

    Yi, MinKyung; Hu, Fengyu; Joyce, Michael; Saxena, Vikas; Welsch, Christoph; Chavez, Deborah; Guerra, Bernadette; Yamane, Daisuke; Veselenak, Ronald; Pyles, Rick; Walker, Christopher M; Tyrrell, Lorne; Bourne, Nigel; Lanford, Robert E; Lemon, Stanley M

    2014-04-01

    Persistent infection is a key feature of hepatitis C virus (HCV). However, chimpanzee infections with cell culture-derived viruses (JFH1 or related chimeric viruses that replicate efficiently in cell culture) have been limited to acute-transient infections with no pathogenicity. Here, we report persistent infection with chronic hepatitis in a chimpanzee challenged with cell culture-derived genotype 1a virus (H77S.2) containing 6 cell culture-adaptive mutations. Following acute-transient infection with a chimeric H77/JFH1 virus (HJ3-5), intravenous (i.v.) challenge with 10(6) FFU H77S.2 virus resulted in immediate seroconversion and, following an unusual 4- to 6-week delay, persistent viremia accompanied by alanine aminotransferase (ALT) elevation, intrahepatic innate immune responses, and diffuse hepatopathy. This first persistent infection with cell culture-produced HCV provided a unique opportunity to assess evolution of cell culture-adapted virus in vivo. Synonymous and nonsynonymous nucleotide substitution rates were greatest during the first 8 weeks of infection. Of 6 cell culture-adaptive mutations in H77S.2, Q1067R (NS3) had reverted to Q1067 and S2204I (NS5A) was replaced by T2204 within 8 weeks of infection. By 62 weeks, 4 of 6 mutations had reverted to the wild-type sequence, and all reverted to the wild-type sequence by 194 weeks. The data suggest H77S.2 virus has greater potential for persistence and pathogenicity than JFH1 and demonstrate both the capacity of a nonfit virus to persist for weeks in the liver in the absence of detectable viremia as well as strong selective pressure against cell culture-adaptive mutations in vivo. This study shows that mutations promoting the production of infectious genotype 1a HCV in cell culture have the opposite effect and attenuate replication in the liver of the only fully permissive animal species other than humans. It provides the only example to date of persistent infection in a chimpanzee challenged with cell

  14. A Cell Culture Model of Latent and Lytic Herpes Simplex Virus Type 1 Infection in Spiral Ganglion.

    Science.gov (United States)

    Liu, Yuehong; Li, Shufeng

    2015-01-01

    Reactivation of latent herpes simplex virus type 1 (HSV-1) in spiral ganglion neurons (SGNs) is supposed to be one of the causes of idiopathic sudden sensorineural hearing loss. This study aims to establish a cell culture model of latent and lytic HSV-1 infection in spiral ganglia. In the presence of acyclovir, primary cultures of SGNs were latently infected with HSV-1 expressing green fluorescent protein. Four days later, these cells were treated with trichostatin A (TSA), a known chemical reactivator of HSV-1. TCID50 was used to measure the titers of virus in cultures on Vero cells. RNA from cultures was detected for the presence of transcripts of ICP27 and latency-associated transcript (LAT) using reverse transcription polymerase chain reaction. There is no detectable infectious HSV-1 in latently infected cultures, whereas they could be observed in both lytically infected and latently infected/TSA-treated cultures. LAT was the only detectable transcript during latent infection, whereas lytic ICP27 transcript was detected in lytically infected and latently infected/TSA-treated cultures. Cultured SGNs can be both latently and lytically infected with HSV-1. Furthermore, latently infected SGNs can be reactivated using TSA, yielding infectious virus.

  15. Human papilloma virus infection and psoriasis: Did human papilloma virus infection trigger psoriasis?

    Science.gov (United States)

    Jain, Sonia P; Gulhane, Sachin; Pandey, Neha; Bisne, Esha

    2015-01-01

    Psoriasis is an autoimmune chronic inflammatory skin disease known to be triggered by streptococcal and HIV infections. However, human papilloma virus infection (HPV) as a triggering factor for the development of psoriasis has not been reported yet. We, hereby report a case of plaque type with inverse psoriasis which probably could have been triggered by genital warts (HPV infection) and discuss the possible pathomechanisms for their coexistence and its management.

  16. Paradoxical expression of IL-28B mRNA in peripheral blood in human T-cell leukemia virus Type-1 mono-infection and co-infection with hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Kamihira Shimeru

    2012-02-01

    Full Text Available Abstract Background Human T-cell leukemia virus type-1 (HTLV-1 carriers co-infected with and hepatitis C virus (HCV have been known to be at higher risk of their related diseases than mono-infected individuals. The recent studies clarified that IL-28B polymorphism rs8099917 is associated with not only the HCV therapeutic response by IFN, but also innate immunity and antiviral activity. The aim of our research was to clarify study whether IL-28B gene polymorphism (rs8099917 is associated with HTLV-1/HCV co-infection. Results The genotyping and viral-serological analysis for 340 individuals showed that IL-28B genotype distribution of rs8099917 SNP did not differ significantly by respective viral infection status. However, the IL-28B mRNA expression level was 3.8 fold higher in HTLV-1 mono-infection than HTLV-1/HCV co-infection. The high expression level was associated with TT (OR, 6.25, whiles the low expression was associated with co-infection of the two viruses (OR, 9.5. However, there was no association between down-regulation and ATL development (OR, 0.8. Conclusion HTLV-1 mono-infection up-regulates the expression of IL-28B transcripts in genotype-dependent manner, whiles HTLV-1/HCV co-infection down-regulates regardless of ATL development.

  17. Absolute level of Epstein-Barr Virus (EBV) DNA in human immunodeficiency virus type 1 infection is not predictive of AIDS-related non-Hodgkin lymphoma.

    NARCIS (Netherlands)

    D. van Baarle (Debbie); K.C. Wolthers (Katja); E. Hovenkamp (Egbert); A.D.M.E. Osterhaus (Albert); F. Miedema (Frank); M.H.J. van Oers (Marinus); H.G.M. Niesters (Bert)

    2002-01-01

    textabstractTo study whether Epstein-Barr virus (EBV) load can be used to predict the occurrence of acquired immunodeficiency syndrome-related non-Hodgkin lymphoma (AIDS-NHL), we determined EBV load longitudinally for individuals infected with human immunodeficiency virus type 1. EBV load in

  18. Six-year surveillance of Newcastle disease virus in wild birds in north-eastern Spain (Catalonia).

    Science.gov (United States)

    Napp, Sebastian; Alba, Anna; Rocha, Ana Isabel; Sánchez, Azucena; Rivas, Raquel; Majó, Natalia; Perarnau, Mireia; Massot, Cristina; Miguel, Elena San; Soler, Mercé; Busquets, Núria

    2017-02-01

    Given that Newcastle disease (ND) is one of the major threats for the poultry industry, testing of Newcastle disease virus (NDV) has been carried out since 2010 in cases of mortality in wild birds (passive surveillance) in Catalonia. The objective is to provide an early warning system to prevent the infection of poultry. Since 2010, 35 episodes of mortality in wild birds were attributed to NDV infection. Throughout this period there was a progressive expansion of NDV to new areas, with an increase in the episodes of mortality, although it is not clear whether they were the result of the spread of the virus, or of the improvement of the surveillance. Phylogenetic analyses indicate that two distinct sublineages of NDV, 4a and 4b, were circulating in Catalonia. Both sublineages seem to be endemic in the wild bird population, affecting mainly Eurasian-collared doves, with a clear pattern in relation to its spatial distribution (coincident with the distribution of this species), and its temporal distribution (with the majority of cases between September and February). So far, endemicity in wild birds has not resulted in ND outbreaks in poultry. However, there are still many uncertainties about, for example, whether NDV may expand to new areas of Catalonia (with higher poultry density), or about the threat that the apparently more novel sublineage 4a may represent. Hence, efforts should be made so that measures to prevent infection of poultry farms (particularly in high-risk areas and periods) are encouraged, and surveillance is maintained.

  19. Effect of low-pathogenicity influenza virus H3N8 infection on Mycoplasma gallisepticum infection of chickens.

    Science.gov (United States)

    Stipkovits, Laszlo; Egyed, Laszlo; Palfi, Vilmos; Beres, Andrea; Pitlik, Ervin; Somogyi, Maria; Szathmary, Susan; Denes, Bela

    2012-01-01

    Mycoplasma infection is still very common in chicken and turkey flocks. Several low-pathogenicity avian influenza (LPAI) viruses are circulating in wild birds that can be easily transmitted to poultry flocks. However, the effect of LPAI on mycoplasma infection is not well understood. The aim of the present study was to investigate the infection of LPAI virus H3N8 (A/mallard/Hungary/19616/07) in chickens challenged with Mycoplasma gallisepticum. Two groups of chickens were aerosol challenged with M. gallisepticum. Later one of these groups and one mycoplasma-free group were aerosol challenged with the LPAI H3N8 virus. The birds were observed for clinical signs for 8 days, then euthanized, and examined for the presence of M. gallisepticum in the trachea, lung, air sac, liver, spleen, kidney and heart, and for developing anti-mycoplasma and anti-viral antibodies. The LPAI H3N8 virus did not cause any clinical signs but M. gallisepticum infection caused clinical signs, reduction of body weight gain and colonization of the inner organs. These parameters were more severe in the birds co-infected with M. gallisepticum and LPAI H3N8 virus than in the group challenged with M. gallisepticum alone. In addition, in the birds infected with both M. gallisepticum and LPAI H3N8 virus, the anti-mycoplasma antibody response was reduced significantly when compared with the group challenged with M. gallisepticum alone. Co-infection with LPAI H3N8 virus thus enhanced pathogenesis of M. gallisepticum infection significantly.

  20. Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton

    Science.gov (United States)

    2018-01-01

    Herpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections. This review will focus on the currently known mechanisms utilized by HSV-1 to harness the neuronal cytoskeleton, molecular motors, and the secretory and exocytic pathways for efficient virus entry, axonal transport, replication, assembly, and exit from the distinct functional compartments (cell body and axon) of the highly polarized sensory neurons. PMID:29473915

  1. Synthetic analogues of bovine bactenecin dodecapeptide reduce herpes simplex virus type 2 infectivity in mice

    DEFF Research Database (Denmark)

    Jenssen, Håvard; Shestakov, Andrey; Hancock, Robert E. W

    2013-01-01

    We have evaluated the potential of four synthetic peptides (denoted HH-2, 1002, 1006, 1018) with a distant relationship to the host defense peptide bovine bactenecin dodecapeptide for their ability to prevent genital infections with herpes simplex virus type 2 (HSV-2) in mice. All four peptides...... infectious doses of HSV-2. These data show that peptides HH-2 and 1018 have antiviral properties and can be used to prevent genital herpes infection in mice. (C) 2013 Elsevier B.V. All rights reserved....... was introduced in human semen. Two of the peptides proved especially effective in reducing HSV-2 infection also in vivo. When admixed with virus prior to inoculation, both HH-2 and 1018 reduced viral replication and disease development in a genital model of HSV-2 infection in mice, and also when using very high...

  2. Viruses infecting reptiles.

    Science.gov (United States)

    Marschang, Rachel E

    2011-11-01

    A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch's postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions.

  3. Viruses Infecting Reptiles

    Directory of Open Access Journals (Sweden)

    Rachel E. Marschang

    2011-11-01

    Full Text Available A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The impact of many viral infections on reptile health is not known. Koch’s postulates have only been fulfilled for a limited number of reptilian viruses. As diagnostic testing becomes more sensitive, multiple infections with various viruses and other infectious agents are also being detected. In most cases the interactions between these different agents are not known. This review provides an update on viruses described in reptiles, the animal species in which they have been detected, and what is known about their taxonomic positions.

  4. [Production of monoclonal antibodies against a wild strain of rabies virus].

    Science.gov (United States)

    Akacem, O; Benmansour, A; Coulon, P; Brahimi, M; Benhassine, M

    1992-01-01

    Production of monoclonal antibodies against a wild strain of rabies virus. Cell fusion of SP 2/O, a murine myeloma against a wild strain of rabies virus has originated five monoclonal antibodies (M.A.) specific for virus nucleocapsid , one M.A. specific for virus glycoprotein and one M.A. specific for a viral membrane protein.

  5. Increased Pathogenicity of West Nile Virus (WNV by Glycosylation of Envelope Protein and Seroprevalence of WNV in Wild Birds in Far Eastern Russia

    Directory of Open Access Journals (Sweden)

    Hiroaki Kariwa

    2013-12-01

    Full Text Available In this review, we discuss the possibility that the glycosylation of West Nile (WN virus E-protein may be associated with enhanced pathogenicity and higher replication of WN virus. The results indicate that E-protein glycosylation allows the virus to multiply in a heat-stable manner and therefore, has a critical role in enhanced viremic levels and virulence of WN virus in young-chick infection model. The effect of the glycosylation of the E protein on the pathogenicity of WN virus in young chicks was further investigated. The results indicate that glycosylation of the WN virus E protein is important for viral multiplication in peripheral organs and that it is associated with the strong pathogenicity of WN virus in birds. The micro-focus reduction neutralization test (FRNT in which a large number of serum samples can be handled at once with a small volume (15 μL of serum was useful for differential diagnosis between Japanese encephalitis and WN virus infections in infected chicks. Serological investigation was performed among wild birds in the Far Eastern region of Russia using the FRNT. Antibodies specific to WN virus were detected in 21 samples of resident and migratory birds out of 145 wild bird samples in the region.

  6. Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection.

    Science.gov (United States)

    Zhang, Jie; Liu, Huan; Wei, Bin

    Herpes simplex virus type 1 (HSV-1), a neurotropic member of the alphaherpes virus family, is among the most prevalent and successful human pathogens. HSV-1 can cause serious diseases at every stage of life including fatal disseminated disease in newborns, cold sores, eye disease, and fatal encephalitis in adults. HSV-1 infection can trigger rapid immune responses, and efficient inhibition and clearance of HSV-1 infection rely on both the innate and adaptive immune responses of the host. Multiple strategies have been used to restrict host innate immune responses by HSV-1 to facilitate its infection in host cells. The adaptive immunity of the host plays an important role in inhibiting HSV-1 infections. The activation and regulation of T cells are the important aspects of the adaptive immunity. They play a crucial role in host-mediated immunity and are important for clearing HSV-1. In this review, we examine the findings on T cell immune responses during HSV-1 infection, which hold promise in the design of new vaccine candidates for HSV-1.

  7. Release of Virus from Lymphoid Tissue Affects Human Immunodeficiency Virus Type 1 and Hepatitis C Virus Kinetics in the Blood

    NARCIS (Netherlands)

    Müller, Viktor; Marée, Athanasius F.M.; Boer, R.J. de

    2000-01-01

    Kinetic parameters of human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) infections have been estimated from plasma virus levels following perturbation of the chronically infected (quasi-) steady state. We extend previous models by also considering the large pool of virus

  8. [An overview of surveillance of avian influenza viruses in wild birds].

    Science.gov (United States)

    Zhu, Yun; Shi, Jing-Hong; Shu, Yue-Long

    2014-05-01

    Wild birds (mainly Anseriformes and Charadriiformes) are recognized as the natural reservoir of avian influenza viruses (AIVs). The long-term surveillance of AIVs in wild birds has been conducted in North America and Europe since 1970s. More and more surveillance data revealed that all the HA and NA subtypes of AIVs were identified in the wild ducks, shorebirds, and gulls, and the AIVs circulating in wild birds were implicated in the outbreaks of AIVs in poultry and humans. Therefore, the AIVs in wild birds pose huge threat to poultry industry and human health. To gain a better understanding of the ecology and epidemiology of AIVs in wild birds, we summarize the transmission of AIVs between wild birds, poultry, and humans, the main results of surveillance of AIVs in wild birds worldwide and methods for surveillance, and the types of samples and detection methods for AIVs in wild birds, which would be vital for the effective control of avian influenza and response to possible influenza pandemic.

  9. Epstein-Barr virus DNA loads in adult human immunodeficiency virus type 1-infected patients receiving highly active antiretroviral therapy

    Science.gov (United States)

    Ling, Paul D.; Vilchez, Regis A.; Keitel, Wendy A.; Poston, David G.; Peng, Rong Sheng; White, Zoe S.; Visnegarwala, Fehmida; Lewis, Dorothy E.; Butel, Janet S.

    2003-01-01

    Patients with human immunodeficiency virus type 1 (HIV-1) infection are at high risk of developing Epstein-Barr virus (EBV)-associated lymphoma. However, little is known of the EBV DNA loads in patients receiving highly active antiretroviral therapy (HAART). Using a real-time quantitative polymerase chain reaction assay, we demonstrated that significantly more HIV-1-infected patients receiving HAART than HIV-1-uninfected volunteers had detectable EBV DNA in blood (57 [81%] of 70 vs. 11 [16%] of 68 patients; P=.001) and saliva (55 [79%] of 68 vs. 37 [54%] of 68 patients; P=.002). The mean EBV loads in blood and saliva samples were also higher in HIV-1-infected patients than in HIV-1-uninfected volunteers (P=.001). The frequency of EBV detection in blood was associated with lower CD4+ cell counts (P=.03) among HIV-1-infected individuals, although no differences were observed in the EBV DNA loads in blood or saliva samples in the HIV-1-infected group. Additional studies are needed to determine whether EBV-specific CD4+ and CD8+ cells play a role in the pathogenesis of EBV in HIV-1-infected patients receiving HAART.

  10. Subgenomic reporter RNA system for detection of alphavirus infection in mosquitoes.

    Directory of Open Access Journals (Sweden)

    J Jordan Steel

    Full Text Available Current methods for detecting real-time alphavirus (Family Togaviridae infection in mosquitoes require the use of recombinant viruses engineered to express a visibly detectable reporter protein. These altered viruses expressing fluorescent proteins, usually from a duplicated viral subgenomic reporter, are effective at marking infection but tend to be attenuated due to the modification of the genome. Additionally, field strains of viruses cannot be visualized using this approach unless infectious clones can be developed to insert a reporter protein. To circumvent these issues, we have developed an insect cell-based system for detecting wild-type sindbis virus infection that uses a virus inducible promoter to express a fluorescent reporter gene only upon active virus infection. We have developed an insect expression system that produces sindbis virus minigenomes containing a subgenomic promoter sequence, which produces a translatable RNA species only when infectious virus is present and providing viral replication proteins. This subgenomic reporter RNA system is able to detect wild-type Sindbis infection in cultured mosquito cells. The detection system is relatively species specific and only detects closely related viruses, but can detect low levels of alphavirus specific replication early during infection. A chikungunya virus detection system was also developed that specifically detects chikungunya virus infection. Transgenic Aedes aegypti mosquito families were established that constitutively express the sindbis virus reporter RNA and were found to only express fluorescent proteins during virus infection. This virus inducible reporter system demonstrates a novel approach for detecting non-recombinant virus infection in mosquito cell culture and in live transgenic mosquitoes.

  11. Enhanced lysis of herpes simplex virus type 1-infected mouse cell lines by NC and NK effectors

    Energy Technology Data Exchange (ETDEWEB)

    Colmenares, C.; Lopez, C.

    1986-05-01

    Spontaneously cytotoxic murine lymphocytes lysed certain cell types infected by herpes simplex virus type 1 (HSV-1) better than uninfected cells. Although HSV-1 adsorbed to the surface of all the target cells, those in which the virus replicated more efficiently were lysed to a greater extent. As targets, the authors used cell lines that, when uninfected, were spontaneously lysed by NK cells (YAC-1) or by NC cells (WEHI-164). They also used a fibroblastoid cell line (M50) and a monocytic tumor line (PU51R), which were not spontaneously killed. NK cells lysed HSV-1-infected YAC cells better than uninfected cells, and an NC-like activity selectively lysed HSV-1-infected WEHI cells. These findings were consistent with the results of experiments performed to define the role of interferon in induction of virus-augmented cytolysis. Increased lysis of YAC-HSV and PU51R-HSV was entirely due to interferon activation and was completely abolished by performing the /sup 51/Cr-release assay in the presence of anti-interferon serum. The data show that HSV-1 infection of NK/NC targets induces increased cytotoxity, but the effector cell responsible for lysis is determined by the uninfected target, or by an interaction between the virus and target cell, rather than by a viral determinant alone.

  12. Natural co-infection of influenza A/H3N2 and A/H1N1pdm09 viruses resulting in a reassortant A/H3N2 virus.

    Science.gov (United States)

    Rith, Sareth; Chin, Savuth; Sar, Borann; Y, Phalla; Horm, Srey Viseth; Ly, Sovann; Buchy, Philippe; Dussart, Philippe; Horwood, Paul F

    2015-12-01

    Despite annual co-circulation of different subtypes of seasonal influenza, co-infections between different viruses are rarely detected. These co-infections can result in the emergence of reassortant progeny. We document the detection of an influenza co-infection, between influenza A/H3N2 with A/H1N1pdm09 viruses, which occurred in a 3 year old male in Cambodia during April 2014. Both viruses were detected in the patient at relatively high viral loads (as determined by real-time RT-PCR CT values), which is unusual for influenza co-infections. As reassortment can occur between co-infected influenza A strains we isolated plaque purified clonal viral populations from the clinical material of the patient infected with A/H3N2 and A/H1N1pdm09. Complete genome sequences were completed for 7 clonal viruses to determine if any reassorted viruses were generated during the influenza virus co-infection. Although most of the viral sequences were consistent with wild-type A/H3N2 or A/H1N1pdm09, one reassortant A/H3N2 virus was isolated which contained an A/H1N1pdm09 NS1 gene fragment. The reassortant virus was viable and able to infect cells, as judged by successful passage in MDCK cells, achieving a TCID50 of 10(4)/ml at passage number two. There is no evidence that the reassortant virus was transmitted further. The co-infection occurred during a period when co-circulation of A/H3N2 and A/H1N1pdm09 was detected in Cambodia. It is unclear how often influenza co-infections occur, but laboratories should consider influenza co-infections during routine surveillance activities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Prevalence of Anti-Hepatitis E Virus Antibodies and First Detection of Hepatitis E Virus in Wild Boar in Slovenia.

    Science.gov (United States)

    Žele, Diana; Barry, Aline F; Hakze-van der Honing, Renate W; Vengušt, Gorazd; van der Poel, Wim H M

    2016-01-01

    Hepatitis E is an emerging zoonotic disease caused by hepatitis E virus (HEV). In this study, we investigated HEV presence in a wild boar (Sus scrofa) population of Slovenia. A total of 288 wild boar serum samples were collected throughout the country, and HEV infection was investigated by serology, using enzyme-linked immunosorbent assay (ELISA) and by HEV RNA detection using a real-time PCR assay. Antibodies against HEV were detected in 30.2% (87/288) of animals tested, whereas HEV RNA was detected in only one sample. This is the first evidence of HEV presence in the wild boar population in Slovenia, and these results suggest that these animals are part of the HEV epidemiological cycle in the country.

  14. A Tool for Investigating Asthma and COPD Exacerbations: A Newly Manufactured and Well Characterised GMP Wild-Type Human Rhinovirus for Use in the Human Viral Challenge Model.

    Directory of Open Access Journals (Sweden)

    Daniel J Fullen

    Full Text Available Human Rhinovirus infection is an important precursor to asthma and chronic obstructive pulmonary disease exacerbations and the Human Viral Challenge model may provide a powerful tool in studying these and other chronic respiratory diseases. In this study we have reported the production and human characterisation of a new Wild-Type HRV-16 challenge virus produced specifically for this purpose.A HRV-16 isolate from an 18 year old experimentally infected healthy female volunteer (University of Virginia Children's Hospital, USA was obtained with appropriate medical history and consent. We manufactured a new HRV-16 stock by minimal passage in a WI-38 cell line under Good Manufacturing Practice conditions. Having first subjected the stock to rigorous adventitious agent testing and determining the virus suitability for human use, we conducted an initial safety and pathogenicity clinical study in adult volunteers in our dedicated clinical quarantine facility in London.In this study we have demonstrated the new Wild-Type HRV-16 Challenge Virus to be both safe and pathogenic, causing an appropriate level of disease in experimentally inoculated healthy adult volunteers. Furthermore, by inoculating volunteers with a range of different inoculum titres, we have established the minimum inoculum titre required to achieve reproducible disease. We have demonstrated that although inoculation titres as low as 1 TCID50 can produce relatively high infection rates, the optimal titre for progression with future HRV challenge model development with this virus stock was 10 TCID50. Studies currently underway are evaluating the use of this virus as a challenge agent in asthmatics.ClinicalTrials.gov NCT02522832.

  15. Mouse adenovirus type 1 infection of macrophages

    NARCIS (Netherlands)

    Ashley, S.L.; Welton, A.R.; Harwood, K.M.; Rooijen, van N.; Spindler, K.R.

    2009-01-01

    Mouse adenovirus type 1 (MAV-1) causes acute and persistent infections in mice, with high levels of virus found in the brain, spinal cord and spleen in acute infections. MAV-1 infects endothelial cells throughout the mouse, and monocytes/macrophages have also been implicated as targets of the virus.

  16. Human T-cell leukemia virus type 2 post-transcriptional control protein p28 is required for viral infectivity and persistence in vivo

    Directory of Open Access Journals (Sweden)

    Kesic Matthew

    2008-05-01

    Full Text Available Abstract Background Human T-cell leukemia virus (HTLV type 1 and type 2 are related but distinct pathogenic complex retroviruses. HTLV-1 is associated with adult T-cell leukemia and a variety of immune-mediated disorders including the chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraparesis. In contrast, HTLV-2 displays distinct biological differences and is much less pathogenic, with only a few reported cases of leukemia and neurological disease associated with infection. In addition to the structural and enzymatic proteins, HTLV encodes regulatory (Tax and Rex and accessory proteins. Tax and Rex positively regulate virus production and are critical for efficient viral replication and pathogenesis. Using an over-expression system approach, we recently reported that the accessory gene product of the HTLV-1 and HTLV-2 open reading frame (ORF II (p30 and p28, respectively acts as a negative regulator of both Tax and Rex by binding to and retaining their mRNA in the nucleus, leading to reduced protein expression and virion production. Further characterization revealed that p28 was distinct from p30 in that it was devoid of major transcriptional modulating activity, suggesting potentially divergent functions that may be responsible for the distinct pathobiologies of HTLV-1 and HTLV-2. Results In this study, we investigated the functional significance of p28 in HTLV-2 infection, proliferation, and immortaliztion of primary T-cells in culture, and viral survival in an infectious rabbit animal model. An HTLV-2 p28 knockout virus (HTLV-2Δp28 was generated and evaluated. Infectivity and immortalization capacity of HTLV-2Δp28 in vitro was indistinguishable from wild type HTLV-2. In contrast, we showed that viral replication was severely attenuated in rabbits inoculated with HTLV-2Δp28 and the mutant virus failed to establish persistent infection. Conclusion We provide direct evidence that p28 is dispensable for

  17. Ecology of Avian Influenza Virus in Wild Birds in Tropical Africa.

    Science.gov (United States)

    Gaidet, Nicolas

    2016-05-01

    Several ecologic factors have been proposed to describe the mechanisms whereby host ecology and the environment influence the transmission of avian influenza viruses (AIVs) in wild birds, including bird's foraging behavior, migratory pattern, seasonal congregation, the rate of recruitment of juvenile birds, and abiotic factors. However, these ecologic factors are derived from studies that have been conducted in temperate or boreal regions of the Northern Hemisphere. These factors cannot be directly translated to tropical regions, where differences in host ecology and seasonality may produce different ecologic interactions between wild birds and AIV. An extensive dataset of AIV detection in wildfowl and shorebirds sampled across tropical Africa was used to analyze how the distinctive ecologic features of Afrotropical regions may influence the dynamics of AIV transmission in wild birds. The strong seasonality of rainfall and surface area of wetlands allows testing of how the seasonality of wildfowl ecology (reproduction phenology and congregation) is related to AIV seasonal dynamics. The diversity of the African wildfowl community provides the opportunity to investigate the respective influence of migratory behavior, foraging behavior, and phylogeny on species variation in infection rate. Large aggregation sites of shorebirds in Africa allow testing for the existence of AIV infection hot spots. We found that the processes whereby host ecology influence AIV transmission in wild birds in the Afrotropical context operate through ecologic factors (seasonal drying of wetlands and extended and nonsynchronized breeding periods) that are different than the one described in temperate regions, hence, resulting in different patterns of AIV infection dynamics.

  18. Seroprevalence of simian immunodeficiency virus in wild and captive born Sykes' monkeys (Cercopithecus mitis in Kenya

    Directory of Open Access Journals (Sweden)

    Otsyula Moses G

    2004-10-01

    Full Text Available Abstract Background The Sykes' monkey and related forms (Cercopithecus mitis make up an abundant, widespread and morphologically diverse species complex in eastern Africa that naturally harbors a distinct simian immunodeficiency virus (SIVsyk. We carried out a retrospective serological survey of SIV infection from both wild and captive Sykes' monkeys from Kenya. We compared two commercially available, cross-reactive ELISA tests using HIV antigens with a novel SIVsyk antigen-specific Western blot assay and analyzed the data by origin, subspecies, age and sex. Results The SIVsyk antigen-specific Western blot assay detected more serum samples as positive than either of the cross-reactive ELISA assays. Using this assay, we found that seroprevalence is higher than previously reported, but extremely variable in wild populations (from 0.0 to 90.9%. Females were infected more often than males in both wild and captive populations. Seropositive infants were common. However, no seropositive juveniles were identified. Conclusion We have developed a specific and sensitive Western blot assay for anti-SIVsyk antibody detection. Sykes' monkeys are commonly infected with SIVsyk, but with extremely variable prevalence in the wild. Higher infection prevalence in females suggests predominantly sexual transmission. High infection prevalence in infants, but none in juveniles, suggests maternal antibodies, but little or no vertical transmission.

  19. R5 human immunodeficiency virus type 1 with efficient DC-SIGN use is not selected for early after birth in vertically infected children.

    Science.gov (United States)

    Borggren, Marie; Navér, Lars; Casper, Charlotte; Ehrnst, Anneka; Jansson, Marianne

    2013-04-01

    The binding of human immunodeficiency virus (HIV) to C-type lectin receptors may result in either enhanced trans-infection of T-cells or virus degradation. We have investigated the efficacy of HIV-1 utilization of DC-SIGN, a C-type lectin receptor, in the setting of intrauterine or intrapartum mother-to-child transmission (MTCT). Viruses isolated from HIV-1-infected mothers at delivery and from their vertically infected children both shortly after birth and later during the progression of the disease were analysed for their use of DC-SIGN, binding and ability to trans-infect. DC-SIGN use of a child's earlier virus isolate tended to be reduced as compared with that of the corresponding maternal isolate. Furthermore, the children's later isolate displayed enhanced DC-SIGN utilization compared with that of the corresponding earlier virus. These results were also supported in head-to-head competition assays and suggest that HIV-1 variants displaying efficient DC-SIGN use are not selected for during intrauterine or intrapartum MTCT. However, viruses with increased DC-SIGN use may evolve later in paediatric HIV-1 infections.

  20. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Science.gov (United States)

    Davey, Matthew P.; Bruce, Toby J. A.; Caulfield, John C.; Furzer, Oliver J.; Reed, Alison; Robinson, Sophie I.; Miller, Elizabeth; Davis, Christopher N.; Pickett, John A.; Whitney, Heather M.; Glover, Beverley J.; Carr, John P.

    2016-01-01

    Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by ‘buzzing’ (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance

  1. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Directory of Open Access Journals (Sweden)

    Simon C Groen

    2016-08-01

    Full Text Available Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV-infected tomato (Solanum lycopersicum and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris. Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by 'buzzing' (sonicating the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i as female parents, by increasing the probability that ovules are fertilized; ii as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen

  2. Epidemiology of Feline Foamy Virus and Feline Immunodeficiency Virus Infections in Domestic and Feral Cats: a Seroepidemiological Study

    Science.gov (United States)

    Winkler, I. G.; Löchelt, M.; Flower, R. L. P.

    1999-01-01

    Although foamy viruses (Spumaviruses) have repeatedly been isolated from both healthy and diseased cats, cattle, and primates, the primary mode of transmission of those common viruses remains undefined. A database of the feline foamy virus (FeFV) and feline immunodeficiency virus (FIV) antibody status, age, and sex of 389 domestic cats presented to veterinarians was assembled. A similar database for 66 feral (wild) cats was also assembled. That FeFV antibody status reflects infection was validated by PCR. Both FeFV and FIV infection rates were found to gradually increase with age, and over 70% of cats older than 9 years were seropositive for FeFV. In domestic cats, the prevalence of FeFV infection was similar in both sexes. In feral cats, FeFV infection was more prevalent in female cats than in male cats. Although both FeFV and FIV have been reported to be transmitted by biting, the patterns of infection observed are more consistent with an interpretation that transmission of these two retroviruses is not the same. The prevalence of FIV infection is highest in nondesexed male cats, the animals most likely to display aggressive behavior. The gradual increase in the proportion of FeFV-infected animals is consistent with transmission of foamy viruses by intimate social contact between animals and less commonly by aggressive behavior. PMID:10449463

  3. Fatal canine distemper infection in a pack of African wild dogs in the Serengeti ecosystem, Tanzania.

    Science.gov (United States)

    Goller, Katja V; Fyumagwa, Robert D; Nikolin, Veljko; East, Marion L; Kilewo, Morris; Speck, Stephanie; Müller, Thomas; Matzke, Martina; Wibbelt, Gudrun

    2010-12-15

    In 2007, disease related mortality occurred in one African wild dog (Lycaon pictus) pack close to the north-eastern boundary of the Serengeti National Park, Tanzania. Histopathological examination of tissues from six animals revealed that the main pathologic changes comprised interstitial pneumonia and suppurative to necrotizing bronchopneumonia. Respiratory epithelial cells contained numerous eosinophilic intracytoplasmic inclusion bodies and multiple syncytial cells were found throughout the parenchymal tissue, both reacting clearly positive with antibodies against canine distemper virus (CDV) antigen. Phylogenetic analysis based on a 388 nucleotide (nt) fragment of the CDV phosphoprotein (P) gene revealed that the pack was infected with a CDV variant most closely related to Tanzanian variants, including those obtained in 1994 during a CDV epidemic in the Serengeti National Park and from captive African wild dogs in the Mkomazi Game Reserve in 2000. Phylogenetic analysis of a 335-nt fragment of the fusion (F) gene confirmed that the pack in 2007 was infected with a variant most closely related to one variant from 1994 during the epidemic in the Serengeti National Park from which a comparable fragment is available. Screening of tissue samples for concurrent infections revealed evidence of canine parvovirus, Streptococcus equi subsp. ruminatorum and Hepatozoon sp. No evidence of infection with Babesia sp. or rabies virus was found. Possible implications of concurrent infections are discussed. This is the first molecular characterisation of CDV in free-ranging African wild dogs and only the third confirmed case of fatal CDV infection in a free-ranging pack. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Distinction between infections with European and American/vaccine type PRRS virus after vaccination with a modified-live PRRS virus vaccine

    DEFF Research Database (Denmark)

    Bøtner, Anette; Strandbygaard, Bertel; Sørensen, K. J.

    2000-01-01

    In July 1996 a modified live Porcine reproductive and respiratory syndrome (PRRS) vaccine, based on an American (US) strain of the PRRS virus (PRRSV), was licensed in Denmark. The vaccine was licensed for use in 3-18 week old pigs, exclusively. Starting during the middle of October 1996, several...... herds who had recently begun vaccination, experienced acute PRRS-like symptoms including an increasing number of abortions and stillborn piglets and an increasing mortality in the nursing period. During the period from October 1996 until May 1997, the PRRS virus (PRRSV), identified as the vaccine....../US type of PRRSV, was isolated from fetuses, dead piglets, pleural fluids and/or lung tissues from 114 of such herds. These findings indicated the spread of the vaccine virus to non-vaccinated sows followed by transplacental infection of fetuses. Also, a number of not previously PRRSV infected and non...

  5. Association of Chlamydia trachomatis Infection and Herpes Simplex Virus Type 2 Serostatus With Genital Human Papillomavirus Infection in Men: The HPV in Men Study

    NARCIS (Netherlands)

    Alberts, Catharina Johanna; Schim van der Loeff, Maarten F.; Papenfuss, Mary R.; da Silva, Roberto José Carvalho; Villa, Luisa Lina; Lazcano-Ponce, Eduardo; Nyitray, Alan G.; Giuliano, Anna R.

    2013-01-01

    Background: Studies in women indicate that some sexually transmitted infections promote human papillomavirus (HPV) persistence and carcinogenesis. Little is known about this association in men; therefore, we assessed whether Chlamydia trachomatis (CT) infection and herpes simplex virus type 2

  6. Hepatitis C virus infection can mimic type 1 (antinuclear antibody positive) autoimmune chronic active hepatitis.

    Science.gov (United States)

    Pawlotsky, J M; Deforges, L; Bretagne, S; André, C; Métreau, J M; Thiers, V; Zafrani, E S; Goossens, M; Duval, J; Mavier, J P

    1993-01-01

    Hepatitis C virus (HCV) has been shown to induce anti-liver-kidney microsomal-1 (LKM1) antibody positive chronic active hepatitis, simulating type 2 autoimmune chronic active hepatitis. The cases of five patients presenting with features of type 1 (antinuclear antibody positive) autoimmune chronic active hepatitis and extrahepatic autoimmune manifestations, in whom immunosuppressive treatment had no effect on liver disease are presented. In these patients, HCV infection could be shown by the presence in serum of anti-HCV antibodies and HCV-RNA detected by polymerase chain reaction. These cases suggest the following: (a) chronic HCV infection can mimic type 1, as well as type 2, autoimmune chronic active hepatitis; (b) HCV infection might be systematically sought in patients presenting with features of type 1 autoimmune chronic active hepatitis, with special care in patients who are unresponsive to immunosuppressive treatment. Images Figure PMID:7686122

  7. TAM Receptors Are Not Required for Zika Virus Infection in Mice.

    Science.gov (United States)

    Hastings, Andrew K; Yockey, Laura J; Jagger, Brett W; Hwang, Jesse; Uraki, Ryuta; Gaitsch, Hallie F; Parnell, Lindsay A; Cao, Bin; Mysorekar, Indira U; Rothlin, Carla V; Fikrig, Erol; Diamond, Michael S; Iwasaki, Akiko

    2017-04-18

    Tyro3, Axl, and Mertk (TAM) receptors are candidate entry receptors for infection with the Zika virus (ZIKV), an emerging flavivirus of global public health concern. To investigate the requirement of TAM receptors for ZIKV infection, we used several routes of viral inoculation and compared viral replication in wild-type versus Axl -/- , Mertk -/- , Axl -/- Mertk -/- , and Axl -/- Tyro3 -/- mice in various organs. Pregnant and non-pregnant mice treated with interferon-α-receptor (IFNAR)-blocking (MAR1-5A3) antibody and infected subcutaneously with ZIKV showed no reliance on TAMs for infection. In the absence of IFNAR-blocking antibody, adult female mice challenged intravaginally with ZIKV showed no difference in mucosal viral titers. Similarly, in young mice that were infected with ZIKV intracranially or intraperitoneally, ZIKV replication occurred in the absence of TAM receptors, and no differences in cell tropism were observed. These findings indicate that, in mice, TAM receptors are not required for ZIKV entry and infection. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus.

    Science.gov (United States)

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-07-30

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.

  9. Establishment of reverse transcription loop-mediated isothermal amplification for rapid detection and differentiation of canine distemper virus infected and vaccinated animals.

    Science.gov (United States)

    Liu, Da-Fei; Liu, Chun-Guo; Tian, Jin; Jiang, Yi-Tong; Zhang, Xiao-Zhan; Chai, Hong-Liang; Yang, Tian-Kuo; Yin, Xiu-Chen; Zhang, Hong-Ying; Liu, Ming; Hua, Yu-Ping; Qu, Lian-Dong

    2015-06-01

    Although widespread vaccination against canine distemper virus (CDV) has been conducted for many decades, several canine distemper outbreaks in vaccinated animals have been reported frequently. In order to detect and differentiate the wild-type and vaccine strains of the CDV from the vaccinated animals, a novel reverse transcription loop-mediated isothermal amplification (RT-LAMP) method was developed. A set of four primers-two internal and two external-were designed to target the H gene for the specific detection of wild-type CDV variants. The CDV-H RT-LAMP assay rapidly amplified the target gene, within 60 min, using a water bath held at a constant temperature of 65°C. The assay was 100-fold more sensitive than conventional RT-PCR, with a detection limit of 10(-1)TCID50ml(-1). The system showed a preference for wild-type CDV, and exhibited less sensitivity to canine parvovirus, canine adenovirus type 1 and type 2, canine coronavirus, and canine parainfluenza virus. The assay was validated using 102 clinical samples obtained from vaccinated dog farms, and the results were comparable to a multiplex nested RT-PCR assay. The specific CDV-H RT-LAMP assay provides a simple, rapid, and sensitive tool for the detection of canines infected with wild-type CDV from canines vaccinated with attenuated vaccine. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Evaluating the role of wild songbirds or rodents in spreading avian influenza virus across an agricultural landscape

    OpenAIRE

    Houston, Derek D.; Azeem, Shahan; Lundy, Coady W.; Sato, Yuko; Guo, Baoqing; Blanchong, Julie A.; Gauger, Phillip C.; Marks, David R.; Yoon, Kyoung-Jin; Adelman, James S.

    2017-01-01

    Background Avian influenza virus (AIV) infections occur naturally in wild bird populations and can cross the wildlife-domestic animal interface, often with devastating impacts on commercial poultry. Migratory waterfowl and shorebirds are natural AIV reservoirs and can carry the virus along migratory pathways, often without exhibiting clinical signs. However, these species rarely inhabit poultry farms, so transmission into domestic birds likely occurs through other means. In many cases, human ...

  11. Biosafety of Recombinant and Wild Type Nucleopolyhedroviruses as Bioinsecticides

    Directory of Open Access Journals (Sweden)

    Bruce D. Hammock

    2007-06-01

    Full Text Available The entomopathogenic Autographa californica (Speyer nucleopolyhedrovirus (AcMNPV has been genetically modified to increase its speed of kill. The potential adverse effects of a recombinant AcMNPV (AcAaIT as well as wild type AcMNPV and wild type Spodoptera littoralis NPV (SlNPV were studied. Cotton plants were treated with these viruses at concentrations that were adjusted to resemble the recommended field application rate (4 x 1012 PIBs/feddan, feddan = 4,200 m2 and 3rd instar larvae of S. littoralis were allowed to feed on the contaminated plants. SDS-PAGE, ELISA, and DNA analyses were used to confirm that larvae that fed on these plants were virus-infected. Polyhedra that were purified from the infected larvae were subjected to structural protein analysis. A 32 KDa protein was found in polyhedra that were isolated from all of the viruses. Subtle differences were found in the size and abundance of ODV proteins. Antisera against polyhedral proteins isolated from AcAaIT polyhedra were raised in rabbits. The terminal bleeds from rabbits were screened against four coating antigens (i.e., polyhedral proteins from AcAaIT, AcAaIT from field-infected larvae (AcAaIT-field, AcMNPV, and SlNPV using a two-dimensional titration method with the coated antigen format. Competitive inhibition experiments were conducted in parallel to optimize antibody and coating antigen concentrations for ELISA. The IC50 values for each combination ranged from 1.42 to 163 μg/ml. AcAaIT-derived polyhedrin gave the lowest IC50 value, followed by those of SlNPV, AcAaIT-field, and AcMNPV. The optimized ELISA system showed low cross reactivity for AcMNPV (0.87%, AcAaIT-field (1.2%, and SlNPV (4.0%. Genomic DNAs isolated from AcAaIT that were passaged in larvae of S. littoralis that were reared in the laboratory or field did not show any detectable differences. Albino rats (male and female that were treated with AcAaIT, AcMNPV or SlNPV (either orally or by intraperitoneal

  12. Myxomatosis. The effect of age upon survival of wild and domestic rabbits (Oryctolagus cuniculus) with a degree of genetic resistance and unselected domestic rabbits infected with myxoma virus.

    Science.gov (United States)

    Sobey, W R; Conolly, D; Haycockp; Edmonds, J W

    1970-03-01

    The response of wild and domestic rabbits with a degree of genetic resistance to myxomatosis has been shown to be markedly affected by the age at which they were infected with a virulent strain of the virus. The response, in terms of mean survival time and percentage survival, fell with increasing age from 10 to 30 weeks with little change thereafter.

  13. Pestiviruses infections at the wild and domestic ruminants interface in the French Southern Alps.

    Science.gov (United States)

    Martin, Claire; Duquesne, Véronique; Adam, Gilbert; Belleau, Eric; Gauthier, Dominique; Champion, Jean-Luc; Saegerman, Claude; Thiéry, Richard; Dubois, Eric

    2015-02-25

    In alpine pasture, interspecies transmission has recently been incriminated in the epidemiology of pestivirus infection. The aim of this study was to investigate pestivirus infections in wild and domestic ruminants sharing pastures in the French Southern Alps. Animal sera were screened for pestivirus antibodies against the pestivirus NS3 protein by a commercial blocking enzyme linked immunosorbent assay (ELISA). All 38 domestic herds tested were positive for pestivirus-specific antibodies. Individual sero-prevalence reached 76.5% (95% confidence interval [95% CI]: [74.2-78.8%]) of the 1383 sheep tested. For wild ruminants, 38.7% (95% CI: [33.8-43.9%]) of the 369 chamois tested, 28.7% (95% CI: [17.4-38.1%]) of the 72 roe deer, and 22.2% (95% CI: [6.5-37.9%]) of the 27 mouflons were seropositive. Virus screening was carried out on spleen samples from hunted wild animals (n=160) and from 15 domestic ruminants (clinically suspected to be persistently infected animals), by a conventional reverse transcription-polymerase chain reaction (RT-PCR). Three pestivirus strains were isolated from the sheep samples positive by RT-PCR. The viruses were classified in the BDV-3, BDV-Tunisian and BDV-6 genotypes. For the first time, one strain (RUPI-05 strain) was isolated from an alpine chamois and clustered in the BDV-6 genotype, showing in the 5'-UTR region 92% of identity with the ovine isolate from the same area. Thus, an active circulation of pestiviruses was demonstrated in both wild and domestic ungulates from the French Southern Alps. The results suggest that interspecies transmission between sheep and chamois probably occur. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Differential stability of host mRNAs in Friend erythroleukemia cells infected with herpes simplex virus type 1

    International Nuclear Information System (INIS)

    Mayman, B.A.; Nishioka, Y.

    1985-01-01

    The consequences of herpes simplex virus type 1 infection on cellular macromolecules were investigated in Friend erythroleukemia cells. The patterns of protein synthesis, examined by polyacrylamide gel electrophoresis, demonstrated that by 4 h postinfection the synthesis of many host proteins, with the exception of histones, was inhibited. Examination of the steady-state level of histone H3 mRNA by molecular hybridization of total RNA to a cloned mouse histone H3 complementary DNA probe demonstrated that the ratio of histone H3 mRNA to total RNA remained unchanged for the first 4 h postinfection. In contrast, the steady-state levels of globin and actin mRNAs decreased progressively at early intervals postinfection. Studies on RNA synthesis in isolated nuclei demonstrated that the transcription of the histone H3 gene was inhibited to approximately the same extent as that of actin gene. It was concluded that the stabilization of preexisting histone H3 mRNA was responsible for the persistence of H3 mRNA and histone protein synthesis in herpes simplex virus type 1-infected Friend erythroleukemia cells. The possible mechanisms influencing the differential stability of host mRNAs during the course of productive infection with herpes simplex virus type 1 are discussed

  15. The nervous system in genital herpes simplex virus type 2 infections in mice. Lethal panmyelitis or nonlethal demyelinative myelitis or meningitis.

    Science.gov (United States)

    Martin, J R; Stoner, G L

    1984-11-01

    Female mice were inoculated vaginally with the MS strain of herpes simplex virus type 2, and serially positive vaginal cultures were used to confirm infection. The proportion of mice infected and the mortality rate in infected mice decreased with increasing age. In mice 12 weeks old, clinical, neuropathologic, and virologic criteria defined four patterns of disease. Moribund mice had severe genital lesions, hindleg paralysis, and urinary and fecal retention, and most died during the second week of infection. These mice had a panmyelitis with a decreasing gradient of both viral antigen and lesions extending rostrally from the lumbosacral cord into the brain stem. Lesions were about equally distributed in gray and white matter and were characterized by neuronal loss and axonal demyelination, respectively. By contrast, mice with nonfatal infections had mild or no evident genital lesions and a small proportion had mild hindleg weakness. Of these, some mice had demyelinative lesions, particularly in the lower spinal cord but also at higher cord and brain stem levels, whereas others had leptomeningitis. Both of these groups had sacral sensory root abnormalities. A third group of survivors lacked both sensory root and central nervous system abnormalities. This report defines a broader spectrum of disease patterns following infection by a natural route than has been previously appreciated. It provides the first evidence that nonfatal herpes simplex virus type 2 infection by a peripheral route can produce central nervous system demyelination. It indicates that in aseptic meningitis with this agent, the route of virus spread to the central nervous system is neural and not hematogenous. Finally, the antigenic and pathologic observations presented here complement and confirm the virus isolation data and pathologic findings of others that genital herpes simplex virus type 2 infection causes ascending infection in the peripheral and central nervous system.

  16. Eclipse Phase of Herpes Simplex Virus Type 1 Infection: Efficient Dynein-Mediated Capsid Transport without the Small Capsid Protein VP26

    Science.gov (United States)

    Döhner, Katinka; Radtke, Kerstin; Schmidt, Simone; Sodeik, Beate

    2006-01-01

    Cytoplasmic dynein,together with its cofactor dynactin, transports incoming herpes simplex virus type 1 (HSV-1) capsids along microtubules (MT) to the MT-organizing center (MTOC). From the MTOC, capsids move further to the nuclear pore, where the viral genome is released into the nucleoplasm. The small capsid protein VP26 can interact with the dynein light chains Tctex1 (DYNLT1) and rp3 (DYNLT3) and may recruit dynein to the capsid. Therefore, we analyzed nuclear targeting of incoming HSV1-ΔVP26 capsids devoid of VP26 and of HSV1-GFPVP26 capsids expressing a GFPVP26 fusion instead of VP26. To compare the cell entry of different strains, we characterized the inocula with respect to infectivity, viral genome content, protein composition, and particle composition. Preparations with a low particle-to-PFU ratio showed efficient nuclear targeting and were considered to be of higher quality than those containing many defective particles, which were unable to induce plaque formation. When cells were infected with HSV-1 wild type, HSV1-ΔVP26, or HSV1-GFPVP26, viral capsids were transported along MT to the nucleus. Moreover, when dynein function was inhibited by overexpression of the dynactin subunit dynamitin, fewer capsids of HSV-1 wild type, HSV1-ΔVP26, and HSV1-GFPVP26 arrived at the nucleus. Thus, even in the absence of the potential viral dynein receptor VP26, HSV-1 used MT and dynein for efficient nuclear targeting. These data suggest that besides VP26, HSV-1 encodes other receptors for dynein or dynactin. PMID:16873277

  17. Epidemiology of Pestivirus infection in wild ungulates of the French South Alps.

    Science.gov (United States)

    Martin, Claire; Letellier, Carine; Caij, Brigitte; Gauthier, Dominique; Jean, Nicolas; Shaffii, Anahita; Saegerman, Claude

    2011-01-27

    Inter-species transmission is often incriminated in the epidemiology of Pestivirus diseases. The purpose of this study was to investigate the prevalence of Pestivirus in some mountain wild ungulates and to determine their role in Pestivirus transmission, as mountain pastures are a place where cohabitations between wild and domestic ungulates are particularly high. Between 2003 and 2007, a longitudinal epidemiological study was carried out on hunted ungulates in the French Hautes-Alpes department. Pestivirus-specific antibodies against p80 protein (also named NS3) common to all Bovine Viral Diarrhea Virus (BVDV) and Border Disease Virus (BDV) were found in 45.9% (95% confidence interval [CI95%]: 40.5-51.3%) of the 343 tested chamois (Rupicapra rupicapra). In addition, mouflons (Ovis gmelinii musimon) were shown for the first time to be strongly infected (61.1%; CI95%: 38.6-83.6) by a Pestivirus. These serological ELISA results were confirmed by comparative virus neutralization tests, performed on seven Pestivirus strains by using 15 seropositive samples. The highest antibody titers were directed against 2 BDV strains (Av and 33s strains), rather than BDV-4, a strain responsible for Pyrenean-chamois epizooties. Virus neutralization tests confirm a BDV circulation in wild ungulates in the French South Alps. However, no Pestivirus RNA was detected by reverse-transcriptase polymerase chain reaction in serum and spleen samples from seronegative animals and no virus was isolated from those samples either. Efforts should be made to improve the protocol in order to be able to isolate and characterize the local strain. Finally, the oldness (age) and femaleness (gender) increase the risk of seroconversion in chamois. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Sequencing and phylogenetic analysis of Herpes simplex virus type ...

    African Journals Online (AJOL)

    momtaz

    2012-01-19

    Jan 19, 2012 ... Herpes simplex virus type 2 (HSV-2) is the main cause of recurrent genital infection (Slomka, 1996). Most infections are asymptomatic. The virus establishes latent infection in the local ganglia and is reactivated and shed frequently. Antibodies to HSV infections become detectable in serum samples (Koelle ...

  19. High seroprevalence of antibodies to avian influenza viruses among wild waterfowl in Alaska: implications for surveillance

    Science.gov (United States)

    Wilson, Heather M.; Hall, Jeffery S.; Flint, Paul L.; Franson, J. Christian; Ely, Craig R.; Schmutz, Joel A.; Samuel, Michael D.

    2013-01-01

    We examined seroprevalence (presence of detectable antibodies in serum) for avian influenza viruses (AIV) among 4,485 birds, from 11 species of wild waterfowl in Alaska (1998–2010), sampled during breeding/molting periods. Seroprevalence varied among species (highest in eiders (Somateria and Polysticta species), and emperor geese (Chen canagica)), ages (adults higher than juveniles), across geographic locations (highest in the Arctic and Alaska Peninsula) and among years in tundra swans (Cygnus columbianus). All seroprevalence rates in excess of 60% were found in marine-dependent species. Seroprevalence was much higher than AIV infection based on rRT-PCR or virus isolation alone. Because pre-existing AIV antibodies can infer some protection against highly pathogenic AIV (HPAI H5N1), our results imply that some wild waterfowl in Alaska could be protected from lethal HPAIV infections. Seroprevalence should be considered in deciphering patterns of exposure, differential infection, and rates of AIV transmission. Our results suggest surveillance programs include species and populations with high AIV seroprevalences, in addition to those with high infection rates. Serologic testing, including examination of serotype-specific antibodies throughout the annual cycle, would help to better assess spatial and temporal patterns of AIV transmission and overall disease dynamics.

  20. The 96th Amino Acid of the Coat Protein of Cucumber Green Mottle Mosaic Virus Affects Virus Infectivity

    Directory of Open Access Journals (Sweden)

    Zhenwei Zhang

    2017-12-01

    Full Text Available Cucumber green mottle mosaic virus (CGMMV is one of the most devastating viruses infecting members of the family Cucurbitaceae. The assembly initiation site of CGMMV is located in the coding region of the coat protein, which is not only involved in virion assembly but is also a key factor determining the long-distance movement of the virus. To understand the effect of assembly initiation site and the adjacent region on CGMMV infectivity, we created a GTT deletion mutation in the GAGGTTG assembly initiation site of the infectious clone of CGMMV, which we termed V97 (deletion mutation at residue 97 of coat protein, followed by the construction of the V94A and T104A mutants. We observed that these three mutations caused mosaic after Agrobacterium-mediated transformation in Nicotiana benthamiana, albeit with a significant delay compared to the wild type clone. The mutants also had a common spontaneous E96K mutation in the coat protein. These results indicated that the initial assembly site and the sequence of the adjacent region affected the infectivity of the virus and that E96 might play an essential role in this process. We constructed two single point mutants—E96A and E96K—and three double mutants—V94A-E96K, V97-E96K and T104A-E96K—to further understand the role of E96 in CGMMV pathogenesis. After inoculation in N. benthamiana, E96A showed delayed systemic symptoms, but the E96K and three double mutants exhibited typical symptoms of mosaic at seven days post-infection. Then, sap from CGMMV-infected N. benthamiana leaves was mechanically inoculated on watermelon plants. We confirmed that E96 affected CGMMV infection using double antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA, reverse transcription-polymerase chain reaction (RT-PCR, and sequencing, which further confirmed the successful infection of the related mutants, and that E96K can compensate the effect of the V94, V97, and T104 mutations on virus infectivity. In

  1. Herpes simplex virus type 2 infections of the central nervous system

    DEFF Research Database (Denmark)

    Omland, Lars Haukali; Vestergaard, Bent Faber; Wandall, Johan

    2008-01-01

    Herpes simplex virus type 2 (HSV-2) infections of the central nervous system (CNS) are rare with meningitis as the most common clinical presentation. We have investigated the clinical spectrum of CNS infections in 49 adult consecutive patients with HSV-2 genome in the cerebrospinal fluid (CSF). HSV......-2 in the CSF was determined by polymerase chain reaction (PCR), and patients were diagnosed as encephalitis or meningitis according to predefined clinical criteria by retrospective data information from consecutive clinical journals. The annual crude incidence rate of HSV-2 CNS disease was 0.26 per...... 100,000. 43 (88%) had meningitis of whom 8 (19%) had recurring lymphocytic meningitis. Six patients (12%) had encephalitis. 11 of 49 patients (22%) had sequelae recorded during follow-up. None died as a result of HSV-2 CNS disease. Thus, the clinical presentation of HSV-2 infection of the CNS...

  2. The ecology of avian influenza viruses in wild dabbling ducks (Anas spp. in Canada.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Papp

    Full Text Available Avian influenza virus (AIV occurrence and transmission remain important wildlife and human health issues in much of the world, including in North America. Through Canada's Inter-Agency Wild Bird Influenza Survey, close to 20,000 apparently healthy, wild dabbling ducks (of seven species were tested for AIV between 2005 and 2011. We used these data to identify and evaluate ecological and demographic correlates of infection with low pathogenic AIVs in wild dabbling ducks (Anas spp. across Canada. Generalized linear mixed effects model analyses revealed that risk of AIV infection was higher in hatch-year birds compared to adults, and was positively associated with a high proportion of hatch-year birds in the population. Males were more likely to be infected than females in British Columbia and in Eastern Provinces of Canada, but more complex relationships among age and sex cohorts were found in the Prairie Provinces. A species effect was apparent in Eastern Canada and British Columbia, where teal (A. discors and/or A. carolinensis were less likely to be infected than mallards (A. platyrhynchos. Risk of AIV infection increased with the density of the breeding population, in both Eastern Canada and the Prairie Provinces, and lower temperatures preceding sampling were associated with a higher probability of AIV infection in Eastern Canada. Our results provide new insights into the ecological and demographic factors associated with AIV infection in waterfowl.

  3. Stability of the gorilla microbiome despite simian immunodeficiency virus infection.

    Science.gov (United States)

    Moeller, Andrew H; Peeters, Martine; Ayouba, Ahidjo; Ngole, Eitel Mpoudi; Esteban, Amadine; Hahn, Beatrice H; Ochman, Howard

    2015-02-01

    Simian immunodeficiency viruses (SIVs) have been discovered in over 45 primate species; however, the pathogenic potential of most SIV strains remains unknown due to difficulties inherent in observing wild populations. Because those SIV infections that are pathogenic have been shown to induce changes in the host's gut microbiome, monitoring the microbiota present in faecal samples can provide a noninvasive means for studying the effects of SIV infection on the health of wild-living primates. Here, we examine the effects of SIVgor, a close relative of SIVcpz of chimpanzees and HIV-1 of humans, on the gut bacterial communities residing within wild gorillas, revealing that gorilla gut microbiomes are exceptionally robust to SIV infection. In contrast to the microbiomes of HIV-1-infected humans and SIVcpz-infected chimpanzees, SIVgor-infected gorilla microbiomes exhibit neither rises in the frequencies of opportunistic pathogens nor elevated rates of microbial turnover within individual hosts. Regardless of SIV infection status, gorilla microbiomes assort into enterotypes, one of which is compositionally analogous to those identified in humans and chimpanzees. The other gorilla enterotype appears specialized for a leaf-based diet and is enriched in environmentally derived bacterial genera. We hypothesize that the acquisition of this gorilla-specific enterotype was enabled by lowered immune system control over the composition of the microbiome. Our results indicate differences between the pathology of SIVgor and SIVcpz/HIV-1 infections, demonstrating the utility of investigating host microbial ecology as a means for studying disease in wild primates of high conservation priority. © 2014 John Wiley & Sons Ltd.

  4. Increased pathogenicity and shedding in chickens of a wild bird-origin low pathogenicity avian influenza virus of the H7N3 subtype following multiple in vivo passages in quail and turkey.

    Science.gov (United States)

    Cilloni, Filippo; Toffan, Anna; Giannecchini, Simone; Clausi, Valeria; Azzi, Alberta; Capua, Ilaria; Terregino, Calogero

    2010-03-01

    In order to investigate viral adaptation mechanisms to poultry, we performed serial in vivo passages of a wild bird low pathogenicity avian influenza isolate of the H7N3 subtype (A/mallard/Italy/33/01) in three different domestic species (chicken, turkey, and Japanese quail). The virus under study was administered via natural routes at the dose of 10(6) egg infective dose50/ 0.1 ml to chickens, turkeys, and quails in order to investigate the clinical susceptibility and the shedding levels after infection. Multiple in vivo passages of the virus were performed by serially infecting groups of five naive birds of each species, with samples collected from a previously infected group. Quails and turkeys were susceptible to infection for 10 serial passages, whereas chickens were susceptible to two cycles of infection only. Infection of chicken with the quail- and turkey-adapted viruses showed an increased pathogenicity and/or shedding, causing more severe clinical signs and/or higher levels of viral excretion compared to the original strain. The data obtained herein suggest that infection of selected avian species may facilitate the adaptation of avian influenza viruses originating from the wild bird reservoir to chicken. This is the first time turkey has been shown to act as a species in which a virus from the wild reservoir can increase its replication activity in other domestic species.

  5. Productive infection of human immunodeficiency virus type 1 in dendritic cells requires fusion-mediated viral entry

    International Nuclear Information System (INIS)

    Janas, Alicia M.; Dong, Chunsheng; Wang Jianhua; Wu Li

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) enters dendritic cells (DCs) through endocytosis and viral receptor-mediated fusion. Although endocytosis-mediated HIV-1 entry can generate productive infection in certain cell types, including human monocyte-derived macrophages, productive HIV-1 infection in DCs appears to be dependent on fusion-mediated viral entry. It remains to be defined whether endocytosed HIV-1 in DCs can initiate productive infection. Using HIV-1 infection and cellular fractionation assays to measure productive viral infection and entry, here we show that HIV-1 enters monocyte-derived DCs predominately through endocytosis; however, endocytosed HIV-1 cannot initiate productive HIV-1 infection in DCs. In contrast, productive HIV-1 infection in DCs requires fusion-mediated viral entry. Together, these results provide functional evidence in understanding HIV-1 cis-infection of DCs, suggesting that different pathways of HIV-1 entry into DCs determine the outcome of viral infection

  6. Epstein-Barr virus and human herpesvirus type 8 infections of the central nervous system.

    Science.gov (United States)

    Volpi, Antonio

    2004-06-01

    In developing guidelines for the improved management of herpesvirus infections of the central nervous system (CNS), the International Herpes Management Forum (IHMF) has studied Epstein-Barr virus (EBV) and human herpesvirus type 8 (HHV-8)- related diseases. EBV has been associated with numerous CNS diseases including meningitis, encephalitis and post transplant lymphoproliferative disorder (PTLD). The pathogenesis of EBV-associated CNS disorders is not completely understood but may be due to direct virus invasion of the CNS. Alternatively, damage may be immunologically mediated by infiltration of cytotoxic CD8+ lymphocytes into neural tissue or deposition of antibody-antigen complexes. The IHMF recommends that diagnosis of EBV infections of the CNS may involve polymerase chain reaction (PCR) of cerebrospinal fluid (CSF) for EBV DNA but the sensitivity and specificity of the technique remains to be determined. Furthermore, the value of PCR in this context may be limited as EBV DNA is often detected in patients without neurological symptoms. Antiviral therapy has not demonstrated clinical efficacy in the treatment of EBV-related CNS disorders. CNS complications of HHV-8 infection are rare, but the virus has been associated with AIDS-dementia complex, amyotrophic lateral sclerosis (ALS) and primary CNS lymphoma; however these links remain to be proven.

  7. Rabies virus infection in Eptesicus fuscus bats born in captivity (naïve bats.

    Directory of Open Access Journals (Sweden)

    April D Davis

    Full Text Available The study of rabies virus infection in bats can be challenging due to quarantine requirements, husbandry concerns, genetic differences among animals, and lack of medical history. To date, all rabies virus (RABV studies in bats have been performed in wild caught animals. Determining the RABV exposure history of a wild caught bat based on the presence or absence of viral neutralizing antibodies (VNA may be misleading. Previous studies have demonstrated that the presence of VNA following natural or experimental inoculation is often ephemeral. With this knowledge, it is difficult to determine if a seronegative, wild caught bat has been previously exposed to RABV. The influence of prior rabies exposure in healthy, wild caught bats is unknown. To investigate the pathogenesis of RABV infection in bats born in captivity (naïve bats, naïve bats were inoculated intramuscularly with one of two Eptesicus fuscus rabies virus variants, EfV1 or EfV2. To determine the host response to a heterologous RABV, a separate group of naïve bats were inoculated with a Lasionycteris noctivagans RABV (LnV1. Six months following the first inoculation, all bats were challenged with EfV2. Our results indicate that naïve bats may have some level of innate resistance to intramuscular RABV inoculation. Additionally, naïve bats inoculated with the LnV demonstrated the lowest clinical infection rate of all groups. However, primary inoculation with EfV1 or LnV did not appear to be protective against a challenge with the more pathogenic EfV2.

  8. Tahyna virus genetics, infectivity, and immunogenicity in mice and monkeys

    Directory of Open Access Journals (Sweden)

    Whitehead Stephen S

    2011-03-01

    Full Text Available Abstract Background Tahyna virus (TAHV is a human pathogen of the California encephalitis virus (CEV serogroup (Bunyaviridae endemic to Europe, Asia, and Africa. TAHV maintains an enzootic life cycle with several species of mosquito vectors and hares, rabbits, hedgehogs, and rodents serving as small mammal amplifying hosts. Human TAHV infection occurs in summer and early fall with symptoms of fever, headache, malaise, conjunctivitis, pharyngitis, and nausea. TAHV disease can progress to CNS involvement, although unlike related La Crosse virus (LACV, fatalities have not been reported. Human infections are frequent with neutralizing antibodies present in 60-80% of the elderly population in endemic areas. Results In order to determine the genomic sequence of wild-type TAHV, we chose three TAHV isolates collected over a 26-year period from mosquitoes. Here we present the first complete sequence of the TAHV S, M, and L segments. The three TAHV isolates maintained a highly conserved genome with both nucleotide and amino acid sequence identity greater than 99%. In order to determine the extent of genetic relatedness to other members of the CEV serogroup, we compared protein sequences of TAHV with LACV, Snowshoe Hare virus (SSHV, Jamestown Canyon virus (JCV, and Inkoo virus (INKV. By amino acid comparison, TAHV was most similar to SSHV followed by LACV, JCV, and INKV. The sequence of the GN protein is most conserved followed by L, N, GC, NSS, and NSM. In a weanling Swiss Webster mouse model, all three TAHV isolates were uniformly neurovirulent, but only one virus was neuroinvasive. In rhesus monkeys, the virus was highly immunogenic even in the absence of viremia. Cross neutralization studies utilizing monkey immune serum demonstrated that TAHV is antigenically distinct from North American viruses LACV and JCV. Conclusions Here we report the first complete sequence of TAHV and present genetic analysis of new-world viruses, LACV, SSHV, and JCV with old

  9. The characterization of low pathogenic avian influenza viruses isolated from wild birds in northern Vietnam from 2006 to 2009.

    Science.gov (United States)

    Takakuwa, Hiroki; Yamashiro, Tetsu; Le, Mai Q; Phuong, Lien S; Ozaki, Hiroichi; Tsunekuni, Ryota; Usui, Tatsufumi; Ito, Hiroshi; Yamaguchi, Tsuyoshi; Ito, Toshihiro; Murase, Toshiyuki; Ono, Etsuro; Otsuki, Koichi

    2013-12-01

    Due to concerns that wild birds could possibly spread H5N1 viruses, surveillance was conducted to monitor the types of avian influenza viruses circulating among the wild birds migrating to or inhabiting in northern Vietnam from 2006 to 2009. An H5N2 virus isolated from a Eurasian woodcock had a close phylogenetic relationship to H5 viruses recently isolated in South Korea and Japan, suggesting that H5N2 has been shared between Vietnam, South Korea, and Japan. An H9N2 virus isolated from a Chinese Hwamei was closely related to two H9N2 viruses that were isolated from humans in Hong Kong in 2009, suggesting that an H9N2 strain relevant to the human isolates had been transmitted to and maintained among the wild bird population in Vietnam and South China. The results support the idea that wild bird species play a significant role in the spread and maintenance of avian influenza and that this also occurs in Vietnam. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The transcriptional response of Drosophila melanogaster to infection with the sigma virus (Rhabdoviridae.

    Directory of Open Access Journals (Sweden)

    Jennifer Carpenter

    2009-08-01

    Full Text Available Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae that occurs in wild populations of D. melanogaster.We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females.These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus.

  11. The transcriptional response of Drosophila melanogaster to infection with the sigma virus (Rhabdoviridae).

    Science.gov (United States)

    Carpenter, Jennifer; Hutter, Stephan; Baines, John F; Roller, Julia; Saminadin-Peter, Sarah S; Parsch, John; Jiggins, Francis M

    2009-08-31

    Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster. We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females. These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus.

  12. The Transcriptional Response of Drosophila melanogaster to Infection with the Sigma Virus (Rhabdoviridae)

    Science.gov (United States)

    Baines, John F.; Roller, Julia; Saminadin-Peter, Sarah S.; Parsch, John; Jiggins, Francis M.

    2009-01-01

    Background Bacterial and fungal infections induce a potent immune response in Drosophila melanogaster, but it is unclear whether viral infections induce an antiviral immune response. Using microarrays, we examined the changes in gene expression in Drosophila that occur in response to infection with the sigma virus, a negative-stranded RNA virus (Rhabdoviridae) that occurs in wild populations of D. melanogaster. Principal Findings We detected many changes in gene expression in infected flies, but found no evidence for the activation of the Toll, IMD or Jak-STAT pathways, which control immune responses against bacteria and fungi. We identified a number of functional categories of genes, including serine proteases, ribosomal proteins and chorion proteins that were overrepresented among the differentially expressed genes. We also found that the sigma virus alters the expression of many more genes in males than in females. Conclusions These data suggest that either Drosophila do not mount an immune response against the sigma virus, or that the immune response is not controlled by known immune pathways. If the latter is true, the genes that we identified as differentially expressed after infection are promising candidates for controlling the host's response to the sigma virus. PMID:19718442

  13. Transcriptome analysis of Aedes aegypti in response to mono-infections and co-infections of dengue virus-2 and chikungunya virus.

    Science.gov (United States)

    Shrinet, Jatin; Srivastava, Pratibha; Sunil, Sujatha

    2017-10-28

    Chikungunya virus (CHIKV) and Dengue virus (DENV) spread via the bite of infected Aedes mosquitoes. Both these viruses exist as co-infections in the host as well as the vector and are known to exploit their cellular machinery for their replication. While there are studies reporting the changes in Aedes transcriptome when infected with DENV and CHIKV individually, the effect both these viruses have on the mosquitoes when present as co-infections is not clearly understood. In the present study, we infected Aedes aegypti mosquitoes with DENV and CHIKV individually and as co-infection through nanoinjections. We performed high throughput RNA sequencing of the infected Aedes aegypti to understand the changes in the Aedes transcriptome during the early stages of infection, i.e., 24 h post infection and compared the transcriptome profiles during DENV and CHIKV mono-infections with that of co-infections. We identified 190 significantly regulated genes identified in CHIKV infected library, 37 genes from DENV library and 100 genes from co-infected library and they were classified into different pathways. Our study reveal that distinct pathways and transcripts are being regulated during the three types of infection states in Aedes aegypti mosquitoes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Heterosubtypic immunity to influenza A virus infections in mallards may explain existence of multiple virus subtypes.

    Directory of Open Access Journals (Sweden)

    Neus Latorre-Margalef

    Full Text Available Wild birds, particularly duck species, are the main reservoir of influenza A virus (IAV in nature. However, knowledge of IAV infection dynamics in the wild bird reservoir, and the development of immune responses, are essentially absent. Importantly, a detailed understanding of how subtype diversity is generated and maintained is lacking. To address this, 18,679 samples from 7728 Mallard ducks captured between 2002 and 2009 at a single stopover site in Sweden were screened for IAV infections, and the resulting 1081 virus isolates were analyzed for patterns of immunity. We found support for development of homosubtypic hemagglutinin (HA immunity during the peak of IAV infections in the fall. Moreover, re-infections with the same HA subtype and related prevalent HA subtypes were uncommon, suggesting the development of natural homosubtypic and heterosubtypic immunity (p-value = 0.02. Heterosubtypic immunity followed phylogenetic relatedness of HA subtypes, both at the level of HA clades (p-value = 0.04 and the level of HA groups (p-value = 0.05. In contrast, infection patterns did not support specific immunity for neuraminidase (NA subtypes. For the H1 and H3 Clades, heterosubtypic immunity showed a clear temporal pattern and we estimated within-clade immunity to last at least 30 days. The strength and duration of heterosubtypic immunity has important implications for transmission dynamics of IAV in the natural reservoir, where immune escape and disruptive selection may increase HA antigenic variation and explain IAV subtype diversity.

  15. Mutations Inactivating Herpes Simplex Virus 1 MicroRNA miR-H2 Do Not Detectably Increase ICP0 Gene Expression in Infected Cultured Cells or Mouse Trigeminal Ganglia.

    Science.gov (United States)

    Pan, Dongli; Pesola, Jean M; Li, Gang; McCarron, Seamus; Coen, Donald M

    2017-01-15

    Herpes simplex virus 1 (HSV-1) latency entails the repression of productive ("lytic") gene expression. An attractive hypothesis to explain some of this repression involves inhibition of the expression of ICP0, a lytic gene activator, by a viral microRNA, miR-H2, which is completely complementary to ICP0 mRNA. To test this hypothesis, we engineered mutations that disrupt miR-H2 without affecting ICP0 in HSV-1. The mutant virus exhibited drastically reduced expression of miR-H2 but showed wild-type levels of infectious virus production and no increase in ICP0 expression in lytically infected cells, which is consistent with the weak expression of miR-H2 relative to the level of ICP0 mRNA in that setting. Following corneal inoculation of mice, the mutant was not significantly different from wild-type virus in terms of infectious virus production in the trigeminal ganglia during acute infection, mouse mortality, or the rate of reactivation from explanted latently infected ganglia. Critically, the mutant was indistinguishable from wild-type virus for the expression of ICP0 and other lytic genes in acutely and latently infected mouse trigeminal ganglia. The latter result may be related to miR-H2 being less effective in inhibiting ICP0 expression in transfection assays than a host microRNA, miR-138, which has previously been shown to inhibit lytic gene expression in infected ganglia by targeting ICP0 mRNA. Additionally, transfected miR-138 reduced lytic gene expression in infected cells more effectively than miR-H2. While this study provides little support for the hypothesis that miR-H2 promotes latency by inhibiting ICP0 expression, the possibility remains that miR-H2 might target other genes during latency. Herpes simplex virus 1 (HSV-1), which causes a variety of diseases, can establish lifelong latent infections from which virus can reactivate to cause recurrent disease. Latency is the most biologically interesting and clinically vexing feature of the virus. Ever since

  16. Influenza a virus migration and persistence in North American wild birds.

    Directory of Open Access Journals (Sweden)

    Justin Bahl

    Full Text Available Wild birds have been implicated in the emergence of human and livestock influenza. The successful prediction of viral spread and disease emergence, as well as formulation of preparedness plans have been hampered by a critical lack of knowledge of viral movements between different host populations. The patterns of viral spread and subsequent risk posed by wild bird viruses therefore remain unpredictable. Here we analyze genomic data, including 287 newly sequenced avian influenza A virus (AIV samples isolated over a 34-year period of continuous systematic surveillance of North American migratory birds. We use a Bayesian statistical framework to test hypotheses of viral migration, population structure and patterns of genetic reassortment. Our results reveal that despite the high prevalence of Charadriiformes infected in Delaware Bay this host population does not appear to significantly contribute to the North American AIV diversity sampled in Anseriformes. In contrast, influenza viruses sampled from Anseriformes in Alberta are representative of the AIV diversity circulating in North American Anseriformes. While AIV may be restricted to specific migratory flyways over short time frames, our large-scale analysis showed that the long-term persistence of AIV was independent of bird flyways with migration between populations throughout North America. Analysis of long-term surveillance data provides vital insights to develop appropriately informed predictive models critical for pandemic preparedness and livestock protection.

  17. Impact of managed honey bee viruses on wild bees.

    Science.gov (United States)

    Tehel, Anja; Brown, Mark Jf; Paxton, Robert J

    2016-08-01

    Several viruses found in the Western honey bee (Apis mellifera) have recently been detected in other bee species, raising the possibility of spill-over from managed to wild bee species. Alternatively, these viruses may be shared generalists across flower-visiting insects. Here we explore the former hypothesis, pointing out weaknesses in the current evidence, particularly in relation to deformed wing virus (DWV), and highlighting research areas that may help test it. Data so far suggest that DWV spills over from managed to wild bee species and has the potential to cause population decline. That DWV and other viruses of A. mellifera are found in other bee species needs to be considered for the sustainable management of bee populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Cross-Species Infectivity of H3N8 Influenza Virus in an Experimental Infection in Swine.

    Science.gov (United States)

    Solórzano, Alicia; Foni, Emanuela; Córdoba, Lorena; Baratelli, Massimiliano; Razzuoli, Elisabetta; Bilato, Dania; Martín del Burgo, María Ángeles; Perlin, David S; Martínez, Jorge; Martínez-Orellana, Pamela; Fraile, Lorenzo; Chiapponi, Chiara; Amadori, Massimo; del Real, Gustavo; Montoya, María

    2015-11-01

    Avian influenza A viruses have gained increasing attention due to their ability to cross the species barrier and cause severe disease in humans and other mammal species as pigs. H3 and particularly H3N8 viruses, are highly adaptive since they are found in multiple avian and mammal hosts. H3N8 viruses have not been isolated yet from humans; however, a recent report showed that equine influenza A viruses (IAVs) can be isolated from pigs, although an established infection has not been observed thus far in this host. To gain insight into the possibility of H3N8 avian IAVs to cross the species barrier into pigs, in vitro experiments and an experimental infection in pigs with four H3N8 viruses from different origins (equine, canine, avian, and seal) were performed. As a positive control, an H3N2 swine influenza virus A was used. Although equine and canine viruses hardly replicated in the respiratory systems of pigs, avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Interestingly, antibodies against hemagglutinin could not be detected after infection by hemagglutination inhibition (HAI) test with avian and seal viruses. This phenomenon was observed not only in pigs but also in mice immunized with the same virus strains. Our data indicated that H3N8 IAVs from wild aquatic birds have the potential to cross the species barrier and establish successful infections in pigs that might spread unnoticed using the HAI test as diagnostic tool. Although natural infection of humans with an avian H3N8 influenza A virus has not yet been reported, this influenza A virus subtype has already crossed the species barrier. Therefore, we have examined the potential of H3N8 from canine, equine, avian, and seal origin to productively infect pigs. Our results demonstrated that avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Surprisingly, we

  19. Isolation of Ancestral Sylvatic Dengue Virus Type 1, Malaysia

    Science.gov (United States)

    Teoh, Boon-Teong; Sam, Sing-Sin; Abd-Jamil, Juraina

    2010-01-01

    Ancestral sylvatic dengue virus type 1, which was isolated from a monkey in 1972, was isolated from a patient with dengue fever in Malaysia. The virus is neutralized by serum of patients with endemic DENV-1 infection. Rare isolation of this virus suggests a limited spillover infection from an otherwise restricted sylvatic cycle. PMID:21029545

  20. Testing the Effect of Internal Genes Derived from a Wild-Bird-Origin H9N2 Influenza A Virus on the Pathogenicity of an A/H7N9 Virus

    Directory of Open Access Journals (Sweden)

    Wen Su

    2015-09-01

    Full Text Available Since 2013, avian influenza A(H7N9 viruses have diversified into multiple lineages by dynamically reassorting with other viruses, especially H9N2, in Chinese poultry. Despite concerns about the pandemic threat posed by H7N9 viruses, little is known about the biological properties of H7N9 viruses that may recruit internal genes from genetically distinct H9N2 viruses circulating among wild birds. Here, we generated 63 H7N9 reassortants derived from an avian H7N9 and a wild-bird-origin H9N2 virus. Compared with the wild-type parent, 25/63 reassortants had increased pathogenicity in mice. A reassortant containing PB1 of the H9N2 virus was highly lethal to mice and chickens but was not transmissible to guinea pigs by airborne routes; however, three substitutions associated with adaptation to mammals conferred airborne transmission to the virus. The emergence of the H7N9-pandemic reassortant virus highlights that continuous monitoring of H7N9 viruses is needed, especially at the domestic poultry/wild bird interface.

  1. Herpes simplex virus latency-associated transcript sequence downstream of the promoter influences type-specific reactivation and viral neurotropism.

    Science.gov (United States)

    Bertke, Andrea S; Patel, Amita; Krause, Philip R

    2007-06-01

    Herpes simplex virus (HSV) establishes latency in sensory nerve ganglia during acute infection and may later periodically reactivate to cause recurrent disease. HSV type 1 (HSV-1) reactivates more efficiently than HSV-2 from trigeminal ganglia while HSV-2 reactivates more efficiently than HSV-1 from lumbosacral dorsal root ganglia (DRG) to cause recurrent orofacial and genital herpes, respectively. In a previous study, a chimeric HSV-2 that expressed the latency-associated transcript (LAT) from HSV-1 reactivated similarly to wild-type HSV-1, suggesting that the LAT influences the type-specific reactivation phenotype of HSV-2. To further define the LAT region essential for type-specific reactivation, we constructed additional chimeric HSV-2 viruses by replacing the HSV-2 LAT promoter (HSV2-LAT-P1) or 2.5 kb of the HSV-2 LAT sequence (HSV2-LAT-S1) with the corresponding regions from HSV-1. HSV2-LAT-S1 was impaired for reactivation in the guinea pig genital model, while its rescuant and HSV2-LAT-P1 reactivated with a wild-type HSV-2 phenotype. Moreover, recurrences of HSV-2-LAT-S1 were frequently fatal, in contrast to the relatively mild recurrences of the other viruses. During recurrences, HSV2-LAT-S1 DNA increased more in the sacral cord compared to its rescuant or HSV-2. Thus, the LAT sequence region, not the LAT promoter region, provides essential elements for type-specific reactivation of HSV-2 and also plays a role in viral neurotropism. HSV-1 DNA, as quantified by real-time PCR, was more abundant in the lumbar spinal cord, while HSV-2 DNA was more abundant in the sacral spinal cord, which may provide insights into the mechanism for type-specific reactivation and different patterns of central nervous system infection of HSV-1 and HSV-2.

  2. Ferrets as a Novel Animal Model for Studying Human Respiratory Syncytial Virus Infections in Immunocompetent and Immunocompromised Hosts

    Science.gov (United States)

    Stittelaar, Koert J.; de Waal, Leon; van Amerongen, Geert; Veldhuis Kroeze, Edwin J.B.; Fraaij, Pieter L.A.; van Baalen, Carel A.; van Kampen, Jeroen J.A.; van der Vries, Erhard; Osterhaus, Albert D.M.E.; de Swart, Rik L.

    2016-01-01

    Human respiratory syncytial virus (HRSV) is an important cause of severe respiratory tract disease in immunocompromised patients. Animal models are indispensable for evaluating novel intervention strategies in this complex patient population. To complement existing models in rodents and non-human primates, we have evaluated the potential benefits of an HRSV infection model in ferrets (Mustela putorius furo). Nine- to 12-month-old HRSV-seronegative immunocompetent or immunocompromised ferrets were infected with a low-passage wild-type strain of HRSV subgroup A (105 TCID50) administered by intra-tracheal or intra-nasal inoculation. Immune suppression was achieved by bi-daily oral administration of tacrolimus, mycophenolate mofetil, and prednisolone. Throat and nose swabs were collected daily and animals were euthanized four, seven, or 21 days post-infection (DPI). Virus loads were determined by quantitative virus culture and qPCR. We observed efficient HRSV replication in both the upper and lower respiratory tract. In immunocompromised ferrets, virus loads reached higher levels and showed delayed clearance as compared to those in immunocompetent animals. Histopathological evaluation of animals euthanized 4 DPI demonstrated that the virus replicated in the respiratory epithelial cells of the trachea, bronchi, and bronchioles. These animal models can contribute to an assessment of the efficacy and safety of novel HRSV intervention strategies. PMID:27314379

  3. Ferrets as a Novel Animal Model for Studying Human Respiratory Syncytial Virus Infections in Immunocompetent and Immunocompromised Hosts

    Directory of Open Access Journals (Sweden)

    Koert J. Stittelaar

    2016-06-01

    Full Text Available Human respiratory syncytial virus (HRSV is an important cause of severe respiratory tract disease in immunocompromised patients. Animal models are indispensable for evaluating novel intervention strategies in this complex patient population. To complement existing models in rodents and non-human primates, we have evaluated the potential benefits of an HRSV infection model in ferrets (Mustela putorius furo. Nine- to 12-month-old HRSV-seronegative immunocompetent or immunocompromised ferrets were infected with a low-passage wild-type strain of HRSV subgroup A (105 TCID50 administered by intra-tracheal or intra-nasal inoculation. Immune suppression was achieved by bi-daily oral administration of tacrolimus, mycophenolate mofetil, and prednisolone. Throat and nose swabs were collected daily and animals were euthanized four, seven, or 21 days post-infection (DPI. Virus loads were determined by quantitative virus culture and qPCR. We observed efficient HRSV replication in both the upper and lower respiratory tract. In immunocompromised ferrets, virus loads reached higher levels and showed delayed clearance as compared to those in immunocompetent animals. Histopathological evaluation of animals euthanized 4 DPI demonstrated that the virus replicated in the respiratory epithelial cells of the trachea, bronchi, and bronchioles. These animal models can contribute to an assessment of the efficacy and safety of novel HRSV intervention strategies.

  4. A chimeric measles virus with canine distemper envelope protects ferrets from lethal distemper challenge.

    Science.gov (United States)

    Rouxel, Ronan Nicolas; Svitek, Nicholas; von Messling, Veronika

    2009-08-06

    CDV infects a broad range of carnivores, and over the past decades it has caused outbreaks in a variety of wild carnivore populations. Since the currently available live-attenuated vaccine is not sufficiently safe in these highly susceptible species, we produced a chimeric virus combining the replication complex of the measles Moraten vaccine strain with the envelope of a recent CDV wild type isolate. The resulting virus did not cause disease or immunosuppression in ferrets and conferred protection from challenge with a lethal wild type strain, demonstrating its potential value for wildlife conservation efforts.

  5. Recombinant adeno-associated virus type 2 replication and packaging is entirely supported by a herpes simplex virus type 1 amplicon expressing Rep and Cap.

    Science.gov (United States)

    Conway, J E; Zolotukhin, S; Muzyczka, N; Hayward, G S; Byrne, B J

    1997-11-01

    Recombinant adeno-associated virus (AAV) type 2 (rAAV) vectors have recently been shown to have great utility as gene transfer agents both in vitro and in vivo. One of the problems associated with the use of rAAV vectors has been the difficulty of large-scale vector production. Low-efficiency plasmid transfection of the rAAV vector and complementing AAV type 2 (AAV-2) functions (rep and cap) followed by superinfection with adenovirus has been the standard approach to rAAV production. The objectives of this study were to demonstrate the ability of a recombinant herpes simplex virus type 1 (HSV-1) amplicon expressing AAV-2 Rep and Cap to support replication and packaging of rAAV vectors. HSV-1 amplicon vectors were constructed which contain the AAV-2 rep and cap genes under control of their native promoters (p5, p19, and p40). An HSV-1 amplicon vector, HSV-RC/KOS or HSV-RC/d27, was generated by supplying helper functions with either wild-type HSV-1 (KOS strain) or the ICP27-deleted mutant of HSV-1, d27-1, respectively. Replication of the amplicon stocks is not inhibited by the presence of AAV-2 Rep proteins, which highlights important differences between HSV-1 and adenovirus replication and the mechanism of providing helper function for productive AAV infection. Coinfection of rAAV and HSV-RC/KOS resulted in the replication and amplification of rAAV genomes. Similarly, rescue and replication of rAAV genomes occurred when rAAV vector plasmids were transfected into cells followed by HSV-RC/KOS infection and when two rAAV proviral cell lines were infected with HSV-RC/KOS or HSV-RC/d27. Production of infectious rAAV by rescue from two rAAV proviral cell lines has also been achieved with HSV-RC/KOS and HSV-RC/d27. The particle titer of rAAV produced with HSV-RC/d27 is equal to that achieved by supplying rep and cap by transfection followed by adenovirus superinfection. Importantly, no detectable wild-type AAV-2 is generated with this approach. These results demonstrate

  6. Chinese herbal extract Su-duxing had potent inhibitory effects on both wild-type and entecavir-resistant hepatitis B virus (HBV) in vitro and effectively suppressed HBV replication in mouse model.

    Science.gov (United States)

    Liu, Yan; Yao, Weiming; Si, Lanlan; Hou, Jun; Wang, Jiabo; Xu, Zhihui; Li, Weijie; Chen, Jianhong; Li, Ruisheng; Li, Penggao; Bo, Lvping; Xiao, Xiaohe; Lan, Jinchu; Xu, Dongping

    2018-04-24

    The present study aimed to investigate anti-HBV effect and major active compounds of Su-duxing, a medicine extracted from Chinese herbs. HBV-replicating cell lines HepG2.2.15 (wild-type) and HepG2. A64 (entecavir-resistant) were used for in vitro test. C57BL/6 mice infected by adeno-associated virus carrying 1.3 mer wild-type HBV genome were used for in vivo test. Inhibitory rates of Su-duxing (10 μg/mL) on HBV replicative intermediate and HBsAg levels were 75.1%, 51.0% in HepG2.2.15 cells and 65.2%, 42.9% in HepG2. A64 cells. The 50% inhibitory concentration of Su-duxing and entecavir on HBV replicative intermediates had 0.2-fold and 712.5-fold increase respectively for entecavir-resistant HBV compared to wild-type HBV. Mice treated with Su-duxing (45.0 mg kg -1  d -1 for 2 weeks) had 1.39 log 10 IU/mL decrease of serum HBV DNA, and 48.9% and 51.7% decrease of serum HBsAg and HBeAg levels. GeneChip and KEGG analysis proposed that anti-HBV mechanisms included relief of HBx stability and viral replication, deregulation of early cell cycle checkpoints, and induction of type I interferon. Six active compounds (Matrine, Oxymatrine, Chlorogenic acid, Sophocarpine, Baicalein, and Wogonin) against HBV were identified in Su-duxing. Greater anti-HBV effects were observed in some compound pairs compared to each single compound. In conclusion, Su-duxing had potent inhibitory effects on both wild-type and entecavir-resistant HBV. Its effects were associated with coordinated roles of active compounds in its composition. Copyright © 2018. Published by Elsevier B.V.

  7. Comparative studies of types 1 and 2 herpes simplex virus infection of cultured normal keratinocytes.

    OpenAIRE

    Su, S J; Wu, H H; Lin, Y H; Lin, H Y

    1995-01-01

    AIMS--To investigate the differences in biological properties, multiplication patterns, and cytopathic effects between type 1 and type 2 herpes simplex virus (HSV) through the replication of HSV in cultured normal human keratinocytes. METHODS--Keratinocytes were obtained from surgical specimens of normal gingiva, cervix, trunk skin, and newborn foreskin. They were cultured in serum free, chemically defined, culture medium and infected with a pool of HSV collected from clinical specimens. RESU...

  8. Seroprevalence of hepatitis E virus in domestic pigs and wild boars in Switzerland.

    Science.gov (United States)

    Burri, C; Vial, F; Ryser-Degiorgis, M-P; Schwermer, H; Darling, K; Reist, M; Wu, N; Beerli, O; Schöning, J; Cavassini, M; Waldvogel, A

    2014-12-01

    Hepatitis E is considered an emerging human viral disease in industrialized countries. Studies from Switzerland report a human seroprevalence of hepatitis E virus (HEV) of 2.6-21%, a range lower than in adjacent European countries. The aim of this study was to determine whether HEV seroprevalence in domestic pigs and wild boars is also lower in Switzerland and whether it is increasing and thus indicating that this zoonotic viral infection is emerging. Serum samples collected from 2,001 pigs in 2006 and 2011 and from 303 wild boars from 2008 to 2012 were analysed by ELISA for the presence of HEV-specific antibodies. Overall HEV seroprevalence was 58.1% in domestic pigs and 12.5% in wild boars. Prevalence in domestic pigs was significantly higher in 2006 than in 2011. In conclusion, HEV seroprevalence in domestic pigs and wild boars in Switzerland is comparable with the seroprevalence in other countries and not increasing. Therefore, prevalence of HEV in humans must be related to other factors than prevalence in pigs or wild boars. © 2014 Blackwell Verlag GmbH.

  9. Feline immunodeficiency virus and feline leukemia virus infection in free-ranging guignas (Leopardus guigna) and sympatric domestic cats in human perturbed landscapes on Chiloé Island, Chile.

    Science.gov (United States)

    Mora, Mónica; Napolitano, Constanza; Ortega, René; Poulin, Elie; Pizarro-Lucero, José

    2015-01-01

    Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) are two of the most common viruses affecting domestic cats (Felis catus). During the last two decades, reports show that both viruses also infect or affect other species of the family Felidae. Human landscape perturbation is one of the main causes of emerging diseases in wild animals, facilitating contact and transmission of pathogens between domestic and wild animals. We investigated FIV and FeLV infection in free-ranging guignas (Leopardus guigna) and sympatric domestic cats in human perturbed landscapes on Chiloé Island, Chile. Samples from 78 domestic cats and 15 guignas were collected from 2008 to 2010 and analyzed by PCR amplification and sequencing. Two guignas and two domestic cats were positive for FIV; three guignas and 26 domestic cats were positive for FeLV. The high percentage of nucleotide identity of FIV and FeLV sequences from both species suggests possible interspecies transmission of viruses, facilitated by increased contact probability through human invasion into natural habitats, fragmentation of guigna habitat, and poultry attacks by guignas. This study enhances our knowledge on the transmission of pathogens from domestic to wild animals in the global scenario of human landscape perturbation and emerging diseases.

  10. Effects of interferon on cultured cells persistently infected with viruses

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M

    1986-01-01

    The role of interferon (IFN) in viral persistence at the cellular level was investigated. Two types of persistent infections were chosen. The first type was cell lines which contained hepatitis B virus (HBV) DNA (PLC/PRF/5 and Hep 3B cells) uninfected control hepatoma cells, (Mahlavu, HA22T and Hep G2 cells) or simian virus 40 (SV40) DNA (C2, C6, C11 cells) and control uninfected (CV-1 cells). In the second type of infection Vero cells persistently infected with SSPE or Sendai virus were used. The aim of this work was to determine what effect IFN had in these infections in terms of its antiviral and antiproliferative effects; which of the two major IFN-induced pathways, E enzyme or protein kinase were induced; whether there were any differences in sensitivity to IFN between the DNA and RNA virus persistent infections. The anti-viral effect of IFN was examined by its ability to inhibit Sindbis virus replication using a radioimmunoassay system. The antiproliferative effect of IFN was determined by cell counting and /sup 3/H-thymidine incorporation. The activation of the ribonuclease F, determined by the inhibition of /sup 3/H-leucine incorporation after introduction of 2-5 actin into the cells, was variable, being activated in all cell lines with the exception of the PLC/PRF/5, Hep 3B and Hep G2 cells. Major differences between the two DNA persistent infections and the two RNA persistent infections were found. No correlation was found between the presence of HBV or SV40 persistent infections and the sensitivity of the cell lines to IFN. Both the SSPE and Sendai virus persistent infections were resistant to the antiviral and antiproliferative effect of IFN.

  11. Identification of concomitant infection with Chlamydia trachomatis IncA-negative mutant and wild-type strains by genomic, transcriptional, and biological characterizations.

    Science.gov (United States)

    Suchland, Robert J; Jeffrey, Brendan M; Xia, Minsheng; Bhatia, Ajay; Chu, Hencelyn G; Rockey, Daniel D; Stamm, Walter E

    2008-12-01

    Clinical isolates of Chlamydia trachomatis that lack IncA on their inclusion membrane form nonfusogenic inclusions and have been associated with milder, subclinical infections in patients. The molecular events associated with the generation of IncA-negative strains and their roles in chlamydial sexually transmitted infections are not clear. We explored the biology of the IncA-negative strains by analyzing their genomic structure, transcription, and growth characteristics in vitro and in vivo in comparison with IncA-positive C. trachomatis strains. Three clinical samples were identified that contained a mixture of IncA-positive and -negative same-serovar C. trachomatis populations, and two more such pairs were found in serial isolates from persistently infected individuals. Genomic sequence analysis of individual strains from each of two serovar-matched pairs showed that these pairs were very similar genetically. In contrast, the genome sequence of an unmatched IncA-negative strain contained over 5,000 nucleotide polymorphisms relative to the genome sequence of a serovar-matched but otherwise unlinked strain. Transcriptional analysis, in vitro culture kinetics, and animal modeling demonstrated that IncA-negative strains isolated in the presence of a serovar-matched wild-type strain are phenotypically more similar to the wild-type strain than are IncA-negative strains isolated in the absence of a serovar-matched wild-type strain. These studies support a model suggesting that a change from an IncA-positive strain to the previously described IncA-negative phenotype may involve multiple steps, the first of which involves a translational inactivation of incA, associated with subsequent unidentified steps that lead to the observed decrease in transcript level, differences in growth rate, and differences in mouse infectivity.

  12. Intraperitoneal Infection of Wild-Type Mice with Synthetically Generated Mammalian Prion.

    Directory of Open Access Journals (Sweden)

    Xinhe Wang

    2015-07-01

    Full Text Available The prion hypothesis postulates that the infectious agent in transmissible spongiform encephalopathies (TSEs is an unorthodox protein conformation based agent. Recent successes in generating mammalian prions in vitro with bacterially expressed recombinant prion protein provide strong support for the hypothesis. However, whether the pathogenic properties of synthetically generated prion (rec-Prion recapitulate those of naturally occurring prions remains unresolved. Using end-point titration assay, we showed that the in vitro prepared rec-Prions have infectious titers of around 104 LD50/μg. In addition, intraperitoneal (i.p. inoculation of wild-type mice with rec-Prion caused prion disease with an average survival time of 210-220 days post inoculation. Detailed pathological analyses revealed that the nature of rec-Prion induced lesions, including spongiform change, disease specific prion protein accumulation (PrP-d and the PrP-d dissemination amongst lymphoid and peripheral nervous system tissues, the route and mechanisms of neuroinvasion were all typical of classical rodent prions. Our results revealed that, similar to naturally occurring prions, the rec-Prion has a titratable infectivity and is capable of causing prion disease via routes other than direct intra-cerebral challenge. More importantly, our results established that the rec-Prion caused disease is pathogenically and pathologically identical to naturally occurring contagious TSEs, supporting the concept that a conformationally altered protein agent is responsible for the infectivity in TSEs.

  13. Interferon-lambda contributes to innate immunity of mice against influenza A virus but not against hepatotropic viruses

    DEFF Research Database (Denmark)

    Mordstein, M; Kochs, G; Dumoutier, L

    2008-01-01

    Virus-infected cells secrete a broad range of interferon (IFN) subtypes which in turn trigger the synthesis of antiviral factors that confer host resistance. IFN-alpha, IFN-beta and other type I IFNs signal through a common universally expressed cell surface receptor, whereas IFN-lambda uses....... Mice lacking functional IFN-lambda receptors were only slightly more susceptible to influenza virus than wild-type mice. However, mice lacking functional receptors for both IFN-alpha/beta and IFN-lambda were hypersensitive and even failed to restrict usually non-pathogenic influenza virus mutants...

  14. Clinical and laboratory profile of different dengue sub types in dengue virus infection

    OpenAIRE

    Niloy Gan Chaudhuri; S. Vithyavathi; K. Sankar

    2016-01-01

    Background: Dengue infection, an arthropod-borne viral hemorrhagic fever is caused by Arbovirus of Flavivirus genus and transmitted by Aedes aegypti, Aedes albopictus. Liver involvement in dengue fever is manifested by the elevation of transaminases representing reactive hepatitis, due to direct attack of virus itself or the use of hepatotoxic drugs. The objective of the study was to investigate clinical and laboratory profile of different dengue sub type's patients admitted for dengue fever....

  15. Seroprevalence of tick-borne-encephalitis virus in wild game in Mecklenburg-Western Pomerania (north-eastern Germany).

    Science.gov (United States)

    Frimmel, Silvius; Leister, Matthias; Löbermann, Micha; Feldhusen, Frerk; Seelmann, Matthias; Süss, Jochen; Reisinger, Emil Christian

    2016-10-01

    Mecklenburg-Western Pomerania, a federal state in the north east of Germany, has never been a risk area for TBEV infection, but a few autochthonous cases, along with TBEV-RNA detection in ticks, have shown a low level of activity in natural foci of the virus in the past. As wild game and domestic animals have been shown to be useful sentinels for TBEV we examined sera from wild game shot in Mecklenburg-Western Pomerania for the prevalence of TBEV antibodies. A total of 359 sera from wild game were investigated. All animals were shot in Mecklenburg-Western Pomerania in 2012. Thirteen of 359 sera tested positive or borderline for anti-TBEV-IgG with ELISA and four samples tested positive using NT. The four TBEV-positive sera confirmed by NT constitute the first detection of TBEV-antibodies in sera of wild game in Mecklenburg-Western Pomerania since 1986-1989. This underlines that the serological examination of wild game can be a useful tool in defining areas of possible TBEV infection, especially in areas of low TBEV-endemicity. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Epstein-Barr Virus Type 2 Infects T Cells in Healthy Kenyan Children.

    Science.gov (United States)

    Coleman, Carrie B; Daud, Ibrahim I; Ogolla, Sidney O; Ritchie, Julie A; Smith, Nicholas A; Sumba, Peter O; Dent, Arlene E; Rochford, Rosemary

    2017-09-15

    The 2 strains of Epstein-Barr virus (EBV), EBV type 1 (EBV-1) and EBV-2, differ in latency genes, suggesting that they use distinct mechanisms to establish latency. We previously reported that EBV-2 infects T cells in vitro. In this study, we tested the possibility that EBV-2 infects T cells in vivo. Purified T-cell fractions isolated from children positive for EBV-1 or EBV-2 and their mothers were examined for the presence of EBV and for EBV type. We detected EBV-2 in all T-cell samples obtained from EBV-2-infected children at 12 months of age, with some children retaining EBV-2-positive T cells through 24 months of age, suggesting that EBV-2 persists in T cells. We were unable to detect EBV-2 in T-cell samples from mothers but could detect EBV-2 in samples of their breast milk and saliva. These data suggest that EBV-2 uses T cells as an additional latency reservoir but that, over time, the frequency of infected T cells may drop below detectable levels. Alternatively, EBV-2 may establish a prolonged transient infection in the T-cell compartment. Collectively, these novel findings demonstrate that EBV-2 infects T cells in vivo and suggest EBV-2 may use the T-cell compartment to establish latency. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  17. Seroepidemiology of TmPV1 infection in captive and wild Florida manatees (Trichechus manatus latirostris).

    Science.gov (United States)

    Donà, Maria Gabriella; Rehtanz, Manuela; Adimey, Nicole M; Bossart, Gregory D; Jenson, Alfred B; Bonde, Robert K; Ghim, Shin-je

    2011-07-01

    In 1997, cutaneous papillomatosis caused by Florida manatee (Trichechus manatus latirostris [Tm]) papillomavirus 1 (TmPV1) was detected in seven captive manatees at the Homosassa Springs Wildlife State Park, Florida, USA, and, subsequently, in two wild manatees from the adjacent Homosassa River. Since then, papillomatosis has been reported in captive manatees housed in other locations, but not in wild animals. To determine TmPV1 antibody prevalence in captive and wild manatees sampled at various locations throughout Florida coastal regions, virus-like particles, composed of the L1 capsid protein of TmPV1, were generated with a baculovirus expression system and used to measure anti-TmPV1 antibodies in an enzyme-linked immunosorbent assay. Serologic analysis of 156 manatees revealed a TmPV1 antibody prevalence of 26.3%, with no significant difference between captive (n=39) and wild (n=117) manatees (28.2% and 25.6%, respectively). No antibody-positive wild animal showed PV-induced cutaneous lesions, whereas papillomatosis was observed in 72.7% of antibody-positive captive manatees. Our data indicate that Florida manatees living in the wild are naturally infected by TmPV1 but rarely show TmPV1-induced papillomatosis. Hence, it appears that the wild population would not be harmed in a case of contact with captive animals without visible lesions and productive infections, which could be thus released into the wild.

  18. Glycosylphosphatidylinositol-anchored CD4 supports human immunodeficiency virus type 1 replication, but not cytopathic effect, in T-cell transfectants.

    OpenAIRE

    Marshall, W L; Mittler, E S; Avery, P; Lawrence, J P; Finberg, R W

    1994-01-01

    Despite equivalent p24 antigen production, HSB-2 T cells expressing glycosylphosphatidylinositol (GPi)-linked CD4 were productively infected without cell death or syncytium formation, unlike HSB-2 transfectants expressing wild-type CD4 (wtCD4). HSB-2 transfectants dually expressing wtCD4 and GPi-linked CD4 formed syncytia and died. Thus, wtCD4 expression is critical for human immunodeficiency virus cytopathic effect in HSB-2 transfectants.

  19. Wild Birds in Romania Are More Exposed to West Nile Virus Than to Newcastle Disease Virus.

    Science.gov (United States)

    Paştiu, Anamaria Ioana; Pap, Péter László; Vágási, Csongor István; Niculae, Mihaela; Páll, Emőke; Domşa, Cristian; Brudaşcă, Florinel Ghe; Spînu, Marina

    2016-03-01

    The aim of this study was to evaluate the seroprevalence of West Nile virus (WNV) and Newcastle disease virus (NDV) in wild and domestic birds from Romania. During 2011-2014, 159 plasma samples from wild birds assigned to 11 orders, 27 families, and 61 species and from 21 domestic birds (Gallus gallus domesticus, Anas platyrhynchos domesticus) were collected. The sera were assayed by two commercial competitive enzyme-linked immunosorbent assay (cELISA) kits for antibodies against WNV and NDV. We found a high prevalence of WNV antibodies in both domestic (19.1%) and wild (32.1%) birds captured after the human epidemic in 2010. Moreover, the presence of anti-NDV antibodies among wild birds from Romania (5.4%) was confirmed serologically for the first time, as far as we are aware. Our findings provide evidence that wild birds, especially resident ones are involved in local West Nile and Newcastle disease enzootic and epizootic cycles. These may allow virus maintenance and spread and also enhance the chance of new outbreaks.

  20. Effects of time after infection, mosquito genotype, and infectious viral dose on the dynamics of Culex tarsalis vector competence for western equine encephalomyelitis virus.

    Science.gov (United States)

    Mahmood, Farida; Chiles, Robert E; Fang, Ying; Green, Emily N; Reisen, William K

    2006-06-01

    The vector competence of Culex tarsalis Coquillett for the BFS 1703 strain of western equine encephalomyelitis virus (WEEV) changed significantly as a function of time after infection, mosquito genotype, and infectious virus dose. After ingesting a high virus dose (5 log10 plaque-forming units [PFU]/0.1 ml), female of the susceptible high virus producer (HVP) strain rapidly amplified the virus, developed a disseminated infection, and efficiently transmitted WEEV by 4 days postinfection (dpi). The quantity of virus expectorated peaked at 4 dpi (mean 3.4 log10 PFU), and the percentage of females transmitting per os peaked at 7 dpi (80%); both measures of transmission subsequently decreased to low levels throughout the remainder of infected life. HVP females imbibing a low virus dose (3 log10 PFU/0.1 ml) were infected less frequently and took longer to amplify virus to levels recorded for the high virus dose group and did not transmit virus efficiently, thereby indicating midgut infection and escape barriers were dose and time dependent. These data emphasized the importance of elevated avian viremias in Cx. tarsalis vector competence. Females from the WEEV-resistant (WR) strain and two wild-type strains from Kern and Riverside counties were significantly less susceptible to infection at both high and low doses than was the HVP strain. Overall, females with a high virus titer more frequently had a disseminated infection, but there did not seem to be a distinct threshold demarcating this relationship. In marked contrast, all infected females transmitting virus had body titers >4.3 log10 PFU, and most had titers >4.8 log10 PFU. These data indicated that not all females with a disseminated infection transmitted virus because of the presence of one or more salivary gland barriers.

  1. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes.

    Science.gov (United States)

    Salazar, Ma Isabel; Richardson, Jason H; Sánchez-Vargas, Irma; Olson, Ken E; Beaty, Barry J

    2007-01-30

    To be transmitted by its mosquito vector, dengue virus (DENV) must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP) is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi). The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands) increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands) differed in their response to DENV-2 infection.

  2. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes

    Directory of Open Access Journals (Sweden)

    Olson Ken E

    2007-01-01

    Full Text Available Abstract Background To be transmitted by its mosquito vector, dengue virus (DENV must infect midgut epithelial cells, replicate and disseminate into the hemocoel, and finally infect the salivary glands, which is essential for transmission. The extrinsic incubation period (EIP is very relevant epidemiologically and is the time required from the ingestion of virus until it can be transmitted to the next vertebrate host. The EIP is conditioned by the kinetics and tropisms of virus replication in its vector. Here we document the virogenesis of DENV-2 in newly-colonized Aedes aegypti mosquitoes from Chetumal, Mexico in order to understand better the effect of vector-virus interactions on dengue transmission. Results After ingestion of DENV-2, midgut infections in Chetumal mosquitoes were characterized by a peak in virus titers between 7 and 10 days post-infection (dpi. The amount of viral antigen and viral titers in the midgut then declined, but viral RNA levels remained stable. The presence of DENV-2 antigen in the trachea was positively correlated with virus dissemination from the midgut. DENV-2 antigen was found in salivary gland tissue in more than a third of mosquitoes at 4 dpi. Unlike in the midgut, the amount of viral antigen (as well as the percent of infected salivary glands increased with time. DENV-2 antigen also accumulated and increased in neural tissue throughout the EIP. DENV-2 antigen was detected in multiple tissues of the vector, but unlike some other arboviruses, was not detected in muscle. Conclusion Our results suggest that the EIP of DENV-2 in its vector may be shorter that the previously reported and that the tracheal system may facilitate DENV-2 dissemination from the midgut. Mosquito organs (e.g. midgut, neural tissue, and salivary glands differed in their response to DENV-2 infection.

  3. Presence of Vaccine-Derived Newcastle Disease Viruses in Wild Birds.

    Directory of Open Access Journals (Sweden)

    Andrea J Ayala

    Full Text Available Our study demonstrates the repeated isolation of vaccine-derived Newcastle disease viruses from different species of wild birds across four continents from 1997 through 2014. The data indicate that at least 17 species from ten avian orders occupying different habitats excrete vaccine-derived Newcastle disease viruses. The most frequently reported isolates were detected among individuals in the order Columbiformes (n = 23, followed in frequency by the order Anseriformes (n = 13. Samples were isolated from both free-ranging (n = 47 and wild birds kept in captivity (n = 7. The number of recovered vaccine-derived viruses corresponded with the most widely utilized vaccines, LaSota (n = 28 and Hitchner B1 (n = 19. Other detected vaccine-derived viruses resembled the PHY-LMV2 and V4 vaccines, with five and two cases, respectively. These results and the ubiquitous and synanthropic nature of wild pigeons highlight their potential role as indicator species for the presence of Newcastle disease virus of low virulence in the environment. The reverse spillover of live agents from domestic animals to wildlife as a result of the expansion of livestock industries employing massive amounts of live virus vaccines represent an underappreciated and poorly studied effect of human activity on wildlife.

  4. Presence of Vaccine-Derived Newcastle Disease Viruses in Wild Birds

    Science.gov (United States)

    Ayala, Andrea J.; Dimitrov, Kiril M.; Becker, Cassidy R.; Goraichuk, Iryna V.; Arns, Clarice W.; Bolotin, Vitaly I.; Ferreira, Helena L.; Gerilovych, Anton P.; Goujgoulova, Gabriela V.; Martini, Matheus C.; Muzyka, Denys V.; Orsi, Maria A.; Scagion, Guilherme P.; Silva, Renata K.; Solodiankin, Olexii S.; Stegniy, Boris T.; Miller, Patti J.; Afonso, Claudio L.

    2016-01-01

    Our study demonstrates the repeated isolation of vaccine-derived Newcastle disease viruses from different species of wild birds across four continents from 1997 through 2014. The data indicate that at least 17 species from ten avian orders occupying different habitats excrete vaccine-derived Newcastle disease viruses. The most frequently reported isolates were detected among individuals in the order Columbiformes (n = 23), followed in frequency by the order Anseriformes (n = 13). Samples were isolated from both free-ranging (n = 47) and wild birds kept in captivity (n = 7). The number of recovered vaccine-derived viruses corresponded with the most widely utilized vaccines, LaSota (n = 28) and Hitchner B1 (n = 19). Other detected vaccine-derived viruses resembled the PHY-LMV2 and V4 vaccines, with five and two cases, respectively. These results and the ubiquitous and synanthropic nature of wild pigeons highlight their potential role as indicator species for the presence of Newcastle disease virus of low virulence in the environment. The reverse spillover of live agents from domestic animals to wildlife as a result of the expansion of livestock industries employing massive amounts of live virus vaccines represent an underappreciated and poorly studied effect of human activity on wildlife. PMID:27626272

  5. ORF43 of maize rayado fino virus is dispensable for systemic infection of maize and transmission by leafhoppers.

    Science.gov (United States)

    Edwards, Michael C; Weiland, John J; Todd, Jane; Stewart, Lucy R; Lu, Shunwen

    2016-04-01

    Maize rayado fino virus (MRFV) possesses an open reading frame (ORF43) predicted to encode a 43 kDa protein (p43) that has been postulated to be a viral movement protein. Using a clone of MRFV (pMRFV-US) from which infectious RNA can be produced, point mutations were introduced to either prevent initiation from three potential AUG initiation codons near the 5'-end of ORF43 or prematurely terminate translation of ORF43. Inoculation of maize seed via vascular puncture inoculation (VPI) resulted in plants exhibiting symptoms typical of MRFV infection for all mutants tested. Furthermore, corn leafhoppers (Dalbulus maidis) transmitted the virus mutants to healthy plants at a frequency similar to that for wild-type MRFV-US. Viral RNA recovered from plants infected with mutants both prior to and after leafhopper transmission retained mutations blocking ORF43 expression. The results indicate that ORF43 of MRFV is dispensable for both systemic infection of maize and transmission by leafhoppers.

  6. Herpes Simplex Virus Type-2 and Human Immunodeficiency Virus ...

    African Journals Online (AJOL)

    Objectives: To estimate the seroprevalence of Herpes Simplex Type 2 (HSV-2) and its association with Human Immunodeficiency Virus type 1 (HIV-1) infections in rural Kilimanjaro Tanzania. Methods: A cross-sectional survey was conducted in Oria village from March to June 2005 involving all individuals aged 15-44 years ...

  7. Host cytokine responses of pigeons infected with highly pathogenic Thai avian influenza viruses of subtype H5N1 isolated from wild birds.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Hayashi

    Full Text Available Highly pathogenic avian influenza virus (HPAIV of the H5N1 subtype has been reported to infect pigeons asymptomatically or induce mild symptoms. However, host immune responses of pigeons inoculated with HPAIVs have not been well documented. To assess host responses of pigeons against HPAIV infection, we compared lethality, viral distribution and mRNA expression of immune related genes of pigeons infected with two HPAIVs (A/Pigeon/Thailand/VSMU-7-NPT/2004; Pigeon04 and A/Tree sparrow/Ratchaburi/VSMU-16-RBR/2005; T.sparrow05 isolated from wild birds in Thailand. The survival experiment showed that 25% of pigeons died within 2 weeks after the inoculation of two HPAIVs or medium only, suggesting that these viruses did not cause lethal infection in pigeons. Pigeon04 replicated in the lungs more efficiently than T.sparrow05 and spread to multiple extrapulmonary organs such as the brain, spleen, liver, kidney and rectum on days 2, 5 and 9 post infection. No severe lesion was observed in the lungs infected with Pigeon04 as well as T.sparrow05 throughout the collection periods. Encephalitis was occasionally observed in Pigeon04- or T.sparrow05-infected brain, the severity, however was mostly mild. To analyze the expression of immune-related genes in the infected pigeons, we established a quantitative real-time PCR analysis for 14 genes of pigeons. On day 2 post infection, Pigeon04 induced mRNA expression of Mx1, PKR and OAS to a greater extent than T.sparrow05 in the lungs, however their expressions were not up-regulated concomitantly on day 5 post infection when the peak viral replication was observed. Expressions of TLR3, IFNα, IL6, IL8 and CCL5 in the lungs following infection with the two HPAIVs were low. In sum, Pigeon04 exhibited efficient replication in the lungs compared to T.sparrow05, but did not induce excessive host cytokine expressions. Our study has provided the first insight into host immune responses of pigeons against HPAIV infection.

  8. Parallel screening of wild-type and drug-resistant targets for anti-resistance neuraminidase inhibitors.

    Directory of Open Access Journals (Sweden)

    Kai-Cheng Hsu

    Full Text Available Infection with influenza virus is a major public health problem, causing serious illness and death each year. Emergence of drug-resistant influenza virus strains limits the effectiveness of drug treatment. Importantly, a dual H275Y/I223R mutation detected in the pandemic influenza A 2009 virus strain results in multidrug resistance to current neuraminidase (NA drugs. Therefore, discovery of new agents for treating multiple drug-resistant (MDR influenza virus infections is important. Here, we propose a parallel screening strategy that simultaneously screens wild-type (WT and MDR NAs, and identifies inhibitors matching the subsite characteristics of both NA-binding sites. These may maintain their potency when drug-resistant mutations arise. Initially, we analyzed the subsite of the dual H275Y/I223R NA mutant. Analysis of the site-moiety maps of NA protein structures show that the mutant subsite has a relatively small volume and is highly polar compared with the WT subsite. Moreover, the mutant subsite has a high preference for forming hydrogen-bonding interactions with polar moieties. These changes may drive multidrug resistance. Using this strategy, we identified a new inhibitor, Remazol Brilliant Blue R (RB19, an anthraquinone dye, which inhibited WT NA and MDR NA with IC(50 values of 3.4 and 4.5 µM, respectively. RB19 comprises a rigid core scaffold and a flexible chain with a large polar moiety. The former interacts with highly conserved residues, decreasing the probability of resistance. The latter forms van der Waals contacts with the WT subsite and yields hydrogen bonds with the mutant subsite by switching the orientation of its flexible side chain. Both scaffolds of RB19 are good starting points for lead optimization. The results reveal a parallel screening strategy for identifying resistance mechanisms and discovering anti-resistance neuraminidase inhibitors. We believe that this strategy may be applied to other diseases with high

  9. [Zika virus infection during pregnancy].

    Science.gov (United States)

    Picone, O; Vauloup-Fellous, C; D'Ortenzio, E; Huissoud, C; Carles, G; Benachi, A; Faye, A; Luton, D; Paty, M-C; Ayoubi, J-M; Yazdanpanah, Y; Mandelbrot, L; Matheron, S

    2016-05-01

    A Zika virus epidemic is currently ongoing in the Americas. This virus is linked to congenital infections with potential severe neurodevelopmental dysfunction. However, incidence of fetal infection and whether this virus is responsible of other fetal complications are still unknown. National and international public health authorities recommend caution and several prevention measures. Declaration of Zika virus infection is now mandatory in France. Given the available knowledge on Zika virus, we suggest here a review of the current recommendations for management of pregnancy in case of suspicious or infection by Zika virus in a pregnant woman. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. CD151, a novel host factor of nuclear export signaling in influenza virus infection.

    Science.gov (United States)

    Qiao, Yongkang; Yan, Yan; Tan, Kai Sen; Tan, Sheryl S L; Seet, Ju Ee; Arumugam, Thiruma Valavan; Chow, Vincent T K; Wang, De Yun; Tran, Thai

    2018-05-01

    Despite advances in our understanding of the mechanisms of influenza A virus (IAV) infection, the crucial virus-host interactions during the viral replication cycle still remain incomplete. Tetraspanin CD151 is highly expressed in the human respiratory tract, but its pathological role in IAV infection is unknown. We sought to characterize the functional role and mechanisms of action of CD151 in IAV infection of the upper and lower respiratory tracts with H1N1 and H3N2 strains. We used CD151-null mice in an in vivo model of IAV infection and clinical donor samples of in vitro-differentiated human nasal epithelial cells cultured at air-liquid interface. As compared with wild-type infected mice, CD151-null infected mice exhibited a significant reduction in virus titer and improvement in survival that is associated with pronounced host antiviral response and inflammasome activation together with accelerated lung repair. Interestingly, we show that CD151 complexes newly synthesized viral proteins with host nuclear export proteins and stabilizes microtubule complexes, which are key processes necessary for the polarized trafficking of viral progeny to the host plasma membrane for assembly. Our results provide new mechanistic insights into our understanding of IAV infection. We show that CD151 is a critical novel host factor of nuclear export signaling whereby the IAV nuclear export uses it to complement its own nuclear export proteins (a site not targeted by current therapy), making this regulation unique, and holds promise for the development of novel alternative/complementary strategies to reduce IAV severity. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Influence of the CCR-5/MIP-1 α axis in the pathogenesis of Rocio virus encephalitis in a mouse model.

    Science.gov (United States)

    Chávez, Juliana H; França, Rafael F O; Oliveira, Carlo J F; de Aquino, Maria T P; Farias, Kleber J S; Machado, Paula R L; de Oliveira, Thelma F M; Yokosawa, Jonny; Soares, Edson G; da Silva, João S; da Fonseca, Benedito A L; Figueiredo, Luiz T M

    2013-11-01

    Rocio virus (ROCV) caused an outbreak of human encephalitis during the 1970s in Brazil and its immunopathogenesis remains poorly understood. CC-chemokine receptor 5 (CCR5) is a chemokine receptor that binds to macrophage inflammatory protein (MIP-1 α). Both molecules are associated with inflammatory cells migration during infections. In this study, we demonstrated the importance of the CCR5 and MIP-1 α, in the outcome of viral encephalitis of ROCV-infected mice. CCR5 and MIP-1 α knockout mice survived longer than wild-type (WT) ROCV-infected animals. In addition, knockout mice had reduced inflammation in the brain. Assessment of brain viral load showed mice virus detection five days post-infection in wild-type and CCR5-/- mice, while MIP-1 α-/- mice had lower viral loads seven days post-infection. Knockout mice required a higher lethal dose than wild-type mice as well. The CCR5/MIP-1 α axis may contribute to migration of infected cells to the brain and consequently affect the pathogenesis during ROCV infection.

  12. Characterization and detection of Vero cells infected with Herpes Simplex Virus type 1 using Raman spectroscopy and advanced statistical methods.

    Science.gov (United States)

    Salman, A; Shufan, E; Zeiri, L; Huleihel, M

    2014-07-01

    Herpes viruses are involved in a variety of human disorders. Herpes Simplex Virus type 1 (HSV-1) is the most common among the herpes viruses and is primarily involved in human cutaneous disorders. Although the symptoms of infection by this virus are usually minimal, in some cases HSV-1 might cause serious infections in the eyes and the brain leading to blindness and even death. A drug, acyclovir, is available to counter this virus. The drug is most effective when used during the early stages of the infection, which makes early detection and identification of these viral infections highly important for successful treatment. In the present study we evaluated the potential of Raman spectroscopy as a sensitive, rapid, and reliable method for the detection and identification of HSV-1 viral infections in cell cultures. Using Raman spectroscopy followed by advanced statistical methods enabled us, with sensitivity approaching 100%, to differentiate between a control group of Vero cells and another group of Vero cells that had been infected with HSV-1. Cell sites that were "rich in membrane" gave the best results in the differentiation between the two categories. The major changes were observed in the 1195-1726 cm(-1) range of the Raman spectrum. The features in this range are attributed mainly to proteins, lipids, and nucleic acids. Copyright © 2014. Published by Elsevier Inc.

  13. Flavone Enhances Dengue Virus Type-2 (NGC Strain Infectivity and Replication in Vero Cells

    Directory of Open Access Journals (Sweden)

    Keivan Zandi

    2012-02-01

    Full Text Available This study investigates the effects of 2-phenyl-1-benzopyran-4-one (flavone on DENV-2 infectivity in Vero cells. Virus adsorption and attachment and intracellular virus replication were investigated using a foci forming unit assay (FFUA and quantitative RT-PCR, respectively. Addition of flavone (100 μg/mL significantly increased the number of DENV-2 foci by 35.66% ± 1.52 and 49.66% ± 2.51 when added during and after virus adsorption to the Vero cells, respectively. The average foci size after 4 days of infection increased by 33% ± 2.11 and 89% ± 2.13. The DENV-2 specific RNA copy number in the flavone-treated infected cells increased by 6.41- and 23.1-fold when compared to the mock-treated infected cells. Flavone (100 μg/mL did not promote or inhibit Vero cell proliferation. The CC50 value of flavone against Vero cells was 446 µg/mL. These results suggest that flavone might enhance dengue virus replication by acting antagonistically towards flavonoids known to inhibit dengue virus replication.

  14. Seroepidemiological Studies of Crimean-Congo Hemorrhagic Fever Virus in Domestic and Wild Animals.

    Directory of Open Access Journals (Sweden)

    Jessica R Spengler

    2016-01-01

    Full Text Available Crimean-Congo hemorrhagic fever (CCHF is a widely distributed, tick-borne viral disease. Humans are the only species known to develop illness after CCHF virus (CCHFV infection, characterized by a nonspecific febrile illness that can progress to severe, often fatal, hemorrhagic disease. A variety of animals may serve as asymptomatic reservoirs of CCHFV in an endemic cycle of transmission. Seroepidemiological studies have been instrumental in elucidating CCHFV reservoirs and in determining endemic foci of viral transmission. Herein, we review over 50 years of CCHFV seroepidemiological studies in domestic and wild animals. This review highlights the role of livestock in the maintenance and transmission of CCHFV, and provides a detailed summary of seroepidemiological studies of wild animal species, reflecting their relative roles in CCHFV ecology.

  15. Multicentric T-cell lymphoma associated with feline leukemia virus infection in a captive namibian cheetah (Acinonyx jubatus).

    Science.gov (United States)

    Marker, Laurie; Munson, Linda; Basson, Peter A; Quackenbush, Sandra

    2003-07-01

    This case report describes a multicentric lymphoma in a 4 yr old female wildborn captive cheetah (Acinonyx jubatus) in Namibia after being housed in an enclosure adjacent to a feline leukemia virus (FeLV) infected cheetah that had previously been in contact with domestic cats. The year prior to the onset of clinical signs, the wild-born cheetah was FeLV antigen negative. The cheetah subsequently developed lymphoma, was found to be infected with FeLV, and then rapidly deteriorated and died. At necropsy, the liver, spleen, lymph nodes, and multiple other organs were extensively infiltrated with neoplastic T-lymphocytes. Feline leukemia virus DNA was identified in neoplastic lymphocytes from multiple organs by polymerase chain reaction and Southern blot analysis. Although the outcome of infection in this cheetah resembles that of FeLV infections in domestic cats, the transmission across an enclosure fence was unusual and may indicate a heightened susceptibility to infection in cheetahs. Caution should be exercised in holding and translocating cheetahs where contact could be made with FeLV-infected domestic, feral, or wild felids.

  16. Wolbachia and dengue virus infection in the mosquito Aedes fluviatilis (Diptera: Culicidae.

    Directory of Open Access Journals (Sweden)

    Jéssica Barreto Lopes Silva

    Full Text Available Dengue represents a serious threat to human health, with billions of people living at risk of the disease. Wolbachia pipientis is a bacterial endosymbiont common to many insect species. Wolbachia transinfections in mosquito disease vectors have great value for disease control given the bacterium's ability to spread into wild mosquito populations, and to interfere with infections of pathogens, such as dengue virus. Aedes fluviatilis is a mosquito with a widespread distribution in Latin America, but its status as a dengue vector has not been clarified. Ae. fluviatilis is also naturally infected by the wFlu Wolbachia strain, which has been demonstrated to enhance infection with the avian malarial parasite Plasmodium gallinaceum. We performed experimental infections of Ae. fluviatilis with DENV-2 and DENV-3 isolates from Brazil via injection or oral feeding to provide insight into its competence for the virus. We also examined the effect of the native Wolbachia infection on the virus using a mosquito line where the wFlu infection had been cleared by antibiotic treatment. Through RT-qPCR, we observed that Ae. fluviatilis could become infected with both viruses via either method of infection, although at a lower rate than Aedes aegypti, the primary dengue vector. We then detected DENV-2 and DENV-3 in the saliva of injected mosquitoes, and observed that injection of DENV-3-infected saliva produced subsequent infections in naïve Ae. aegypti. However, across our data we observed no difference in prevalence of infection and viral load between Wolbachia-infected and -uninfected mosquitoes, suggesting that there is no effect of wFlu on dengue virus. Our results highlight that Ae. fluviatilis could potentially serve as a dengue vector under the right circumstances, although further testing is required to determine if this occurs in the field.

  17. Surveillance for highly pathogenic avian influenza virus in wild birds during outbreaks in domestic poultry, Minnesota, 2015

    Science.gov (United States)

    Jennelle, Christopher S.; Carstensen, Michelle; Hildebrand, Erik C.; Cornicelli, Louis; Wolf, Paul C.; Grear, Daniel A.; Ip, Hon S.; VanDalen, Kaci K.; Minicucci, Larissa A.

    2016-01-01

    In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To clarify the role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9–June 4, 2015. HPAIV was isolated from a Cooper’s hawk but not from waterfowl.

  18. Translation efficiency determines differences in cellular infection among dengue virus type 2 strains

    International Nuclear Information System (INIS)

    Edgil, Dianna; Diamond, Michael S.; Holden, Katherine L.; Paranjape, Suman M.; Harris, Eva

    2003-01-01

    We have investigated the molecular basis for differences in the ability of natural variants of dengue virus type 2 (DEN2) to replicate in primary human cells. The rates of virus binding, virus entry, input strand translation, and RNA stability of low-passage Thai and Nicaraguan and prototype DEN2 strains were compared. All strains exhibited equivalent binding, entry, and uncoating, and displayed comparable stability of positive strand viral RNA over time in primary cells. However, the low-passage Nicaraguan isolates were much less efficient in their ability to translate viral proteins. Sequence analysis of the full-length low-passage Nicaraguan and Thai viral genomes identified specific differences in the 3' untranslated region (3'UTR). Substitution of the different sequences into chimeric RNA reporter constructs demonstrated that the changes in the 3'UTR directly affected the efficiency of viral translation. Thus, differences in infectivity among closely related DEN2 strains correlate with efficiency of translation of input viral RNA

  19. Differential expression pattern of Vago in bumblebee (Bombus terrestris), induced by virulent and avirulent virus infections.

    Science.gov (United States)

    Niu, Jinzhi; Meeus, Ivan; Smagghe, Guy

    2016-09-29

    Viruses are one of the main drivers of the decline of domesticated and wild bees but the mechanisms of antiviral immunity in pollinators are poorly understood. Recent work has suggested that next to the small interfering RNA (siRNA) pathway other immune-related pathways play a role in the defense of the bee hosts against viral infection. In addition, Vago plays a role in the cross-talk between the innate immune pathways in Culex mosquito cells. Here we describe the Vago orthologue in bumblebees of Bombus terrestris, and investigated its role upon the infection of two different bee viruses, the virulent Israeli acute paralysis virus (IAPV) and the avirulent slow bee paralysis virus (SBPV). Our results showed that BtVago was downregulated upon the infection of IAPV that killed all bumblebees, but not with SBPV where the workers survived the virus infection. Thus, for the first time, Vago/Vago-like expression appears to be associated with the virulence of virus and may act as a modulator of antiviral immunity.

  20. Influenza A virus infections in marine mammals and terrestrial carnivores.

    Science.gov (United States)

    Harder, Timm C; Siebert, Ursula; Wohlsein, Peter; Vahlenkamp, Thomas

    2013-01-01

    Influenza A viruses (IAV), members of the Orthomyxoviridae, cover a wide host spectrum comprising a plethora of avian and, in comparison, a few mammalian species. The viral reservoir and gene pool are kept in metapopulations of aquatic wild birds. The mammalian-adapted IAVs originally arose by transspecies transmission from avian sources. In swine, horse and man, species-adapted IAV lineages circulate independently of the avian reservoir and cause predominantly respiratory disease of highly variable severity. Sporadic outbreaks of IAV infections associated with pneumonic clinical signs have repeatedly occurred in marine mammals (harbour seals [Phoca vitulina]) off the New England coast of the U.S.A. due to episodic transmission of avian IAV. However, no indigenous marine mammal IAV lineages are described. In contrast to marine mammals, avian- and equine-derived IAVs have formed stable circulating lineages in terrestrial carnivores: IAVs of subtype H3N2 and H3N8 are found in canine populations in South Korea, China, and the U.S.A. Experimental infections revealed that dogs and cats can be infected with an even wider range of avian IAVs. Cats, in particular, also proved susceptible to native infection with human pandemic H1N1 viruses and, according to serological data, may be vulnerable to infection with further human-adapted IAVs. Ferrets are susceptible to a variety of avian and mammalian IAVs and are an established animal model of human IAV infection. Thus, a potential role of pet cats, dogs and ferrets as mediators of avian-derived viruses to the human population does exist. A closer observation for influenza virus infections and transmissions at this animal-human interface is indicated.

  1. Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein.

    Science.gov (United States)

    Cunningham, C; Davison, A J; MacLean, A R; Taus, N S; Baines, J D

    2000-01-01

    Herpes simplex virus type 1 (HSV-1) gene UL14 is located between divergently transcribed genes UL13 and UL15 and overlaps the promoters for both of these genes. UL14 also exhibits a substantial overlap of its coding region with that of UL13. It is one of the few HSV-1 genes for which a phenotype and protein product have not been described. Using mass spectrometric and immunological approaches, we demonstrated that the UL14 protein is a minor component of the virion tegument of 32 kDa which is expressed late in infection. In infected cells, the UL14 protein was detected in the nucleus at discrete sites within electron-dense nuclear bodies and in the cytoplasm initially in a diffuse distribution and then at discrete sites. Some of the UL14 protein was phosphorylated. A mutant with a 4-bp deletion in the central region of UL14 failed to produce the UL14 protein and generated small plaques. The mutant exhibited an extended growth cycle at low multiplicity of infection and appeared to be compromised in efficient transit of virus particles from the infected cell. In mice injected intracranially, the 50% lethal dose of the mutant was reduced more than 30,000-fold. Recovery of the mutant from the latently infected sacral ganglia of mice injected peripherally was significantly less than that of wild-type virus, suggesting a marked defect in the establishment of, or reactivation from, latent infection.

  2. Cellular gene expression upon human immunodeficiency virus type 1 infection of CD4(+)-T-cell lines

    NARCIS (Netherlands)

    van 't Wout, Angélique B.; Lehrman, Ginger K.; Mikheeva, Svetlana A.; O'Keeffe, Gemma C.; Katze, Michael G.; Bumgarner, Roger E.; Geiss, Gary K.; Mullins, James I.

    2003-01-01

    The expression levels of approximately 4,600 cellular RNA transcripts were assessed in CD4(+)-T-cell lines at different times after infection with human immunodeficiency virus type 1 strain BRU (HIV-1(BRU)) using DNA microarrays. We found that several classes of genes were inhibited by HIV-1(BRU)

  3. Computational fitness landscape for all gene-order permutations of an RNA virus.

    Directory of Open Access Journals (Sweden)

    Kwang-il Lim

    2009-02-01

    Full Text Available How does the growth of a virus depend on the linear arrangement of genes in its genome? Answering this question may enhance our basic understanding of virus evolution and advance applications of viruses as live attenuated vaccines, gene-therapy vectors, or anti-tumor therapeutics. We used a mathematical model for vesicular stomatitis virus (VSV, a prototype RNA virus that encodes five genes (N-P-M-G-L, to simulate the intracellular growth of all 120 possible gene-order variants. Simulated yields of virus infection varied by 6,000-fold and were found to be most sensitive to gene-order permutations that increased levels of the L gene transcript or reduced levels of the N gene transcript, the lowest and highest expressed genes of the wild-type virus, respectively. Effects of gene order on virus growth also depended upon the host-cell environment, reflecting different resources for protein synthesis and different cell susceptibilities to infection. Moreover, by computationally deleting intergenic attenuations, which define a key mechanism of transcriptional regulation in VSV, the variation in growth associated with the 120 gene-order variants was drastically narrowed from 6,000- to 20-fold, and many variants produced higher progeny yields than wild-type. These results suggest that regulation by intergenic attenuation preceded or co-evolved with the fixation of the wild type gene order in the evolution of VSV. In summary, our models have begun to reveal how gene functions, gene regulation, and genomic organization of viruses interact with their host environments to define processes of viral growth and evolution.

  4. Generation of a human immunodeficiency virus type 1 chronically infected monkey B cell line expressing low levels of endogenous TRIM5alpha.

    Science.gov (United States)

    Ridolfi, Barbara; Catone, Stefania; Sgarbanti, Marco; Sernicola, Leonardo; Battistini, Angela; Parolin, Cristina; Titti, Fausto; Borsetti, Alessandra

    2009-12-01

    Several innate cellular antiviral factors exist in mammalian cells that prevent the replication of retroviruses. Among them, the tripartite motif protein (TRIM)5alpha has been shown to block human immunodeficiency virus type 1 (HIV-1) infection in several types of Old World monkey cells. Here we report a novel HIV-1 chronically infected monkey B cell line, F6/HIV-1, characterized by very low levels of TRIM5alpha expression that allows HIV-1 to overcome the restriction. Virus produced by F6/HIV-1 cells fails to infect monkey cells but retains the ability to infect human peripheral blood mononuclear cells (PBMCs) and T cell lines, although with a reduced infectivity compared to the input virus. Ultrastructural analyses revealed the presence of budding virions at the F6/HIV-1 cells plasma membrane characterized by a typical conical core shell. To our knowledge F6/HIV-1 is the first monkey cell line chronically infected by HIV-1 and able to release infectious particles thus representing a useful tool to gain further insights into the molecular mechanisms of HIV-1 pathogenesis.

  5. The Conserved Proline18 in the Polerovirus P3a Is Important for Brassica Yellows Virus Systemic Infection

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Zhang

    2018-04-01

    Full Text Available ORF3a, a newly identified non-AUG-initiated ORF encoded by members of genera Polerovirus and Luteovirus, is required for long-distance movement in plants. However, the mechanism of action of P3a in viral systemic movement is still not clear. In this study, sequencing of a brassica yellows virus (BrYV mutant defective in systemic infection revealed two-nucleotide variation at positions 3406 and 3467 in the genome. Subsequent nucleotide substitution analysis proved that only the non-synonymous substitution (C→U at position 3406, resulting in P3aP18L, abolished the systemic infection of BrYV. Preliminary investigation showed that wild type BrYV was able to load into the petiole of the agroinfiltrated Nicotiana benthamiana leaves, whereas the mutant displayed very low efficiency. Further experiments revealed that the P3a and its mutant P3aP18L localized to the Golgi apparatus and near plasmodesmata, as well as the endoplasmic reticulum. Both P3a and P3aP18L were able to self-interact in vivo, however, the mutant P3aP18L seemed to form more stable dimer than wild type. More interestingly, we confirmed firstly that the ectopic expression of P3a of other poleroviruses and luteoviruses, as well as co-infection with Pea enation mosaic virus 2 (PEMV 2, restored the ability of systemic movement of BrYV P3a defective mutant, indicating that the P3a is functionally conserved in poleroviruses and luteoviruses and is redundant when BrYV co-infects with PEMV 2. These observations provide a novel insight into the conserved function of P3a and its underlying mechanism in the systemic infection.

  6. The Conserved Proline18 in the Polerovirus P3a Is Important for Brassica Yellows Virus Systemic Infection.

    Science.gov (United States)

    Zhang, Xiao-Yan; Zhao, Tian-Yu; Li, Yuan-Yuan; Xiang, Hai-Ying; Dong, Shu-Wei; Zhang, Zong-Ying; Wang, Ying; Li, Da-Wei; Yu, Jia-Lin; Han, Cheng-Gui

    2018-01-01

    ORF3a, a newly identified non-AUG-initiated ORF encoded by members of genera Polerovirus and Luteovirus , is required for long-distance movement in plants. However, the mechanism of action of P3a in viral systemic movement is still not clear. In this study, sequencing of a brassica yellows virus (BrYV) mutant defective in systemic infection revealed two-nucleotide variation at positions 3406 and 3467 in the genome. Subsequent nucleotide substitution analysis proved that only the non-synonymous substitution (C→U) at position 3406, resulting in P3a P18L , abolished the systemic infection of BrYV. Preliminary investigation showed that wild type BrYV was able to load into the petiole of the agroinfiltrated Nicotiana benthamiana leaves, whereas the mutant displayed very low efficiency. Further experiments revealed that the P3a and its mutant P3a P18L localized to the Golgi apparatus and near plasmodesmata, as well as the endoplasmic reticulum. Both P3a and P3a P18L were able to self-interact in vivo , however, the mutant P3a P18L seemed to form more stable dimer than wild type. More interestingly, we confirmed firstly that the ectopic expression of P3a of other poleroviruses and luteoviruses, as well as co-infection with Pea enation mosaic virus 2 (PEMV 2), restored the ability of systemic movement of BrYV P3a defective mutant, indicating that the P3a is functionally conserved in poleroviruses and luteoviruses and is redundant when BrYV co-infects with PEMV 2. These observations provide a novel insight into the conserved function of P3a and its underlying mechanism in the systemic infection.

  7. Use of tissue-specific microRNA to control pathology of wild-type adenovirus without attenuation of its ability to kill cancer cells.

    Science.gov (United States)

    Cawood, Ryan; Chen, Hannah H; Carroll, Fionnadh; Bazan-Peregrino, Miriam; van Rooijen, Nico; Seymour, Leonard W

    2009-05-01

    Replicating viruses have broad applications in biomedicine, notably in cancer virotherapy and in the design of attenuated vaccines; however, uncontrolled virus replication in vulnerable tissues can give pathology and often restricts the use of potent strains. Increased knowledge of tissue-selective microRNA expression now affords the possibility of engineering replicating viruses that are attenuated at the RNA level in sites of potential pathology, but retain wild-type replication activity at sites not expressing the relevant microRNA. To assess the usefulness of this approach for the DNA virus adenovirus, we have engineered a hepatocyte-safe wild-type adenovirus 5 (Ad5), which normally mediates significant toxicity and is potentially lethal in mice. To do this, we have included binding sites for hepatocyte-selective microRNA mir-122 within the 3' UTR of the E1A transcription cassette. Imaging versions of these viruses, produced by fusing E1A with luciferase, showed that inclusion of mir-122 binding sites caused up to 80-fold decreased hepatic expression of E1A following intravenous delivery to mice. Animals administered a ten-times lethal dose of wild-type Ad5 (5x10(10) viral particles/mouse) showed substantial hepatic genome replication and extensive liver pathology, while inclusion of 4 microRNA binding sites decreased replication 50-fold and virtually abrogated liver toxicity. This modified wild-type virus retained full activity within cancer cells and provided a potent, liver-safe oncolytic virus. In addition to providing many potent new viruses for cancer virotherapy, microRNA control of virus replication should provide a new strategy for designing safe attenuated vaccines applied across a broad range of viral diseases.

  8. Multiple different defense mechanisms are activated in the young transgenic tobacco plants which express the full length genome of the Tobacco mosaic virus, and are resistant against this virus.

    Science.gov (United States)

    Jada, Balaji; Soitamo, Arto J; Siddiqui, Shahid Aslam; Murukesan, Gayatri; Aro, Eva-Mari; Salakoski, Tapio; Lehto, Kirsi

    2014-01-01

    Previously described transgenic tobacco lines express the full length infectious Tobacco mosaic virus (TMV) genome under the 35S promoter (Siddiqui et al., 2007. Mol Plant Microbe Interact, 20: 1489-1494). Through their young stages these plants exhibit strong resistance against both the endogenously expressed and exogenously inoculated TMV, but at the age of about 7-8 weeks they break into TMV infection, with typical severe virus symptoms. Infections with some other viruses (Potato viruses Y, A, and X) induce the breaking of the TMV resistance and lead to synergistic proliferation of both viruses. To deduce the gene functions related to this early resistance, we have performed microarray analysis of the transgenic plants during the early resistant stage, and after the resistance break, and also of TMV-infected wild type tobacco plants. Comparison of these transcriptomes to those of corresponding wild type healthy plants indicated that 1362, 1150 and 550 transcripts were up-regulated in the transgenic plants before and after the resistance break, and in the TMV-infected wild type tobacco plants, respectively, and 1422, 1200 and 480 transcripts were down-regulated in these plants, respectively. These transcriptome alterations were distinctly different between the three types of plants, and it appears that several different mechanisms, such as the enhanced expression of the defense, hormone signaling and protein degradation pathways contributed to the TMV-resistance in the young transgenic plants. In addition to these alterations, we also observed a distinct and unique gene expression alteration in these plants, which was the strong suppression of the translational machinery. This may also contribute to the resistance by slowing down the synthesis of viral proteins. Viral replication potential may also be suppressed, to some extent, by the reduction of the translation initiation and elongation factors eIF-3 and eEF1A and B, which are required for the TMV replication

  9. Evidence of avian metapneumovirus subtype C infection of wild birds in Georgia, South Carolina, Arkansas and Ohio, USA.

    Science.gov (United States)

    Turpin, E A; Stallknecht, D E; Slemons, R D; Zsak, L; Swayne, D E

    2008-06-01

    Metapneumoviruses (MPVs) were first reported in avian species (aMPVs) in the late 1970s and in humans in 2001. Although aMPVs have been reported in Europe and Asia for over 20 years, the virus first appeared in the United States in 1996, leaving many to question the origin of the virus and why it proved to be a different subtype from those found elsewhere. To examine the potential role of migratory waterfowl and other wild birds in aMPV spread, our study focused on determining whether populations of wild birds have evidence of aMPV infection. Serum samples from multiple species were initially screened using a blocking enzyme-linked immunosorbent assay. Antibodies to aMPVs were identified in five of the 15 species tested: American coots, American crows, Canada geese, cattle egrets, and rock pigeons. The presence of aMPV-specific antibodies was confirmed with virus neutralization and western blot assays. Oral swabs were collected from wild bird species with the highest percentage of aMPV-seropositive serum samples: the American coots and Canada geese. From these swabs, 17 aMPV-positive samples were identified, 11 from coots and six from geese. Sequence analysis of the matrix, attachment gene and short hydrophobic genes revealed that these viruses belong to subtype C aMPV. The detection of aMPV antibodies and the presence of virus in wild birds in Georgia, South Carolina, Arkansas and Ohio demonstrates that wild birds can serve as a reservoir of subtype C aMPV, and may provide a potential mechanism to spread aMPVs to poultry in other regions of the United States and possibly to other countries in Central and South America.

  10. Impacts of HIV infection and long-term use of antiretroviral therapy on the prevalence of oral human papilloma virus type 16.

    Science.gov (United States)

    Amornthatree, Korntip; Sriplung, Hutcha; Mitarnun, Winyou; Nittayananta, Wipawee

    2012-04-01

    The objectives of this study were to determine (i) the prevalence and the copy numbers of oral human papilloma virus type 16 (HPV-16) in HIV-infected patients compared with non-HIV controls, and (ii) the effects of antiretroviral therapy (ART) and its duration on the virus. A cross-sectional study was carried out in HIV-infected patients with and without ART and in non-HIV controls. Saliva samples were collected, and the DNA extracted from those samples was used as a template to detect HPV-16 E6 and E7 by quantitative polymerase chain reaction. Student's t-test and ANOVA test were performed to determine the prevalence rates among groups. Forty-nine HIV-infected patients: 37 on ART (age range, 23-54 years; mean, 37 years), 12 not on ART (age range, 20-40 years; mean, 31 years), and 20 non-HIV controls (age range, 19-53 years; mean, 31 years) were enrolled. The prevalence of oral HPV-16 infection and the copy numbers of the virus were significantly higher in HIV-infected patients than in non-HIV controls when using E6 assay (geometric mean = 10696 vs. 563 copies/10(5) cells, P prevalence of oral HPV-16 infection and the copy numbers of the virus (P = 0.567). We conclude that the prevalence of oral HPV-16 infection and the copy numbers of the virus are increased by HIV infection. Neither the use of ART nor its duration significantly affected the virus. © 2011 John Wiley & Sons A/S.

  11. Roles of African swine fever virus structural proteins in viral infection

    Directory of Open Access Journals (Sweden)

    Jia Ning

    2017-06-01

    Full Text Available African swine fever virus (ASFV is a large, double-stranded DNA virus and the sole member of the Asfarviridae family. ASFV infects domestic pigs, wild boars, warthogs, and bush pigs, as well as soft ticks (Ornithodoros erraticus, which likely act as a vector. The major target is swine monocyte-macrophage cells. The virus can cause high fever, haemorrhagic lesions, cyanosis, anorexia, and even fatalities in domestic pigs. Currently, there is no vaccine and effective disease control strategies against its spread are culling infected pigs and maintaining high biosecurity standards. African swine fever (ASF spread to Europe from Africa in the middle of the 20th century, and later also to South America and the Caribbean. Since then, ASF has spread more widely and thus is still a great challenge for swine breeding. The genome of ASFV ranges in length from about 170 to 193 kbp depending on the isolate and contains between 150 and 167 open reading frames (ORFs. The ASFV genome encodes 150 to 200 proteins, around 50 of them structural. The roles of virus structural proteins in viral infection have been described. These proteins, such as pp220, pp62, p72, p54, p30, and CD2v, serve as the major component of virus particles and have roles in attachment, entry, and replication. All studies on ASFV proteins lay a good foundation upon which to clarify the infection mechanism and develop vaccines and diagnosis methods. In this paper, the roles of ASFV structural proteins in viral infection are reviewed.

  12. First introduction of highly pathogenic H5NI avian influenza A viruses in wild and domestic birds in Denmark, Northern Europe

    DEFF Research Database (Denmark)

    Bragstad, K.; Jørgensen, Poul Henrik; Handberg, Kurt

    2007-01-01

    Background: Since 2005 highly pathogenic ( HP) avian influenza A H5N1 viruses have spread from Asia to Africa and Europe infecting poultry, humans and wild birds. HP H5N1 virus was isolated in Denmark for the first time in March 2006. A total of 44 wild birds were found positive for the HP H5N1...... infection. In addition, one case was reported in a backyard poultry flock. Results: Full-genome characterisation of nine isolates revealed that the Danish H5N1 viruses were highly similar to German H5N1 isolates in all genes from the same time period. The haemagglutinin gene grouped phylogenetically in H5...... clade 2 subclade 2 and closest relatives besides the German isolates were isolates from Croatia in 2005, Nigeria and Niger in 2006 and isolates from Astrakhan in Russia 2006. The German and Danish isolates shared unique substitutions in the NA, PB1 and NS2 proteins. Conclusion: The first case of HP H5N1...

  13. [ZIKA--VIRUS INFECTION].

    Science.gov (United States)

    Velev, V

    2016-01-01

    This review summarizes the knowledge of the scientific community for Zika-virus infection. It became popular because of severe congenital damage causes of CNS in newborns whose mothers are infected during pregnancy, as well as the risk of pandemic distribution. Discusses the peculiarities of the biology and ecology of vectors--blood-sucking mosquitoes Aedes; stages in the spread of infection and practical problems which caused during pregnancy. Attention is paid to the recommendations that allow leading national and international medical organizations to deal with the threat Zika-virus infection.

  14. Neonatal herpes simplex virus infection: epidemiology and treatment.

    Science.gov (United States)

    James, Scott H; Kimberlin, David W

    2015-03-01

    Herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) are highly prevalent viruses capable of establishing lifelong infection. Genital herpes in women of childbearing age represents a major risk for mother-to-child transmission (MTCT) of HSV infection, with primary and first-episode genital HSV infections posing the highest risk. The advent of antiviral therapy with parenteral acyclovir has led to significant improvement in neonatal HSV disease mortality. Further studies are needed to improve the clinician's ability to identify infants at increased risk for HSV infection and prevent MTCT, and to develop novel antiviral agents with increased efficacy in infants with HSV infection. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Necrotic Ulcerated Lesion in a Young Boy Caused by Cowpox Virus Infection

    Directory of Open Access Journals (Sweden)

    Anne-Laure Favier

    2011-09-01

    Full Text Available The case presented here points towards the fact that skin lesion observed with a cowpox virus is a rare event but should be considered more as the number of cases has increased in the last years. Cowpox virus (CPXV belongs to the Poxviridae family. The transmission of CPXV to humans is caused by wild rodents or mostly by domestic animals and pet rats. In humans, CPXV is responsible for localized skin lesions regularly accompanied by lymphadenopathy. The lesions remain localized but self-inoculation from the primary lesions could occur. Then physicians have to be vigilant concerning bandages. In this case report, a necrotic and ulcerated lesion of a CPXV infection in a young boy is reported. The CPXV was possibly transmitted by wild rodents. The importance of performing the diagnosis is also pointed out. Virus information was obtained from phylogenetic analyses showing that the CPXV isolate was distinct from outbreaks of human cowpox which occurred in 2009 in France and Germany but was close to the CPXV Brighton Red strain. For several years, cases of viral zoonosis caused by CPXV have increased and physicians should be made aware that people could be infected without history of direct contact with animals.

  16. Antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralizes a heterologous wild-type mumps virus associated with a large outbreak.

    Science.gov (United States)

    Rubin, Steven A; Qi, Li; Audet, Susette A; Sullivan, Bradley; Carbone, Kathryn M; Bellini, William J; Rota, Paul A; Sirota, Lev; Beeler, Judy

    2008-08-15

    Recent mumps outbreaks in older vaccinated populations were caused primarily by genotype G viruses, which are phylogenetically distinct from the genotype A vaccine strains used in the countries affected by the outbreaks. This finding suggests that genotype A vaccine strains could have reduced efficacy against heterologous mumps viruses. The remote history of vaccination also suggests that waning immunity could have contributed to susceptibility. To examine these issues, we obtained consecutive serum samples from children at different intervals after vaccination and assayed the ability of these samples to neutralize the genotype A Jeryl Lynn mumps virus vaccine strain and a genotype G wild-type virus obtained during the mumps outbreak that occurred in the United States in 2006. Although the geometric mean neutralizing antibody titers against the genotype G virus were approximately one-half the titers measured against the vaccine strain, and although titers to both viruses decreased with time after vaccination, antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralized the outbreak-associated virus at all time points tested.

  17. Adapted Lethality: What We Can Learn from Guinea Pig-Adapted Ebola Virus Infection Model.

    Science.gov (United States)

    Cheresiz, S V; Semenova, E A; Chepurnov, A A

    2016-01-01

    Establishment of small animal models of Ebola virus (EBOV) infection is important both for the study of genetic determinants involved in the complex pathology of EBOV disease and for the preliminary screening of antivirals, production of therapeutic heterologic immunoglobulins, and experimental vaccine development. Since the wild-type EBOV is avirulent in rodents, the adaptation series of passages in these animals are required for the virulence/lethality to emerge in these models. Here, we provide an overview of our several adaptation series in guinea pigs, which resulted in the establishment of guinea pig-adapted EBOV (GPA-EBOV) variants different in their characteristics, while uniformly lethal for the infected animals, and compare the virologic, genetic, pathomorphologic, and immunologic findings with those obtained in the adaptation experiments of the other research groups.

  18. Adapted Lethality: What We Can Learn from Guinea Pig-Adapted Ebola Virus Infection Model

    Directory of Open Access Journals (Sweden)

    S. V. Cheresiz

    2016-01-01

    Full Text Available Establishment of small animal models of Ebola virus (EBOV infection is important both for the study of genetic determinants involved in the complex pathology of EBOV disease and for the preliminary screening of antivirals, production of therapeutic heterologic immunoglobulins, and experimental vaccine development. Since the wild-type EBOV is avirulent in rodents, the adaptation series of passages in these animals are required for the virulence/lethality to emerge in these models. Here, we provide an overview of our several adaptation series in guinea pigs, which resulted in the establishment of guinea pig-adapted EBOV (GPA-EBOV variants different in their characteristics, while uniformly lethal for the infected animals, and compare the virologic, genetic, pathomorphologic, and immunologic findings with those obtained in the adaptation experiments of the other research groups.

  19. Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry.

    Science.gov (United States)

    Henß, Lisa; Beck, Simon; Weidner, Tatjana; Biedenkopf, Nadine; Sliva, Katja; Weber, Christopher; Becker, Stephan; Schnierle, Barbara S

    2016-08-31

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes high fever, rash, and recurrent arthritis in humans. It has efficiently adapted to Aedes albopictus, which also inhabits temperate regions and currently causes large outbreaks in the Caribbean and Latin America. Ebola virus (EBOV) is a member of the filovirus family. It causes the Ebola virus disease (EDV), formerly known as Ebola hemorrhagic fever in humans and has a mortality rate of up to 70 %. The last outbreak in Western Africa was the largest in history and has caused approximately 25,000 cases and 10,000 deaths. For both viral infections no specific treatment or licensed vaccine is currently available. The bis-hexasulfonated naphthylurea, suramin, is used as a treatment for trypanosome-caused African river blindness. As a competitive inhibitor of heparin, suramin has been described to have anti-viral activity. We tested the activity of suramin during CHIKV or Ebola virus infection, using CHIKV and Ebola envelope glycoprotein pseudotyped lentiviral vectors and wild-type CHIKV and Ebola virus. Suramin efficiently inhibited CHIKV and Ebola envelope-mediated gene transfer while vesicular stomatitis virus G protein pseudotyped vectors were only marginally affected. In addition, suramin was able to inhibit wild-type CHIKV and Ebola virus replication in vitro. Inhibition occurred at early time points during CHIKV infection. Suramin, also known as Germanin or Bayer-205, is a market-authorized drug, however shows significant side effects, which probably prevents its use as a CHIKV drug, but due to the high lethality of Ebola virus infections, suramin might be valuable against Ebola infections.

  20. Protective immunity and safety of a genetically modified influenza virus vaccine.

    Directory of Open Access Journals (Sweden)

    Rafael Polidoro Alves Barbosa

    Full Text Available Recombinant influenza viruses are promising viral platforms to be used as antigen delivery vectors. To this aim, one of the most promising approaches consists of generating recombinant viruses harboring partially truncated neuraminidase (NA segments. To date, all studies have pointed to safety and usefulness of this viral platform. However, some aspects of the inflammatory and immune responses triggered by those recombinant viruses and their safety to immunocompromised hosts remained to be elucidated. In the present study, we generated a recombinant influenza virus harboring a truncated NA segment (vNA-Δ and evaluated the innate and inflammatory responses and the safety of this recombinant virus in wild type or knock-out (KO mice with impaired innate (Myd88 -/- or acquired (RAG -/- immune responses. Infection using truncated neuraminidase influenza virus was harmless regarding lung and systemic inflammatory response in wild type mice and was highly attenuated in KO mice. We also demonstrated that vNA-Δ infection does not induce unbalanced cytokine production that strongly contributes to lung damage in infected mice. In addition, the recombinant influenza virus was able to trigger both local and systemic virus-specific humoral and CD8+ T cellular immune responses which protected immunized mice against the challenge with a lethal dose of homologous A/PR8/34 influenza virus. Taken together, our findings suggest and reinforce the safety of using NA deleted influenza viruses as antigen delivery vectors against human or veterinary pathogens.

  1. DAMPs and influenza virus infection in ageing.

    Science.gov (United States)

    Samy, Ramar Perumal; Lim, Lina H K

    2015-11-01

    Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Virus-host interaction in feline immunodeficiency virus (FIV) infection.

    Science.gov (United States)

    Taniwaki, Sueli Akemi; Figueiredo, Andreza Soriano; Araujo, João Pessoa

    2013-12-01

    Feline immunodeficiency virus (FIV) infection has been the focus of several studies because this virus exhibits genetic and pathogenic characteristics that are similar to those of the human immunodeficiency virus (HIV). FIV causes acquired immunodeficiency syndrome (AIDS) in cats, nevertheless, a large fraction of infected cats remain asymptomatic throughout life despite of persistent chronic infection. This slow disease progression may be due to the presence of factors that are involved in the natural resistance to infection and the immune response that is mounted by the animals, as well as due to the adaptation of the virus to the host. Therefore, the study of virus-host interaction is essential to the understanding of the different patterns of disease course and the virus persistence in the host, and to help with the development of effective vaccines and perhaps the cure of FIV and HIV infections. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Herpes Simplex Virus-2 Glycoprotein Interaction with HVEM Influences Virus-Specific Recall Cellular Responses at the Mucosa

    Directory of Open Access Journals (Sweden)

    Sarah J. Kopp

    2012-01-01

    Full Text Available Infection of susceptible cells by herpes simplex virus (HSV requires the interaction of the HSV gD glycoprotein with one of two principal entry receptors, herpes virus entry mediator (HVEM or nectins. HVEM naturally functions in immune signaling, and the gD-HVEM interaction alters innate signaling early after mucosal infection. We investigated whether the gD-HVEM interaction during priming changes lymphocyte recall responses in the murine intravaginal model. Mice were primed with attenuated HSV-2 expressing wild-type gD or mutant gD unable to engage HVEM and challenged 32 days later with virulent HSV-2 expressing wild-type gD. HSV-specific CD8+ T cells were decreased at the genital mucosa during the recall response after priming with virus unable to engage HVEM but did not differ in draining lymph nodes. CD4+ T cells, which are critical for entry of HSV-specific CD8+ T cells into mucosa in acute infection, did not differ between the two groups in either tissue. An inverse association between Foxp3+ CD4+ regulatory T cells and CD8+ infiltration into the mucosa was not statistically significant. CXCR3 surface expression was not significantly different among different lymphocyte subsets. We conclude that engagement of HVEM during the acute phase of HSV infection influences the antiviral CD8+ recall response by an unexplained mechanism.

  4. Susceptibility of the wild-derived inbred CAST/Ei mouse to infection by orthopoxviruses analyzed by live bioluminescence imaging

    International Nuclear Information System (INIS)

    Americo, Jeffrey L.; Sood, Cindy L.; Cotter, Catherine A.; Vogel, Jodi L.; Kristie, Thomas M.; Moss, Bernard; Earl, Patricia L.

    2014-01-01

    Classical inbred mice are extensively used for virus research. However, we recently found that some wild-derived inbred mouse strains are more susceptible than classical strains to monkeypox virus. Experiments described here indicated that the 50% lethal dose of vaccinia virus (VACV) and cowpox virus (CPXV) were two logs lower in wild-derived inbred CAST/Ei mice than classical inbred BALB/c mice, whereas there was little difference in the susceptibility of the mouse strains to herpes simplex virus. Live bioluminescence imaging was used to follow spread of pathogenic and attenuated VACV strains and CPXV virus from nasal passages to organs in the chest and abdomen of CAST/Ei mice. Luminescence increased first in the head and then simultaneously in the chest and abdomen in a dose-dependent manner. The spreading kinetics was more rapid with VACV than CPXV although the peak photon flux was similar. These data suggest advantages of CAST/Ei mice for orthopoxvirus studies. - Highlights: • Wild-derived inbred CAST/Ei mice are susceptible to vaccinia virus and cowpox virus. • Morbidity and mortality from orthopoxviruses are greater in CAST/Ei than BALB/c mice. • Morbidity and mortality from herpes simplex virus type 1 are similar in both mice. • Imaging shows virus spread from nose to lungs, abdominal organs and brain. • Vaccinia virus spreads more rapidly than cowpox virus

  5. Susceptibility of the wild-derived inbred CAST/Ei mouse to infection by orthopoxviruses analyzed by live bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Americo, Jeffrey L.; Sood, Cindy L.; Cotter, Catherine A.; Vogel, Jodi L.; Kristie, Thomas M.; Moss, Bernard, E-mail: bmoss@nih.gov; Earl, Patricia L., E-mail: pearl@nih.gov

    2014-01-20

    Classical inbred mice are extensively used for virus research. However, we recently found that some wild-derived inbred mouse strains are more susceptible than classical strains to monkeypox virus. Experiments described here indicated that the 50% lethal dose of vaccinia virus (VACV) and cowpox virus (CPXV) were two logs lower in wild-derived inbred CAST/Ei mice than classical inbred BALB/c mice, whereas there was little difference in the susceptibility of the mouse strains to herpes simplex virus. Live bioluminescence imaging was used to follow spread of pathogenic and attenuated VACV strains and CPXV virus from nasal passages to organs in the chest and abdomen of CAST/Ei mice. Luminescence increased first in the head and then simultaneously in the chest and abdomen in a dose-dependent manner. The spreading kinetics was more rapid with VACV than CPXV although the peak photon flux was similar. These data suggest advantages of CAST/Ei mice for orthopoxvirus studies. - Highlights: • Wild-derived inbred CAST/Ei mice are susceptible to vaccinia virus and cowpox virus. • Morbidity and mortality from orthopoxviruses are greater in CAST/Ei than BALB/c mice. • Morbidity and mortality from herpes simplex virus type 1 are similar in both mice. • Imaging shows virus spread from nose to lungs, abdominal organs and brain. • Vaccinia virus spreads more rapidly than cowpox virus.

  6. The Aedes aegypti toll pathway controls dengue virus infection.

    Directory of Open Access Journals (Sweden)

    Zhiyong Xi

    2008-07-01

    Full Text Available Aedes aegypti, the mosquito vector of dengue viruses, utilizes its innate immune system to ward off a variety of pathogens, some of which can cause disease in humans. To date, the features of insects' innate immune defenses against viruses have mainly been studied in the fruit fly Drosophila melanogaster, which appears to utilize different immune pathways against different types of viruses, in addition to an RNA interference-based defense system. We have used the recently released whole-genome sequence of the Ae. aegypti mosquito, in combination with high-throughput gene expression and RNA interference (RNAi-based reverse genetic analyses, to characterize its response to dengue virus infection in different body compartments. We have further addressed the impact of the mosquito's endogenous microbial flora on virus infection. Our findings indicate a significant role for the Toll pathway in regulating resistance to dengue virus, as indicated by an infection-responsive regulation and functional assessment of several Toll pathway-associated genes. We have also shown that the mosquito's natural microbiota play a role in modulating the dengue virus infection, possibly through basal-level stimulation of the Toll immune pathway.

  7. Risk factors for infection of sow herds with porcine reproductive and respiratory syndrome (PRRS) virus

    DEFF Research Database (Denmark)

    Mortensen, Sten; Stryhn, Henrik; Søgaard, Rikke

    2002-01-01

    In 1992, the porcine reproductive and respiratory syndrome virus (PRRSV) of European type (PRRSV-EU) was introduced in Denmark. By 1996, the virus had spread to approximately 25% of the Danish herds. In January 1996, a modified-live vaccine based on the American type of the virus (PRRSV-US) was u......In 1992, the porcine reproductive and respiratory syndrome virus (PRRSV) of European type (PRRSV-EU) was introduced in Denmark. By 1996, the virus had spread to approximately 25% of the Danish herds. In January 1996, a modified-live vaccine based on the American type of the virus (PRRSV......-US) was used in replacement boars for Danish artificial insemination (AI) centres and from July 1996, the vaccine was used in PRRSV-EU infected herds for prevention of disease. Soon after vaccine introduction, PRRSV non-infected herds experienced outbreaks of disease due to infection with PRRSV...... in the case herds). The data were analysed using a Cox-regression model. The hazard of infection increased significantly with exposure from PRRSV-US-infected neighbouring herds, purchase of animals from herds incubating PRRSV-US infection, increasing herd size and purchase of semen from boars at PRRSV...

  8. Presence of virus neutralizing antibodies in cerebral spinal fluid correlates with non-lethal rabies in dogs.

    Directory of Open Access Journals (Sweden)

    Clement W Gnanadurai

    Full Text Available Rabies is traditionally considered a uniformly fatal disease after onset of clinical manifestations. However, increasing evidence indicates that non-lethal infection as well as recovery from flaccid paralysis and encephalitis occurs in laboratory animals as well as humans.Non-lethal rabies infection in dogs experimentally infected with wild type dog rabies virus (RABV, wt DRV-Mexico correlates with the presence of high level of virus neutralizing antibodies (VNA in the cerebral spinal fluid (CSF and mild immune cell accumulation in the central nervous system (CNS. By contrast, dogs that succumbed to rabies showed only little or no VNA in the serum or in the CSF and severe inflammation in the CNS. Dogs vaccinated with a rabies vaccine showed no clinical signs of rabies and survived challenge with a lethal dose of wild-type DRV. VNA was detected in the serum, but not in the CSF of immunized dogs. Thus the presence of VNA is critical for inhibiting virus spread within the CNS and eventually clearing the virus from the CNS.Non-lethal infection with wt RABV correlates with the presence of VNA in the CNS. Therefore production of VNA within the CNS or invasion of VNA from the periphery into the CNS via compromised blood-brain barrier is important for clearing the virus infection from CNS, thereby preventing an otherwise lethal rabies virus infection.

  9. Experimental infection of serotine bats (Eptesicus serotinus) with European bat lyssavirus type 1a.

    Science.gov (United States)

    Freuling, C; Vos, A; Johnson, N; Kaipf, I; Denzinger, A; Neubert, L; Mansfield, K; Hicks, D; Nuñez, A; Tordo, N; Rupprecht, C E; Fooks, A R; Müller, T

    2009-10-01

    The serotine bat (Eptesicus serotinus) accounts for the vast majority of bat rabies cases in Europe and is considered the main reservoir for European bat lyssavirus type 1 (EBLV-1, genotype 5). However, so far the disease has not been investigated in its native host under experimental conditions. To assess viral virulence, dissemination and probable means of transmission, captive bats were infected experimentally with an EBLV-1a virus isolated from a naturally infected conspecific from Germany. Twenty-nine wild caught bats were divided into five groups and inoculated by intracranial (i.c.), intramuscular (i.m.) or subcutaneous (s.c.) injection or by intranasal (i.n.) inoculation to mimic the various potential routes of infection. One group of bats was maintained as uninfected controls. Mortality was highest in the i.c.-infected animals, followed by the s.c. and i.m. groups. Incubation periods varied from 7 to 26 days depending on the route of infection. Rabies did not develop in the i.n. group or in the negative-control group. None of the infected bats seroconverted. Viral antigen was detected in more than 50% of the taste buds of an i.c.-infected animal. Shedding of viable virus was measured by virus isolation in cell culture for one bat from the s.c. group at 13 and 14 days post-inoculation, i.e. 7 days before death. In conclusion, it is postulated that s.c. inoculation, in nature caused by bites, may be an efficient way of transmitting EBLV-1 among free-living serotine bats.

  10. Attenuation and immunogenicity of recombinant yellow fever 17D-dengue type 2 virus for rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Galler R.

    2005-01-01

    Full Text Available A chimeric yellow fever (YF-dengue serotype 2 (dengue 2 virus was constructed by replacing the premembrane and envelope genes of the YF 17D virus with those from dengue 2 virus strains of Southeast Asian genotype. The virus grew to high titers in Vero cells and, after passage 2, was used for immunogenicity and attenuation studies in rhesus monkeys. Subcutaneous immunization of naive rhesus monkeys with the 17D-D2 chimeric virus induced a neutralizing antibody response associated with the protection of 6 of 7 monkeys against viremia by wild-type dengue 2 virus. Neutralizing antibody titers to dengue 2 were significantly lower in YF-immune animals than in YF-naive monkeys and protection against challenge with wild-type dengue 2 virus was observed in only 2 of 11 YF-immune monkeys. An anamnestic response to dengue 2, indicated by a sharp increase of neutralizing antibody titers, was observed in the majority of the monkeys after challenge with wild-type virus. Virus attenuation was demonstrated using the standard monkey neurovirulence test. The 17D-D2 chimera caused significantly fewer histological lesions than the YF 17DD virus. The attenuated phenotype could also be inferred from the limited viremias compared to the YF 17DD vaccine. Overall, these results provide further support for the use of chimeric viruses for the development of a new live tetravalent dengue vaccine.

  11. First report of piscine nodavirus infecting wild winter flounder Pleuronectes americanus in Passamaquoddy Bay, New Brunswick, Canada.

    Science.gov (United States)

    Barke, Duane E; MacKinnon, Ann-Margaret; Boston, Linda; Burt, Michael D B; Cone, David K; Speare, David J; Griffiths, Steve; Cook, Marcia; Ritchie, Rachael; Olivier, Gilles

    2002-05-10

    Piscine nodaviruses (Betanodaviridae) are frequently reported from a variety of cultured and wild finfishes. These non-enveloped, single-stranded RNA virions cause viral encephalopathy and retinopathy (VER), also known as viral nervous necrosis (VNN) or fish encephalitis. Recently, nodavirus infections have posed serious problems for larval and juvenile cultured halibut Hippoglossus hippoglossus in Norway and Scotland. To date, no such viruses have been described from any cultured or wild pleuronectid in Atlantic Canada. Obviously, there exists a need to survey wild populations of pleuronectids to assess the risk of potential transfer of nodavirus from wild to caged fishes. This paper presents the results of monthly surveys (April 2000 to March 2001) of viruses from wild winter flounder Pleuronectes americanus collected from Passamaquoddy Bay, New Brunswick, Canada. Tissue samples from wild flounder were screened initially on commercial cell lines (EPC, SSN-1, SHK and CHSE-214) for any evidence of cytopathic effect (CPE). After confirmation of CPE, nodavirus identification was achieved using reverse transcription polymerase chain reaction (RT-PCR) analysis. We detected nodavirus from only 1 out of 440 flounder (0.23%) examined. This is the first report of piscine nodavirus isolated from wild winter flounder in Atlantic Canada, and although this prevalence may seem low, we discuss the implications of this finding for Canada's emerging halibut aquaculture industry.

  12. Herpes Simplex Virus Infections of the Central Nervous System.

    Science.gov (United States)

    Whitley, Richard J

    2015-12-01

    This article summarizes knowledge of herpes simplex virus (HSV) infections of the central nervous system (CNS). Disease pathogenesis, detection of DNA polymerase chain reaction (PCR) for diagnosis and prognosis, and approaches to therapy warrant consideration. HSV infection of the CNS is one of few treatable viral diseases. Clinical trials indicate that outcome following neonatal herpes simplex virus type 2 (HSV-2) infections of the CNS is significantly improved when 6 months of suppressive oral acyclovir therapy follows IV antiviral therapy. In contrast, herpes simplex virus type 1 (HSV-1) infections of the brain do not benefit from extended oral antiviral therapy. This implies a difference in disease pathogenesis between HSV-2 and HSV-1 infections of the brain. PCR detection of viral DNA in the CSF is the gold standard for diagnosis. Use of PCR is now being adopted as a basis for determining the duration of therapy in the newborn. HSV infections are among the most common encountered by humans; seropositivity occurs in 50% to 90% of adult populations. Herpes simplex encephalitis, however, is an uncommon result of this infection. Since no new antiviral drugs have been introduced in nearly 3 decades, much effort has focused on learning how to better use acyclovir and how to use existing databases to establish earlier diagnosis.

  13. Dengue Virus Infection Differentially Regulates Endothelial Barrier Function over Time through Type I Interferon Effects

    Science.gov (United States)

    Liu, Ping; Woda, Marcia; Ennis, Francis A.; Libraty, Daniel H.

    2013-01-01

    Background The morbidity and mortality resulting from dengue hemorrhagic fever (DHF) are largely caused by endothelial barrier dysfunction and a unique vascular leakage syndrome. The mechanisms that lead to the location and timing of vascular leakage in DHF are poorly understood. We hypothesized that direct viral effects on endothelial responsiveness to inflammatory and angiogenesis mediators can explain the DHF vascular leakage syndrome. Methods We used an in vitro model of human endothelium to study the combined effects of dengue virus (DENV) type 2 (DENV2) infection and inflammatory mediators on paracellular macromolecule permeability over time. Results Over the initial 72 h after infection, DENV2 suppressed tumor necrosis factor (TNF)–α–mediated hyperpermeability in human umbilical vein endothelial cell (HUVEC) monolayers. This suppressive effect was mediated by type I interferon (IFN). By 1 week, TNF-α stimulation of DENV2-infected HUVECs synergistically increased cell cycling, angiogenic changes, and macromolecule permeability. This late effect could be prevented by the addition of exogenous type I IFN. Conclusions DENV infection of primary human endothelial cells differentially modulates TNF-α–driven angiogenesis and hyperpermeability over time. Type I IFN plays a central role in this process. Our findings suggest a rational model for the DHF vascular leakage syndrome. PMID:19530939

  14. Experimental infection of highly pathogenic avian influenza virus H5N1 in black-headed gulls (Chroicocephalus ridibundus).

    Science.gov (United States)

    Ramis, Antonio; van Amerongen, Geert; van de Bildt, Marco; Leijten, Loneke; Vanderstichel, Raphael; Osterhaus, Albert; Kuiken, Thijs

    2014-08-19

    Historically, highly pathogenic avian influenza viruses (HPAIV) rarely resulted in infection or clinical disease in wild birds. However, since 2002, disease and mortality from natural HPAIV H5N1 infection have been observed in wild birds including gulls. We performed an experimental HPAIV H5N1 infection of black-headed gulls (Chroicocephalus ridibundus) to determine their susceptibility to infection and disease from this virus, pattern of viral shedding, clinical signs, pathological changes and viral tissue distribution. We inoculated sixteen black-headed gulls with 1 × 10(4) median tissue culture infectious dose HPAIV H5N1 (A/turkey/Turkey/1/2005) intratracheally and intraesophageally. Birds were monitored daily until 12 days post inoculation (dpi). Oropharyngeal and cloacal swabs were collected daily to detect viral shedding. Necropsies from birds were performed at 2, 4, 5, 6, 7, and 12 dpi. Sampling from selected tissues was done for histopathology, immunohistochemical detection of viral antigen, PCR, and viral isolation. Our study shows that all inoculated birds were productively infected, developed systemic disease, and had a high morbidity and mortality rate. Virus was detected mainly in the respiratory tract on the first days after inoculation, and then concentrated more in pancreas and central nervous system from 4 dpi onwards. Birds shed infectious virus until 7 dpi from the pharynx and 6 dpi from the cloaca. We conclude that black-headed gulls are highly susceptible to disease with a high mortality rate and are thus more likely to act as sentinel species for the presence of the virus than as long-distance carriers of the virus to new geographical areas.

  15. Complete genome sequence of jacquemontia yellow vein virus, a novel begomovirus infecting Jacquemontia tamnifolia in Venezuela.

    Science.gov (United States)

    Fiallo-Olivé, Elvira; Chirinos, Dorys T; Geraud-Pouey, Francis; Navas-Castillo, Jesús

    2017-08-01

    Wild plants of the family Convolvulaceae are hosts for a few New World begomoviruses (genus Begomovirus, family Geminiviridae). In this work, we report the complete genome sequence of a new begomovirus infecting the wild convolvulaceous plant Jacquemontia tamnifolia in Venezuela. The cloned bipartite genome showed the organization of typical New World begomoviruses and was found to be phylogenetically related to those of begomoviruses from Venezuela and other Caribbean countries. Several recombination events have been shown to have occurred involving genome fragment exchange with related begomoviruses infecting crops such as tomato and cucurbits and wild plants, including Jacquemontia sp. We propose the name jacquemontia yellow vein virus (JacYVV) for this new begomovirus.

  16. Comparison of variable region 3 sequences of human immunodeficiency virus type 1 from infected children with the RNA and DNA sequences of the virus populations of their mothers.

    Science.gov (United States)

    Scarlatti, G; Leitner, T; Halapi, E; Wahlberg, J; Marchisio, P; Clerici-Schoeller, M A; Wigzell, H; Fenyö, E M; Albert, J; Uhlén, M

    1993-01-01

    We have compared the variable region 3 sequences from 10 human immunodeficiency virus type 1 (HIV-1)-infected infants to virus sequences from the corresponding mothers. The sequences were derived from DNA of uncultured peripheral blood mononuclear cells (PBMC), DNA of cultured PBMC, and RNA from serum collected at or shortly after delivery. The infected infants, in contrast to the mothers, harbored homogeneous virus populations. Comparison of sequences from the children and clones derived from DNA of the corresponding mothers showed that the transmitted virus represented either a minor or a major virus population of the mother. In contrast to an earlier study, we found no evidence of selection of minor virus variants during transmission. Furthermore, the transmitted virus variant did not show any characteristic molecular features. In some cases the transmitted virus was more related to the virus RNA population of the mother and in other cases it was more related to the virus DNA population. This suggests that either cell-free or cell-associated virus may be transmitted. These data will help AIDS researchers to understand the mechanism of transmission and to plan strategies for prevention of transmission. PMID:8446584

  17. Radioimmunoassay of Herpes simplex virus antibody: correlation with ganglionic infection

    International Nuclear Information System (INIS)

    Forghani, B.; Klassen, T.; Baringer, J.R.

    1977-01-01

    Results of herpes simplex virus (HSV) isolation from a series of human post-mortem trigeminal thoracic and sacral ganglia were correlated with HSV antibody type(s) detected in the sera by radioimmunoassay (RIA). HSV type I was isolated from trigeminal ganglia of 44 out of 90 individuals, from thoracic ganglia of 1 out of 25, and from sacral ganglia of 1 out of 68 cases. HSV type was recovered from sacral ganglia of 8 out of 68 individuals. In all cases in which an HSV was isolated from ganglia and was available for testing, homologous, type-specific antibody was demonstrable, and in a few instances antibody to the heterologous HSV was also detected. In those individuals in which HSV type I was isolated from trigeminal ganglia and HSV type 2 from sacral ganglia, antibody to both virus types was present in the sera, indicating that simultaneous latent infections with each of the two viruses can occur, and that antibody is produced to each virus independently. Antibody to HSV type 1, 2 or both types was demonstrated in 8 out of 10 cases in which virus isolation attempts were negative, suggesting either a higher sensitivity of RIA for detecting HSV infection, or the presence of latent HSV at some other site in the body which was not sampled. (author)

  18. Comparison of Detection of Bovine Virus Diarrhea Virus Antigen in Various Types of Tissue and Fluid Samples Collected from Persistently Infected Cattle

    Science.gov (United States)

    Bovine viral diarrhea viruses are economically important pathogens of cattle. Most new infections are acquired from animals persistently infected with the virus. Surveillance programs rely on skin biopsies for detection of persistently infected cattle. The purpose of this study was to compare ant...

  19. Early infections by myxoma virus of young rabbits (Oryctolagus cuniculus) protected by maternal antibodies activate their immune system and enhance herd immunity in wild populations.

    Science.gov (United States)

    Marchandeau, Stéphane; Pontier, Dominique; Guitton, Jean-Sébastien; Letty, Jérôme; Fouchet, David; Aubineau, Jacky; Berger, Francis; Léonard, Yves; Roobrouck, Alain; Gelfi, Jacqueline; Peralta, Brigitte; Bertagnoli, Stéphane

    2014-03-04

    The role of maternal antibodies is to protect newborns against acute early infection by pathogens. This can be achieved either by preventing any infection or by allowing attenuated infections associated with activation of the immune system, the two strategies being based on different cost/benefit ratios. We carried out an epidemiological survey of myxomatosis, which is a highly lethal infectious disease, in two distant wild populations of rabbits to describe the epidemiological pattern of the disease. Detection of specific IgM and IgG enabled us to describe the pattern of immunity. We show that maternal immunity attenuates early infection of juveniles and enables activation of their immune system. This mechanism associated with steady circulation of the myxoma virus in both populations, which induces frequent reinfections of immune rabbits, leads to the maintenance of high immunity levels within populations. Thus, myxomatosis has a low impact, with most infections being asymptomatic. This work shows that infection of young rabbits protected by maternal antibodies induces attenuated disease and activates their immune system. This may play a major role in reducing the impact of a highly lethal disease when ecological conditions enable permanent circulation of the pathogen.

  20. Measles virus polypeptides in purified virions and in infected cells

    International Nuclear Information System (INIS)

    Vainionpaeae, R.; Ziola, B.; Salmi, A.

    1978-01-01

    A wild-type measles virus was radiolabeled during growth in VERO cells and purified by two successive potassium tartrate gradient centrifugations. The virion polypeptide composition was determined by SDS-polyacrylamide gel electrophoresis employing two different buffer systems. Six virus-specific polypeptides were consistently detected. The largest (L) had a molecular weight (MW) of greater than 150,000. The second largest polypeptide, G (MW 79,000), was the only glycoprotein found. The proteins designated polypeptide 2 (MW 66 to 70,000) and nucleocapsid protein or NP (MW 61,000) were phosphorylated. The remaining virus-coded proteins were polypeptide 5 (MW 40,000) and the matrix or M protein (MW 37,000). Measles virions also contained a polypeptide (MW 42,000) thought to be actin due to co-migration with this component of uninfected cells. Analysis of in vitro 3 H-acetic anhydride radiolabeled virions confirmed the presence of these seven polypeptides. Acetic anhydride also labeled a protein designated polypeptide 4 (MW 53,000) which was not consistently radiolabeled in vivo, as well as several other minor proteins believed to be cellular in origin. Synthesis of the six virus-specific structural polypeptides was detected in lysates of infected cells by SDS-polyacrylamide slab gel electrophoresis. Virus specificity of polypeptide 4 could not be confirmed due to the similar MW of several cellular polypeptides. Two non-virion, but virus-specified polypeptides, of MW 38,000 and 18,000 were also detected. Synthesis of the virus structural proteins was in the same proportions as the polypeptides found in virions except for under production of polypeptide G and over production of polypeptide 2. (author)

  1. A cluster of patients infected with I221V influenza b virus variants with reduced oseltamivir susceptibility--North Carolina and South Carolina, 2010-2011.

    Science.gov (United States)

    Garg, Shikha; Moore, Zack; Lee, Nicole; McKenna, John; Bishop, Amber; Fleischauer, Aaron; Springs, Chasisity B; Nguyen, Ha T; Sheu, Tiffany G; Sleeman, Katrina; Finelli, Lyn; Gubareva, Larisa; Fry, Alicia M

    2013-03-15

    During 2010-2011, influenza B viruses with a novel neuraminidase substitution, denoted I221V (B/I221V), associated with reduced in vitro oseltamivir susceptibility were detected in North Carolina. We determined the prevalence of I221V among B viruses submitted to the Centers for Disease Control and Prevention for antiviral resistance surveillance, including all B viruses submitted to North Carolina and South Carolina state laboratories, during October 2010-September 2011.We conducted chart reviews and telephone interviews to characterize North Carolina and South Carolina patients with B/I221V vs wild-type B virus infection (B/WT). We detected I221V in 45 (22%) of 209 B viruses from North Carolina and 8 (10%) of 82 B viruses from South Carolina. We detected I221V in 3 (0.3%) of 881 B viruses tested from 45 other states. B/I221V infection was not associated with differences in underlying conditions or illness severity, compared with B/WT infection. No patients with B/I221V infection received oseltamivir prior to specimen collection. Among patients who completed oseltamivir, those with B/I221V infection reported a longer duration until illness resolution (5 vs 3 days; P = .02). B/I221V cocirculated with B/WT in North Carolina and South Carolina during 2010-2011. I221V did not alter illness severity but may have reduced oseltamivir effectiveness. Thus, global surveillance for I221V is important.

  2. Morbillivirus infection in a wild siberian tiger in the Russian Far East.

    Science.gov (United States)

    Quigley, Kathy S; Evermann, James F; Leathers, Charles W; Armstrong, Douglas L; Goodrich, John; Duncan, Neil M; Miquelle, Dale G

    2010-10-01

    We report the first documented case of morbillivirus infection in a wild, free-ranging Siberian tiger (Panthera tigris altaica). The tigress entered a small village in the Russian Far East in an ambulatory but stuporous state with no apparent recognition or fear of humans. Her condition progressed rapidly with neurological signs, anorexia, and ultimately death. Histologic lesions included vacuolated to malacic white matter in the brain stem, cerebellum, and thalamus, with associated lymphocytic meningoencephalitis. Large, intranuclear, eosinophilic inclusions were within regional astrocytes, and the brain lesions were immunohistochemically positive when stained for canine distemper viral antigen. Hematologic and blood chemistry results were consistent with overwhelming systemic infection and starvation. The animal also was antibody-positive for canine distemper virus, feline panleukopenia, and feline coronavirus.

  3. Genetic relationships and epidemiological links between wild type 1 poliovirus isolates in Pakistan and Afghanistan.

    Science.gov (United States)

    Angez, Mehar; Shaukat, Shahzad; Alam, Muhammad M; Sharif, Salmaan; Khurshid, Adnan; Zaidi, Syed Sohail Zahoor

    2012-02-22

    Efforts have been made to eliminate wild poliovirus transmission since 1988 when the World Health Organization began its global eradication campaign. Since then, the incidence of polio has decreased significantly. However, serotype 1 and serotype 3 still circulate endemically in Pakistan and Afghanistan. Both countries constitute a single epidemiologic block representing one of the three remaining major global reservoirs of poliovirus transmission. In this study we used genetic sequence data to investigate transmission links among viruses from diverse locations during 2005-2007. In order to find the origins and routes of wild type 1 poliovirus circulation, polioviruses were isolated from faecal samples of Acute Flaccid Paralysis (AFP) patients. We used viral cultures, two intratypic differentiation methods PCR, ELISA to characterize as vaccine or wild type 1 and nucleic acid sequencing of entire VP1 region of poliovirus genome to determine the genetic relatedness. One hundred eleven wild type 1 poliovirus isolates were subjected to nucleotide sequencing for genetic variation study. Considering the 15% divergence of the sequences from Sabin 1, Phylogenetic analysis by MEGA software revealed that active inter and intra country transmission of many genetically distinct strains of wild poliovirus type 1 belonged to genotype SOAS which is indigenous in this region. By grouping wild type 1 polioviruses according to nucleotide sequence homology, three distinct clusters A, B and C were obtained with multiple chains of transmission together with some silent circulations represented by orphan lineages. Our results emphasize that there was a persistent transmission of wild type 1 polioviruses in Pakistan and Afghanistan during 2005-2007. The epidemiologic information provided by the sequence data can contribute to the formulation of better strategies for poliomyelitis control to those critical areas, associated with high risk population groups which include migrants

  4. Genetic relationships and epidemiological links between wild type 1 poliovirus isolates in Pakistan and Afghanistan

    Directory of Open Access Journals (Sweden)

    Angez Mehar

    2012-02-01

    Full Text Available Abstract Background/Aim Efforts have been made to eliminate wild poliovirus transmission since 1988 when the World Health Organization began its global eradication campaign. Since then, the incidence of polio has decreased significantly. However, serotype 1 and serotype 3 still circulate endemically in Pakistan and Afghanistan. Both countries constitute a single epidemiologic block representing one of the three remaining major global reservoirs of poliovirus transmission. In this study we used genetic sequence data to investigate transmission links among viruses from diverse locations during 2005-2007. Methods In order to find the origins and routes of wild type 1 poliovirus circulation, polioviruses were isolated from faecal samples of Acute Flaccid Paralysis (AFP patients. We used viral cultures, two intratypic differentiation methods PCR, ELISA to characterize as vaccine or wild type 1 and nucleic acid sequencing of entire VP1 region of poliovirus genome to determine the genetic relatedness. Results One hundred eleven wild type 1 poliovirus isolates were subjected to nucleotide sequencing for genetic variation study. Considering the 15% divergence of the sequences from Sabin 1, Phylogenetic analysis by MEGA software revealed that active inter and intra country transmission of many genetically distinct strains of wild poliovirus type 1 belonged to genotype SOAS which is indigenous in this region. By grouping wild type 1 polioviruses according to nucleotide sequence homology, three distinct clusters A, B and C were obtained with multiple chains of transmission together with some silent circulations represented by orphan lineages. Conclusion Our results emphasize that there was a persistent transmission of wild type1 polioviruses in Pakistan and Afghanistan during 2005-2007. The epidemiologic information provided by the sequence data can contribute to the formulation of better strategies for poliomyelitis control to those critical areas

  5. Early Transcriptional Responses of Bovine Chorioallantoic Membrane Explants to Wild Type, ΔvirB2 or ΔbtpB Brucella abortus Infection

    Science.gov (United States)

    Mol, Juliana P. S.; Costa, Erica A.; Carvalho, Alex F.; Sun, Yao-Hui; Tsolis, Reneé M.; Paixão, Tatiane A.; Santos, Renato L.

    2014-01-01

    The pathogenesis of the Brucella-induced inflammatory response in the bovine placenta is not completely understood. In this study we evaluated the role of the B. abortus Type IV secretion system and the anti-inflammatory factor BtpB in early interactions with bovine placental tissues. Transcription profiles of chorioallantoic membrane (CAM) explants inoculated with wild type (strain 2308), ΔvirB2 or ΔbtpB Brucella abortus were compared by microarray analysis at 4 hours post infection. Transcripts with significant variation (>2 fold change; Pabortus resulted in slightly more genes with decreased than increased transcription levels. Conversely, infection of trophoblastic cells with the ΔvirB2 or the ΔbtpB mutant strains, that lack a functional T4SS or that has impaired inhibition of TLR signaling, respectively, induced more upregulated than downregulated genes. Wild type Brucella abortus impaired transcription of host genes related to immune response when compared to ΔvirB and ΔbtpB mutants. Our findings suggest that proinflammatory genes are negatively modulated in bovine trophoblastic cells at early stages of infection. The virB operon and btpB are directly or indirectly related to modulation of these host genes. These results shed light on the early interactions between B. abortus and placental tissue that ultimately culminate in inflammatory pathology and abortion. PMID:25259715

  6. Human Infection in Wild Mountain Gorillas

    Centers for Disease Control (CDC) Podcasts

    This podcast discusses a study about the transmission of Human Metapneumovirus Infection to wild mountain gorillas in Rwanda in 2009, published in the April 2011 issue of Emerging Infectious Diseases. Dr. Ian Lipkin, Director of the Center for Infection and Immunity and Dr. Gustavo Palacios, investigator in the Center of Infection & Immunity share details of this study.

  7. Pesti Des Petits ruminants virus infection in animals

    Directory of Open Access Journals (Sweden)

    Chauhan H.C.

    2009-08-01

    Full Text Available For centuries morbillivirus infections have had a huge impact on both human beings and animals. Morbilliviruses are highly contagious pathogens that cause some of the most devastating viral diseases of humans and animals world wide. They include measles virus (MV, canine distemper virus (CDV, rinderpest virus (RPV and peste des petits ruminants (PPRV virus. Furthermore, new emerging infectious diseases of morbilliviruses with significant ecological consequences of marine mammals have been discovered in the past decades. Phocid distemper virus (PDV in seals and the cetacean morbillivirus (CMV have been found in dolphins, whales and porpoises. Peste des petits ruminants (PPR is a highly contagious ,infectious , an acute or sub acute viral disease of domestic and wild small ruminants characterized by fever, oculonasal discharges, stomatitis, conjunctivitis, gastroenteritis and pneumonia. Goats are more severely affected than sheep. It is also known as pseudorinderpest of small ruminants, pest of small ruminants, pest of sheep and goats, kata, stomatitis- pneumoentritis syndrome, contagious pustular stomatitis and pneumoentritis complex. It is one of the major notifiable diseases of the World Organization for Animal Health (OIE. [Vet. World 2009; 2(4.000: 150-155

  8. [Nosocomial virus infections].

    Science.gov (United States)

    Eggers, H J

    1986-12-01

    Enveloped viruses, e.g. influenza- or varicella viruses may cause highly contagious airborne infections. Their spread is difficult to control, also in hospitals. In the case of influenza and varicella immune prophylaxis and chemotherapy/chemoprophylaxis are possible. This is of particular significance, since varicella and zoster are of increasing importance for immunocompromized patients. Diarrhea is caused to a large extent by viruses. Rotavirus infections play an important role in infancy, and are frequently acquired in the hospital. In a study on infectious gastroenteritis of infants in a hospital we were able to show that 30 percent of all rotavirus infections were of nosocomial origin. Admission of a rotavirus-excreting patient (or personnel) may start a long chain of rotavirus infections on pediatric wards. Even careful hygienic measures in the hospital can hardly prevent the spread of enterovirus infections. Such infections may be severe and lethal for newborns, as shown by us in a study on an outbreak of echovirus 11 disease on a maternity ward. We have recently obtained data on the "stickiness" of enteroviruses on human skin. This could explain essential features of the spread of enteroviruses in the population.

  9. Human Immunodeficiency Virus Type 1-Hepatitis C Virus Coinfection: Intraindividual Comparison of Cellular Immune Responses against Two Persistent Viruses

    OpenAIRE

    Lauer, Georg M.; Nguyen, Tam N.; Day, Cheryl L.; Robbins, Gregory K.; Flynn, Theresa; McGowan, Katherine; Rosenberg, Eric S.; Lucas, Michaela; Klenerman, Paul; Chung, Raymond T.; Walker, Bruce D.

    2002-01-01

    Both human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) lead to chronic infection in a high percentage of persons, and an expanding epidemic of HIV-1-HCV coinfection has recently been identified. These individuals provide an opportunity for simultaneous assessment of immune responses to two viral infections associated with chronic plasma viremia. In this study we analyzed the breadth and magnitude of the CD8+- and CD4+-T-lymphocyte responses in 22 individuals infected wit...

  10. Lack of Durable Cross-Neutralizing Antibodies Against Zika Virus from Dengue Virus Infection.

    Science.gov (United States)

    Collins, Matthew H; McGowan, Eileen; Jadi, Ramesh; Young, Ellen; Lopez, Cesar A; Baric, Ralph S; Lazear, Helen M; de Silva, Aravinda M

    2017-05-01

    Cross-reactive antibodies elicited by dengue virus (DENV) infection might affect Zika virus infection and confound serologic tests. Recent data demonstrate neutralization of Zika virus by monoclonal antibodies or human serum collected early after DENV infection. Whether this finding is true in late DENV convalescence (>6 months after infection) is unknown. We studied late convalescent serum samples from persons with prior DENV or Zika virus exposure. Despite extensive cross-reactivity in IgG binding, Zika virus neutralization was not observed among primary DENV infections. We observed low-frequency (23%) Zika virus cross-neutralization in repeat DENV infections. DENV-immune persons who had Zika virus as a secondary infection had distinct populations of antibodies that neutralized DENVs and Zika virus, as shown by DENV-reactive antibody depletion experiments. These data suggest that most DENV infections do not induce durable, high-level Zika virus cross-neutralizing antibodies. Zika virus-specific antibody populations develop after Zika virus infection irrespective of prior DENV immunity.

  11. Hepatitis C virus infection in the human immunodeficiency virus infected patient

    DEFF Research Database (Denmark)

    Clausen, Louise Nygaard; Lundbo, Lene Fogt; Benfield, Thomas

    2014-01-01

    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) share the same transmission routes; therefore, coinfection is frequent. An estimated 5-10 million individuals alone in the western world are infected with both viruses. The majority of people acquire HCV by injection drug use and...

  12. Influenza virus and endothelial cells: A species specific relationship

    NARCIS (Netherlands)

    K.R. Short (Kirsty); E.J.B. Veldhuis Kroeze (Edwin); L.A. Reperant (Leslie); M. Richard (Mathilde); T. Kuiken (Thijs)

    2014-01-01

    textabstractInfluenza A virus (IAV) infection is an important cause of respiratory disease in humans. The original reservoirs of IAV are wild waterfowl and shorebirds, where virus infection causes limited, if any, disease. Both in humans and in wild waterbirds, epithelial cells are the main target

  13. Nectin-4 Interactions Govern Measles Virus Virulence in a New Model of Pathogenesis, the Squirrel Monkey (Saimiri sciureus).

    Science.gov (United States)

    Delpeut, Sébastien; Sawatsky, Bevan; Wong, Xiao-Xiang; Frenzke, Marie; Cattaneo, Roberto; von Messling, Veronika

    2017-06-01

    In addition to humans, only certain nonhuman primates are naturally susceptible to measles virus (MeV) infection. Disease severity is species dependent, ranging from mild to moderate for macaques to severe and even lethal for certain New World monkey species. To investigate if squirrel monkeys ( Saimiri sciureus ), which are reported to develop a course of disease similar to humans, may be better suited than macaques for the identification of virulence determinants or the evaluation of therapeutics, we infected them with a green fluorescent protein-expressing MeV. Compared to cynomolgus macaques ( Macaca fascicularis ) infected with the same virus, the squirrel monkeys developed more-severe immunosuppression, higher viral load, and a broader range of clinical signs typical for measles. In contrast, infection with an MeV unable to interact with the epithelial receptor nectin-4, while causing immunosuppression, resulted in only a mild and transient rash and a short-lived elevation of the body temperature. Similar titers of the wild-type and nectin-4-blind MeV were detected in peripheral blood mononuclear cells and lymph node homogenates, but only the wild-type virus was found in tracheal lavage fluids and urine. Thus, our study demonstrates the importance of MeV interactions with nectin-4 for clinical disease in the new and better-performing S. sciureus model of measles pathogenesis. IMPORTANCE The characterization of mechanisms underlying measles virus clinical disease has been hampered by the lack of an animal model that reproduces the course of disease seen in human patients. Here, we report that infection of squirrel monkeys ( Saimiri sciureus ) fulfills these requirements. Comparative infection with wild-type and epithelial cell receptor-blind viruses demonstrated the importance of epithelial cell infection for clinical disease, highlighting the spread to epithelia as an attractive target for therapeutic strategies. Copyright © 2017 American Society for

  14. Involvement of viral envelope GP2 in Ebola virus entry into cells expressing the macrophage galactose-type C-type lectin

    International Nuclear Information System (INIS)

    Usami, Katsuaki; Matsuno, Keita; Igarashi, Manabu; Denda-Nagai, Kaori; Takada, Ayato; Irimura, Tatsuro

    2011-01-01

    Highlights: → Ebola virus infection is mediated by binding to and fusion with the target cells. → Structural feature of the viral glycoprotein determines the infectivity. → Surface C-type lectin, MGL, of macrophages and dendritic cells mediate the infection. → GP2, one of glycoprotein subunits, plays an essential role in MGL-mediated infection. → There is a critical amino acid residue involved in high infectivity. -- Abstract: Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses, i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502-527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.

  15. Involvement of viral envelope GP2 in Ebola virus entry into cells expressing the macrophage galactose-type C-type lectin

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Katsuaki [Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033 (Japan); Matsuno, Keita; Igarashi, Manabu [Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020 (Japan); Denda-Nagai, Kaori [Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033 (Japan); Takada, Ayato [Department of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo 001-0020 (Japan); Irimura, Tatsuro, E-mail: irimura@mol.f.u-tokyo.ac.jp [Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033 (Japan)

    2011-04-01

    Highlights: {yields} Ebola virus infection is mediated by binding to and fusion with the target cells. {yields} Structural feature of the viral glycoprotein determines the infectivity. {yields} Surface C-type lectin, MGL, of macrophages and dendritic cells mediate the infection. {yields} GP2, one of glycoprotein subunits, plays an essential role in MGL-mediated infection. {yields} There is a critical amino acid residue involved in high infectivity. -- Abstract: Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses, i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502-527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.

  16. Evaluation of monkeypox virus infection of prairie dogs (Cynomys ludovicianus) using in vivo bioluminescent imaging

    Science.gov (United States)

    Falendysz, Elizabeth A.; Londoño-Navas, Angela M.; Meteyer, Carol U.; Pussini, Nicola; Lopera, Juan G.; Osorio, Jorge E.; Rocke, Tonie E.

    2014-01-01

    Monkeypox (MPX) is a re-emerging zoonotic disease that is endemic in Central and West Africa, where it can cause a smallpox-like disease in humans. Despite many epidemiologic and field investigations of MPX, no definitive reservoir species has been identified. Using recombinant viruses expressing the firefly luciferase (luc) gene, we previously demonstrated the suitability of in vivo bioluminescent imaging (BLI) to study the pathogenesis of MPX in animal models. Here, we evaluated BLI as a novel approach for tracking MPX virus infection in black-tailed prairie dogs (Cynomys ludovicianus). Prairie dogs were affected during a multistate outbreak of MPX in the US in 2003 and have since been used as an animal model of this disease. Our BLI results were compared with PCR and virus isolation from tissues collected postmortem. Virus was easily detected and quantified in skin and superficial tissues by BLI before and during clinical phases, as well as in subclinical secondary cases, but was not reliably detected in deep tissues such as the lung. Although there are limitations to viral detection in larger wild rodent species, BLI can enhance the use of prairie dogs as an animal model of MPX and can be used for the study of infection, disease progression, and transmission in potential wild rodent reservoirs.

  17. Serologic and molecular evidence for testudinid herpesvirus 2 infection in wild Agassiz’s desert tortoise, Gopherus agassizii

    Science.gov (United States)

    Jacobson, Elliott R.; Berry, Kristin H.; Wellehan, James F. X.; Origgi, Francesco; Childress, April L.; Braun, Josephine; Schrenzel, Mark; Yee, Julie; Rideout, Bruce

    2012-01-01

    Following field observations of wild Agassiz’s desert tortoises (Gopherus agassizii) with oral lesions similar to those seen in captive tortoises with herpesvirus infection, we measured the prevalence of antibodies to Testudinid herpesvirus (TeHV) 3 in wild populations of desert tortoises in California. The survey revealed 30.9% antibody prevalence. In 2009 and 2010, two wild adult male desert tortoises, with gross lesions consistent with trauma and puncture wounds, respectively, were necropsied. Tortoise 1 was from the central Mojave Desert and tortoise 2 was from the northeastern Mojave Desert. We extracted DNA from the tongue of tortoise 1 and from the tongue and nasal mucosa of tortoise 2. Sequencing of polymerase chain reaction products of the herpesviral DNA-dependent DNA polymerase gene and the UL39 gene respectively showed 100% nucleotide identity with TeHV2, which was previously detected in an ill captive desert tortoise in California. Although several cases of herpesvirus infection have been described in captive desert tortoises, our findings represent the first conclusive molecular evidence of TeHV2 infection in wild desert tortoises. The serologic findings support cross-reactivity between TeHV2 and TeHV3. Further studies to determine the ecology, prevalence, and clinical significance of this virus in tortoise populations are needed.

  18. Direct Epstein-Barr virus (EBV) typing on peripheral blood mononuclear cells: no association between EBV type 2 infection or superinfection and the development of acquired immunodeficiency syndrome-related non-Hodgkin's lymphoma

    NARCIS (Netherlands)

    van Baarle, D.; Hovenkamp, E.; Kersten, M. J.; Klein, M. R.; Miedema, F.; van Oers, M. H.

    1999-01-01

    In the literature, a correlation has been suggested between the occurrence of acquired immunodeficiency syndrome (AIDS)-related non-Hodgkin's lymphomas (NHL) and Epstein-Barr virus (EBV) type 2 infection. To further investigate a possible role for EBV type 2 infection in the development of AIDS-NHL,

  19. Innate resistance to myxomatosis in wild rabbits in England*

    Science.gov (United States)

    Ross, J.; Sanders, M. F.

    1977-01-01

    Wild rabbits (Oryctolagus cuniculus) from one study area in England have been used over a period of 11 years to investigate the possible appearance of innate resistance to myxomatosis. Rabbits of 4-6 weeks old were captured alive, retained in the laboratory until at least 4 months old, and then infected with a type of myxoma virus which kills 90-95% of laboratory rabbits. Observations were made of symptoms, mortality rate and survival times. In the first 4 years of the study (1966-9), mortality rates were not significantly different from those of laboratory rabbits, although survival times of wild rabbits were appreciably longer. In 1970, the mortality rate amongst wild rabbits was 59%, in 1974 it was 17%, and in 1976 it was 20%, thus showing that a considerable degree of inherited resistance to myxomatosis has developed. The types of myxoma virus most commonly isolated from wild rabbits in Great Britain in recent years have been those which cause 70-95% mortality in laboratory rabbits. Therefore, if the degree of innate resistance demonstrated is widespread in Great Britain, there are serious implications regarding the size of the rabbit population, because myxomatosis has been an important factor in holding rabbit numbers at a relatively low level. PMID:270526

  20. Innate resistance to myxomatosis in wild rabbits in England.

    Science.gov (United States)

    Ross, J; Sanders, M F

    1977-12-01

    Wild rabbits (Oryctolagus cuniculus) from one study area in England have been used over a period of 11 years to investigate the possible appearance of innate resistance to myxomatosis. Rabbits of 4-6 weeks old were captured alive, retained in the laboratory until at least 4 months old, and then infected with a type of myxoma virus which kills 90-95% of laboratory rabbits. Observations were made of symptoms, mortality rate and survival times.In the first 4 years of the study (1966-9), mortality rates were not significantly different from those of laboratory rabbits, although survival times of wild rabbits were appreciably longer. In 1970, the mortality rate amongst wild rabbits was 59%, in 1974 it was 17%, and in 1976 it was 20%, thus showing that a considerable degree of inherited resistance to myxomatosis has developed.The types of myxoma virus most commonly isolated from wild rabbits in Great Britain in recent years have been those which cause 70-95% mortality in laboratory rabbits. Therefore, if the degree of innate resistance demonstrated is widespread in Great Britain, there are serious implications regarding the size of the rabbit population, because myxomatosis has been an important factor in holding rabbit numbers at a relatively low level.

  1. Use of FTA sampling cards for molecular detection of avian influenza virus in wild birds.

    Science.gov (United States)

    Keeler, Shamus P; Ferro, Pamela J; Brown, Justin D; Fang, Xingwang; El-Attrache, John; Poulson, Rebecca; Jackwood, Mark W; Stallknecht, David E

    2012-03-01

    Current avian influenza (AI) virus surveillance programs involving wild birds rely on sample collection methods that require refrigeration or low temperature freezing to maintain sample integrity for virus isolation and/or reverse-transcriptase (RT) PCR. Maintaining the cold chain is critical for the success of these diagnostic assays but is not always possible under field conditions. The aim of this study was to test the utility of Finders Technology Associates (FTA) cards for reliable detection of AI virus from cloacal and oropharyngeal swabs of wild birds. The minimum detectable titer was determined, and the effect of room temperature storage was evaluated experimentally using multiple egg-propagated stock viruses (n = 6). Using real time RT-PCR, we compared results from paired cloacal swab and samples collected on FTA cards from both experimentally infected mallards (Anasplatyrhynchos) and hunter-harvested waterfowl sampled along the Texas Gulf Coast. Based on the laboratory trials, the average minimal detectable viral titer was determined to be 1 x 10(4.7) median embryo infectious dose (EID50)/ml (range: 1 x 10(4.3) to 1 x 10(5.4) EID50/ml), and viral RNA was consistently detectable on the FTA cards for a minimum of 20 days and up to 30 days for most subtypes at room temperature (23 C) storage. Real-time RT-PCR of samples collected using the FTA cards showed fair to good agreement in live birds when compared with both real-time RT-PCR and virus isolation of swabs. AI virus detection rates in samples from several wild bird species were higher when samples were collected using the FTA cards compared with cloacal swabs. These results suggest that FTA cards can be used as an alternative sample collection method when traditional surveillance methods are not possible, especially in avian populations that have historically received limited testing or situations in which field conditions limit the ability to properly store or ship swab samples.

  2. Acute hepatitis A virus infection is associated with a limited type I interferon response and persistence of intrahepatic viral RNA.

    Science.gov (United States)

    Lanford, Robert E; Feng, Zongdi; Chavez, Deborah; Guerra, Bernadette; Brasky, Kathleen M; Zhou, Yan; Yamane, Daisuke; Perelson, Alan S; Walker, Christopher M; Lemon, Stanley M

    2011-07-05

    Hepatitis A virus (HAV) is an hepatotropic human picornavirus that is associated only with acute infection. Its pathogenesis is not well understood because there are few studies in animal models using modern methodologies. We characterized HAV infections in three chimpanzees, quantifying viral RNA by quantitative RT-PCR and examining critical aspects of the innate immune response including intrahepatic IFN-stimulated gene expression. We compared these infection profiles with similar studies of chimpanzees infected with hepatitis C virus (HCV), an hepatotropic flavivirus that frequently causes persistent infection. Surprisingly, HAV-infected animals exhibited very limited induction of type I IFN-stimulated genes in the liver compared with chimpanzees with acute resolving HCV infection, despite similar levels of viremia and 100-fold greater quantities of viral RNA in the liver. Minimal IFN-stimulated gene 15 and IFIT1 responses peaked 1-2 wk after HAV challenge and then subsided despite continuing high hepatic viral RNA. An acute inflammatory response at 3-4 wk correlated with the appearance of virus-specific antibodies and apoptosis and proliferation of hepatocytes. Despite this, HAV RNA persisted in the liver for months, remaining present long after clearance from serum and feces and revealing dramatic differences in the kinetics of clearance in the three compartments. Viral RNA was detected in the liver for significantly longer (35 to >48 wk) than HCV RNA in animals with acute resolving HCV infection (10-20 wk). Collectively, these findings indicate that HAV is far stealthier than HCV early in the course of acute resolving infection. HAV infections represent a distinctly different paradigm in virus-host interactions within the liver.

  3. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    International Nuclear Information System (INIS)

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei; Lin, Hong-Hui

    2016-01-01

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  4. GOLDEN2-LIKE transcription factors coordinate the tolerance to Cucumber mosaic virus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xue-Ying; Li, Peng-Xu; Zou, Li-Juan; Tan, Wen-rong; Zheng, Ting; Zhang, Da-Wei, E-mail: yuanmiao1892@163.com; Lin, Hong-Hui, E-mail: hhlin@scu.edu.cn

    2016-09-02

    Arabidopsis thaliana GOLDEN2-LIKE (GLKs) transcription factors play important roles in regulation of photosynthesis-associated nuclear genes, as well as participate in chloroplast development. However, the involvement of GLKs in plants resistance to virus remains largely unknown. Here, the relationship between GLKs and Cucumber mosaic virus (CMV) stress response was investigated. Our results showed that the Arabidopsis glk1glk2 double-mutant was more susceptible to CMV infection and suffered more serious damages (such as higher oxidative damages, more compromised in PSII photochemistry and more reactive oxygen species accumulation) when compared with the wild-type plants. Interestingly, there was little difference between single mutant (glk1 or glk2) and wild-type plants in response to CMV infection, suggesting GLK1 and GLK2 might function redundant in virus resistance in Arabidopsis. Furthermore, the induction of antioxidant system and defense-associated genes expression in the double mutant were inhibited when compared with single mutant or wild-type plants after CMV infection. Further evidences showed that salicylic acid (SA) and jasmonic acid (JA) might be involved in GLKs-mediated virus resistance, as SA or JA level and synthesis-related genes transcription were impaired in glk1glk2 mutant. Taken together, our results indicated that GLKs played a positively role in virus resistance in Arabidopsis. - Highlights: • GLKs play a positive role in CMV resistance in Arabidopsis. • Defective of GLKs suffered more ROS accumulation. • Arabidopsis lacking GLKs have damaged photosynthesis. • Arabidopsis lacking GLKs show low SA and JA accumulation.

  5. Agnoprotein Is an Essential Egress Factor during BK Polyomavirus Infection

    Directory of Open Access Journals (Sweden)

    Margarita-Maria Panou

    2018-03-01

    Full Text Available BK polyomavirus (BKPyV; hereafter referred to as BK causes a lifelong chronic infection and is associated with debilitating disease in kidney transplant recipients. Despite its importance, aspects of the virus life cycle remain poorly understood. In addition to the structural proteins, the late region of the BK genome encodes for an auxiliary protein called agnoprotein. Studies on other polyomavirus agnoproteins have suggested that the protein may contribute to virion infectivity. Here, we demonstrate an essential role for agnoprotein in BK virus release. Viruses lacking agnoprotein fail to release from host cells and do not propagate to wild-type levels. Despite this, agnoprotein is not essential for virion infectivity or morphogenesis. Instead, agnoprotein expression correlates with nuclear egress of BK virions. We demonstrate that the agnoprotein binding partner α-soluble N-ethylmaleimide sensitive fusion (NSF attachment protein (α-SNAP is necessary for BK virion release, and siRNA knockdown of α-SNAP prevents nuclear release of wild-type BK virions. These data highlight a novel role for agnoprotein and begin to reveal the mechanism by which polyomaviruses leave an infected cell.

  6. Enhanced mutagenesis of UV-irradiated simian virus 40 occurs in mitomycin C-treated host cells only at a low multiplicity of infection

    International Nuclear Information System (INIS)

    Sarasin, A.; Benoit, A.

    1986-01-01

    Treatment of monkey kidney cells with mitomycin C (MMC) 24 h prior to infection with UV-irradiated simian virus 40 (SV40) enhanced both virus survival and virus mutagenesis. The use of SV40 as a biological probe has been taken as an easy method to analyse SOS response of mammalian cells to the stress caused by DNA damage or inhibition of DNA replication. The mutation assay we used was based on the reversion from a temperature-sensitive phenotype (tsA58 mutant) to a wild-type phenotype. The optimal conditions for producing enhanced survival and mutagenesis in the virus progeny were determined with regard to the multiplicity of infection (MOI). Results showed that the level of enhanced mutagenesis observed for UV-irradiated virus grown in MMC-treated cells was an inverse function of the MOI, while enhanced survival was observed at nearly the same level regardless of the MOI. For the unirradiated virus, almost no increase in the mutation of virus progeny issued from MMC-treated cells was observed, while a small amount of enhanced virus survival was obtained. These results show that enhanced virus mutagenesis and enhanced virus survival can be dissociated under some experimental conditions. Enhanced virus mutagenesis, analogous to the error-prone replication of phages in SOS-induced bacteria, was observed, at least for SV40, only when DNA of both virus and host cells was damaged and when infection occurred with a small number of viral particles. We therefore hypothesize that an error-prone replication mode of UV-damaged templates is observed in induced monkey kidney cells

  7. Production of a dendritic cell-based vaccine containing inactivated autologous virus for therapy of patients with chronic human immunodeficiency virus type 1 infection.

    Science.gov (United States)

    Whiteside, Theresa L; Piazza, Paolo; Reiter, Amanda; Stanson, Joanna; Connolly, Nancy C; Rinaldo, Charles R; Riddler, Sharon A

    2009-02-01

    In preparation for a pilot clinical trial in patients with chronic human immunodeficiency virus type 1 (HIV-1) infection, a novel dendritic cell (DC)-based vaccine is being manufactured. The trial will test the hypothesis that isolated endogenous virus presented by DCs serves as a potent immunogen for activation of CD8(+) and CD4(+) T cells specific for a broad range of autologous HIV-1 antigens. Production of the vaccine under good manufacture practice conditions involves (i) autologous virus isolation; (ii) superinfection of CD4(+) T cells with the virus; (iii) inactivation of the virus in CD4(+) T cells, T-cell apoptosis, and coincubation of T cells with autologous DCs; and (iv) product testing and release. Endogenous virus was isolated from peripheral blood-derived CD4(+) T cells of three HIV-1-positive subjects by coincubation with autologous OKT-3-stimulated CD4(+) T cells. CD4(+) T-cell supernatants were tested for p24 levels by enzyme-linked immunosorbent assay (>25 ng/ml) and for the 50% tissue culture infective doses (TCID(50); which ranged from 4,642 to 46,416/ml on day 19 of culture). Autologous CD4(+) T cells that were separated on immunobeads (>95% purity) and superinfected with virus-expressed p24 (28 to 54%) had TCID(50) of >400/ml on days 5 to 10. Virus inactivation with psoralen (20 microg/ml) and UVB irradiation (312 nm) reduced the TCID(50) of the supernatants from 199,986 to 11/ml (>99%). 7-Amino-actinomycin D-positive, annexin V-positive CD4(+) T cells were fed to autologous DCs generated by using the Elutra cell separation system and the Aastrom system. Flow analysis showed that DC loading was complete in 24 h. On the basis of these translational results and experience with the generation of DCs from HIV-1-infected patients in a previous clinical trial, the Investigational New Drug application for clinical vaccination was submitted and approved by the FDA (application no. BB-IND-13137).

  8. Detection of herpes simplex virus type 2 (HSV-2) -specific cell-mediated immune responses in guinea pigs during latent HSV-2 genital infection.

    Science.gov (United States)

    Perry, Clarice L; Banasik, Brianne N; Gorder, Summer R; Xia, Jingya; Auclair, Sarah; Bourne, Nigel; Milligan, Gregg N

    2016-12-01

    Genital infections with herpes simplex virus type 2 (HSV-2) are a source of considerable morbidity and are a health concern for newborns exposed to virus during vaginal delivery. Additionally, HSV-2 infection diminishes the integrity of the vaginal epithelium resulting in increased susceptibility of individuals to infection with other sexually transmitted pathogens. Understanding immune protection against HSV-2 primary infection and immune modulation of virus shedding events following reactivation of the virus from latency is important for the development of effective prophylactic and therapeutic vaccines. Although the murine model of HSV-2 infection is useful for understanding immunity following immunization, it is limited by the lack of spontaneous reactivation of HSV-2 from latency. Genital infection of guinea pigs with HSV-2 accurately models the disease of humans including the spontaneous reactivation of HSV-2 from latency and provides a unique opportunity to examine virus-host interactions during latency. Although the guinea pig represents an accurate model of many human infections, relatively few reagents are available to study the immunological response to infection. To analyze the cell-mediated immune response of guinea pigs at extended periods of time after establishment of HSV-2 latency, we have modified flow-cytometry based proliferation assays and IFN-γ ELISPOT assays to detect and quantify HSV-specific cell-mediated responses during latent infection of guinea pigs. Here we demonstrate that a combination of proliferation and ELISPOT assays can be used to quantify and characterize effecter function of virus-specific immune memory responses during HSV-latency. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Herpes simplex virus type 1-derived recombinant and amplicon vectors.

    Science.gov (United States)

    Fraefel, Cornel; Marconi, Peggy; Epstein, Alberto L

    2011-01-01

    Herpes simplex virus type 1 (HSV-1) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153 kbp double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes (1) the two approaches most commonly used to prepare recombinant vectors through homologous recombination, either in eukaryotic cells or in bacteria, and (2) the two methodologies currently used to generate helper-free amplicon vectors, either using a bacterial artificial chromosome (BAC)-based approach or a Cre/loxP site-specific recombination strategy.

  10. Presence of viruses in wild eels Anguilla anguilla L, from the Albufera Lake (Spain).

    Science.gov (United States)

    Bandín, I; Souto, S; Cutrín, J M; López-Vázquez, C; Olveira, J G; Esteve, C; Alcaide, E; Dopazo, C P

    2014-07-01

    A virological analysis was conducted on wild eels from the Albufera Lake (Spain). A total of 179 individuals at different growth stages were collected in two different surveys (2004 and 2008). Presence of anguillid herpesvirus (AngHV-1), aquabirnavirus and betanodavirus was confirmed by PCR procedures in both surveys, although the number of detections was clearly higher in 2008 (83% of the eels analysed resulted positive for virus presence). AngHV-1 was the viral agent most frequently detected, followed by aquabirnaviruses. Betanodaviruses were detected by the first time in wild eels, and although the detections were only made by nested PCR, high percentage of positives were achieved. In addition, in 2008, seven aquabirnaviruses were isolated. Phylogenetic analysis performed using partial sequences of both genomic segments of aquabirnaviruses indicated that the seven isolates could be typed as WB (genogroup I) on the basis of segment A sequences, but when segment B was used six of them clustered with C1 strain (genogroup V) and one was typed as Ab (genogroup II). These results indicate natural reassortment between different strains of aquabirnaviruses in the eels. Although betanodaviruses were not isolated in cell culture, the analysis of the sequence of the nested PCR product indicated that they clustered with SJNNV genotype. The diversity of viral agents and the high level of viral detections suggest that viral infections may play a more prominent role in the decline of the European eel than initially thought. © 2014 John Wiley & Sons Ltd.

  11. Pathogenesis of a genotype C strain of bovine parainfluenza virus type 3 infection in albino guinea pigs.

    Science.gov (United States)

    Shi, Hong-Fei; Zhu, Yuan-Mao; Dong, Xiu-Mei; Cai, Hong; Ma, Lei; Wang, Shu; Yan, Hao; Wang, Xue-Zhi; Xue, Fei

    2014-08-08

    Bovine parainfluenza virus type 3 (BPIV3) is one of the most important of the known viral respiratory tract agents of both young and adult cattle and widespread among cattle around the world. Up to present, three genotypes A, B and C of BPIV3 have been described on the basis of genetic and phylogenetic analysis and only limited studies on the pathogenesis of the genotype A of BPIV3 infection in calves and laboratory animals have been performed. The report about experimental infections of the genotypes B and C of BPIV3 in laboratory animals and calves was scant. Therefore, an experimental infection of guinea pigs with the Chinese BPIV3 strain SD0835 of the genotype C was performed. Sixteen guinea pigs were intranasally inoculated with the suspension of SD0835, while eight control guinea pigs were also intranasally inoculated with the same volume of supernatant from uninfected MDBK cells. The virus-inoculated guinea pigs displayed a few observable clinical signs that were related to the respiratory tract disease and two of the sixteen experimentally infected guinea pigs died at 2 and 3 days post inoculation (PI), respectively, and apparent gross pneumonic lesions were observed at necropsy. The gross pneumonic lesions in guinea pigs inoculated with SD0835 consisted of dark red, slightly depressed, irregular areas of consolidation in the lung lobes from the second to 9th day of infection at necropsy, and almost complete consolidation and atelectasis of the lung lobes were seen at 7 days PI. Histopathological changes including alveoli septa thickening and focal cellulose pneumonia were also observed in the lungs of guinea pigs experimentally infected with SD0835. Viral replication was detectable by virus isolation and titration, real-time RT-PCR and immunohistochemistry (IHC) staining in the respiratory tissues of guinea pigs as early as 24h after intranasal inoculation with SD0835. The results of virus isolation and titration showed that guinea pigs were permissive for

  12. Pathogenicity and transmission of triple reassortant H3N2 swine influenza A viruses is attenuated following Turkey embryo propagation.

    Science.gov (United States)

    Raghunath, Shobana; Pudupakam, Raghavendra Sumanth; Deventhiran, Jagadeeswaran; Tevatia, Rahul; Leroith, Tanya

    2017-03-01

    Genetic lineages of swine influenza A viruses (SIVs) have recently been established in Turkeys in the United States. To identify molecular determinants that are involved in virulence and transmission of SIVs to Turkeys, we sequentially passaged two triple reassortant H3N2 SIV isolates from Minnesota in ten day old specific-pathogen free (SPF) Turkey embryos and tested them in seven-day old Turkey poults. We found that SIV replication in Turkey embryos led to minimal mutations in and around the receptor binding and antigenic sites of the HA molecule, while other gene segments were unchanged. The predominant changes associated with Turkey embryo passage were A223V, V226A and T248I mutations in the receptor-binding and glycosylation sites of the HA molecule. Furthermore, Turkey embryo propagation altered receptor specificity in SIV strain 07-1145. Embryo passaged 07-1145 virus showed a decrease in α2, 6 sialic acid receptor binding compared to the wild type virus. Intranasal infection of wild type SIVs in one-week-old Turkey poults resulted in persistent diarrhea and all the infected birds seroconverted at ten days post infection. The 07-1145 wild type virus also transmitted to age matched in-contact birds introduced one-day post infection. Turkeys infected with embryo passaged viruses displayed no clinical signs and were not transmitted to in-contact poults. Our results suggest that Turkey embryo propagation attenuates recent TR SIVs for infectivity and transmission in one week old Turkeys. Our findings will have important implications in identifying molecular determinants that control the transmission and virulence of TR SIVs in Turkeys and other species. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Efficacy of Brazilian Propolis against Herpes Simplex Virus Type 1 Infection in Mice and Their Modes of Antiherpetic Efficacies

    Directory of Open Access Journals (Sweden)

    Tomomi Shimizu

    2011-01-01

    Full Text Available Ethanol extracts (AF-06, 07, and 08, 10 mg/kg of Brazilian propolis were administered orally to cutaneously herpes simplex virus type 1 (HSV-1-infected mice three times daily on days 0 to 6 after infection to evaluate their efficacies against HSV-1 infection and significantly limited development of herpetic skin lesions. AF-07 and 08 significantly reduced virus titers in brain and/or skin on day 4 without toxicity, but AF-08 had no anti-HSV-1 activity in vitro. AF-06 and 08 significantly enhanced delayed-type hypersensitivity (DTH to inactivated HSV-1 antigen in infected mice. Oral AF-08-administration significantly augmented interferon (IFN-γ production by HSV-1 antigen from splenocytes of HSV-1-infected mice, while direct exposure of splenocytes of infected mice to AF-06 significantly elevated IFN-γ production in vitro. Thus, AF-08 might have components that are active in vivo even after oral administration and those of AF-06 might be active only in vitro. Because DTH is a major host defense for intradermal HSV-1 infection, augmentation of DTH response by AF-06 or 08, directly or indirectly, respectively, may contribute to their efficacies against HSV-1 infection. In addition, AF-06 and 07 possibly contain anti-HSV-1 components contributing to their efficacies. Such biological activities of Brazilian propolis may be useful to analyze its pharmacological actions.

  14. [Epidemiology of hepatitis E virus infection in Spain].

    Science.gov (United States)

    Echevarría, José Manuel; Fogeda, Marta; Avellón, Ana

    2015-04-01

    The general features of the epidemiology and ecology of hepatitis E virus in Spain are already known after 20 years of investigations. Genotype 3 strains, mainly from sub-genotype 3f, circulated among swine livestock and certain wild mammals, and would be sporadically transmitted to humans through direct contact with the reservoirs or by consumption of foods derived from them. Bivalve shellfish contaminated by hepatitis E virus from sewage could also play a role in transmission. Although the interpretation of results from seroprevalence studies in low endemic settings is still controversial, antibody to hepatitis E virus displays an overall prevalence less than 10% among the population of Spain, increasing significantly with age. From the, approximately, 150 cases of acute hepatitis E recorded in the international literature, males older than 40 years, suffering a mild, locally acquired disease predominate. In addition, hepatitis E might be more frequent in the North of the country than in other regions. Although the disease does not usually have a great clinical relevance, the occasional finding of cases of fulminant hepatitis, and of ribavirin-resistant, chronic hepatitis E virus infections among the immunocompromised would recommend the surveillance of the infection by the public health authority and a better implementation of specific diagnostic procedures in clinical laboratories. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  15. Semen parameters of a semen donor before and after infection with human immunodeficiency virus type 1: Case report

    NARCIS (Netherlands)

    van Leeuwen, E.; Cornelissen, M.; de Vries, J. W.; Lowe, S. H.; Jurriaans, S.; Repping, S.; van der Veen, F.

    2004-01-01

    Semen samples from a donor who seroconverted for human immunodeficiency virus type 1 (HIV-1) during the period that he was donating at our clinic were stored before and after infection. Semen analysis was done on all of these samples before cryopreservation. Retrospectively, both qualitative and

  16. Interaction of E2 glycoprotein with heparan sulfate is crucial for cellular infection of Sindbis virus.

    Directory of Open Access Journals (Sweden)

    Wuyang Zhu

    Full Text Available Cell culture-adapted strains of Sindbis virus (SINV initially attach to cells by the ability to interact with heparan sulfate (HS through selective mutation for positively charged amino acid (aa scattered in E2 glycoprotein (W. B. Klimstra, K. D. Ryman, and R. E. Johnston, J. Virol. 72: 7357-7366, 1998. Here we have further confirmed that interaction of E2 protein with HS is crucial for cellular infection of SINV based on the reverse genetic system of XJ-160 virus, a Sindbis-like virus (SINLV. Both SINV YN87448 and SINLV XJ-160 displayed similar infectivity on BHK-21, Vero, or C6/36 cells, but XJ-160 failed to infect mouse embryonic fibroblast (MEF cells. The molecular mechanisms underlying the selective infectivity of XJ-160 were approached by substituting the E1, E2, or both genes of XJ-160 with that of YN87448, and the chimeric virus was denominated as XJ-160/E1, XJ-160/E2, or XJ-160/E1E2, respectively. In contrast to the parental XJ-160, all chimeric viruses became infectious to wild-type MEF cells (MEF-wt. While MEF-Ext(-/- cells, producing shortened HS chains, were resistant not only to XJ-160, but also to YN87448 as well as the chimeric viruses, indicating that the inability of XJ-160 to infect MEF-wt cells likely due to its incompetent discrimination of cellular HS. Treatment with heparin or HS-degrading enzyme resulted in a substantial decrease in plaque formation by YN87448, XJ-160/E2, and XJ-160/E1E2, but had marginal effect on XJ-160 and XJ-160/E1, suggesting that E2 glycoprotein from YN87448 plays a more important role than does E1 in mediating cellular HS-related cell infection. In addition, the peptide containing 145-150 aa from E2 gene of YN87448 specifically bound to heparin, while the corresponding peptide from the E2 gene of XJ-160 essentially showed no binding to heparin. As a new dataset, these results clearly confirm an essential role of E2 glycoprotein, especially the domain of 145-150 aa, in SINV cellular infection

  17. Effects of acute respiratory virus infection upon tracheal mucous transport

    International Nuclear Information System (INIS)

    Gerrard, C.S.; Levandowski, R.A.; Gerrity, T.R.; Yeates, D.B.; Klein, E.

    1985-01-01

    Tracheal mucous velocity was measured in 13 healthy non-smokers using an aerosol labelled with /sup 99m/Tc and a multidetector probe during respiratory virus infections. The movement of boluses of tracheal mucous were either absent or reduced in number in five subjects with myxovirus infection (four influenza and one respiratory syncytial virus) within 48 hr of the onset of symptoms and in four subjects 1 wk later. One subject with influenza still had reduced bolus formation 12-16 wk after infection. Frequent coughing was a feature of those subjects with absent tracheal boluses. In contrast, four subjects with rhinovirus infection had normal tracheal mucous velocity at 48 hr after the onset of symptoms (4.1 +/- 1.3 mm/min). Tracheal mucous velocity was also normal (4.6 +/- 1.1 mm/min) in four subjects in whom no specific viral agent could be defined but had typical symptomatology of respiratory viral infection. During health tracheal mucous velocity was normal (4.8 +/- 1.6 mm/min) in the eleven subjects who had measurements made. Disturbances in tracheal mucous transport during virus infection appear to depend upon the type of virus and are most severe in influenza A and respiratory syncytial virus infection

  18. Does human bocavirus infection depend on helper viruses? A challenging case report

    Directory of Open Access Journals (Sweden)

    Brockmann Michael

    2011-08-01

    Full Text Available Abstract A case of severe diarrhoea associated with synergistic human bocavirus type 1 (HBoV and human herpes virus type 6 (HHV6 is reported. The case supports the hypotheses that HBoV infection under clinical conditions may depend on helper viruses, or that HBoV replicates by a mechanism that is atypical for parvoviruses, or that HBoV infection can be specifically treated with cidofovir.

  19. Molecular Evolution of a Type 1 Wild-Vaccine Poliovirus Recombinant during Widespread Circulation in China

    Science.gov (United States)

    Liu, Hong-Mei; Zheng, Du-Ping; Zhang, Li-Bi; Oberste, M. Steven; Pallansch, Mark A.; Kew, Olen M.

    2000-01-01

    Type 1 wild-vaccine recombinant polioviruses were isolated from poliomyelitis patients in China from 1991 to 1993. We compared the sequences of 34 recombinant isolates over the 1,353-nucleotide (nt) genomic interval (nt 2480 to 3832) encoding the major capsid protein, VP1, and the protease, 2A. All recombinants had a 367-nt block of sequence (nt 3271 to 3637) derived from the Sabin 1 oral poliovirus vaccine strain spanning the 3′-terminal sequences of VP1 (115 nt) and the 5′ half of 2A (252 nt). The remaining VP1 sequences were closely (up to 99.5%) related to those of a major genotype of wild type 1 poliovirus endemic to China up to 1994. In contrast, the non-vaccine-derived sequences at the 3′ half of 2A were more distantly related (polioviruses from China. The vaccine-derived sequences of the earliest (April 1991) isolates completely matched those of Sabin 1. Later isolates diverged from the early isolates primarily by accumulation of synonymous base substitutions (at a rate of ∼3.7 × 10−2 substitutions per synonymous site per year) over the entire VP1-2A interval. Distinct evolutionary lineages were found in different Chinese provinces. From the combined epidemiologic and evolutionary analyses, we propose that the recombinant virus arose during mixed infection of a single individual in northern China in early 1991 and that its progeny spread by multiple independent chains of transmission into some of the most populous areas of China within a year of the initiating infection. PMID:11070012

  20. Interferon-γ Inhibits Ebola Virus Infection.

    Directory of Open Access Journals (Sweden)

    Bethany A Rhein

    Full Text Available Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  1. Interferon-γ Inhibits Ebola Virus Infection.

    Science.gov (United States)

    Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy

    2015-01-01

    Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.

  2. Herpes simplex virus downregulation of secretory leukocyte protease inhibitor enhances human papillomavirus type 16 infection.

    Science.gov (United States)

    Skeate, Joseph G; Porras, Tania B; Woodham, Andrew W; Jang, Julie K; Taylor, Julia R; Brand, Heike E; Kelly, Thomas J; Jung, Jae U; Da Silva, Diane M; Yuan, Weiming; Kast, W Martin

    2016-02-01

    Herpes simplex virus (HSV) was originally implicated in the aetiology of cervical cancer, and although high-risk human papillomavirus (HPV) is now the accepted causative agent, the epidemiological link between HSV and HPV-associated cancers persists. The annexin A2 heterotetramer (A2t) has been shown to mediate infectious HPV type 16 (HPV16) uptake by human keratinocytes, and secretory leukocyte protease inhibitor (SLPI), an endogenous A2t ligand, inhibits HPV16 uptake and infection. Interestingly, HSV infection induces a sustained downregulation of SLPI in epithelial cells, which we hypothesized promotes HPV16 infection through A2t. Here, we show that in vitro infection of human keratinocytes with HSV-1 or HSV-2, but not with an HSV-1 ICP4 deletion mutant that does not downregulate SLPI, leads to a >70% reduction of SLPI mRNA and a >60% decrease in secreted SLPI protein. Consequently, we observed a significant increase in the uptake of HPV16 virus-like particles and gene transduction by HPV16 pseudovirions (two- and 2.5-fold, respectively) in HSV-1- and HSV-2-infected human keratinocyte cell cultures compared with uninfected cells, whereas exogenously added SLPI reversed this effect. Using a SiMPull (single-molecule pulldown) assay, we demonstrated that endogenously secreted SLPI interacts with A2t on epithelial cells in an autocrine/paracrine manner. These results suggested that ongoing HSV infection and resultant downregulation of local levels of SLPI may impart a greater susceptibility for keratinocytes to HPV16 infection through the host cell receptor A2t, providing a mechanism that may, in part, provide an explanation for the aetiological link between HSV and HPV-associated cancers.

  3. Human Embryonic Stem Cell-Derived Neurons Are Highly Permissive for Varicella-Zoster Virus Lytic Infection.

    Science.gov (United States)

    Sadaoka, Tomohiko; Schwartz, Cindi L; Rajbhandari, Labchan; Venkatesan, Arun; Cohen, Jeffrey I

    2018-01-01

    Varicella-zoster virus (VZV) is highly cell associated when grown in culture and has a much higher (4,000- to 20,000-fold increased) particle-to-PFU ratio in vitro than herpes simplex virus (HSV). In contrast, VZV is highly infectious in vivo by airborne transmission. Neurons are major targets for VZV in vivo ; in neurons, the virus can establish latency and reactivate to produce infectious virus. Using neurons derived from human embryonic stem cells (hESC) and cell-free wild-type (WT) VZV, we demonstrated that neurons are nearly 100 times more permissive for WT VZV infection than very-early-passage human embryonic lung cells or MRC-5 diploid human fibroblasts, the cells used for vaccine production or virus isolation. The peak titers achieved after infection were ∼10-fold higher in human neurons than in MRC-5 cells, and the viral genome copy number-to-PFU ratio for VZV in human neurons was 500, compared with 50,000 for MRC-5 cells. Thus, VZV may not necessarily have a higher particle-to-PFU ratio than other herpesviruses; instead, the cells previously used to propagate virus in vitro may have been suboptimal. Furthermore, based on electron microscopy, neurons infected with VZV produced fewer defective or incomplete viral particles than MRC-5 cells. Our data suggest that neurons derived from hESC may have advantages compared to other cells for studies of VZV pathogenesis, for obtaining stocks of virus with high titers, and for isolating VZV from clinical specimens. IMPORTANCE Varicella-zoster virus (VZV) causes chickenpox and shingles. Cell-free VZV has been difficult to obtain, both for in vitro studies and for vaccine production. While numerous cells lines have been tested for their ability to produce high titers of VZV, the number of total virus particles relative to the number of viral particles that can form plaques in culture has been reported to be extremely high relative to that in other viruses. We show that VZV grows to much higher titers in human

  4. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany

    NARCIS (Netherlands)

    J.M.A. van den Brand (Judith); O. Krone (Oliver); P.U. Wolf (Peter U.); M.W.G. van de Bildt (Marco); G. van Amerongen (Geert); A.D.M.E. Osterhaus (Albert); T. Kuiken (Thijs)

    2015-01-01

    textabstractRaptors may contract highly pathogenic avian influenza virus H5N1 by hunting or scavenging infected prey. However, natural H5N1 infection in raptors is rarely reported. Therefore, we tested raptors found dead during an H5N1 outbreak in wild waterbirds in Mecklenburg-Western Pomerania,

  5. UV radiation and mouse models of herpes simplex virus infection

    International Nuclear Information System (INIS)

    Norval, Mary; El-Ghorr, A.A.

    1996-01-01

    Orolabial human infections with herpes simplex virus type 1 (HSV-1) are very common; following the primary epidermal infection, the virus is retained in a latent form in the trigeminal ganglia from where it can reactivate and cause a recrudescent lesion. Recrudescences are triggered by various stimuli including exposure to sunlight. In this review three categories of mouse models are used to examine the effects of UV irradiation on HSV infections: these are UV exposure prior to primary infection, UV exposure as a triggering event for recrudescence and UV exposure prior to challenge with virus is mice already immunized to HSV. In each of these models immunosuppression occurs, which is manifest, in some instances, in increased morbidity or an increased rate of recrudescence. Where known, the immunological mechanisms involved in the models are summarized and their relevance to human infections considered. (Author)

  6. The Changing Epidemiology of Herpes Simplex Virus Type 1 Infection: The Associated Effects on the Incidence of Ocular Herpes

    Directory of Open Access Journals (Sweden)

    Abedi Kiasari, B.

    2016-07-01

    Full Text Available Herpes simplex virus type 1 (HSV-1 with a worldwide distribution has been reported in all human populations, resulting in a clinical spectrum of infections. Although HSV type 2 (HSV-2 is known as the most common cause of genital herpes, an increasing number of cases with genital herpes are caused by HSV-1. The present study aimed to discuss the changes in the epidemiology of HSV-1 infection including the decline in the general incidence of HSV-1 infection in childhood and the increased rate of genital herpes, caused by HSV-1. Moreover, changes in the epidemiology of ocular herpes, i.e., the reduced rate of primary ocular herpes in children and increased incidence of ocular HSV infection in adults, were discussed.

  7. Experimental infection with highly pathogenic H5N8 avian influenza viruses in the Mandarin duck (Aix galericulata) and domestic pigeon (Columba livia domestica).

    Science.gov (United States)

    Kwon, Jung-Hoon; Noh, Yun Kyung; Lee, Dong-Hun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Jeong, Sol; Gwon, Gyeong-Bin; Song, Chang-Seon; Nahm, Sang-Soep

    2017-05-01

    Wild birds play a major role in the evolution, maintenance, and dissemination of highly pathogenic avian influenza viruses (HPAIV). Sub-clinical infection with HPAI in resident wild birds could be a source of dissemination of HPAIV and continuous outbreaks. In this study, the pathogenicity and infectivity of two strains of H5N8 clade 2.3.4.4 virus were evaluated in the Mandarin duck (Aix galericulata) and domestic pigeon (Columba livia domestica). None of the birds experimentally infected with H5N8 viruses showed clinical signs or mortality. The H5N8 viruses efficiently replicated in the virus-inoculated Mandarin ducks and transmitted to co-housed Mandarin ducks. Although relatively high levels of viral shedding were noted in pigeons, viral shedding was not detected in some of the pigeons and the shedding period was relatively short. Furthermore, the infection was not transmitted to co-housed pigeons. Immunohistochemical examination revealed the presence of HPAIV in multiple organs of the infected birds. Histopathological evaluation showed the presence of inflammatory responses primarily in HPAIV-positive organs. Our results indicate that Mandarin ducks and pigeons can be infected with H5N8 HPAIV without exhibiting clinical signs; thus, they may be potential healthy reservoirs of the H5N8 HPAIV. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The synthesis of polyadenylated messenger RNA in herpes simplex type I virus infected BHK cells.

    Science.gov (United States)

    Harris, T J; Wildy, P

    1975-09-01

    The pattern of polyadenylated messenger RNA (mRNA) synthesis in BHK cell monolayers, infected under defined conditions with herpes simplex type I virus has been investigated by polyacrylamide gel electrophoresis or pulse-labelled RNA isolated by oligo dT-cellulose chromatography. Two classes of mRNA molecules were synthesized in infected cells; these were not detected in uninfected cells. The rate of synthesis of the larger, 18 to 30S RNA class reached a maximum soon after injection and then declined, whereas the rate of synthesis of the 7 to 11 S RNA class did not reach a maximum until much later and did not decline. In the presence of cytosine arabinoside, the rate of mRNA synthesis in infected cells was reduced but the electrophoretic pattern remained the same.

  9. First report of wild boar susceptibility to Porcine circovirus type 3: High prevalence in the Colli Euganei Regional Park (Italy) in the absence of clinical signs.

    Science.gov (United States)

    Franzo, Giovanni; Tucciarone, Claudia Maria; Drigo, Michele; Cecchinato, Mattia; Martini, Marco; Mondin, Alessandra; Menandro, Maria Luisa

    2018-05-18

    The genus Circovirus includes one of the most relevant infectious agents affecting domestic pigs, Porcine circovirus type 2 (PCV-2). The wild boar susceptibility to this pathogen has also been demonstrated although the actual epidemiological role of wild populations is still debated. In recent times, a new circovirus, Porcine circovirus type 3 (PCV-3), has been discovered and reported in the presence of several clinical conditions. However, no information is currently available about PCV-3 circulation and prevalence in wild boar. To fill this gap, 187 wild boar serum samples were collected in the Colli Euganei Regional Park (Northern Italy) and screened for PCV-3, demonstrating a high viral prevalence (approximately 30%). No gender differences were demonstrated while a lower infection prevalence was observed in animals younger than 12 months compared to older ones, differently from what described in commercial pigs. Almost all sampled animals were in good health conditions and no association was proven between PCV-3 status and clinical syndromes in wild animals. The genetic characterization of selected strains enlightened a relevant variability and the absence of closely related strains originating from domestic pigs. Therefore, the observed scenario is suggestive of multiple introductions from other wild or domestic swine populations followed by prolonged circulation and independent evolution. Worldwide, this study reports for the first time the high susceptibility of the wild boar to PCV-3 infection. The high prevalence and the absence of association with clinical signs support the marginal role of this virus in the wild boar population ecology. However, its epidemiological role as reservoir endangering commercial swine cannot be excluded and will require further investigations. © 2018 Blackwell Verlag GmbH.

  10. Molecular Investigation on the Presence of Hepatitis E Virus (HEV) in Wild Game in North-Western Italy.

    Science.gov (United States)

    Serracca, Laura; Battistini, Roberta; Rossini, Irene; Mignone, Walter; Peletto, Simone; Boin, Claudia; Pistone, Giancarlo; Ercolini, Riccardo; Ercolini, Carlo

    2015-09-01

    Meat products from HEV-infected reservoir animal species are capable of transmitting HEV to humans and represent a public health concern. Human HEV cases have been linked to the consumption of raw or undercooked pig liver sausages, pork, and game meats, such as wild boars and deer worldwide. Direct exposure to swine or wild game species might also represent a source of HEV transmission especially for veterinarians, hunters, or butchers. A limited amount of data is available on HEV prevalence in wild boars in Italy and no data are available for other wild game species intended for human consumption. In this study, the circulation of HEV in four different animal species hunted in north-western Italy was evaluated to gain insight into the infection levels and the genetic diversity of the virus in such animal populations. Liver samples of 372 wild boars, 30 roe deer, 47 European hares and 38 coypus were analyzed for HEV RNA by real-time RT-PCR; positive samples were then sequenced and submitted to phylogenetic analysis. HEV RNA was detected in the livers of 7/372 (1.9%) wild boars tested, while no sample was positive for roe deer, European hare, and coypu. Phylogenetic analysis showed that wild boar HEV sequences belonged to HEV subtypes 3e, 3c, and 3f. Our results indicate that HEV is circulating only in wild boar among the considered game species in north-western Italy and suggest a potential zoonotic risk related to handling and/or consumption of raw or undercooked meat and products made of the liver from this species.

  11. SURVEILLANCE FOR NEWCASTLE DISEASE VIRUS, AVIAN INFLUENZA VIRUS AND MYCOPLASMA GALLISEPTICUM IN WILD BIRDS NEAR COMMERCIAL POULTRY FARMS SURROUNDED BY ATLANTIC RAINFOREST REMNANTS, SOUTHEASTERN BRAZIL

    Directory of Open Access Journals (Sweden)

    MB Guimarães

    Full Text Available ABSTRACT The geographic overlap between areas of Atlantic rainforest and human activities allows interactions to occur between humans and wild and domestic animals. Despite the great importance of the domestic animal-wildlife-human interface that occurs at poultry farms in terms of public health, economic production and wildlife conservation, there are few studies in Brazil examining the distribution and health of wild birds that interact with poultry farms. From January to December 2010, mist nets were used to capture 166 free-ranging birds that were within close proximity to three poultry farms in Atlantic rainforest remnants in south-eastern Brazil. The species composition was examined, and molecular methods were used to test for avian influenza virus, Newcastle disease virus, and Mycoplasma gallisepticum. The avian communities near the poultry farms were dominated by three synanthropic species, which corresponded to 70% of all captured individuals: house sparrows Passer domesticus (33%, saffron finches (Sicalis flaveola (22%, and ruddy ground-doves (Columbina talpacoti (15%. These predominant bird species were in poor body condition (27%, were infested with feather mites (43%, or presented both conditions (23%. No evidence of infection by avian influenza virus, Newcastle disease virus or M. gallisepticum was identified in any of the studied birds. Although no evidence of the studied pathogens was, our findings demonstrate that differences in the environmental characteristics and biosecurity practices influence the wild bird community near poultry farms, which in turn may affect the health status of these synanthropic birds and strengthen their role in the transmission of pathogens.

  12. No evidence of transmission of H5N1 highly pathogenic avian influenza to humans after unprotected contact with infected wild swans.

    Science.gov (United States)

    Wallensten, A; Salter, M; Bennett, S; Brown, I; Hoschler, K; Oliver, I

    2010-02-01

    Highly pathogenic avian influenza (HPAI) subtype H5N1 remains a public health threat as long as it circulates in wild and domestic birds. Information on the transmissibility of H5N1 HPAI from wild birds is needed for evidence-based public health advice. We investigated if transmission of H5N1 HPAI had taken place in people that had unprotected contact with infected wild mute swans during an incident at the Abbotsbury Swannery in Dorset, England. Thirteen people who had been exposed to infected swans were contacted and actively followed up for symptoms. Serology was taken after 30 days. We did not find evidence of transmission of H5N1 HPAI to humans during the incident. The incident provided a rare opportunity to study the transmissibility of the virus from wild birds to humans.

  13. Experimental infection of pigs with two East European variants of Type 1 PRRSV

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Larsen, Lars Erik; Heegaard, Peter M. H.

    Porcine reproductive and respiratory syndrome viruses (PRRSV) have been divided into Type 1 (European) and Type 2 (North American) viruses. PRRSV are very diverse and Type 1 viruses have even been further divided into subtypes. While Type 1 viruses from Western Europe belong to subtype 1, viruses...... the subtype 1 strains. The aim of this project was to study the infection dynamics and clinical and pathological impact of two east European Type 1 strains. In an experimental trial, infection of pigs with the Russian subtype 2 strain “Ili6” and the Belarusian atypical isolate “Bor59” were compared...... to an early “Lelystad-like” Danish subtype 1 isolate “18794”. Groups of seven pigs of unique high sanitary status were infected with one of the three PRRSV isolates, and a fourth group served as sham-inoculated controls. The pigs were monitored for 24 days, and nasal swabs and blood samples were taken at 0, 3...

  14. Detection of Avian coronavirus infectious bronchitis virus type QX infection in Switzerland.

    Science.gov (United States)

    Sigrist, Brigitte; Tobler, Kurt; Schybli, Martina; Konrad, Leonie; Stöckli, René; Cattoli, Giovanni; Lüschow, Dörte; Hafez, Hafez M; Britton, Paul; Hoop, Richard K; Vögtlin, Andrea

    2012-11-01

    Infectious bronchitis, a disease of chickens caused by Avian coronavirus infectious bronchitis virus (IBV), leads to severe economic losses for the poultry industry worldwide. Various attempts to control the virus based on vaccination strategies are performed. However, due to the emergence of novel genotypes, an effective control of the virus is hindered. In 1996, a novel viral genotype named IBV-QX was reported for the first time in Qingdao, Shandong province, China. The first appearance of an IBV-QX isolate in Europe was reported between 2003 and 2004 in The Netherlands. Subsequently, infections with this genotype were found in several other European countries such as France, Italy, Germany, United Kingdom, Slovenia, and Sweden. The present report describes the use of a new set of degenerate primers that amplify a 636-bp fragment within the S1 gene by reverse transcription polymerase chain reaction to detect the occurrence of IBV-QX infection in Switzerland.

  15. The effect of ecosystem biodiversity on virus genetic diversity depends on virus species: A study of chiltepin-infecting begomoviruses in Mexico.

    Science.gov (United States)

    Rodelo-Urrego, Manuel; García-Arenal, Fernando; Pagán, Israel

    2015-01-01

    Current declines in biodiversity put at risk ecosystem services that are fundamental for human welfare. Increasing evidence indicates that one such service is the ability to reduce virus emergence. It has been proposed that the reduction of virus emergence occurs at two levels: through a reduction of virus prevalence/transmission and, as a result of these epidemiological changes, through a limitation of virus genetic diversity. Although the former mechanism has been studied in a few host-virus interactions, very little is known about the association between ecosystem biodiversity and virus genetic diversity. To address this subject, we estimated genetic diversity, synonymous and non-synonymous nucleotide substitution rates, selection pressures, and frequency of recombinants and re-assortants in populations of Pepper golden mosaic virus (PepGMV) and Pepper huasteco yellow vein virus (PHYVV) that infect chiltepin plants in Mexico. We then analyzed how these parameters varied according to the level of habitat anthropization, which is the major cause of biodiversity loss. Our results indicated that genetic diversity of PepGMV (but not of PHYVV) populations increased with the loss of biodiversity at higher levels of habitat anthropization. This was mostly the consequence of higher rates of synonymous nucleotide substitutions, rather than of adaptive selection. The frequency of recombinants and re-assortants was higher in PepGMV populations infecting wild chiltepin than in those infecting cultivated ones, suggesting that genetic exchange is not the main mechanism for generating genetic diversity in PepGMV populations. These findings provide evidence that biodiversity may modulate the genetic diversity of plant viruses, but it may differentially affect even two closely related viruses. Our analyses may contribute to understanding the factors involved in virus emergence.

  16. Measles virus C protein suppresses gamma-activated factor formation and virus-induced cell growth arrest

    International Nuclear Information System (INIS)

    Yokota, Shin-ichi; Okabayashi, Tamaki; Fujii, Nobuhiro

    2011-01-01

    Measles virus (MeV) produces two accessory proteins, V and C, from the P gene. These accessory proteins have been reported to contribute to efficient virus proliferation through the modulation of host cell events. Our previous paper described that Vero cell-adapted strains of MeV led host cells to growth arrest through the upregulation of interferon regulatory factor 1 (IRF-1), and wild strains did not. In the present study, we found that C protein expression levels varied among MeV strains in infected SiHa cells. C protein levels were inversely correlated with IRF-1 expression levels and with cell growth arrest. Forced expression of C protein released cells from growth arrest. C-deficient recombinant virus efficiently upregulated IRF-1 and caused growth arrest more efficiently than the wild-type virus. C protein preferentially bound to phosphorylated STAT1 and suppressed STAT1 dimer formation. We conclude that MeV C protein suppresses IFN-γ signaling pathway via inhibition of phosphorylated STAT1 dimerization.

  17. Influenza virus in a natural host, the mallard: experimental infection data.

    Directory of Open Access Journals (Sweden)

    Elsa Jourdain

    Full Text Available Wild waterfowl, particularly dabbling ducks such as mallards (Anas platyrhynchos, are considered the main reservoir of low-pathogenic avian influenza viruses (LPAIVs. They carry viruses that may evolve and become highly pathogenic for poultry or zoonotic. Understanding the ecology of LPAIVs in these natural hosts is therefore essential. We assessed the clinical response, viral shedding and antibody production of juvenile mallards after intra-esophageal inoculation of two LPAIV subtypes previously isolated from wild congeners. Six ducks, equipped with data loggers that continually monitored body temperature, heart rate and activity, were successively inoculated with an H7N7 LPAI isolate (day 0, the same H7N7 isolate again (day 21 and an H5N2 LPAI isolate (day 35. After the first H7N7 inoculation, the ducks remained alert with no modification of heart rate or activity. However, body temperature transiently increased in four individuals, suggesting that LPAIV strains may have minor clinical effects on their natural hosts. The excretion patterns observed after both re-inoculations differed strongly from those observed after the primary H7N7 inoculation, suggesting that not only homosubtypic but also heterosubtypic immunity exist. Our study suggests that LPAI infection has minor clinically measurable effects on mallards and that mallard ducks are able to mount immunological responses protective against heterologous infections. Because the transmission dynamics of LPAIVs in wild populations is greatly influenced by individual susceptibility and herd immunity, these findings are of high importance. Our study also shows the relevance of using telemetry to monitor disease in animals.

  18. First insights into the protective effects of a recombinant swinepox virus expressing truncated MRP of Streptococcus suis type 2 in mice.

    Science.gov (United States)

    Huang, Dongyan; Zhu, Haodan; Lin, Huixing; Xu, Jiarong; Lu, Chengping

    2012-01-01

    To explore the potential of the swinepox virus (SPV) as vector for Streptococcus suis vaccines, a vector system was developed for the construction of a recombinant SPV carrying bacterial genes. Using this system, a recombinant virus expressing truncated muramidase-released protein (MRP) of S. suis type 2 (SS2), designated rSPV-MRP, was produced and identified by PCR, western blotting and immunofluorescence assays. The rSPV-MRP was found to be only slightly attenuated in PK-15 cells, when compared with the wild-type virus. After immunization intramuscularly with rSPV-MRP, SS2 inactive vaccine (positive control), wild-type SPV (negative control) and PBS (blank control) respectively, all CD1 mice were challenged with a lethal dose or a sublethal dose of SS2 highly virulent strain ZY05719. While SS2 inactive vaccine protected all mice, immunization with rSPV-MRP resulted in 60% survival and protected mice against a lethal dose of the highly virulent SS2 strain, compared with the negative control (P MRP had a significantly reduced bacterial burden in all organs examined, compared to negative controls and blank controls (P MRP-vaccinated group were significantly higher (P MRP provided mice with protection from systemic SS2 infection. If SPV recombinants have the potential as S. suis vaccines for the use in pigs has to be evaluated in further studies.

  19. Herpes Simplex Virus Type 1 Glycoprotein B Requires a Cysteine Residue at Position 633 for Folding, Processing, and Incorporation into Mature Infectious Virus Particles

    Science.gov (United States)

    Laquerre, Sylvie; Anderson, Dina B.; Argnani, Rafaela; Glorioso, Joseph C.

    1998-01-01

    Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) resides in the virus envelope in an oligomeric form and plays an essential role in virus entry into susceptible host cells. The oligomerizing domain is a movable element consisting of amino acids 626 to 653 in the gB external domain. This domain contains a single cysteine residue at position 633 (Cys-633) that is predicted to form an intramolecular disulfide bridge with Cys-596. In this study, we examined gB oligomerization, processing, and incorporation into mature virus during infection by two mutant viruses in which either the gB Cys-633 [KgB(C633S)] or both Cys-633 and Cys-596 [KgB(C596S/C633S)] residues were mutated to serine. The result of immunofluorescence studies and analyses of released virus particles showed that the mutant gB molecules were not transported to the cell surface or incorporated into mature virus envelopes and thus infectious virus was not produced. Immunoprecipitation studies revealed that the mutant gB molecules were in an oligomeric configuration and that these mutants produced hetero-oligomers with a truncated form of gB consisting of residues 1 to 43 and 595 to 904, the latter containing the oligomerization domain. Pulse-chase experiments in combination with endoglycosidase H treatment determined that the mutant molecules were improperly processed, having been retained in the endoplasmic reticulum (ER). Coimmunoprecipitation experiments revealed that the cysteine mutations resulted in gB misfolding and retention by the molecular chaperones calnexin, calreticulin, and Grp78 in the ER. The altered conformation of the gB mutant glycoproteins was directly detected by a reduction in monoclonal antibody recognition of two previously defined distinct antigenic sites located within residues 381 to 441 and 595 to 737. The misfolded molecules were not transported to the cell surface as hetero-oligomers with wild-type gB, suggesting that the conformational change could not be corrected by

  20. Different Types of nsP3-Containing Protein Complexes in Sindbis Virus-Infected Cells▿

    Science.gov (United States)

    Gorchakov, Rodion; Garmashova, Natalia; Frolova, Elena; Frolov, Ilya

    2008-01-01

    Alphaviruses represent a serious public health threat and cause a wide variety of diseases, ranging from severe encephalitis, which can result in death or neurological sequelae, to mild infection, characterized by fever, skin rashes, and arthritis. In the infected cells, alphaviruses express only four nonstructural proteins, which function in the synthesis of virus-specific RNAs and in modification of the intracellular environment. The results of our study suggest that Sindbis virus (SINV) infection in BHK-21 cells leads to the formation of at least two types of nsP3-containing complexes, one of which was found in association with the plasma membrane and endosome-like vesicles, while the second was coisolated with cell nuclei. The latter complexes could be solubilized only with the cytoskeleton-destabilizing detergent. Besides viral nsPs, in the mammalian cells, both complexes contained G3BP1 and G3BP2 (which were found in different ratios), YBX1, and HSC70. Rasputin, an insect cell-specific homolog of G3BP1, was found in the nsP3-containing complexes isolated from mosquito cells, which was suggestive of a high conservation of the complexes in the cells of both vertebrate and invertebrate origin. The endosome- and plasma membrane-associated complexes contained a high concentration of double-stranded RNAs (dsRNAs), which is indicative of their function in viral-RNA synthesis. The dsRNA synthesis is likely to efficiently proceed on the plasma membrane, and at least some of the protein-RNA complexes would then be transported into the cytosol in association with the endosome-like vesicular organelles. These findings provide new insight into the mechanism of SINV replication and virus-host cell interactions. PMID:18684830

  1. Different types of nsP3-containing protein complexes in Sindbis virus-infected cells.

    Science.gov (United States)

    Gorchakov, Rodion; Garmashova, Natalia; Frolova, Elena; Frolov, Ilya

    2008-10-01

    Alphaviruses represent a serious public health threat and cause a wide variety of diseases, ranging from severe encephalitis, which can result in death or neurological sequelae, to mild infection, characterized by fever, skin rashes, and arthritis. In the infected cells, alphaviruses express only four nonstructural proteins, which function in the synthesis of virus-specific RNAs and in modification of the intracellular environment. The results of our study suggest that Sindbis virus (SINV) infection in BHK-21 cells leads to the formation of at least two types of nsP3-containing complexes, one of which was found in association with the plasma membrane and endosome-like vesicles, while the second was coisolated with cell nuclei. The latter complexes could be solubilized only with the cytoskeleton-destabilizing detergent. Besides viral nsPs, in the mammalian cells, both complexes contained G3BP1 and G3BP2 (which were found in different ratios), YBX1, and HSC70. Rasputin, an insect cell-specific homolog of G3BP1, was found in the nsP3-containing complexes isolated from mosquito cells, which was suggestive of a high conservation of the complexes in the cells of both vertebrate and invertebrate origin. The endosome- and plasma membrane-associated complexes contained a high concentration of double-stranded RNAs (dsRNAs), which is indicative of their function in viral-RNA synthesis. The dsRNA synthesis is likely to efficiently proceed on the plasma membrane, and at least some of the protein-RNA complexes would then be transported into the cytosol in association with the endosome-like vesicular organelles. These findings provide new insight into the mechanism of SINV replication and virus-host cell interactions.

  2. Disparities in herpes simplex virus type 2 infection between black and white men who have sex with men in Atlanta, GA.

    Science.gov (United States)

    Okafor, Netochukwu; Rosenberg, Eli S; Luisi, Nicole; Sanchez, Travis; del Rio, Carlos; Sullivan, Patrick S; Kelley, Colleen F

    2015-09-01

    HIV disproportionately affects black men who have sex with men, and herpes simplex virus type 2 is known to increase acquisition of HIV. However, data on racial disparities in herpes simplex virus type 2 prevalence and risk factors are limited among men who have sex with men in the United States. InvolveMENt was a cohort study of black and white HIV-negative men who have sex with men in Atlanta, GA. Univariate and multivariate cross-sectional associations with herpes simplex virus type 2 seroprevalence were assessed among 455 HIV-negative men who have sex with men for demographic, behavioural and social determinant risk factors using logistic regression. Seroprevalence of herpes simplex virus type 2 was 23% (48/211) for black and 16% (38/244) for white men who have sex with men (p = 0.05). Education, poverty, drug/alcohol use, incarceration, circumcision, unprotected anal intercourse, and condom use were not associated with herpes simplex virus type 2. In multivariate analyses, black race for those ≤25 years, but not >25 years, and number of sexual partners were significantly associated. Young black men who have sex with men are disproportionately affected by herpes simplex virus type 2, which may contribute to disparities in HIV acquisition. An extensive assessment of risk factors did not explain this disparity in herpes simplex virus type 2 infection suggesting differences in susceptibility or partner characteristics. © The Author(s) 2014.

  3. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption

    Science.gov (United States)

    Papa, Michelle P.; Meuren, Lana M.; Coelho, Sharton V. A.; Lucas, Carolina G. de Oliveira; Mustafá, Yasmin M.; Lemos Matassoli, Flavio; Silveira, Paola P.; Frost, Paula S.; Pezzuto, Paula; Ribeiro, Milene R.; Tanuri, Amilcar; Nogueira, Mauricio L.; Campanati, Loraine; Bozza, Marcelo T.; Paula Neto, Heitor A.; Pimentel-Coelho, Pedro M.; Figueiredo, Claudia P.; de Aguiar, Renato S.; de Arruda, Luciana B.

    2017-01-01

    Zika virus (ZIKV) has been associated to central nervous system (CNS) harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs), as an in vitro model of blood brain barrier (BBB), and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243), which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways. PMID:29312238

  4. Effects of simultaneously elevated temperature and CO2 levels on Nicotiana benthamiana and its infection by different positive-sense RNA viruses are cumulative and virus type-specific.

    Science.gov (United States)

    Del Toro, Francisco J; Rakhshandehroo, Farshad; Larruy, Beatriz; Aguilar, Emmanuel; Tenllado, Francisco; Canto, Tomás

    2017-11-01

    We have studied how simultaneously elevated temperature and CO 2 levels [climate change-related conditions (CCC) of 30°C, 970 parts-per-million (ppm) of CO 2 vs. standard conditions (SC) of 25°C, ~ 405ppm CO 2 ] affect physiochemical properties of Nicotiana benthamiana leaves, and also its infection by several positive-sense RNA viruses. In previous works we had studied effects of elevated temperature, CO 2 levels separately. Under CCC, leaves of healthy plants almost doubled their area relative to SC but contained less protein/unit-of-area, similarly to what we had found under conditions of elevated CO 2 alone. CCC also affected the sizes/numbers of different foliar cell types differently. Under CCC, infection outcomes in titers and symptoms were virus type-specific, broadly similar to those observed under elevated temperature alone. Under either condition, infections did not significantly alter the protein content of leaf discs. Therefore, effects of elevated temperature and CO 2 combined on properties of the pathosystems studied were overall cumulative. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Activity of andrographolide against chikungunya virus infection.

    Science.gov (United States)

    Wintachai, Phitchayapak; Kaur, Parveen; Lee, Regina Ching Hua; Ramphan, Suwipa; Kuadkitkan, Atichat; Wikan, Nitwara; Ubol, Sukathida; Roytrakul, Sittiruk; Chu, Justin Jang Hann; Smith, Duncan R

    2015-09-18

    Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus that has recently engendered large epidemics around the world. There is no specific antiviral for treatment of patients infected with CHIKV, and development of compounds with significant anti-CHIKV activity that can be further developed to a practical therapy is urgently required. Andrographolide is derived from Andrographis paniculata, a herb traditionally used to treat a number of conditions including infections. This study sought to determine the potential of andrographolide as an inhibitor of CHIKV infection. Andrographolide showed good inhibition of CHIKV infection and reduced virus production by approximately 3log10 with a 50% effective concentration (EC50) of 77 μM without cytotoxicity. Time-of-addition and RNA transfection studies showed that andrographolide affected CHIKV replication and the activity of andrographolide was shown to be cell type independent. This study suggests that andrographolide has the potential to be developed further as an anti-CHIKV therapeutic agent.

  6. Clinical and virological characteristics of calves experimentally infected with a Brazilian isolate of bovine viral diarrhea virus type 1a

    Directory of Open Access Journals (Sweden)

    Luana Marchi Quadros

    Full Text Available ABSTRACT: To study the pathogenicity of the Brazilian bovine viral diarrhea virus (BVDV type 1a 241.10 isolate, four calves were intranasally inoculated with a viral suspension containing 107.2 TCID50 mL-1. One calf was left uninoculated and kept in contact with the other calves to investigate viral transmissibility. After inoculation, the animals were monitored daily for clinical signs of infection. The presence of the virus in the blood and nasal secretions was confirmed by virus isolation in cell culture. White blood cells were quantified prior to and every 3 days after infection, and the presence of antibodies was checked every 7 days, starting at day 0 until day 42 post-inoculation (pi. After infection, nasal and ocular serous secretions were observed between days 1 and 5 pi, along with a mild cough from days 2 to 4 pi; however, no severe clinical signs were present. Body temperature was slightly elevated between days 4 and 6 pi. The control calf did not develop any of the signs observed in the infected animals. Cell culture-mediated virus isolation confirmed viremia between days 4 and 8 pi and the presence of the virus in the nasal secretions between days 1 and 10 pi. All infected animals showed a decrease in white blood cell count. Antibodies could be detected from day 14 pi, and these levels remained high until day 35 pi. The control calf had no viremia, viral presence in nasal secretions, or positive serology, indicating the absence of viral transmission. Thus, isolate BVDV 1a 241.10 has low pathogenicity and transmissibility but retains immunosuppressive capacity.

  7. Seroprevalence of simian immunodeficiency virus in wild and captive born Sykes' monkeys (Cercopithecus mitis) in Kenya

    OpenAIRE

    Otsyula Moses G; Robinson James; Elliott Debra; Munene Elephas; Ellis Brett R; Michael Scott F

    2004-01-01

    Abstract Background The Sykes' monkey and related forms (Cercopithecus mitis) make up an abundant, widespread and morphologically diverse species complex in eastern Africa that naturally harbors a distinct simian immunodeficiency virus (SIVsyk). We carried out a retrospective serological survey of SIV infection from both wild and captive Sykes' monkeys from Kenya. We compared two commercially available, cross-reactive ELISA tests using HIV antigens with a novel SIVsyk antigen-specific Western...

  8. An eight-year epidemiologic study based on baculovirus-expressed type-specific spike proteins for the differentiation of type I and II feline coronavirus infections

    Science.gov (United States)

    2014-01-01

    Background Feline infectious peritonitis (FIP) is a fatal disease caused by feline coronavirus (FCoV). FCoVs are divided into two serotypes with markedly different infection rates among cat populations around the world. A baculovirus-expressed type-specific domain of the spike proteins of FCoV was used to survey the infection of the two viruses over the past eight years in Taiwan. Results An immunofluorescence assay based on cells infected with the recombinant viruses that was capable of distinguishing between the two types of viral infection was established. A total of 833 cases from a teaching hospital was surveyed for prevalence of different FCoV infections. Infection of the type I FCoV was dominant, with a seropositive rate of 70.4%, whereas 3.5% of cats were infected with the type II FCoV. In most cases, results derived from serotyping and genotyping were highly agreeable. However, 16.7% (4/24) FIP cats and 9.8% (6/61) clinically healthy cats were found to possess antibodies against both viruses. Moreover, most of the cats (84.6%, 22/26) infected with a genotypic untypable virus bearing a type I FCoV antibody. Conclusion A relatively simple serotyping method to distinguish between two types of FCoV infection was developed. Based on this method, two types of FCoV infection in Taiwan was first carried out. Type I FCoV was found to be predominant compared with type II virus. Results derived from serotyping and genotyping support our current understanding of evolution of disease-related FCoV and transmission of FIP. PMID:25123112

  9. Investigation of avian influenza virus in poultry and wild birds due to novel avian-origin influenza A(H10N8) in Nanchang City, China.

    Science.gov (United States)

    Ni, Xiansheng; He, Fenglan; Hu, Maohong; Zhou, Xianfeng; Wang, Bin; Feng, Changhua; Wu, Yumei; Li, Youxing; Tu, Junling; Li, Hui; Liu, Mingbin; Chen, Haiying; Chen, Shengen

    2015-01-01

    Multiple reassortment events within poultry and wild birds had resulted in the establishment of another novel avian influenza A(H10N8) virus, and finally resulted in human death in Nanchang, China. However, there was a paucity of information on the prevalence of avian influenza virus in poultry and wild birds in Nanchang area. We investigated avian influenza virus in poultry and wild birds from live poultry markets, poultry countyards, delivery vehicles, and wild-bird habitats in Nanchang. We analyzed 1036 samples from wild birds and domestic poultry collected from December 2013 to February 2014. Original biological samples were tested for the presence of avian influenza virus using specific primer and probe sets of H5, H7, H9, H10 and N8 subtypes by real-time RT-PCR. In our analysis, the majority (97.98%) of positive samples were from live poultry markets. Among the poultry samples from chickens and ducks, AIV prevalence was 26.05 and 30.81%, respectively. Mixed infection of different HA subtypes was very common. Additionally, H10 subtypes coexistence with N8 was the most prevalent agent during the emergence of H10N8. This event illustrated a long-term surveillance was so helpful for pandemic preparedness and response. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  10. A novel single virus infection system reveals that influenza virus preferentially infects cells in g1 phase.

    Directory of Open Access Journals (Sweden)

    Ryuta Ueda

    Full Text Available BACKGROUND: Influenza virus attaches to sialic acid residues on the surface of host cells via the hemagglutinin (HA, a glycoprotein expressed on the viral envelope, and enters into the cytoplasm by receptor-mediated endocytosis. The viral genome is released and transported in to the nucleus, where transcription and replication take place. However, cellular factors affecting the influenza virus infection such as the cell cycle remain uncharacterized. METHODS/RESULTS: To resolve the influence of cell cycle on influenza virus infection, we performed a single-virus infection analysis using optical tweezers. Using this newly developed single-virus infection system, the fluorescence-labeled influenza virus was trapped on a microchip using a laser (1064 nm at 0.6 W, transported, and released onto individual H292 human lung epithelial cells. Interestingly, the influenza virus attached selectively to cells in the G1-phase. To clarify the molecular differences between cells in G1- and S/G2/M-phase, we performed several physical and chemical assays. Results indicated that: 1 the membranes of cells in G1-phase contained greater amounts of sialic acids (glycoproteins than the membranes of cells in S/G2/M-phase; 2 the membrane stiffness of cells in S/G2/M-phase is more rigid than those in G1-phase by measurement using optical tweezers; and 3 S/G2/M-phase cells contained higher content of Gb3, Gb4 and GlcCer than G1-phase cells by an assay for lipid composition. CONCLUSIONS: A novel single-virus infection system was developed to characterize the difference in influenza virus susceptibility between G1- and S/G2/M-phase cells. Differences in virus binding specificity were associated with alterations in the lipid composition, sialic acid content, and membrane stiffness. This single-virus infection system will be useful for studying the infection mechanisms of other viruses.

  11. Experimental infection of rainbow trout Oncorhynchus mykiss with viral haemorrhagic septicaemia virus isolates from European marine and farmed fishes

    DEFF Research Database (Denmark)

    Skall, Helle Frank; Slierendrecht, W.J.; King, J.A.

    2004-01-01

    The susceptibility of rainbow trout Oncorhynchus mykiss to infection with various isolates of viral haemorrhagic septicaemia virus (VHSV) was examined. A total of 8 experiments with rainbow trout ranging from 0.6 to 6.2 g was conducted for 139 isolates originating from wild marine fishes in Europ......The susceptibility of rainbow trout Oncorhynchus mykiss to infection with various isolates of viral haemorrhagic septicaemia virus (VHSV) was examined. A total of 8 experiments with rainbow trout ranging from 0.6 to 6.2 g was conducted for 139 isolates originating from wild marine fishes...... in European waters (115 isolates), farmed turbot from Scotland and Ireland (2 isolates), and farmed rainbow trout (22 isolates). The isolates were tested by immersion and/or intraperitoneal injection either as pooled or single isolates. The isolates from wild marine fishes did not cause mortality by immersion...... while some of the isolates caused mortality when injected. All VHSV isolates from farmed rainbow trout caused significant mortality by immersion. Currently, pathogenicity trials are the only way to differentiate VHSV isolates from wild marine fishes and farmed rainbow trout. The 2 farmed turbot isolates...

  12. Mislocalization of the MRN complex prevents ATR signaling during adenovirus infection

    DEFF Research Database (Denmark)

    Carson, Christian T; Orazio, Nicole I; Lee, Darwin V

    2009-01-01

    The protein kinases ataxia-telangiectasia mutated (ATM) and ATM-Rad3 related (ATR) are activated in response to DNA damage, genotoxic stress and virus infections. Here we show that during infection with wild-type adenovirus, ATR and its cofactors RPA32, ATRIP and TopBP1 accumulate at viral...... during virus infection, which is independent of Mre11 nuclease activity and recruitment of RPA/ATR/ATRIP/TopBP1. Unlike other damage scenarios, we found that ATM and ATR signaling are not dependent on each other during infection. We identify a region of the viral E4orf3 protein responsible...

  13. Chemotactic and inflammatory responses in the liver and brain are associated with pathogenesis of Rift Valley fever virus infection in the mouse.

    Directory of Open Access Journals (Sweden)

    Kimberly K Gray

    Full Text Available Rift Valley fever virus (RVFV is a major human and animal pathogen associated with severe disease including hemorrhagic fever or encephalitis. RVFV is endemic to parts of Africa and the Arabian Peninsula, but there is significant concern regarding its introduction into non-endemic regions and the potentially devastating effect to livestock populations with concurrent infections of humans. To date, there is little detailed data directly comparing the host response to infection with wild-type or vaccine strains of RVFV and correlation with viral pathogenesis. Here we characterized clinical and systemic immune responses to infection with wild-type strain ZH501 or IND vaccine strain MP-12 in the C57BL/6 mouse. Animals infected with live-attenuated MP-12 survived productive viral infection with little evidence of clinical disease and minimal cytokine response in evaluated tissues. In contrast, ZH501 infection was lethal, caused depletion of lymphocytes and platelets and elicited a strong, systemic cytokine response which correlated with high virus titers and significant tissue pathology. Lymphopenia and platelet depletion were indicators of disease onset with indications of lymphocyte recovery correlating with increases in G-CSF production. RVFV is hepatotropic and in these studies significant clinical and histological data supported these findings; however, significant evidence of a pro-inflammatory response in the liver was not apparent. Rather, viral infection resulted in a chemokine response indicating infiltration of immunoreactive cells, such as neutrophils, which was supported by histological data. In brains of ZH501 infected mice, a significant chemokine and pro-inflammatory cytokine response was evident, but with little pathology indicating meningoencephalitis. These data suggest that RVFV pathogenesis in mice is associated with a loss of liver function due to liver necrosis and hepatitis yet the long-term course of disease for those that

  14. Comparative Pathology of Hepatitis A Virus and Hepatitis E Virus Infection.

    Science.gov (United States)

    Cullen, John M; Lemon, Stanley M

    2018-04-30

    Hepatitis A virus (HAV) and hepatitis E virus (HEV) cause acute, self-limiting hepatic infections that are usually spread by the fecal-oral route in humans. Naturally occurring and experimental infections are possible in a variety of nonhuman primates and, in the case of HEV, a number of other species. Many advances in understanding the pathogenesis of these viruses have come from studies in experimental animals. In general, animals infected with these viruses recapitulate the histologic lesions seen in infected humans, but typically with less severe clinical and histopathological manifestations. This review describes the histopathologic changes associated with HAV and HEV infection in humans and experimental animals. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  15. Zika virus infection.

    Science.gov (United States)

    Pougnet, Laurence; Thill, Chloé; Pougnet, Richard; Auvinet, Henri; Giacardi, Christophe; Drouillard, Isabelle

    2016-12-01

    A 21-year old woman from New-Caledonia had 40 ̊C fever with vomiting, arthralgia, myalgia, and measles-like rash. Etiological analyses showed primary infection with Zika virus. Because of severe clinical presentation, she was hospitalized in the intensive care unit of the Brest military Hospital. Zika virus is mainly transmitted by Aedes mosquitoes. If they settle in Metropolitan France, Zika virus might also spread there.

  16. Characterization of Chemokine Receptor Utilization of Viruses in the Latent Reservoir for Human Immunodeficiency Virus Type 1

    Science.gov (United States)

    Pierson, Theodore; Hoffman, Trevor L.; Blankson, Joel; Finzi, Diana; Chadwick, Karen; Margolick, Joseph B.; Buck, Christopher; Siliciano, Janet D.; Doms, Robert W.; Siliciano, Robert F.

    2000-01-01

    Latently infected resting CD4+ T cells provide a long-term reservoir for human immunodeficiency virus type 1 (HIV-1) and are likely to represent the major barrier to virus eradication in patients on combination antiretroviral therapy. The mechanisms by which viruses enter the latent reservoir and the nature of the chemokine receptors involved have not been determined. To evaluate the phenotype of the virus in this compartment with respect to chemokine receptor utilization, full-length HIV-1 env genes were cloned from latently infected cells and assayed functionally. We demonstrate that the majority of the viruses in the latent reservoir utilize CCR5 during entry, although utilization of several other receptors, including CXCR4, was observed. No alternative coreceptors were shown to be involved in a systematic fashion. Although R5 viruses are present in the latent reservoir, CCR5 was not expressed at high levels on resting CD4+ T cells. To understand the mechanism by which R5 viruses enter latent reservoir, the ability of an R5 virus, HIV-1 Ba-L, to infect highly purified resting CD4+ T lymphocytes from uninfected donors was evaluated. Entry of Ba-L could be observed when virus was applied at a multiplicity approaching 1. However, infection was limited to a subset of cells expressing low levels of CCR5 and markers of immunologic memory. Naive cells could not be infected by an R5 virus even when challenged with a large inoculum. Direct cell fractionation studies showed that latent virus is present predominantly in resting memory cells but also at lower levels in resting naive cells. Taken together, these findings provide support for the hypothesis that the direct infection of naive T cells is not the major mechanism by which the latent infection of resting T cells is established. PMID:10933689

  17. Alpha 4 integrin directs virus-activated CD8+ T cells to sites of infection

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Andersson, E C; Scheynius, A

    1995-01-01

    This article examines the role of VLA-4 in directing lymphocytes to sites of viral infection using the murine lymphocytic choriomeningitis virus infection (LCMV) as the model system. This virus by itself induces little or no inflammation, but in most mouse/virus strain combinations a potent T cell...... response is induced, which is associated with marked CD8+ cell-mediated inflammation. Two expressions of LCMV-induced inflammation were studied: meningitis induced by intracerebral infection and adoptive transfer of virus-specific delayed-type hypersensitivity. Our previous studies have shown that LCMV...

  18. Liver cytosolic 1 antigen-antibody system in type 2 autoimmune hepatitis and hepatitis C virus infection.

    Science.gov (United States)

    Lenzi, M; Manotti, P; Muratori, L; Cataleta, M; Ballardini, G; Cassani, F; Bianchi, F B

    1995-01-01

    Within the multiform liver/kidney microsomal (LKM) family, a subgroup of sera that reacts with a liver cytosolic (LC) protein has been isolated and the new antigen-antibody system is called LC1. Unlike LKM antibody type 1 (anti-LKM1), anti-LC1 is said to be unrelated to hepatitis C virus (HCV) infection and has therefore been proposed as a marker of 'true' autoimmune hepatitis type 2. Altogether 100 LKM1 positive sera were tested by immunodiffusion (ID). Twenty five gave a precipitation line with human liver cytosol; 17 of the 25 also reacted with rat liver cytosol. Thirteen of the 25 sera were anti-HCV positive by second generation ELISA: anti-HCV positive patients were significantly older (p LKM1, and that it is an additional marker of juvenile autoimmune hepatitis type 2. It does not, however, discriminate between patients with and without HCV infection. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7797126

  19. A Real-Time PCR Assay to Identify and Discriminate Among Wild-Type and Vaccine Strains of Varicella-Zoster Virus and Herpes Simplex Virus in Clinical Specimens, and Comparison With the Clinical Diagnoses

    Science.gov (United States)

    Harbecke, Ruth; Oxman, Michael N.; Arnold, Beth A.; Ip, Charlotte; Johnson, Gary R.; Levin, Myron J.; Gelb, Lawrence D.; Schmader, Kenneth E.; Straus, Stephen E.; Wang, Hui; Wright, Peter F.; Pachucki, Constance T.; Gershon, Anne A.; Arbeit, Robert D.; Davis, Larry E.; Simberkoff, Michael S.; Weinberg, Adriana; Williams, Heather M.; Cheney, Carol; Petrukhin, Luba; Abraham, Katalin G.; Shaw, Alan; Manoff, Susan; Antonello, Joseph M.; Green, Tina; Wang, Yue; Tan, Charles; Keller, Paul M.

    2014-01-01

    A real-time PCR assay was developed to identify varicella-zoster virus (VZV) and herpes simplex virus (HSV) DNA in clinical specimens from subjects with suspected herpes zoster (HZ; shingles). Three sets of primers and probes were used in separate PCR reactions to detect and discriminate among wild-type VZV (VZV-WT), Oka vaccine strain VZV (VZV-Oka), and HSV DNA, and the reaction for each virus DNA was multiplexed with primers and probe specific for the human β-globin gene to assess specimen adequacy. Discrimination of all VZV-WT strains, including Japanese isolates and the Oka parent strain, from VZV-Oka was based upon a single nucleotide polymorphism at position 106262 in ORF 62, resulting in preferential amplification by the homologous primer pair. The assay was highly sensitive and specific for the target virus DNA, and no cross-reactions were detected with any other infectious agent. With the PCR assay as the gold standard, the sensitivity of virus culture was 53% for VZV and 77% for HSV. There was 92% agreement between the clinical diagnosis of HZ by the Clinical Evaluation Committee and the PCR assay results. PMID:19475609

  20. Human Infection in Wild Mountain Gorillas

    Centers for Disease Control (CDC) Podcasts

    2011-04-25

    This podcast discusses a study about the transmission of Human Metapneumovirus Infection to wild mountain gorillas in Rwanda in 2009, published in the April 2011 issue of Emerging Infectious Diseases. Dr. Ian Lipkin, Director of the Center for Infection and Immunity and Dr. Gustavo Palacios, investigator in the Center of Infection & Immunity share details of this study.  Created: 4/25/2011 by National Center for Emerging Zoonotic and Infectious Diseases (NCEZID).   Date Released: 5/2/2011.

  1. Fluorescent dye labeled influenza virus mainly infects innate immune cells and activated lymphocytes and can be used in cell-mediated immune response assay

    OpenAIRE

    Xie, Dongxu

    2009-01-01

    Early results have recognized that influenza virus infects the innate and adaptive immune cells. The data presented in this paper demonstrated that influenza virus labeled with fluorescent dye not only retained the ability to infect and replicate in host cells, but also stimulated a similar human immune response as did unlabeled virus. Influenza virus largely infected the innate and activated adaptive immune cells. Influenza B type virus was different from that of A type virus. B type virus w...

  2. Hepatitis C virus infection in the human immunodeficiency virus infected patient.

    Science.gov (United States)

    Clausen, Louise Nygaard; Lundbo, Lene Fogt; Benfield, Thomas

    2014-09-14

    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) share the same transmission routes; therefore, coinfection is frequent. An estimated 5-10 million individuals alone in the western world are infected with both viruses. The majority of people acquire HCV by injection drug use and, to a lesser extent, through blood transfusion and blood products. Recently, there has been an increase in HCV infections among men who have sex with men. In the context of effective antiretroviral treatment, liver-related deaths are now more common than Acquired Immune Deficiency Syndrome-related deaths among HIV-HCV coinfected individuals. Morbidity and mortality rates from chronic HCV infection will increase because the infection incidence peaked in the mid-1980s and because liver disease progresses slowly and is clinically silent to cirrhosis and end-stage-liver disease over a 15-20 year time period for 15%-20% of chronically infected individuals. HCV treatment has rapidly changed with the development of new direct-acting antiviral agents; therefore, cure rates have greatly improved because the new treatment regimens target different parts of the HCV life cycle. In this review, we focus on the epidemiology, diagnosis and the natural course of HCV as well as current and future strategies for HCV therapy in the context of HIV-HCV coinfection in the western world.

  3. Annulate lamellae in phloem cells of virus-infected Sonchus plants.

    Science.gov (United States)

    Steinkamp, M P; Hoefert, L L

    1977-07-01

    The occurrence of annulate lamellae (AL) in differentiating phloem of Sonchus oleraceus (Compositae) singly infected with sowthistle yellow vein virus (SYVV) and doubly infected with a combination of SYVV and beet yellow stunt virus is documented by electron microscopy. Cell types in which AL were found were immature sieve elements and phloem parenchyma cells. AL were found only in cells that also contained SYVV particles although a direct association between the virus and AL was not apparent. The substructure of the AL and the relationships between the AL and the nuclear envelope and endoplasmic reticulum are similar to those reported in other descriptions of this organelle in the literature. This report appears to be the first one concerning the association of AL with a plant virus disease.

  4. Identifying the Conditions Under Which Antibodies Protect Against Infection by Equine Infectious Anemia Virus

    Directory of Open Access Journals (Sweden)

    Elissa J. Schwartz

    2014-05-01

    Full Text Available The ability to predict the conditions under which antibodies protect against viral infection would transform our approach to vaccine development. A more complete understanding is needed of antibody protection against lentivirus infection, as well as the role of mutation in resistance to an antibody vaccine. Recently, an example of antibody-mediated vaccine protection has been shown via passive transfer of neutralizing antibodies before equine infectious anemia virus (EIAV infection of horses with severe combined immunodeficiency (SCID. Viral dynamic modeling of antibody protection from EIAV infection in SCID horses may lead to insights into the mechanisms of control of infection by antibody vaccination. In this work, such a model is constructed in conjunction with data from EIAV infection of SCID horses to gain insights into multiple strain competition in the presence of antibody control. Conditions are determined under which wild-type infection is eradicated with the antibody vaccine. In addition, a three-strain competition model is considered in which a second mutant strain may coexist with the first mutant strain. The conditions that permit viral escape by the mutant strains are determined, as are the effects of variation in the model parameters. This work extends the current understanding of competition and antibody control in lentiviral infection, which may provide insights into the development of vaccines that stimulate the immune system to control infection effectively.

  5. Treatment of HBV and HDV co-infection using lamivudine

    International Nuclear Information System (INIS)

    Qureshi, H.; Arif, A.; Alam, E.

    2009-01-01

    To see effect of Lamivudine on sero conversion of HBeAg positive cases co infected with Delta hepatitis. Hepatitis B positive patients with deranged liver functions for 6 months were tested for HBeAg, HBV DNA and anti-Delta virus (HDV), using ELISA. Patients were divided into 2 groups, group 1: HBeAg, HBV DNA positive (wild type) but delta negative and group 2: HBeAg, HBV DNA positive (wild type) with delta positive. Lamivudine (100 mg) was advised to both groups till sero-conversion. Of 124 cases in year 1999-2005, 69 were in (Group 1), and 55 were in (Group 2). Eighty percent were males in both groups. ALT normalisation occurred in 75%, 24% cases within 6 months respectively. At the start of therapy mean HBeAg was 289+-189 in group 1 and 142+-160 in group 2. With treatment, the values did not change much till 12 months of therapy. The fall was significantly slow in delta positive cases. At 36 months 26 (38%) cases in group 1 and 9 (16.4%) cases in group 2 sero-converted. Nine cases in each group remained non-responders while 2 in each group relapsed. Wild type of HBV/HDV co-infected cases have a 16% chance of seroconversion which negates the concept that once infected with delta virus there is not much that can be done. (author)

  6. RISK FACTORS FOR AND SPATIAL DISTRIBUTION OF LYMPHOPROLIFERATIVE DISEASE VIRUS (LPDV) IN WILD TURKEYS (MELEAGRIS GALLOPAVO) IN NEW YORK STATE, USA.

    Science.gov (United States)

    Alger, Katrina; Bunting, Elizabeth; Schuler, Krysten; Whipps, Christopher M

    2017-07-01

    Lymphoproliferative disease virus (LPDV) is an oncogenic avian retrovirus that was previously thought to exclusively infect domestic turkeys but was recently shown to be widespread in Wild Turkeys ( Meleagris gallopavo ) throughout most of the eastern US. In commercial flocks, the virus spreads between birds housed in close quarters, but there is little information about potential risk factors for infection in wild birds. Initial studies focused on distribution of LPDV nationally, but investigation of state-level data is necessary to assess potential predictors of infection and detect patterns in disease prevalence and distribution. We tested wild turkey bone marrow samples (n=2,538) obtained from hunter-harvested birds in New York State from 2012 to 2014 for LPDV infection. Statewide prevalence for those 3 yr was 55% with a 95% confidence interval (CI) of 53-57%. We evaluated a suite of demographic, anthropogenic, and land cover characteristics with logistic regression to identify potential predictors for infection based on odds ratio (OR). Age (OR=0.16, 95% CI=0.13-0.19) and sex (OR=1.3, 95% CI=1.03-1.24) were strong predictors of LPDV infection, with juveniles less likely to test positive than adults, and females more likely to test positive than males. The number of birds released during the state's 40-yr translocation program (OR=0.993, 95% CI=0.990-0.997) and the ratio of agriculture to forest cover (OR=1.13, 95% CI=1.03-1.19) were also predictive of LPDV infection. Prevalence distribution was analyzed using dual kernel density smoothing to produce a risk surface map, combined with Kulldorff's spatial scan statistic and the Anselin Local Moran's I to identify statistically significant geographic clusters of high or low prevalence. These methods revealed the prevalence of LPDV was high (>50%) throughout New York State, with regions of variation and several significant clusters. We revealed new information about the risk factors and distribution of LPDV in New

  7. Modelling biological control with wild-type and genetically modified baculoviruses in the Helicoverpa armigera-cotton system

    NARCIS (Netherlands)

    Sun, X.; Werf, van der W.; Bianchi, F.J.J.A.; Hu, Z.; Vlak, J.M.

    2006-01-01

    A comprehensive model was developed to simulate virus epizootics in a stage structured insect population and analyse scenarios for the biological control of cotton bollworm (CBW), Helicoverpa armigera, in cotton, using wild-type or genetically modified baculoviruses. In simulations on dosage and

  8. Spillover of Newcastle disease viruses from poultry to wild birds in Guangdong province, southern China.

    Science.gov (United States)

    Xiang, Bin; Han, Lujie; Gao, Pei; You, Renrong; Wang, Fumin; Xiao, Jiajie; Liao, Ming; Kang, Yinfeng; Ren, Tao

    2017-11-01

    Despite intensive vaccination programs in many countries, including China, Newcastle disease has been reported sporadically and is still a significant threat to the poultry industry in China. Newcastle disease virus (NDV) is infectious for at least 250 bird species, but the role of wild birds in virus epidemiology remains largely unknown. Fourteen NDV isolates were obtained from 2040 samples collected from wild birds or the environment in Guangdong province, southern China, from 2013 to 2015. The isolation rate was the highest in the period of wintering and lowest during the periods of spring migration, nesting, and postnesting. A maximum clade credibility phylogenetic analysis revealed that at least four genotypes circulate in southern China: three class II genotypes (II, VI, and IX) and one class I (1b). We also demonstrated that most isolates from wild birds were highly similar to isolates from poultry, and two isolates were linked to viruses from wild birds in northern China. These data suggested that wild birds could disseminate NDV and poultry-derived viruses may spillover to wild birds. Accordingly, vaccine development and poultry management strategies should be considered to prevent future NDV outbreaks, particularly given the strength of the poultry industry in developing countries, such as China. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Herpes simplex virus type 2 latency in the footpad of mice: effect of acycloguanosine on the recovery of virus.

    Science.gov (United States)

    Al-Saadi, S A; Gross, P; Wildy, P

    1988-02-01

    Herpes simplex virus type 2 has been reactivated from the latent state in the footpad and dorsal root ganglia of acycloguanosine-treated BALB/c mice. Virus was also recovered from the footpad tissue but not from the ganglia of denervated, latently infected mice. Treatment in vitro of explanted footpad cultures with acycloguanosine or phosphonoacetic acid did not affect the rate of virus reactivation. In all the isolates examined the virus was found to be acycloguanosine-sensitive. Recovery of virus from footpad tissue of mice after a long period of acycloguanosine treatment supports the theory that virus had been truly latent in the footpad and not in a state of persistent infection.

  10. The impact of hepatitis A virus infection on hepatitis C virus infection: a competitive exclusion hypothesis.

    Science.gov (United States)

    Amaku, Marcos; Coutinho, Francisco Antonio Bezerra; Chaib, Eleazar; Massad, Eduardo

    2013-01-01

    We address the observation that, in some cases, patients infected with the hepatitis C virus (HCV) are cleared of HCV when super-infected with the hepatitis A virus (HAV). We hypothesise that this phenomenon can be explained by the competitive exclusion principle, including the action of the immune system, and show that the inclusion of the immune system explains both the elimination of one virus and the co-existence of both infections for a certain range of parameters. We discuss the potential clinical implications of our findings.

  11. Experimental Cowpox Virus (CPXV) Infections of Bank Voles: Exceptional Clinical Resistance and Variable Reservoir Competence.

    Science.gov (United States)

    Franke, Annika; Ulrich, Rainer G; Weber, Saskia; Osterrieder, Nikolaus; Keller, Markus; Hoffmann, Donata; Beer, Martin

    2017-12-19

    Cowpox virus (CPXV) is a zoonotic virus and endemic in wild rodent populations in Eurasia. Serological surveys in Europe have reported high prevalence in different vole and mouse species. Here, we report on experimental CPXV infections of bank voles ( Myodes glareolus ) from different evolutionary lineages with a spectrum of CPXV strains. All bank voles, independently of lineage, sex and age, were resistant to clinical signs following CPXV inoculation, and no virus shedding was detected in nasal or buccal swabs. In-contact control animals became only rarely infected. However, depending on the CPXV strain used, inoculated animals seroconverted and viral DNA could be detected preferentially in the upper respiratory tract. The highest antibody titers and virus DNA loads in the lungs were detected after inoculation with two strains from Britain and Finland. We conclude from our experiments that the role of bank voles as an efficient and exclusive CPXV reservoir seems questionable, and that CPXV may be maintained in most regions by other hosts, including other vole species. Further investigations are needed to identify factors that allow and modulate CPXV maintenance in bank voles and other potential reservoirs, which may also influence spill-over infections to accidental hosts.

  12. RNA-Seq Based Transcriptome Analysis of the Type I Interferon Host Response upon Vaccinia Virus Infection of Mouse Cells

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2017-01-01

    Full Text Available Vaccinia virus (VACV encodes the soluble type I interferon (IFN binding protein B18 that is secreted from infected cells and also attaches to the cell surface, as an immunomodulatory strategy to inhibit the host IFN response. By using next generation sequencing technologies, we performed a detailed RNA-seq study to dissect at the transcriptional level the modulation of the IFN based host response by VACV and B18. Transcriptome profiling of L929 cells after incubation with purified recombinant B18 protein showed that attachment of B18 to the cell surface does not trigger cell signalling leading to transcriptional activation. Consistent with its ability to bind type I IFN, B18 completely inhibited the IFN-mediated modulation of host gene expression. Addition of UV-inactivated virus particles to cell cultures altered the expression of a set of 53 cellular genes, including genes involved in innate immunity. Differential gene expression analyses of cells infected with replication competent VACV identified the activation of a broad range of host genes involved in multiple cellular pathways. Interestingly, we did not detect an IFN-mediated response among the transcriptional changes induced by VACV, even after the addition of IFN to cells infected with a mutant VACV lacking B18. This is consistent with additional viral mechanisms acting at different levels to block IFN responses during VACV infection.

  13. Functional genomics reveals an essential and specific role for Stat1 in protection of the central nervous system following herpes simplex virus corneal infection.

    Science.gov (United States)

    Pasieka, Tracy Jo; Cilloniz, Cristian; Carter, Victoria S; Rosato, Pamela; Katze, Michael G; Leib, David A

    2011-12-01

    Innate immune deficiencies result in a spectrum of severe clinical outcomes following infection. In particular, there is a strong association between loss of the signal transducer and activator of transcription (Stat) pathway, breach of the blood-brain barrier (BBB), and virus-induced neuropathology. The gene signatures that characterize resistance, disease, and mortality in the virus-infected nervous system have not been defined. Herpes simplex virus type 1 (HSV-1) is commonly associated with encephalitis in humans, and humans and mice lacking Stat1 display increased susceptibility to HSV central nervous system (CNS) infections. In this study, two HSV-1 strains were used, KOS (wild type [WT]), and Δvhs, an avirulent recombinant lacking the virion host shutoff (vhs) function. In addition, two mouse strains were used: strain 129 (control) and a Stat1-deficient (Stat1(-/-)) strain. Using combinations of these virus and mouse strains, we established a model of infection resulting in three different outcomes: viral clearance without neurological disease (Δvhs infection of control mice), neurological disease followed by viral clearance (Δvhs infection of Stat1(-/-) mice and WT infection of control mice), or neurological disease followed by death (WT infection of Stat1(-/-) mice). Through the use of functional genomics on the infected brain stems, we determined gene signatures that were representative of the three infection outcomes. We demonstrated a pathological signature in the brain stem of Stat1-deficient mice characterized by upregulation of transcripts encoding chemokine receptors, inflammatory markers, neutrophil chemoattractants, leukocyte adhesion proteins, and matrix metalloproteases. Additionally, there was a greater than 100-fold increase in the inflammatory markers interleukin 1β (IL-1β) and IL-6. Consistent with this gene signature, we demonstrated profound CNS inflammation with a concomitant lethal breach of the BBB. Taken together, our results

  14. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice

    DEFF Research Database (Denmark)

    Reinert, Line; Harder, Louis Andreas; Holm, Christian

    2012-01-01

    Herpes simplex viruses (HSVs) are highly prevalent neurotropic viruses. While they can replicate lytically in cells of the epithelial lineage, causing lesions on mucocutaneous surfaces, HSVs also establish latent infections in neurons, which act as reservoirs of virus for subsequent reactivation......, it is not known what cell type mediates the role of TLR3 in the immunological control of HSV, and it is not known whether TLR3 sensing occurs prior to or after CNS entry. Here, we show that in mice TLR3 provides early control of HSV-2 infection immediately after entry into the CNS by mediating type I IFN...... responses in astrocytes. Tlr3-/- mice were hypersusceptible to HSV-2 infection in the CNS after vaginal inoculation. HSV-2 exhibited broader neurotropism in Tlr3-/- mice than it did in WT mice, with astrocytes being most abundantly infected. Tlr3-/- mice did not exhibit a global defect in innate immune...

  15. B cells are not essential for Lactobacillus-mediated protection against lethal pneumovirus infection.

    Science.gov (United States)

    Percopo, Caroline M; Dyer, Kimberly D; Garcia-Crespo, Katia E; Gabryszewski, Stanislaw J; Shaffer, Arthur L; Domachowske, Joseph B; Rosenberg, Helene F

    2014-06-01

    We have shown previously that priming of respiratory mucosa with live Lactobacillus species promotes robust and prolonged survival from an otherwise lethal infection with pneumonia virus of mice, a property known as heterologous immunity. Lactobacillus priming results in a moderate reduction in virus recovery and a dramatic reduction in virus-induced proinflammatory cytokine production; the precise mechanisms underlying these findings remain to be elucidated. Because B cells have been shown to promote heterologous immunity against respiratory virus pathogens under similar conditions, in this study we explore the role of B cells in Lactobacillus-mediated protection against acute pneumovirus infection. We found that Lactobacillus-primed mice feature elevated levels of airway Igs IgG, IgA, and IgM and lung tissues with dense, B cell (B220(+))-enriched peribronchial and perivascular infiltrates with germinal centers consistent with descriptions of BALT. No B cells were detected in lung tissue of Lactobacillus-primed B cell deficient μMT mice or Jh mice, and Lactobacillus-primed μMT mice had no characteristic infiltrates or airway Igs. Nonetheless, we observed diminished virus recovery and profound suppression of virus-induced proinflammatory cytokines CCL2, IFN-γ, and CXCL10 in both wild-type and Lactobacillus-primed μMT mice. Furthermore, Lactobacillus plantarum-primed, B cell-deficient μMT and Jh mice were fully protected from an otherwise lethal pneumonia virus of mice infection, as were their respective wild-types. We conclude that B cells are dispensable for Lactobacillus-mediated heterologous immunity and were not crucial for promoting survival in response to an otherwise lethal pneumovirus infection.

  16. Association between respiratory infections in early life and later asthma is independent of virus type

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Vissing, Nadja Hawwa; Sevelsted, Astrid

    2015-01-01

    associated with increased risk of asthma by age 7 years with similar odds ratios for all viruses and pathogenic bacteria. After adjustment for the frequency of respiratory episodes, the particular triggers were no longer associated with asthma. CONCLUSION: The number of respiratory episodes in the first......BACKGROUND: Lower respiratory tract infections in the first years of life are associated with later asthma, and this observation has led to a focus on the potential causal role of specific respiratory viruses, such as rhinoviruses and respiratory syncytial virus, in asthma development. However......, many respiratory viruses and bacteria trigger similar respiratory symptoms and it is possible that the important risk factors for asthma are the underlying susceptibility to infection and the exaggerated reaction to such triggers rather than the particular triggering agent. OBJECTIVE: We sought...

  17. Serological evidence for avian H9N2 influenza virus infections among Romanian agriculture workers.

    Science.gov (United States)

    Coman, Alexandru; Maftei, Daniel N; Krueger, Whitney S; Heil, Gary L; Friary, John A; Chereches, Razvan M; Sirlincan, Emanuela; Bria, Paul; Dragnea, Claudiu; Kasler, Iosif; Gray, Gregory C

    2013-12-01

    In recent years, wild birds have introduced multiple highly pathogenic avian influenza (HPAI) H5N1 virus infections in Romanian poultry. In 2005 HPAI infections were widespread among domestic poultry and anecdotal reports suggested domestic pigs may also have been exposed. We sought to examine evidence for zoonotic influenza infections among Romanian agriculture workers. Between 2009 and 2010, 363 adult participants were enrolled in a cross-sectional, seroepidemiological study. Confined animal feeding operation (CAFO) swine workers in Tulcea and small, traditional backyard farmers in Cluj-Napoca were enrolled, as well as a non-animal exposed control group from Cluj-Napoca. Enrollment sera were examined for serological evidence of previous infection with 9 avian and 3 human influenza virus strains. Serologic assays showed no evidence of previous infection with 7 low pathogenic avian influenza viruses or with HPAI H5N1. However, 33 participants (9.1%) had elevated microneutralization antibody titers against avian-like A/Hong Kong/1073/1999(H9N2), 5 with titers ≥ 1:80 whom all reported exposure to poultry. Moderate poultry exposure was significantly associated with elevated titers after controlling for the subjects' age (adjusted OR = 3.6; 95% CI, 1.1-12.1). There was no evidence that previous infection with human H3N2 or H2N2 viruses were confounding the H9N2 seroreactivity. These data suggest that H9N2 virus may have circulated in Romanian poultry and occasionally infected man. Copyright © 2013 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  18. A Review of Zoonotic Infection Risks Associated with the Wild Meat Trade in Malaysia.

    Science.gov (United States)

    Cantlay, Jennifer Caroline; Ingram, Daniel J; Meredith, Anna L

    2017-06-01

    The overhunting of wildlife for food and commercial gain presents a major threat to biodiversity in tropical forests and poses health risks to humans from contact with wild animals. Using a recent survey of wildlife offered at wild meat markets in Malaysia as a basis, we review the literature to determine the potential zoonotic infection risks from hunting, butchering and consuming the species offered. We also determine which taxa potentially host the highest number of pathogens and discuss the significant disease risks from traded wildlife, considering how cultural practices influence zoonotic transmission. We identify 51 zoonotic pathogens (16 viruses, 19 bacteria and 16 parasites) potentially hosted by wildlife and describe the human health risks. The Suidae and the Cervidae families potentially host the highest number of pathogens. We conclude that there are substantial gaps in our knowledge of zoonotic pathogens and recommend performing microbial food safety risk assessments to assess the hazards of wild meat consumption. Overall, there may be considerable zoonotic risks to people involved in the hunting, butchering or consumption of wild meat in Southeast Asia, and these should be considered in public health strategies.

  19. The Discovery, Distribution, and Evolution of Viruses Associated with Drosophila melanogaster.

    Science.gov (United States)

    Webster, Claire L; Waldron, Fergal M; Robertson, Shaun; Crowson, Daisy; Ferrari, Giada; Quintana, Juan F; Brouqui, Jean-Michel; Bayne, Elizabeth H; Longdon, Ben; Buck, Amy H; Lazzaro, Brian P; Akorli, Jewelna; Haddrill, Penelope R; Obbard, Darren J

    2015-07-01

    Drosophila melanogaster is a valuable invertebrate model for viral infection and antiviral immunity, and is a focus for studies of insect-virus coevolution. Here we use a metagenomic approach to identify more than 20 previously undetected RNA viruses and a DNA virus associated with wild D. melanogaster. These viruses not only include distant relatives of known insect pathogens but also novel groups of insect-infecting viruses. By sequencing virus-derived small RNAs, we show that the viruses represent active infections of Drosophila. We find that the RNA viruses differ in the number and properties of their small RNAs, and we detect both siRNAs and a novel miRNA from the DNA virus. Analysis of small RNAs also allows us to identify putative viral sequences that lack detectable sequence similarity to known viruses. By surveying >2,000 individually collected wild adult Drosophila we show that more than 30% of D. melanogaster carry a detectable virus, and more than 6% carry multiple viruses. However, despite a high prevalence of the Wolbachia endosymbiont--which is known to be protective against virus infections in Drosophila--we were unable to detect any relationship between the presence of Wolbachia and the presence of any virus. Using publicly available RNA-seq datasets, we show that the community of viruses in Drosophila laboratories is very different from that seen in the wild, but that some of the newly discovered viruses are nevertheless widespread in laboratory lines and are ubiquitous in cell culture. By sequencing viruses from individual wild-collected flies we show that some viruses are shared between D. melanogaster and D. simulans. Our results provide an essential evolutionary and ecological context for host-virus interaction in Drosophila, and the newly reported viral sequences will help develop D. melanogaster further as a model for molecular and evolutionary virus research.

  20. Mannose-binding lectin contributes to deleterious inflammatory response in pandemic H1N1 and avian H9N2 infection.

    Science.gov (United States)

    Ling, Man To; Tu, Wenwei; Han, Yan; Mao, Huawei; Chong, Wai Po; Guan, Jing; Liu, Ming; Lam, Kwok Tai; Law, Helen K W; Peiris, J S Malik; Takahashi, K; Lau, Yu Lung

    2012-01-01

    Mannose-binding lectin (MBL) is a pattern-recognition molecule, which functions as a first line of host defense. Pandemic H1N1 (pdmH1N1) influenza A virus caused massive infection in 2009 and currently circulates worldwide. Avian influenza A H9N2 (H9N2/G1) virus has infected humans and has the potential to be the next pandemic virus. Antiviral function and immunomodulatory role of MBL in pdmH1N1 and H9N2/G1 virus infection have not been investigated. In this study, MBL wild-type (WT) and MBL knockout (KO) murine models were used to examine the role of MBL in pdmH1N1 and H9N2/G1 virus infection. Our study demonstrated that in vitro, MBL binds to pdmH1N1 and H9N2/G1 viruses, likely via the carbohydrate recognition domain of MBL. Wild-type mice developed more severe disease, as evidenced by a greater weight loss than MBL KO mice during influenza virus infection. Furthermore, MBL WT mice had enhanced production of proinflammatory cytokines and chemokines compared with MBL KO mice, suggesting that MBL could upregulate inflammatory responses that may potentially worsen pdmH1N1 and H9N2/G1 virus infections. Our study provided the first in vivo evidence that MBL may be a risk factor during pdmH1N1 and H9N2/G1 infection by upregulating proinflammatory response.

  1. Distribution, persistence and interchange of Epstein-Barr virus strains among PBMC, plasma and saliva of primary infection subjects.

    Science.gov (United States)

    Kwok, Hin; Chan, Koon Wing; Chan, Kwok Hung; Chiang, Alan Kwok Shing

    2015-01-01

    Our study aimed at investigating the distribution, persistence and interchange of viral strains among peripheral blood mononuclear cells (PBMC), plasma and saliva of primary Epstein-Barr virus (EBV) infection subjects. Twelve infectious mononucleosis (IM) patients and eight asymptomatic individuals (AS) with primary EBV infection were followed longitudinally at several time points for one year from the time of diagnosis, when blood and saliva samples were collected and separated into PBMC, plasma and saliva, representing circulating B cell, plasma and epithelial cell compartments, respectively. To survey the viral strains, genotyping assays for the natural polymorphisms in two latent EBV genes, EBNA2 and LMP1, were performed and consisted of real-time PCR on EBNA2 to distinguish type 1 and 2 viruses, fluorescent-based 30-bp typing assay on LMP1 to distinguish deletion and wild type LMP1, and fluorescent-based heteroduplex tracking assays on both EBNA2 and LMP1 to distinguish defined polymorphic variants. No discernible differences were observed between IM patients and AS. Multiple viral strains were acquired early at the start of infection. Stable persistence of dominant EBV strains in the same tissue compartment was observed throughout the longitudinal samples. LMP1-defined strains, China 1, China 2 and Mediterranean+, were the most common strains observed. EBNA2-defined groups 1 and 3e predominated the PBMC and saliva compartments. Concordance of EBNA2 and LMP1 strains between PBMC and saliva suggested ready interchange of viruses between circulating B cell and epithelial cell pools, whilst discordance of viral strains observed between plasma and PBMC/saliva indicated presence of viral pools in other undetermined tissue compartments. Taken together, the results indicated that the distribution, persistence and interchange of viral strains among the tissue compartments are more complex than those proposed by the current model of EBV life cycle.

  2. Reduction of /sup 51/Cr-permeability of tissue culture cells by infection with herpes simplex virus type 1

    Energy Technology Data Exchange (ETDEWEB)

    Schlehofer, J.R.; Habermehl, K.O.; Diefenthal, W.; Hampl, H.

    1979-01-01

    Infection of different strains of tissue culture cells with herpes simplex virus type 1(HSV-1) resulted in a reduced /sup 51/Cr-permeability. A stability of the cellular membrane to Triton X-100, toxic sera and HSV-specific complement-mediated immune-cytolysis could be observed simultaneously. The results differed with respect to the cell strain used in the experiments.

  3. Epstein-Barr virus infection and nasopharyngeal carcinoma.

    Science.gov (United States)

    Tsao, Sai Wah; Tsang, Chi Man; Lo, Kwok Wai

    2017-10-19

    Epstein-Barr virus (EBV) is associated with multiple types of human cancer, including lymphoid and epithelial cancers. The closest association with EBV infection is seen in undifferentiated nasopharyngeal carcinoma (NPC), which is endemic in the southern Chinese population. A strong association between NPC risk and the HLA locus at chromosome 6p has been identified, indicating a link between the presentation of EBV antigens to host immune cells and NPC risk. EBV infection in NPC is clonal in origin, strongly suggesting that NPC develops from the clonal expansion of a single EBV-infected cell. In epithelial cells, the default program of EBV infection is lytic replication. However, latent infection is the predominant mode of EBV infection in NPC. The establishment of latent EBV infection in pre-invasive nasopharyngeal epithelium is believed to be an early stage of NPC pathogenesis. Recent genomic study of NPC has identified multiple somatic mutations in the upstream negative regulators of NF-κB signalling. Dysregulated NF-κB signalling may contribute to the establishment of latent EBV infection in NPC. Stable EBV infection and the expression of latent EBV genes are postulated to drive the transformation of pre-invasive nasopharyngeal epithelial cells to cancer cells through multiple pathways.This article is part of the themed issue 'Human oncogenic viruses'. © 2017 The Author(s).

  4. Wild-type MIC distributions for aminoglycoside and cyclic polypeptide antibiotics used for treatment of Mycobacterium tuberculosis infections.

    Science.gov (United States)

    Juréen, P; Angeby, K; Sturegård, E; Chryssanthou, E; Giske, C G; Werngren, J; Nordvall, M; Johansson, A; Kahlmeter, G; Hoffner, S; Schön, T

    2010-05-01

    The aminoglycosides and cyclic polypeptides are essential drugs in the treatment of multidrug-resistant tuberculosis, underscoring the need for accurate and reproducible drug susceptibility testing (DST). The epidemiological cutoff value (ECOFF) separating wild-type susceptible strains from non-wild-type strains is an important but rarely used tool for indicating susceptibility breakpoints against Mycobacterium tuberculosis. In this study, we established wild-type MIC distributions on Middlebrook 7H10 medium for amikacin, kanamycin, streptomycin, capreomycin, and viomycin using 90 consecutive clinical isolates and 21 resistant strains. Overall, the MIC variation between and within runs did not exceed +/-1 MIC dilution step, and validation of MIC values in Bactec 960 MGIT demonstrated good agreement. Tentative ECOFFs defining the wild type were established for all investigated drugs, including amikacin and viomycin, which currently lack susceptibility breakpoints for 7H10. Five out of seven amikacin- and kanamycin-resistant isolates were classified as susceptible to capreomycin according to the current critical concentration (10 mg/liter) but were non-wild type according to the ECOFF (4 mg/liter), suggesting that the critical concentration may be too high. All amikacin- and kanamycin-resistant isolates were clearly below the ECOFF for viomycin, and two of them were below the ECOFF for streptomycin, indicating that these two drugs may be considered for treatment of amikacin-resistant strains. Pharmacodynamic indices (peak serum concentration [Cmax]/MIC) were more favorable for amikacin and viomycin compared to kanamycin and capreomycin. In conclusion, our data emphasize the importance of establishing wild-type MIC distributions for improving the quality of drug susceptibility testing against Mycobacterium tuberculosis.

  5. Hepatic disorder in Zika virus infection

    Institute of Scientific and Technical Information of China (English)

    Viroj Wiwanitkit

    2016-01-01

    Zika virus infection is the present global problem. This arbovirus infection can cause acute ilness and affect fetus in utero. However, there can be other additional clinical manifestation including to the hepatic disorder. In this short commentary article, the author brielfy discusses on the liver problem due to Zika virus infection.

  6. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens.

    Science.gov (United States)

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J; von Messling, Veronika

    2017-04-15

    The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains. IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received

  7. Multiplex Amplification Refractory Mutation System Polymerase Chain Reaction (ARMS-PCR for diagnosis of natural infection with canine distemper virus

    Directory of Open Access Journals (Sweden)

    Wong Min-Liang

    2010-06-01

    Full Text Available Abstract Background Canine distemper virus (CDV is present worldwide and produces a lethal systemic infection of wild and domestic Canidae. Pre-existing antibodies acquired from vaccination or previous CDV infection might interfere the interpretation of a serologic diagnosis method. In addition, due to the high similarity of nucleic acid sequences between wild-type CDV and the new vaccine strain, current PCR derived methods cannot be applied for the definite confirmation of CD infection. Hence, it is worthy of developing a simple and rapid nucleotide-based assay for differentiation of wild-type CDV which is a cause of disease from attenuated CDVs after vaccination. High frequency variations have been found in the region spanning from the 3'-untranslated region (UTR of the matrix (M gene to the fusion (F gene (designated M-F UTR in a few CDV strains. To establish a differential diagnosis assay, an amplification refractory mutation analysis was established based on the highly variable region on M-F UTR and F regions. Results Sequences of frequent polymorphisms were found scattered throughout the M-F UTR region; the identity of nucleic acid between local strains and vaccine strains ranged from 82.5% to 93.8%. A track of AAA residue located 35 nucleotides downstream from F gene start codon highly conserved in three vaccine strains were replaced with TGC in the local strains; that severed as target sequences for deign of discrimination primers. The method established in the present study successfully differentiated seven Taiwanese CDV field isolates, all belonging to the Asia-1 lineage, from vaccine strains. Conclusions The method described herein would be useful for several clinical applications, such as confirmation of nature CDV infection, evaluation of vaccination status and verification of the circulating viral genotypes.

  8. Multiplex Amplification Refractory Mutation System Polymerase Chain Reaction (ARMS-PCR) for diagnosis of natural infection with canine distemper virus.

    Science.gov (United States)

    Chulakasian, Songkhla; Lee, Min-Shiuh; Wang, Chi-Young; Chiou, Shyan-Song; Lin, Kuan-Hsun; Lin, Fong-Yuan; Hsu, Tien-Huan; Wong, Min-Liang; Chang, Tien-Jye; Hsu, Wei-Li

    2010-06-10

    Canine distemper virus (CDV) is present worldwide and produces a lethal systemic infection of wild and domestic Canidae. Pre-existing antibodies acquired from vaccination or previous CDV infection might interfere the interpretation of a serologic diagnosis method. In addition, due to the high similarity of nucleic acid sequences between wild-type CDV and the new vaccine strain, current PCR derived methods cannot be applied for the definite confirmation of CD infection. Hence, it is worthy of developing a simple and rapid nucleotide-based assay for differentiation of wild-type CDV which is a cause of disease from attenuated CDVs after vaccination. High frequency variations have been found in the region spanning from the 3'-untranslated region (UTR) of the matrix (M) gene to the fusion (F) gene (designated M-F UTR) in a few CDV strains. To establish a differential diagnosis assay, an amplification refractory mutation analysis was established based on the highly variable region on M-F UTR and F regions. Sequences of frequent polymorphisms were found scattered throughout the M-F UTR region; the identity of nucleic acid between local strains and vaccine strains ranged from 82.5% to 93.8%. A track of AAA residue located 35 nucleotides downstream from F gene start codon highly conserved in three vaccine strains were replaced with TGC in the local strains; that severed as target sequences for deign of discrimination primers. The method established in the present study successfully differentiated seven Taiwanese CDV field isolates, all belonging to the Asia-1 lineage, from vaccine strains. The method described herein would be useful for several clinical applications, such as confirmation of nature CDV infection, evaluation of vaccination status and verification of the circulating viral genotypes.

  9. [Differentiation of influenza (Flu) type A, type B, and respiratory syncytial virus (RSV) by QuickNavi™-Flu+RSV].

    Science.gov (United States)

    Kohiyama, Risa; Miyazawa, Takashi; Shibano, Nobuko; Inano, Koichi

    2014-01-01

    Because it is not easy to differentiate Influenza virus (Flu) from RS virus (RSV) just by clinical symptoms, to accurately diagnose those viruses in conjunction with patient's clinical symptoms, rapid diagnostic kits has been used separately for each of those viruses. In our new study, we have developed a new rapid diagnostic kit, QuickNavi™-Flu+RSV. The kit can detect Flu A, Flu B, and RSV antigens with a single sample collection and an assay. Total of 2,873 cases (including nasopharyngeal swabs and nasopharyngeal aspirates specimens) in 2010/2011 and 2011/2012 seasons were evaluated with QuickNavi™-Flu+RSV and a commercially available kit. Sensitivity, specificity, and accuracy of Flu type A, type B, and RSV were above 95% when compared to commercially available kits (QuickNavi™-Flu and QuickNavi™-RSV) and considered to be equivalent to the commercially available kits. In 2011/2012 season, RSV infections increased prior to Flu season and continued during the peak of the Flu season. The kit can contribute to accurate diagnosis of Flu and RSV infections since co-infection cases have also been reported during the 2011/2012 season. QuickNavi™-Flu+RSV is useful for differential diagnosis of respiratory infectious diseases since it can detect Flu type A, type B, and RSV virus antigens with a single sample collection.

  10. An attenuated herpes simplex virus type 1 (HSV1 encoding the HIV-1 Tat protein protects mice from a deadly mucosal HSV1 challenge.

    Directory of Open Access Journals (Sweden)

    Mariaconcetta Sicurella

    Full Text Available Herpes simplex virus types 1 and 2 (HSV1 and HSV2 are common infectious agents in both industrialized and developing countries. They cause recurrent asymptomatic and/or symptomatic infections, and life-threatening diseases and death in newborns and immunocompromised patients. Current treatment for HSV relies on antiviral medications, which can halt the symptomatic diseases but cannot prevent the shedding that occurs in asymptomatic patients or, consequently, the spread of the viruses. Therefore, prevention rather than treatment of HSV infections has long been an area of intense research, but thus far effective anti-HSV vaccines still remain elusive. One of the key hurdles to overcome in anti-HSV vaccine development is the identification and effective use of strategies that promote the emergence of Th1-type immune responses against a wide range of epitopes involved in the control of viral replication. Since the HIV1 Tat protein has several immunomodulatory activities and increases CTL recognition of dominant and subdominant epitopes of heterologous antigens, we generated and assayed a recombinant attenuated replication-competent HSV1 vector containing the tat gene (HSV1-Tat. In this proof-of-concept study we show that immunization with this vector conferred protection in 100% of mice challenged intravaginally with a lethal dose of wild-type HSV1. We demonstrate that the presence of Tat within the recombinant virus increased and broadened Th1-like and CTL responses against HSV-derived T-cell epitopes and elicited in most immunized mice detectable IgG responses. In sharp contrast, a similarly attenuated HSV1 recombinant vector without Tat (HSV1-LacZ, induced low and different T cell responses, no measurable antibody responses and did not protect mice against the wild-type HSV1 challenge. These findings strongly suggest that recombinant HSV1 vectors expressing Tat merit further investigation for their potential to prevent and/or contain HSV1

  11. An attenuated herpes simplex virus type 1 (HSV1) encoding the HIV-1 Tat protein protects mice from a deadly mucosal HSV1 challenge.

    Science.gov (United States)

    Sicurella, Mariaconcetta; Nicoli, Francesco; Gallerani, Eleonora; Volpi, Ilaria; Berto, Elena; Finessi, Valentina; Destro, Federica; Manservigi, Roberto; Cafaro, Aurelio; Ensoli, Barbara; Caputo, Antonella; Gavioli, Riccardo; Marconi, Peggy C

    2014-01-01

    Herpes simplex virus types 1 and 2 (HSV1 and HSV2) are common infectious agents in both industrialized and developing countries. They cause recurrent asymptomatic and/or symptomatic infections, and life-threatening diseases and death in newborns and immunocompromised patients. Current treatment for HSV relies on antiviral medications, which can halt the symptomatic diseases but cannot prevent the shedding that occurs in asymptomatic patients or, consequently, the spread of the viruses. Therefore, prevention rather than treatment of HSV infections has long been an area of intense research, but thus far effective anti-HSV vaccines still remain elusive. One of the key hurdles to overcome in anti-HSV vaccine development is the identification and effective use of strategies that promote the emergence of Th1-type immune responses against a wide range of epitopes involved in the control of viral replication. Since the HIV1 Tat protein has several immunomodulatory activities and increases CTL recognition of dominant and subdominant epitopes of heterologous antigens, we generated and assayed a recombinant attenuated replication-competent HSV1 vector containing the tat gene (HSV1-Tat). In this proof-of-concept study we show that immunization with this vector conferred protection in 100% of mice challenged intravaginally with a lethal dose of wild-type HSV1. We demonstrate that the presence of Tat within the recombinant virus increased and broadened Th1-like and CTL responses against HSV-derived T-cell epitopes and elicited in most immunized mice detectable IgG responses. In sharp contrast, a similarly attenuated HSV1 recombinant vector without Tat (HSV1-LacZ), induced low and different T cell responses, no measurable antibody responses and did not protect mice against the wild-type HSV1 challenge. These findings strongly suggest that recombinant HSV1 vectors expressing Tat merit further investigation for their potential to prevent and/or contain HSV1 infection and

  12. Bovine herpes virus infections in cattle.

    Science.gov (United States)

    Nandi, S; Kumar, Manoj; Manohar, M; Chauhan, R S

    2009-06-01

    Bovine herpes virus 1 (BHV-1) is primarily associated with clinical syndromes such as rhinotracheitis, pustular vulvovaginitis and balanoposthitis, abortion, infertility, conjunctivitis and encephalitis in bovine species. The main sources of infection are the nasal exudates and the respiratory droplets, genital secretions, semen, fetal fluids and tissues. The BHV-1 virus can become latent following a primary infection with a field isolate or vaccination with an attenuated strain. The viral genomic DNA has been demonstrated in the sensory ganglia of the trigeminal nerve in infectious bovine rhinotracheitis (IBR) and in sacral spinal ganglia in pustular vulvovaginitis and balanoposthitis cases. BHV-1 infections can be diagnosed by detection of virus or virus components and antibody by serological tests or by detection of genomic DNA by polymerase chain reaction (PCR), nucleic acid hybridization and sequencing. Inactivated vaccines and modified live virus vaccines are used for prevention of BHV-1 infections in cattle; subunit vaccines and marker vaccines are under investigation.

  13. Inducible nitric-oxide synthase plays a minimal role in lymphocytic choriomeningitis virus-induced, T cell-mediated protective immunity and immunopathology

    DEFF Research Database (Denmark)

    Bartholdy, C; Nansen, A; Christensen, Jeanette Erbo

    1999-01-01

    -mediated immune response was found to be unaltered in iNOS-deficient mice compared with wild-type C57BL/6 mice, and LCMV- induced general immunosuppression was equally pronounced in both strains. In vivo analysis revealed identical kinetics of virus clearance, as well as unaltered clinical severity of systemic......By using mice with a targetted disruption in the gene encoding inducible nitric-oxide synthase (iNOS), we have studied the role of nitric oxide (NO) in lymphocytic choriomeningitis virus (LCMV)-induced, T cell-mediated protective immunity and immunopathology. The afferent phase of the T cell...... LCMV infection in both strains. Concerning the outcome of intracerebral infection, no significant differences were found between iNOS-deficient and wild-type mice in the number or composition of mononuclear cells found in the cerebrospinal fluid on day 6 post-infection. Likewise, NO did not influence...

  14. Transmission of Guanarito and Pirital Viruses among Wild Rodents, Venezuela

    Science.gov (United States)

    Milazzo, Mary L.; Cajimat, Maria N.B.; Duno, Gloria; Duno, Freddy; Utrera, Antonio

    2011-01-01

    Samples from rodents captured on a farm in Venezuela in February 1997 were tested for arenavirus, antibody against Guanarito virus (GTOV), and antibody against Pirital virus (PIRV). Thirty-one (48.4%) of 64 short-tailed cane mice (Zygodontomys brevicauda) were infected with GTOV, 1 Alston’s cotton rat (Sigmodon alstoni) was infected with GTOV, and 36 (64.3%) of 56 other Alston’s cotton rats were infected with PIRV. The results of analyses of field and laboratory data suggested that horizontal transmission is the dominant mode of GTOV transmission in Z. brevicauda mice and that vertical transmission is an important mode of PIRV transmission in S. alstoni rats. The results also suggested that bodily secretions and excretions from most GTOV-infected short-tailed cane mice and most PIRV-infected Alston’s cotton rats may transmit the viruses to humans. PMID:22172205

  15. Further assessment of Monkeypox Virus infection in Gambian pouched rats (Cricetomys gambianus) using in vivo bioluminescent imaging

    Science.gov (United States)

    Falendysz, Elizabeth; Lopera, Juan G.; Faye Lorenzsonn,; Salzer, Johanna S.; Hutson, Christina L.; Doty, Jeffrey; Gallardo-Romero, Nadia; Carroll, Darin S.; Osorio, Jorge E.; Rocke, Tonie E.

    2015-01-01

    Monkeypox is a zoonosis clinically similar to smallpox in humans. Recent evidence has shown a potential risk of increased incidence in central Africa. Despite attempts to isolate the virus from wild rodents and other small mammals, no reservoir host has been identified. In 2003,Monkeypox virus (MPXV) was accidentally introduced into the U.S. via the pet trade and was associated with the Gambian pouched rat (Cricetomys gambianus). Therefore, we investigated the potential reservoir competence of the Gambian pouched rat for MPXV by utilizing a combination of in vivo and in vitro methods. We inoculated three animals by the intradermal route and three animals by the intranasal route, with one mock-infected control for each route. Bioluminescent imaging (BLI) was used to track replicating virus in infected animals and virological assays (e.g. real time PCR, cell culture) were used to determine viral load in blood, urine, ocular, nasal, oral, and rectal swabs. Intradermal inoculation resulted in clinical signs of monkeypox infection in two of three animals. One severely ill animal was euthanized and the other affected animal recovered. In contrast, intranasal inoculation resulted in subclinical infection in all three animals. All animals, regardless of apparent or inapparent infection, shed virus in oral and nasal secretions. Additionally, BLI identified viral replication in the skin without grossly visible lesions. These results suggest that Gambian pouched rats may play an important role in transmission of the virus to humans, as they are hunted for consumption and it is possible for MPXV-infected pouched rats to shed infectious virus without displaying overt clinical signs.

  16. Experimental infection of swans and geese with highly pathogenic avian influenza virus (H5N1) of Asian lineage.

    Science.gov (United States)

    Brown, Justin D; Stallknecht, David E; Swayne, David E

    2008-01-01

    The role of wild birds in the epidemiology of the Asian lineage highly pathogenic avian influenza (HPAI) virus subtype H5N1 epizootic and their contribution to the spread of the responsible viruses in Eurasia and Africa are unclear. To better understand the potential role of swans and geese in the epidemiology of this virus, we infected 4 species of swans and 2 species of geese with an HPAI virus of Asian lineage recovered from a whooper swan in Mongolia in 2005, A/whooper swan/Mongolia/244/2005 (H5N1). The highest mortality rates were observed in swans, and species-related differences in clinical illness and viral shedding were evident. These results suggest that the potential for HPAI (H5N1) viral shedding and the movement of infected birds may be species-dependent and can help explain observed deaths associated with HPAI (H5N1) infection in anseriforms in Eurasia.

  17. Genomic organization, sequence divergence, and recombination of feline immunodeficiency virus from lions in the wild

    Science.gov (United States)

    Pecon-Slattery, Jill; McCracken, Carrie L; Troyer, Jennifer L; VandeWoude, Sue; Roelke, Melody; Sondgeroth, Kerry; Winterbach, Christiaan; Winterbach, Hanlie; O'Brien, Stephen J

    2008-01-01

    Background Feline immunodeficiency virus (FIV) naturally infects multiple species of cat and is related to human immunodeficiency virus in humans. FIV infection causes AIDS-like disease and mortality in the domestic cat (Felis catus) and serves as a natural model for HIV infection in humans. In African lions (Panthera leo) and other exotic felid species, disease etiology introduced by FIV infection are less clear, but recent studies indicate that FIV causes moderate to severe CD4 depletion. Results In this study, comparative genomic methods are used to evaluate the full proviral genome of two geographically distinct FIV subtypes isolated from free-ranging lions. Genome organization of FIVPle subtype B (9891 bp) from lions in the Serengeti National Park in Tanzania and FIVPle subtype E (9899 bp) isolated from lions in the Okavango Delta in Botswana, both resemble FIV genome sequence from puma, Pallas cat and domestic cat across 5' LTR, gag, pol, vif, orfA, env, rev and 3'LTR regions. Comparative analyses of available full-length FIV consisting of subtypes A, B and C from FIVFca, Pallas cat FIVOma and two puma FIVPco subtypes A and B recapitulate the species-specific monophyly of FIV marked by high levels of genetic diversity both within and between species. Across all FIVPle gene regions except env, lion subtypes B and E are monophyletic, and marginally more similar to Pallas cat FIVOma than to other FIV. Sequence analyses indicate the SU and TM regions of env vary substantially between subtypes, with FIVPle subtype E more related to domestic cat FIVFca than to FIVPle subtype B and FIVOma likely reflecting recombination between strains in the wild. Conclusion This study demonstrates the necessity of whole-genome analysis to complement population/gene-based studies, which are of limited utility in uncovering complex events such as recombination that may lead to functional differences in virulence and pathogenicity. These full-length lion lentiviruses are integral to

  18. Genomic organization, sequence divergence, and recombination of feline immunodeficiency virus from lions in the wild

    Directory of Open Access Journals (Sweden)

    Sondgeroth Kerry

    2008-02-01

    Full Text Available Abstract Background Feline immunodeficiency virus (FIV naturally infects multiple species of cat and is related to human immunodeficiency virus in humans. FIV infection causes AIDS-like disease and mortality in the domestic cat (Felis catus and serves as a natural model for HIV infection in humans. In African lions (Panthera leo and other exotic felid species, disease etiology introduced by FIV infection are less clear, but recent studies indicate that FIV causes moderate to severe CD4 depletion. Results In this study, comparative genomic methods are used to evaluate the full proviral genome of two geographically distinct FIV subtypes isolated from free-ranging lions. Genome organization of FIVPle subtype B (9891 bp from lions in the Serengeti National Park in Tanzania and FIVPle subtype E (9899 bp isolated from lions in the Okavango Delta in Botswana, both resemble FIV genome sequence from puma, Pallas cat and domestic cat across 5' LTR, gag, pol, vif, orfA, env, rev and 3'LTR regions. Comparative analyses of available full-length FIV consisting of subtypes A, B and C from FIVFca, Pallas cat FIVOma and two puma FIVPco subtypes A and B recapitulate the species-specific monophyly of FIV marked by high levels of genetic diversity both within and between species. Across all FIVPle gene regions except env, lion subtypes B and E are monophyletic, and marginally more similar to Pallas cat FIVOma than to other FIV. Sequence analyses indicate the SU and TM regions of env vary substantially between subtypes, with FIVPle subtype E more related to domestic cat FIVFca than to FIVPle subtype B and FIVOma likely reflecting recombination between strains in the wild. Conclusion This study demonstrates the necessity of whole-genome analysis to complement population/gene-based studies, which are of limited utility in uncovering complex events such as recombination that may lead to functional differences in virulence and pathogenicity. These full-length lion

  19. Differential Contribution of RNA Interference Components in Response to Distinct Fusarium graminearum Virus Infections.

    Science.gov (United States)

    Yu, Jisuk; Lee, Kyung-Mi; Cho, Won Kyong; Park, Ju Yeon; Kim, Kook-Hyung

    2018-05-01

    The mechanisms of RNA interference (RNAi) as a defense response against viruses remain unclear in many plant-pathogenic fungi. In this study, we used reverse genetics and virus-derived small RNA profiling to investigate the contributions of RNAi components to the antiviral response against Fusarium graminearum viruses 1 to 3 (FgV1, -2, and -3). Real-time reverse transcription-quantitative PCR (qRT-PCR) indicated that infection of Fusarium graminearum by FgV1, -2, or -3 differentially induces the gene expression of RNAi components in F. graminearum Transcripts of the DICER-2 and AGO-1 genes of F. graminearum ( FgDICER-2 and FgAGO-1 ) accumulated at lower levels following FgV1 infection than following FgV2 or FgV3 infection. We constructed gene disruption and overexpression mutants for each of the Argonaute and dicer genes and for two RNA-dependent RNA polymerase (RdRP) genes and generated virus-infected strains of each mutant. Interestingly, mycelial growth was significantly faster for the FgV1-infected FgAGO-1 overexpression mutant than for the FgV1-infected wild type, while neither FgV2 nor FgV3 infection altered the colony morphology of the gene deletion and overexpression mutants. FgV1 RNA accumulation was significantly decreased in the FgAGO-1 overexpression mutant. Furthermore, the levels of induction of FgAGO-1 , FgDICER-2 , and some of the FgRdRP genes caused by FgV2 and FgV3 infection were similar to those caused by hairpin RNA-induced gene silencing. Using small RNA sequencing analysis, we documented different patterns of virus-derived small interfering RNA (vsiRNA) production in strains infected with FgV1, -2, and -3. Our results suggest that the Argonaute protein encoded by FgAGO-1 is required for RNAi in F. graminearum , that FgAGO-1 induction differs in response to FgV1, -2, and -3, and that FgAGO-1 might contribute to the accumulation of vsiRNAs in FgV1-infected F. graminearum IMPORTANCE To increase our understanding of how RNAi components in Fusarium

  20. Viruses infecting marine molluscs.

    Science.gov (United States)

    Arzul, Isabelle; Corbeil, Serge; Morga, Benjamin; Renault, Tristan

    2017-07-01

    Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations. Copyright © 2017 Elsevier Inc. All rights reserved.