WorldWideScience

Sample records for wild-proso millet seed

  1. Genetic diversity among proso millet (Panicum miliaceum biotypes assessed by AFLP technique Diversidade genética entre biótipos de proso millet (Panicum miliaceum revelada pela técnica de AFLP

    Directory of Open Access Journals (Sweden)

    D. Karam

    2004-06-01

    Full Text Available The Amplified Fragment Length Polymorphism (AFLP technique was used to access genetic diversity between three domestic and nine wild proso millet biotypes from the United States and Canada. Eight primer combinations detected 39 polymorphic DNA fragments, with the genetic distance estimates among biotypes ranging from 0.02 to 0.04. Colorado-Weld County black seeded and Wyoming-Platte County were the most distinct biotypes according to the dissimilarity level. A UPGMA cluster analysis revealed two distinct groups of proso millet without any geographic association. Six weed biotypes exhibiting some characters of cultivated plants were grouped together with domesticated biotypes of proso millet while the three typical wild phenotypes were clearly clustered into another group according to AFLP markers.A técnica de AFLP (Amplified Fragment Length Polymorphism foi empregada para acessar a diversidade genética entre três biótipos domesticados e nove biótipos selvagens de proso millet dos Estados Unidos e do Canadá. Oito combinações de primers detectaram 39 fragmentos polimórficos de DNA, e a estimativa da distância genética entre os biótipos variou de 0,02 a 0,04. Colorado-Weld County de sementes pretas e Wyoming-Platte County foram os biótipos mais distintos de acordo com o índice de dissimilaridade. A análise de cluster por UPGMA revelou dois grupos distintos de proso millet mas sem nenhuma relação geográfica. Seis biótipos selvagens que exibiam algumas características de plantas cultivadas foram agrupados juntamente com os biótipos domesticados de proso millet, enquanto os três fenótipos tipicamente selvagens formaram outro grupo distinto por marcadores AFLP.

  2. Kinetics Investigation on Mushroom Tyrosinase Inhibition of Proso Millet

    Directory of Open Access Journals (Sweden)

    Wen-Ying Huang

    2018-01-01

    Full Text Available Proso millet (Panicum miliaceum is rich in nutritive components and is widely used as a human food, feed and forage for animals, and fuel. This study investigated the effect of a proso millet extract on the inhibition of tyrosinase, a key enzyme in melanogenesis. High performance liquid chromatography analysis indicated that the proso millet extract contained phenolic tyrosinase inhibitors, such as syringic acid, p-coumaric acid, and ferulic acid. The extract had an IC50 for inhibition of tyrosinase activity of 14.02 mg/mL. A Lineweaver-Burk double reciprocal plot showed that the proso millet extract functioned as a mixed competitive and noncompetitive inhibitor. Proso millet has potential as a tyrosinase inhibitor that may have applications in the cosmetics industry.

  3. Proso Millet (Panicum miliaceum L.) and Its Potential for Cultivation in the Pacific Northwest, U.S.: A Review.

    Science.gov (United States)

    Habiyaremye, Cedric; Matanguihan, Janet B; D'Alpoim Guedes, Jade; Ganjyal, Girish M; Whiteman, Michael R; Kidwell, Kimberlee K; Murphy, Kevin M

    2016-01-01

    Proso millet (Panicum miliaceum L. ) is a warm season grass with a growing season of 60-100 days. It is a highly nutritious cereal grain used for human consumption, bird seed, and/or ethanol production. Unique characteristics, such as drought and heat tolerance, make proso millet a promising alternative cash crop for the Pacific Northwest (PNW) region of the United States. Development of proso millet varieties adapted to dryland farming regions of the PNW could give growers a much-needed option for diversifying their predominantly wheat-based cropping systems. In this review, the agronomic characteristics of proso millet are discussed, with emphasis on growth habits and environmental requirements, place in prevailing crop rotations in the PNW, and nutritional and health benefits. The genetics of proso millet and the genomic resources available for breeding adapted varieties are also discussed. Last, challenges and opportunities of proso millet cultivation in the PNW are explored, including the potential for entering novel and regional markets.

  4. Phenotypic Responses of Twenty Diverse Proso Millet (Panicum miliaceum L. Accessions to Irrigation

    Directory of Open Access Journals (Sweden)

    Cedric Habiyaremye

    2017-03-01

    Full Text Available To date, little research has been conducted on the phenotypic responses of proso millet to drought and deficit irrigation treatments in the dryland wheat-based cropping systems of the Palouse bioregion of the U.S. The objectives of this study were to evaluate critical agronomic traits of proso millet, including emergence, plant height, days to heading, days to maturity, and grain yield, with and without supplemental irrigation. Twenty diverse proso millet accessions, originating from Bulgaria, Czechoslovakia, Morocco, the former Soviet Union, Turkey, and the United States, were grown in irrigated and non-irrigated treatments under organic conditions in Pullman, WA, from 2012 to 2014. Irrigation was shown to significantly improve emergence and increase plant height at stem extension and to hasten ripening of all the varieties, whereas heading date was not affected by irrigation in two of the three years tested. Irrigation resulted in higher mean seed yield across all varieties, with ‘GR 665’ and ‘Earlybird’ performing best under irrigation. Seed yield was highest in ‘GR 658’ and ‘Minsum’ in the non-irrigated treatment, suggesting the importance of identification and utilization of varieties adapted to low rainfall conditions. The highest yielding varieties in irrigated systems are unlikely be the highest yielding in dryland systems. Our results suggest that millet has potential as a regionally novel crop for inclusion in traditional dryland cropping rotations in the Palouse ecosystem, thereby contributing to increased cropping system diversity.

  5. A Survey of Viral Diseases of Proso Millet (Panicum miliaceum L. and Sorghum (Sorghum bicolor L. in South Korea

    Directory of Open Access Journals (Sweden)

    Hyun-Geun Min

    2017-09-01

    Full Text Available Throughout year 2015 to 2016, 101 proso millet and 200 sorghum samples were collected from five provinces in South Korea. The samples were subjected to paired-end RNA sequencing and further analyzed by RT-PCR. The results indicated that Rice black-streaked dwarf virus (RBSDV was detected from sorghum collected in Gyeongsang province. The other four viruses, including RBSDV, Rice stripe virus (RSV, Barley virus G (BVG, and Cereal yellow dwarf virus (CYDV, were detected from proso millet. Among four viruses, both RSV and RBSDV were identified high frequency from proso millet collected from Gyeongsang province. Otherwise, BVG was nearly equally identified from five provinces, suggesting that the virus was supposedly widespread nationwide. RBSDV was first identified from both proso millet and sorghum in South Korea. The other virus annotated CYDV identified proso millet was shown to have relatively low identities compared to CYDV previously reported, suggesting that the virus might be new member of Polerovirus.

  6. Transcriptomic analysis, genic SSR development, and genetic diversity of proso millet (Panicum miliaceum; Poaceae).

    Science.gov (United States)

    Hou, Siyu; Sun, Zhaoxia; Li, Yaoshen; Wang, Yijie; Ling, Hubin; Xing, Guofang; Han, Yuanhuai; Li, Hongying

    2017-07-01

    Proso millet ( Panicum miliaceum ; Poaceae) is a minor crop with good nutritional qualities and strong tolerance to drought stress and soil infertility. However, studies on genetic diversity have been limited due to a lack of efficient genetic markers. Illumina sequencing technology was used to generate short read sequences of proso millet, and de novo transcriptome assemblies were used to develop a de novo assembly of proso millet. Genic simple sequence repeat (SSR) markers were identified and used to detect polymorphism among 56 accessions. Population structure and genetic similarity coefficient were estimated. In total, 25,341 unique gene sequences and 4724 SSR loci were obtained from the transcriptome, of which 229 pairs of SSR primers were validated, which resulted in 14 polymorphic genic SSR primers exhibiting 43 total alleles. According to the ratio of polymorphic markers (6.1%, 14/229), there are potentially 288 polymorphic genic SSR markers available for genetic assay development in the future. Bayesian population analyses showed that the 56 accessions comprised two distinct groups. A genetic structure and cluster assay indicated that the accessions from the Loess Plateau of China shared a high genetic similarity coefficient with those from other regions and that there was no correlation between genetic diversity and geographic origin. The transcriptome sequencing data and millet-specific SSR markers developed in this study establish an excellent resource for gene discovery and may improve the development of breeding programs in proso millet in the future.

  7. Transcriptomic analysis, genic SSR development, and genetic diversity of proso millet (Panicum miliaceum; Poaceae)1

    Science.gov (United States)

    Hou, Siyu; Sun, Zhaoxia; Li, Yaoshen; Wang, Yijie; Ling, Hubin; Xing, Guofang; Han, Yuanhuai; Li, Hongying

    2017-01-01

    Premise of the study: Proso millet (Panicum miliaceum; Poaceae) is a minor crop with good nutritional qualities and strong tolerance to drought stress and soil infertility. However, studies on genetic diversity have been limited due to a lack of efficient genetic markers. Methods: Illumina sequencing technology was used to generate short read sequences of proso millet, and de novo transcriptome assemblies were used to develop a de novo assembly of proso millet. Genic simple sequence repeat (SSR) markers were identified and used to detect polymorphism among 56 accessions. Population structure and genetic similarity coefficient were estimated. Results: In total, 25,341 unique gene sequences and 4724 SSR loci were obtained from the transcriptome, of which 229 pairs of SSR primers were validated, which resulted in 14 polymorphic genic SSR primers exhibiting 43 total alleles. According to the ratio of polymorphic markers (6.1%, 14/229), there are potentially 288 polymorphic genic SSR markers available for genetic assay development in the future. Bayesian population analyses showed that the 56 accessions comprised two distinct groups. Discussion: A genetic structure and cluster assay indicated that the accessions from the Loess Plateau of China shared a high genetic similarity coefficient with those from other regions and that there was no correlation between genetic diversity and geographic origin. The transcriptome sequencing data and millet-specific SSR markers developed in this study establish an excellent resource for gene discovery and may improve the development of breeding programs in proso millet in the future. PMID:28791202

  8. Glycaemic response of proso millet-based (Panicum miliaceum) products.

    Science.gov (United States)

    McSweeney, Matthew B; Ferenc, Agota; Smolkova, Katarina; Lazier, Alexander; Tucker, Amy; Seetharaman, Koushik; Wright, Amanda; Duizer, Lisa M; Ramdath, D Dan

    2017-11-01

    The glycaemic response of millet foods and the effect of processing are not known. Therefore, decorticated proso millet was used to produce four types of common food products (biscuits, couscous, porridge and an extruded snack). Postprandial blood glucose response of these products (all containing 50 g of total starch) was compared to the same foods produced with refined corn, in a crossover human study with 12 healthy male participants (age 26.3 ± 3.8 yr; BMI 23.3 ± 2.8 kg/m 2 ). Capillary blood samples were collected and glycaemic response was determined; differences were assessed using repeat measures ANOVA. Overall, the mean (±SEM) incremental area under the blood glucose response curve (mmol min/l) of the proso millet products was different from the corn products, but individual products (couscous = 66.7 ± 11.6, biscuit = 82.6 ± 13.7, extrudate = 198.7 ± 20.9, porridge = 40.1 ± 5.8) were not significantly lower (couscous = 43.5 ± 5.8, biscuit = 102.0 ± 10.3, extrudate = 198.7 ± 20.9, porridge = 52.2 ± 8.1) (p > .05). Glycaemic response of the products was not dependent on the grain type, but rather product matrix.

  9. Effects of processing method and solute interactions on pepsin digestibility of cooked proso millet flour.

    Science.gov (United States)

    Gulati, Paridhi; Sabillón, Luis; Rose, Devin J

    2018-07-01

    Previous studies have reported a substantial decline in in vitro digestibility of proso millet protein upon cooking. In this study, several processing techniques and cooking solutions were tested with the objective of preventing the loss in pepsin digestibility. Proso millet flour was subjected to the following processing techniques: high pressure processing (200 and 600 MPa for 5 and 20 min); germination (96 h); fermentation (48 h); roasting (dry heating); autoclaving (121 °C, 3 h), and treatment with transglutaminase (160 mg/g protein, 37 °C, 2 h). To study the interaction of millet proteins with solutes, millet flour was heated with sucrose (3-7 M); NaCl (2-6 M); and CaCl 2 (0.5-3 M). All processing treatments failed to prevent the loss in pepsin digestibility except germination and treatment with transglutaminase, which resulted in 23 and 39% increases in digestibility upon cooking, respectively, when compared with unprocessed cooked flours. Heating in concentrated solutions of sucrose and NaCl were effective in preventing the loss in pepsin digestibility, an effect that was attributed to a reduction in water activity (a w ). CaCl 2 was also successful in preventing the loss in digestibility but its action was similar to chaotrops like urea. Thus, a combination of enzymatic modification and cooking of millet flour with either naturally low a w substances or edible sources of chaotropic ions may be useful in processing of proso millet for development of novel foods without loss in digestibility. However, more research is required to determine optimum processing conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Formulation of Emergency Food in Biscuit-Form Made From Proso Millet Flour (Panicum miliaceum) and Snakehead Fish (Channa striata) -Tempeh Flour Koya

    Science.gov (United States)

    Anandito, R. B. K.; Kurniawan, S. R.; Nurhartadi, E.; Siswanti

    2018-02-01

    Indonesia is a natural disaster-prone country. Food availability appears as the post-disaster main problem. Emergency food is an effort to overcome it. An ideal emergency food is expected to have a complete nutritional composition. Fulfilling macronutrient needs, proso millet flour and snakehead fish-tempeh flour koya were being used in this research. The objective of this research was to determine the formulation of emergency food in biscuit form made from proso millet flour and snakehead fish-tempeh flour koya based on its sensory, chemical and physical properties. This research was using a completely randomized design with one factor affecting. The variations of proso millet flour and snakehead fish-tempeh flour koya composition were 100:0 ; 80:20 ; 60:40 ; and 40:60. All treatments were carried out sensory evaluation using hedonic test, proximate analysis, calories analysis using bomb calorimetry methods. and physical analysis using texture profile analyzer. The compensatory model was used to determine the best formula based on all parameters. The result indicated that the best biscuit formula had compositions of proso millet flour 80% and snakehead fish-tempeh flour koya 20%. It had a brownish color, not-strong-fishy aroma, a strong-enough bitter aftertaste and crunchy texture. Chemical analysis showed that its moisture, ash, protein, fat, carbohydrate and total calories content were 1,146%; 4,827%; 12,536%; 26,325%; 56,312% and 5,033 kcal/gram, respectively. The physical analysis shows that its hardness and fracturability values were 8,037 N and 2,403 N, respectively.

  11. In Vitro Pepsin Digestibility of Cooked Proso Millet ( Pancium miliaceum L.) and Related Species from Around the World.

    Science.gov (United States)

    Gulati, Paridhi; Jia, Shangang; Li, Aixia; Holding, David Richard; Santra, Dipak; Rose, Devin Jerrold

    2018-06-20

    Thirty-three accessions of proso millet (Panicum miliaceum) with different countries of origin were screened for their pepsin digestibility after cooking to identify samples with high digestibility. The pepsin digestibility of all samples ranged from 26 to 57% (average 32%). There were no apparent differences in protein profiles (SDS-PAGE) of samples with the lowest, intermediate, and highest digestibilities. However, LC-MS/MS analysis revealed a negative correlation between pepsin digestibility and peptides that matched to high molecular weight proteins (24 kDa) from Panicum hallii with regions of contiguous hydrophobic amino acids. Low digestibility upon cooking was also observed for other species from the Panicum genus, such as little millet, switchgrass and panicgrass, which suggests a unique inherent property of the genus. The obtained results from this study may form a basis for in-depth analysis of proso proteins that may help in developing new cultivars with higher digestibility upon cooking.

  12. Effect of drought stress on leaf soluble sugar content, leaf rolling index and relative water content of proso millet (Panicum miliaceum L. genotypes

    Directory of Open Access Journals (Sweden)

    mohamad javad seghatol eslami

    2009-06-01

    Full Text Available With respect to water shortage in arid and semi- arid regions, the study about drought stress effects on crop plants and selection of resistance cultivars, are among the most important goals in the agricultural researches. In order to examine drought stress effects on millet, an experiment was conducted in Birjand and Sarbisheh, simultaneously. In this experiment, five irrigation treatments (well-watered, drought stress in vegetative stage, in ear emergence stage, in seed filling stage and in vegetative and seed filling stage and five proso millet genotypes (Native, K-C-M.2, K-C-M.4, K-C-M.6 and K-C-M.9 were compared in a split plot design along with three replications. Drought stress increased grain protein content, leaf rolling index and soluble sugars concentration and decreased seed germination and leaf RWC. Although seed protein content and germination percentage of genotypes were not significantly different, there were some differences among leaf rolling index, RWC and soluble sugar content of these genotypes. The results of this study indicated that leaf sugar content, RWC and leaf rolling index can not be considered as the only parameters for selection of high yield genotypes. Therefore, it is recommended that some other factors should also be used apart from the above mentioned ones.

  13. Evaluation of radiation use efficiency and its relationship with dry matter accumulation in three millet species

    Directory of Open Access Journals (Sweden)

    behnam kamkar

    2009-06-01

    Full Text Available A factorial arrangement of three millets species (Panicum miliaceum, Pennisetum glaucum, and Setaria italica and two sowing dates with three replications were used in a completely randomized design to evaluate the radiation use efficiency and its relationship with dry matter accumulation. Leaf area index was used in daily intervals to calculate daily intercepted radiation. Light extinction coefficient was calculated as the slope of regression line between log transformed fraction of intercepted radiation and leaf area index during growing season. Radiation use efficiency was calculated as the slope of linear regression between cumulative intercepted radiation and cumulative biomass during growing season. Results showed that light extinction coefficient and radiation use efficiency for proso, pearl and foxtail millets were 0.75, 0.66, 0.57 and 1.43, 1.83, 1.74 g/MJ in terms of total radiation, respectively. Differences in biomass production were not significant between proso and pearl millets. Proso millet had higher intercepted radiation, but lower radiation use efficiency in comparison with pearl millet. Foxtail millet had lower intercepted radiation than proso and pearl millets, but its radiation use efficiency was higher than pearl millet. Total biomass of foxtail millet was lower than other species. Results indicated that proso and pearl millets can produce more biomass than foxtail millet.

  14. Haloxyfop mode of action in liquid cultures of proso millet: An analysis of haloxyfop sensitivity changes during growth

    International Nuclear Information System (INIS)

    Irzyk, G.P.

    1989-01-01

    Haloxyfop is a grass-selective herbicide that inhibits acetyl-CoA carboxylase in species that are not tolerant to the herbicide. Liquid cultures of proso millet (Panicum miliaceum) cells treated with haloxyfop at different phases of growth exhibited different levels of sensitivity to the herbicide. Treatment of 1-d cultures with 1 μM haloxyfop completely inhibited growth within 48 h. In contrast, 1 mM haloxyfop was required to elicit a similar response in 4-, 7-, or 10-d cultures. Calculated IC 50 values indicated a 300-fold decrease in haloxyfop sensitivity during the period from 1 to 4 d. This period of growth coincided with the greatest increase in cell number during culture growth and suggested that dividing cells are most sensitive to haloxyfop. Uptake and metabolism of 14 C-haloxyfop in 1-d and 4-d cultures were compared. In both cultures, amounts of radiolabel uptake were similar. Almost all radioactivity extracted from 1- and 4-d cells was present as the parent compound. These results suggested that the sensitivity change was related to other factors. Acetyl-CoA carboxylase activity of proso millet cells, measured in vitro by the acetyl-CoA-dependent incorporation of 14 C-bicarbonate into an acid-stable product, was essentially constant during culture growth. Micromolar concentrations of haloxyfop significantly inhibited acetyl-CoA carboxylase activity from both sensitive and insensitive cultures. Thus, the change in the sensitivity of cultures to haloxyfop was not correlated with changes in acetyl-CoA carboxylase abundance, activity, or sensitivity to haloxyfop during culture growth. In vivo incorporation of 14 C-acetate into lipids was decreased by 1 μM haloxyfop in both 1-d and 4-d cultures at the earliest sampling times but the amount of inhibition was significantly greater in the sensitive cultures

  15. Proximate, mineral composition and antioxidant activity of traditional small millets cultivated and consumed in Rayalaseema region of south India.

    Science.gov (United States)

    Vali Pasha, Kotwal; Ratnavathi, Chamarthy Venkata; Ajani, Jayanna; Raju, Dugyala; Manoj Kumar, Sriramoju; Beedu, Sashidhar Rao

    2018-01-01

    Millets are a diverse group of small seeded grasses, widely grown around the world as cereal foods. This communication details the proximate, mineral profile and antioxidant activity of six different small millets (Finger, Foxtail, Proso, Little, Barnyard and Kodo millets) and their 21 cultivars that are traditionally cultivated and consumed in the region of Ralayaseema, south India. The proximate analysis revealed that these millets are rich in protein, fat, ash (mineral), total dietary fibre and total phenols with appreciable antioxidant activity. However, starch and amylose content was comparatively lower as compared to major millet sorghum. ICP-MS analysis of small millets demonstrated that they are rich in minerals such as Ca, P, K, Mg, Fe, Cu, Zn, Mn, Cr, Mo and Se. Finger and kodo millets were found to be nutritionally superior over other small millets. The results suggest that small millets have a potential to provide food security and can combat micronutrient malnutrition. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Review of Finger millet (Eleusine coracana (L.) Gaertn): A power house of health benefiting nutrients

    OpenAIRE

    Dinesh Chandra; Satish Chandra; Pallavi; A.K. Sharma

    2016-01-01

    The bulk of the world's millet crop is produced by India, Nigeria, Niger, Mali, Burkina Faso, Chad, and China. Finger millet (Eleusine coracana (L.) Gaertn), little millet (Panicum sumatrense Roth ex Roem. & Schult.), foxtail millet (Setaria italica (L.) P. Beauvois) and proso millet (Panicum miliaceum L.) are most commonly found species among various millet varieties. In India, finger millet occupy the largest area under cultivation among the small millets. Finger millet stands unique among ...

  17. Population genetics of foxtail millet and its wild ancestor

    Directory of Open Access Journals (Sweden)

    Wang Yongfang

    2010-10-01

    Full Text Available Abstract Background Foxtail millet (Setaria italica (L. P. Beauv., one of the most ancient domesticated crops, is becoming a model system for studying biofuel crops and comparative genomics in the grasses. However, knowledge on the level of genetic diversity and linkage disequilibrium (LD is very limited in this crop and its wild ancestor, green foxtail (Setaria viridis (L. P. Beauv.. Such information would help us to understand the domestication process of cultivated species and will allow further research in these species, including association mapping and identification of agricultural significant genes involved in domestication. Results In this study, we surveyed DNA sequence for nine loci across 50 accessions of cultivated foxtail millet and 34 of its wild progenitor. We found a low level of genetic diversity in wild green foxtail (θ = 0.0059, θ means Watterson's estimator of θ. Despite of a 55% loss of its wild diversity, foxtail millet still harbored a considerable level of diversity (θ = 0.0027 when compared to rice and sorghum (θ = 0.0024 and 0.0034, respectively. The level of LD in the domesticated foxtail millet extends to 1 kb, while it decayed rapidly to a negligible level within 150 bp in wild green foxtail. Using coalescent simulation, we estimated the bottleneck severity at k = 0.6095 when ρ/θ = 1. These results indicated that the domestication bottleneck of foxtail millet was more severe than that of maize but slightly less pronounced than that of rice. Conclusions The results in this study establish a general framework for the domestication history of foxtail millet. The low level of genetic diversity and the increased level of LD in foxtail millet are mainly caused by a population bottleneck, although gene flow from foxtail millet to green foxtail is another factor that may have shaped the pattern of genetic diversity of these two related gene pools. The knowledge provided in this study will benefit future population

  18. Comparison of phenolic content and antioxidant activities of millet varieties grown in different locations in Sri Lanka.

    Science.gov (United States)

    Kumari, Disna; Madhujith, Terrence; Chandrasekara, Anoma

    2017-05-01

    Soluble and bound phenolic compounds were extracted from different varieties of millet types namely, finger millet, foxtail, and proso millet cultivated at dry and intermediate climatic zones in Sri Lanka. The extracts were examined for their total phenolic content (TPC), total flavonoid content (TFC), and proanthocyanidin content (PC). The antioxidant activities were meassured by reducing power (RP), trolox equivalent antioxidant capacity (TEAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferrous ion chelating ability (FICA), and using a β carotene linoleate model system. The ferulic acid content of extracts were determined using high-performance liquid chromatoghraphy (HPLC). Finger millet showed the highest phenolic content and antioxidant activities compared to proso and foxtail millets. The phenolic content as well as antioxidant activites of soluble and bound phenolic extracts of millets were affected by variety and cultivated location. The highest phenolic content and antioxidant activites were reported for millet samples cultivated in areas belonging to the dry zone in Sri Lanka.

  19. Content of insoluble bound phenolics in millets and their contribution to antioxidant capacity.

    Science.gov (United States)

    Chandrasekara, Anoma; Shahidi, Fereidoon

    2010-06-09

    Soluble and insoluble-bound phenolic extracts of several varieties of millet (kodo, finger, foxtail, proso, pearl, and little millets) whole grains were evaluated for their phenolic contents and antioxidative efficacy using trolox equivalent antioxidant capacity (TEAC), reducing power (RP), and beta-carotene-linoleate model system as well as ferrous chelating activity. In addition, ferulic and p-coumaric acids were present in soluble and bound phenolic fractions of millets, and their contents were determined using high-performance liquid chromatography (HPLC) and HPLC-mass spectrometry (MS). Kodo millet had the highest total phenolic content, whereas proso millet possessed the least. All millet varieties showed high antioxidant activities, although the order of their efficacy was assay dependent. HPLC analysis of millet phenolic extracts demonstrated that the bound fractions contained more ferulic and p-coumaric acids compared to their soluble counterparts. The results of this study showed that soluble as well as bound fractions of millet grains are rich sources of phenolic compounds with antioxidant, metal chelating, and reducing power. The potential of whole millets as natural sources of antioxidants depends on the variety used. The importance of the insoluble bound fraction of millet as a source of ferulic acid and p-coumaric acid was established, and their contribution to the total phenolic content must be taken into account in the assessment of the antioxidant activity of millets.

  20. 7 CFR 361.5 - Sampling of seeds.

    Science.gov (United States)

    2010-01-01

    ... 100 Millet, browntop 80 25 100 Millet, foxtail 50 25 100 Millet, Japanese 90 25 100 Millet, pearl 150 25 100 Millet, proso 150 25 100 Molassesgrass 5 25 100 Mustard, black 20 25 100 Mustard, India 50 25... shall be inserted in an open position with the fingers held closely together while the hand is being...

  1. Ribosomal DNA variation in finger millet and wild species of Eleusine (Poaceae).

    Science.gov (United States)

    Hilu, K W; Johnson, J L

    1992-04-01

    Finger millet is an important cereal crop in the semi-arid regions of Africa and India. The crop belongs to the grass genus Eleusine, which includes nine annual and perennial species native to Africa except for the New World species E. tristachya. Ribosomal DNA (rDNA) variation in finger millet and related wild species was used to provide information on the origin of the genomes of this tetraploid crop and point out genetic relationships of the crop to other species in the genus. The restriction endonucleases used revealed a lack of variability in the rDNA spacer region in domesticated finger millet. All the rDNA variants of the crop were found in the proposed direct tetraploid ancestor, E. coracana subsp. africana. Wild and domesticated finger millet displayed the phenotypes found in diploid E. indica. Diploid Eleusine tristachya showed some similarity to the crop in some restriction sites. The remaining species were quite distinct in rDNA fragment patterns. The study supports the direct origin of finger millet from subspecies africana shows E. indica to be one of the genome donors of the crop, and demonstrates that none of the other species examined could have donated the second genome of the crop. The rDNA data raise the possibility that wild and domesticated finger millet could have originated as infraspecific polyploid hybrids from different varieties of E. indica.

  2. Characterization of the Key Aroma Compounds in Proso Millet Wine Using Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Jingke Liu

    2018-02-01

    Full Text Available The volatile compounds in proso millet wine were extracted by headspace solid-phase microextraction (85 μm polyacrylate (PA, 100 μm polydimethylsiloxane (PDMS, 75 μm Carboxen (CAR/PDMS, and 50/30 μm divinylbenzene (DVB/CAR/PDMS fibers, and analyzed using gas chromatography-mass spectrometry; the odor characteristics and intensities were analyzed by the odor activity value (OAV. Different sample preparation factors were used to optimize this method: sample amount, extraction time, extraction temperature, and content of NaCl. A total of 64 volatile compounds were identified from the wine sample, including 14 esters, seven alcohols, five aldehydes, five ketones, 12 benzene derivatives, 12 hydrocarbons, two terpenes, three phenols, two acids, and two heterocycles. Ethyl benzeneacetate, phenylethyl alcohol, and benzaldehyde were the main volatile compounds found in the samples. According to their OAVs, 14 volatile compounds were determined to be odor-active compounds (OAV > 1, and benzaldehyde, benzeneacetaldehyde, 1-methyl-naphthalene, 2-methyl-naphthalene, and biphenyl were the prominent odor-active compounds (OAV > 50, having a high OAV. Principal component analysis (PCA showed the difference of distribution of the 64 volatile compounds and 14 odor-active compounds with four solid-phase microextraction (SPME fibers.

  3. Evaluation of the relationship of sowing qualities and yielding properties of millet seed (Panicum meliaceum L..

    Directory of Open Access Journals (Sweden)

    С. П. Полторецький

    2016-07-01

    Full Text Available Purpose. Determination and analysis of relationship of sowing qualities and yield properties of millet seed (Panicum meliaceum L. to be formed by the action of predecessors and conditions of mineral nutrition in the context of unstable moistening in the Right-Bank Forest-Steppe zone of Ukraine. Methods. Mathematico-statistical ones (correlation, regression. Results. The use of correlation pleiades method allowed to analyze multifactor relations of sowing qualities and yield properties of millet seed and establish that there was a direct correlation relationship of medium strength (r = 0.52 ± 0.01 between yielding of maternal and millet plants of the first seed progeny. It was found that maternal plants yielding is strongly correlated with laboratory and technological indicators of seed quality that interrelated through integrated quality parameter of seed material (r = 0.56 ± 0.01 and millet output (r = 0.98 ± 0.00. Integrated quality parameter as well as each of the studied laboratory parameters of seed material quality taken separately have a high-level (r = 0.87…0.96 ± 0.00 effect on the formation of grain yield of the first seed progeny plants. Such physical and technological parameters of the quality of maternal plants yield as a content of protein and fat in seed, seed weight, its uniformity can directly, and millet output, thousand-grain weight and hull content – indirectly indicate peculiarities of forming future grain yield of plants of the first seed progeny. Conclusions. The use of the correlation pleiades method allows to analyze objectively the sowing qualities of millet seed and predict the yield properties in the next generation.

  4. Spatial and temporal activity of the foxtail millet (Setaria italica) seed-specific promoter pF128.

    Science.gov (United States)

    Pan, Yanlin; Ma, Xin; Liang, Hanwen; Zhao, Qian; Zhu, Dengyun; Yu, Jingjuan

    2015-01-01

    pF128 drives GUS specifically expressed in transgenic seeds of foxtail millet and Zea mays with higher activity than the constitutive CaMV35S promoter and the maize seed-specific 19Z promoter. Foxtail millet (Setaria italica), a member of the Poaceae family, is an important food and fodder crop in arid regions. Foxtail millet is an excellent C4 crop model owing to its small genome (~490 Mb), self-pollination and availability of a complete genome sequence. F128 was isolated from a cDNA library of foxtail millet immature seeds. Real-time PCR analysis revealed that F128 mRNA was specifically expressed in immature and mature seeds. The highest F128 mRNA level was observed 5 days after pollination and gradually decreased as the seed matured. Sequence analysis suggested that the protein encoded by F128 is likely a protease inhibitor/seed storage protein/lipid-transfer protein. The 1,053 bp 5' flanking sequence of F128 (pF128) was isolated and fused to the GUS reporter gene. The corresponding vector was then transformed into Arabidopsis thaliana, foxtail millet and Zea mays. GUS analysis revealed that pF128 drove GUS expression efficiently and specifically in the seeds of transgenic Arabidopsis, foxtail millet and Zea mays. GUS activity was also detected in Arabidopsis cotyledons. Activity of pF128 was higher than that observed for the constitutive CaMV35S promoter and the maize seed-specific 19 Zein (19Z) promoter. These results indicate that pF128 is a seed-specific promoter. Its application is expected to be of considerable value in plant genetic engineering.

  5. The Effect of Osmo and Hormone Priming on Germination and Seed Reserve Utilization of Millet Seeds under Drought Stress

    Directory of Open Access Journals (Sweden)

    Maasoumeh Asadi Aghbolaghi

    2014-03-01

    Full Text Available The objective of this research was to evaluate the effect of seed priming with osmo and hormone priming on growth and seed reserve utilization of millet seeds under drought stress. Treatments were combinations of 4 levels of drought stress (0, -4, -8 and -12 bar and 3 levels of seed priming and control with 3 replications. Results showed that with increase in drought stress, germination components such as germination percentage, germination index, mean time to germination, normal seedling percentage, seedling length, seedling dry weight, weight of utilized (mobilized seed and seed reserve utilization efficiency decreased, but seed priming showed lower reduction. The highest germination characteristics and seed reserve utilization was obtained by priming in control conditions. It is concluded that priming results in improvement in germination components of millet in drought stress conditions.

  6. Immobilization of starch phosphorylase from seeds of Indian millet ...

    African Journals Online (AJOL)

    SERVER

    2007-12-03

    Dec 3, 2007 ... Starch phosphorylase has been isolated from the seeds of millet (Pennisetum typhoides) variety KB560 and partially .... After storage for 5 h, it was centrifuged at 15000 x g for 20 ..... The property of reuse up to so many times.

  7. Importance of seed-borne fungi of sorghum and pearl millet in Burkina Faso and their control using plant extracts.

    Science.gov (United States)

    Zida, Pawindé Elisabeth; Sérémé, Paco; Leth, Vibeke; Sankara, Philippe; Somda, Irénée; Néya, Adama

    2008-02-01

    Seed-borne fungi of sorghum and pearl millet in Burkina Faso were surveyed. A total of 188 seed samples from various locations, collected in 1989 (42) and 2002 (146), were tested, using the blotter, dry inspection and washing methods. Infection experiments were carried out with the major fungi recorded on each crop by the blotter test. Six essential oils of plants were investigated for their inhibitory activity against eight pathogenic fungi. Thirty four and 27 fungal species were found in seed samples of sorghum and pearl millet, respectively. Phoma sp. and Fusarium moniliforme infected 95 to 100% of the seed samples of both sorghum and pearl millet. Sphacelotheca sorghi and Tolyposporium ehrenbergii were encountered in respectively, 75 and 33% of seed samples of sorghum. T. penicillariae, Sclerospora graminicola and Claviceps fusiformis were present in 88, 41 and 32% of seed samples of pearl millet, respectively. Seeds inoculated with Acremonium strictum, Curvularia oryzae, F. equiseti, F. moniliforme and F. subglutinans and sown in sterilized soil, showed considerable mortality of the seedlings. Three essential oils inhibited in vitro the mycelial growth of all the fungi used by 85 to 100% and reduced significantly sorghum and pearl millet seed infection rates of Phoma sp., Fusarium sp., Curvularia sp., Colletotrichum graminicola and Exserohilum sp. Presence of many pathogenic fungi in considerable number of seed samples indicates the need of field surveys for these and other pathogens. Development of plant extracts for the control of seed-borne pathogens and public awareness on seed-borne diseases management measures for maintaining quality seed should be increased.

  8. Biofortification in Millets: A Sustainable Approach for Nutritional Security.

    Science.gov (United States)

    Vinoth, A; Ravindhran, R

    2017-01-01

    Nutritional insecurity is a major threat to the world's population that is highly dependent on cereals-based diet, deficient in micronutrients. Next to cereals, millets are the primary sources of energy in the semi-arid tropics and drought-prone regions of Asia and Africa. Millets are nutritionally superior as their grains contain high amount of proteins, essential amino acids, minerals, and vitamins. Biofortification of staple crops is proved to be an economically feasible approach to combat micronutrient malnutrition. HarvestPlus group realized the importance of millet biofortification and released conventionally bred high iron pearl millet in India to tackle iron deficiency. Molecular basis of waxy starch has been identified in foxtail millet, proso millet, and barnyard millet to facilitate their use in infant foods. With close genetic-relatedness to cereals, comparative genomics has helped in deciphering quantitative trait loci and genes linked to protein quality in finger millet. Recently, transgenic expression of zinc transporters resulted in the development of high grain zinc while transcriptomics revealed various calcium sensor genes involved in uptake, translocation, and accumulation of calcium in finger millet. Biofortification in millets is still limited by the presence of antinutrients like phytic acid, polyphenols, and tannins. RNA interference and genome editing tools [zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)] needs to be employed to reduce these antinutrients. In this review paper, we discuss the strategies to accelerate biofortification in millets by summarizing the opportunities and challenges to increase the bioavailability of macro and micronutrients.

  9. Review of Finger millet (Eleusine coracana (L. Gaertn: A power house of health benefiting nutrients

    Directory of Open Access Journals (Sweden)

    Dinesh Chandra

    2016-09-01

    Full Text Available The bulk of the world's millet crop is produced by India, Nigeria, Niger, Mali, Burkina Faso, Chad, and China. Finger millet (Eleusine coracana (L. Gaertn, little millet (Panicum sumatrense Roth ex Roem. & Schult., foxtail millet (Setaria italica (L. P. Beauvois and proso millet (Panicum miliaceum L. are most commonly found species among various millet varieties. In India, finger millet occupy the largest area under cultivation among the small millets. Finger millet stands unique among the cereals such as barley, rye and oats with higher nutritional contents and has outstanding properties as a subsistence food crop. It is rich in calcium (0.34%, dietary fiber (18%, phytates (0.48%, protein (6%–13% minerals (2.5%–3.5%, and phenolics (0.3%–3%. Moreover, it is also a rich source of thiamine, riboflavin, iron, methionine, isoleucine, leucine, phenylalanine and other essential amino acids. The abundance of these phytochemicals enhances the nutraceutical potential of finger millet, making it a powerhouse of health benefiting nutrients. It has distinguished health beneficial properties, such as anti-diabetic (type 2 diabetes mellitus, anti-diarrheal, antiulcer, anti-inflammatory, antitumerogenic (K562 chronic myeloid leukemia, atherosclerogenic effects, antimicrobial and antioxidant properties.

  10. Assessment of Important Sensory Attributes of Millet Based Snacks and Biscuits.

    Science.gov (United States)

    McSweeney, Matthew B; Duizer, Lisa M; Seetharaman, Koushik; Dan Ramdath, D

    2016-05-01

    There is an increasing push by consumers for new food products that can provide health benefits. To develop these products, sometimes it is necessary to look to alternative crops, 1 of which is millet. For millet to be successfully adopted by consumers, it is necessary to identify and develop product types that are acceptable to North Americans. Biscuits and extruded snacks were produced using varying amounts of refined proso millet flour (0%, 25%, 75%, and 100%). Sensory analysis was conducted on 8 products (4 types of biscuits and 4 types of extruded snack) in 2 separate tests (1 for biscuits and 1 for snacks). Preferred Attribute Elicitation (PAE), a relatively new sensory method, was used to determine attributes affecting liking of the products. Results indicated that as the amount of millet in the biscuits and extruded snacks increased, the liking of the flavor, texture and overall liking decreased. Millet contributed to a bitter taste and bitter aftertaste, and resulted in gritty and dry food products. Further work is required to refine the products tested as well as to identify further products that can be added to the diet in order to take advantage of the health benefits that millet provides. © 2016 Institute of Food Technologists®

  11. Hydroxycinnamic acid bound arabinoxylans from millet brans-structural features and antioxidant activity.

    Science.gov (United States)

    Bijalwan, Vandana; Ali, Usman; Kesarwani, Atul Kumar; Yadav, Kamalendra; Mazumder, Koushik

    2016-07-01

    Hydroxycinnamic acid bound arabinoxylans (HCA-AXs) were extracted from brans of five Indian millet varieties and response surface methodology was used to optimize the extraction conditions. The optimal condition to obtain highest yield of millet HCA-AXs was determined as follows: time 61min, temperature 66°C, ratio of solvent to sample 12ml/g. Linkage analysis indicated that hydroxycinnamic acid bound arabinoxylan from kodo millet (KM-HCA-AX) contained comparatively low branched arabinoxylan consisting of 14.6% mono-substituted, 1.2% di-substituted and 41.2% un-substituted Xylp residues. The HPLC analysis of millet HCA-AXs showed significant variation in the content of three major bound hydroxycinnamic acids (caffeic, p-coumaric and ferulic acid). The antioxidant activity of millet HCA-AXs were evaluated using three in vitro assay methods (DPPH, FRAP and β-carotene linoleate emulsion assays) which suggested both phenolic acid composition and structural characteristics of arabinoxylans could be correlated to their antioxidant potential, the detailed structural analysis revealed that low substituted KM-HCA-AX exhibited relatively higher antioxidant activity compared to other medium and highly substituted HCA-AXs from finger (FM), proso (PM), barnyard (BM) and foxtail (FOXM) millet. Copyright © 2016. Published by Elsevier B.V.

  12. Importance of seed-borne fungi of sorghum and pearl millet in Burkina Faso and their control using plant extracts

    DEFF Research Database (Denmark)

    Zida, Elisabeth Pawindé; Sérémé, Paco; Leth, Vibeke

    2008-01-01

    recorded on each crop by the blotter test. Six essential oils of plants were investigated for their inhibitory activity against eight pathogenic fungi. Thirty four and 27 fungal species were found in seed samples of sorghum and pearl millet, respectively. Phoma sp. and Fusarium moniliforme infected 95...... of pearl millet, respectively. Seeds inoculated with Acremonium strictum, Curvularia oryzae, F. equiseti, F. moniliforme and F. subglutinans and sown in sterilized soil, showed considerable mortality of the seedlings. Three essential oils inhibited in vitro the mycelial growth of all the fungi used by 85......Seed-borne fungi of sorghum and pearl millet in Burkina Faso were surveyed. A total of 188 seed samples from various locations, collected in 1989 (42) and 2002 (146), were tested, using the blotter, dry inspection and washing methods. Infection experiments were carried out with the major fungi...

  13. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution.

    Science.gov (United States)

    Goron, Travis L; Raizada, Manish N

    2015-01-01

    Small millets are nutrient-rich food sources traditionally grown and consumed by subsistence farmers in Asia and Africa. They include finger millet (Eleusine coracana), foxtail millet (Setaria italica), kodo millet (Paspalum scrobiculatum), proso millet (Panicum miliaceum), barnyard millet (Echinochloa spp.), and little millet (Panicum sumatrense). Local farmers value the small millets for their nutritional and health benefits, tolerance to extreme stress including drought, and ability to grow under low nutrient input conditions, ideal in an era of climate change and steadily depleting natural resources. Little scientific attention has been paid to these crops, hence they have been termed "orphan cereals." Despite this challenge, an advantageous quality of the small millets is that they continue to be grown in remote regions of the world which has preserved their biodiversity, providing breeders with unique alleles for crop improvement. The purpose of this review, first, is to highlight the diverse traits of each small millet species that are valued by farmers and consumers which hold potential for selection, improvement or mechanistic study. For each species, the germplasm, genetic and genomic resources available will then be described as potential tools to exploit this biodiversity. The review will conclude with noting current trends and gaps in the literature and make recommendations on how to better preserve and utilize diversity within these species to accelerate a New Green Revolution for subsistence farmers in Asia and Africa.

  14. Rice and foxtail millet cultivation reconstructed from weed seed assemblages in the Chengtoushan site, central China

    International Nuclear Information System (INIS)

    Nasu, H.; Yasuda, Y.; Momohara, A.; Jiejun, H.

    2005-01-01

    Full text: Crop weeds have been successfully used for evaluation of farming practices in archaeological sites and reconstruction of the environmental condition. In rice agricultural sites in East Asia, however, a few studies of crop remains have been attempted. We evaluated the crop husbandry based on plant macrofossils including crop grains and weed seeds in the Chengtoushan site, Hunan Province, central China, which is one of the oldest rice agricultural site around the Yangtze River Basin. In the moat surrounding the site that is located on a loess plateau that juts out into the alluvial plain, we recognized three cultural layers during the Daxi Culture. Plant macrofossils in silty clay deposits in the moat consist of abundant rice and foxtail millet grains with many weed seeds. Radiocarbon age of these fossils shows that rice and foxtail millet cultivation dated back to 6400 cal. years B.P. The weed seed composition characterizes farmland and ruderal environments in the site surrounded by the moat. We assumed foxtail millet and rice cultivation practiced within the site on loess plateau, along with a paddy style rice cultivation in the alluvial lowland outside of the site. (author)

  15. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution

    Directory of Open Access Journals (Sweden)

    Travis Luc Goron

    2015-03-01

    Full Text Available Small millets are nutrient-rich food sources traditionally grown and consumed by subsistence farmers in Asia and Africa. They include finger millet (Eleusine coracana, foxtail millet (Setaria italica, kodo millet (Paspalum scrobiculatum, proso millet (Panicum miliaceum, barnyard millet (Echinochloa spp., and little millet (Panicum sumatrense. Local farmers value the small millets for their nutritional and health, tolerance to extreme stress including drought, and ability to grow under low nutrient input conditions, ideal in an era of climate change and steadily depleting natural resources. Little scientific attention has been paid to these crops, hence they have been termed orphan cereals. Despite this challenge, an advantageous quality of the small millets is that they continue to be grown in remote regions of the world which has preserved their biodiversity, providing breeders with unique alleles for crop improvement. The purpose of this review, first, is to highlight the diverse traits of each small millet species that are valued by farmers and consumers (e.g. nutritional quality which hold potential for selection, improvement or mechanistic study. For each species, the germplasm, genetic and genomic resources available will then be described as potential tools to exploit this biodiversity. The review will conclude with noting current trends and gaps in the literature and make recommendations on how to better preserve and utilize diversity within these species to accelerate a New Green Revolution for subsistence farmers in Asia and Africa.

  16. Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.).

    Science.gov (United States)

    Verma, S K; White, J F

    2018-03-01

    This study was conducted to investigate indigenous seed endophyte effects on browntop millet seedling development. We report that seed-inhabiting bacterial endophytes are responsible for promoting seedling development, including stimulation of root hair formation, increasing root and shoot length growth and increasing photosynthetic pigment content of seedlings. Bacterial endophytes also improved resistance of seedlings to disease. A total of four endophytic bacteria were isolated from surface-sterilized seeds and identified by 16S rDNA sequencing as Curtobacterium sp. (M1), Microbacterium sp. (M2), Methylobacterium sp. (M3) and Bacillus amyloliquefaciens (M4). Removal of bacteria with streptomycin treatment from the seeds compromised seedling growth and development. When endophytes were reinoculated onto seeds, seedlings recovered normal development. Strains M3 and M4 were found to be most potent in promoting growth of seedlings. Bacteria were found to produce auxin, solubilize phosphate and inhibit fungal pathogens. Significant protection of seedlings from Fusarium infection was found using strain M4 in microcosm assays. The antifungal lipopeptide genes for surfactin and iturin were detected in M4; culture extracts of M4 showed a positive drop collapse result for surfactins. This study demonstrates that browntop millet seeds vector indigenous endophytes that are responsible for modulation of seedling development and protection of seedlings from fungal disease. This study is significant and original in that it is the first report of seed-inhabiting endophytes of browntop millet that influence seedling development and function in defence against soilborne pathogens. This study suggests that conservation and management of seed-vectored endophytes may be important in development of more sustainable agricultural practices. © 2017 The Society for Applied Microbiology.

  17. Millet seeds mixed with phosphate fertilizers Sementes de milheto misturadas com fertilizantes fosfatados

    Directory of Open Access Journals (Sweden)

    Rogério Peres Soratto

    2003-01-01

    Full Text Available The small size of millet seeds is the main cause for lack of uniformity at sowing, especially because most farmers do not have appropriate seeders. Mixing seeds and phosphate fertilizers would improve seeding, resulting in a better crop stand. To study the effects of such mixture on the physiological quality of seeds, millet seeds were mixed with single superphosphate or triple superphosphate (1 kg of seeds: 2.5 kg of fertilizer, and stored in plastic bags for 0, 6, 12, 24, 48, 72, 96 and 120 hours before sowing, under laboratory conditions. After storage, seeds were separated and their moisture and electrical conductivity were determined. Seeds were then submitted to germination test under laboratory conditions. Seeds mixed with fertilizer and non-mixed seeds, utilized as a control, were sown under greenhouse conditions and the percentage of emergence and seedling emergence speed were determined. Because of acidic residues, the single and triple superphosphates negatively affected the germination and vigor of millet seeds proportionally to the increase in time of contact with the fertilizer.O tamanho reduzido das sementes de milheto dificulta sua semeadura uniforme, principalmente para os produtores que não possuem semeadoras apropriadas. Assim, a mistura das sementes com os fertilizantes fosfatados vem sendo utilizada para facilitar a semeadura. Entretanto, o período de contato pode provocar prejuízos na germinação e no vigor. Avaliou-se a qualidade fisiológica das sementes de milheto submetidas a diferentes períodos de contato (0, 6, 12, 24, 48, 72, 96 e 120h com os fertilizantes superfosfato simples (SFS e superfosfato triplo (SFT, em um experimento em delineamento inteiramente casualizado em esquema fatorial 8x2 (n=4. Os atributos químicos e físicos dos fertilizantes foram previamente determinados. Foi utilizada a proporção de 1 kg de sementes para 2,5 kg de fertilizante. Após manutenção da mistura em saco plástico no laborat

  18. Effect of Ethanol on Germination and Enzyme Activities in Finger millet (Eleusine coracana Gaertn. Seeds

    Directory of Open Access Journals (Sweden)

    S.S. Kulkarni

    2014-08-01

    Full Text Available Influence of ethanol the end product of alcoholic fermentation on the growth of finger millet (var. GPU-28, CO-9 seedlings of two finger millet was studied as a means of evaluating growth responses under anoxia. The germination was delayed by ethanol treatment in case of both the cultivars. Ethanol treatment affected the growth of both radicle and coleoptile of seedlings. In this respect the radicle growth is more sensitive to ethanol than the coleoptile in both varieties of finger millet. The activities of enzymes nitrate reductase, ATPase, acid phosphatase, amylase were reduced by alcohol treatment in germinating seeds of both the cultivars. However, lower concentration of alcohol (1% caused stimulation of peroxidase in var. CO-9. In case of var. GPU-28 showed stimulation of enzyme alkaline phosphatase in both concentration of alcohol.

  19. Stable expression of mtlD gene imparts multiple stress tolerance in finger millet.

    Directory of Open Access Journals (Sweden)

    Ramanna Hema

    Full Text Available Finger millet is susceptible to abiotic stresses, especially drought and salinity stress, in the field during seed germination and early stages of seedling development. Therefore developing stress tolerant finger millet plants combating drought, salinity and associated oxidative stress in these two growth stages is important. Cellular protection through osmotic adjustment and efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms in plants. Mannitol, an osmolyte, is known to scavenge hydroxyl radicals generated during various abiotic stresses and thereby minimize stress damage in several plant species. In this study transgenic finger millet plants expressing the mannitol biosynthetic pathway gene from bacteria, mannitol-1-phosphate dehydrogenase (mtlD, were developed through Agrobacterium tumefaciens-mediated genetic transformation. mtlD gene integration in the putative transgenic plants was confirmed by Southern blot. Further, performance of transgenic finger millet under drought, salinity and oxidative stress was studied at plant level in T1 generation and in T1 and T2 generation seedlings. Results from these experiments showed that transgenic finger millet had better growth under drought and salinity stress compared to wild-type. At plant level, transgenic plants showed better osmotic adjustment and chlorophyll retention under drought stress compared to the wild-type. However, the overall increase in stress tolerance of transgenics for the three stresses, especially for oxidative stress, was only marginal compared to other mtlD gene expressing plant species reported in the literature. Moreover, the Agrobacterium-mediated genetic transformation protocol developed for finger millet in this study can be used to introduce diverse traits of agronomic importance in finger millet.

  20. Stable expression of mtlD gene imparts multiple stress tolerance in finger millet.

    Science.gov (United States)

    Hema, Ramanna; Vemanna, Ramu S; Sreeramulu, Shivakumar; Reddy, Chandrasekhara P; Senthil-Kumar, Muthappa; Udayakumar, Makarla

    2014-01-01

    Finger millet is susceptible to abiotic stresses, especially drought and salinity stress, in the field during seed germination and early stages of seedling development. Therefore developing stress tolerant finger millet plants combating drought, salinity and associated oxidative stress in these two growth stages is important. Cellular protection through osmotic adjustment and efficient free radical scavenging ability during abiotic stress are important components of stress tolerance mechanisms in plants. Mannitol, an osmolyte, is known to scavenge hydroxyl radicals generated during various abiotic stresses and thereby minimize stress damage in several plant species. In this study transgenic finger millet plants expressing the mannitol biosynthetic pathway gene from bacteria, mannitol-1-phosphate dehydrogenase (mtlD), were developed through Agrobacterium tumefaciens-mediated genetic transformation. mtlD gene integration in the putative transgenic plants was confirmed by Southern blot. Further, performance of transgenic finger millet under drought, salinity and oxidative stress was studied at plant level in T1 generation and in T1 and T2 generation seedlings. Results from these experiments showed that transgenic finger millet had better growth under drought and salinity stress compared to wild-type. At plant level, transgenic plants showed better osmotic adjustment and chlorophyll retention under drought stress compared to the wild-type. However, the overall increase in stress tolerance of transgenics for the three stresses, especially for oxidative stress, was only marginal compared to other mtlD gene expressing plant species reported in the literature. Moreover, the Agrobacterium-mediated genetic transformation protocol developed for finger millet in this study can be used to introduce diverse traits of agronomic importance in finger millet.

  1. Amelioration of hyperglycaemia and its associated complications by finger millet ( Eleusine coracana L.) seed coat matter in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Shobana, Shanmugam; Harsha, Mysore R; Platel, Kalpana; Srinivasan, Krishnapura; Malleshi, Nagappa G

    2010-12-01

    Finger millet (Eleusine coracana) is extensively cultivated and consumed in India and Africa. The millet seed coat is a rich source of dietary fibre and phenolic compounds. The effect of feeding a diet containing 20% finger millet seed coat matter (SCM) was examined in streptozotocin-induced diabetic rats. Diabetic rats maintained on the millet SCM diet (diabetic experimental (DE) group) for 6 weeks exhibited a lesser degree of fasting hyperglycaemia and partial reversal of abnormalities in serum albumin, urea and creatinine compared with the diabetic control (DC) group. The DE group of rats excreted comparatively lesser amounts of glucose, protein, urea and creatinine and was accompanied by improved body weights compared with their corresponding controls. Hypercholesterolaemia and hypertriacylglycerolaemia associated with diabetes were also notably reversed in the DE group. Slit lamp examination of the eye lens revealed an immature subcapsular cataract with mild lenticular opacity in the DE group of rats compared to the mature cataract with significant lenticular opacity and corneal vascularisation in the DC group. Lower activity of lens aldose reductase, serum advanced glycation end products and blood glycosylated Hb levels were observed in the DE group. The millet SCM feeding showed pronounced ameliorating effects on kidney pathology as reflected by near normal glomerular and tubular structures and lower glomerular filtration rate compared with the shrunken glomerulus, tubular vacuolations in the DC group. Thus, the present animal study evidenced the hypoglycaemic, hypocholesterolaemic, nephroprotective and anti-cataractogenic properties of finger millet SCM, suggesting its utility as a functional ingredient in diets for diabetics.

  2. Evaluation of nutraceutical and antinutritional properties in barnyard and finger millet varieties grown in Himalayan region.

    Science.gov (United States)

    Panwar, Priyankar; Dubey, Ashutosh; Verma, A K

    2016-06-01

    Five elite varieties of barnyard (Echinochloa frumentacea) and finger (Eleusine coracana) growing at northwestern Himalaya were investigated for nutraceutical and antinutritional properties. Barnyard millet contained higher amount of crude fiber, total dietary fiber, tryptophan content, total carotenoids, α-tocopherol compared to the finger millet whereas the finger millet contains higher amount of methionine and ascorbic acid as compared to the barnyard millet. The secondary metabolites of biological functions were analyzed and found that barnyard millet contained the higher amount of polyphenols, tannins and ortho-dihydroxy phenol content compared to finger millet. Among antinutitional compounds barnyard millet contained lower phytic acid content compare to finger millet whereas no significant difference in trypsin inhibition activity of barnyard millet and finger millet varieties were found. Barnyard millet contained higher acid phosphatase, α-galactosidase and α-amylase inhibitor activity compared to finger millet. Finger millet seeds contained about 10-13 folds higher calcium content and double amount of manganese content in comparison to barnyard millet seeds. Present study suggests that barnyard millet varieties studied under present investigation were found nutritionally superior compared to finger millet varieties.

  3. Uptake, translocation, distribution and persistence of 14C-metalaxyl in pearl millet (Pennisetum americanum [L.] Leeke)

    International Nuclear Information System (INIS)

    Singh, U.S.; Tripathi, R.K.; Kumar, J.; Dwivedi, T.S.

    1986-01-01

    Time course absorption and desorption of metalaxyl by seeds of pearl millet was analysed by following chemical kinetics equations. Uptake of metalaxyl through roots, leaves and seed, its translocation and distribution in different plant parts and persistence following seed application were studied in pearl millet using 14 C-metalaxyl. Both uptake and efflux of metalaxyl by pearl millet seeds were complex and compartmentalized. Distribution inside the seed was not uniform. A major part of applied fungicide remained within the treated plant part, particularly after seed and foliar applications. Metalaxyl was ambimobile inside the plant and was found to get accumulated at apex and margins of leaf blade. No metalaxyl could be detected in grains harvested from plants grown from metalaxyl treated seeds. (orig.) [de

  4. Loose Panicle1 encoding a novel WRKY transcription factor, regulates panicle development, stem elongation, and seed size in foxtail millet [Setaria italica (L. P. Beauv.].

    Directory of Open Access Journals (Sweden)

    Jishan Xiang

    Full Text Available Panicle development is an important agronomic trait that aids in determining crop productivity. Foxtail millet and its wild ancestor green foxtail have recently been used as model systems to dissect gene functions. Here, we characterized a recessive mutant of foxtail millet, loose-panicle 1 (lp1, which showed pleiotropic phenotypes, such as a lax primary branching pattern, aberrant branch morphology, semi-dwarfism, and enlarged seed size. The loose panicle phenotype was attributed to increased panicle lengths and decreased primary branch numbers. Map-based cloning, combined with high-throughput sequencing, revealed that LP1, which encodes a novel WRKY transcription factor, is responsible for the mutant phenotype. A phylogenetic analysis revealed that LP1 belongs to the Group I WRKY subfamily, which possesses two WRKY domains (WRKY I and II. A single G-to-A transition in the fifth intron of LP1 resulted in three disorganized splicing events in mutant plants. For each of these aberrant splice variants, the normal C2H2 motif in the WRKY II domain was completely disrupted, resulting in a loss-of-function mutation. LP1 mRNA was expressed in all of the tissues examined, with higher expression levels observed in inflorescences, roots, and seeds at the grain-filling stage. A subcellular localization analysis showed that LP1 predominantly accumulated in the nucleus, which confirmed its role as a transcriptional regulator. This study provides novel insights into the roles of WRKY proteins in regulating reproductive organ development in plants and may help to develop molecular markers associated with crop yields.

  5. Loose Panicle1 encoding a novel WRKY transcription factor, regulates panicle development, stem elongation, and seed size in foxtail millet [Setaria italica (L.) P. Beauv.].

    Science.gov (United States)

    Xiang, Jishan; Tang, Sha; Zhi, Hui; Jia, Guanqing; Wang, Huajun; Diao, Xianmin

    2017-01-01

    Panicle development is an important agronomic trait that aids in determining crop productivity. Foxtail millet and its wild ancestor green foxtail have recently been used as model systems to dissect gene functions. Here, we characterized a recessive mutant of foxtail millet, loose-panicle 1 (lp1), which showed pleiotropic phenotypes, such as a lax primary branching pattern, aberrant branch morphology, semi-dwarfism, and enlarged seed size. The loose panicle phenotype was attributed to increased panicle lengths and decreased primary branch numbers. Map-based cloning, combined with high-throughput sequencing, revealed that LP1, which encodes a novel WRKY transcription factor, is responsible for the mutant phenotype. A phylogenetic analysis revealed that LP1 belongs to the Group I WRKY subfamily, which possesses two WRKY domains (WRKY I and II). A single G-to-A transition in the fifth intron of LP1 resulted in three disorganized splicing events in mutant plants. For each of these aberrant splice variants, the normal C2H2 motif in the WRKY II domain was completely disrupted, resulting in a loss-of-function mutation. LP1 mRNA was expressed in all of the tissues examined, with higher expression levels observed in inflorescences, roots, and seeds at the grain-filling stage. A subcellular localization analysis showed that LP1 predominantly accumulated in the nucleus, which confirmed its role as a transcriptional regulator. This study provides novel insights into the roles of WRKY proteins in regulating reproductive organ development in plants and may help to develop molecular markers associated with crop yields.

  6. Population Structure and Diversity in Finger Millet (Eleusine coracana) Germplasm.

    Science.gov (United States)

    A genotypic analysis of 79 finger millet accessions (E. coracana subsp. coracana) from 11 African and 5 Asian countries, plus 14 wild E. coracana subsp. africana lines collected in Uganda and Kenya was conducted with 45 SSR markers distributed across the finger millet genome. Phylogenetic and popula...

  7. TRANSPARENT TESTA GLABRA 1 ubiquitously regulates plant growth and development from Arabidopsis to foxtail millet (Setaria italica).

    Science.gov (United States)

    Liu, Kaige; Qi, Shuanghui; Li, Dong; Jin, Changyu; Gao, Chenhao; Duan, Shaowei; Feng, Baili; Chen, Mingxun

    2017-01-01

    TRANSPARENT TESTA GLABRA 1 of Arabidopsis thaliana (AtTTG1) is a WD40 repeat transcription factor that plays multiple roles in plant growth and development, particularly in seed metabolite production. In the present study, to determine whether SiTTG1 of the phylogenetically distant monocot foxtail millet (Setaria italica) has similar functions, we used transgenic Arabidopsis and Nicotiana systems to explore its activities. We found that SiTTG1 functions as a transcription factor. Overexpression of the SiTTG1 gene rescued many of the mutant phenotypes in Arabidopsis ttg1-13 plants. Additionally, SiTTG1 overexpression fully corrected the reduced expression of mucilage biosynthetic genes, and the induced expression of genes involved in accumulation of seed fatty acids and storage proteins in developing seeds of ttg1-13 plants. Ectopic expression of SiTTG1 restored the sensitivity of the ttg1-13 mutant to salinity and high glucose stresses during germination and seedling establishment, and restored altered expression levels of some stress-responsive genes in ttg1-13 seedlings to the wild type level under salinity and glucose stresses. Our results provide information that will be valuable for understanding the function of TTG1 from monocot to dicot species and identifying a promising target for genetic manipulation of foxtail millet to improve the amount of seed metabolites. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Characterization of Barnyard Millet Starch Films Containing Borage Seed Oil

    Directory of Open Access Journals (Sweden)

    Thi Luyen Cao

    2017-11-01

    Full Text Available In this study, barnyard millet starch (BMS was used to prepare edible films. Antioxidant activity was conferred to the BMS film by incorporating borage seed oil (BO. The physical, optical, and thermal properties as well as antioxidant activities of the films were evaluated. The incorporation of BO into the BMS films decreased the tensile strength from 9.46 to 4.69 MPa and increased the elongation at break of the films from 82.49% to 103.87%. Water vapor permeability, water solubility, and moisture content of the BMS films decreased with increasing BO concentration, whereas Hunter b value and opacity increased, L and a values of the films decreased. The BMS films containing BO exhibited antioxidant activity that increased proportionally with increased BO concentration. In particular, the BMS film with 1.0% BO exhibited the highest antioxidant activity and light barrier properties among the BMS films. Therefore, the BMS films with added BO can be used as an antioxidant packaging material.

  9. Evaluation of ecophysiological characteristics of intercropping of millet (Panicum miliaceum L. and cowpea (Vigna unguiculata L.

    Directory of Open Access Journals (Sweden)

    A. Ghanbari

    2016-04-01

    Full Text Available In order to evaluate millet (Panicum miliaceum L. and cowpea (Vigna unguiculata L. intercropping, an experiment was conducted during 2008-2009 at Agriculture Research Center of Zabol University, Iran. The experiment was as randomized complete block design with three replications. Treatment s consisted of sole crop of millet, sole crop of cowpea, 25% millet + 100% cowpea, 50% millet + 50% cowpea, 75% millet + 100% cowpea and 100% millet + 100% cowpea. The results showed that intercropping treatments had significant effect (P < 1% on millet and bean seed yield, LER, dry matter of weeds, PAR, temperature and (P < 5% on soil moisture content. The highest seed yield of millet and cowpea obtained from treatments of sole crops. The LER for most intercrops was greater than one which indicated that intercropping had advantage over sole crop. For weeds management and control the results indicated that weed suppressing effects in intercropping treatments is better than sole crops treatment, so that the lowest dry matter of weeds obtained from 100% millet + 100% cowpea treatment. PAR in all of stages showed that the highest PAR interception obtained from intercropping treatments specially 100% millet + 100% cowpea treatment. In addition to the lowest of soil moisture content and temperature obtained from this treatment.

  10. Genetic structure of landraces in foxtail millet (Setaria italica (L.) P. Beauv.) revealed with transposon display and interpretation to crop evolution of foxtail millet.

    Science.gov (United States)

    Hirano, Ryoko; Naito, Ken; Fukunaga, Kenji; Watanabe, Kazuo N; Ohsawa, Ryo; Kawase, Makoto

    2011-06-01

    Although the origin and domestication process of foxtail millet (Setaria italica subsp. italica (L.) P. Beauv.) has been studied by several groups, the issue is still ambiguous. It is essential to resolve this issue by studying a large number of accessions with sufficient markers covering the entire genome. Genetic structures were analyzed by transposon display (TD) using 425 accessions of foxtail millet and 12 of the wild ancestor green foxtail (Setaria italica subsp. viridis (L.) P. Beauv.). We used three recently active transposons (TSI-1, TSI-7, and TSI-10) as genome-wide markers and succeeded in demonstrating geographical structures of the foxtail millet. A neighbor-joining dendrogram based on TD grouped the foxtail millet accessions into eight major clusters, each of which consisted of accessions collected from adjacent geographical areas. Eleven out of 12 green foxtail accessions were grouped separately from the clusters of foxtail millet. These results indicated strong regional differentiations and a long history of cultivation in each region. Furthermore, we discuss the relationship between foxtail millet and green foxtail and suggest a monophyletic origin of foxtail millet domestication.

  11. SURVEY OF WILD PLANT SEEDS AND THEIR VALUE IN ...

    African Journals Online (AJOL)

    disease, asthma, dysentery and piles. Seeds from tree species accounted for 23 ... SURVEY OF WILD PLANT SEEDS AND THEIR VALUE IN TRADITONAL HERBAL MEDICINE IN OSUN STATE, NIGERIA. INTRODUCTION. Seeds are fertilized ..... dynamics and regeneration of a logged over secondary regrowth forest.Ph.D.

  12. Equilíbrio higroscópico de milheto, alpiste e painço: obtenção e modelagem Modeling and obtaining equilibrium moisture content of millet, canary seed and pearl millet

    Directory of Open Access Journals (Sweden)

    Paulo C. Corrêa

    2006-03-01

    Full Text Available Para oferecer informações sobre o equilíbrio higroscópico de milheto (Piptatherum miliaceum, alpiste (Phalaris canariensis L. e painço (Setaria italica, desenvolveu-se este trabalho com o fim de determinar as isotermas de sorção para diferentes níveis de temperatura do ar (20 e 60 ºC e de atividade de água do produto (0,20 a 0,80. A temperatura e a umidade relativa do ar foram controladas por meio de uma unidade condicionadora de ar, modelo Aminco-Aire 150/300 CFM, com fluxo de ar aproximadamente constante de 10 m³ min-1 m-2. Os resultados foram avaliados ajustando-se os seguintes modelos matemáticos: Chung-Pfost, Oswin, Smith e Henderson-Modificado. Com base nos resultados obtidos, concluiu-se que a equação proposta por Oswin foi, com seus parâmetros estimados, a que melhor representou os dados experimentais para o milheto, enquanto o modelo de Chung-Pfost o foi para alpiste e painço, quando comparado com os resultados das demais equações avaliadas.To provide information on the equilibrium moisture content of millet (Piptatherum miliaceum, canary-seed (Phalaris canariensis L. and pearl millet (Setaria italica, this study was conducted with the objective of determining the sorption isotherms for different levels of air temperature (20 and 60 ºC and of water activity of the product (0.20 to 0.80. The temperature and the relative humidity of the air (water activity were controlled through a conditioning unit of air Aminco-Aire 150/300 CFM, with an air flow approximately constant at 10 m³ min-1 m-2. The results were evaluated by adjusting to the following mathematical models: Chung-Pfost, Oswin, Smith and Henderson-modified. The results obtained in this work allowed to conclude that the equation proposed by Oswin, with their estimated parameters, was the best to represent the experimental data of millet, while for the experimental data of canary-seed and pearl millet, the Chung-Pfost model was found to be better, when compared

  13. Seed coating with a neonicotinoid insecticide negatively affects wild bees.

    Science.gov (United States)

    Rundlöf, Maj; Andersson, Georg K S; Bommarco, Riccardo; Fries, Ingemar; Hederström, Veronica; Herbertsson, Lina; Jonsson, Ove; Klatt, Björn K; Pedersen, Thorsten R; Yourstone, Johanna; Smith, Henrik G

    2015-05-07

    Understanding the effects of neonicotinoid insecticides on bees is vital because of reported declines in bee diversity and distribution and the crucial role bees have as pollinators in ecosystems and agriculture. Neonicotinoids are suspected to pose an unacceptable risk to bees, partly because of their systemic uptake in plants, and the European Union has therefore introduced a moratorium on three neonicotinoids as seed coatings in flowering crops that attract bees. The moratorium has been criticized for being based on weak evidence, particularly because effects have mostly been measured on bees that have been artificially fed neonicotinoids. Thus, the key question is how neonicotinoids influence bees, and wild bees in particular, in real-world agricultural landscapes. Here we show that a commonly used insecticide seed coating in a flowering crop can have serious consequences for wild bees. In a study with replicated and matched landscapes, we found that seed coating with Elado, an insecticide containing a combination of the neonicotinoid clothianidin and the non-systemic pyrethroid β-cyfluthrin, applied to oilseed rape seeds, reduced wild bee density, solitary bee nesting, and bumblebee colony growth and reproduction under field conditions. Hence, such insecticidal use can pose a substantial risk to wild bees in agricultural landscapes, and the contribution of pesticides to the global decline of wild bees may have been underestimated. The lack of a significant response in honeybee colonies suggests that reported pesticide effects on honeybees cannot always be extrapolated to wild bees.

  14. Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies.

    Science.gov (United States)

    Gimode, Davis; Odeny, Damaris A; de Villiers, Etienne P; Wanyonyi, Solomon; Dida, Mathews M; Mneney, Emmarold E; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M

    2016-01-01

    Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional

  15. Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies.

    Directory of Open Access Journals (Sweden)

    Davis Gimode

    Full Text Available Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS technologies to develop both Simple Sequence Repeat (SSR and Single Nucleotide Polymorphism (SNP markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included

  16. Small millet farmers increase yields through participatory varietal

    International Development Research Centre (IDRC) Digital Library (Canada)

    When farmers adopt a variety along with ones they already ... Increased access to quality seed of promising ... Figure 1: Potential increases in yield of small millet preferred varieties. 0. 200 ... terms of both product (farmers preferred varieties ...

  17. Proteomics of Arabidopsis Seed Germination : a Comparative Study of Wild-Type and Gibberellin-Deficient Seeds

    NARCIS (Netherlands)

    Gallardo, K.; Job, C.; Groot, S.P.C.; Puype, M.; Vandekerckhove, J.; Job, D.

    2002-01-01

    We examined the role of gibberellins (GAs) in germination of Arabidopsis seeds by a proteomic approach. For that purpose, we used two systems. The first system consisted of seeds of the GA-deficient ga1 mutant, and the second corresponded to wild-type seeds incubated in paclobutrazol, a specific GA

  18. Productivity of seed agrocenosis of common millet (Panicum miliaceum L. at varying so­ ing w terms and techniques under the conditions of Right- Bank Forest-Steppe

    Directory of Open Access Journals (Sweden)

    С. П. Полторецький

    2013-08-01

    Full Text Available The objective of the research is to improve the techno­logy of growing high-quality seeds of millet broomcorn by means of the optimization of sowing terms and methods, aimed at increasing its productivity and improving seed qualities under conditions of unstable moistening of the Right-Bank Forest-Steppe of Ukraine. Scientific literature review indicates the study of the influence of these technology elements on the formation of sowing qualities and crop capacity of millet seeds has been of schematic and occasional nature. The issue has not been studied in this region condition at all, that is why the research has considerable significance and novelty. Analysis, observations and calculations were done by means of conventional methods. Research results indicate that under conditions of unstable moistening of the southern part of the Right-Bank Forest-Steppe of Ukraine the highest yield of Slobozhanske and Lana varieties was reached at sowing in drills – 39.2 and 41.0 metric centners per hectare, respectively. That was 2.4 and 3.9 metric centners per hectare increase against the wide-row sowing. In the years with optimal hydrothermal conditions maximum seed productivity of millet broomcorn at the level of 4.24 to 4.79 metric tons per hectare (Slobozhanske variety and 4.53 to 5.28 metric tons per hectare (Lana variety was observed at postponing the sowing terms to the third decade of May. If atypical for the region hydrothermal conditions (drought or excessive moistening are forecasted du­ ring the vegetation period of millet, the highest productivity is provided by sowing in the second decade of May. Early sowing in the first decade of May causes decrease in yield at the level of 0.14 to 0.48 metric tons per hectare (Slobozhanske variety and 0.14 to 0.48 metric tons per hectare (Lana variety; if the sowing is postponed to the first decade of June, the yield increases by 0.31 to 0.77 and 0.39 to 0.84 metric tons per hectare, respectively. Early

  19. Gene interaction at seed-awning loci in the genetic background of wild rice.

    Science.gov (United States)

    Ikemoto, Mai; Otsuka, Mitsuharu; Thanh, Pham Thien; Phan, Phuong Dang Thai; Ishikawa, Ryo; Ishii, Takashige

    2017-09-12

    Seed awning is one of the important traits for successful propagation in wild rice. During the domestication of rice by ancient humans, plants with awnless seeds may have been selected because long awns hindered collection and handling activities. To investigate domestication of awnless rice, QTL analysis for seed awning was first carried out using backcross recombinant inbred lines between Oryza sativa Nipponbare (recurrent parent) and O. rufipogon W630 (donor parent). Two strong QTLs were detected in the same regions as known major seed-awning loci, An-1 and RAE2. Subsequent causal mutation surveying and fine mapping confirmed that O. rufipogon W630 has functional alleles at both loci. The gene effects and interactions at these loci were examined using two backcross populations with reciprocal genetic backgrounds of O. sativa Nipponbare and O. rufipogon W630. As awn length in wild rice varied among seeds even in the same plant, awn length was measured based on spikelet position. In the genetic background of cultivated rice, the wild alleles at An-1 and RAE2 had awning effects, and plants having both wild homozygous alleles produced awns whose length was about 70% of those of the wild parent. On the other hand, in the genetic background of wild rice, the substitution of cultivated alleles at An-1 and RAE2 contributed little to awn length reduction. These results indicate that the domestication process of awnless seeds was complicated because many genes are involved in awn formation in wild rice.

  20. Influence of hydrothermal processing on functional properties and grain morphology of finger millet.

    Science.gov (United States)

    Dharmaraj, Usha; Meera, M S; Reddy, S Yella; Malleshi, Nagappa G

    2015-03-01

    Finger millet was hydrothermally processed followed by decortication. Changes in color, diameter, density, sphericity, thermal and textural characteristics and also some of the functional properties of the millet along with the grain morphology of the kernels after hydrothermal processing and decortication were studied. It was observed that, the millet turned dark after hydrothermal processing and color improved over native millet after decortication. A slight decrease in grain diameter was observed but sphericity of the grains increased on decortication. The soft and fragile endosperm turned into a hard texture and grain hardness increased by about 6 fold. Hydrothermal processing increased solubility and swelling power of the millet at ambient temperature. Pasting profile indicated that, peak viscosity decreased significantly on hydrothermal processing and both hydrothermally processed and decorticated millet exhibited zero breakdown viscosity. Enthalpy was negative for hydrothermally processed millet and positive for decorticated grains. Microscopic studies revealed that the orderly structure of endosperm changed to a coherent mass after hydrothermal processing and the different layers of seed coat get fused with the endosperm.

  1. Mechanical response of common millet (Panicum miliaceum) seeds under quasi-static compression: Experiments and modeling.

    Science.gov (United States)

    Hasseldine, Benjamin P J; Gao, Chao; Collins, Joseph M; Jung, Hyun-Do; Jang, Tae-Sik; Song, Juha; Li, Yaning

    2017-09-01

    The common millet (Panicum miliaceum) seedcoat has a fascinating complex microstructure, with jigsaw puzzle-like epidermis cells articulated via wavy intercellular sutures to form a compact layer to protect the kernel inside. However, little research has been conducted on linking the microstructure details with the overall mechanical response of this interesting biological composite. To this end, an integrated experimental-numerical-analytical investigation was conducted to both characterize the microstructure and ascertain the microscale mechanical properties and to test the overall response of kernels and full seeds under macroscale quasi-static compression. Scanning electron microscopy (SEM) was utilized to examine the microstructure of the outer seedcoat and nanoindentation was performed to obtain the material properties of the seedcoat hard phase material. A multiscale computational strategy was applied to link the microstructure to the macroscale response of the seed. First, the effective anisotropic mechanical properties of the seedcoat were obtained from finite element (FE) simulations of a microscale representative volume element (RVE), which were further verified from sophisticated analytical models. Then, macroscale FE models of the individual kernel and full seed were developed. Good agreement between the compression experiments and FE simulations were obtained for both the kernel and the full seed. The results revealed the anisotropic property and the protective function of the seedcoat, and showed that the sutures of the seedcoat play an important role in transmitting and distributing loads in responding to external compression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Millet manuring as a driving force for the Late Neolithic agricultural expansion of north China

    DEFF Research Database (Denmark)

    Wang, Xin; Fuller, Benjamin T.; Zhang, Phengcheng

    2018-01-01

    in Chinese archaeology. Here we present an isotopic dataset for archaeological foxtail millet (Setaria italica) and common millet (Panicum miliaceum) grains as well as associated faunal remains (both domesticated and wild) from seven sites in the Baishui Valley of north China, in order to find direct...

  3. Ecological aspects study of replacement intercropping patterns of Soybean (Glycine max L. and Millet (Panicum miliaceum L.

    Directory of Open Access Journals (Sweden)

    Goudarz Ahmadvand

    2016-03-01

    Full Text Available Intercropping is considered for increasing and stability of yield in per unit. In order to study the effects of soybean (Glycine max L. and millet (Panicum miliaceum L. replacement intercropping on agronomic traits, diversity of weeds and soil biological activity, an experiment was conducted at the Research Station of Agricultural Faculty, of Bu-Ali Sina University, in 2014. The experiment was carried out as a randomized complete block design with three replications. The replacement intercropping series consisted of monoculture of soybean, monoculture of millet, 75% soybean+ 25% millet, 50% soybean+ 50% millet and 25% soybean+ 75% millet. The results showed that the highest seed yield of 219.8 and 171.9 gm-2 belonged to monoculture of soybean and monoculture of millet, respectively. Intercropping reduced maximum leaf area index of soybean and millet but leaf chlorophyll content of soybean and millet were increased. The highest number of pods per plant, number of seeds per plant in soybean and panicle number per plant in millet were obtained in 50S:50M ratio. Mean soil respiration rate in intercropping treatments was 4 and 8 % higher than the monoculture of soybean and millet, respectively. Intercropping patterns of 50S:50M and 25S:75M were successful in reducing weed plant density and diversity in comparison with soybean monoculture. Results showed that in all intercropping treatments, land equivalent ratio was more than one. Maximum value of land equivalent ratio (2.20 was achieved in 50S:50M treatment. Soybean and millet intercropping at different levels of replacement, didn’t have actual yield loss. Calculating the aggressivity showed that millet was more dominate than soybean. The maximum relative crowding coefficient of soybean was observed in 75S:25M, however that of millet was obtained in 25S:75M and 50S:50M intercroppings indicating that millet is more competitor than soybean.

  4. Setaria viridis as a model system to advance millet genetics and genomics

    Directory of Open Access Journals (Sweden)

    Pu Huang

    2016-11-01

    Full Text Available Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crop.

  5. Setaria viridis as a Model System to Advance Millet Genetics and Genomics.

    Science.gov (United States)

    Huang, Pu; Shyu, Christine; Coelho, Carla P; Cao, Yingying; Brutnell, Thomas P

    2016-01-01

    Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail ( Setaria viridis ) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica . These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops.

  6. Setaria viridis as a Model System to Advance Millet Genetics and Genomics

    Science.gov (United States)

    Huang, Pu; Shyu, Christine; Coelho, Carla P.; Cao, Yingying; Brutnell, Thomas P.

    2016-01-01

    Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops. PMID:27965689

  7. Water fluxes in maize, millet and soybean plant-residue mulches used in direct seeding

    International Nuclear Information System (INIS)

    Silva, Fernando Antonio Macena da; Pinto, Hilton Silveira; Scopel, Eric; Corbeels, Marc; Affholder, Francois

    2006-01-01

    The objective of this work was to evaluate the effects of crop residue mulches from maize, millet and soybean on water storage capacity, water evaporation, soil cover, solar radiation interception and surface water run-off as well as to incorporate these effects in a crop growth model. The mulch of millet and maize presented higher capacity for water storage than soybean mulch: 3.26, 3.24 and 2.62 g of water per gram of dry matter, respectively. Water losses from wet mulches were related to the potential evapotranspiration. The soil cover levels were similar among the three types of material. The three types of mulch intercepted similar quantities of photosynthetically active radiation and infrared radiation. The mulch of maize straw was slightly more efficient in intercepting radiation than that from millet or soybean. Mulching with millet residues was efficient in the control of surface water run-off: only 45.5 mm of water (out of 843.5 mm rainfall) was lost through runoff under the no-till system with millet as cover crop, whereas 222.5 mm of water was lost in the conventional system with tillage. Most of the relations derived in this work could be described by exponential models. (author)

  8. Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses.

    Science.gov (United States)

    Lata, Charu; Gupta, Sarika; Prasad, Manoj

    2013-09-01

    Foxtail millet is one of the oldest domesticated diploid C4 Panicoid crops having a comparatively small genome size of approximately 515 Mb, short life cycle, and inbreeding nature. Its two species, Setaria italica (domesticated) and Setaria viridis (wild progenitor), have characteristics that classify them as excellent model systems to examine several aspects of architectural, evolutionary, and physiological importance in Panicoid grasses especially the biofuel crops such as switchgrass and napiergrass. Foxtail millet is a staple crop used extensively for food and fodder in parts of Asia and Africa. In its long history of cultivation, it has been adapted to arid and semi-arid areas of Asia, North Africa, South and North America. Foxtail millet has one of the largest collections of cultivated as well as wild-type germplasm rich with phenotypic variations and hence provides prospects for association mapping and allele-mining of elite and novel variants to be incorporated in crop improvement programs. Most of the foxtail millet accessions can be primarily abiotic stress tolerant particularly to drought and salinity, and therefore exploiting these agronomic traits can enhance its efficacy in marker-aided breeding as well as in genetic engineering for abiotic stress tolerance. In addition, the release of draft genome sequence of foxtail millet would be useful to the researchers worldwide in not only discerning the molecular basis of biomass production in biofuel crops and the methods to improve it, but also for the introgression of beneficial agronomically important characteristics in foxtail millet as well as in related Panicoid bioenergy grasses.

  9. The genetic map of finger millet, Eleusine coracana.

    Science.gov (United States)

    Dida, Mathews M; Srinivasachary; Ramakrishnan, Sujatha; Bennetzen, Jeffrey L; Gale, Mike D; Devos, Katrien M

    2007-01-01

    Restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), expressed-sequenced tag (EST), and simple sequence repeat (SSR) markers were used to generate a genetic map of the tetraploid finger millet (Eleusine coracana subsp. coracana) genome (2n = 4x = 36). Because levels of variation in finger millet are low, the map was generated in an inter-subspecific F(2) population from a cross between E. coracana subsp. coracana cv. Okhale-1 and its wild progenitor E. coracana subsp. africana acc. MD-20. Duplicated loci were used to identify homoeologous groups. Assignment of linkage groups to the A and B genome was done by comparing the hybridization patterns of probes in Okhale-1, MD-20, and Eleusine indica acc. MD-36. E. indica is the A genome donor to E. coracana. The maps span 721 cM on the A genome and 787 cM on the B genome and cover all 18 finger millet chromosomes, at least partially. To facilitate the use of marker-assisted selection in finger millet, a first set of 82 SSR markers was developed. The SSRs were identified in small-insert genomic libraries generated using methylation-sensitive restriction enzymes. Thirty-one of the SSRs were mapped. Application of the maps and markers in hybridization-based breeding programs will expedite the improvement of finger millet.

  10. Effect of Ethanol on Germination and Enzyme Activities in Finger millet (Eleusine coracana Gaertn.) Seeds

    OpenAIRE

    S.S. Kulkarni; P.D. Chavan

    2014-01-01

    Influence of ethanol the end product of alcoholic fermentation on the growth of finger millet (var. GPU-28, CO-9) seedlings of two finger millet was studied as a means of evaluating growth responses under anoxia. The germination was delayed by ethanol treatment in case of both the cultivars. Ethanol treatment affected the growth of both radicle and coleoptile of seedlings. In this respect the radicle growth is more sensitive to ethanol than the coleoptile in both varieties of finger millet. T...

  11. Phenolics in the seed coat of wild soybean (Glycine soja) and their significance for seed hardness and seed germination.

    Science.gov (United States)

    Zhou, San; Sekizaki, Haruo; Yang, Zhihong; Sawa, Satoko; Pan, Jun

    2010-10-27

    Hardseededness in annual wild soybean (Glycine soja Sieb. Et Zucc.) is a valuable trait that affects the germination, viability, and quality of stored seeds. Two G. soja ecotypes native to Shandong Province of China have been used to identify the phenolics in the seed coat that correlate with the seed hardness and seed germination. Three major phenolics from the seed coat were isolated and identified as epicatechin, cyanidin 3-O-glucoside, and delphinidin 3-O-glucoside. Of the three phenolics, only the change of epicatechin exhibited a significant positive correlation with the change of hard seed percentages both under different water conditions during seed development and under different gas conditions during seed storage. Epicatechin also reveals a hormesis-like effect on the seed germination of G. soja. Epicatechin is suggested to be functionally related to coat-imposed hardseededness in G. soja.

  12. Antioxidant Properties of Seeds from Lines of Artichoke, Cultivated Cardoon and Wild Cardoon

    Directory of Open Access Journals (Sweden)

    Alessandra Durazzo

    2013-06-01

    Full Text Available The artichoke (Cynara cardunculus L. subsp. scolymus L., the cultivated cardoon (Cynara cardunculus var. altilis DC. and the wild cardoon (Cynara cardunculus var. sylvestris L. are species widely distributed in the Mediterranean area. The aim of this research was to evaluate the antioxidant properties of seeds from lines of artichoke and cultivated and wild cardoon in both aqueous-organic extracts and their residues by FRAP (Ferric Reducing Antioxidant Power and TEAC (Trolox Equivalent Antioxidant Capacity evaluations. Both artichoke and cardoon seeds are a good source of antioxidants. Among artichoke seeds, hydrolysable polyphenols contribution to antioxidant properties ranged from 41% to 78% for FRAP values and from 17% to 37% for TEAC values. No difference between cultivated and wild cardoon in antioxidant properties are reported. Our results could provide information about the potential industrial use and application of artichoke and/or cardoon seeds.

  13. Antioxidant Properties of Seeds from Lines of Artichoke, Cultivated Cardoon and Wild Cardoon

    Science.gov (United States)

    Durazzo, Alessandra; Foddai, Maria Stella; Temperini, Andrea; Azzini, Elena; Venneria, Eugenia; Lucarini, Massimo; Finotti, Enrico; Maiani, Gianluca; Crinò, Paola; Saccardo, Francesco; Maiani, Giuseppe

    2013-01-01

    The artichoke (Cynara cardunculus L. subsp. scolymus L.), the cultivated cardoon (Cynara cardunculus var. altilis DC.) and the wild cardoon (Cynara cardunculus var. sylvestris L.) are species widely distributed in the Mediterranean area. The aim of this research was to evaluate the antioxidant properties of seeds from lines of artichoke and cultivated and wild cardoon in both aqueous-organic extracts and their residues by FRAP (Ferric Reducing Antioxidant Power) and TEAC (Trolox Equivalent Antioxidant Capacity) evaluations. Both artichoke and cardoon seeds are a good source of antioxidants. Among artichoke seeds, hydrolysable polyphenols contribution to antioxidant properties ranged from 41% to 78% for FRAP values and from 17% to 37% for TEAC values. No difference between cultivated and wild cardoon in antioxidant properties are reported. Our results could provide information about the potential industrial use and application of artichoke and/or cardoon seeds. PMID:26787623

  14. Identification of the ``a'' Genome of Finger Millet Using Chloroplast DNA

    Science.gov (United States)

    Hilu, K. W.

    1988-01-01

    Finger millet (Eleusine corocana subsp. coracana), an important cereal in East Africa and India, is a tetraploid species with unknown genomic components. A recent cytogenetic study confirmed the direct origin of this millet from the tetraploid E. coracana subsp. africana but questioned Eleusine indica as a genomic donor. Chloroplast (ct) DNA sequence analysis using restriction fragment pattern was used to examine the phylogenetic relationships between E. coracana subsp. coracana (domesticated finger millet), E. coracana subspecies africana (wild finger millet), and E. indica. Eleusine tristachya was included since it is the only other annual diploid species in the genus with a basic chromosome number of x = 9 like finger millet. Eight of the ten restriction endonucleases used had 16 to over 30 restriction sites per genome and were informative. E. coracana subsp. coracana and subsp. africana and E. indica were identical in all the restriction sites surveyed, while the ct genome of E. tristachya differed consistently by at least one mutational event for each restriction enzyme surveyed. This random survey of the ct genomes of these species points out E. indica as one of the genome donors (maternal genome donor) of domesticated finger millet contrary to a previous cytogenetic study. The data also substantiate E. coracana subsp. africana as the progenitor of domesticated finger millet. The disparity between the cytogenetic and the molecular approaches is discussed in light of the problems associated with chromosome pairing and polyploidy. PMID:8608927

  15. Identification of the "A" genome of finger millet using chloroplast DNA.

    Science.gov (United States)

    Hilu, K W

    1988-01-01

    Finger millet (Eleusine corocana subsp. coracana), an important cereal in East Africa and India, is a tetraploid species with unknown genomic components. A recent cytogenetic study confirmed the direct origin of this millet from the tetraploid E. coracana subsp. africana but questioned Eleusine indica as a genomic donor. Chloroplast (ct) DNA sequence analysis using restriction fragment pattern was used to examine the phylogenetic relationships between E. coracana subsp. coracana (domesticated finger millet), E. coracana subspecies africana (wild finger millet), and E. indica. Eleusine tristachya was included since it is the only other annual diploid species in the genus with a basic chromosome number of x = 9 like finger millet. Eight of the ten restriction endonucleases used had 16 to over 30 restriction sites per genome and were informative. E. coracana subsp. coracana and subsp. africana and E. indica were identical in all the restriction sites surveyed, while the ct genome of E, tristachya differed consistently by at least one mutational event for each restriction enzyme surveyed. This random survey of the ct genomes of these species points out E. indica as one of the genome donors (maternal genome donor) of domesticated finger millet contrary to a previous cytogenetic study. The data also substantiate E. coracana subsp. africana as the progenitor of domesticated finger millet. The disparity between the cytogenetic and the molecular approaches is discussed in light of the problems associated with chromosome pairing and polyploidy.

  16. Phytolith analysis for differentiating between foxtail millet (Setaria italica) and green foxtail (Setaria viridis).

    OpenAIRE

    Jianping Zhang; Houyuan Lu; Naiqin Wu; Xiaoyan Yang; Xianmin Diao

    2011-01-01

    Foxtail millet (Setaria italica) is one of the oldest domesticated cereal crops in Eurasia, but identifying foxtail millets, especially in charred grains, and differentiating it from its wild ancestor, green foxtail (Setaria viridis), in the archaeobotanical remains, is still problematic. Phytolithic analysis provides a meaningful method for identifying this important crop. In this paper, the silicon structure patterns in the glumes, lemmas, and paleas from inflorescence bracts in 16 modern p...

  17. Phytolith analysis for differentiating between foxtail millet (Setaria italica) and green foxtail (Setaria viridis).

    Science.gov (United States)

    Zhang, Jianping; Lu, Houyuan; Wu, Naiqin; Yang, Xiaoyan; Diao, Xianmin

    2011-05-06

    Foxtail millet (Setaria italica) is one of the oldest domesticated cereal crops in Eurasia, but identifying foxtail millets, especially in charred grains, and differentiating it from its wild ancestor, green foxtail (Setaria viridis), in the archaeobotanical remains, is still problematic. Phytolithic analysis provides a meaningful method for identifying this important crop. In this paper, the silicon structure patterns in the glumes, lemmas, and paleas from inflorescence bracts in 16 modern plants of foxtail millet and green foxtail from China and Europe are examined using light microscopy with phase-contrast and a microscopic interferometer. Our research shows that the silicon structure of ΩIII from upper lemmas and paleas in foxtail millet and green foxtail can be correspondingly divided into two groups. The size of ΩIII type phytolith of foxtail millet is bigger than that from green foxtail. Discriminant function analysis reveals that 78.4% of data on foxtail millet and 76.9% of data on green foxtail are correctly classified. This means certain morphotypes of phytoliths are relatively reliable tools for distinguishing foxtail millet from green foxtail. Our results also revealed that the husk phytolith morphologies of foxtail millets from China and Eastern Europe are markedly different from those from Western Europe. Our research gives a meaningful method of separating foxtail millet and green foxtail. The implications of these findings for understanding the history of foxtail millet domestication and cultivation in ancient civilizations are significant.

  18. Phytolith analysis for differentiating between foxtail millet (Setaria italica and green foxtail (Setaria viridis.

    Directory of Open Access Journals (Sweden)

    Jianping Zhang

    2011-05-01

    Full Text Available Foxtail millet (Setaria italica is one of the oldest domesticated cereal crops in Eurasia, but identifying foxtail millets, especially in charred grains, and differentiating it from its wild ancestor, green foxtail (Setaria viridis, in the archaeobotanical remains, is still problematic. Phytolithic analysis provides a meaningful method for identifying this important crop. In this paper, the silicon structure patterns in the glumes, lemmas, and paleas from inflorescence bracts in 16 modern plants of foxtail millet and green foxtail from China and Europe are examined using light microscopy with phase-contrast and a microscopic interferometer. Our research shows that the silicon structure of ΩIII from upper lemmas and paleas in foxtail millet and green foxtail can be correspondingly divided into two groups. The size of ΩIII type phytolith of foxtail millet is bigger than that from green foxtail. Discriminant function analysis reveals that 78.4% of data on foxtail millet and 76.9% of data on green foxtail are correctly classified. This means certain morphotypes of phytoliths are relatively reliable tools for distinguishing foxtail millet from green foxtail. Our results also revealed that the husk phytolith morphologies of foxtail millets from China and Eastern Europe are markedly different from those from Western Europe. Our research gives a meaningful method of separating foxtail millet and green foxtail. The implications of these findings for understanding the history of foxtail millet domestication and cultivation in ancient civilizations are significant.

  19. Unexpected pattern of pearl millet genetic diversity among ethno-linguistic groups in the Lake Chad Basin.

    Science.gov (United States)

    Naino Jika, A K; Dussert, Y; Raimond, C; Garine, E; Luxereau, A; Takvorian, N; Djermakoye, R S; Adam, T; Robert, T

    2017-05-01

    Despite of a growing interest in considering the role of sociological factors in seed exchanges and their consequences on the evolutionary dynamics of agro-biodiversity, very few studies assessed the link between ethno-linguistic diversity and genetic diversity patterns in small-holder farming systems. This is key for optimal improvement and conservation of crop genetic resources. Here, we investigated genetic diversity at 17 SSR markers of pearl millet landraces (varieties named by farmers) in the Lake Chad Basin. 69 pearl millet populations, representing 27 landraces collected in eight ethno-linguistic farmer groups, were analyzed. We found that the farmers' local taxonomy was not a good proxy for population's genetic differentiation as previously shown at smaller scales. Our results show the existence of a genetic structure of pearl millet mainly associated with ethno-linguistic diversity in the western side of the lake Chad. It suggests there is a limit to gene flow between landraces grown by different ethno-linguistic groups. This result was rather unexpected, because of the highly outcrossing mating system of pearl millet, the high density of pearl millet fields all along the green belt of this Sahelian area and the fact that seed exchanges among ethno-linguistic groups are known to occur. In the eastern side of the Lake, the pattern of genetic diversity suggests a larger efficient circulation of pearl millet genes between ethno-linguistic groups that are less numerous, spatially intermixed and, for some of them, more prone to exogamy. Finally, other historical and environmental factors which may contribute to the observed diversity patterns are discussed.

  20. Application of Copper-Chitosan Nanoparticles Stimulate Growth and Induce Resistance in Finger Millet (Eleusine coracana Gaertn.) Plants against Blast Disease.

    Science.gov (United States)

    Sathiyabama, Muthukrishnan; Manikandan, Appu

    2018-02-28

    Copper-chitosan nanoparticle (CuChNp) was synthesized and used to study its effect on finger millet plant as a model plant system. Our objective was to explore the efficacy of CuChNp application to control blast disease of finger millet. CuChNp was applied to finger millet either as a foliar spray or as a combined application (involving seed coat and foliar spray). Both the application methods enhanced growth profile of finger millet plants and increased yield. The increased yield was nearly 89% in combined application method. Treated finger millet plants challenged with Pyricularia grisea showed suppression of blast disease development when compared to control. Nearly 75% protection was observed in the combined application of CuChNp to finger millet plants. In CuChNp treated finger millet plants, a significant increase in defense enzymes was observed, which was detected both qualitatively and quantitatively. The suppression of blast disease correlates well with increased defense enzymes in CuChNp treated finger millet plants.

  1. Cereal domestication and evolution of branching: evidence for soft selection in the Tb1 orthologue of pearl millet (Pennisetum glaucum [L.] R. Br..

    Directory of Open Access Journals (Sweden)

    Marie-Stanislas Remigereau

    Full Text Available BACKGROUND: During the Neolithic revolution, early farmers altered plant development to domesticate crops. Similar traits were often selected independently in different wild species; yet the genetic basis of this parallel phenotypic evolution remains elusive. Plant architecture ranks among these target traits composing the domestication syndrome. We focused on the reduction of branching which occurred in several cereals, an adaptation known to rely on the major gene Teosinte-branched1 (Tb1 in maize. We investigate the role of the Tb1 orthologue (Pgtb1 in the domestication of pearl millet (Pennisetum glaucum, an African outcrossing cereal. METHODOLOGY/PRINCIPAL FINDINGS: Gene cloning, expression profiling, QTL mapping and molecular evolution analysis were combined in a comparative approach between pearl millet and maize. Our results in pearl millet support a role for PgTb1 in domestication despite important differences in the genetic basis of branching adaptation in that species compared to maize (e.g. weaker effects of PgTb1. Genetic maps suggest this pattern to be consistent in other cereals with reduced branching (e.g. sorghum, foxtail millet. Moreover, although the adaptive sites underlying domestication were not formerly identified, signatures of selection pointed to putative regulatory regions upstream of both Tb1 orthologues in maize and pearl millet. However, the signature of human selection in the pearl millet Tb1 is much weaker in pearl millet than in maize. CONCLUSIONS/SIGNIFICANCE: Our results suggest that some level of parallel evolution involved at least regions directly upstream of Tb1 for the domestication of pearl millet and maize. This was unanticipated given the multigenic basis of domestication traits and the divergence of wild progenitor species for over 30 million years prior to human selection. We also hypothesized that regular introgression of domestic pearl millet phenotypes by genes from the wild gene pool could explain

  2. Teste de envelhecimento precoce para sementes de azevém, aveia preta e milheto Accelerated aging test for ryegrass black oat grass and pearl millet seeds

    Directory of Open Access Journals (Sweden)

    Danton Camacho Garcia

    1999-06-01

    Full Text Available A viabilidade da aplicação e da padronização do teste de envelhecimento precoce em sementes de azevém, aveia preta e milheto foi verificada em três lotes, para cada espécie, com valores iniciais de germinação semelhantes. As sementes de cada lote foram submetidas ao teste por períodos de 24, 48, 72, 96 e 120 horas, à temperatura de 41°C e 100% de umidade relativa do ar. Em aveia preta, o período de 24 horas estratifica lotes de sementes pelo vigor. Para milheto e azevém, o período de envelhecimento para estratificar lotes de sementes pelo vigor pode ser de 24 a 48 horas. Períodos de 72 a 120 horas são muito drásticos para as três espécies e impedem a estratificação de lotes de sementes pelo vigor.Accelerated aging test standardization for seeds of ryegrass, black oat grass and pearl millet was cheked in three lots, of each specie, with similar initial values of germination. The seeds of each lot were submited to periods of 24, 48, 96 and 120 hours of temperature of 41°C and air relative humidity of 100%. In black oat grass the 24h period stratifies seed vigor among lots. However, for pearl millet and ryegrass the period can be of 24 to 48h. Periods of 72 to 120 hours are very severe to the three species and prevent the seed vigor lots stratification.

  3. Evaluation of fox tail millet (Setaria italica forage quality in different growth stages

    Directory of Open Access Journals (Sweden)

    F. Izadi Yazdanabadi

    2016-05-01

    Full Text Available In order to evaluate the quantitative factors in fox tail millet (Setaria italica L. under three stages of growth, an experiment was conducted in Birjand during spring and summer of 2010. The preliminary objective was evaluation of fox tail physiological characteristics on animals that feed them. Planting of Foxtail millet was performed according to local practices and endemic acknowledge. Sampling was carried out at Vegetative, flowering and seeding stages, then samples transported to laboratory of animal nutrition. After Drying of sampling, dry matter, dry matter digestibility, crude protein, metabolically energy, Acid Detergent Fiber and Nitrogen Detergent Fiber, Ash and some mineral nutrients were measured. The results showed significant differences in measured characteristics in various phonological stages. Forage quality was higher in flowering and seeding stages than in vegetative stage. Dry matter digestibility and metabolically energy were high and NDF and ADF were less in vegetative stage. Because fox tail millet is leafy and palatable by animal at this stage, it’s optimum yield is important. Ability to produce Green fodder by this plant and the possibility of cultivation in different regions and its ability to produce forage for livestocks, its planting is recommended.

  4. Phytoliths analysis for the discrimination of Foxtail millet (Setaria italica) and Common millet (Panicum miliaceum).

    Science.gov (United States)

    Lu, Houyuan; Zhang, Jianping; Wu, Naiqin; Liu, Kam-Biu; Xu, Deke; Li, Quan

    2009-01-01

    Foxtail millet (Setaria italica) and Common millet (Panicum miliaceum) are the oldest domesticated dry farming crops in Eurasia. Identifying these two millets in the archaeobotanical remains are still problematic, especially because the millet grains preserve only when charred. Phytoliths analysis provides a viable method for identifying this important crop. However, to date, the identification of millet phytoliths has been questionable, because very little study has been done on their morphometry and taxonomy. Particularly, no clear diagnostic feature has been used to distinguish between Foxtail millet and Common millet. Here we examined the anatomy and silicon structure patterns in the glumes, lemmas, and paleas from the inflorescence bracts in 27 modern plants of Foxtail millet, Common millet, and closely related grasses, using light microscopy with phase-contrast and microscopic interferometer. Our research shows that five key diagnostic characteristics in phytolith morphology can be used to distinguish Foxtail millet from Common millet based on the presence of cross-shaped type, regularly arranged papillae, Omega-undulated type, endings structures of epidermal long cell, and surface ridgy line sculpture in the former species. We have established identification criteria that, when used together, give the only reliable way of distinguishing between Foxtail millet and Common millet species based on their phytoliths characteristics, thus making a methodological contribution to phytolith research. Our findings also have important implications in the fields of plant taxonomy, agricultural archaeology, and the culture history of ancient civilizations.

  5. Phytoliths analysis for the discrimination of Foxtail millet (Setaria italica and Common millet (Panicum miliaceum.

    Directory of Open Access Journals (Sweden)

    Houyuan Lu

    Full Text Available Foxtail millet (Setaria italica and Common millet (Panicum miliaceum are the oldest domesticated dry farming crops in Eurasia. Identifying these two millets in the archaeobotanical remains are still problematic, especially because the millet grains preserve only when charred. Phytoliths analysis provides a viable method for identifying this important crop. However, to date, the identification of millet phytoliths has been questionable, because very little study has been done on their morphometry and taxonomy. Particularly, no clear diagnostic feature has been used to distinguish between Foxtail millet and Common millet. Here we examined the anatomy and silicon structure patterns in the glumes, lemmas, and paleas from the inflorescence bracts in 27 modern plants of Foxtail millet, Common millet, and closely related grasses, using light microscopy with phase-contrast and microscopic interferometer. Our research shows that five key diagnostic characteristics in phytolith morphology can be used to distinguish Foxtail millet from Common millet based on the presence of cross-shaped type, regularly arranged papillae, Omega-undulated type, endings structures of epidermal long cell, and surface ridgy line sculpture in the former species. We have established identification criteria that, when used together, give the only reliable way of distinguishing between Foxtail millet and Common millet species based on their phytoliths characteristics, thus making a methodological contribution to phytolith research. Our findings also have important implications in the fields of plant taxonomy, agricultural archaeology, and the culture history of ancient civilizations.

  6. Finger millet (Eleusine coracana) - an economically viable source for antihypercholesterolemic metabolites production by Monascus purpureus.

    Science.gov (United States)

    Venkateswaran, V; Vijayalakshmi, G

    2010-08-01

    Rice, parboiled rice, finger millet, germinated finger millet, broken wheat, njavara (medicinal rice), sorghum and maize were used as substrates for solid state fermentation of Monascus purpureus at 28°C for 7 days using 2% seed medium as inoculum for the production of its metabolites. The fungus exhibited good growth in all the substrates. The fermented substrates were dried at 45°C and analysed for antihypercholesterolemic metabolite statins by standardized HPLC method and dietary sterol contents by spectrophotometric method using reference standards of statin (pravastatin and lovastatin) and cholesterol, respectively. Germinated finger millet yielded higher total statin production of 5.2 g/kg dry wt with pravastatin and lovastatin content of 4.9 and 0.37 g/kg dry wt respectively than other substrates which range from 1.04-4.41 g/kg. In addition to statin, monascus fermented germinated finger millet yielded dietary sterol of 0.053 g/kg dry wt which is 7.6 folds higher than the control. The value addition of finger millet by germination and fermentation with Monascus purpureus provides scope for development of functional food.

  7. Identification and characterization of finger millet OPAQUE2 transcription factor gene under different nitrogen inputs for understanding their role during accumulation of prolamin seed storage protein.

    Science.gov (United States)

    Gaur, Vikram Singh; Kumar, Lallan; Gupta, Supriya; Jaiswal, J P; Pandey, Dinesh; Kumar, Anil

    2018-03-01

    In this study, we report the isolation and characterization of the mRNA encoding OPAQUE2 (O2) like TF of finger millet (FM) ( Eleusine coracana) ( EcO2 ). Full-length EcO2 mRNA was isolated using conserved primers designed by aligning O2 mRNAs of different cereals followed by 3' and 5' RACE (Rapid Amplification of cDNA Ends). The assembled full-length EcO2 mRNA was found to contain an ORF of 1248-nt coding the 416 amino acids O2 protein. Domain analysis revealed the presence of the BLZ and bZIP-C domains which is a characteristic feature of O2 proteins. Phylogenetic analysis of EcO2 protein with other bZIP proteins identified using finger millet transcriptome data and O2 proteins of other cereals showed that EcO2 shared high sequence similarity with barley BLZ1 protein. Transcripts of EcO2 were detected in root, stem, leaves, and seed development stages. Furthermore, to investigate nitrogen responsiveness and the role of EcO2 in regulating seed storage protein gene expression, the expression profiles of EcO2 along with an α-prolamin gene were studied during the seed development stages of two FM genotypes (GE-3885 and GE-1437) differing in grain protein content (13.8 and 6.2%, respectively) grown under increasing nitrogen inputs. Compared to GE-1437, the EcO2 was relatively highly expressed during the S2 stage of seed development which further increased as nitrogen input was increased. The Ecα - prolamin gene was strongly induced in the high protein genotype (GE-3885) at all nitrogen inputs. These results indicate the presence of nitrogen responsiveness regulatory elements which might play an important role in accumulating protein in FM genotypes through modulating EcO2 expression by sensing plant nitrogen status.

  8. Small millets, big potential

    International Development Research Centre (IDRC) Digital Library (Canada)

    consumption of small millets, mainly due to limited productivity, high ... for effective integration of small millets in the ... replicated in other cities. ... to micro-, small- and medium-entrepreneurs producing millet-based ... and Activities Network,.

  9. Critical role of climate change in plant selection and millet domestication in North China.

    Science.gov (United States)

    Yang, Xiaoyan; Wu, Wenxiang; Perry, Linda; Ma, Zhikun; Bar-Yosef, Ofer; Cohen, David J; Zheng, Hongbo; Ge, Quansheng

    2018-05-18

    While North China is one of the earliest independent centers for cereal domestication in the world, the earliest stages of the long process of agricultural origins remain unclear. While only millets were eventually domesticated in early sedentary societies there, recent archaeobotanical evidence reported here indicates that grasses from the Paniceae (including millets) and Triticeae tribes were exploited together by foraging groups from the Last Glacial Maximum to the mid-Holocene. Here we explore how and why millets were selected for domestication while Triticeae were abandoned. We document the different exploitation and cultivation trajectories of the two tribes employing ancient starch data derived from nine archaeological sites dating from 25,000 to 5500 cal BP (LGM through mid-Holocene) in North China. With this diachronic overview, we can place the trajectories into the context of paleoclimatic reconstructions for this period. Entering the Holocene, climatic changes increased the yield stability, abundance, and availability of the wild progenitors of millets, with growing conditions increasingly favoring millets while becoming more unfavorable for grasses of the Triticeae tribe. We thus hypothesize that climate change played a critical role in the selection of millet species for domestication in North China, with early domestication evidenced by 8700 cal BP.

  10. Interspecific variation of total seed protein in wild rice germplasm using SDS-Page

    International Nuclear Information System (INIS)

    Shah, S.M.A.; Hidayat-ur-Rahman; Abbasi, F.M.; Ashiq, M.; Rabbani, A.M.; Khan, I.A.; Shinwari, Z.K.; Shah, Z.

    2011-01-01

    Variation in seed protein of 14 wild rice species (Oryza spp.) along with cultivated rice species (O. sativa) was studied using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) to assess genetic diversity in the rice germplasm. SDS bands were scored as present (1) or absent (0) for protein sample of each genotype. On the basis of cluster analysis, four clusters were identified at a similarity level of 0.85. O. nivara, O. rufipogon and O. sativa with AA genomes constituted the first cluster. The second cluster comprised O. punctata of BB genome and wild rice species of CC genome i.e., O. rhizomatis and O. officinalis. However, it also contained O. barthii and O. glumaepatula of AA genome. O. australiensis with EE genome, and O. latifolia, O. alta and O. grandiglumis having CCDD genomes comprised the third cluster. The fourth cluster consisted of wild rice species, O. brachyantha with EE genome along with two other wild rice species, O. longistaminata and O. meridionalis of AA genome. Overall, on the basis of total seed protein, the grouping pattern of rice genotypes was mostly compatible with their genome status. The results of the present work depicted considerable interspecific genetic variation in the investigated germplasm for total seed protein. Moreover, the results obtained in this study also suggest that analysis of seed protein can also provide a better understanding of genetic affinity of the germplasm. (author)

  11. [Obtaining the transgenic lines of finger millet Eleusine coracana (L.) Gaertn. With dinitroaniline resistance].

    Science.gov (United States)

    Baer, G Ia; Emets, A I; Blium, Ia B

    2014-01-01

    The current data is dedicated to the study of bioballistic and Agrobacterium-mediated transformation of finger millet with the constructs carrying the mutant alpha-tubulin gene (TUAm 1), isolated from R-biotype goosegrass (Eleusine indica L.), for the decision of problem of dinitroaniline-resistance. It was found that 10 microM of trifluralin is optimal for the selection of transgene plants of finger millet. PCR analysis of transformed lines confirmed the transgene nature of plants. The analysis of seed of T1 oftransgene lines confirmed heterozygous character of inheritance of the resistance.

  12. Cross-genera transferability of rice and finger millet genomic SSRs to barnyard millet (Echinochloa spp.).

    Science.gov (United States)

    Kalyana Babu, B; Sood, Salej; Kumar, Dinesh; Joshi, Anjeli; Pattanayak, A; Kant, Lakshmi; Upadhyaya, H D

    2018-02-01

    Barnyard millet ( Echinochloa spp.) is an important crop from nutritional point of view, nevertheless, the genetic information is very scarce. In the present investigation, rice and finger millet genomic SSRs were used for assessing cross transferability, identification of polymorphic markers, syntenic regions, genetic diversity and population structure analysis of barnyard millet genotypes. We observed 100% cross transferability for finger millet SSRs, of which 91% were polymorphic, while 71% of rice markers were cross transferable with 48% polymorphic out of them. Twenty-nine and sixteen highly polymorphic finger millet and rice SSRs yielded a mean of 4.3 and 3.38 alleles per locus in barnyard millet genotypes, respectively. The PIC values varied from 0.27 to 0.73 at an average of 0.54 for finger millet SSRs, whereas it was from 0.15 to 0.67 at an average of 0.44 for rice SSRs. High synteny was observed for markers related to panicle length, yield-related traits, spikelet fertility, plant height, root traits, leaf senescence, blast and brown plant hopper resistance. Although the rice SSRs located on chromosome 10 followed by chromosome 6 and 11 were found to be more transferable to barnyard millet, the finger millet SSRs were more polymorphic and transferable to barnyard millet genotypes. These SSR data of finger millet and rice individually as well as combined together grouped the 11 barnyard millet genotypes into 2 major clusters. The results of population structure analysis were similar to cluster analysis.

  13. Proteomic analysis of seed storage proteins in wild rice species of the Oryza genus.

    Science.gov (United States)

    Jiang, Chunmiao; Cheng, Zaiquan; Zhang, Cheng; Yu, Tengqiong; Zhong, Qiaofang; Shen, J Qingxi; Huang, Xingqi

    2014-01-01

    The total protein contents of rice seeds are significantly higher in the three wild rice species (Oryza rufipogon Grill., Oryza officinalis Wall. and Oryza meyeriana Baill.) than in the cultivated rice (Oryza sativa L.). However, there is still no report regarding a systematic proteomic analysis of seed proteins in the wild rice species. Also, the relationship between the contents of seed total proteins and rice nutritional quality has not been thoroughly investigated. The total seed protein contents, especially the glutelin contents, of the three wild rice species were higher than those of the two cultivated rice materials. Based on the protein banding patterns of SDS-PAGE, O. rufipogon was similar to the two cultivated rice materials, followed by O. officinalis, while O. meyeriana exhibited notable differences. Interestingly, O. meyeriana had high contents of glutelin and low contents of prolamine, and lacked 26 kDa globulin band and appeared a new 28 kDa protein band. However, for O. officinali a 16 kDa protein band was absent and a row of unique 32 kDa proteins appeared. In addition, we found that 13 kDa prolamine band disappeared while special 14 kDa and 12 kDa protein bands were present in O. officinalis. Two-dimensional gel electrophoresis (2-DE) analysis revealed remarkable differences in protein profiles of the wild rice species and the two cultivated rice materials. Also, the numbers of detected protein spots of the three wild rice species were significantly higher than those of two cultivated rice. A total of 35 differential protein spots were found for glutelin acidic subunits, glutelin precursors and glutelin basic subunits in wild rice species. Among those, 18 protein spots were specific and 17 major spots were elevated. Six differential protein spots for glutelin acidic subunits were identified, including a glutelin type-A 2 precursor and five hypothetical proteins. This was the first report on proteomic analysis of the three wild rice species

  14. Vigor of pearl millet seeds by precocity of primary root emissionPrecocidade na emissão da raiz primária para avaliação do vigor de sementes de milheto

    Directory of Open Access Journals (Sweden)

    Simério Carlos Silva Cruz

    2012-05-01

    Full Text Available In a program of seed quality assurance, the evaluation of seed vigor is fundamental and necessary to the global production process outcome. The objective of this study was to evaluate the efficiency of the precocity of primary root emission test, for the substrates paper roll, on paper and between papers, on vigor of pearl millet seeds. Ten seed lots evaluated in four replication of 100 pearl millet seeds cultivar ADR 500 were sown in three different humidified substrates: between papers, paper roll and on paper. These were incubated at a temperature of 20-30°C. Fifteen hours after the germination test was established, the emission of seed primary roots started to be observed every 2 hours up to 25 hours and then after 48 hours. For the comparison among lots, seeds were also evaluated by moisture content, weight of 1000 seeds, germination and vigor (first count, electrical conductivity, accelerated aging and seedling emergence. The statistical design was completely randomized, and the means comparisons were accomplished by the Tukey test at 0.05 level of probability. It was concluded that the precocity of primary root emission test on paper is promising for vigor evaluation of pearl millet seeds. Dentro de um programa de controle de qualidade, a avaliação do vigor de sementes é fundamental e necessária para o sucesso da produção. O objetivo deste estudo foi verificar a eficiência do teste de precocidade da emissão da raiz primária, em três tipos de substrato, na avaliação do vigor de sementes de milheto. Dez lotes de sementes da cultivar ADR 500 foram avaliados mediante a semeadura de quatro repetições de 100 sementes de cada lote em: entre papel, rolo de papel e sobre papel, mantidos sob temperatura alternada de 20-30°C. Após 15 horas as sementes que emitiram a raiz primária foram contadas e descartadas, procedendo-se a leitura a cada 2 horas até 25 horas e posteriormente às 48 horas. Para estabelecer a comparação entre os

  15. The effects of seed size on hybrids formed between oilseed rape (Brassica napus and wild brown mustard (B. juncea.

    Directory of Open Access Journals (Sweden)

    Yong-Bo Liu

    Full Text Available Seed size has significant implications in ecology, because of its effects on plant fitness. The hybrid seeds that result from crosses between crops and their wild relatives are often small, and the consequences of this have been poorly investigated. Here we report on plant performance of hybrid and its parental transgenic oilseed rape (Brassica napus and wild B. juncea, all grown from seeds sorted into three seed-size categories.Three seed-size categories were sorted by seed diameter for transgenic B. napus, wild B. juncea and their transgenic and non-transgenic hybrids. The seeds were sown in a field at various plant densities. Globally, small-seeded plants had delayed flowering, lower biomass, fewer flowers and seeds, and a lower thousand-seed weight. The seed-size effect varied among plant types but was not affected by plant density. There was no negative effect of seed size in hybrids, but it was correlated with reduced growth for both parents.Our results imply that the risk of further gene flow would probably not be mitigated by the small size of transgenic hybrid seeds. No fitness cost was detected to be associated with the Bt-transgene in this study.

  16. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica).

    Science.gov (United States)

    Jia, Guanqing; Huang, Xuehui; Zhi, Hui; Zhao, Yan; Zhao, Qiang; Li, Wenjun; Chai, Yang; Yang, Lifang; Liu, Kunyan; Lu, Hengyun; Zhu, Chuanrang; Lu, Yiqi; Zhou, Congcong; Fan, Danlin; Weng, Qijun; Guo, Yunli; Huang, Tao; Zhang, Lei; Lu, Tingting; Feng, Qi; Hao, Hangfei; Liu, Hongkuan; Lu, Ping; Zhang, Ning; Li, Yuhui; Guo, Erhu; Wang, Shujun; Wang, Suying; Liu, Jinrong; Zhang, Wenfei; Chen, Guoqiu; Zhang, Baojin; Li, Wei; Wang, Yongfang; Li, Haiquan; Zhao, Baohua; Li, Jiayang; Diao, Xianmin; Han, Bin

    2013-08-01

    Foxtail millet (Setaria italica) is an important grain crop that is grown in arid regions. Here we sequenced 916 diverse foxtail millet varieties, identified 2.58 million SNPs and used 0.8 million common SNPs to construct a haplotype map of the foxtail millet genome. We classified the foxtail millet varieties into two divergent groups that are strongly correlated with early and late flowering times. We phenotyped the 916 varieties under five different environments and identified 512 loci associated with 47 agronomic traits by genome-wide association studies. We performed a de novo assembly of deeply sequenced genomes of a Setaria viridis accession (the wild progenitor of S. italica) and an S. italica variety and identified complex interspecies and intraspecies variants. We also identified 36 selective sweeps that seem to have occurred during modern breeding. This study provides fundamental resources for genetics research and genetic improvement in foxtail millet.

  17. Seed dormancy alleviation of grewia tenax (forssk.): a wild fruit tree species of pakistan

    International Nuclear Information System (INIS)

    Sohail, M.; Saied, A.S.

    2015-01-01

    Grewia tenax (Forssk.) Fiori is a fruit shrub and grows wild in arid and semi-arid tropics of Asia and Africa. The species is highly valuable for the rural populations because of its edible fruit and fodder for livestock. Species has immense potential for re-vegetation of degraded lands, as it has ability to withstand soil salinity and drought. Wild stands of the species are sparse which is supposed to have some kind of seed dormancy. Seeds of G. tenax were subjected to different combinations of heat and cold seed stratification treatments in two consecutive experiments. A positive correlation (r2 = 0.97) was observed between total emergence and weeks of seed exposure to constant dry heat at 40 degree C from 0 to 4 weeks. Maximum germination (70%) was achieved, when seeds were exposed to dry heat at 40 degree C for 4 weeks as compared to control (20%). Seeds exposed to constant heat for 4 weeks also took only 4 and 5 days to reach 1st and 50% emergence, respectively as compared to untreated seeds, which took 10 and 14 days to reach 1st and 50% emergence, respectively. Moreover, emergence spread lasted only 4 days as compared to untreated seeds with 21 days. Our results indicate that seeds of G. tenax possess a limited physiological dormancy which can be overcome by heat stratification. (author)

  18. Effect of Organic and Inorganic Fertilizers on Quantitative and Qualitative Characteristics of Pearl Millet (Panicum miliaceum L. and Red Bean (Phaseolus vulgaris L. in Intercropping

    Directory of Open Access Journals (Sweden)

    A. Tavassoli

    2010-12-01

    Full Text Available This experiment was conducted at Agriculture Research Center of Zabol University during 2007 cropping season. The experiment was split plot, based on randomized complete block design with three replications. The main factors consisted of unfertilized (control (F1, recommended fertilizer (F2, recommended manure (F3, half of recommended manure + half of recommended fertilizer (F4 and sub factors were cropping of millet (I1, 75% millet + 25% bean (I2, 50% millet + 50% bean(I3, 25% millet + 75% bean (I4 and sole crop of bean (I5. Results showed that were for these tow species the highest grain and dry matter yield and harvest index (HI obtained from half of recommended manure + half of recommended fertilizer treatment. However, fertilizer treatments did not have significant effect on 1000-seeds weight. Highest land equivalence ratio (LER for grain and dry matter yield was achieved from half of recommended manure + half of recommended fertilizer treatment. The highest crude protein (CP, P and K content in each of the forage crops obtained from recommended fertilizer treatment. Interrace culture different ratios treatments, for millet the highest grain and dry matter yield and P and K content achieved from sole cropping. While highest harvest index (HI, 1000-seeds weight and CP content in millet forage obtained from their intercroppings. Highest bean values for all traits in achieved from its sole cropping. Furthermore, highest LER for dry matter and grain obtained from 25% millet + 75% bean treatment.

  19. Genetic Analysis of Seed Yield Components and its Association with Forage Production in Wild and Cultivated Species of Sainfoin

    Directory of Open Access Journals (Sweden)

    A. Najafipoor

    2017-02-01

    Full Text Available Little is known about genetic variation of seed related traits and their association with forage characters in sainfoin. In order to investigate the variation and relationship among seed yield and its components, 93 genotypes from 21 wild and cultivated species of genus Onobrychis were evaluated using a randomized complete block design with four replications at Isfahan University of Technology Research Farm, Isfahan, Iran. Analysis of variance showed that there was significant difference among genotypes, indicating existence of considerable genetic variation in this germplasm. Panicle fertility and panicle length had the most variation in cultivated and the wild genotypes, respectively. Results of correlation analysis showed that seed yield was positively correlated with number of stems per plant and number of seeds per panicle and negatively correlated with panicle length and days to 50% flowering. Seed yield had positive correlation with forage yield in wild species while this correlation was not significant in cultivated one. Cluster analysis classified the genotypes into three groups which separate wild and cultivated species. Based on principal component analysis the first component was related to seed yield and the second one was related to components of forage yield which can be used for selection of high forage and seed yielding genotypes.

  20. IDENTIFICATION AND OCCURRENCE OF FUSARIUM SPECIES ON SEEDS OF COMMON WETCH, WHITE LUPINE AND SOME WILD LEGUMES

    Directory of Open Access Journals (Sweden)

    Tihomir Miličević

    2013-06-01

    Full Text Available The presence and occurrence of Fusarium species was examined on the seeds of cultivated legumes – common vetch (Vicia sativa, white lupine (Lupinus albus, and wild legumes: bird’s-foot trefoil (Lotus corniculatus, wild alfalfa (Medicago sativa, black locust (Robinia pseudoacacia, honey locust (Gleditsia triacanthos, sweet clover (Melilotus officinalis, bird vetch (Vicia cracca and meadow vetchling (Lathyrus pratensis. Thirteen Fusarium species were identified - F. verticillioides, F. acuminatum, F. avenaceum, F. tricinctum F. oxysporum, F. scirpi, F. semitectum, F. culmorum, F. proliferatum, F. pseudograminearum, F. sporotrichioides, F. sambucinum and F. heterosporum. Species F. verticillioides and F. proliferatum were determined on seeds of the cultivated legumes (common vetch and white lupine. Other 11 Fusarium species were determined on seeds of wild legumes (bird’s-foot trefoil, wild alfalfa, sweet clover and bird vetch among which the most prevalent were species F. avenaceum and F. acuminatum.

  1. Anti-oxidative activities of sorghum, foxtail millet and proso millet ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-03

    May 3, 2010 ... The sorghum extract contained high amount of phenolic compounds as well as a high level of anti- oxidant activity ..... Low absorbance values in the FTC method indicate a high level of anti- oxidant activity. Figure 3 shows the changes in absorbance for each sample during 30 h of incubation at. 70°C. The ...

  2. Characterization of seeds of selected wild species of rice (Oryza) stored under high temperature and humidity conditions.

    Science.gov (United States)

    Das, Smruti; Nayak, Monalisa; Patra, B C; Ramakrishnan, B; Krishnan, P

    2010-06-01

    Wild progenitors of rice (Oryza) are an invaluable resource for restoring genetic diversity and incorporating useful traits back into cultivars. Studies were conducted to characterize the biochemical changes, including SDS-PAGE banding pattern of storage proteins in seeds of six wild species (Oryza alta, O. grandiglumis, O. meridionalis, O. nivara, O. officinalis and O. rhizomatis) of rice stored under high temperature (45 degrees C) and humidity (approixmately 100%) for 15 days, which facilitated accelerated deterioration. Under the treated conditions, seeds of different wild rice species showed decrease in per cent germination and concentrations of protein and starch, but increase in conductivity of leachate and content of sugar. The SDS-PAGE analysis of seed proteins showed that not only the total number of bands, but also their intensity in terms of thickness differed for each species under storage. The total number of bands ranged from 11 to 22, but none of the species showed all the bands. Similarity index for protein bands between the control and treated seeds was observed to be least in O. rhizomatis and O. alta, while the indices were 0.7 and 0.625 for O. officinalis and O. nivara, respectively. This study clearly showed that seed deterioration led to distinctive biochemical changes, including the presence or absence as well as altered levels of intensity of proteins. Hence, SDS-PAGE protein banding pattern can be used effectively to characterize deterioration of seeds of different wild species of rice.

  3. The membrane tethered transcription factor EcbZIP17 from finger millet promotes plant growth and enhances tolerance to abiotic stresses.

    Science.gov (United States)

    Ramakrishna, Chopperla; Singh, Sonam; Raghavendrarao, Sangala; Padaria, Jasdeep C; Mohanty, Sasmita; Sharma, Tilak Raj; Solanke, Amolkumar U

    2018-02-01

    The occurrence of various stresses, as the outcome of global climate change, results in the yield losses of crop plants. Prospecting of genes in stress tolerant plant species may help to protect and improve their agronomic performance. Finger millet (Eleusine coracana L.) is a valuable source of superior genes and alleles for stress tolerance. In this study, we isolated a novel endoplasmic reticulum (ER) membrane tethered bZIP transcription factor from finger millet, EcbZIP17. Transgenic tobacco plants overexpressing this gene showed better vegetative growth and seed yield compared with wild type (WT) plants under optimal growth conditions and confirmed upregulation of brassinosteroid signalling genes. Under various abiotic stresses, such as 250 mM NaCl, 10% PEG6000, 400 mM mannitol, water withdrawal, and heat stress, the transgenic plants showed higher germination rate, biomass, primary and secondary root formation, and recovery rate, compared with WT plants. The transgenic plants exposed to an ER stress inducer resulted in greater leaf diameter and plant height as well as higher expression of the ER stress-responsive genes BiP, PDIL, and CRT1. Overall, our results indicated that EcbZIP17 improves plant growth at optimal conditions through brassinosteroid signalling and provide tolerance to various environmental stresses via ER signalling pathways.

  4. Seed rate and nitrogen fertilizer effects on wild mustard (Sinapis arvensis L. and winter wheat (Triticum aestivum L. competition

    Directory of Open Access Journals (Sweden)

    karim moosavi

    2009-06-01

    Full Text Available In order to evaluate wild mustard competitive effect on winter wheat, an additive series experiment was conducted in 2000-2001 at Agricultural Research Station of Mashhad University.The experiment had 3 factor: wheat seed rate (175 , 215 and 255 kg/ha, nitrogen rate (150 and 225 kg/ha, and a range of wild mustard densities. Hyperbolic functions was used to describe yield-weed density relationship. Increasing wild mustard density had a negative , asymptotic – type effect on wheat biomass and grain yield. By increasing wheat seed rate , in optimum nitrogen rate , maximum wheat biomas loss has reduced about 51 %. Maximum yield loss has increased from 42.1 % to 50.4 %, as nitrogen rate incrased from optimum to upper optimum rate of wheat. By increasing of wheat seed rate from 175 to 255 kg/ha, maximum tiller number reduction due to high densities of wild mustard, has decreased by 54 %. Reduction of fertile tiller number was mostly occurred at presence of high nitrogen level, thus, reduction of fertile tiller number compared to control in N1 was 18% , while in N2 has increased to 30%. Wild mustard competition has reduced wheat seed number per ear 30% in compare to weed free control. Results show that wheat 1000 seed weight was more affected by nitrogen rate than plant densities. Apparently, in competition with wheat, wild mustard was better able to utilize the added nitrogen and thus gained a competitive adventage over the wheat.

  5. From Early Domesticated Rice of the Middle Yangtze Basin to Millet, Rice and Wheat Agriculture: Archaeobotanical Macro-Remains from Baligang, Nanyang Basin, Central China (6700-500 BC.

    Directory of Open Access Journals (Sweden)

    Zhenhua Deng

    Full Text Available Baligang is a Neolithic site on a northern tributary of the middle Yangtze and provides a long archaeobotanical sequence from the Seventh Millennium BC upto the First Millennium BC. It provides evidence for developments in rice and millet agriculture influenced by shifting cultural affiliation with the north (Yangshao and Longshan and south (Qujialing and Shijiahe between 4300 and 1800 BC. This paper reports on plant macro-remains (seeds, from systematic flotation of 123 samples (1700 litres, producing more than 10,000 identifiable remains. The earliest Pre-Yangshao occupation of the sites provide evidence for cultivation of rice (Oryza sativa between 6300-6700 BC. This rice appears already domesticated in on the basis of a dominance of non-shattering spikelet bases. However, in terms of grain size changes has not yet finished, as grains are still thinner than more recent domesaticated rice and are closer in grain shape to wild rices. This early rice was cultivated alongside collection of wild staple foods, especially acorns (Quercus/Lithicarpus sensu lato. In later periods the sites has evidence for mixed farming of both rice and millets (Setaria italica and Panicum miliaceum. Soybean appears on the site in the Shijiahe period (ca.2500 BC and wheat (Triticum cf. aestivum in the Late Longshan levels (2200-1800 BC. Weed flora suggests an intensification of rice agriculture over time with increasing evidence of wetland weeds. We interpret these data as indicating early opportunistic cultivation of alluvial floodplains and some rainfed rice, developing into more systematic and probably irrigated cultivation starting in the Yangshao period, which intensified in the Qujialing and Shijiahe period, before a shift back to an emphasis on millets with the Late Longshan cultural influence from the north.

  6. The C-terminal motif of SiAGO1b is required for the regulation of growth, development and stress responses in foxtail millet (Setaria italica (L.) P. Beauv).

    Science.gov (United States)

    Liu, Xiaotong; Tang, Sha; Jia, Guanqing; Schnable, James C; Su, Haixia; Tang, Chanjuan; Zhi, Hui; Diao, Xianmin

    2016-05-01

    Foxtail millet (Setaria italica (L.) P. Beauv), which belongs to the Panicoideae tribe of the Poaceae, is an important grain crop widely grown in Northern China and India. It is currently developing into a novel model species for functional genomics of the Panicoideae as a result of its fully available reference genome sequence, small diploid genome (2n=18, ~510Mb), short life cycle, small stature and prolific seed production. Argonaute 1 (AGO1), belonging to the argonaute (AGO) protein family, recruits small RNAs and regulates plant growth and development. Here, we characterized an AGO1 mutant (siago1b) in foxtail millet, which was induced by ethyl methanesulfonate treatment. The mutant exhibited pleiotropic developmental defects, including dwarfing stem, narrow and rolled leaves, smaller panicles and lower rates of seed setting. Map-based cloning analysis demonstrated that these phenotypic variations were attributed to a C-A transversion, and a 7-bp deletion in the C-terminus of the SiAGO1b gene in siago1b Yeast two-hybrid assays and BiFC experiments revealed that the mutated region was an essential functional motif for the interaction between SiAGO1b and SiHYL1. Furthermore, 1598 differentially expressed genes were detected via RNA-seq-based comparison of SiAGO1b and wild-type plants, which revealed that SiAGO1b mutation influenced multiple biological processes, including energy metabolism, cell growth, programmed death and abiotic stress responses in foxtail millet. This study may provide a better understanding of the mechanisms by which SiAGO1b regulates the growth and development of crops. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Molecular characterization of EcCIPK24 gene of finger millet (Eleusine coracana) for investigating its regulatory role in calcium transport.

    Science.gov (United States)

    Chinchole, Mahadev; Pathak, Rajesh Kumar; Singh, Uma M; Kumar, Anil

    2017-08-01

    Finger millet grains contain exceptionally high levels of calcium which is much higher compared to other cereals and millets. Since calcium is an important macronutrient in human diet, it is necessary to explore the molecular basis of calcium accumulation in the seeds of finger millet. CIPK is a calcium sensor gene, having role in activating Ca 2+ exchanger protein by interaction with CBL proteins. To know the role of EcCIPK24 gene in seed Ca 2+ accumulation, sequence is retrieved from the transcriptome data of two finger millet genotypes GP1 (low Ca 2+ ) and GP45 (high Ca 2+ ), and the expression was determined through qRT-PCR. The higher expression was found in root, shoot, leaf and developing spike tissue of GP45 compared to GP1; structural analysis showed difference of nine SNPs and one extra beta sheet domain as well as differences in vacuolar localization was predicted; besides, the variation in amino acid composition among both the genotypes was also investigated. Molecular modeling and docking studies revealed that both EcCBL4 and EcCBL10 showed strong binding affinity with EcCIPK24 (GP1) compared to EcCIPK24 (GP45). It indicates a genotypic structural variation, which not only affects the affinity but also calcium transport efficiency after interaction of CIPK-CBL with calcium exchanger ( Ec CAX1b) to pull calcium in the vacuole. Based on the expression and in silico study, it can be suggested that by activating EcCAX1b protein, EcCIPK24 plays an important role in high seed Ca 2+ accumulation.

  8. DEVELOPMENT OF GENOMIC AND GENETIC TOOLS FOR FOXTAIL MILLET, AND USE OF THESE TOOLS IN THE IMPROVEMENT OF BIOMASS PRODUCTION FOR BIOENERGY CROPS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xinlu; Zale, Janice; Chen, Feng

    2013-01-22

    Foxtail millet (Setaria italica L.) is a warm-season, C4 annual crop commonly grown for grain and forage worldwide. It has a relatively short generation time, yet produces hundreds of seeds per inflorescence. The crop is inbred and it has a small-size genome (~500 Mb). These features make foxtail millet an attractive grass model, especially for bioenergy crops. While a number of genomic tools have been established for foxtail millet, including a fully sequenced genome and molecular markers, the objectives of this project were to develop a tissue culture system, determine the best explant(s) for tissue culture, optimize transient gene expression, and establish a stable transformation system for foxtail millet cultivar Yugu1. In optimizing a tissue culture medium for the induction of calli and somatic embryos from immature inflorescences and mature seed explants, Murashige and Skoog medium containing 2.5 mg l-1 2,4-dichlorophenoxyacetic acid and 0.6 mg l-1 6- benzylaminopurine was determined to be optimal for callus induction of foxtail millet. The efficiency of callus induction from explants of immature inflorescences was significantly higher at 76% compared to that of callus induction from mature seed explants at 68%. The calli induced from this medium were regenerated into plants at high frequency (~100%) using 0.2 mg l-1 kinetin in the regeneration media. For performing transient gene expression, immature embryos were first isolated from inflorescences. Transient expression of the GUS reporter gene in immature embryos was significantly increased after sonication, a vacuum treatment, centrifugation and the addition of L-cysteine and dithiothreitol, which led to the efficiency of transient expression at levels greater than 70% after Agrobacterium inoculation. Inoculation with Agrobacterium was also tested with germinated seeds. The radicals of germinated seeds were pierced with needles and dipped into Agrobacterium solution. This method achieved a 10% transient

  9. Effects of amount and timing of nitrogen application and weed density on wild mustard (Sinapis arvensis seed production in winter wheat

    Directory of Open Access Journals (Sweden)

    mehdi rastgoo

    2009-06-01

    Full Text Available In order to study the effects of amount and timing of nitrogen application and weed density on wild mustard (Sinapis arvensis seed production in winter wheat, an experiment was conducted in 2001 at Research station of college of agriculture, Ferdowsi University of Mashhad. A Split plot design with three replications were used with factorial combination of weed density (0, 8, 16, and 32 plant/m2 and nitrogen (low=100, optimum= 150, and high= 225 Kg/ha as main plots.The sub plot factor included nitrogen splitting pattern (P1=1/3 at planting time+2/3 at tillering, P2= 1/3 at planting time + 1/3 at tillering + 1/3 at shooting. According to the results, wild mustard seed production increased with increasing wild mustard density and nitrogen rates, due to high wild mustard biomass production. Seed production of wild mustard was 161, 311, and 488 million/ha in low, optimum and high nitrogen rates, respectively. In the other hand, density and nitrogen rates had a significant effect on wild mustard fecundity. However, nitrogen splitting pattern showed no significant effect on wild mustard seed production.

  10. From Early Domesticated Rice of the Middle Yangtze Basin to Millet, Rice and Wheat Agriculture: Archaeobotanical Macro-Remains from Baligang, Nanyang Basin, Central China (6700–500 BC)

    Science.gov (United States)

    Deng, Zhenhua; Qin, Ling; Gao, Yu; Weisskopf, Alison Ruth; Zhang, Chi; Fuller, Dorian Q.

    2015-01-01

    Baligang is a Neolithic site on a northern tributary of the middle Yangtze and provides a long archaeobotanical sequence from the Seventh Millennium BC upto the First Millennium BC. It provides evidence for developments in rice and millet agriculture influenced by shifting cultural affiliation with the north (Yangshao and Longshan) and south (Qujialing and Shijiahe) between 4300 and 1800 BC. This paper reports on plant macro-remains (seeds), from systematic flotation of 123 samples (1700 litres), producing more than 10,000 identifiable remains. The earliest Pre-Yangshao occupation of the sites provide evidence for cultivation of rice (Oryza sativa) between 6300–6700 BC. This rice appears already domesticated in on the basis of a dominance of non-shattering spikelet bases. However, in terms of grain size changes has not yet finished, as grains are still thinner than more recent domesaticated rice and are closer in grain shape to wild rices. This early rice was cultivated alongside collection of wild staple foods, especially acorns (Quercus/Lithicarpus sensu lato). In later periods the sites has evidence for mixed farming of both rice and millets (Setaria italica and Panicum miliaceum). Soybean appears on the site in the Shijiahe period (ca.2500 BC) and wheat (Triticum cf. aestivum) in the Late Longshan levels (2200–1800 BC). Weed flora suggests an intensification of rice agriculture over time with increasing evidence of wetland weeds. We interpret these data as indicating early opportunistic cultivation of alluvial floodplains and some rainfed rice, developing into more systematic and probably irrigated cultivation starting in the Yangshao period, which intensified in the Qujialing and Shijiahe period, before a shift back to an emphasis on millets with the Late Longshan cultural influence from the north. PMID:26460975

  11. Harnessing sorghum and millet biotechnology for food and health

    CSIR Research Space (South Africa)

    O'Kennedy, MM

    2006-11-01

    Full Text Available , the causal agent of rust disease, and the oomycete S. graminicola, causal agent of downy mildew, resulted in a significant reduction of disease symptoms in comparison to wild type control plants. The disease resistance of pearl millet was increased by up... of a wound-inducible promoter from a maize protease inhibitor gene (mpi) were produced via particle bombardment of shoot apices (Girijashankar et al., 2005). Although reductions in leaf damage (60%), larval mortality (40%) and larval weight (36...

  12. Evaluation of nutraceutical properties of selected small millets.

    Science.gov (United States)

    Rao, B Raghavendra; Nagasampige, Manojkumar H; Ravikiran, M

    2011-04-01

    The aim of this study was to evaluate the nutraceutical properties and nutritional value of grains of four selected small millets viz. finger millet, foxtail millet, prosomillet and khodomillet. The qualitative analysis of phytochemicals viz. phenolics, flavonoids, alkaloids and saponins present in the four small millets was done. The water-soluble proteins, crude fiber content and the reducing power of the grains of these four millets were analyzed. The khodomillet showed maximum phenolic content (10.3%) and foxtail millet showed minimum phenolics (2.5%). As far as reducing capacity was concerned, finger millet was highest (5.7%). The prosomillet showed least reducing property (2.6%). The finger millet (391.3 mg/g each) showed maximum reducing sugar content. The prosomillet showed minimum reducing sugar (195 mg/g). The foxtail millet showed maximum protein content (305.76 mg/g) and prosomillet showed minimum protein content (144.23 mg/g). The khodomillet showed maximum crude fiber content (14.3%).The finger millet showed maximum reducing sugar content (391.3 mg/g) whereas, the khodomillet showed minimum reducing sugar (130.43 mg/g).

  13. Induced variation in pod and seed traits of wild and cultivated beans

    International Nuclear Information System (INIS)

    Ignacimuthu, S.; Babu, C.R.

    1992-01-01

    With a view to evaluate the induced genetic variation in yield traits of wild and cultivated urd and mung bean, seeds of Vigna radiata. V. mungo (cultivars) and V. sublobata (wild relative) were given mutagenic treatments. Different concentrations of EMS and gamma rays were used as mutagens separately and in combination. Genetic variation in yield traits was analysed in M 2 plants. There was a broad spectrum of induced variability in most yield traits. Genetic variance, heritability and genetic advance were high in most of the traits. The results demonstrate that induced mutations are random, polydirectional and quantitative in nature. The wild relative is more resistant than the cultivars. (author). 14 refs., 4 tabs

  14. Introducing cultivated trees into the wild: Wood pigeons as dispersers of domestic olive seeds

    Science.gov (United States)

    Perea, Ramón; Gutiérrez-Galán, Alejandro

    2016-02-01

    Animals may disperse cultivated trees outside the agricultural land, favoring the naturalization or, even, the invasiveness of domestic plants. However, the ecological and conservation implications of new or unexplored mutualisms between cultivated trees and wild animals are still far from clear. Here, we examine the possible role of an expanding and, locally, overabundant pigeon species (Columba palumbus) as an effective disperser of domestic olive trees (Olea europaea), a widespread cultivated tree, considered a naturalized and invasive species in many areas of the world. By analyzing crop and gizzard content we found that olive fruits were an important food item for pigeons in late winter and spring. A proportion of 40.3% pigeons consumed olive seeds, with an average consumption of 7.8 seeds per pigeon and day. Additionally, most seed sizes (up to 0.7 g) passed undamaged through the gut and were dispersed from cultivated olive orchards to areas covered by protected Mediterranean vegetation, recording minimal dispersal distances of 1.8-7.4 km. Greenhouse experiments showed that seeds dispersed by pigeons significantly favored the germination and establishment in comparison to non-ingested seeds. The ability of pigeons to effectively disperse domestic olive seeds may facilitate the introduction of cultivated olive trees into natural systems, including highly-protected wild olive woodlands. We recommend harvesting ornamental olive trees to reduce both pigeon overpopulation and the spread of artificially selected trees into the natural environment.

  15. Evaluation of nutraceutical properties of selected small millets

    Directory of Open Access Journals (Sweden)

    B Raghavendra Rao

    2011-01-01

    Full Text Available Objective: The aim of this study was to evaluate the nutraceutical properties and nutritional value of grains of four selected small millets viz. finger millet, foxtail millet, prosomillet and khodomillet. Materials and Methods: The qualitative analysis of phytochemicals viz. phenolics, flavonoids, alkaloids and saponins present in the four small millets was done. The water-soluble proteins, crude fiber content and the reducing power of the grains of these four millets were analyzed. Results and Conclusions: The khodomillet showed maximum phenolic content (10.3% and foxtail millet showed minimum phenolics (2.5%. As far as reducing capacity was concerned, finger millet was highest (5.7%. The prosomillet showed least reducing property (2.6%. The finger millet (391.3 mg/g each showed maximum reducing sugar content. The prosomillet showed minimum reducing sugar (195 mg/g. The foxtail millet showed maximum protein content (305.76 mg/g and prosomillet showed minimum protein content (144.23 mg/g. The khodomillet showed maximum crude fiber content (14.3%.The finger millet showed maximum reducing sugar content (391.3 mg/g whereas, the khodomillet showed minimum reducing sugar (130.43 mg/g.

  16. Combined Effects of Radiation and Nitrogen Limitations on Competition of Two C4 Plants Foxtail Millet (Setaria italica L. and Pigweed (Amaranthus albus L.

    Directory of Open Access Journals (Sweden)

    sara parande

    2018-02-01

    Full Text Available Introduction: Light is a vital component for photosynthesis and plays a significant role in the competitive ability of plants. The nitrogen response of competing plants may be affected by radiation availability and maximum potential growth rate, which determine N requirements. Shading reduces the light intensity, which leads to changes in the morphology, physiology, biomass, grain yield and quality of crops. Finally, shading stress delays flowering and decreases biomass and grain yield. Because photosynthesis is associated with dry matter accumulation, and light is known to limit carbon accumulation and nitrogen content, understanding these processes in weeds may provide insight as to their effects on crop production, help to predict their occurrence, and ultimately provide the needed information for their management. Materials and Methods: In order to evaluate foxtail millet competition with pigweed at different levels of radiation and nitrogen, two separate experiments in split plot arranged in randomized complete block design with three replications were conducted in 2015 at the Research Farm of Birjand University. Texturally, the soil was loam, with 8.16 pH, 0.03% total N, 12 ppm available P and 250 ppm available K. The experiment was laid out in a split-plot design with three replications having three shade levels (0, 41 and 75% shade in main plot and three pigweed density (0, 12 and 24 plant per meter square in subplots in two separate experiments, one under nitrogen application and the other without it. In 0% shade treatment, sunlight was allowed to fall over the millet and pigweed without any barrier. In 41% and 75% treatments, the light levels in the form of PAR were reduced using sheds nets. At the end of growth stage millet traits including plant height, spike length, peduncle length, stem diameter, number of leaf, lodging, grain yield and biomass and pigweed traits such as plant height, number of Lateral branches, number of seed per

  17. Effect of germination and autoclaving of sprouted finger millet and kidney beans on cyanide content.

    Science.gov (United States)

    Chove, Bernard E; Mamiro, Peter R S

    2010-10-01

    Cyanide contents of locally purchased brown finger millet (Eleusine corocana L. Gaertner) and brown speckled kidney bean seeds (Phaseolus vulgaries var. Rose Coco) were determined using raw, germinated and autoclaved samples. The aim was to establish the extent of cyanide content increase resulting from the germination process and the effectiveness of the autoclaving process on the reduction of cyanide levels in the samples, for safety considerations. Autoclaving was carried out at 121degree C for 20 minutes. It was found that germination increased the cyanide content by 2.11 to 2.14 fold in finger millet for laboratory processed samples. In the case of kidney beans the increment was 1.76 to 1.77 fold for laboratory samples. The increments for field processed samples were in the same range as those for laboratory samples. Autoclaving reduced the cyanide content to between 61.8 and 65.9 % of the original raw contents for finger millet and between 56.6 to 57.8% in the case of kidney beans. The corresponding reductions for field samples were also found to be within the same ranges as the laboratory processed samples. It was concluded that autoclaving significantly reduced the cyanide levels in germinated finger millet and kidney beans.

  18. The Effect of Tempering on Strength Properties and Seed Coat ...

    African Journals Online (AJOL)

    The effect of tempering on seed coat adhesion strength and mechanical strength of sorghum and millet grain kernels was investigated at different tempering durations. Tempering reduced the kernel breaking strength and had significant effect on seed coat adhesion strength. Tempering the grain for 60 minutes at ambient ...

  19. Effect of domestic processing on the polyphenol content and bioaccessibility in finger millet (Eleusine coracana) and pearl millet (Pennisetum glaucum).

    Science.gov (United States)

    Hithamani, Gavirangappa; Srinivasan, Krishnapura

    2014-12-01

    Finger millet (Eleusine coracana) and pearl millet (Pennisetum glaucum) were evaluated for polyphenolic content and their bioaccessibility. Total polyphenols of native finger millet was 10.2mg/g which reduced by 50% after sprouting or pressure-cooking, while 12-19% reduction was seen after open-pan boiling. Total flavonoids of the grain reduced drastically on sprouting, pressure-cooking or open-pan boiling. Concentration of phenolic acids generally increased during sprouting and roasting of finger millet. Pressure cooking, open-pan boiling and microwave-heating reduced the bioaccessible polyphenols by 30-35%, while the same was increased by 67% by sprouting. Significant reduction of total polyphenols was observed in pressure-cooked, open-pan boiled and microwave-heated pearl millet. Concentration of sinapic and salicylic acids were highest phenolic acids of pearl millet. Total polyphenols reduced during sprouting and pressure-cooking. There was a 20% increase in the bioaccessible polyphenols after sprouting of pearl millet. Thus, sprouting and roasting provided more bioaccessible phenolics from these two common millets studied. Copyright © 2014. Published by Elsevier Ltd.

  20. Antioxidant properties of digestive enzyme-treated fibre-rich fractions from wheat, finger millet, pearl millet and sorghum: A comparative evaluation

    Directory of Open Access Journals (Sweden)

    Aisha Siddiq A.

    2015-12-01

    Full Text Available Whole grains are rich in antioxidant components (AC, most of which are bound to fibre fraction and released during digestion. The study investigated the effect of digestive enzymes on the antioxidant properties of fibre-rich fractions from wheat (Triticum aestivum, finger millet (Eleusine coracana, pearl millet (Pennisetum typhoides and sorghum (Sorghum bicolor. Coarse (CF and fine fractions (FF of milled flour were separated using a standard sieve and analysed for nutritional composition, AC extractable in different solvents and antioxidant activity (AA in untreated and enzyme-treated fractions. The CF had a higher range of insoluble dietary fibre (17.26–20.93% than FF (10.65–17.29%. The highest amount of polyphenols and flavonoids was extractable in different solvents from finger millet and pearl millet, respectively. FF of pearl millet showed higher total AA in all solvents. Enzyme-treated samples had a much higher content of AC as well as higher total AA. Free radical scavenging assay revealed that enzyme-treated millet flours had higher activity in comparison to wheat. Between fractions, wheat exhibited variable results. Among millets, CF of finger millet and FF of pearl millet and sorghum had higher AA. In conclusion, digestive enzyme treatment released more AC from grains, and exhibited a higher AA.

  1. Are camouflaged seeds less attacked by wild birds? Sementes camufladas são menos atacadas por aves silvestres?

    Directory of Open Access Journals (Sweden)

    Alexandre de Almeida

    2010-04-01

    Full Text Available Wheat, corn and rice crops in Brazil use seeds treated with systemic insecticide/nematicide carbofuran, mixed to rhodamine B red dye. Carbofuran is toxic and rhodamine B is attractive to wild birds that eat up these seeds, resulting in notable mortality during planting. A field experiment was performed in southeast Brazil to evaluate if camouflaged seeds would be less consumed by wild birds in comparison to commercial seeds with red-colored rhodamine B and aposematic blue seeds. Camouflaged seeds were less removed than seeds with rhodamine B and natural colors. The camouflaging was more effective in the presence of irregularities and litter. There was no removal of blue-colored seeds. As legislation requires treated seeds to receive a different color to avoid accidents with humans, camouflaging may be used as replacement of rhodamine B to reduce mortality rates of wild birds.Plantações de trigo milho e arroz no Brasil utilizam sementes tratadas com o inseticida e nematicida sistêmico carbofuran, associado ao corante vermelho rodamina B. O carbofuran é tóxico e a rodamina B é atrativa às aves silvestres, as quais consomem estas sementes, resultando em notável mortalidade durante o plantio. Um experimento realizado em campo agrícola no sudeste do Brasil mostrou que sementes camufladas foram menos removidas por aves silvestres do que sementes com rodamina B. A camuflagem foi potencializada em presença de irregularidades e serrapilheira no solo. Não houve remoção de sementes de cor azul, mas a formulação granular de cor azul tem causado mortalidade de aves nos USA e Canadá. Como sementes tratadas com agrotóxicos devem, de acordo com a legislação, receber coloração diferenciada para evitar acidentes com humanos, a camuflagem pode ser utilizada, substituindo a rodamina B.

  2. North-south patterning of millet agriculture on the Loess Plateau: Late Neolithic adaptations to water stress, NW China.

    Science.gov (United States)

    Sheng, P.; Shang, X.; Yang, L.; Jones, M.

    2017-12-01

    Abstract: Water availability and climatic condition profoundly affect agricultural system in different areas. The Loess Plateau, which lies on the marginal area of the East Asian monsoonal climatic zone, is one of the most ideal region to study the agricultural decision-making by ancient farm communities to adapt to different water stress level in same geographic region. Here we report new results of archaeobotanical research on the analysis of charred seeds from two late Neolithic sites on the northern Loess Plateau and review many contemporaneous archaeobotanical data recovered from the south and middle parts of the Loess Plateau. It is indicative of that common millet-based millet agriculture was developed in the arid northern Loess Plateau from the late Yangshao to Longshan periods (3000 1800 BC). Yet, there is a clear preference of foxtail millet farming with rice and wheat production as a supplement in the south and middle parts of the Loess Plateau during the same period. The north-south patterns of millet farming preferring by ancient farmers certainly promoted the social diversity and different evolutionary trajectories of human culture in both areas during the Mid-Late Holocene.

  3. MILLET

    African Journals Online (AJOL)

    User

    protein metabolism. ... levels of adiponectin hormone but the hypoglycemic effect of millet as a supplement is yet to ... When compared with the diabetic control, the study revealed a ..... a beneficial hormone that helps in energy metabolism, it.

  4. Shade and Drought Stress-Induced Changes in Phenolic Content of Wild Oat (Avena fatua L. Seeds

    Directory of Open Access Journals (Sweden)

    Gallagher Robert S.

    2010-11-01

    Full Text Available Plants develop under a wide range of maternal environments, depending on the time of emergence, prevailing competition from other plants, and presence or absence of other biotic or abiotic stress factors. Stress factors, such as light limitation and drought, during plant development typically reduces the reproductive allocation to seeds, resulting in fewer and often smaller seeds. Such stress factors may also influence seed quality traits associated with persistence in the soil, such as seed dormancy and chemical defense. For this research, we hypothesized that light limitation and drought during wild oat (Avena fatua L. seed development would result in reduced allocation to seed phenolics and other aliphatic organic acids previously identified in the seeds of this species. Wild oat isolines (M73 and SH430 were grown in the greenhouse under cyclic drought conditions (2005 only or two levels of shade (50 and 70%; 2005 and 2006 achieved with standard black shade cloth. The soluble and cellular bound chemical constituents were identified and quantified using gas chromatography - mass spectrometry. The shade and drought stress treatments often significantly affected the mass of the caryopsis and hull seed fractions, as well as the phenolic content of these seed fractions, depending upon isoline, seed fraction, phenolic fraction, and specific phenolics analyzed. Phenolic content of the hull was reduced by the stress environments by up to 48%, whereas there was some evidence of an increase in the soluble phenolic content of the caryopsis in response to the stress environments. Ferulic and p-coumaric acids were the most abundant phenolic acids in both soluble and bound fractions, and bound phenolics comprised generally 95% or more of total phenolics. There was no discernable evidence that the aliphatic organic content was affected by the stress environments. Our results indicate that plant stress during seed development can reduce both the physical and

  5. Identification and characterization of calcium transporter gene family in finger millet in relation to grain calcium content.

    Science.gov (United States)

    Singh, Uma M; Metwal, Mamta; Singh, Manoj; Taj, Gohar; Kumar, Anil

    2015-07-15

    Calcium (Ca) is an essential mineral for proper growth and development of plants as well as animals. In plants including cereals, calcium is deposited in seed during its development which is mediated by specialized Ca transporters. Common cereal seeds contain very low amounts of Ca while the finger millet (Eleusine coracana) contains exceptionally high amounts of Ca in seed. In order to understand the role of Ca transporters in grain Ca accumulation, developing seed transcriptome of two finger millet genotypes (GP-1, low Ca and GP-45 high Ca) differing in seed Ca content was sequenced using Illumina paired-end sequencing technology and members of Ca transporter gene family were identified. Out of 109,218 and 120,130 contigs, 86 and 81 contigs encoding Ca transporters were identified in GP-1 and GP-45, respectively. After removal of redundant sequences, a total of 19 sequences were confirmed as Ca transporter genes, which includes 11 Ca(2+) ATPases, 07 Ca(2+)/cation exchangers and 01 Ca(2+) channel. The differential expressions of all genes were analyzed from transcriptome data and it was observed that 9 and 3 genes were highly expressed in GP-45 and GP-1 genotypes respectively. Validation of transcriptome expression data of selected Ca transporter genes was performed on different stages of developing spikes of both genotypes grown under different concentrations of exogenous Ca. In both genotypes, significant correlation was observed between the expression of these genes, especially EcCaX3, and on the amount of Ca accumulated in seed. The positive correlation of seed mass with the amount of Ca concentration was also observed. The efficient Ca transport property and responsiveness of EcCAX3 towards exogenous Ca could be utilized in future biofortification program. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Finger millet [Eleusine coracana (L.) Gaertn].

    Science.gov (United States)

    Ceasar, Stanislaus Antony; Ignacimuthu, Savarimuthu

    2015-01-01

    Millets are the primary food source for millions of people in tropical regions of the world supplying mineral nutrition and protein. In this chapter, we describe an optimized protocol for the Agrobacterium-mediated transformation of finger millet variety GPU 45. Agrobacterium strain LBA4404 harboring plasmid pCAMBIA1301 which contains hygromycin phosphotransferase (hph) as selectable marker gene and β-glucuronidase (GUS) as reporter gene has been used. This protocol utilizes the shoot apex explants for the somatic embryogenesis and regeneration of finger millet after the transformation by Agrobacterium. Desiccation of explants during cocultivation helps for the better recovery of transgenic plants. This protocol is very useful for the efficient production of transgenic plants in finger millet through Agrobacterium-mediated transformation.

  7. Tracing QTLs for Leaf Blast Resistance and Agronomic Performance of Finger Millet (Eleusine coracana (L. Gaertn. Genotypes through Association Mapping and in silico Comparative Genomics Analyses.

    Directory of Open Access Journals (Sweden)

    M Ramakrishnan

    Full Text Available Finger millet is one of the small millets with high nutritive value. This crop is vulnerable to blast disease caused by Pyricularia grisea, which occurs annually during rainy and winter seasons. Leaf blast occurs at early crop stage and is highly damaging. Mapping of resistance genes and other quantitative trait loci (QTLs for agronomic performance can be of great use for improving finger millet genotypes. Evaluation of one hundred and twenty-eight finger millet genotypes in natural field conditions revealed that leaf blast caused severe setback on agronomic performance for susceptible genotypes, most significant traits being plant height and root length. Plant height was reduced under disease severity while root length was increased. Among the genotypes, IE4795 showed superior response in terms of both disease resistance and better agronomic performance. A total of seven unambiguous QTLs were found to be associated with various agronomic traits including leaf blast resistance by association mapping analysis. The markers, UGEP101 and UGEP95, were strongly associated with blast resistance. UGEP98 was associated with tiller number and UGEP9 was associated with root length and seed yield. Cross species validation of markers revealed that 12 candidate genes were associated with 8 QTLs in the genomes of grass species such as rice, foxtail millet, maize, Brachypodium stacei, B. distachyon, Panicum hallii and switchgrass. Several candidate genes were found proximal to orthologous sequences of the identified QTLs such as 1,4-β-glucanase for leaf blast resistance, cytokinin dehydrogenase (CKX for tiller production, calmodulin (CaM binding protein for seed yield and pectin methylesterase inhibitor (PMEI for root growth and development. Most of these QTLs and their putatively associated candidate genes are reported for first time in finger millet. On validation, these novel QTLs may be utilized in future for marker assisted breeding for the development of

  8. Tracing QTLs for Leaf Blast Resistance and Agronomic Performance of Finger Millet (Eleusine coracana (L.) Gaertn.) Genotypes through Association Mapping and in silico Comparative Genomics Analyses.

    Science.gov (United States)

    Ramakrishnan, M; Antony Ceasar, S; Duraipandiyan, V; Vinod, K K; Kalpana, Krishnan; Al-Dhabi, N A; Ignacimuthu, S

    2016-01-01

    Finger millet is one of the small millets with high nutritive value. This crop is vulnerable to blast disease caused by Pyricularia grisea, which occurs annually during rainy and winter seasons. Leaf blast occurs at early crop stage and is highly damaging. Mapping of resistance genes and other quantitative trait loci (QTLs) for agronomic performance can be of great use for improving finger millet genotypes. Evaluation of one hundred and twenty-eight finger millet genotypes in natural field conditions revealed that leaf blast caused severe setback on agronomic performance for susceptible genotypes, most significant traits being plant height and root length. Plant height was reduced under disease severity while root length was increased. Among the genotypes, IE4795 showed superior response in terms of both disease resistance and better agronomic performance. A total of seven unambiguous QTLs were found to be associated with various agronomic traits including leaf blast resistance by association mapping analysis. The markers, UGEP101 and UGEP95, were strongly associated with blast resistance. UGEP98 was associated with tiller number and UGEP9 was associated with root length and seed yield. Cross species validation of markers revealed that 12 candidate genes were associated with 8 QTLs in the genomes of grass species such as rice, foxtail millet, maize, Brachypodium stacei, B. distachyon, Panicum hallii and switchgrass. Several candidate genes were found proximal to orthologous sequences of the identified QTLs such as 1,4-β-glucanase for leaf blast resistance, cytokinin dehydrogenase (CKX) for tiller production, calmodulin (CaM) binding protein for seed yield and pectin methylesterase inhibitor (PMEI) for root growth and development. Most of these QTLs and their putatively associated candidate genes are reported for first time in finger millet. On validation, these novel QTLs may be utilized in future for marker assisted breeding for the development of fungal

  9. Extra soil fertilization of mother plants increases botanical seed yield but not long-term germination in wild Solanum (potato) species

    Science.gov (United States)

    Potato has about 100 wild species relatives that are multiplied in the form of botanical seed populations by genebanks, and distributed for use in research and breeding, so factors that affect long term seed germination are of interest. In 1987 the US Potato Genebank conducted routine seed multiplic...

  10. Assessment of Metallic Contaminants in Grinded Millet using ...

    African Journals Online (AJOL)

    OLUWASOGO

    Separate grinding discs were used for different millet forms, while the same quantity of millet ... have bad effects on human health (Normayo et al, 2010, Edem et al, 2012 .... grinding discs to have close contact due to the hardness of the millet.

  11. A nucleotide substitution at the 5′ splice site of intron 1 of rice HEADING DATE 1 (HD1 gene homolog in foxtail millet, broadly found in landraces from Europe and Asia

    Directory of Open Access Journals (Sweden)

    Kenji Fukunaga

    2015-12-01

    Full Text Available We investigated genetic variation of a rice HEADING DATE 1(HD1 homolog in foxtail millet. First, we searched for a rice HD1 homolog in a foxtail millet genome sequence and designed primers to amplify the entire coding sequence of the gene. We compared full HD1 gene sequences of 11 accessions (including Yugu 1, a Chinese cultivar used for genome sequencing from various regions in Europe and Asia, found a nucleotide substitution at a putative splice site of intron 1, and designated the accessions with the nucleotide substitution as carrying a splicing variant. We verified by RT-PCR that this single nucleotide substitution causes aberrant splicing of intron 1. We investigated the geographical distribution of the splicing variant in 480 accessions of foxtail millet from various regions of Europe and Asia and part of Africa by dCAPS and found that the splicing variant is broadly distributed in Europe and Asia. Differences of heading times between accessions with wild type allele of the HD1 gene and those with the splicing variant allele were unclear. We also investigated variation in 13 accessions of ssp. viridis, the wild ancestor, and the results suggested that the wild type is predominant in the wild ancestor.

  12. Expression of Finger Millet EcDehydrin7 in Transgenic Tobacco Confers Tolerance to Drought Stress.

    Science.gov (United States)

    Singh, Rajiv Kumar; Singh, Vivek Kumar; Raghavendrarao, Sanagala; Phanindra, Mullapudi Lakshmi Venkata; Venkat Raman, K; Solanke, Amolkumar U; Kumar, Polumetla Ananda; Sharma, Tilak Raj

    2015-09-01

    One of the critical alarming constraints for agriculture is water scarcity. In the current scenario, global warming due to climate change and unpredictable rainfall, drought is going to be a master player and possess a big threat to stagnating gene pool of staple food crops. So it is necessary to understand the mechanisms that enable the plants to cope with drought stress. In this study, effort was made to prospect the role of EcDehydrin7 protein from normalized cDNA library of drought tolerance finger millet in transgenic tobacco. Biochemical and molecular analyses of T0 transgenic plants were done for stress tolerance. Leaf disc assay, seed germination test, dehydration assay, and chlorophyll estimation showed EcDehydrin7 protein directly link to drought tolerance. Northern and qRT PCR analyses shows relatively high expression of EcDehydrin7 protein compare to wild type. T0 transgenic lines EcDehydrin7(11) and EcDehydrin7(15) shows superior expression among all lines under study. In summary, all results suggest that EcDehydrin7 protein has a remarkable role in drought tolerance and may be used for sustainable crop breeding program in other food crops.

  13. FmMDb: a versatile database of foxtail millet markers for millets and bioenergy grasses research.

    Directory of Open Access Journals (Sweden)

    Venkata Suresh B

    Full Text Available The prominent attributes of foxtail millet (Setaria italica L. including its small genome size, short life cycle, inbreeding nature, and phylogenetic proximity to various biofuel crops have made this crop an excellent model system to investigate various aspects of architectural, evolutionary and physiological significances in Panicoid bioenergy grasses. After release of its whole genome sequence, large-scale genomic resources in terms of molecular markers were generated for the improvement of both foxtail millet and its related species. Hence it is now essential to congregate, curate and make available these genomic resources for the benefit of researchers and breeders working towards crop improvement. In view of this, we have constructed the Foxtail millet Marker Database (FmMDb; http://www.nipgr.res.in/foxtail.html, a comprehensive online database for information retrieval, visualization and management of large-scale marker datasets with unrestricted public access. FmMDb is the first database which provides complete marker information to the plant science community attempting to produce elite cultivars of millet and bioenergy grass species, thus addressing global food insecurity.

  14. Mapping QTLs Controlling Flowering Time and Important Agronomic Traits in Pearl Millet.

    Science.gov (United States)

    Kumar, Sushil; Hash, C Tom; Nepolean, T; Satyavathi, C Tara; Singh, Govind; Mahendrakar, Mahesh D; Yadav, Rattan S; Srivastava, Rakesh K

    2017-01-01

    Pearl millet [ Pennisetum glaucum (L.) R. Br.] is a staple crop for the people of arid and semi-arid regions of the world. It is fast gaining importance as a climate resilient nutricereal. Exploiting the bold seeded, semi-dwarf, and early flowering genotypes in pearl millet is a key breeding strategy to enhance yield, adaptability, and for adequate food in resource-poor zones. Genetic variation for agronomic traits of pearl millet inbreds can be used to dissect complex traits through quantitative trait locus (QTL) mapping. This study was undertaken to map a set of agronomically important traits like flowering time (FT), plant height (PH), panicle length (PL), and grain weight (self and open-pollinated seeds) in the recombinant inbred line (RIL) population of ICMB 841-P3 × 863B-P2 cross. Excluding grain weight (open pollinated), heritabilities for FT, PH, PL, grain weight (selfed) were in high to medium range. A total of six QTLs for FT were detected on five chromosomes, 13 QTLs for PH on six chromosomes, 11 QTLs for PL on five chromosomes, and 14 QTLs for 1,000-grain weight (TGW) spanning five chromosomes. One major QTL on LG3 was common for FT and PH. Three major QTLs for PL, one each on LG1, LG2, and LG6B were detected. The large effect QTL for TGW (self) on LG6B had a phenotypic variance ( R 2 ) of 62.1%. The R 2 for FT, TGW (self), and PL ranged from 22.3 to 59.4%. A total of 21 digenic interactions were discovered for FT ( R 2 = 18-40%) and PL ( R 2 = 13-19%). The epistatic effects did not reveal any significant QTL × QTL × environment (QQE) interactions. The mapped QTLs for flowering time and other agronomic traits in present experiment can be used for marker-assisted selection (MAS) and genomic selection (GS) breeding programs.

  15. Influence of moisture content on physical properties of minor millets.

    Science.gov (United States)

    Balasubramanian, S; Viswanathan, R

    2010-06-01

    Physical properties including 1000 kernel weight, bulk density, true density, porosity, angle of repose, coefficient of static friction, coefficient of internal friction and grain hardness were determined for foxtail millet, little millet, kodo millet, common millet, barnyard millet and finger millet in the moisture content range of 11.1 to 25% db. Thousand kernel weight increased from 2.3 to 6.1 g and angle of repose increased from 25.0 to 38.2°. Bulk density decreased from 868.1 to 477.1 kg/m(3) and true density from 1988.7 to 884.4 kg/m(3) for all minor millets when observed in the moisture range of 11.1 to 25%. Porosity decreased from 63.7 to 32.5%. Coefficient of static friction of minor millets against mild steel surface increased from 0.253 to 0.728 and coefficient of internal friction was in the range of 1.217 and 1.964 in the moisture range studied. Grain hardness decreased from 30.7 to 12.4 for all minor millets when moisture content was increased from 11.1 to 25% db.

  16. Increasing gender equality among small millet farmers in South Asia ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    29 avr. 2016 ... Gender equality among small millet. More than 1,600 women were involved in testing small millet varieties. One reason for the decline in small millet cultivation is the drudgery involved in their processing, a task that traditionally falls to women. The Revalorizing small millets in South Asia (RESMISA) project ...

  17. Development and genetic mapping of SSR markers in foxtail millet [Setaria italica (L.) P. Beauv.].

    Science.gov (United States)

    Jia, Xiaoping; Zhang, Zhongbao; Liu, Yinghui; Zhang, Chengwei; Shi, Yunsu; Song, Yanchun; Wang, Tianyu; Li, Yu

    2009-02-01

    SSR markers are desirable markers in analysis of genetic diversity, quantitative trait loci mapping and gene locating. In this study, SSR markers were developed from two genomic libraries enriched for (GA)n and (CA)n of foxtail millet [Setaria italica (L.) P. Beauv.], a crop of historical importance in China. A total of 100 SSR markers among the 193 primer pairs detected polymorphism between two mapping parents of an F(2) population, i.e. "B100" of cultivated S. italica and "A10" of wild S. viridis. Excluding 14 markers with unclear amplifications, and five markers unlinked with any linkage group, a foxtail millet SSR linkage map was constructed by integrating 81 new developed SSR markers with 20 RFLP anchored markers. The 81 SSRs covered nine chromosomes of foxtail millet. The length of the map was 1,654 cM, with an average interval distance between markers of 16.4 cM. The 81 SSR markers were not evenly distributed throughout the nine chromosomes, with Ch.8 harbouring the least (3 markers) and Ch.9 harbouring the most (18 markers). To verify the usefulness of the SSR markers developed, 37 SSR markers were randomly chosen to analyze genetic diversity of 40 foxtail millet accessions. Totally 228 alleles were detected, with an average 6.16 alleles per locus. Polymorphism information content (PIC) value for each locus ranged from 0.413 to 0.847, with an average of 0.697. A positive correlation between PIC and number of alleles and between PIC and number of repeat unit were found [0.802 and 0.429, respectively (P < 0.01)]. UPGMA analysis revealed that the 40 foxtail millet cultivars could be grouped into five clusters in which the landraces' grouping was largely consistent with ecotypes while the breeding varieties from different provinces in China tended to be grouped together.

  18. Ribosomal DNA intergenic spacer sequence in foxtail millet, Setaria italica (L.) P. Beauv. and its characterization and application to typing of foxtail millet landraces.

    Science.gov (United States)

    Fukunaga, Kenji; Ichitani, Katsuyuki; Taura, Satoru; Sato, Muneharu; Kawase, Makoto

    2005-02-01

    We determined the sequence of ribosomal DNA (rDNA) intergenic spacer (IGS) of foxtail millet isolated in our previous study, and identified subrepeats in the polymorphic region. We also developed a PCR-based method for identifying rDNA types based on sequence information and assessed 153 accessions of foxtail millet. Results were congruent with our previous works. This study provides new findings regarding the geographical distribution of rDNA variants. This new method facilitates analyses of numerous foxtail millet accessions. It is helpful for typing of foxtail millet germplasms and elucidating the evolution of this millet.

  19. RETRACTED ARTICLE: Nutritional, technological, and medical approach of finger millet (Eleusine coracana

    Directory of Open Access Journals (Sweden)

    Amir Gull

    2015-12-01

    Full Text Available Finger millet (Eleusine coracana L. is also known as African millet and is commonly called “ragi” in India. It has excellent nutritional value and is even superior to other common cereals. It is a richest source of calcium (344 mg and magnesium (408 mg than other millets. Predominant fatty acids of this millet are oleic (49%, linoleic (25%, and palmitic acids (25%. Finger millet contains both water-soluble and lipo-soluble vitamins. Emerging bakery products prepared from this millet are pasta, noodles, vermicelli, and bread. Being gluten free, it is suitable for individuals suffering from celiac disease. Finger millet grain is a rich source of several phytochemicals. Finger millet possesses blood glucose lowering, cholesterol lowering, and antiulcerative, wound healing properties as indicated by in vitro and in vivo studies. Commonly used processing techniques for this millet are milling, malting, popping, and decortications.

  20. RETRACTED ARTICLE: Nutritional, technological, and medical approach of finger millet (Eleusine coracana)

    OpenAIRE

    Amir Gull; Gulzar Ahmad Nayik; Kamlesh Prasad; Pradyuman Kumar

    2015-01-01

    Finger millet (Eleusine coracana L.) is also known as African millet and is commonly called “ragi” in India. It has excellent nutritional value and is even superior to other common cereals. It is a richest source of calcium (344 mg) and magnesium (408 mg) than other millets. Predominant fatty acids of this millet are oleic (49%), linoleic (25%), and palmitic acids (25%). Finger millet contains both water-soluble and lipo-soluble vitamins. Emerging bakery products prepared from this millet are...

  1. Fitness of crop-wild hybrid sunflower under competitive conditions: implications for crop-to-wild introgression.

    Science.gov (United States)

    Mercer, Kristin L; Emry, D Jason; Snow, Allison A; Kost, Matthew A; Pace, Brian A; Alexander, Helen M

    2014-01-01

    Understanding the likelihood and extent of introgression of novel alleles in hybrid zones requires comparison of lifetime fitness of parents and hybrid progeny. However, fitness differences among cross types can vary depending on biotic conditions, thereby influencing introgression patterns. Based on past work, we predicted that increased competition would enhance introgression between cultivated and wild sunflower (Helianthus annuus) by reducing fitness advantages of wild plants. To test this prediction, we established a factorial field experiment in Kansas, USA where we monitored the fitness of four cross types (Wild, F1, F2, and BCw hybrids) under different levels of interspecific and intraspecific competition. Intraspecific manipulations consisted both of density of competitors and of frequency of crop-wild hybrids. We recorded emergence of overwintered seeds, survival to reproduction, and numbers of seeds produced per reproductive plant. We also calculated two compound fitness measures: seeds produced per emerged seedling and seeds produced per planted seed. Cross type and intraspecific competition affected emergence and survival to reproduction, respectively. Further, cross type interacted with competitive treatments to influence all other fitness traits. More intense competition treatments, especially related to density of intraspecific competitors, repeatedly reduced the fitness advantage of wild plants when considering seeds produced per reproductive plant and per emerged seedling, and F2 plants often became indistinguishable from the wilds. Wild fitness remained superior when seedling emergence was also considered as part of fitness, but the fitness of F2 hybrids relative to wild plants more than quadrupled with the addition of interspecific competitors and high densities of intraspecific competitors. Meanwhile, contrary to prediction, lower hybrid frequency reduced wild fitness advantage. These results emphasize the importance of taking a full life cycle

  2. Fitness of crop-wild hybrid sunflower under competitive conditions: implications for crop-to-wild introgression.

    Directory of Open Access Journals (Sweden)

    Kristin L Mercer

    Full Text Available Understanding the likelihood and extent of introgression of novel alleles in hybrid zones requires comparison of lifetime fitness of parents and hybrid progeny. However, fitness differences among cross types can vary depending on biotic conditions, thereby influencing introgression patterns. Based on past work, we predicted that increased competition would enhance introgression between cultivated and wild sunflower (Helianthus annuus by reducing fitness advantages of wild plants. To test this prediction, we established a factorial field experiment in Kansas, USA where we monitored the fitness of four cross types (Wild, F1, F2, and BCw hybrids under different levels of interspecific and intraspecific competition. Intraspecific manipulations consisted both of density of competitors and of frequency of crop-wild hybrids. We recorded emergence of overwintered seeds, survival to reproduction, and numbers of seeds produced per reproductive plant. We also calculated two compound fitness measures: seeds produced per emerged seedling and seeds produced per planted seed. Cross type and intraspecific competition affected emergence and survival to reproduction, respectively. Further, cross type interacted with competitive treatments to influence all other fitness traits. More intense competition treatments, especially related to density of intraspecific competitors, repeatedly reduced the fitness advantage of wild plants when considering seeds produced per reproductive plant and per emerged seedling, and F2 plants often became indistinguishable from the wilds. Wild fitness remained superior when seedling emergence was also considered as part of fitness, but the fitness of F2 hybrids relative to wild plants more than quadrupled with the addition of interspecific competitors and high densities of intraspecific competitors. Meanwhile, contrary to prediction, lower hybrid frequency reduced wild fitness advantage. These results emphasize the importance of taking

  3. Fitness of Crop-Wild Hybrid Sunflower under Competitive Conditions: Implications for Crop-to-Wild Introgression

    Science.gov (United States)

    Mercer, Kristin L.; Emry, D. Jason; Snow, Allison A.; Kost, Matthew A.; Pace, Brian A.; Alexander, Helen M.

    2014-01-01

    Understanding the likelihood and extent of introgression of novel alleles in hybrid zones requires comparison of lifetime fitness of parents and hybrid progeny. However, fitness differences among cross types can vary depending on biotic conditions, thereby influencing introgression patterns. Based on past work, we predicted that increased competition would enhance introgression between cultivated and wild sunflower (Helianthus annuus) by reducing fitness advantages of wild plants. To test this prediction, we established a factorial field experiment in Kansas, USA where we monitored the fitness of four cross types (Wild, F1, F2, and BCw hybrids) under different levels of interspecific and intraspecific competition. Intraspecific manipulations consisted both of density of competitors and of frequency of crop-wild hybrids. We recorded emergence of overwintered seeds, survival to reproduction, and numbers of seeds produced per reproductive plant. We also calculated two compound fitness measures: seeds produced per emerged seedling and seeds produced per planted seed. Cross type and intraspecific competition affected emergence and survival to reproduction, respectively. Further, cross type interacted with competitive treatments to influence all other fitness traits. More intense competition treatments, especially related to density of intraspecific competitors, repeatedly reduced the fitness advantage of wild plants when considering seeds produced per reproductive plant and per emerged seedling, and F2 plants often became indistinguishable from the wilds. Wild fitness remained superior when seedling emergence was also considered as part of fitness, but the fitness of F2 hybrids relative to wild plants more than quadrupled with the addition of interspecific competitors and high densities of intraspecific competitors. Meanwhile, contrary to prediction, lower hybrid frequency reduced wild fitness advantage. These results emphasize the importance of taking a full life cycle

  4. Morphology and stucture of wild apple (Malus silvestris Mill..common pear (Pyrus cofnmunis L. and Chaenomeles japonica (Thunb Lindl. seeds

    Directory of Open Access Journals (Sweden)

    Stanisław Pelc

    2014-01-01

    Full Text Available The outer and inner structure of wild apple (Malus silvestris Mill., common pear (Pyrus communis L. and Chaenomeles japonica (Thunb. Lindl. seeds was investigated. It was found that the outer structure exhibits good diagnostic features expressed in the first place in the relief of the seed coat and further in the arrangement and appearance of the site of attachment of the free end of the funiculus and the shape of the seeds. In ripe seeds there is, under the thick seed coat, an endosperm layer completely surrounding the embryo which has large cotyledons and a thick rootlet.

  5. Potential of Finger Millet Indigenous Rhizobacterium Pseudomonas sp. MSSRFD41 in Blast Disease Management—Growth Promotion and Compatibility With the Resident Rhizomicrobiome

    Directory of Open Access Journals (Sweden)

    Jegan Sekar

    2018-05-01

    Full Text Available Finger millet [Eleusine coracona (L. Gaertner] “Ragi” is a nutri-cereal with potential health benefits, and is utilized solely for human consumption in semi-arid regions of Asia and Africa. It is highly vulnerable to blast disease caused by Pyricularia grisea, resulting in 50–100% yield loss. Chemical fungicides are used for the management of blast disease, but with great safety concern. Alternatively, bioinoculants are widely used in promoting seedling efficiency, plant biomass, and disease control. Little is known about the impact of introduced indigenous beneficial rhizobacteria on the rhizosphere microbiota and growth promotion in finger millet. Strain MSSRFD41 exhibited a 22.35 mm zone of inhibition against P. grisea, produces antifungal metabolites, siderophores, hydrolytic enzymes, and IAA, and solubilizes phosphate. Environmental SEM analysis indicated the potential of MSSRFD41 to inhibit the growth of P. grisea by affecting cellular functions, which caused deformation in fungal hyphae. Bioprimed finger millet seeds exhibited significantly higher levels of germination, seedling vigor index, and enhanced shoot and root length compared to control seeds. Cross streaking and RAPD analysis showed that MSSRFD41 is compatible with different groups of rhizobacteria and survived in the rhizosphere. In addition, PLFA analysis revealed no significant difference in microbial biomass between the treated and control rhizosphere samples. Field trials showed that MSSRFD41 treatment significantly reduced blast infestation and enhanced plant growth compared to other treatments. A liquid formulated MSSRFD41 product maintained shelf life at an average of 108 CFU ml−1 over 150 days of storage at 25°C. Overall, results from this study demonstrated that Pseudomonas sp. MSSRFD41, an indigenous rhizobacterial strain, is an alternative, effective, and sustainable resource for the management of P. grisea infestation and growth promotion of finger millet.

  6. Potential of Finger Millet Indigenous Rhizobacterium Pseudomonas sp. MSSRFD41 in Blast Disease Management—Growth Promotion and Compatibility With the Resident Rhizomicrobiome

    Science.gov (United States)

    Sekar, Jegan; Raju, Kathiravan; Duraisamy, Purushothaman; Ramalingam Vaiyapuri, Prabavathy

    2018-01-01

    Finger millet [Eleusine coracona (L). Gaertner] “Ragi” is a nutri-cereal with potential health benefits, and is utilized solely for human consumption in semi-arid regions of Asia and Africa. It is highly vulnerable to blast disease caused by Pyricularia grisea, resulting in 50–100% yield loss. Chemical fungicides are used for the management of blast disease, but with great safety concern. Alternatively, bioinoculants are widely used in promoting seedling efficiency, plant biomass, and disease control. Little is known about the impact of introduced indigenous beneficial rhizobacteria on the rhizosphere microbiota and growth promotion in finger millet. Strain MSSRFD41 exhibited a 22.35 mm zone of inhibition against P. grisea, produces antifungal metabolites, siderophores, hydrolytic enzymes, and IAA, and solubilizes phosphate. Environmental SEM analysis indicated the potential of MSSRFD41 to inhibit the growth of P. grisea by affecting cellular functions, which caused deformation in fungal hyphae. Bioprimed finger millet seeds exhibited significantly higher levels of germination, seedling vigor index, and enhanced shoot and root length compared to control seeds. Cross streaking and RAPD analysis showed that MSSRFD41 is compatible with different groups of rhizobacteria and survived in the rhizosphere. In addition, PLFA analysis revealed no significant difference in microbial biomass between the treated and control rhizosphere samples. Field trials showed that MSSRFD41 treatment significantly reduced blast infestation and enhanced plant growth compared to other treatments. A liquid formulated MSSRFD41 product maintained shelf life at an average of 108 CFU ml−1 over 150 days of storage at 25°C. Overall, results from this study demonstrated that Pseudomonas sp. MSSRFD41, an indigenous rhizobacterial strain, is an alternative, effective, and sustainable resource for the management of P. grisea infestation and growth promotion of finger millet. PMID:29875748

  7. Potential of Finger Millet Indigenous Rhizobacterium Pseudomonas sp. MSSRFD41 in Blast Disease Management-Growth Promotion and Compatibility With the Resident Rhizomicrobiome.

    Science.gov (United States)

    Sekar, Jegan; Raju, Kathiravan; Duraisamy, Purushothaman; Ramalingam Vaiyapuri, Prabavathy

    2018-01-01

    Finger millet [ Eleusine coracona (L). Gaertner] "Ragi" is a nutri-cereal with potential health benefits, and is utilized solely for human consumption in semi-arid regions of Asia and Africa. It is highly vulnerable to blast disease caused by Pyricularia grisea , resulting in 50-100% yield loss. Chemical fungicides are used for the management of blast disease, but with great safety concern. Alternatively, bioinoculants are widely used in promoting seedling efficiency, plant biomass, and disease control. Little is known about the impact of introduced indigenous beneficial rhizobacteria on the rhizosphere microbiota and growth promotion in finger millet. Strain MSSRFD41 exhibited a 22.35 mm zone of inhibition against P. grisea , produces antifungal metabolites, siderophores, hydrolytic enzymes, and IAA, and solubilizes phosphate. Environmental SEM analysis indicated the potential of MSSRFD41 to inhibit the growth of P. grisea by affecting cellular functions, which caused deformation in fungal hyphae. Bioprimed finger millet seeds exhibited significantly higher levels of germination, seedling vigor index, and enhanced shoot and root length compared to control seeds. Cross streaking and RAPD analysis showed that MSSRFD41 is compatible with different groups of rhizobacteria and survived in the rhizosphere. In addition, PLFA analysis revealed no significant difference in microbial biomass between the treated and control rhizosphere samples. Field trials showed that MSSRFD41 treatment significantly reduced blast infestation and enhanced plant growth compared to other treatments. A liquid formulated MSSRFD41 product maintained shelf life at an average of 10 8 CFU ml -1 over 150 days of storage at 25°C. Overall, results from this study demonstrated that Pseudomonas sp. MSSRFD41, an indigenous rhizobacterial strain, is an alternative, effective, and sustainable resource for the management of P. grisea infestation and growth promotion of finger millet.

  8. Development of eSSR-Markers in Setaria italica and Their Applicability in Studying Genetic Diversity, Cross-Transferability and Comparative Mapping in Millet and Non-Millet Species.

    Science.gov (United States)

    Kumari, Kajal; Muthamilarasan, Mehanathan; Misra, Gopal; Gupta, Sarika; Subramanian, Alagesan; Parida, Swarup Kumar; Chattopadhyay, Debasis; Prasad, Manoj

    2013-01-01

    Foxtail millet (Setariaitalica L.) is a tractable experimental model crop for studying functional genomics of millets and bioenergy grasses. But the limited availability of genomic resources, particularly expressed sequence-based genic markers is significantly impeding its genetic improvement. Considering this, we attempted to develop EST-derived-SSR (eSSR) markers and utilize them in germplasm characterization, cross-genera transferability and in silico comparative mapping. From 66,027 foxtail millet EST sequences 24,828 non-redundant ESTs were deduced, representing ~16 Mb, which revealed 534 (~2%) eSSRs in 495 SSR containing ESTs at a frequency of 1/30 kb. A total of 447 pp were successfully designed, of which 327 were mapped physically onto nine chromosomes. About 106 selected primer pairs representing the foxtail millet genome showed high-level of cross-genera amplification at an average of ~88% in eight millets and four non-millet species. Broad range of genetic diversity (0.02-0.65) obtained in constructed phylogenetic tree using 40 eSSR markers demonstrated its utility in germplasm characterizations and phylogenetics. Comparative mapping of physically mapped eSSR markers showed considerable proportion of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (~68%), maize (~61%) and rice (~42%) chromosomes. Synteny analysis of eSSRs of foxtail millet, rice, maize and sorghum suggested the nested chromosome fusion frequently observed in grass genomes. Thus, for the first time we had generated large-scale eSSR markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species.

  9. Development of eSSR-Markers in Setaria italica and Their Applicability in Studying Genetic Diversity, Cross-Transferability and Comparative Mapping in Millet and Non-Millet Species.

    Directory of Open Access Journals (Sweden)

    Kajal Kumari

    Full Text Available Foxtail millet (Setariaitalica L. is a tractable experimental model crop for studying functional genomics of millets and bioenergy grasses. But the limited availability of genomic resources, particularly expressed sequence-based genic markers is significantly impeding its genetic improvement. Considering this, we attempted to develop EST-derived-SSR (eSSR markers and utilize them in germplasm characterization, cross-genera transferability and in silico comparative mapping. From 66,027 foxtail millet EST sequences 24,828 non-redundant ESTs were deduced, representing ~16 Mb, which revealed 534 (~2% eSSRs in 495 SSR containing ESTs at a frequency of 1/30 kb. A total of 447 pp were successfully designed, of which 327 were mapped physically onto nine chromosomes. About 106 selected primer pairs representing the foxtail millet genome showed high-level of cross-genera amplification at an average of ~88% in eight millets and four non-millet species. Broad range of genetic diversity (0.02-0.65 obtained in constructed phylogenetic tree using 40 eSSR markers demonstrated its utility in germplasm characterizations and phylogenetics. Comparative mapping of physically mapped eSSR markers showed considerable proportion of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (~68%, maize (~61% and rice (~42% chromosomes. Synteny analysis of eSSRs of foxtail millet, rice, maize and sorghum suggested the nested chromosome fusion frequently observed in grass genomes. Thus, for the first time we had generated large-scale eSSR markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species.

  10. Evaluation of finger millet incorporated noodles for nutritive value and glycemic index

    OpenAIRE

    Shukla, Kamini; Srivastava, Sarita

    2011-01-01

    The present study was undertaken to develop finger millet incorporated noodles for diabetic patients. Finger millet variety VL-149 was taken. The finger millet flour and refined wheat flour (RWF) were evaluated for nutrient composition. The finger millet flour (FMF) was blended in various proportions (30 to 50%) in refined wheat flour and used for the preparation of noodles. Control consisted of RWF noodles. Sensory quality and nutrient composition of finger millet noodles was evaluated. The ...

  11. Replacement Value of fermented millet ( Pennisetum americanum ...

    African Journals Online (AJOL)

    The replacement value of fermented millet for maize in the diets of Clarias gariepinus fingerlings reared in a recirculation system was determined. Five isonitrogenous diets were formulated to contain graded levels of fermented millet meal replacing 0, 20, 40, 60 and 80% of maize and fed to triplicate groups of fingerlings ...

  12. Crop-to-wild gene flow and its fitness consequences for a wild fruit tree: Towards a comprehensive conservation strategy of the wild apple in Europe.

    Science.gov (United States)

    Feurtey, Alice; Cornille, Amandine; Shykoff, Jacqui A; Snirc, Alodie; Giraud, Tatiana

    2017-02-01

    Crop-to-wild gene flow can reduce the fitness and genetic integrity of wild species. Malus sylvestris , the European crab-apple fruit tree in particular, is threatened by the disappearance of its habitat and by gene flow from its domesticated relative , Malus domestica . With the aims of evaluating threats for M. sylvestris and of formulating recommendations for its conservation, we studied here, using microsatellite markers and growth experiments: (i) hybridization rates in seeds and trees from a French forest and in seeds used for replanting crab apples in agrosystems and in forests, (ii) the impact of the level of M. domestica ancestry on individual tree fitness and (iii) pollen dispersal abilities in relation to crop-to-wild gene flow. We found substantial contemporary crop-to-wild gene flow in crab-apple tree populations and superior fitness of hybrids compared to wild seeds and seedlings. Using paternity analyses, we showed that pollen dispersal could occur up to 4 km and decreased with tree density. The seed network furnishing the wild apple reintroduction agroforestry programmes was found to suffer from poor genetic diversity, introgressions and species misidentification. Overall, our findings indicate supported threats for the European wild apple steering us to provide precise recommendations for its conservation.

  13. Striga: A Persistent Problem on Millets

    KAUST Repository

    Kountche, Boubacar Amadou; Al-Babili, Salim; Haussmann, B.I.G.

    2017-01-01

    Striga are obligate root-parasitic plants of the major agricultural cereal crops, including millets, in tropical and semi-arid regions of Africa, Middle East, Asia, and Australia. Consequently, they cause severe to even complete losses in crop grain yield. Though limited in their efficiency, the control strategies available today represent major progress toward combating Striga when compared with the absence of any means some years ago. Hence, efforts have led to the development of powerful approaches for understanding and exploiting the complex intricate host-parasitic plant interactions. It is widely agreed that genetic resistance is the most practical and economically feasible method for sustainable control of Striga. Hence, research efforts have been deployed over the past decades to identify resistance sources in certain millet crops, principally sorghum and pearl millet, to characterize the mechanisms underlying the resistance and to understand the genetic basis of the identified resistance phenotype. Furthermore, application of the modern breeding tools, such as molecular markers, has revolutionized the field of search for Striga resistance. Information thus generated have been extensively used to identify several sources of resistance to Striga and individual genes/QTLs conferring host-plant resistance have been deployed for improving Striga resistance in sorghum varieties. More interestingly, we are facing an accelerated progress in the genomic and biotechnological research that should soon provide important understanding of some crucial developmental mechanisms in both the parasite and their host plants, thereby enhancing the efficiency of breeding for Striga resistance in millets. In this paper we provide a detailed state-of-the-art account on the recent progress and perspectives for Striga research and management in millets.

  14. Striga: A Persistent Problem on Millets

    KAUST Repository

    Kountche, Boubacar Amadou

    2017-01-07

    Striga are obligate root-parasitic plants of the major agricultural cereal crops, including millets, in tropical and semi-arid regions of Africa, Middle East, Asia, and Australia. Consequently, they cause severe to even complete losses in crop grain yield. Though limited in their efficiency, the control strategies available today represent major progress toward combating Striga when compared with the absence of any means some years ago. Hence, efforts have led to the development of powerful approaches for understanding and exploiting the complex intricate host-parasitic plant interactions. It is widely agreed that genetic resistance is the most practical and economically feasible method for sustainable control of Striga. Hence, research efforts have been deployed over the past decades to identify resistance sources in certain millet crops, principally sorghum and pearl millet, to characterize the mechanisms underlying the resistance and to understand the genetic basis of the identified resistance phenotype. Furthermore, application of the modern breeding tools, such as molecular markers, has revolutionized the field of search for Striga resistance. Information thus generated have been extensively used to identify several sources of resistance to Striga and individual genes/QTLs conferring host-plant resistance have been deployed for improving Striga resistance in sorghum varieties. More interestingly, we are facing an accelerated progress in the genomic and biotechnological research that should soon provide important understanding of some crucial developmental mechanisms in both the parasite and their host plants, thereby enhancing the efficiency of breeding for Striga resistance in millets. In this paper we provide a detailed state-of-the-art account on the recent progress and perspectives for Striga research and management in millets.

  15. Intervarietal variations in various oxidative stress markers and antioxidant potential of finger millet (Eleusine coracana) subjected to drought stress.

    Science.gov (United States)

    Bartwal, Arti; Pande, Anjali; Sharma, Priyadarshini; Arora, Sandeep

    2016-07-01

    Drought is a major form of abiotic stress leading to lower crop productivity. Experiment was carried out for selecting the most tolerant genotype among six different genotypes of finger millet under drought stress. Seeds of six finger millet genotypes were sown in pots and grown for 35 days. After this period, drought was induced by withholding watering for stressed plants while control plants were watered regularly for comparison. Among all six different varieties of finger millet screened (PR202, PES400, PRM6107, VL283, VL328 and VL149) under varying intensities of drought stress,PRM6107 and PR202 showed highest stress tolerance by limiting excessive accumulation of reactive oxygen species (ROS) through activation of ROS scavenging antioxidative enzymes. A 200% increase in ascorbate content was recorded in PRM6107 and PR202, while in other varieties limited increase in ascorbate content was observed. Maximum decrease in chlorophyll content was observed in VL328 (83%) while least drop was observed in VL149 (65%). Relative water content indicated that PR202 was able to retain maximum water content under stress, as it recorded least drop in relative water content (55%), contributing to its better survival under stress. In conclusion finger millet genotypes PRM6107 and PR202 possessed maximum drought tolerance potential and thus may be used for allele mining of drought tolerant genes, which can further be employed for the development of more drought stress tolerant staple crops using biotechnological approach.

  16. Seed viability of five wild Saudi Arabian species by germination and X-ray tests.

    Science.gov (United States)

    Al-Hammad, B A; Al-Ammari, B S

    2017-09-01

    Our objective was to evaluate the usefulness of the germination vs. the X-ray test in determining the initial viability of seeds of five wild species ( Moringa peregrina , Abrus precatorius , Arthrocnemum macrostachyum , Acacia ehrenbergiana and Acacia tortilis ) from Saudi Arabia. Usually several days were required to determine the viability of all five species via germination tests. However, X-ray test will give immediate results on filled/viable seeds. Seeds of all species, except Acacia ehrenbergiana and Acacia tortilis showed high viability in both germination (96-72% at 25/15 °C, 94-70% at 35/25 °C) and X-ray (100-80%) test. Furthermore, there was a general agreement between the germination (19%, 14% at 25/15 °C and 17% and 12% at 35/25 °C) and X-ray (8%, 4%) tests in which seed viability of Acacia ehrenbergiana and Acacia tortilis was very low due to insect damaged embryo as shown in X-ray analysis. Seeds of Abruspreca torius have physical dormancy, which was broken by scarification in concentrated sulfuric acid (10 min), and they exhibited high viability in both the germination (83% at 25/15 °C and 81% at 35/25 °C) and X-ray (96%) tests. Most of the nongerminated seeds of the five species except those of Acacia ehrenbergiana and Acacia tortilis , were alive as judged by the tetrazolium test (TZ). Thus, for the five species examined, the X-ray test was proved to be a good and rapid predictor of seed viability.

  17. 7 CFR 201.50 - Weed seed.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS Purity Analysis in the Administration of the Act § 201.50 Weed seed. Seeds (including bulblets or... sieve are considered weed seeds. For wild onion and wild garlic (Allium spp.) bulblets classed as inert...

  18. Millet's Shooting Stars

    Science.gov (United States)

    Beech, M.

    1988-12-01

    In this essay two paintings by the French artist Jean-Francois Millet are described. These paintings, Les Etoiles Filantes and Nuit Etoilée are particularly interesting since they demonstrate the rare artistic employment of the shooting-star image and metaphor.

  19. Evaluation of finger millet incorporated noodles for nutritive value and glycemic index.

    Science.gov (United States)

    Shukla, Kamini; Srivastava, Sarita

    2014-03-01

    The present study was undertaken to develop finger millet incorporated noodles for diabetic patients. Finger millet variety VL-149 was taken. The finger millet flour and refined wheat flour (RWF) were evaluated for nutrient composition. The finger millet flour (FMF) was blended in various proportions (30 to 50%) in refined wheat flour and used for the preparation of noodles. Control consisted of RWF noodles. Sensory quality and nutrient composition of finger millet noodles was evaluated. The 30% finger millet incorporated noodles were selected best on the basis of sensory evaluation. Noodles in that proportion along with control were evaluated for glycemic response. Nutrient composition of noodles showed that 50% finger millet incorporated noodles contained highest amount of crude fat (1.15%), total ash (1.40%), crude fiber (1.28%), carbohydrate (78.54%), physiological energy (351.36 kcal), insoluble dietary fiber (5.45%), soluble dietary fiber (3.71%), iron (5.58%) and calcium (88.39%), respectively. However, control RWF noodles contained highest amount of starch (63.02%), amylose (8.72%) and amylopectin (54.29%). The glycemic index (GI) of 30% finger millet incorporated noodles (best selected by sensory evaluation) was observed significantly lower (45.13) than control noodles (62.59). It was found that finger millet flour incorporated noodles were found nutritious and showed hypoglycemic effect.

  20. Mobilization and Role of Starch, Protein, and Fat Reserves during Seed Germination of Six Wild Grassland Species.

    Science.gov (United States)

    Zhao, Ming; Zhang, Hongxiang; Yan, Hong; Qiu, Lu; Baskin, Carol C

    2018-01-01

    Since seed reserves can influence seed germination, the quantitative and qualitative differences in seed reserves may relate to the germination characteristics of species. The purpose of our study was to evaluate the correlation between germination and seed reserves, as well as their mobilization during germination of six grassland species ( Chloris virgata , Kochia scoparia , Lespedeza hedysaroides , Astragalus adsurgens , Leonurus artemisia , and Dracocephalum moldavica ) and compare the results with domesticated species. We measured starch, protein, and fat content in dry seeds and the initial absorption of water during imbibition. Starch, soluble protein, fat, and soluble sugar content also were determined at five stages during germination. Starch, protein, and fat reserves in dry seeds were not significantly correlated with germination percentage and rate (speed), but soluble sugar and soluble protein contents at different germination stages were positively significantly correlated with germination rate for the six species. Starch was mainly used during seed imbibition, and soluble protein was used from the imbibition stage to the highest germination stage. Fat content for all species remained relatively constant throughout germination for six species, regardless of the proportion of other seed reserves in the seeds. Our results for fat utilization differ from those obtained for cultivated grasses and legumes. These results provide new insight on the role of seed reserves as energy resources in germination for wild species.

  1. Mobilization and Role of Starch, Protein, and Fat Reserves during Seed Germination of Six Wild Grassland Species

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    2018-02-01

    Full Text Available Since seed reserves can influence seed germination, the quantitative and qualitative differences in seed reserves may relate to the germination characteristics of species. The purpose of our study was to evaluate the correlation between germination and seed reserves, as well as their mobilization during germination of six grassland species (Chloris virgata, Kochia scoparia, Lespedeza hedysaroides, Astragalus adsurgens, Leonurus artemisia, and Dracocephalum moldavica and compare the results with domesticated species. We measured starch, protein, and fat content in dry seeds and the initial absorption of water during imbibition. Starch, soluble protein, fat, and soluble sugar content also were determined at five stages during germination. Starch, protein, and fat reserves in dry seeds were not significantly correlated with germination percentage and rate (speed, but soluble sugar and soluble protein contents at different germination stages were positively significantly correlated with germination rate for the six species. Starch was mainly used during seed imbibition, and soluble protein was used from the imbibition stage to the highest germination stage. Fat content for all species remained relatively constant throughout germination for six species, regardless of the proportion of other seed reserves in the seeds. Our results for fat utilization differ from those obtained for cultivated grasses and legumes. These results provide new insight on the role of seed reserves as energy resources in germination for wild species.

  2. Baseline data on wild flora of crop field boundaries in the agro-ecosystem of pothwar plateau, pakistan

    International Nuclear Information System (INIS)

    Sarwar, M.; Hussain, I.; Anwar, M.; Ashraf, N.; Mirza, S.N.

    2017-01-01

    Wild flora along crop field boundaries in farmlands not only increases habitat heterogeneity but also serves multiple beneficial functions. We collected baseline data on wild flora bordering the crop fields of Pothwar plateau. Overall we selected four study sites including two sites of wheat-maize/millet and two of wheat-groundnut cropping system. We recorded 51 species of plants including 12 species of trees, 14 species of shrubs and 25 species of grasses/herbs. Two tree species namely Acacia modesta and Zizyphus mauritiana and two shrub species namely Calotropis procera and Ziziphus nummularia were common indicating their widespread presence in the area. Among herbs/grasses Abutilon indicum, Amaranthus spp., Cyperus rotundus and Erogrostis poroles were common at sites with wheat-maize/millet cropping pattern while Chenopodium album, Datura stramonium and Tribulus terrestris were common at sites with wheat-groundnut cropping system. The tree and shrub densities did not differ significantly among the study sites. Wheat-groundnut cropping system had higher populations/diversity/species of shrubs as compared to wheat-maize/millet cropping system. Density of grasses/herbs significantly differed across the study sites but there was no association of herb/grass density with cropping practice. (author)

  3. Evolution of finger millet: evidence from random amplified polymorphic DNA.

    Science.gov (United States)

    Hilu, K W

    1995-04-01

    Finger millet (Eleusine coracana ssp. coracana) is an annual tetraploid member of a predominantly African genus. The crop is believed to have been domesticated from the tetraploid E. coracana ssp. africana. Cytogenetic and isozyme data point to the allopolyploid nature of the species and molecular information has shown E. indica to be one of the genomic donors. A recent isozyme study questioned the proposed phylogenetic relationship between finger millet and its direct ancestor subspecies africana. An approach using random amplified polymorphic DNA (RAPD) was employed in this study to examine genetic diversity and to evaluate hypotheses concerning the evolution of domesticated and wild annual species of Eleusine. Unlike previous molecular approaches, the RAPD study revealed genetic diversity in the crop. The pattern of genetic variation was loosely correlated to geographic distribution. The allotetraploid nature of the crop was confirmed and molecular markers that can possibly identify the other genomic donor were proposed. Genotypes of subspecies africana did not group closely with those of the crop but showed higher affinities to E. indica, reflecting the pattern of similarity revealed by the isozyme study. The multiple origin of subspecies africana could explain the discrepancy between the isozyme-RAPD evidence and previous information. The RAPD study showed the close genetic affinity of E. tristachya to the E. coracana--E. indica group and understood the distinctness of E. multiflora.

  4. Seed viability of five wild Saudi Arabian species by germination and X-ray tests

    Directory of Open Access Journals (Sweden)

    B.A. Al-Hammad

    2017-09-01

    Full Text Available Our objective was to evaluate the usefulness of the germination vs. the X-ray test in determining the initial viability of seeds of five wild species (Moringa peregrina, Abrus precatorius, Arthrocnemum macrostachyum, Acacia ehrenbergiana and Acacia tortilis from Saudi Arabia. Usually several days were required to determine the viability of all five species via germination tests. However, X-ray test will give immediate results on filled/viable seeds. Seeds of all species, except Acacia ehrenbergiana and Acacia tortilis showed high viability in both germination (96–72% at 25/15 °C, 94–70% at 35/25 °C and X-ray (100–80% test. Furthermore, there was a general agreement between the germination (19%, 14% at 25/15 °C and 17% and 12% at 35/25 °C and X-ray (8%, 4% tests in which seed viability of Acacia ehrenbergiana and Acacia tortilis was very low due to insect damaged embryo as shown in X-ray analysis. Seeds of Abruspreca torius have physical dormancy, which was broken by scarification in concentrated sulfuric acid (10 min, and they exhibited high viability in both the germination (83% at 25/15 °C and 81% at 35/25 °C and X-ray (96% tests. Most of the nongerminated seeds of the five species except those of Acacia ehrenbergiana and Acacia tortilis, were alive as judged by the tetrazolium test (TZ. Thus, for the five species examined, the X-ray test was proved to be a good and rapid predictor of seed viability.

  5. Occurrence of Viruses Infecting Foxtail Millet (Setaria italica in South Korea

    Directory of Open Access Journals (Sweden)

    Chung Youl Park

    2017-03-01

    Full Text Available In 2015, a nationwide survey was carried out to investigate about occurrence pattern of virus infecting foxtail millet. A total 100 foxtail millet leaf samples showing virus-like and abnormal symptoms were collected in the seven main cultivated regions of Korea. Four viruses were identified using reverse transcription polymerase chain reaction and RNA sequencing. Of the collected 100 foxtail millet samples, 10 were Barley virus G (BVG, 4 were Rice stripe virus (RSV, 1 was Northern cereal mosaic virus (NCMV, and 1 was Sugarcane yellow leaf virus (ScYLV infection. To our best knowledge, this is the first report of BVG and NCMV infecting foxtail millet in Korea and ScYLV is expected as new Polerovirus species. This research will be useful in breeding for improved disease-resistant foxtail millet cultivars.

  6. Enhanced seed viability and lipid compositional changes during natural aging by suppressing phospholipase Dα in soybean seed

    Science.gov (United States)

    Lee, Junghoon; Welti, Ruth; Roth, Mary; Schapaugh, William T.; Li, Jiarui; Trick, Harold N.

    2013-01-01

    Summary Changes in phospholipid composition and consequent loss of membrane integrity are correlated with loss of seed viability. Furthermore, phospholipid compositional changes affect the composition of the triacylglycerols, i.e. the storage lipids. Phospholipase D (PLD) catalyzes the hydrolysis of phospholipids to phosphatidic acid, and PLDα is an abundant PLD isoform. Although wild type seeds stored for 33 months were non-viable, 30 to 50% of PLDα-knockdown (PLD-KD) soybean seeds stored for 33 months germinated. Wild type and PLD-KD seeds increased in lysophospholipid levels and in triacylglycerol fatty acid unsaturation during aging, but the levels of lysophospholipids increased more in wild type than in PLD-KD seeds. The loss of viability of wild type seeds was correlated with alterations in ultrastructure, including detachment of the plasma membrane from the cell wall complex and disorganization of oil bodies. The data demonstrate that, during natural aging, PLDα affects the soybean phospholipid profile and the triacylglycerol profile. Suppression of PLD activity in soybean seed has potential for improving seed quality during long-term storage. PMID:21895945

  7. Impact of storage conditions on seed germination and seedling growth of wild oat (Avena fatua L. at different temperatures

    Directory of Open Access Journals (Sweden)

    Marija Sarić-Krsmanović

    2015-12-01

    Full Text Available The influence of seed storage conditions and different temperatures (5˚C, 10˚C, 15˚C, 20˚C, 25˚C, 30˚C and 26˚C/21˚C during germination and seedling development on seed germination, shoot length and germination rate of wild oat (Avena fatua L. was examined. Germinated seeds were counted daily over a period of ten days and shoot length was measured on the last day, while germination rates were calculated from those measurements. The results showed that seed storage under controlled conditions (T1: temperature 24±1°C, humidity 40-50%; T2: temperature 26±1°C, humidity 70-80% and T3: temperature 4˚C for periods of 3 (t1 and 12 (t2 months had a significant influence on germination of wild oat seeds. The percentage of germinated seeds under all examined temperatures was higher when they were stored for 12 months under controlled temperature and humidity. The results also showed that temperature had a significant effect on the percentage of germination and germination rate of A. fatua seeds. The highest total germination occurred at 15˚C temperature (T1: t1 - 41.25%, t2 - 44.37%; T2: t1 - 28.13%, t2 - 34.37%; T3: t1 - 10.63%, t2 - 12.50%. Germination percentage under an alternating day /night photoperiod at 26˚C/21˚C temperature was higher in all treatment variants (T1: t1 - 8.13%, t2 - 10.00%; T2: t1 - 11.87%, t2 - 13.13%; T3: t1 - 2.42%, t2 - 2.70% than germination in the dark at 25˚C, 30˚C and 5˚C.

  8. Small millet farmers increase yields through participatory varietal ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Small millets, despite being rich in micronutrients and dietary fibre and known for their low glycemic index and tolerance of water stress, are in decline in South Asia. Existing varieties suffer from low yield and farmers lack access to improved varieties. The Revalorising Small Millets in Rainfed Regions of South Asia ...

  9. Identification and molecular characterization of 48 kDa calcium binding protein as calreticulin from finger millet (Eleusine coracana) using peptide mass fingerprinting and transcript profiling.

    Science.gov (United States)

    Singh, Manoj; Metwal, Mamta; Kumar, Vandana A; Kumar, Anil

    2016-01-30

    Attempts were made to identify and characterize the calcium binding proteins (CaBPs) in grain filling stages of finger millet using proteomics, bioinformatics and molecular approaches. A distinctly observed blue color band of 48 kDa stained by Stains-all was eluted and analyzed as calreticulin (CRT) using nano liquid chromatography-tandem mass spectrometry (nano LC-MS). Based on the top hits of peptide mass fingerprinting results, conserved primers were designed for isolation of the CRT gene from finger millet using calreticulin sequences of different cereals. The deduced nucleotide sequence analysis of 600 bp amplicon showed up to 91% similarity with CRT gene(s) of rice and other plant species and designated as EcCRT1. Transcript profiling of EcCRT1 showed different levels of relative expression at different stages of developing spikes. The higher expression of EcCRT1 transcripts and protein were observed in later stages of developing spikes which might be due to greater translational synthesis of EcCRT1 protein during seed maturation in finger millet. Preferentially higher synthesis of this CaBP during later stages of grain filling may be responsible for the sequestration of calcium in endoplasmic reticulum of finger millet grains. © 2015 Society of Chemical Industry.

  10. Overexpression of the autophagy-related gene SiATG8a from foxtail millet (Setaria italica L.) confers tolerance to both nitrogen starvation and drought stress in Arabidopsis.

    Science.gov (United States)

    Li, Wei-wei; Chen, Ming; Zhong, Li; Liu, Jia-ming; Xu, Zhao-shi; Li, Lian-cheng; Zhou, Yong-Bin; Guo, Chang-Hong; Ma, You-Zhi

    2015-12-25

    Autophagy is an evolutionarily conserved biological process in all eukaryotes for the degradation of intracellular components for nutrient recycling. Autophagy is known to be involved in responses to low nitrogen stress in Arabidopsis. Foxtail millet has strong abiotic stress resistance to both low nutrient and drought stress. However, to date, there have only been a few genes reported to be related with abiotic stress resistance in foxtail millet. In this study, we identified an autophagy-related gene, SiATG8a, from foxtail millet. SiATG8a is mainly expressed in stems and its expression was dramatically induced by drought stress and nitrogen starvation treatments. SiATG8a was localized in the membrane and cytoplasm of foxtail millet. Overexpression of SiATG8a in Arabidopsis conferred tolerance to both nitrogen starvation and to drought stress. Under nitrogen starvation conditions, the SiATG8a transgenic plants had larger root and leaf areas and accumulated more total nitrogen than wild-type plants. The transgenic plants had lower total protein concentrations than did the WT plants. Under drought stress, the SiATG8a transgenic plants had higher survival rates, chlorophyll content, and proline content, but had lower MDA content than wild type plants. Taken together, our results represent the first identified case where overexpression of autophagy related gene can simultaneously improve plant resistance to low nitrogen and drought stresses. These findings implicate plant autophagy in plant stress responses to low nitrogen and drought and should be helpful in efforts to improve stresses resistance to nitrogen starvation and drought of crops by genetic transformation. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Optimization and functionality of millet supplemented pasta

    Directory of Open Access Journals (Sweden)

    Amir Gull

    2015-01-01

    Full Text Available AbstractMillets are having superior nutritional qualities and health benefits; hence they can be used for supplementation of pasta. Pasta was prepared using composite flour (CF of durum wheat semolina (96% and carrot pomace (4% supplemented with finger millet flour (FMF, 0-20g, pearl millet flour (PMF, 0-30g and carboxy methyl cellulose (CMC, 2-4g. Second order polynomial described the effect of FMF, PMF and CMC on lightness, firmness, gruel loss and overall acceptability of extruded pasta products. Results indicate that an increasing proportion of finger and pearl millet flour had signed (p≤0.05 negative effect on lightness, firmness, gruel loss and overall acceptability. However, CMC addition showed significant (p≤0. 05 positive effect on firmness, overall acceptability and negative effect on gruel loss of cooked pasta samples. Numeric optimization results showed that optimum values for extruded pasta were 20g FMF, 12g PMF and 4g CMC per 100g of CF and 34ml water with 0.981 desirability. The pasta developed is nutritionally rich as it contains protein (10.16g, fat (6g, dietary fiber (16.71g, calcium (4.23mg, iron (3.99mg and zinc (1.682mg per 100g.

  12. Winery wastewater inhibits seed germination and vegetative growth of common crop species.

    Science.gov (United States)

    Mosse, Kim P M; Patti, Antonio F; Christen, Evan W; Cavagnaro, Timothy R

    2010-08-15

    The ability to reuse winery wastewater would be of significant benefit to the wine industry, as it could potentially be a cost-effective method of wastewater management, whilst at the same time providing a valuable water resource. This study investigated the effects of different dilutions of a semi-synthetic winery wastewater on the growth and germination of four common crop species in a glasshouse study; barley (Hordeum vulgare), millet (Pennisetum glaucum), lucerne (Medicago sativa) and phalaris (Phalaris aquatica). The wastewater caused a significant delay in the germination of lucerne, millet and phalaris, although overall germination percentage of all species was not affected. Vegetative growth was significantly reduced in all species, with millet being the most severely affected. The germination index of barley correlated very highly (r(2)=0.99) with barley biomass, indicating that barley seed germination bioassays are highly relevant to plant growth, and therefore may be of use as a bioassay for winery wastewater toxicity. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Rheological, thermo-mechanical, and baking properties of wheat-millet flour blends.

    Science.gov (United States)

    Aprodu, Iuliana; Banu, Iuliana

    2015-07-01

    Millet has long been known as a good source of fiber and antioxidants, but only lately started to be exploited by food scientists and food industry as a consequence of increased consumer awareness. In this study, doughs and breads were produced using millet flour in different ratios (10, 20, 30, 40, and 50%) to white, dark, and whole wheat flour. The flour blends were evaluated in terms of rheological and thermo-mechanical properties. Fundamental rheological measurements revealed that the viscosity of the flour formulations increases with wheat flour-extraction rate and decreases with the addition of millet flour. Doughs behavior during mixing, overmixing, pasting, and gelling was established using the Mixolab device. The results of this bread-making process simulation indicate that dough properties become critical for the flour blends with millet levels higher than 30%. The breads were evaluated for volume, texture, and crumb-grain characteristics. The baking test and sensory evaluation results indicated that substitution levels of up to 30% millet flour could be used in composite bread flour. High levels of millet flour (40 and 50%) negatively influenced the loaf volume, crumb texture, and taste. © The Author(s) 2014.

  14. Seed coat microsculpturing is related to genomic components in wild Brassica juncea and Sinapis arvensis.

    Science.gov (United States)

    Wang, Ying-hao; Wei, Wei; Kang, Ding-ming; Ma, Ke-ping

    2013-01-01

    It has been reported that wild Brassica and related species are widely distributed across Xinjiang, China, and there has been an argument for species identification. Seed coat microsculpturing (SCM) is known to be an excellent character for taxonomic and evolutionary studies. By identifying collections from Xinjiang, China, and combining SCM pattern, flow cytometry, and genome-specific DNA markers as well as sexual compatibility with known species, this study aimed to detect potential relationships between SCM and genomic types in wild Brassica and related species. Three wild collections were found to be tetraploid with a SCM reticulate pattern similar to B. juncea, and containing A and B genome-specific loci, indicating relatively high sexual compatibility with B. juncea. The others were diploid, carrying S-genome-specific DNA markers, and having relatively high sexual compatibility with Sinapis arvensis. Moreover, their SCM was in a rugose pattern similar to that of S. arvensis. It was suggested that SCM, as a morphological characteristic, can reflect genomic type, and be used to distinguish B-genome species such as B. juncea from the related S. arvensis. The relationship between SCM and genomic type can support taxonomic studies of the wild Brassica species and related species.

  15. Transcriptional expression analysis of genes involved in regulation of calcium translocation and storage in finger millet (Eleusine coracana L. Gartn.).

    Science.gov (United States)

    Mirza, Neelofar; Taj, Gohar; Arora, Sandeep; Kumar, Anil

    2014-10-25

    Finger millet (Eleusine coracana) variably accumulates calcium in different tissues, due to differential expression of genes involved in uptake, translocation and accumulation of calcium. Ca(2+)/H(+) antiporter (CAX1), two pore channel (TPC1), CaM-stimulated type IIB Ca(2+) ATPase and two CaM dependent protein kinase (CaMK1 and 2) homologs were studied in finger millet. Two genotypes GP-45 and GP-1 (high and low calcium accumulating, respectively) were used to understand the role of these genes in differential calcium accumulation. For most of the genes higher expression was found in the high calcium accumulating genotype. CAX1 was strongly expressed in the late stages of spike development and could be responsible for accumulating high concentrations of calcium in seeds. TPC1 and Ca(2+) ATPase homologs recorded strong expression in the root, stem and developing spike and signify their role in calcium uptake and translocation, respectively. Calmodulin showed strong expression and a similar expression pattern to the type IIB ATPase in the developing spike only and indicating developing spike or even seed specific isoform of CaM affecting the activity of downstream target of calcium transportation. Interestingly, CaMK1 and CaMK2 had expression patterns similar to ATPase and TPC1 in various tissues raising a possibility of their respective regulation via CaM kinase. Expression pattern of 14-3-3 gene was observed to be similar to CAX1 gene in leaf and developing spike inferring a surprising possibility of CAX1 regulation through 14-3-3 protein. Our results provide a molecular insight for explaining the mechanism of calcium accumulation in finger millet. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Enhancement of downy mildew disease resistance in pearl millet by the G_app7 bioactive compound produced by Ganoderma applanatum.

    Science.gov (United States)

    Jogaiah, Sudisha; Shetty, Hunthrike Shekar; Ito, Shin-Ichi; Tran, Lam-Son Phan

    2016-08-01

    Pearl millet (Pennisetum glaucum) stands sixth among the most important cereal crops grown in the semi-arid and arid regions of the world. The downy mildew disease caused by Sclerospora graminicola, an oomycete pathogen, has been recognized as a major biotic constraint in pearl millet production. On the other hand, basidiomycetes are known to produce a large number of antimicrobial metabolites, providing a good source of anti-oomycete agrochemicals. Here, we report the discovery and efficacy of a compound, named G_app7, purified from Ganoderma applanatum on inhibition of growth and development of S. graminicola, as well as the effects of seed treatment with G_app7 on protection of pearl millet from downy mildew. G_app7 consistently demonstrated remarkable effects against S. graminicola by recording significant inhibition of sporangium formation (41.4%), zoospore release (77.5%) and zoospore motility (91%). Analyses of G_app7 compound using two-dimensional nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry revealed its close resemblance to metominostrobin, a derivative of strobilurin group of fungicides. Furthermore, the G_app7 was shown to stably maintain the inhibitory effects at different temperatures between 25 and 80 °C. In addition, the anti-oomycete activity of G_app7 was fairly stable for a period of at least 12 months at 4 °C and was only completely lost after being autoclaved. Seed treatment with G_app7 resulted in a significant increase in disease protection (63%) under greenhouse conditions compared with water control. The identification and isolation of this novel and functional anti-oomycete compound from G. applanatum provide a considerable agrochemical importance for plant protection against downy mildew in an environmentally safe and economical manner. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Effect of Foliar Application of Iron, Zinc and Manganese on Quantitative and Qualitative Characteristics of Two Varieties of Grain Millet

    Directory of Open Access Journals (Sweden)

    H. Javadi

    2016-12-01

    Full Text Available In order to study the effect of foliar application of Fe, Zn and Mn on yield, yield components and protein content of two varieties of grain millet an experiment was conducted as factorial based on randomized complete block design with three replications in research field of Birjand branch, Islamic Azad University at 2010.  In this study two millet varieties including Bastan (Setaria italica and Pishahang (Panicum miliaceum, and six levels of foliar micronutrient fertilizer including control, Fe, Zn, Mn, (Fe+Zn, (Fe+Zn+Mn were investigated. The results indicated that, panicle length, 1000 grain weight and panicle number per m2 were higher in Pishahang than Bastan, but grain yield, number of seeds per panicle, harvest index and protein yield were higher in Bastan. Characteristics such as panicle length, biological yield and harvest index and protein percentage were affected by foliar micronutrient fertilizer but grain yield remained unchanged. Foliar application with (Fe+Zn+Mn increased protein content compared to the control, but it did not affect protein yield. According to the results of this experiment, Bastan millet variety and foliar application of Zn is potent to produce the maximum grain yield, albeit it warrants further studies.

  18. Seed Coat Microsculpturing Is Related to Genomic Components in Wild Brassica juncea and Sinapis arvensis

    OpenAIRE

    Wang, Ying-hao; Wei, Wei; Kang, Ding-ming; Ma, Ke-ping

    2013-01-01

    It has been reported that wild Brassica and related species are widely distributed across Xinjiang, China, and there has been an argument for species identification. Seed coat microsculpturing (SCM) is known to be an excellent character for taxonomic and evolutionary studies. By identifying collections from Xinjiang, China, and combining SCM pattern, flow cytometry, and genome-specific DNA markers as well as sexual compatibility with known species, this study aimed to detect potential relatio...

  19. Cereals for the semi-arid tropics

    International Nuclear Information System (INIS)

    De Wet, J.M.J.

    1989-01-01

    The region of semi-arid tropics is the most famine prone area of the world. This region with nearly one billion people extends across some 20 million square kilometres. Major domesticated cereals adapted to semi-arid regions are sorghum (Sorghum bicolor (L.) Moench), foxtail millet (Setaria italica (L.) P. Beauv.) and pearl millet (Pennisetum glaucum (L.) R. Br.). Several minor cereals are grown as speciality crops, or harvested in the wild in times of severe drought and scarcity. Important in the African Sahel are the fonios Digitaria iburua Stapf, D. exilis (Kapist) Stapf and Brachiaria deflexa (Schumach). C.E. Hubbard. These species are aggressive colonizers and are commonly encouraged as weeds in cultivated fields. Sown genotypes differ from their close wild relatives primarily in the lack of efficient natural seed dispersal. The fonios lend themselves to rapid domestication. Several wild cereals extend well beyond the limits of agriculture into the Sahara. Commonly harvested are the perennial Stipagrostis pungens and Panicum turgidum, and the annual Cenchrus biflorus (kram-kram). Kram-kram yields well under extreme heat and drought stress, and holds promise as a domesticated cereal. Sauwi millet (Panicum sonorum) is promising cereal in arid northwestern Mexico. (author). 31 refs

  20. Physicochemical characteristics of seeds from wild and cultivated castor bean plants (Ricinus communis L.

    Directory of Open Access Journals (Sweden)

    Jose Daniel Mosquera

    2018-01-01

    Full Text Available The castor (Ricinus communis L. is an oilseed plant whose main features are its drought resistance, and its adaptation to eroded, polluted, and low fertility soils. Its oil has a great demand in the industrial sector and it has recently attracted considerable interest for its use in the production of biodiesel and jet fuel. In this study, morphological, physical and chemical characterizations were performed to ascertain the quality of wild (VQ-1 and under cultivation (VQ-7 oil castor seeds. The results showed that there are differences in the morphological and physicochemical characteristics regarding oil content (44,95 vs 33,84%, ash (3,20 vs 2,42%, and 100-seed-weight (45,87 vs 54,23g; similar behavior was recorded when characterizing the oil: kinematic viscosity (269,67 vs 266,44mm2 /s, density (0,9389 vs 0,9465g/cm3 , and acidity index (0,9918 vs 0,5440mg KOH/g for VQ-1 and VQ-7, respectively. Growing conditions to which castor plants were subjected may influence both the final quality of seeds and chemical properties of the oil.

  1. Scope of millet grains as an extender in meat products.

    Science.gov (United States)

    Talukder, Suman; Sharma, B D

    2015-01-01

    India stood first for millet production in the world and plays a significant role in meat production and consumption too. To meet the demand of health conscious consumers for healthy and nutritious meat food item, the incorporation of millet grains and its byproducts to the meat products by the processors can serve the purpose. The multidimensional positive nutritional and functional characteristics millet grain not only improve the acceptability of the meat products but also increase its own demand as a main coarse food grain in competition to the wheat and rice over the world.

  2. Determination of seed viability of eight wild Saudi Arabian species by germination and X-ray tests.

    Science.gov (United States)

    Al-Turki, Turki A; Baskin, Carol C

    2017-05-01

    Our purpose was to evaluate the usefulness of the germination vs. the X-ray test in determining the initial viability of seeds of eight wild species ( Salvia spinosa , Salvia aegyptiaca , Ochradenus baccatus , Ochradenus arabicus , Suaeda aegyptiaca , Suaeda vermiculata , Prosopisfarcta and Panicumturgidum ) from Saudi Arabia. Several days were required to determine viability of all eight species via germination tests, while immediate results on filled/viable seeds were obtained with the X-ray test. Seeds of all the species, except Sa.aegyptiaca , showed high viability in both the germination (98-70% at 25/15 °C, 93-66% at 35/25 °C) and X-ray (100-75%) test. Furthermore, there was general agreement between the germination (10% at 25/15 °C and 8% at 35/25 °C) and X-ray (5%) tests that seed viability of Sa.aegyptiaca was very low, and X-ray analysis revealed that this was due to poor embryo development. Seeds of P.farcta have physical dormancy, which was broken by scarification in concentrated sulfuric acid (10 min), and they exhibited high viability in both the germination (98% at 25/15 °C and 93% at 35/25 °C) and X-ray (98%) test. Most of the nongerminated seeds of the eight species except those of Sa.aegyptiaca were alive as judged by the tetrazolium test (TZ). Thus, for the eight species examined, the X-ray test was a good and rapid predictor of seed viability.

  3. Seed dormancy is modulated in recently evolved chlorsulfuron-resistant Turkish biotypes of wild mustard (Sinapis arvensis

    Directory of Open Access Journals (Sweden)

    Muhamet eTopuz

    2015-07-01

    Full Text Available Biotypes of the broad-leaved wild mustard (Sinapis arvensis L. found in wheat fields of Aegean and Marmara region of Turkey were characterized and shown to have developed resistance to sulfonylurea (chlorsulfuron, an inhibitor of acetolactate synthase (ALS. DNA sequence analysis of the ALS genes from two such resistant (‘R’ biotypes, KNF-R1 and KNF-R2, revealed point mutations, CCT (Pro 197 to TCT (Ser 197 in KNF-R1 and CCT (Pro 197 to ACT (Thr 197 in KNF-R2; these substitutions are consistent with the presence of chlorsulfuron-insensitive ALS enzyme activity in the ‘R’ S. arvensis biotypes. An additional phenotype of chlorsulfuron resistance in the Turkish S. arvensis ‘R’ biotypes was revealed in the form of an altered seed dormancy behavior over 4 to 48 months of dry storage (after-ripening compared to the susceptible (‘S’ biotypes. Seeds of the ‘S’ biotypes dry stored for 4 months had a higher initial germination, which sharply decreased with storage time, while the seeds of the ‘R’ biotypes had lower germination after 4-months storage, rising sharply and peaking thereafter by 24 months’ of dry storage. The ‘R’ biotype seeds continued to maintain a higher germination percentage even after 48 months of after-ripening. The seed weight of ‘R’ and ‘S’ biotypes after-ripened for 4 months was similar but those after-ripened for 48 months differed, ‘R’ seeds were significantly heavier than those of the ‘S’ seeds. Differential seed germinability between ‘S’ and ‘R’ biotypes was found not a case of differential viability, temperature regimen or non-response to pro-germination hormone GA3. These studies are of relevance to ecological fitness of herbicide-resistant biotypes in terms of seed viability and germination.

  4. Seed dormancy is modulated in recently evolved chlorsulfuron-resistant Turkish biotypes of wild mustard (Sinapis arvensis)

    Science.gov (United States)

    Topuz, Muhamet; Nemli, Yildiz; Fatima, Tahira; Mattoo, Autar

    2015-07-01

    Biotypes of the broad-leaved wild mustard (Sinapis arvensis L.) found in wheat fields of Aegean and Marmara region of Turkey were characterized and shown to have developed resistance to sulfonylurea (chlorsulfuron), an inhibitor of acetolactate synthase (ALS). DNA sequence analysis of the ALS genes from two such resistant (‘R’) biotypes, KNF-R1 and KNF-R2, revealed point mutations, CCT (Pro 197) to TCT (Ser 197) in KNF-R1 and CCT (Pro 197) to ACT (Thr 197) in KNF-R2; these substitutions are consistent with the presence of chlorsulfuron-insensitive ALS enzyme activity in the ‘R’ S. arvensis biotypes. An additional phenotype of chlorsulfuron resistance in the Turkish S. arvensis ‘R’ biotypes was revealed in the form of an altered seed dormancy behavior over 4 to 48 months of dry storage (after-ripening) compared to the susceptible (‘S’) biotypes. Seeds of the ‘S’ biotypes dry stored for 4 months had a higher initial germination, which sharply decreased with storage time, while the seeds of the ‘R’ biotypes had lower germination after 4-months storage, rising sharply and peaking thereafter by 24 months’ of dry storage. The ‘R’ biotype seeds continued to maintain a higher germination percentage even after 48 months of after-ripening. The seed weight of ‘R’ and ‘S’ biotypes after-ripened for 4 months was similar but those after-ripened for 48 months differed, ‘R’ seeds were significantly heavier than those of the ‘S’ seeds. Differential seed germinability between ‘S’ and ‘R’ biotypes was found not a case of differential viability, temperature regimen or non-response to pro-germination hormone GA3. These studies are of relevance to ecological fitness of herbicide-resistant biotypes in terms of seed viability and germination.

  5. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential.

    Science.gov (United States)

    Zhang, Gengyun; Liu, Xin; Quan, Zhiwu; Cheng, Shifeng; Xu, Xun; Pan, Shengkai; Xie, Min; Zeng, Peng; Yue, Zhen; Wang, Wenliang; Tao, Ye; Bian, Chao; Han, Changlei; Xia, Qiuju; Peng, Xiaohua; Cao, Rui; Yang, Xinhua; Zhan, Dongliang; Hu, Jingchu; Zhang, Yinxin; Li, Henan; Li, Hua; Li, Ning; Wang, Junyi; Wang, Chanchan; Wang, Renyi; Guo, Tao; Cai, Yanjie; Liu, Chengzhang; Xiang, Haitao; Shi, Qiuxiang; Huang, Ping; Chen, Qingchun; Li, Yingrui; Wang, Jun; Zhao, Zhihai; Wang, Jian

    2012-05-13

    Foxtail millet (Setaria italica), a member of the Poaceae grass family, is an important food and fodder crop in arid regions and has potential for use as a C(4) biofuel. It is a model system for other biofuel grasses, including switchgrass and pearl millet. We produced a draft genome (∼423 Mb) anchored onto nine chromosomes and annotated 38,801 genes. Key chromosome reshuffling events were detected through collinearity identification between foxtail millet, rice and sorghum including two reshuffling events fusing rice chromosomes 7 and 9, 3 and 10 to foxtail millet chromosomes 2 and 9, respectively, that occurred after the divergence of foxtail millet and rice, and a single reshuffling event fusing rice chromosome 5 and 12 to foxtail millet chromosome 3 that occurred after the divergence of millet and sorghum. Rearrangements in the C(4) photosynthesis pathway were also identified.

  6. Peculiarities of Japanese millet growing on radionuclide contaminated territories

    International Nuclear Information System (INIS)

    Sedukova, G.V.; Samusev, A.M.; Yurchenko, N.V.

    2010-01-01

    In the conditions of the Republic of Belarus on the lands polluted with radionuclides there were presented results of field experiments directed to study of the influence of mineral fertilizers on the yield, 137Cs and 90Sr transfer parameters, and economical viability of Indian barnyard millet or Japanese millet (Echinochloa frumentacea) growing. There were three variants of the test: control variant (without any fertilizers), variants with entering of N70P40K80 and N90P60K100 kg/ha. Research results showed that entering of N70P40K80 increased Japanese millet yield till 450-500 c/ha. Maximum productivity of green mass, minimum radionuclide transfer factors and the highest profitability were after application of entering of N70P60K100. Entering of N90K60K100 increased the green mass yield in phase of heads appearing in 80 c/ha, in milk-wax stage – in 53 c/ha. Zootechnical quality of millet green mass was defined. Parameters of 137Cs and 90Sr transition were 0,03 and 2,6-6,4 Bq/kg:kBq/m2 correspondingly. Contamination densities of sod-podzolic loamy soils were determined to assure regulatory clean millet green mass production to be used as fodder for milk stock in order to produce whole milk and raw milk for processing. Japanese millet green mass grown for cattle feeding with purpose of milk getting could be produced at density 90Sr pollution of 0,2 Ci/km2. Sod-podzolic sandy soils with density 90Sr pollution less 1,5Ci/km2 were suitable for getting processing milk

  7. Response of Pearl Millet to nitrogen as affected by water deficit

    OpenAIRE

    Diouf , O.; Brou , Yao Télesphore; Diouf , M.; Sarr , B.; Eyletters , M.; Roy-Macauley , H.; Delhaye , J.

    2004-01-01

    International audience; In the Sahelian zone, low soil N could be as limiting as drought in pearl millet production. Although growth and crop productivity depend on several biochemical reactions in which the nitrogen metabolism plays a great role, there is little information available on how N uptake and key enzymes, nitrate reductase and glutamine synthetase, are affected by nitrogen and water interaction in millet. For this purpose, the millet variety cv. Souna III was grown in the field du...

  8. Seed coat microsculpturing is related to genomic components in wild Brassica juncea and Sinapis arvensis.

    Directory of Open Access Journals (Sweden)

    Ying-hao Wang

    Full Text Available It has been reported that wild Brassica and related species are widely distributed across Xinjiang, China, and there has been an argument for species identification. Seed coat microsculpturing (SCM is known to be an excellent character for taxonomic and evolutionary studies. By identifying collections from Xinjiang, China, and combining SCM pattern, flow cytometry, and genome-specific DNA markers as well as sexual compatibility with known species, this study aimed to detect potential relationships between SCM and genomic types in wild Brassica and related species. Three wild collections were found to be tetraploid with a SCM reticulate pattern similar to B. juncea, and containing A and B genome-specific loci, indicating relatively high sexual compatibility with B. juncea. The others were diploid, carrying S-genome-specific DNA markers, and having relatively high sexual compatibility with Sinapis arvensis. Moreover, their SCM was in a rugose pattern similar to that of S. arvensis. It was suggested that SCM, as a morphological characteristic, can reflect genomic type, and be used to distinguish B-genome species such as B. juncea from the related S. arvensis. The relationship between SCM and genomic type can support taxonomic studies of the wild Brassica species and related species.

  9. Foxtail millet: nutritional and eating quality, and prospects for genetic improvement

    Directory of Open Access Journals (Sweden)

    Lu HE,Bin ZHANG,Xingchun WANG,Hongying LI,Yuanhuai HAN

    2015-06-01

    Full Text Available Foxtail millet is a minor yet important crop in some areas of the world, particularly northern China. It has strong adaptability to abiotic stresses, especially drought, and poor soil. It also has high nutritional value. Foxtail millet is rich in essential amino acids, fatty acids and minerals, and is considered to be one of the most digestible and non-allergenic grains available and has significant importance for human health. Given foxtail milletrsquo;s ability to adapt to abiotic stresses associated with climate change, it is more important than ever to develop breeding strategies that facilitate the increasing demand for high quality grain that better satisfies consumers. Here we review research on foxtail millet quality evaluation, appearance, cooking and eating quality at the phenotypic level. We review analysis of the main nutrients in foxtail millet, their relationships and the biochemical and genetic factors affecting their accumulation. In addition, we review past progress in breeding this regionally important crop, outline current status of breeding of foxtail millet, and make suggestions to improve grain quality.

  10. Comparative study on nutritional and sensory quality of barnyard and foxtail millet food products with traditional rice products.

    Science.gov (United States)

    Verma, Suman; Srivastava, Sarita; Tiwari, Neha

    2015-08-01

    Millets have the potential to contribute to food security and nutrition, but still these are underutilized crops. The present study was undertaken with a view to analyse the physico-chemical, functional and nutritional composition of foxtail millet, barnyard millet and rice and to compare the sensory quality and nutritive value of food products from foxtail and barnyard millet with rice. Analysis of physico- chemical and functional characteristics revealed that the thousand kernel weight of foxtail millet, barnyard millet and rice was 2.5, 3.0 and 18.3 g, respectively and thousand kernel volume was 1.6, 13 2.0 and 7.1 ml, respectively. The water absorption capacity of foxtail millet, barnyard millet and rice was 1.90, 1.96 and 1.98 ml/g, respectively and water solubility index was 2.8, 1.2 and 1.0 %, respectively. Viscosity was measured for foxtail millet (1650.6 cps), barnyard millet (1581 cps) and rice (1668.3 cps). Analysis of nutritional composition showed that the moisture content of foxtail millet, barnyard millet and rice was 9.35, 11.93 and 11.91 %, respectively. The total ash, crude protein, crude fat, crude fibre and carbohydrate of foxtail millet were 3.10, 10.29, 3.06, 4.25 and 69.95 %, respectively, for barnyard millet were 4.27, 6.93, 2.02, 2.98 and 71.87 %, respectively and the corresponding values for rice were 0.59, 6.19, 0.53, 0.21 and 80.58 %, respectively. The energy value for foxtail millet, barnyard millet and rice was 349, 407 and 352 Kcal, respectively. The foxtail millet contained 30.10 mg/100 g calcium and 3.73 mg/100 g iron whereas barnyard millet contained 23.16 mg/100 g calcium and 6.91 mg/100 g iron. Values of 10 mg/100 g calcium and 0.10 mg/100 g iron were observed for rice. The formulated products viz. laddu, halwa and biryani from foxtail millet, barnyard millet and rice (control) were analysed for their sensory qualities. Among the products prepared, there was non significant difference with regard to the

  11. Comparative analyses reveal high levels of conserved colinearity between the finger millet and rice genomes.

    Science.gov (United States)

    Srinivasachary; Dida, Mathews M; Gale, Mike D; Devos, Katrien M

    2007-08-01

    Finger millet is an allotetraploid (2n = 4x = 36) grass that belongs to the Chloridoideae subfamily. A comparative analysis has been carried out to determine the relationship of the finger millet genome with that of rice. Six of the nine finger millet homoeologous groups corresponded to a single rice chromosome each. Each of the remaining three finger millet groups were orthologous to two rice chromosomes, and in all the three cases one rice chromosome was inserted into the centromeric region of a second rice chromosome to give the finger millet chromosomal configuration. All observed rearrangements were, among the grasses, unique to finger millet and, possibly, the Chloridoideae subfamily. Gene orders between rice and finger millet were highly conserved, with rearrangements being limited largely to single marker transpositions and small putative inversions encompassing at most three markers. Only some 10% of markers mapped to non-syntenic positions in rice and finger millet and the majority of these were located in the distal 14% of chromosome arms, supporting a possible correlation between recombination and sequence evolution as has previously been observed in wheat. A comparison of the organization of finger millet, Panicoideae and Pooideae genomes relative to rice allowed us to infer putative ancestral chromosome configurations in the grasses.

  12. Genome-wide characterization of microRNA in foxtail millet (Setaria italica).

    Science.gov (United States)

    Yi, Fei; Xie, Shaojun; Liu, Yuwei; Qi, Xin; Yu, Jingjuan

    2013-12-13

    MicroRNAs (miRNAs) are a class of short non-coding, endogenous RNAs that play key roles in many biological processes in both animals and plants. Although many miRNAs have been identified in a large number of organisms, the miRNAs in foxtail millet (Setaria italica) have, until now, been poorly understood. In this study, two replicate small RNA libraries from foxtail millet shoots were sequenced, and 40 million reads representing over 10 million unique sequences were generated. We identified 43 known miRNAs, 172 novel miRNAs and 2 mirtron precursor candidates in foxtail millet. Some miRNA*s of the known and novel miRNAs were detected as well. Further, eight novel miRNAs were validated by stem-loop RT-PCR. Potential targets of the foxtail millet miRNAs were predicted based on our strict criteria. Of the predicted target genes, 79% (351) had functional annotations in InterPro and GO analyses, indicating the targets of the miRNAs were involved in a wide range of regulatory functions and some specific biological processes. A total of 69 pairs of syntenic miRNA precursors that were conserved between foxtail millet and sorghum were found. Additionally, stem-loop RT-PCR was conducted to confirm the tissue-specific expression of some miRNAs in the four tissues identified by deep-sequencing. We predicted, for the first time, 215 miRNAs and 447 miRNA targets in foxtail millet at a genome-wide level. The precursors, expression levels, miRNA* sequences, target functions, conservation, and evolution of miRNAs we identified were investigated. Some of the novel foxtail millet miRNAs and miRNA targets were validated experimentally.

  13. Sampling wild species to conserve genetic diversity

    Science.gov (United States)

    Sampling seed from natural populations of crop wild relatives requires choice of the locations to sample from and the amount of seed to sample. While this may seem like a simple choice, in fact careful planning of a collector’s sampling strategy is needed to ensure that a crop wild collection will ...

  14. Finger millet (Ragi, Eleusine coracana L.): a review of its nutritional properties, processing, and plausible health benefits.

    Science.gov (United States)

    Shobana, S; Krishnaswamy, K; Sudha, V; Malleshi, N G; Anjana, R M; Palaniappan, L; Mohan, V

    2013-01-01

    Finger millet or ragi is one of the ancient millets in India (2300 BC), and this review focuses on its antiquity, consumption, nutrient composition, processing, and health benefits. Of all the cereals and millets, finger millet has the highest amount of calcium (344mg%) and potassium (408mg%). It has higher dietary fiber, minerals, and sulfur containing amino acids compared to white rice, the current major staple in India. Despite finger millet's rich nutrient profile, recent studies indicate lower consumption of millets in general by urban Indians. Finger millet is processed by milling, malting, fermentation, popping, and decortication. Noodles, vermicilli, pasta, Indian sweet (halwa) mixes, papads, soups, and bakery products from finger millet are also emerging. In vitro and in vivo (animal) studies indicated the blood glucose lowering, cholesterol lowering, antiulcerative, wound healing properties, etc., of finger millet. However, appropriate intervention or randomized clinical trials are lacking on these health effects. Glycemic index (GI) studies on finger millet preparations indicate low to high values, but most of the studies were conducted with outdated methodology. Hence, appropriate GI testing of finger millet preparations and short- and long-term human intervention trials may be helpful to establish evidence-based health benefits. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Fusarium verticillioides from finger millet in Uganda.

    Science.gov (United States)

    Saleh, Amgad A; Esele, J P; Logrieco, Antonio; Ritieni, Alberto; Leslie, John F

    2012-01-01

    Finger millet (Eleusine coracana) is a subsistence crop grown in Sub-Saharan Africa and the Indian Sub-continent. Fusarium species occurring on this crop have not been reported. Approximately 13% of the Fusarium isolates recovered from finger millet growing at three different locations in eastern Uganda belong to Fusarium verticillioides, and could produce up to 18,600 µg/g of total fumonisins when cultured under laboratory conditions. These strains are all genetically unique, based on AFLP analyses, and form fertile perithecia when crossed with the standard mating type tester strains for this species. All but one of the strains is female-fertile and mating-type segregates 13:20 Mat-1:Mat-2. Three new sequences of the gene encoding translation elongation factor 1-α were found within the population. These results indicate a potential health risk for infants who consume finger millet gruel as a weaning food, and are consistent with the hypothesis that F. verticillioides originated in Africa and not in the Americas, despite its widespread association with maize grown almost anywhere worldwide.

  16. Influence of variety and management level on pearl millet production ...

    African Journals Online (AJOL)

    Pearl millet [Pennisetum glaucum (L.)R. Br.] is generally grown on nutrient-poor soils and low rainfall conditions in Niger. Nitrogen and P accumulation and utilisation are very important factors in pearl millet growth, and are affected by environment and management. An understanding of seasonal N and P accumulation is ...

  17. Minor Millets as a Central Element for Sustainably Enhanced Incomes, Empowerment, and Nutrition in Rural India

    Directory of Open Access Journals (Sweden)

    Stefano Padulosi

    2015-07-01

    Full Text Available Minor millets comprise a group of cereal species that are genetically diverse and adapted to a range of marginal growing conditions where major cereals such as wheat, rice, and maize are relatively unsuccessful. Millets require few inputs and withstand severe biotic and abiotic stresses. They are also more nutritious than major cereals. Despite these advantages, neglect in several arenas has resulted in a steady decline in the cultivation of minor millets in India over the past few decades. As part of a United Nations global project on underutilized species, we undertook action research intended to stem the decline in cultivation and enhance the conservation and use of minor millets in 753 households spread across 34 villages in four states of India. Our aim was to improve incomes, nutritional status, and empowerment, especially for women. Overall, our holistic approach to mainstreaming species such as finger millet, little millet, foxtail millet, and barnyard millet indicates that these neglected and underutilized species can play a strategic role in improving many dimensions of livelihoods.

  18. A Novel Millet-Based Probiotic Fermented Food for the Developing World

    Directory of Open Access Journals (Sweden)

    Elisa Di Stefano

    2017-05-01

    Full Text Available Probiotic yogurt, comprised of a Fiti sachet containing Lactobacillus rhamnosus GR-1 and Streptococcus thermophilus C106, has been used in the developing world, notably Africa, to alleviate malnutrition and disease. In sub-Saharan African countries, fermentation of cereals such as millet, is culturally significant. The aim of this study was to investigate the fermentation capability of millet when one gram of the Fiti sachet consortium was added. An increase of 1.8 and 1.4 log CFU/mL was observed for S. thermophilus C106 and L. rhamnosus GR-1 when grown in 8% millet in water. Single cultures of L. rhamnosus GR-1 showed the highest μmax when grown in the presence of dextrose, galactose and fructose. Single cultures of S. thermophilus C106 showed the highest μmax when grown in the presence of sucrose and lactose. All tested recipes reached viable counts of the probiotic bacteria, with counts greater than 106 colony-forming units (CFU/mL. Notably, a number of organic acids were quantified, in particular phytic acid, which was shown to decrease when fermentation time increased, thereby improving the bioavailability of specific micronutrients. Millet fermented in milk proved to be the most favorable, according to a sensory evaluation. In conclusion, this study has shown that sachets being provided to African communities to produce fermented milk, can also be used to produce fermented millet. This provides an option for when milk supplies are short, or if communities wish to utilize the nutrient-rich qualities of locally-grown millet.

  19. Malting Characteristics of Some Sorghum and Millet Grain Varieties Grown in Kenya

    International Nuclear Information System (INIS)

    Makokha, A.O; Makwaka, A.M; Oniang'o, R.O; Njoroge, S.M

    1999-01-01

    Industrial malt in Kenya for commercial beer production is made exclusively from barley. This study explored the potential of producing suitable malt from some sorghum and finger millet grain varieties grown in Kenya. Malting characteristics of two sorghum grain varieties, KARI Mtama-1 and local Red variety, and that of finger millet was done and compared to that of barley. Among the grain characteristics determined before malting were water sensitivity, polyphenol (tannin) content and total protein. The grain was malted by striping in water for 48 h, followed by germination for four days at 25 degrees celcious, then kilned at 50 degrees celcious for 24 h. The malting characteristics determined included total soluble N, free amino N, wort pH and fermentable sugars. The local red sorghum and millet had high polyphenol content while KARI Mtama-1 and barley had low levels. KARI Mtama-1 had positive water sensitivity while barley had negative sensitivity. Finger millet and local red sorghum were water insensitive. Free amino N was 113, 125, 144, and 154mg 100g - 1 malt for millet, barley, local Red and KARI Mtama-1, respectively. Total fermentation sugars were 307, 477, 610 and 178 mg 1 - 1 for finger millet, local red, barley and KARI Mtama 1 , respectively. The results showed that that the proteolytic and amyloytic characteristics of the KARI Mtama-1 malt are largely similar to those of barley. Hence the KARI Mtama-1 malt are largely similar to those of barley. Hence the KARI Mtama-1 has good potential fro conventional lager beer production. Malts of local Red sorghum grain and millet may be more suitable for industrial production of opaque/cloudy beer

  20. Insights using the molecular model of Lipoxygenase from Finger millet (Eleusine coracana (L.)).

    Science.gov (United States)

    Tiwari, Apoorv; Avashthi, Himanshu; Jha, Richa; Srivastava, Ambuj; Kumar Garg, Vijay; Wasudev Ramteke, Pramod; Kumar, Anil

    2016-01-01

    Lipoxygenase-1 (LOX-1) protein provides defense against pests and pathogens and its presence have been positively correlated with plant resistance against pathogens. Linoleate is a known substrate of lipoxygenase and it induces necrosis leading to the accumulation of isoflavonoid phytoalexins in plant leaves. Therefore, it is of interest to study the structural features of LOX-1 from Finger millet. However, the structure ofLOX-1 from Finger millet is not yet known. A homology model of LOX-1 from Finger millet is described. Domain architecture study suggested the presence of two domains namely PLAT (Phospho Lipid Acyl Transferase) and lipoxygenase. Molecular docking models of linoleate with lipoxygenase from finger millet, rice and sorghum are reported. The features of docked models showed that finger millet have higher pathogen resistance in comparison to other cereal crops. This data is useful for the molecular cloning of fulllength LOX-1 gene for validating its role in improving plant defense against pathogen infection and for various other biological processes.

  1. Evaluation of nutraceutical and antinutritional properties in barnyard and finger millet varieties grown in Himalayan region

    OpenAIRE

    Panwar, Priyankar; Dubey, Ashutosh; Verma, A. K.

    2016-01-01

    Five elite varieties of barnyard (Echinochloafrumentacea) and finger (Eleusine coracana) growing at northwestern Himalaya were investigated for nutraceutical and antinutritional properties. Barnyard millet contained higher amount of crude fiber, total dietary fiber, tryptophan content, total carotenoids, ��-tocopherol compared to the finger millet whereas the finger millet contains higher amount of methionine and ascorbic acid as compared to the barnyard millet. The secondary metabolites of b...

  2. Occurrence of insects and use of natural and synthetic insecticides in the storage of seeds of wild radishOcorrência de insetos e uso de inseticidas naturais e sintéticos no armazenamento de sementes de nabo forrageiro

    Directory of Open Access Journals (Sweden)

    Rafael Vieira Barbosa

    2012-08-01

    Full Text Available Knowing the importance of preventive use of insecticides for seed treatment, this study aimed to identify potential insect pests of storage for seeds of radish by means of traps set on the field for six months and to evaluate the effect of natural and synthetic substances insecticides on the emergence of radish seedlings stored for 120 days. The bioassay, field-level, was conducted over a period of six months in the following environments: savannah, area of cultivation of crops, pasture and forest at the Federal Institute Goiano. For each of these environments were placed five traps made of PET bottles, containing respectively in maize, millet, soybean, crambe and wild radish. The traps were inspected every seven days to verify the the occurrence of insects plague. The substances were: 1 saffron, 2 limestone, 3 Gray, 4 neem, 5 diatomaceous earth, 6 chlorpyrifos, 7 deltamethrin and 8 control treatment. The experimental design was randomized blocks in factorial scheme 8 x 2 (8 substances and two storage periods, is not stored seeds and seeds stored for 120 days with four replications. Were evaluated the percentage of emergence, hold rate of emergence, time to reach 50% emergence and the record of the dry mass of seedlings. The natural and synthetic substances do not interfere with seedling emergence in seeds of wild radish, even after storage for 120 days in a room. In the traps in the field, containing seeds of wild radish noted the presence of the insect Carpophilus sp. Sabendo da importância do uso preventivo de inseticidas no tratamento de sementes, esta pesquisa teve por objetivos identificar possíveis insetos praga de armazenamento para sementes de nabo forrageiro por meio de armadilhas montadas em campo durante seis meses e avaliar o efeito de substâncias inseticidas, naturais e sintéticas na emergência de plântulas em sementes de nabo forrageiro armazenadas por 120 dias. O bioensaio, em nível de campo, foi conduzido por um per

  3. Millet and corn oil in sorghum-based diets for broilers

    Directory of Open Access Journals (Sweden)

    João Paulo Rodrigues Bueno

    2015-12-01

    Full Text Available ABSTRACT: This study evaluated the effects of millet and corn oil additions to sorghum-based diets on the performance, carcass yields and prime cuts (i.e., wings, breasts, thighs and drumsticks and the relative weights of edible offal (i.e., gizzard, heart, and liver of broiler chickens. A total of 684 Hubbard Flex chickens, including 342 broilers of each sex, were housed. The design was completely randomized, and the following diets were supplied: A sorghum and soybean meal + soybean oil (control; B sorghum and soybean meal + corn oil; and C sorghum and soybean meal + millet and soybean oil. Six replicates with 38 birds each (19 males and 19 females were evaluated regarding each experimental diet. At 14, 21, 35 and 42 days of age, the feed intake, weight gain, feed conversion and viability of the chickens were evaluated. At 42 days, the live weight, carcass yield, prime cuts and relative weight of the edible offal were measured. The dietary inclusion of either millet or corn oil did not affect any of the parameters. In conclusion, additions of millet and corn oil to sorghum-based diets of broilers do not compromise poultry performance.

  4. Evaluation of milled pearl millet in the feeding of growing rabbits

    Directory of Open Access Journals (Sweden)

    Fernanda Catelan

    2012-08-01

    Full Text Available Two experiments were carried out in order to estimate the nutritional value and the performance of growing rabbits fed different levels of pearl millet (ADR 7010. In the digestibility trial, nutritional values of pearl millet were determined in 22 45-day-old New Zealand White rabbits, allotted in a completely randomized design, subjected to two treatments - a reference diet and a test diet with 70% of its volume composed of reference diet and 30% of pearl millet - and 11 replications. The apparent digestibility values of dry matter, crude protein, neutral detergent fiber and gross energy of the pearl millet were 88.7, 85.4, 24.4 and 75.0%, respectively. In the performance trial, 120 32-day-old New Zealand White rabbits were used. Rabbits were allotted in a completely randomized design and subjected to six treatments, with 10 replications and two animals for each experimental unit. The diets were formulated with increasing levels of pearl millet (20, 40, 60, 80 and 100%, substituting the corn in the reference diet, according to the digestible energy. No differences were observed in daily feed intake, daily weight gain, feed conversion, carcass traits and feed cost per kilogram of rabbit. Regardless of the amount of corn substituted, pearl can replace corn in diets for growing rabbits.

  5. Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum.

    Science.gov (United States)

    Mousa, Walaa K; Shearer, Charles; Limay-Rios, Victor; Ettinger, Cassie L; Eisen, Jonathan A; Raizada, Manish N

    2016-09-26

    The ancient African crop, finger millet, has broad resistance to pathogens including the toxigenic fungus Fusarium graminearum. Here, we report the discovery of a novel plant defence mechanism resulting from an unusual symbiosis between finger millet and a root-inhabiting bacterial endophyte, M6 (Enterobacter sp.). Seed-coated M6 swarms towards root-invading Fusarium and is associated with the growth of root hairs, which then bend parallel to the root axis, subsequently forming biofilm-mediated microcolonies, resulting in a remarkable, multilayer root-hair endophyte stack (RHESt). The RHESt results in a physical barrier that prevents entry and/or traps F. graminearum, which is then killed. M6 thus creates its own specialized killing microhabitat. Tn5-mutagenesis shows that M6 killing requires c-di-GMP-dependent signalling, diverse fungicides and resistance to a Fusarium-derived antibiotic. Further molecular evidence suggests long-term host-endophyte-pathogen co-evolution. The end result of this remarkable symbiosis is reduced deoxynivalenol mycotoxin, potentially benefiting millions of subsistence farmers and livestock. Further results suggest that the anti-Fusarium activity of M6 may be transferable to maize and wheat. RHESt demonstrates the value of exploring ancient, orphan crop microbiomes.

  6. Climate Change, Millet and Ritual Relationship with the Magars of Argal, Baglung, Nepal

    Directory of Open Access Journals (Sweden)

    Man Bahadur Khattri

    2013-08-01

    Full Text Available This paper focuses on cultural analysis and how people are coping with new situation created by climate change in production of millet. Changes relating to climate change are observed; perceived and understood on a local level. This is an important area of study for anthropologists and it is interest of climate scientists as well. This paper is based on anthropological analysis on climate change effects on finger millet production in Argal VDC of Baglung district, West of Nepal. Millet is a staple food of people of Argal and most of Hill people of Nepal. Millet is not only staple food and associated with nutrition of people. It's also associated with rituals during production and as well as during consumption. Increasing temperature, changing rainfall patterns, extreme weather events are linked with climate change which has direct effect on life of all people but also millet production and ritual activities. DOI: http://dx.doi.org/10.3126/dsaj.v6i0.8481 Dhaulagiri Journal of Sociology and Anthropology Vol. 6, 2012 107-124

  7. An appraisal of irrigated temperate and tropical millet varieties in the ...

    African Journals Online (AJOL)

    Pearl millet (Pennisetum glaucum (L). R. Br.) constitutes a major food crop in the semiarid region of West Africa but yields are extremely low in subsistence cropping systems because of inappropriate management and scarcity of water. This study was designed to see if pearl millet could become a component of crop rotation ...

  8. Study of Seed Germination and Morphological Characteristics of Wild Oat(Avena ludoviciana and Mustard (Sinapis arvensis Seedling, Affected by Aqueous Extracts of Black Cumin (Bunium persicum L, Chickpea (Cicer arietinum L and Mixed of Extracts

    Directory of Open Access Journals (Sweden)

    R Moradi

    2012-02-01

    Full Text Available Abstract In order to evaluate the effects of shoot aqueous extracts of chickpea, black cumin and their mixed aqueous extracts on seed germination and seedling morphological characteristics of wild oat and mustard as two common weed, an experiment was conducted with a factorial arrangement based on completely randomized design with three replications. The experimental treatments were aqueous extracts in five levels (0, 10, 20, 40 and 60 percentage, Weed species in two levels (wild oat and mustard and extract concentration in five levels (0, 10, 20. 40 and 60 percentage. Result indicated that the highest and the lowest percentage and seed germination rate, length of radicle and hypocotyle, dry weight of radicle and hypocotyle and radicle / hypocotyle ratio (R/H, were obtained in control treatment and 60% concentration, respectively. Aqueous extract of black cumin and mixed extracts had the highest and the lowest effect on percentage and seed germination rate, length of radicle and hypocotyle, dry weight of radicle and hypocotyle and radicle / hypocotyle ratio, respectively. Between two weed species, wild oat had the lowest percentage of seed germination and length of radicle compared with mustard. Mustard had the lowest seed germination rate, dry weight of radicle and hypocotyle and length of hypocotyle compare with wild oat. Generally, it was concluded that chickpea and black cumin aqueous extracts have highly inhibitory in terms of weed control that can be useful for sustainable agriculture. Keywords: Allelopathy, Black cumin, Chickpea, Extract, Mustard, Wild oat

  9. Genome-wide identification, phylogeny and expression analyses of SCARECROW-LIKE(SCL) genes in millet (Setaria italica).

    Science.gov (United States)

    Liu, Hongyun; Qin, Jiajia; Fan, Hui; Cheng, Jinjin; Li, Lin; Liu, Zheng

    2017-07-01

    As a member of the GRAS gene family, SCARECROW - LIKE ( SCL ) genes encode transcriptional regulators that are involved in plant information transmission and signal transduction. In this study, 44 SCL genes including two SCARECROW genes in millet were identified to be distributed on eight chromosomes, except chromosome 6. All the millet genes contain motifs 6-8, indicating that these motifs are conserved during the evolution. SCL genes of millet were divided into eight groups based on the phylogenetic relationship and classification of Arabidopsis SCL genes. Several putative millet orthologous genes in Arabidopsis , maize and rice were identified. High throughput RNA sequencing revealed that the expressions of millet SCL genes in root, stem, leaf, spica, and along leaf gradient varied greatly. Analyses combining the gene expression patterns, gene structures, motif compositions, promoter cis -elements identification, alternative splicing of transcripts and phylogenetic relationship of SCL genes indicate that the these genes may play diverse functions. Functionally characterized SCL genes in maize, rice and Arabidopsis would provide us some clues for future characterization of their homologues in millet. To the best of our knowledge, this is the first study of millet SCL genes at the genome wide level. Our work provides a useful platform for functional analysis of SCL genes in millet, a model crop for C 4 photosynthesis and bioenergy studies.

  10. Reduced sexual compatibility between cultivated and wild chicory and their F1 hybrids

    DEFF Research Database (Denmark)

    Hauser, T.P.; Bagger Jørgensen, Rikke; Toneatto, F.

    2012-01-01

    marked, and when seeds were ripe we determined whether cultivar, wild or hybrid plants had pollinated the seeds, using AFLP markers. Cultivar plants fathered much fewer seeds than expected, both on wild and hybrid plants, suggesting that some degree of incompatibility has evolved between cultivar...... (Cichorium intybus L.) has been bred as a crop at least since Roman times. To test if this has led to a loss in reproductive compatibility with wild chicory, we planted cultivar, wild, and F1 hybrid plants into two field plots, and let them pollinate freely. On 2 days, in the beginning and middle...... of the flowering season, we counted the numbers of flowering capitula and open flowers per capitulum, which in combination with counts of viable pollen per flower were used to estimate the expected proportion of seeds fathered by cultivar, wild, and hybrid plants. Open capitula on wild and hybrid plants were...

  11. Draft genome sequence of Sclerospora graminicola, the pearl millet downy mildew pathogen

    Directory of Open Access Journals (Sweden)

    S. Chandra Nayaka

    2017-12-01

    Full Text Available Sclerospora graminicola pathogen is the most important biotic production constraints of pearl millet in India, Africa and other parts of the world. We report a de novo whole genome assembly and analysis of pathotype 1, one of the most virulent pathotypes of S. graminicola from India. The draft genome assembly contained 299,901,251 bp with 65,404 genes. This study may help understand the evolutionary pattern of pathogen and aid elucidation of effector evolution for devising effective durable resistance breeding strategies in pearl millet. Keywords: Sclerospora graminicola, Pathotype 1, Pearl millet, Downy mildew, Whole genome sequence

  12. Increasing millet production in South Asia

    International Development Research Centre (IDRC) Digital Library (Canada)

    Asia, which has put the emphasis on cash crops and cereals ... aims to increase production and consumption of minor ... practices. They will then develop sustainable agriculture tool kits to help farmers to increase millet production in these.

  13. La promotion des produits alimentaires nourrissants à base de millet ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Le millet possède des qualités nutritives supérieures et une plus grande résilience au climat, mais sa production et sa consommation demeurent faibles dans de nombreux pays de l'Asie du Sud, comme l'Inde. Ce projet relèvera ce défi grâce à une recherche visant la mise en valeur de la transformation du millet et des ...

  14. Genetic diversity and population structure of Chinese foxtail millet [Setaria italica (L.) Beauv.] landraces.

    Science.gov (United States)

    Wang, Chunfang; Jia, Guanqing; Zhi, Hui; Niu, Zhengang; Chai, Yang; Li, Wei; Wang, Yongfang; Li, Haiquan; Lu, Ping; Zhao, Baohua; Diao, Xianmin

    2012-07-01

    As an ancient cereal of great importance for dryland agriculture even today, foxtail millet (Setaria italica) is fast becoming a new plant genomic model crop. A genotypic analysis of 250 foxtail millet landraces, which represent 1% of foxtail millet germplasm kept in the Chinese National Gene Bank (CNGB), was conducted with 77 SSRs covering the foxtail millet genome. A high degree of molecular diversity among the landraces was found, with an average of 20.9 alleles per locus detected. STRUCTURE, neighbor-jointing, and principal components analyses classify the accessions into three clusters (topmost hierarchy) and, ultimately, four conservative subgroups (substructuring within the topmost clusters) in total, which are in good accordance with eco-geographical distribution in China. The highest subpopulation diversity was identified in the accessions of Pop3 from the middle regions of the Yellow River, followed by accessions in Pop1 from the downstream regions of the Yellow River, suggesting that foxtail millet was domesticated in the Yellow River drainage area first and then spread to other parts of the country. Linkage disequilibrium (LD) decay of less than 20 cM of genetic distance in the foxtail millet landrace genome was observed, which suggests that it could be possible to achieve resolution down to the 20 cM level for association mapping.

  15. Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.

    Science.gov (United States)

    Li, Weiwei; Chen, Ming; Wang, Erhui; Hu, Liqin; Hawkesford, Malcolm J; Zhong, Li; Chen, Zhu; Xu, Zhaoshi; Li, Liancheng; Zhou, Yongbin; Guo, Changhong; Ma, Youzhi

    2016-10-12

    Autophagy is a cellular degradation process that is highly evolutionarily-conserved in yeast, plants, and animals. In plants, autophagy plays important roles in regulating intracellular degradation and recycling of amino acids in response to nutrient starvation, senescence, and other environmental stresses. Foxtail millet (Setaria italica) has strong resistance to stresses and has been proposed as an ideal material for use in the study of the physiological mechanisms of abiotic stress tolerance in plants. Although the genome sequence of foxtail millet (Setaria italica) is available, the characteristics and functions of abiotic stress-related genes remain largely unknown for this species. A total of 37 putative ATG (autophagy-associated genes) genes in the foxtail millet genome were identified. Gene duplication analysis revealed that both segmental and tandem duplication events have played significant roles in the expansion of the ATG gene family in foxtail millet. Comparative synteny mapping between the genomes of foxtail millet and rice suggested that the ATG genes in both species have common ancestors, as their ATG genes were primarily located in similar syntenic regions. Gene expression analysis revealed the induced expression of 31 SiATG genes by one or more phytohormone treatments, 26 SiATG genes by drought, salt and cold, 24 SiATG genes by darkness and 25 SiATG genes by nitrogen starvation. Results of qRT-PCR showing that among 37 SiATG genes, the expression level of SiATG8a was the highest after nitrogen starvation treatment 24 h, suggesting its potential role in tolerance to nutrient starvation. Moreover, the heterologous expression of SiATG8a in rice improved nitrogen starvation tolerance. Compared to wild type rice, the transgenic rice performed better and had higher aboveground total nitrogen content when the plants were grown under nitrogen starvation conditions. Our results deepen understanding about the characteristics and functions of ATG genes in

  16. Polyphenol Oxidase as a Biochemical Seed Defense Mechanism

    Directory of Open Access Journals (Sweden)

    E. Patrick Fuerst

    2014-12-01

    Full Text Available Seed dormancy and resistance to decay are fundamental survival strategies, which allow a population of seeds to germinate over long periods of time. Seeds have physical, chemical, and biological defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. Here, we hypothesize that seeds also possess enzyme-based biochemical defenses, based on induction of the plant defense enzyme, polyphenol oxidase (PPO, when wild oat (Avena fatua L. caryopses and seeds were challenged with seed-decaying Fusarium fungi. These studies suggest that dormant seeds are capable of mounting a defense response to pathogens. The pathogen-induced PPO activity from wild oat was attributed to a soluble isoform of the enzyme that appeared to result, at least in part, from proteolytic activation of a latent PPO isoform. PPO activity was also induced in wild oat hulls (lemma and palea, non-living tissues that cover and protect the caryopsis. These results are consistent with the hypothesis that seeds possess inducible enzyme-based biochemical defenses arrayed on the exterior of seeds and these defenses represent a fundamental mechanism of seed survival and longevity in the soil. Enzyme-based biochemical defenses may have broader implications since they may apply to other defense enzymes as well as to a diversity of plant species and ecosystems.

  17. Transcriptome wide identification and characterization of starch branching enzyme in finger millet.

    Science.gov (United States)

    Tyagi, Rajhans; Tiwari, Apoorv; Garg, Vijay Kumar; Gupta, Sanjay

    2017-01-01

    Starch-branching enzymes (SBEs) are one of the four major enzyme classes involved in starch biosynthesis in plants and play an important role in determining the structure and physical properties of starch granules. Multiple SBEs are involved in starch biosynthesis in plants. Finger millet is calcium rich important serial crop belongs to grass family and the transcriptome data of developing spikes is available on NCBI. In this study it was try to find out the gene sequence of starch branching enzyme and annotate the sequence and submit the sequence for further use. Rice SBE sequence was taken as reference and for characterization of the sequence different in silico tools were used. Four domains were found in the finger millet Starch branching enzyme like alpha amylase catalytic domain from 925 to2172 with E value 0, N-terminal Early set domain from 634 to 915 with E value 1.62 e-42, Alpha amylase, C-terminal all-beta domain from 2224 to 2511 with E value 5.80e-24 and 1,4-alpha-glucan-branching enzyme from 421 to 2517 with E value 0. Major binding interactions with the GLC (alpha-d-glucose), CA (calcium ion), GOL (glycerol), TRS (2-amino-2-hydroxymethylpropane- 1, 3-diol), MG (magnesium ion) and FLC (citrate anion) are fond with different residues. It was found in the phylogenetic study of the finger millet SBE with the 6 species of grass family that two clusters were form A and B. In cluster A, finger millet showed closeness with Oryzasativa and Setariaitalica, Sorghum bicolour and Zea mays while cluster B was formed with Triticumaestivum and Brachypodium distachyon. The nucleotide sequence of Finger millet SBE was submitted to NCBI with the accession no KY648913 and protein structure of SBE of finger millet was also submitted in PMDB with the PMDB id - PM0080938. This research presents a comparative overview of Finger millet SBE and includes their properties, structural and functional characteristics, and recent developments on their post-translational regulation.

  18. Differential gene expression in foxtail millet during incompatible interaction with Uromyces setariae-italicae.

    Directory of Open Access Journals (Sweden)

    Zhi Yong Li

    Full Text Available Foxtail millet (Setaria italica is an important food and fodder grain crop that is grown for human consumption. Production of this species is affected by several plant diseases, such as rust. The cultivar Shilixiang has been identified as resistant to the foxtail millet rust pathogen, Uromyces setariae-italicae. In order to identify signaling pathways and genes related to the plant's defense mechanisms against rust, the Shilixiang cultivar was used to construct a digital gene expression (DGE library during the interaction of foxtail millet with U. setariae-italicae. In this study, we determined the most abundant differentially expressed signaling pathways of up-regulated genes in foxtail millet and identified significantly up-regulated genes. Finally, quantitative real-time polymerase chain reaction (qRT-PCR analysis was used to analyze the expression of nine selected genes, and the patterns observed agreed well with DGE analysis. Expression levels of the genes were also compared between a resistant cultivar Shilixiang and a susceptible cultivar Yugu-1, and the result indicated that expression level of Shilixiang is higher than that of Yugu-1. This study reveals the relatively comprehensive mechanisms of rust-responsive transcription in foxtail millet.

  19. Utilization of Foxtail Millet (Setaria italica from Papua as an Alternative Feedstuff to Substitute Corn

    Directory of Open Access Journals (Sweden)

    Siska Tirajoh

    2016-09-01

    Full Text Available Papua foxtail millet (Setaria italica is a plant which has been used as a source of carbohydrate, but it has not been used optimally. High demand in consuming corn as a poultry feeds provides an opportunity for Papua foxtail millet to be used as a substitute for corn in feed. Evaluation of nutritive values and antinutrient shows that Papua foxtail millet potential to be used as feed stuff. Studies on cultivation technology, evaluation of the nutritive values and antinutrient and its benefits as an alternative feed are relatively limited. The results shows that the Papua foxtail millet contains dry matter (88.37%, ash (0.86%, protein (12.07%, fat (2.76%, crude fiber (1.93%, metabolizable energy (3,139 kcal/kg and anti-nutritional factors (3.07% of phytate and 0.01% of tannins. Several studies reported that the use of Papua foxtail millet at various levels (25-100% in feed, can substitute corn and give a positive response on consumption, daily weight gain, feed conversion, carcass composition and percentages and egg production. It can be concluded that the Papua foxtail millet can be used as a corn substitution in poultry feed.

  20. Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)].

    Science.gov (United States)

    Pandey, Garima; Misra, Gopal; Kumari, Kajal; Gupta, Sarika; Parida, Swarup Kumar; Chattopadhyay, Debasis; Prasad, Manoj

    2013-04-01

    The availability of well-validated informative co-dominant microsatellite markers and saturated genetic linkage map has been limited in foxtail millet (Setaria italica L.). In view of this, we conducted a genome-wide analysis and identified 28 342 microsatellite repeat-motifs spanning 405.3 Mb of foxtail millet genome. The trinucleotide repeats (∼48%) was prevalent when compared with dinucleotide repeats (∼46%). Of the 28 342 microsatellites, 21 294 (∼75%) primer pairs were successfully designed, and a total of 15 573 markers were physically mapped on 9 chromosomes of foxtail millet. About 159 markers were validated successfully in 8 accessions of Setaria sp. with ∼67% polymorphic potential. The high percentage (89.3%) of cross-genera transferability across millet and non-millet species with higher transferability percentage in bioenergy grasses (∼79%, Switchgrass and ∼93%, Pearl millet) signifies their importance in studying the bioenergy grasses. In silico comparative mapping of 15 573 foxtail millet microsatellite markers against the mapping data of sorghum (16.9%), maize (14.5%) and rice (6.4%) indicated syntenic relationships among the chromosomes of foxtail millet and target species. The results, thus, demonstrate the immense applicability of developed microsatellite markers in germplasm characterization, phylogenetics, construction of genetic linkage map for gene/quantitative trait loci discovery, comparative mapping in foxtail millet, including other millets and bioenergy grass species.

  1. Transcriptome Analysis of a New Peanut Seed Coat Mutant for the Physiological Regulatory Mechanism Involved in Seed Coat Cracking and Pigmentation.

    Science.gov (United States)

    Wan, Liyun; Li, Bei; Pandey, Manish K; Wu, Yanshan; Lei, Yong; Yan, Liying; Dai, Xiaofeng; Jiang, Huifang; Zhang, Juncheng; Wei, Guo; Varshney, Rajeev K; Liao, Boshou

    2016-01-01

    Seed-coat cracking and undesirable color of seed coat highly affects external appearance and commercial value of peanuts ( Arachis hypogaea L.). With an objective to find genetic solution to the above problems, a peanut mutant with cracking and brown colored seed coat (testa) was identified from an EMS treated mutant population and designated as "peanut seed coat crack and brown color mutant line ( pscb )." The seed coat weight of the mutant was almost twice of the wild type, and the germination time was significantly shorter than wild type. Further, the mutant had lower level of lignin, anthocyanin, proanthocyanidin content, and highly increased level of melanin content as compared to wild type. Using RNA-Seq, we examined the seed coat transcriptome in three stages of seed development in the wild type and the pscb mutant. The RNA-Seq analysis revealed presence of highly differentially expressed phenylpropanoid and flavonoid pathway genes in all the three seed development stages, especially at 40 days after flowering (DAF40). Also, the expression of polyphenol oxidases and peroxidase were found to be activated significantly especially in the late seed developmental stage. The genome-wide comparative study of the expression profiles revealed 62 differentially expressed genes common across all the three stages. By analyzing the expression patterns and the sequences of the common differentially expressed genes of the three stages, three candidate genes namely c36498_g1 (CCoAOMT1), c40902_g2 (kinesin) , and c33560_g1 (MYB3) were identified responsible for seed-coat cracking and brown color phenotype. Therefore, this study not only provided candidate genes but also provided greater insights and molecular genetic control of peanut seed-coat cracking and color variation. The information generated in this study will facilitate further identification of causal gene and diagnostic markers for breeding improved peanut varieties with smooth and desirable seed coat color.

  2. Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots

    Science.gov (United States)

    Passot, Sixtine; Gnacko, Fatoumata; Moukouanga, Daniel; Lucas, Mikaël; Guyomarc’h, Soazig; Ortega, Beatriz Moreno; Atkinson, Jonathan A.; Belko, Marème N.; Bennett, Malcolm J.; Gantet, Pascal; Wells, Darren M.; Guédon, Yann; Vigouroux, Yves; Verdeil, Jean-Luc; Muller, Bertrand; Laplaze, Laurent

    2016-01-01

    Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal. PMID:27379124

  3. Bioaccessible mineral content of malted finger millet (Eleusine coracana), wheat (Triticum aestivum), and barley (Hordeum vulgare).

    Science.gov (United States)

    Platel, Kalpana; Eipeson, Sushma W; Srinivasan, Krishnapura

    2010-07-14

    Malted grains are extensively used in weaning and geriatric foods. Malting generally improves the nutrient content and digestibility of foods. The present investigation examined the influence of malting of finger millet, wheat, and barley on the bioaccessibility of iron, zinc, calcium, copper, and manganese. Malting increased the bioaccessibility of iron by >3-fold from the two varieties of finger millet and by >2-fold from wheat, whereas such a beneficial influence was not seen in barley. The bioaccessibility of zinc from wheat and barley increased to an extent of 234 and 100%, respectively, as a result of malting. However, malting reduced the bioaccessibility of zinc from finger millet. Malting marginally increased the bioaccessibility of calcium from white finger millet and wheat. Whereas malting did not exert any influence on bioaccessibility of copper from finger millet and wheat, it significantly decreased (75%) the same from barley. Malting did increase the bioaccessibility of manganese from brown finger millet (17%) and wheat (42%). Thus, malting could be an appropriate food-based strategy to derive iron and other minerals maximally from food grains.

  4. Global ex-situ crop diversity conservation and the Svalbard Global Seed Vault: assessing the current status.

    Directory of Open Access Journals (Sweden)

    Ola T Westengen

    Full Text Available Ex-situ conservation of crop diversity is a global concern, and the development of an efficient and sustainable conservation system is a historic priority recognized in international law and policy. We assess the completeness of the safety duplication collection in the Svalbard Global Seed Vault with respect to data on the world's ex-situ collections as reported by the Food and Agriculture Organization of the United Nations. Currently, 774,601 samples are deposited at Svalbard by 53 genebanks. We estimate that more than one third of the globally distinct accessions of 156 crop genera stored in genebanks as orthodox seeds are conserved in the Seed Vault. The numbers of safety duplicates of Triticum (wheat, Sorghum (sorghum, Pennisetum (pearl millet, Eleusine (finger millet, Cicer (chickpea and Lens (lentil exceed 50% of the estimated numbers of distinct accessions in global ex-situ collections. The number of accessions conserved globally generally reflects importance for food production, but there are significant gaps in the safety collection at Svalbard in some genera of high importance for food security in tropical countries, such as Amaranthus (amaranth, Chenopodium (quinoa, Eragrostis (teff and Abelmoschus (okra. In the 29 food-crop genera with the largest number of accessions stored globally, an average of 5.5 out of the ten largest collections is already represented in the Seed Vault collection or is covered by existing deposit agreements. The high coverage of ITPGRFA Annex 1 crops and of those crops for which there is a CGIAR mandate in the current Seed Vault collection indicates that existence of international policies and institutions are important determinants for accessions to be safety duplicated at Svalbard. As a back-up site for the global conservation system, the Seed Vault plays not only a practical but also a symbolic role for enhanced integration and cooperation for conservation of crop diversity.

  5. Global ex-situ crop diversity conservation and the Svalbard Global Seed Vault: assessing the current status.

    Science.gov (United States)

    Westengen, Ola T; Jeppson, Simon; Guarino, Luigi

    2013-01-01

    Ex-situ conservation of crop diversity is a global concern, and the development of an efficient and sustainable conservation system is a historic priority recognized in international law and policy. We assess the completeness of the safety duplication collection in the Svalbard Global Seed Vault with respect to data on the world's ex-situ collections as reported by the Food and Agriculture Organization of the United Nations. Currently, 774,601 samples are deposited at Svalbard by 53 genebanks. We estimate that more than one third of the globally distinct accessions of 156 crop genera stored in genebanks as orthodox seeds are conserved in the Seed Vault. The numbers of safety duplicates of Triticum (wheat), Sorghum (sorghum), Pennisetum (pearl millet), Eleusine (finger millet), Cicer (chickpea) and Lens (lentil) exceed 50% of the estimated numbers of distinct accessions in global ex-situ collections. The number of accessions conserved globally generally reflects importance for food production, but there are significant gaps in the safety collection at Svalbard in some genera of high importance for food security in tropical countries, such as Amaranthus (amaranth), Chenopodium (quinoa), Eragrostis (teff) and Abelmoschus (okra). In the 29 food-crop genera with the largest number of accessions stored globally, an average of 5.5 out of the ten largest collections is already represented in the Seed Vault collection or is covered by existing deposit agreements. The high coverage of ITPGRFA Annex 1 crops and of those crops for which there is a CGIAR mandate in the current Seed Vault collection indicates that existence of international policies and institutions are important determinants for accessions to be safety duplicated at Svalbard. As a back-up site for the global conservation system, the Seed Vault plays not only a practical but also a symbolic role for enhanced integration and cooperation for conservation of crop diversity.

  6. Evaluation of the Efficiency of the Foxtail Millet Vacuum Cushion in Skin Cancer Radiation Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Shin; Cheol; Lee, Kyung Jae; Jung, Sung Min; Oh, Tae Seong; Park, Jong Il; Shin, Hyun Kye [Dept. of Radiation Oncology, Ewha Womans University Mokdong Hospital, Seoul (Korea, Republic of)

    2012-09-15

    The sufficiency of skin dose and the reemergence of patient set-up position to the success of skin cancer radiation treatment is a very important element. But the conventional methods to increase the skin dose were used to vacuum cushion, bolus and water tank have several weak points. For this reason, we produced Foxtail Millet Vacuum Cushion and evaluated the efficiency of the Foxtail Millet Vacuum Cushion in skin cancer Radiation treatment. We measured absolute dose for 3 materials (Foxtail Millet Vacuum Cushion, bolus and solid water phantom) and compared each dose distribution. We irradiated 6 MV 100 MU photon radiation to every material of 1 cm, 2 cm, 3 cm thickness at three times. We measured absolute dose and compared dose distribution. Finally we inspected the CT simulation and radiation therapy planing using the Foxtail Millet Vacuum Cushion. Absolute dose of Foxtail Millet Vacuum Cushion was similar to absolute dose of bolus and solid water phantom's result in each thickness. it Showed only the difference of 0.1-0.2% between each material. Also the same result in dose distribution comparison. About 97% of the dose distribution was within the margin of error in the prescribed ranges (100{+-}3%), and achieved the enough skin dose (Gross Tumor Volume dose : 100{+-}5%) in radiation therapy planing. We evaluated important fact that Foxtail Millet Vacuum Cushion is no shortage of time to replace the soft tissue equivalent material and normal vacuum cushion at the low energy radiation transmittance. Foxtail Millet Vacuum Cushion can simultaneously achieve the enough skin dose in radiation therapy planing with maintaining normal vacuum cushion' function. Therefore as above We think that Foxtail Millet Vacuum Cushion is very useful in skin cancer radiation treatment.

  7. Early mixed farming of millet and rice 7800 years ago in the Middle Yellow River region, China.

    Directory of Open Access Journals (Sweden)

    Jianping Zhang

    Full Text Available The Peiligang Culture (9000-7000 cal. yr BP in the Middle Yellow River region, North China, has long been considered representative of millet farming. It is still unclear, however, if broomcorn millet or foxtail millet was the first species domesticated during the Peiligang Culture. Furthermore, it is also unknown whether millet was cultivated singly or together with rice at the same period. In this study, phytolith analysis of samples from the Tanghu archaeological site reveals early crop information in the Middle Yellow River region, China. Our results show that broomcorn millet was the early dry farming species in the Peiligang Culture at 7800 cal. yr BP, while rice cultivation took place from 7800 to 4500 cal. yr BP. Our data provide new evidence of broomcorn millet and rice mixed farming at 7800 cal. yr BP in the Middle Yellow River region, which has implications for understanding the domestication process of the two crops, and the formation and continuance of the Ancient Yellow River Civilization.

  8. In-silico mining, type and frequency analysis of genic microsatellites of finger millet (Eleusine coracana (L.) Gaertn.): a comparative genomic analysis of NBS-LRR regions of finger millet with rice.

    Science.gov (United States)

    Kalyana Babu, B; Pandey, Dinesh; Agrawal, P K; Sood, Salej; Kumar, Anil

    2014-05-01

    In recent years, the increased availability of the DNA sequences has given the possibility to develop and explore the expressed sequence tags (ESTs) derived SSR markers. In the present study, a total of 1956 ESTs of finger millet were used to find the microsatellite type, distribution, frequency and developed a total of 545 primer pairs from the ESTs of finger millet. Thirty-two EST sequences had more than two microsatellites and 1357 sequences did not have any SSR repeats. The most frequent type of repeats was trimeric motif, however the second place was occupied by dimeric motif followed by tetra-, hexa- and penta repeat motifs. The most common dimer repeat motif was GA and in case of trimeric SSRs, it was CGG. The EST sequences of NBS-LRR region of finger millet and rice showed higher synteny and were found on nearly same positions on the rice chromosome map. A total of eight, out of 15 EST based SSR primers were polymorphic among the selected resistant and susceptible finger millet genotypes. The primer FMBLEST5 could able to differentiate them into resistant and susceptible genotypes. The alleles specific to the resistant and susceptible genotypes were sequenced using the ABI 3130XL genetic analyzer and found similarity to NBS-LRR regions of rice and finger millet and contained the characteristic kinase-2 and kinase 3a motifs of plant R-genes belonged to NBS-LRR region. The In-silico and comparative analysis showed that the genes responsible for blast resistance can be identified, mapped and further introgressed through molecular breeding approaches for enhancing the blast resistance in finger millet.

  9. Seed Carotenoid and Tocochromanol Composition of Wild Fabaceae Species Is Shaped by Phylogeny and Ecological Factors

    Science.gov (United States)

    Fernández-Marín, Beatriz; Míguez, Fátima; Méndez-Fernández, Leire; Agut, Agustí; Becerril, José M.; García-Plazaola, José I.; Kranner, Ilse; Colville, Louise

    2017-01-01

    Carotenoids distribution and function in seeds have been very scarcely studied, notwithstanding their pivotal roles in plants that include photosynthesis and phytohormone synthesis, pigmentation, membrane stabilization and antioxidant activity. Their relationship with tocochromanols, whose critical role in maintaining seed viability has already been evidenced, and with chlorophylls, whose retention in mature seed is thought to have negative effects on storability, remain also unexplored. Here, we aimed at elucidating seed carotenoids relationship with tocochromanols and chlorophylls with regard to phylogenetic and ecological traits and at understanding their changes during germination. The composition and distribution of carotenoids were investigated in seeds of a wide range of wild species across the Fabaceae (the second-most economically important family after the Poaceae). Photosynthetic pigments and tocochromanols were analyzed by HPLC in mature dry seeds of 50 species representative of 5 subfamilies within the Fabaceae (including taxa that represent all continents, biomes and life forms within the family) and at key timepoints during seedling establishment in three species representative of distinct clades. Total-carotenoids content positively correlated with tocopherols in the basal subfamilies Detarioideae, Cercidoideae, and Dialioideae, and with chlorophylls in the Papilionoideae. Papilionoideae lacked tocotrienols and had the highest total-carotenoids, chlorophyll and γ-tocopherol contents. Interestingly, lutein epoxide was present in 72% of the species including several herbs from different subfamilies. Overall, species original from temperate biomes presented higher carotenoids and lower tocochromanols levels than those from tropical biomes. Also shrub species showed higher carotenoids content than herbs and trees. During germination, total content of photosynthetic pigments increased in parallel to changes in relative abundance of carotenoids

  10. Antioxidant activity of commonly consumed cereals, millets, pulses and legumes in India.

    Science.gov (United States)

    Sreeramulu, D; Reddy, C Vijaya Kumar; Raghunath, M

    2009-02-01

    Plant foods are important due to their antioxidant activity (AOA) attributed to the phenolics which are known to protect organisms against harmful effects of oxygen radicals. However, information on antioxidant activity of Indian plant foods is scanty. Therefore, the present study evaluated the AOA of cereals, millets, pulses and legumes, commonly consumed in India and assessed the relationship with their total phenolic content (TPC). AOA was assessed by DPPH (2,2-Diphenyl-1-picryl hydrazyl) radical scavenging assay, ferric reducing antioxidant power (FRAP) assay and reducing power. DPPH scavenging activity ranged from 0.24 and 1.73 mg/g, whereas FRAP ranged from 16.21 to 471.71 micromoles/g. Finger millet (Eleusine cora cana) and Rajmah (Phaseolus vulgaris) had the highest FRAP 471.71, 372.76 and DPPH scavenging activity 1.73, 1.07. Similar trends were observed with reducing power. Among cereals and legumes, Finger millet (Ragi) and black gram dhal (Phaseolus mungo Roxb) had the highest TPC, the values being 373 and 418 mg/100 g respectively, while rice (Oryza sativa) and green gram dhal (Phaseolus aureus Roxb) showed the least (47.6 and 62.4 mg/100 g). In the present study, FRAP (r = 0.91) and reducing power (r = 0.90) showed significant correlation with TPC in cereals and millets, but not in pulses and legumes. The results suggest that TPC contributes significantly to the AOA of Indian cereals and millets.

  11. Genome and Transcriptome sequence of Finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties.

    Science.gov (United States)

    Hittalmani, Shailaja; Mahesh, H B; Shirke, Meghana Deepak; Biradar, Hanamareddy; Uday, Govindareddy; Aruna, Y R; Lohithaswa, H C; Mohanrao, A

    2017-06-15

    Finger millet (Eleusine coracana (L.) Gaertn.) is an important staple food crop widely grown in Africa and South Asia. Among the millets, finger millet has high amount of calcium, methionine, tryptophan, fiber, and sulphur containing amino acids. In addition, it has C4 photosynthetic carbon assimilation mechanism, which helps to utilize water and nitrogen efficiently under hot and arid conditions without severely affecting yield. Therefore, development and utilization of genomic resources for genetic improvement of this crop is immensely useful. Experimental results from whole genome sequencing and assembling process of ML-365 finger millet cultivar yielded 1196 Mb covering approximately 82% of total estimated genome size. Genome analysis showed the presence of 85,243 genes and one half of the genome is repetitive in nature. The finger millet genome was found to have higher colinearity with foxtail millet and rice as compared to other Poaceae species. Mining of simple sequence repeats (SSRs) yielded abundance of SSRs within the finger millet genome. Functional annotation and mining of transcription factors revealed finger millet genome harbors large number of drought tolerance related genes. Transcriptome analysis of low moisture stress and non-stress samples revealed the identification of several drought-induced candidate genes, which could be used in drought tolerance breeding. This genome sequencing effort will strengthen plant breeders for allele discovery, genetic mapping, and identification of candidate genes for agronomically important traits. Availability of genomic resources of finger millet will enhance the novel breeding possibilities to address potential challenges of finger millet improvement.

  12. Development and molecular characterization of genic molecular markers for grain protein and calcium content in finger millet (Eleusine coracana (L.) Gaertn.).

    Science.gov (United States)

    Nirgude, M; Babu, B Kalyana; Shambhavi, Y; Singh, U M; Upadhyaya, H D; Kumar, Anil

    2014-03-01

    Finger millet (Eleusine coracana (L.) Gaertn), holds immense agricultural and economic importance for its high nutraceuticals quality. Finger millets seeds are rich source of calcium and its proteins are good source of essential amino acids. In the present study, we developed 36 EST-SSR primers for the opaque2 modifiers and 20 anchored-SSR primers for calcium transporters and calmodulin for analysis of the genetic diversity of 103 finger millet genotypes for grain protein and calcium contents. Out of the 36 opaque2 modifiers primers, 15 were found polymorphic and were used for the diversity analysis. The highest PIC value was observed with the primer FMO2E33 (0.26), while the lowest was observed FMO2E27 (0.023) with an average value of 0.17. The gene diversity was highest for the primer FMO2E33 (0.33), however it was lowest for FMO2E27 (0.024) at average value of 0.29. The percentage polymorphism shown by opaque2 modifiers primers was 68.23%. The diversity analysis by calcium transporters and calmodulin based anchored SSR loci revealed that the highest PIC was observed with the primer FMCA8 (0.30) and the lowest was observed for FMCA5 (0.023) with an average value of 0.18. The highest gene diversity was observed for primer FMCA8 (0.37), while lowest for FMCA5 (0.024) at an average of 0.21. The opaque2 modifiers specific EST-SSRs could able to differentiate the finger millet genotypes into high, medium and low protein containing genotypes. However, calcium dependent candidate gene based EST-SSRs could broadly differentiate the genotypes based on the calcium content with a few exceptions. A significant negative correlation between calcium and protein content was observed. The present study resulted in identification of highly polymorphic primers (FMO2E30, FMO2E33, FMO2-18 and FMO2-14) based on the parameters such as percentage of polymorphism, PIC values, gene diversity and number of alleles.

  13. Effect of pre- and post-heading waterlogging on growth and grain yield of four millets

    Directory of Open Access Journals (Sweden)

    Asana Matsuura

    2016-07-01

    Full Text Available Seeds of Panicum miliaceum, Panicum sumatrense, Setaria glauca, and Setaria italica were raised in polyvinylchloride tubes filled with soil to determine interspecific differences in waterlogging tolerance and the effect of pre- and post-heading waterlogging on growth and grain yield. Four treatments were conducted including control (no-waterlogging stress during growth. Pre-heading waterlogging treatment was initiated 17 days after sowing to heading (TC. Post-heading waterlogging treatment was initiated heading till harvest (CT. Waterlogging treatment was initiated 17 days after sowing to harvesting (TT. The grain yield of P. miliaceum, S. glauca, and S. italica decreased 16, 18, and 4%, while that of P. sumatrense increased 210% under TT treatment and this showed P. sumatrense had most waterlogging tolerance. The grain yield was more affected under TC treatment in S. italica and P. miliaceum. However, there was not significant differences the grain yield between TC and CT treatment in P. sumatrense and S. glauca. Total dry weight, total root dry weight, number of crown root, and the proportion of lysigenous aerenchyma of P. sumatrense were significantly higher than those of other millets at harvesting. Plant growth rate, total root dry weight, number of crown root, and the proportion of lysigenous aerenchyma of P. sumatrense were significantly higher than those of other millets at heading. These results suggest that P. sumatrense exhibits waterlogging tolerance by enhancing root growth characterized by a high proportion of lysigenous aerenchyma in the crown root.

  14. Effect of flaming on wild mustard (Sinapis arvensis L. soil seed bank, soil micro organisms and physicochemical characteristics

    Directory of Open Access Journals (Sweden)

    H. Salimi

    2016-05-01

    Full Text Available In order to study the effect of flaming on seed viability of Sinapis arvensis L., changes in microorganisms population and physicochemical characteristics of soil after canola (Brassica napus L. harvesting, an experiment was carried out based on randomized complete block design with four replications and eight treatments at Karaj Research Center, Iran, during 2005- 2006. After harvesting canola at the end of spring, wild mustard seeds were distributed evenly on the surface of the soil. In some plots, canola stubbles were left on the ground and in some plots canola stubbles were taken off. Under this condition, the following treatments were applied: Flaming under wet and dry soil condition, burning stubbles under wet and dry soil condition. In other plots canola stubbles were taken off the plots and then flaming was applied under wet and dry soil conditions. Check plots did not receive any treatment. Results indicated that all treatments reduced seed viability, and the highest loss in seedling density occurred in the flaming treatment on dry-soil. Flaming did not have any serious affect on soil microorganisms or on its other physiochemical aspects, however dry-soil treatments proved the safest.

  15. Transcriptome Analysis of a New Peanut Seed Coat Mutant for the Physiological Regulatory Mechanism Involved in Seed Coat Cracking and Pigmentation

    Science.gov (United States)

    Wan, Liyun; Li, Bei; Pandey, Manish K.; Wu, Yanshan; Lei, Yong; Yan, Liying; Dai, Xiaofeng; Jiang, Huifang; Zhang, Juncheng; Wei, Guo; Varshney, Rajeev K.; Liao, Boshou

    2016-01-01

    Seed-coat cracking and undesirable color of seed coat highly affects external appearance and commercial value of peanuts (Arachis hypogaea L.). With an objective to find genetic solution to the above problems, a peanut mutant with cracking and brown colored seed coat (testa) was identified from an EMS treated mutant population and designated as “peanut seed coat crack and brown color mutant line (pscb).” The seed coat weight of the mutant was almost twice of the wild type, and the germination time was significantly shorter than wild type. Further, the mutant had lower level of lignin, anthocyanin, proanthocyanidin content, and highly increased level of melanin content as compared to wild type. Using RNA-Seq, we examined the seed coat transcriptome in three stages of seed development in the wild type and the pscb mutant. The RNA-Seq analysis revealed presence of highly differentially expressed phenylpropanoid and flavonoid pathway genes in all the three seed development stages, especially at 40 days after flowering (DAF40). Also, the expression of polyphenol oxidases and peroxidase were found to be activated significantly especially in the late seed developmental stage. The genome-wide comparative study of the expression profiles revealed 62 differentially expressed genes common across all the three stages. By analyzing the expression patterns and the sequences of the common differentially expressed genes of the three stages, three candidate genes namely c36498_g1 (CCoAOMT1), c40902_g2 (kinesin), and c33560_g1 (MYB3) were identified responsible for seed-coat cracking and brown color phenotype. Therefore, this study not only provided candidate genes but also provided greater insights and molecular genetic control of peanut seed-coat cracking and color variation. The information generated in this study will facilitate further identification of causal gene and diagnostic markers for breeding improved peanut varieties with smooth and desirable seed coat color. PMID

  16. Physical, chemical and sensory properties of gluten-free kibbeh formulated with millet flour (Pennisetum glaucum (L. R. Br.

    Directory of Open Access Journals (Sweden)

    Tcherena Amorim Brasil

    2015-06-01

    Full Text Available Pearl millet flour was utilized in kibbeh formulations instead of whole-wheat flour. Physicochemical properties, oxidation stability and sensorial characteristics of control kibbeh made with whole-wheat flour (CT were compared with kibbehs prepared with millet flour (roasted or wet and stored for 90 days (–18 °C. Kibbeh prepared with millet flour presented good oxidation stability (TBARS concentration. Baked kibbehs (with roasted millet flour presented good acceptability and kibbeh samples did not differ significantly (p > 0.05 from the whole-wheat flour sample, when global appearance, texture and flavor were evaluated. Millet flour could be a suitable ingredient for kibbeh formulations, maintaining their nutritional value and sensorial quality in addition to being a gluten-free product.

  17. Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants.

    Science.gov (United States)

    Ceasar, S Antony; Ignacimuthu, S

    2011-09-01

    A new Agrobacterium-mediated transformation system was developed for finger millet using shoot apex explants. The Agrobacterium strain LBA4404 harboring binary vector pCAMBIA1301, which contained hygromycin phosphotransferase (hptII) as selectable marker gene and β-glucuronidase (GUS) as reporter gene, was used for optimization of transformation conditions. Two finger millet genotypes, GPU 45 and CO 14, were used in this study. The optimal conditions for the Agrobacterium-mediated transformation of finger millet were found to be the co-cultivation of explants obtained on the 16th day after callus induction (DACI), exposure of explants for 30 min to agrobacterial inoculum and 3 days of co-cultivation on filter paper placed on medium supplemented with 100 μM acetosyringone (AS). Addition of 100 μM L: -cysteine in the selection medium enhanced the frequency of transformation and transgenic plant recovery. Both finger millet genotypes were transformed by Agrobacterium. A frequency of 19% transient expression with 3.8% stable transformation was achieved in genotype GPU 45 using optimal conditions. Five stably transformed plants were fully characterized by Southern blot analysis. A segregation analysis was also performed in four R(1) progenies, which showed normal Mendelian pattern of transgene segregation. The inheritance of transgenes in R(1) progenies was also confirmed by Southern blot analysis. This is the first report on Agrobacterium-mediated transformation of finger millet. This study underpins the introduction of numerous agronomically important genes into the genome of finger millet in the future.

  18. SCAR marker specific to detect Magnaporthe grisea infecting finger millets (Eleusine coracana).

    Science.gov (United States)

    Gnanasing Jesumaharaja, L; Manikandan, R; Raguchander, T

    2016-09-01

    To determine the molecular variability and develop specific Sequence Characterized Amplified Region (SCAR) marker for the detection of Magnaporthe grisea causing blast disease in finger millet. Random amplified polymorphic DNA (RAPD) was performed with 14 isolates of M. grisea using 20 random primers. SCAR marker was developed for accurate and specific detection of M. grisea infecting only finger millets. The genetic similarity coefficient within each group and variation between the groups was observed. Among the primers, OPF-08 generated a RAPD polymorphic profile that showed common fragment of 478 bp in all the isolates. This fragment was cloned and sequenced. SCAR primers, Mg-SCAR-FP and Mg-SCAR-RP, were designed using sequence of the cloned product. The specificity of the SCAR primers was evaluated using purified DNA from M. grisea isolates from finger millets and other pathogens viz., Pyricularia oryzae, Colletotrichum gloeosporioides, Colletotrichum falcatum and Colletotrichum capcisi infecting different crops. The SCAR primers amplified only specific 460 bp fragment from DNA of M. grisea isolates and this fragment was not amplified in other pathogens tested. SCAR primers distinguish blast disease of finger millet from rice as there is no amplification in the rice blast pathogen. PCR-based SCAR marker is a convenient tool for specific and rapid detection of M. grisea in finger millets. Genetic diversity in fungal population helps in developing a suitable SCAR marker to identify the blast pathogen at the early stage of infection. © 2016 The Society for Applied Microbiology.

  19. Development of non-lodging mutants through gamma irradiation in little millet (Panicum sumatrense Roth.)

    International Nuclear Information System (INIS)

    Nirmalakumari, A.; Muthiah, A.R.; Senthil, N.; Souframanien, J.

    2009-01-01

    The little millet is widely cultivated as a millet crop across India, China, Sri Lanka, Nepal and Western Burma. Being the first crop to be harvested in the season, it produces the much needed food grain among the tribals and is the staple food for millions in many parts of the world. It is resilient and can adjust to diverse growing environments differing in soil, rainfall and weather. The grain is a good source of nutrients. Variability in a population decides the scope for selection particularly when it is controlled more by genetic factors rather than by environment. The grain yield of millet and macromutants for high productive tillering, ear head length, compactness, bold grain and non lodging of little millet can be improved through gamma rays. The experimental materials consisted of M6 mutants of CO 3 and CO (samai) 4 varieties irradiated with 300, 400, 500, 600 and 700 Gray of gamma rays from 60 Co, source at BARC, Mumbai and conducted at Millet Breeding Station, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India. From M6 generation finally six best non- lodging mutants were selected and subjected to multilocation trials for studying their stability. (author)

  20. Hybrids between cultivated and wild carrots in natural populations in Denmark

    DEFF Research Database (Denmark)

    Magnussen, L.S.; Hauser, Thure Pavlo

    2007-01-01

    Many cultivated plant species are able to hybridize with related wild plants. However, it is not clear whether their hybrids are able to survive and reproduce outside managed fields, and if cultivar genes introgress into wild populations. In areas where wild carrots co-occur with carrot root......-crops, pollen and seeds may flow from two different sources in the fields to the surrounding wild populations: from pure cultivar plants that occasionally flower, and from flowering 'bolters' that originate from hybridizations between wild (male) and cultivated carrots (female) in seed production fields...... by AFLP. Four hybrids were identified among the 71 plants analysed, and these were most likely F(2) or backcross individuals, sired by pollen from hybrid bolters. Wild populations close to fields were genetically somewhat more similar to cultivars than wild populations far from fields, suggesting...

  1. Drought-Tolerant Plant Growth-Promoting Rhizobacteria Associated with Foxtail Millet in a Semi-arid Agroecosystem and Their Potential in Alleviating Drought Stress

    Directory of Open Access Journals (Sweden)

    Xuguang Niu

    2018-01-01

    Full Text Available The application of plant growth promoting rhizobacteria (PGPR to agro-ecosystems is considered to have the potential for improving plant growth in extreme environments featured by water shortage. Herein, we isolated bacterial strains from foxtail millet (Setaria italica L., a drought-tolerant crop cultivated in semiarid regions in the northeast of China. Four isolates were initially selected for their ability to produce ACC deaminase as well as drought tolerance. The isolates were identified as Pseudomonas fluorescens, Enterobacter hormaechei, and Pseudomonas migulae on the basis of 16S rRNA sequence analysis. All of these drought-tolerant isolates were able to produce EPS (exopolysaccharide. Inoculation with these strains stimulated seed germination and seedling growth under drought stress. Pseudomonas fluorescens DR7 showed the highest level of ACC deaminase and EPS-producing activity. DR7 could efficiently colonize the root adhering soil, increased soil moisture, and enhance the root adhering soil/root tissue ratio. These results suggest drought tolerant PGPR from foxtail millet could enhance plant growth under drought stress conditions and serve as effective bioinoculants to sustain agricultural production in arid regions.

  2. De novo generation of helper virus-satellite chimera RNAs results in disease attenuation and satellite sequence acquisition in a host-dependent manner.

    Science.gov (United States)

    Pyle, J D; Scholthof, Karen-Beth G

    2018-01-15

    Panicum mosaic virus (PMV) is a helper RNA virus for satellite RNAs (satRNAs) and a satellite virus (SPMV). Here, we describe modifications that occur at the 3'-end of a satRNA of PMV, satS. Co-infections of PMV+satS result in attenuation of the disease symptoms induced by PMV alone in Brachypodium distachyon and proso millet. The 375 nt satS acquires ~100-200 nts from the 3'-end of PMV during infection and is associated with decreased abundance of the PMV RNA and capsid protein in millet. PMV-satS chimera RNAs were isolated from native infections of St. Augustinegrass and switchgrass. Phylogenetic analyses revealed that the chimeric RNAs clustered according to the host species from which they were isolated. Additionally, the chimera satRNAs acquired non-viral "linker" sequences in a host-specific manner. These results highlight the dynamic regulation of viral pathogenicity by satellites, and the selective host-dependent, sequence-based pressures for driving satRNA generation and genome compositions. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Soil tillage and windbreak effects on millet and cowpea: I. Wind speed, evaporation, and wind erosion

    International Nuclear Information System (INIS)

    Banzhaf, J.; Leihner, D.E.; Buerkert, A.; Serafini, P.G.

    1992-01-01

    Deforestation, overgrazing, and declining soil regeneration periods have resulted in increased wind erosion problems in dry areas of the West African Sahel, but little is known about the bio-physical factors involved. This research was conducted to determine the effects of ridging and four different windbreak spacings on wind erosion, potential evaporation, and soil water reserves. A field trial was conducted from 1985 to 1987 on 12 ha of a Psammentic Paleustalf in Southern Niger. Millet, Pennisetum glaucum (L.), and cowpea, Vigna unguiculata (L.) Walp., were seeded in strips on flat and ridged soil. Windbreaks of savannah vegetation were spaced at 6, 20, 40, and 90 m. The effects of ridging on wind speed, evaporation, and wind erosion were small and mostly non-significant. However, average wind speed at 0.3 m above ground in the center of cowpea and millet strips was significantly reduced from 2.8 to 2.1 m s -1 as windbreak distances narrowed from 90 to 6 m. As a consequence, potential evaporation declined by 15% and the amount of windblown soil particles by 50% in ridged and by 70% in flat treatments. Despite reduced potential evaporation, average subsoil water reserves were 14 mm smaller in the 6- than in the 20-m windbreak spacing indicating excessive water extraction by the windbreak vegetation. Thus, establishing windbreaks with natural savannah vegetation may require a careful consideration of the agronomic benefits and costs to competing crops. 21 refs., 5 figs

  4. Image-Analysis Based on Seed Phenomics in Sesame

    Directory of Open Access Journals (Sweden)

    Prasad R.

    2014-10-01

    Full Text Available The seed coat (testa structure of twenty-three cultivated (Sesamum indicum L. and six wild sesame (s. occidentale Regel & Heer., S. mulayanum Nair, S. prostratum Retz., S. radiatum Schumach. & Thonn., S. angustifolium (Oliv. Engl. and S. schinzianum Asch germplasm was analyzed from digital and Scanning Electron Microscopy (SEM images with dedicated software using the descriptors for computer based seed image analysis to understand the diversity of seed morphometric traits, which later on can be extended to screen and evaluate improved genotypes of sesame. Seeds of wild sesame species could conveniently be distinguished from cultivated varieties based on shape and architectural analysis. Results indicated discrete ‘cut off values to identify definite shape and contour of seed for a desirable sesame genotype along with the con-ventional practice of selecting lighter colored testa.

  5. First molecular and isotopic evidence of millet processing in prehistoric pottery vessels

    Science.gov (United States)

    Heron, Carl; Shoda, Shinya; Breu Barcons, Adrià; Czebreszuk, Janusz; Eley, Yvette; Gorton, Marise; Kirleis, Wiebke; Kneisel, Jutta; Lucquin, Alexandre; Müller, Johannes; Nishida, Yastami; Son, Joon-Ho; Craig, Oliver E.

    2016-12-01

    Analysis of organic residues in pottery vessels has been successful in detecting a range of animal and plant products as indicators of food preparation and consumption in the past. However, the identification of plant remains, especially grain crops in pottery, has proved elusive. Extending the spectrum is highly desirable, not only to strengthen our understanding of the dispersal of crops from centres of domestication but also to determine modes of food processing, artefact function and the culinary significance of the crop. Here, we propose a new approach to identify millet in pottery vessels, a crop that spread throughout much of Eurasia during prehistory following its domestication, most likely in northern China. We report the successful identification of miliacin (olean-18-en-3β-ol methyl ether), a pentacyclic triterpene methyl ether that is enriched in grains of common/broomcorn millet (Panicum miliaceum), in Bronze Age pottery vessels from the Korean Peninsula and northern Europe. The presence of millet is supported by enriched carbon stable isotope values of bulk charred organic matter sampled from pottery vessel surfaces and extracted n-alkanoic acids, consistent with a C4 plant origin. These data represent the first identification of millet in archaeological ceramic vessels, providing a means to track the introduction, spread and consumption of this important crop.

  6. Genotyping-by-Sequencing Analysis for Determining Population Structure of Finger Millet Germplasm of Diverse Origins

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2016-07-01

    Full Text Available Finger millet [ (L. Gaertn.] is grown mainly by subsistence farmers in arid and semiarid regions of the world. To broaden its genetic base and to boost its production, it is of paramount importance to characterize and genotype the diverse gene pool of this important food and nutritional security crop. However, as a result of nonavailability of the genome sequence of finger millet, the progress could not be made in realizing the molecular basis of unique qualities of the crop. In the present investigation, attempts have been made to characterize the genetically diverse collection of 113 finger millet accessions through whole-genome genotyping-by-sequencing (GBS, which resulted in a genome-wide set of 23,000 single-nucleotide polymorphisms (SNPs segregating across the entire collection and several thousand SNPs segregating within every accession. A model-based population structure analysis reveals the presence of three subpopulations among the finger millet accessions, which are in parallel with the results of phylogenetic analysis. The observed population structure is consistent with the hypothesis that finger millet was domesticated first in Africa, and from there it was introduced to India some 3000 yr ago. A total of 1128 gene ontology (GO terms were assigned to SNP-carrying genes for three main categories: biological process, cellular component, and molecular function. Facilitated access to high-throughput genotyping and sequencing technologies are likely to improve the breeding process in developing countries, and as such, this data will be very useful to breeders who are working for the genetic improvement of finger millet.

  7. Genotyping-by-Sequencing Analysis for Determining Population Structure of Finger Millet Germplasm of Diverse Origins.

    Science.gov (United States)

    Kumar, Anil; Sharma, Divya; Tiwari, Apoorv; Jaiswal, J P; Singh, N K; Sood, Salej

    2016-07-01

    Finger millet [ (L.) Gaertn.] is grown mainly by subsistence farmers in arid and semiarid regions of the world. To broaden its genetic base and to boost its production, it is of paramount importance to characterize and genotype the diverse gene pool of this important food and nutritional security crop. However, as a result of nonavailability of the genome sequence of finger millet, the progress could not be made in realizing the molecular basis of unique qualities of the crop. In the present investigation, attempts have been made to characterize the genetically diverse collection of 113 finger millet accessions through whole-genome genotyping-by-sequencing (GBS), which resulted in a genome-wide set of 23,000 single-nucleotide polymorphisms (SNPs) segregating across the entire collection and several thousand SNPs segregating within every accession. A model-based population structure analysis reveals the presence of three subpopulations among the finger millet accessions, which are in parallel with the results of phylogenetic analysis. The observed population structure is consistent with the hypothesis that finger millet was domesticated first in Africa, and from there it was introduced to India some 3000 yr ago. A total of 1128 gene ontology (GO) terms were assigned to SNP-carrying genes for three main categories: biological process, cellular component, and molecular function. Facilitated access to high-throughput genotyping and sequencing technologies are likely to improve the breeding process in developing countries, and as such, this data will be very useful to breeders who are working for the genetic improvement of finger millet. Copyright © 2016 Crop Science Society of America.

  8. Forage Potential of Photoperiod-Sensitive millet ( Pennisetum ...

    African Journals Online (AJOL)

    To determine its potential as an annual forage, 'Maiwa', which is a short-day photoperiod-sensitive millet (Pennisetum americanum (Linn.) ... Improvement in the level and seasonal distribution of 'maiwa' herbage production as well as quality can be realised through suitable agronomic practices as well as breeding.

  9. Plant Fitness Assessment for Wild Relatives of Insect Resistant Bt-Crops

    Directory of Open Access Journals (Sweden)

    D. K. Letourneau

    2012-01-01

    Full Text Available When field tests of transgenic plants are precluded by practical containment concerns, manipulative experiments can detect potential consequences of crop-wild gene flow. Using topical sprays of bacterial Bacillus thuringiensis larvicide (Bt and larval additions, we measured fitness effects of reduced herbivory on Brassica rapa (wild mustard and Raphanus sativus (wild radish. These species represent different life histories among the potential recipients of Bt transgenes from Bt cole crops in the US and Asia, for which rare spontaneous crosses are expected under high exposure. Protected wild radish and wild mustard seedlings had approximately half the herbivore damage of exposed plants and 55% lower seedling mortality, resulting in 27% greater reproductive success, 14-day longer life-spans, and 118% more seeds, on average. Seed addition experiments in microcosms and in situ indicated that wild radish was more likely to spread than wild mustard in coastal grasslands.

  10. Simultaneous inclusion of sorghum and cottonseed meal or millet in broiler diets: effects on performance and nutrient digestibility.

    Science.gov (United States)

    Batonon-Alavo, D I; Bastianelli, D; Lescoat, P; Weber, G M; Umar Faruk, M

    2016-07-01

    Two experiments were conducted to investigate the use of sorghum, cottonseed meal and millet in broiler diets and their interaction when they are used simultaneously. In Experiment 1, a corn-soybean meal control diet was compared with eight experimental treatments based on low tannin sorghum (S30, S45 and S60), cottonseed meal (CM15, CM40) or both ingredients included in the same diet (S30/CM40, S45/CM25 and S60CM15). Results showed that BW gain was not affected by the inclusion of sorghum or cottonseed meal. However, feed intake tended to be affected by the cereal type with the highest values with sorghum-based diets. Feed conversion ratio increased (Pdigestibility (%) of protein and energy with the cottonseed meal and sorghum/cottonseed meal-based diets having lower protein and energy digestibility compared with corn-based diets. In Experiment 2, a control diet was compared with six diets in which corn was substituted at 60%, 80% or 100% by either sorghum or millet and other three diets with simultaneous inclusion of these two ingredients (S30/M30, S40/M40, S50/M50). Single or combined inclusion of sorghum and millet resulted in similar feed intake and growth performance as the control diet. Apparent ileal digestibility of protein and energy was higher with millet-based diets (Pdigestibility of protein in sorghum and millet-based diets tended to decrease linearly with the increasing level of substitution. Sorghum-based diets resulted in lower total tract digestibility of fat compared with millet and sorghum/millet-based diets (Pdigestibility of starch were obtained with the control diet and millet-based diets compared with the sorghum-based treatments. Results of the two experiments suggest that broiler growth performance was not affected by the dietary level of sorghum, millet or cottonseed meal. Nutrient digestion can, however, be affected by these feed ingredients.

  11. Axenic Seed Culture and in vitro mass propagation of Malaysian Wild Orchid Cymbidium finlaysonianum LINDL

    International Nuclear Information System (INIS)

    Islam, T.; Bhattacharjee, B.; Islam, S. M. S.; Uddain, J.; Subramaniam, S.

    2015-01-01

    Under this study an efficient protocol on mass propagation of Cymbidium finlaysonianum an epiphytic Malaysian wild orchid has been established using axenic culture. To obtain an axenic seed culture, it is important to perform an adequate a disinfection procedure in tissue culture. Four nutrient media viz. MS, 0.5MS, KC and VW were evaluated on In vitro seed germination with callus initiation. The maximum seed germination with callus initiation (100 percentage) was recorded in MS basal medium with a short span of time (40 days after culture). After 45 days of callus initiation the effect of eight different treatments (T /sub 1/-T /sub 8/) on callus size and nature were also studied. The experiment revealed that in T /sub 3/ (MS + 2.0 mgl /sup -1/ BAP + 0.5 mg /sup -1/ NAA) was found to be the best for callus development (1.98 cm length and 1.01 cm breadth). The effect of different concentration of BAP was evaluated on protocorm formation and its proliferation. Maximum number (7.75) and percentage (81.40) of PLBs was recorded in MS medium supplemented with 1.5 mg-1 BAP. Very good PLBs development was recorded also in MS + BAP 1.0 mg-1 + NAA 0.5 mg /sup -1/. The highest elongation of shoot (3.80 cm) was observed in MS + 1.0 mg-1 BAP + 0.50 mg /sup -1/ NAA. For root induction 1.0 mg-1 NAA has proven to the best in 0.5 MS medium. The In developed seedlings were finally transferred to pots by successive phases of acclimatization. (author)

  12. Chemical composition of some wild peanut species (Arachis L.) seeds.

    Science.gov (United States)

    Grosso, N R; Nepote, V; Guzmán, C A

    2000-03-01

    Oil, protein, ash, and carbohydrate contents, iodine value, and fatty acid and sterol compositions were studied in seeds of Arachis trinitensis, A. chiquitana, A. kempff-mercadoi, A. diogoi, A. benensis, A. appressipila, A. valida, A. kretschmeri, A. helodes, A. kuhlmannii, A. williamsii, A. sylvestris, A. matiensis, A. pintoi, A. hoehnei, A. villosa, and A. stenosperma. Oil content was greatest in A.stenosperma (mean value = 51.8%). The protein level was higher in A. sylvestris (30.1%) and A. villosa (29.5%). Mean value of oleic acid varied between 30.6% (A. matiensis) and 46.8% (Arachis villosa), and linoleic acid oscillated between 34.1% (A. villosa) and 47.4% (A. appressipila). The better oleic-to-linoleic (O/L) ratio was exhibited by A. villosa (1.38). Some species showed higher concentration of behenic acid. The greatest level of this fatty acid was found in A. matiensis (6.2%). Iodine value was lower in A. valida (99.2). The sterol composition in the different peanut species showed higher concentration of beta-sitosterol (mean values oscillated between 55.7 and 60.2%) followed by campesterol (12.4-16. 5%), stigmasterol (9.7-13.3%), and Delta(5)-avenasterol (9.7-13.4%). The chemical quality and stability of oils (iodine value and O/L ratio) from wild peanut studied in this work are not better than those of cultivated peanut.

  13. Enhancing micronutrient content of beverage powder by incorporating malted finger millet

    Directory of Open Access Journals (Sweden)

    Jaya Tripathi

    2014-12-01

    Full Text Available Introduction: There is growing interest in the role of the micronutrients in optimizing health, and in prevention or treatment of disease. Micronutrients play a central part in metabolism and in the maintenance of tissue function, an adequate intake therefore is necessary. Rationale: This research work was concerned with the development of micronutrient especially calcium rich instant health beverage powder from malted finger millet (Eleusine coracana and gurhal powder (Hibiscus rosa- sinensis. Aims & Objectives: In this study attempts have been made to investigate that whether the extruded malted finger millet flour and hibiscus flower powder has improved the nutritional and phytochemical quality of instant health beverage powder without deteriorating their sensory properties and whether it can be a supplement for calcium deficit sedentary women. Materials and methods: Instant health beverage powder was prepared by adding malted and extruded finger millet with glucose, hibiscus flower powder, citric acid and vanilla essence. All the ingredients were mixed well. Prior to consumption this powder was dissolved in water and stirred well manually. Further Instant health beverage powder was assessed for nutritional composition. Results: Results shows that beverage powder has very high content of protein (12.25 % and calcium (96.5 % along with highly beneficial neutraceutical properties as compared with the health drinks available in market, it is because of enhanced antioxidant activity resulted due to the incorporation of gurhal leaf powder and malting of the finger millet. Conclusion: This study may prove as a potential step to utilise malted finger millet as a supplement for calcium deficit women. The nutritional composition was found sufficient enough to meet approximately one fourth of RDA of Protein and Calcium as prescribed by NIN, India for sedentary women who are the main sufferers of calcium deficiencies in various life stages

  14. Silicon affects seed development and leaf macrohair formation in Brachypodium distachyon

    DEFF Research Database (Denmark)

    Głazowska, Sylwia Emilia; Murozuka, Emiko; Persson, Daniel Olof

    2018-01-01

    Silicon (Si) has many beneficial effects in plants, especially for the survival from biotic and abiotic stresses. However, Si may negatively affect the quality of lignocellulosic biomass for bioenergy purposes. Despite many studies, the regulation of Si distribution and deposition in plants remains...... was similar to that in the wild-type. The Bdlsi1-1 plants supplied with Si had significantly lower seed weights, compared to the wild-type. In low-Si media, the seed weight of wild-type plants was similar to that of Bdlsi1-1 mutants supplied with Si, while the Bdlsi1-1 seed weight decreased further. We...... conclude that Si deficiency results in widespread alterations in leaf surface morphology and seed formation in Brachypodium, showing the importance of Si for successful development in grasses....

  15. An endophytic fungus isolated from finger millet (Eleucine coracona produces anti-fungal natural products

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes that contribute to the antifungal activity. Here we report the first isolation of endophyte(s from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp. was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  16. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products.

    Science.gov (United States)

    Mousa, Walaa K; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N

    2015-01-01

    Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

  17. Genome-wide analysis and identification of cytokinin oxidase/dehydrogenase (CKX gene family in foxtail millet (Setaria italica

    Directory of Open Access Journals (Sweden)

    Yuange Wang

    2014-08-01

    Full Text Available Cytokinin oxidase/dehydrogenase (CKX; EC.1.5.99.12 regulates cytokinin (CK level in plants and plays an essential role in CK regulatory processes. CKX proteins are encoded by a small gene family with a varying number of members in different plants. In spite of their physiological importance, systematic analyses of SiCKX genes in foxtail millet have not yet been examined. In this paper, we report the genome wide isolation and characterization of SiCKXs using bioinformatic methods. A total of 11 members of the family were identified in the foxtail millet genome. SiCKX genes were distributed in seven chromosomes (chromosome 1, 3, 4, 5, 6, 7, and 11. The coding sequences of all the SiCKX genes were disrupted by introns, with numbers varying from one to four. These genes expanded in the genome mainly due to segmental duplication events. Multiple alignment and motif display results showed that all SiCKX proteins share FAD- and CK-binding domains. Putative cis-elements involved in Ca2 +-response, abiotic stress response, light and circadian rhythm regulation, disease resistance and seed development were present in the promoters of SiCKX genes. Expression data mining suggested that SiCKX genes have diverse expression patterns. Real-time PCR analysis indicated that all 11 SiCKX genes were up-regulated in embryos under 6-BA treatment, and some were NaCl or PEG inducible. Collectively, these results provide molecular insights into CKX research in plants.

  18. Development and utilization of novel intron length polymorphic markers in foxtail millet (Setaria italica (L.) P. Beauv.).

    Science.gov (United States)

    Gupta, Sarika; Kumari, Kajal; Das, Jyotirmoy; Lata, Charu; Puranik, Swati; Prasad, Manoj

    2011-07-01

    Introns are noncoding sequences in a gene that are transcribed to precursor mRNA but spliced out during mRNA maturation and are abundant in eukaryotic genomes. The availability of codominant molecular markers and saturated genetic linkage maps have been limited in foxtail millet (Setaria italica (L.) P. Beauv.). Here, we describe the development of 98 novel intron length polymorphic (ILP) markers in foxtail millet using sequence information of the model plant rice. A total of 575 nonredundant expressed sequence tag (EST) sequences were obtained, of which 327 and 248 unique sequences were from dehydration- and salinity-stressed suppression subtractive hybridization libraries, respectively. The BLAST analysis of 98 EST sequences suggests a nearly defined function for about 64% of them, and they were grouped into 11 different functional categories. All 98 ILP primer pairs showed a high level of cross-species amplification in two millets and two nonmillets species ranging from 90% to 100%, with a mean of ∼97%. The mean observed heterozygosity and Nei's average gene diversity 0.016 and 0.171, respectively, established the efficiency of the ILP markers for distinguishing the foxtail millet accessions. Based on 26 ILP markers, a reasonable dendrogram of 45 foxtail millet accessions was constructed, demonstrating the utility of ILP markers in germplasm characterizations and genomic relationships in millets and nonmillets species.

  19. Side-effects of domestication: cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts.

    Science.gov (United States)

    Fernández-Marín, Beatriz; Milla, Rubén; Martín-Robles, Nieves; Arc, Erwann; Kranner, Ilse; Becerril, José María; García-Plazaola, José Ignacio

    2014-12-20

    Lipophilic antioxidants play dual key roles in edible seeds (i) as preservatives of cell integrity and seed viability by preventing the oxidation of fats, and (ii) as essential nutrients for human and animal life stock. It has been well documented that plant domestication and post-domestication evolution frequently resulted in increased seed size and palatability, and reduced seed dormancy. Nevertheless, and surprisingly, it is poorly understood how agricultural selection and cultivation affected the physiological fitness and the nutritional quality of seeds. Fabaceae have the greatest number of crop species of all plant families, and most of them are cultivated for their highly nutritious edible seeds. Here, we evaluate whether evolution of plants under cultivation has altered the integrated system formed by membranes (fatty acids) and lipophilic antioxidants (carotenoids and tocopherols), in the ten most economically important grain legumes and their closest wild relatives, i.e.: Arachis (peanut), Cicer (chickpea), Glycine (soybean), Lathyrus(vetch), Lens (lentil), Lupinus (lupin), Phaseolus (bean), Pisum (pea), Vicia (faba bean) and Vigna (cowpea). Unexpectedly, we found that following domestication, the contents of carotenoids, including lutein and zeaxanthin, decreased in all ten species (total carotenoid content decreased 48% in average). Furthermore, the composition of carotenoids changed, whereby some carotenoids were lost in most of the crops. An undirected change in the contents of tocopherols and fatty acids was found, with contents increasing in some species and decreasing in others, independently of the changes in carotenoids. In some species, polyunsaturated fatty acids (linolenic acid especially), α-tocopherol and γ-tocopherol decreased following domestication. The changes in carotenoids, tocopherols and fatty acids are likely side-effects of the selection for other desired traits such as the loss of seed dormancy and dispersal mechanisms, and

  20. Development of innovative techniques and principles that may be used as models to improve plant performance. Technical progress report, February 1, 1990--January 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, W.W.; Burton, G.W.

    1992-06-01

    Methods and techniques for transferring germplasm from wild to cultivated species are being developed. The transferred germplasm is being shown to be valuable in plant breeding and in cultivar development. In the primary gene pool of the grassy Pennisetum glaucum subspecies monodii germplasm, some cytoplasms are being identified that appear to have significant effects on forage yields and morphological characteristics. One cytoplasm, A{sub 4}, is very stable for male sterility and fertility is not easily restored by other lines. It should be a valuable cytoplasm for producing commercial forage hybrids. Disease resistance and yield genes transferred from monodii to cultivated pearl millet lines are having a major impact on increasing production of animals grazing disease resistant Tifleaf 2 pearl millet. Genes controlling resistance to many of the world-wide diseases on pearl millet are being identified in the monodii germplasm. Valuable germplasm has been transferred from the secondary gene pool P. purpuroum) which is used as the pollinator of the first pearl millet grain hybrid in the US Production of 7-chromosome gametes in 42-chromosome interspecific hybrids appears to be genotype specific and makes possible transfer of germplasm from the secondary gene pool to cultivated diploid pearl millet. Significant progress has been made in transferring genes controlling apomixis from P. squamulatum (tertiary gene pool) to cultivated pearl millet. Highly apomictic BC{sub 4} plants have been recovered, one of which sets five times as much seed as the best BC{sub 3} plant.

  1. Isolation, characterization and immunolocalization of a seed dominant CaM from finger millet (Eleusine coracana L. Gartn.) for studying its functional role in differential accumulation of calcium in developing grains.

    Science.gov (United States)

    Kumar, Anil; Mirza, Neelofar; Charan, Tara; Sharma, Netrapal; Gaur, Vikram Singh

    2014-03-01

    To understand the exceptional high grain calcium accumulation in finger millet grains, a calmodulin (CaM) gene that is strongly expressed during developing spikes of high grain calcium genotype was further characterized. Using 5'-3' RACE, the full-length CaM open reading frame (ORF) was isolated and the deduced protein sequence showed the presence of four characteristic EF motifs. Phylogenetic analysis showed that the finger millet CaM (Eleusine coracana calmodulin [EcCaM]) was identical to the rice CaM 1-1. Southern hybridization showed the presence of at least four copies of CaM gene that might be located on different regions of the finger millet "AABB" genome. Immunodetection using monospecific polyclonal anti-EcCaM antibodies revealed that EcCaM is localized in the embryo and aleurone layer and accumulates in higher amounts in high grain calcium genotype compared to the low grain calcium genotype. Furthermore, in silico analysis showed that EcCaM interacts with aquaporin which indicates that calcium is probably delivered to developing spike via mass flow of water. These results indicate that higher expression of CaM might cause greater stimulation of the downstream calcium transport machinery operative in the aleurone layer leading to the higher calcium accumulation in the grains of high grain calcium genotype.

  2. Postprandial glycaemic response of foxtail millet dosa in comparison to a rice dosa in patients with type 2 diabetes

    Science.gov (United States)

    Narayanan, Janani; Sanjeevi, Vimala; Rohini, U.; Trueman, Patricia; Viswanathan, Vijay

    2016-01-01

    Background & objectives: Millets are rich source of dietary fibre and non-starchy polysaccharides with low glycaemic index (GI), hence can be used as a therapeutic diet. This study was conducted to estimate the effects of a millet-based dosa (foxtail dosa) compared to a rice dosa for breakfast on postprandial glucose levels in patients with type 2 diabetes mellitus (T2DM). Methods: The GI of rice dosa and foxtail millet dosa was estimated. A total of 105 T2DM participants were randomly selected for the study. The participants were on oral hypoglycaemic agents (OHA) and not on insulin. In this study, each individual served as their own control and experimental group. The postprandial increase in blood glucose was compared after a breakfast of rice dosa and millet dosa. Single and paired t test was used to note the change in blood glucose levels and the level of the significance. Results: The GI of foxtail millet dosa was 59.25 and rice dosa was 77.96. There was a significant reduction (P<0.001) in the postprandial glucose level of patients who consumed a millet-based dosa when compared to those who consumed a rice-based dosa. No significant reduction was observed in the fasting glucose levels. Interpretation & conclusions: The results suggested that replacing a rice-based breakfast item with a millet-based breakfast item lowers the postprandial blood glucose levels in T2DM patients. Thus, millets may have a protective role in the management of hyperglycaemia. Further studies need to be done in a systematic manner to confirm these findings. PMID:28361824

  3. IRON STATUS OF WOMEN OF REPRODUCTIVE AGE LIVING IN PEARL MILLET CONSUMING AREAS OF BANASKANTHA, GUJARAT

    Directory of Open Access Journals (Sweden)

    Vanisha S Nambiar

    2015-12-01

    Full Text Available Anemia is a major health problem in India, especially among women and children (NFHS III, 2006.  The Indian Council of medical Research study reported the prevalence of anemia among pregnant women was 84.9% and in adolescent girls was 90.1% based on their study from 16 districts of India (Food and Nutrition Bulletin, 2006.   Pearl millet (Pennisetum glaucum (Bajra, grown extensively in the arid and semi-arid tropical regions of the world, is one of the most important cereals for food security and consumed as a staple food for rural and tribal population dwelling in this area. Pearl millet has high amounts of iron (8mg/100g, NIN 2010 along with several other factors such as phytates, oxalates and polyphones, which may decrease the bio available iron. IFPRI (Pray and Nagarjan, 2009 has identified Banaskantha, district in Gujarat as one of the important pearl millet producing belts of India. The present study aimed to assess the background information, morbidity profile and dietary intake focusing on the pearl millet consumption of women residing in the pearl millet producing belts of Banaskantha and to assess the status and immunity profile from a subsample of this population.

  4. IRON STATUS OF WOMEN OF REPRODUCTIVE AGE LIVING IN PEARL MILLET CONSUMING AREAS OF BANASKANTHA, GUJARAT

    Directory of Open Access Journals (Sweden)

    Vanisha S Nambiar

    2015-01-01

    Full Text Available Anemia is a major health problem in India, especially among women and children (NFHS III, 2006.  The Indian Council of medical Research study reported the prevalence of anemia among pregnant women was 84.9% and in adolescent girls was 90.1% based on their study from 16 districts of India (Food and Nutrition Bulletin, 2006. Pearl millet (Pennisetum glaucum (Bajra, grown extensively in the arid and semi-arid tropical regions of the world, is one of the most important cereals for food security and consumed as a staple food for rural and tribal population dwelling in this area. Pearl millet has high amounts of iron (8mg/100g, NIN 2010 along with several other factors such as phytates, oxalates and polyphones, which may decrease the bio available iron. IFPRI (Pray and Nagarjan, 2009 has identified Banaskantha, district in Gujarat as one of the important pearl millet producing belts of India. The present study aimed to assess the background information, morbidity profile and dietary intake focusing on the pearl millet consumption of women residing in the pearl millet producing belts of Banaskantha and to assess the status and immunity profile from a subsample of this population.

  5. Antioxidant activity, total phenolics, flavonoids and antinutritional characteristics of germinated foxtail millet (Setaria italica

    Directory of Open Access Journals (Sweden)

    Seema Sharma

    2015-12-01

    Full Text Available A central composite rotatable design was applied to analyse the effects of independent variables [soaking time (ST, germination time (Gt and temperature (GT] on responses [antioxidant activity (AoxA, total phenolic contents (TPC and flavonoid contents (TFC]. The results indicated that with increase in ST, Gt and GT, AoxA, TPC (free/bound and TFC (free/bound of foxtail millet increased significantly. The best combination of germination bioprocess variables for producing optimized germinated foxtail millet flour with the highest AoxA (90.5%, TPC (45.67 mg gallic acid equivalent (GAE/100 g sample and TFC (30.52–43.96 mg RU/g sample were found with soaking time of 15.84 min having germination temperature of 25°C. The optimized germinated foxtail millet flour was nutritionally rich as it produced higher protein (14.32 g/100 g, dietary fibre (27.42 g/100 g, calcium (25.62 mg/kg, iron (54.23 mg/kg, magnesium (107.16 mg/kg and sodium (69.45 mg/kg per kg as compared to un-germinated foxtail millet flour.

  6. Nickel accumulation and its effect on growth, physiological and biochemical parameters in millets and oats.

    Science.gov (United States)

    Gupta, Vibha; Jatav, Pradeep Kumar; Verma, Raini; Kothari, Shanker Lal; Kachhwaha, Sumita

    2017-10-01

    With the boom in industrialization, there is an increase in the level of heavy metals in the soil which drastically affect the growth and development of plants. Nickel is an essential micronutrient for plant growth and development, but elevated level of Ni causes stunted growth, chlorosis, nutrient imbalance, and alterations in the defense mechanism of plants in terms of accumulation of osmolytes or change in enzyme activities like guiacol peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD). Ni-induced toxic response was studied in seedlings of finger millet, pearl millet, and oats in terms of seedling growth, lipid peroxidation, total chlorophyll, proline content, and enzymatic activities. On the basis of germination and growth parameters of the seedling, finger millet was found to be the most tolerant. Nickel accumulation was markedly lower in the shoots as compared to the roots, which was the highest in finger millet and the lowest in shoots of oats. Plants treated with a high concentration of Ni showed significant reduction in chlorophyll and increase in proline content. Considerable difference in level of malondialdehyde (MDA) content and activity of antioxidative enzymes indicates generation of redox imbalance in plants due to Ni-induced stress. Elevated activities of POD and SOD were observed with high concentrations of Ni while CAT activity was found to be reduced. It was observed that finger millet has higher capability to maintain homeostasis by keeping the balance between accumulation and ROS scavenging system than pearl millet and oats. The data provide insight into the physiological and biochemical changes in plants adapted to survive in Ni-rich environment. This study will help in selecting the more suitable crop species to be grown on Ni-rich soils.

  7. Effect of germination temperatures on proteolysis of the gluten-free grains sorghum and millet during malting and mashing.

    Science.gov (United States)

    Chiba, Y; Bryce, J H; Goodfellow, V; MacKinlay, J; Agu, R C; Brosnan, J M; Bringhurst, T A; Harrison, B

    2012-04-11

    Our study showed that sorghum and millet followed a similar pattern of changes when they were malted under similar conditions. When the malt from these cereals was mashed, both cereal types produced wide spectra of substrates (sugars and amino acids) that are required for yeast fermentation when malted at either lower or higher temperatures. At the germination temperatures of 20, 25, and 30 °C used in malting both cereal types, production of reducing sugars and that of free amino nitrogen (FAN) were similar. This is an important quality attribute for both cereals because it implies that variation in temperature during the malting of sorghum and millet, especially when malting temperature is difficult to control, and also reflecting temperature variations, experienced in different countries, will not have an adverse effect on the production and release of amino acids and sugars required by yeast during fermentation. Such consistency in the availability of yeast food (substrates) for metabolism during fermentation when sorghum and millet are malted at various temperatures is likely to reduce processing issues when their malts are used for brewing. Although sorghum has gained wide application in the brewing industry, and has been used extensively in brewing gluten-free beer on industrial scale, this is not the case with millet. The work described here provides novel information regarding the potential of millet for brewing. When both cereals were malted, the results obtained for millet in this study followed patterns similar to those of sorghum. This suggests that millet, in terms of sugars and amino acids, can play a role similar to that of sorghum in the brewing industry. This further suggests that millet, like sorghum, would be a good raw material for brewing gluten-free beer. Inclusion of millet as a brewing raw material will increase the availability of suitable materials (raw material sustainability) for use in the production of gluten-free beer, beverages, and

  8. Identification and molecular characterization of MYB Transcription Factor Superfamily in C4 model plant foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Muthamilarasan, Mehanathan; Khandelwal, Rohit; Yadav, Chandra Bhan; Bonthala, Venkata Suresh; Khan, Yusuf; Prasad, Manoj

    2014-01-01

    MYB proteins represent one of the largest transcription factor families in plants, playing important roles in diverse developmental and stress-responsive processes. Considering its significance, several genome-wide analyses have been conducted in almost all land plants except foxtail millet. Foxtail millet (Setaria italica L.) is a model crop for investigating systems biology of millets and bioenergy grasses. Further, the crop is also known for its potential abiotic stress-tolerance. In this context, a comprehensive genome-wide survey was conducted and 209 MYB protein-encoding genes were identified in foxtail millet. All 209 S. italica MYB (SiMYB) genes were physically mapped onto nine chromosomes of foxtail millet. Gene duplication study showed that segmental- and tandem-duplication have occurred in genome resulting in expansion of this gene family. The protein domain investigation classified SiMYB proteins into three classes according to number of MYB repeats present. The phylogenetic analysis categorized SiMYBs into ten groups (I-X). SiMYB-based comparative mapping revealed a maximum orthology between foxtail millet and sorghum, followed by maize, rice and Brachypodium. Heat map analysis showed tissue-specific expression pattern of predominant SiMYB genes. Expression profiling of candidate MYB genes against abiotic stresses and hormone treatments using qRT-PCR revealed specific and/or overlapping expression patterns of SiMYBs. Taken together, the present study provides a foundation for evolutionary and functional characterization of MYB TFs in foxtail millet to dissect their functions in response to environmental stimuli.

  9. Identification and molecular characterization of MYB Transcription Factor Superfamily in C4 model plant foxtail millet (Setaria italica L..

    Directory of Open Access Journals (Sweden)

    Mehanathan Muthamilarasan

    Full Text Available MYB proteins represent one of the largest transcription factor families in plants, playing important roles in diverse developmental and stress-responsive processes. Considering its significance, several genome-wide analyses have been conducted in almost all land plants except foxtail millet. Foxtail millet (Setaria italica L. is a model crop for investigating systems biology of millets and bioenergy grasses. Further, the crop is also known for its potential abiotic stress-tolerance. In this context, a comprehensive genome-wide survey was conducted and 209 MYB protein-encoding genes were identified in foxtail millet. All 209 S. italica MYB (SiMYB genes were physically mapped onto nine chromosomes of foxtail millet. Gene duplication study showed that segmental- and tandem-duplication have occurred in genome resulting in expansion of this gene family. The protein domain investigation classified SiMYB proteins into three classes according to number of MYB repeats present. The phylogenetic analysis categorized SiMYBs into ten groups (I-X. SiMYB-based comparative mapping revealed a maximum orthology between foxtail millet and sorghum, followed by maize, rice and Brachypodium. Heat map analysis showed tissue-specific expression pattern of predominant SiMYB genes. Expression profiling of candidate MYB genes against abiotic stresses and hormone treatments using qRT-PCR revealed specific and/or overlapping expression patterns of SiMYBs. Taken together, the present study provides a foundation for evolutionary and functional characterization of MYB TFs in foxtail millet to dissect their functions in response to environmental stimuli.

  10. Water properties in seeds from wild species native to Spain

    Science.gov (United States)

    Temperature, water content and relative humidity are critical factors contributing to seed longevity during storage. Water sorption isotherms describe the interrelationships between these critical factors. Understanding these relationships can lead to predictions about how best to process seeds for...

  11. Variability and trait relationships among finger millet accessions in ...

    African Journals Online (AJOL)

    ACSS

    A total of 100 accessions were evaluated for morpho-agronomic characters in a ... head blast incidence, productive tillers plant-1 and grain yield. ... Introduction ... protein, iron and calcium, finger millet ... collection and maintenance has been.

  12. Genomic tools in pearl millet breeding for drought tolerance: Status and prospects

    Directory of Open Access Journals (Sweden)

    Desalegn Debelo Serba

    2016-11-01

    Full Text Available Pearl millet (Penisetum glaucum (L R. Br. is a hardy cereal crop grown in the arid and semiarid tropics where other cereals are likely to fail to produce economic yields due to drought and heat stresses. Adaptive evolution, a form of natural selection shaped the crop to grow and yield satisfactorily with limited moisture supply or under periodic water deficits in the soil. Drought tolerance is a complex polygenic trait that various morphological and physiological responses are controlled by hundreds of genes and significantly influenced by the environment. The development of genomic tools will have enormous potential to improve the efficiency and precision of conventional breeding. The apparent independent domestication events, highly outcrossing nature and traditional cultivation in stressful environments maintained tremendous amount of polymorphism in pearl millet. This high polymorphism of the crop has been revealed by genome mapping that in turn stimulated the mapping and tagging of genomic regions controlling important traits such as drought tolerance. Mapping of a major QTL for terminal drought tolerance in independent populations envisaged the prospect for the development of molecular breeding in pearl millet. To accelerate genetic gains for drought tolerance targeted novel approaches such as establishment of marker-trait associations, genomic selection tools, genome sequence and genotyping-by-sequencing are still limited. Development and application of high throughput genomic tools need to be intensified to improve the breeding efficiency of pearl millet to minimize the impact of climate change on its production.

  13. Gene Discovery and Advances in Finger millet [Eleusine coracana (L. Gaertn.] Genomics - An Important Nutri-cereal of Future

    Directory of Open Access Journals (Sweden)

    Salej Sood

    2016-11-01

    Full Text Available The rapid strides in molecular marker technologies followed by genomics, and next generation sequencing advancements in three major crops (rice, maize and wheat of the world have given opportunities for their use in the orphan, but highly valuable future crops, including finger millet [Eleusine coracana (L. Gaertn.]. Finger millet has many special agronomic and nutritional characteristics, which make it an indispensable crop in arid, semi-arid, hilly and tribal areas of India and Africa. The crop has proven its adaptability in harsh conditions and has shown resilience to climate change. The adaptability traits of finger millet have shown the advantage over major cereal grains under stress conditions, revealing it as a storehouse of important genomic resources for crop improvement. Although new technologies for genomic studies are now available, progress in identifying and tapping these important alleles or genes is lacking. RAPDs were the default choice for genetic diversity studies in the crop until the last decade, but the subsequent development of SSRs and comparative genomics paved the way for the marker assisted selection in finger millet. Resistance gene homologues from NBS-LRR region of finger millet for blast and sequence variants for nutritional traits from other cereals have been developed and used invariably. Population structure analysis studies exhibit 2-4 sub-populations in the finger millet gene pool with separate grouping of Indian and exotic genotypes. Recently, the omics technologies have been efficiently applied to understand the nutritional variation, drought tolerance and gene mining. Progress has also occurred with respect to transgenics development. This review presents the current biotechnological advancements along with research gaps and future perspective of genomic research in finger millet.

  14. Gene Discovery and Advances in Finger Millet [Eleusine coracana (L.) Gaertn.] Genomics—An Important Nutri-Cereal of Future

    Science.gov (United States)

    Sood, Salej; Kumar, Anil; Babu, B. Kalyana; Gaur, Vikram S.; Pandey, Dinesh; Kant, Lakshmi; Pattnayak, Arunava

    2016-01-01

    The rapid strides in molecular marker technologies followed by genomics, and next generation sequencing advancements in three major crops (rice, maize and wheat) of the world have given opportunities for their use in the orphan, but highly valuable future crops, including finger millet [Eleusine coracana (L.) Gaertn.]. Finger millet has many special agronomic and nutritional characteristics, which make it an indispensable crop in arid, semi-arid, hilly and tribal areas of India and Africa. The crop has proven its adaptability in harsh conditions and has shown resilience to climate change. The adaptability traits of finger millet have shown the advantage over major cereal grains under stress conditions, revealing it as a storehouse of important genomic resources for crop improvement. Although new technologies for genomic studies are now available, progress in identifying and tapping these important alleles or genes is lacking. RAPDs were the default choice for genetic diversity studies in the crop until the last decade, but the subsequent development of SSRs and comparative genomics paved the way for the marker assisted selection in finger millet. Resistance gene homologs from NBS-LRR region of finger millet for blast and sequence variants for nutritional traits from other cereals have been developed and used invariably. Population structure analysis studies exhibit 2–4 sub-populations in the finger millet gene pool with separate grouping of Indian and exotic genotypes. Recently, the omics technologies have been efficiently applied to understand the nutritional variation, drought tolerance and gene mining. Progress has also occurred with respect to transgenics development. This review presents the current biotechnological advancements along with research gaps and future perspective of genomic research in finger millet. PMID:27881984

  15. Gene Discovery and Advances in Finger Millet [Eleusine coracana (L.) Gaertn.] Genomics-An Important Nutri-Cereal of Future.

    Science.gov (United States)

    Sood, Salej; Kumar, Anil; Babu, B Kalyana; Gaur, Vikram S; Pandey, Dinesh; Kant, Lakshmi; Pattnayak, Arunava

    2016-01-01

    The rapid strides in molecular marker technologies followed by genomics, and next generation sequencing advancements in three major crops (rice, maize and wheat) of the world have given opportunities for their use in the orphan, but highly valuable future crops, including finger millet [ Eleusine coracana (L.) Gaertn.]. Finger millet has many special agronomic and nutritional characteristics, which make it an indispensable crop in arid, semi-arid, hilly and tribal areas of India and Africa. The crop has proven its adaptability in harsh conditions and has shown resilience to climate change. The adaptability traits of finger millet have shown the advantage over major cereal grains under stress conditions, revealing it as a storehouse of important genomic resources for crop improvement. Although new technologies for genomic studies are now available, progress in identifying and tapping these important alleles or genes is lacking. RAPDs were the default choice for genetic diversity studies in the crop until the last decade, but the subsequent development of SSRs and comparative genomics paved the way for the marker assisted selection in finger millet. Resistance gene homologs from NBS-LRR region of finger millet for blast and sequence variants for nutritional traits from other cereals have been developed and used invariably. Population structure analysis studies exhibit 2-4 sub-populations in the finger millet gene pool with separate grouping of Indian and exotic genotypes. Recently, the omics technologies have been efficiently applied to understand the nutritional variation, drought tolerance and gene mining. Progress has also occurred with respect to transgenics development. This review presents the current biotechnological advancements along with research gaps and future perspective of genomic research in finger millet.

  16. Dialium seed coprophagy in wild western gorillas: Multiple nutritional benefits and toxicity reduction hypotheses.

    Science.gov (United States)

    Masi, Shelly; Breuer, Thomas

    2018-04-01

    Unraveling the relationship between the unusual feeding behaviors and the nutritional intake of endangered species may provide crucial information for understanding species response to habitat unpredictable changes. Primates occasionally re-ingest fruit seeds alongside ingestion of feces, a behavior called coprophagy. The nutritional benefit is one of the several non-mutual exclusive hypotheses proposed to explain this behavior. We investigated the ecological correlates of coprophagy in wild western gorillas. We tested whether coprophagy occurred during periods of lower fruit availability and whether it led to higher nutrient intake in comparison to the other food. Data integrated phenological, fecal and nutritional analyses of gorilla food with behavioral observations collected at two sites in Central Africa (Mbeli Bai: ad libitum observations on 15 groups/solitary males, October 2002-November 2005; Bai Hokou: 5-min scan on a habituated group, December 2004-December 2005). Coprophagy occurred at the end of the high-fruiting season in association of two Dialium species. Coprophagy correlated positively with the occurrence of Dialium spp. fruit in gorilla feces and in the feeding scans, and showed a positive trend with Dialium availability but not with total fruit availability. Nutritional comparison of Dialium seeds with other important gorilla food showed higher fat and mineral content, particularly of Mg, but also of phenols and tannins in Dialium seeds. We discuss how the effect of gut processing and gut heat via coprophagy may act as cooking-like effect: increasing the ability to maximize nutrient intake by concurrently softening fibers and decreasing the toxic effect of antifeedants, like in human traditional cooking. Our results support both the multiple nutritional benefit hypothesis and the toxicity reduction hypothesis. Since Dialium is precious timber, the importance of this tree for the critically endangered western gorillas should be taken with high

  17. DNA record of some traditional small millet landraces in India and Nepal.

    Science.gov (United States)

    Ragupathy, Subramanyam; Dhivya, Shanmughanandhan; Patel, Kirit; Sritharan, Abiran; Sambandan, Kathirvelu; Gartaula, Hom; Sathishkumar, Ramalingam; Khadka, Kamal; Nirmala, Balasubramanian C; Kumari, A Nirmala; Newmaster, Steven G

    2016-12-01

    Despite the extensive use of small millet landraces as an important source of nutrition for people living in semi-arid regions, they are presently marginalized and their diversity and distribution are threatened at a global scale. Local farmers have developed ancient breeding programs entrenched in traditional knowledge (TK) that has sustained rural cultures for thousands of years. The convention on biological diversity seeks fair and equitable sharing of genetic resources arising from local knowledge and requires signatory nations to provide appropriate policy and legal framework to farmers' rights over plant genetic resources and associated TK. DNA barcoding employed in this study is proposed as a model for conservation of genetic diversity and an essential step towards documenting and protecting farmers' rights and TK. Our study focuses on 32 landraces of small millets that are still used by indigenous farmers located in the rain fed areas of rural India and Nepal. Traditional knowledge of traits and utility was gathered using participatory methods and semi-structured interviews with key informants. DNA was extracted and sequenced (rbcL, trnH-psbA and ITS2) from 160 samples. Both multivariate analysis of traits and phylogenetic analyses were used to assess diversity among small millet landraces. Our research revealed considerable variation in traits and DNA sequences among the 32 small millet landraces. We utilized a tiered approach using ITS2 DNA barcode to make 100 % accurate landrace (32 landraces) and species (six species) assignments for all 160 blind samples in our study. We have also recorded precious TK of nutritional value, ecological and agricultural traits used by local farmers for each of these traditional landraces. This research demonstrates the potential of DNA barcoding as a reliable identification tool and for use in evaluating and conserving genetic diversity of small millets. We suggest ways in which DNA barcodes could be used in the

  18. Use of Mutation Breeding Technique in Improving Finger Millet in Northern Zambia

    International Nuclear Information System (INIS)

    Msikita, R.N.

    2002-01-01

    Many breeders have observed that induced mutation increases genetic variability, and the expose to mutagenic agents increases mutation frequency. Studies have indicated the effect in height reduction, increased yield components,disease resistance, in crop like rice and wheat. A study was conducted in finger millet in thr Northern part of Zambia (Region III), a high rainfall area, aiming at improving finger length, number of fingers till ring capacity in order to increase the yield. the seed of Nyika variety, popular to farmers due to its medium maturity, palm shaped fingers (six fingers on average), and light brown grain. Three quantities of seed were irradiated at 15Kr, 20Kr and 30Kr doses. A dose of 15Kr of gamma rays irradiation continued to create good genetic change in the exposed material. These observations clearly suggest that 15Kr dose of gamma rays is the optimum one to expose/irradiate finger millet to create desired genetic changes. The results of 2000/2001 were not significantly different. However, FMM 165 had better yields (3193 Kg) than FMM 175 in Misamfu, while FMM 175 yielded better (3272 Kg) in Chinsali. During 2001/2002 both FMMs performed well in the national finger number of 10 per head. There were also highly significant differences among finger lengths.FMM 165 had finger length of 10.3 cm. Concerning grain yield FMM 165 and FMM 175 had 3802 and 3864 Kg/ha, respectively, which were above the overall mean 3864 Kg/ha. Grain yield correlated positively with finger number with an r-value of 0.19 and finger length r-value of 0.22 although it was not significant at 1% or 5%. Meanwhile in the advance trial there were significant differences among genotypes in finger number. Both FMMs had 9 fingers above the overall mean of 8.8. In the finger length there were highly significant differences. FMM 175 had a length of 11.5 cm while FMM 165 had 10.4 cm. There were highly significant differences among the genotypes in yield. FMM 165 (4636 Kg) and FMM 175

  19. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop.

    Science.gov (United States)

    Hatakeyama, Masaomi; Aluri, Sirisha; Balachadran, Mathi Thumilan; Sivarajan, Sajeevan Radha; Patrignani, Andrea; Grüter, Simon; Poveda, Lucy; Shimizu-Inatsugi, Rie; Baeten, John; Francoijs, Kees-Jan; Nataraja, Karaba N; Reddy, Yellodu A Nanja; Phadnis, Shamprasad; Ravikumar, Ramapura L; Schlapbach, Ralph; Sreeman, Sheshshayee M; Shimizu, Kentaro K

    2017-09-05

    Finger millet (Eleusine coracana (L.) Gaertn) is an important crop for food security because of its tolerance to drought, which is expected to be exacerbated by global climate changes. Nevertheless, it is often classified as an orphan/underutilized crop because of the paucity of scientific attention. Among several small millets, finger millet is considered as an excellent source of essential nutrient elements, such as iron and zinc; hence, it has potential as an alternate coarse cereal. However, high-quality genome sequence data of finger millet are currently not available. One of the major problems encountered in the genome assembly of this species was its polyploidy, which hampers genome assembly compared with a diploid genome. To overcome this problem, we sequenced its genome using diverse technologies with sufficient coverage and assembled it via a novel multiple hybrid assembly workflow that combines next-generation with single-molecule sequencing, followed by whole-genome optical mapping using the Bionano Irys® system. The total number of scaffolds was 1,897 with an N50 length >2.6 Mb and detection of 96% of the universal single-copy orthologs. The majority of the homeologs were assembled separately. This indicates that the proposed workflow is applicable to the assembly of other allotetraploid genomes. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  20. Effect of Nitrogen Rate on Quantitative and Qualitative Forage Yield of Maize, Pearl Millet and Sorghum in Double Cropping System

    Directory of Open Access Journals (Sweden)

    sh Khalesro

    2012-02-01

    Full Text Available Abstract In order to compare three summer forage grasses including sorghum (Sorghum bicolor cv. Speedfeed, corn (Zea mayz S.C. 704 and pearl millet (Pennisetum americanum cv. Nutrifeed for green chop forage production in double cropping system, a field experiment was conducted at research field of Tarbiat Modares University on 2006 growing season. Treatments were arranged in a split- plot design based on randomized complete blocks with four replications. In this research three forage crops as main factor and nitrogen rates (100, 200 and 300 kg N. ha-1 from the urea source as the sub- plot were studied. Results showed the positive response of crops to nitrogen increment, in such a manner that millet with 300 kg N ha-1 produced 85.8 t ha-1 fresh forage (%20.3 more than sorghum and %30.9 more than corn. Regarding to the sustainable agriculture objects, millet and sorghum with 200 kg N ha-1could be suggested. Forage yield advantages of millet and sorghum to corn was %10 and %12 respectively. They produce 72.4 and 73.5 t ha-1 fresh forage under this treatment. Finally regarding to general advantages of sorghum and millet to corn, especially in unsuitable condition like as drought and poor soil fertility, it seems that changing the corn with sorghum or pearl millet could be an appropriate option. Also decision making for recommending one of sorghum and millet need to more information like qualitative attributes in details and determining animal feeding indices (voluntary intake using in vivo methods. Keywords: Sorghum, Pearl millet, Corn, Nitrogen, Forage, Organic matter, Crud protein

  1. Identification of the infection route of a Fusarium seed pathogen into nondormant Bromus tectorum seeds

    Science.gov (United States)

    JanaLynn Franke; Brad Geary; Susan E. Meyer

    2014-01-01

    The genus Fusarium has a wide host range and causes many different forms of plant disease. These include seed rot and seedling blight diseases of cultivated plants. The diseases caused by Fusarium on wild plants are less well-known. In this study, we examined disease development caused by Fusarium sp. n on nondormant seeds of the important rangeland weed Bromus...

  2. Genome and Transcriptome sequence of Finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties

    OpenAIRE

    Hittalmani, Shailaja; Mahesh, H. B.; Shirke, Meghana Deepak; Biradar, Hanamareddy; Uday, Govindareddy; Aruna, Y. R.; Lohithaswa, H. C.; Mohanrao, A.

    2017-01-01

    Background Finger millet (Eleusine coracana (L.) Gaertn.) is an important staple food crop widely grown in Africa and South Asia. Among the millets, finger millet has high amount of calcium, methionine, tryptophan, fiber, and sulphur containing amino acids. In addition, it has C4 photosynthetic carbon assimilation mechanism, which helps to utilize water and nitrogen efficiently under hot and arid conditions without severely affecting yield. Therefore, development and utilization of genomic re...

  3. Comparative analysis of solid-state bioprocessing and enzymatic treatment of finger millet for mobilization of bound phenolics.

    Science.gov (United States)

    Yadav, Geetanjali; Singh, Anshu; Bhattacharya, Patrali; Yuvraj, Jude; Banerjee, Rintu

    2013-11-01

    The present work investigates the probable bioprocessing technique to mobilize the bound phenolics naturally found in finger millet cell wall for enriching it with dietary antioxidants. Comparative study was performed between the exogenous enzymatic treatment and solid-state fermentation of grain (SSF) with a food grade organism Rhizopus oryzae. SSF results indicated that at the 6th day of incubation, total phenolic content (18.64 mg gallic acid equivalent/gds) and antioxidant property (DPPH radical scavenging activity of 39.03 %, metal chelating ability of 54 % and better reducing power) of finger millet were drastically enhanced when fermented with GRAS filamentous fungi. During the enzymatic bioprocessing, most of the phenolics released during the hydrolysis, leached out into the liquid portion rather than retaining them within the millet grain, resulting in overall loss of dietary antioxidant. The present study establishes the most effective strategy to enrich the finger millet with phenolic antioxidants.

  4. Reproductive traits and evolutionary divergence between Mediterranean crops and their wild relatives.

    Science.gov (United States)

    Iriondo, J M; Milla, R; Volis, S; Rubio de Casas, R

    2018-01-01

    Changes in reproductive traits associated with domestication critically determine the evolutionary divergence between crops and their wild relatives, as well as the potential of crop plants to become feral. In this review, we examine the genetic mechanisms of plant domestication and the different types of selection involved, and describe the particularities of domestication of Mediterranean field crops with regard to their reproductive traits, showing illustrative examples. We also explore gene flow patterns between Mediterranean field crops and their wild relatives, along with their ecological, evolutionary and economic implications. Domestication entails multiple selective processes, including direct selection, environmental adaptation and developmental constraints. In contrast to clonal propagation in perennials, sexual reproduction and seed propagation in annuals and biennials have led to a distinct pathway of evolution of reproductive traits. Thus, the initial domestication and further breeding of Mediterranean field crops has brought about changes in reproductive traits, such as higher mean values and variance of seed and fruit sizes, reduced fruit and seed toxicity, non-shattering seeds and loss of seed dormancy. Evolution under domestication is not a linear process, and bi-directional gene flow between wild and crop taxa is a frequent phenomenon. Thus, hybridisation and introgression have played a very important role in determining the genetics of current cultivars. In turn, gene flow from crops to wild relatives can lead to introgression of crop genes into wild populations and potentially alter the characteristics of natural communities. In conclusion, plant evolution under domestication has not only changed the reproductive biology of cultivated taxa, its effects are multifaceted and have implications beyond agriculture. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  5. Regulation of seasonal patterns in seed dormancy

    NARCIS (Netherlands)

    Derkx, M.P.M.

    1993-01-01

    Buried seeds of many wild species pass annually through a pattern of induction and release of dormancy. These reversible changes in dormancy may be repeated for numbers of years when seeds are deprived from light and other germination-stimulating factors, and are a highly useful adaptation

  6. Simulated Optimum Sowing Date for Forage Pearl Millet Cultivars in Multilocation Trials in Brazilian Semi-Arid Region.

    Science.gov (United States)

    Santos, Rafael D; Boote, Kenneth J; Sollenberger, Lynn E; Neves, Andre L A; Pereira, Luiz G R; Scherer, Carolina B; Gonçalves, Lucio C

    2017-01-01

    Forage production is primarily limited by weather conditions under dryland production systems in Brazilian semi-arid regions, therefore sowing at the appropriate time is critical. The objectives of this study were to evaluate the CSM-CERES-Pearl Millet model from the DSSAT software suite for its ability to simulate growth, development, and forage accumulation of pearl millet [ Pennisetum glaucum (L.) R.] at three Brazilian semi-arid locations, and to use the model to study the impact of different sowing dates on pearl millet performance for forage. Four pearl millet cultivars were grown during the 2011 rainy season in field experiments conducted at three Brazilian semi-arid locations, under rainfed conditions. The genetic coefficients of the four pearl millet cultivars were calibrated for the model, and the model performance was evaluated with experimental data. The model was run for 14 sowing dates using long-term historical weather data from three locations, to determine the optimum sowing window. Results showed that performance of the model was satisfactory as indicated by accurate simulation of crop phenology and forage accumulation against measured data. The optimum sowing window varied among locations depending on rainfall patterns, although showing the same trend for cultivars within the site. The best sowing windows were from 15 April to 15 May for the Bom Conselho location; 12 April to 02 May for Nossa Senhora da Gloria; and 17 April to 25 May for Sao Bento do Una. The model can be used as a tool to evaluate the effect of sowing date on forage pearl millet performance in Brazilian semi-arid conditions.

  7. Small millets, big potential: diverse, nutritious, and climate smart ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-04-29

    Apr 29, 2016 ... Integrated and focused public support is now needed for ... Include small millets in the Indian public distribution system (PDS) to 10 kg per ... but post-harvest losses, due to factors such as poor handling, transport, and.

  8. Effect of Wild Mustard (Sinapis arvensis Competition and Nitrogen Levels on

    Directory of Open Access Journals (Sweden)

    F Soleymani

    2012-06-01

    Full Text Available To investigate the effect of wild mustard plant density and nitrogen fertilizer on morphological characters, yield and yield components of canola a split-plot experiment based on a randomized complete block design with 3 replications was carried out in Bu-Ali Sina university of Hamedan, in 2009. 4 levels of nitrogen fertilization (100, 150, 200 and 250 kgN h-1 were assigned to main-plots and plant density of wild mustard at 5 levels (0, 4, 8, 16 and 32 plants m-2 to the sub-plots. Results showed that the effects of wild mustard competition on yield and components of canola was significant. 32 plants m-2 of wild mustard reduced grain and biologic yield, number of pod per plant, number of seed per pod and 1000seed weight about 28.7, 30, 40.9, 22.2 and 16 percent respectively. With more nitrogen application, number of pod per plant, number of seed per pod, 1000seed weight and grain yield was increased. By increasing nitrogen from 100 to 250 kg ha-1, grain yield was increased more than 53 percent. Increasing density of wild mustard significantly reduced all above mentioned morphological and qualitative characters, except protein percentage. By increasing nitrogen fertilizer, plant height, number of branches per plant, pod length, oil yield and protein percentage of canola were increased significantly. Overall nevertheless negative effect of weed on canola yield, seems that the application 200 kgN/ha in addition to increasing grain yield and canola oil, had less decline in weed interference.

  9. Antioxidant capacity and amino acid profile of millet bran wine and the synergistic interaction between major polyphenols.

    Science.gov (United States)

    Guo, XiaoXuan; Sha, XiaoHong; Rahman, Ebeydulla; Wang, Yong; Ji, BaoPing; Wu, Wei; Zhou, Feng

    2018-03-01

    Millet bran, the by-product of millet processing industry, contains an abundance of phytochemicals, especially polyphenols. The main objective of this study was brewing antioxidant wine from millet bran, as well as the nutritional evaluation. The total polyphenol content of wine samples was determined by Folin-Ciocalteu colorimetric method, and the antioxidant capacity was evaluated by DPPH radical-scavenging capacity, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP). Results showed that millet bran wine (MBW) contained as much as six times of total polyphenols compared with millet wine (MW), and performed considerably stronger antioxidant activity in DPPH, TEAC and FRAP assays. More than sixfold of total amino acids (AA) were found in MBW than in MW. Moreover, the indispensable AA and functional AA were also abundant in MBW. The major polyphenol compounds in MBW were identified using HPLC, including vanillic acid, syringic acid (SA), p -coumaric acid (CA) and ferulic acid (FA). They exhibited synergism in the antioxidant assays, especially the combinations of SA and CA, SA and FA. This study not only provides evidence for MBW as a nutraceutical with antioxidant activity, but also opens new avenues in the area of making comprehensive utilization of agricultural by-products.

  10. Synthetic virus seeds for improved vaccine safety: Genetic reconstruction of poliovirus seeds for a PER.C6 cell based inactivated poliovirus vaccine.

    Science.gov (United States)

    Sanders, Barbara P; Edo-Matas, Diana; Papic, Natasa; Schuitemaker, Hanneke; Custers, Jerome H H V

    2015-10-13

    Safety of vaccines can be compromised by contamination with adventitious agents. One potential source of adventitious agents is a vaccine seed, typically derived from historic clinical isolates with poorly defined origins. Here we generated synthetic poliovirus seeds derived from chemically synthesized DNA plasmids encoding the sequence of wild-type poliovirus strains used in marketed inactivated poliovirus vaccines. The synthetic strains were phenotypically identical to wild-type polioviruses as shown by equivalent infectious titers in culture supernatant and antigenic content, even when infection cultures are scaled up to 10-25L bioreactors. Moreover, the synthetic seeds were genetically stable upon extended passaging on the PER.C6 cell culture platform. Use of synthetic seeds produced on the serum-free PER.C6 cell platform ensures a perfectly documented seed history and maximum control over starting materials. It provides an opportunity to maximize vaccine safety which increases the prospect of a vaccine end product that is free from adventitious agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Toxicologic screening of fungi isolated from millet (pennisetum spp ...

    African Journals Online (AJOL)

    AJB SERVER

    Key words: Fungi, aflatoxin B1, mycotoxins, millet, Niger State, Nigeria. INTRODUCTION ..... above the current internationally set safe limit of 20 µg/kg or 20 ppb. .... at http:// www.unep.ch/etu/etp/events/Agriculture/nigeria/pdf. African crops ...

  12. Genetic diversity and population structure of elite foxtail millet [Setaria italica (L.) P. Beauv.] germplasm in China

    Science.gov (United States)

    China is among the countries that have the most severe water deficiency. Due to its excellent drought tolerance, foxtail millet [Setaria italica (L.) P. Beauv.] has become one of the important cereal crops in China. Information on genetic diversity and population structure of foxtail millet may faci...

  13. FORMULASI PANGAN DARURAT BERBENTUK FOOD BARS BERBASIS TEPUNG MILLET PUTIH (Panicum milliaceum L. DAN TEPUNG KACANG MERAH (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Raden Baskara Katri Anandito

    2016-04-01

    Full Text Available This study aimed to obtain a formula emergency food in the form food bars made from white millet flour and red bean flour. Foodbars made with Intermediate Moisture Food (IMF technology with wet dyeing technique. This study used completely randomized design (CRD, which consists of a single factor, namely the variation formula white millet flour and red bean flour. The results showed that the formula food bars with the highest level of consumer acceptance in the composition of 15 g of white millet flour, red bean flour 10 g, 2 g sugar, 10 g margarine, milk full cream 13 g, 6.043 g and the addition of water. In 100 g of food bars contained water, ash, protein, fat, carbohydrate, and caloric value a respectively of 16.45%, 1.45%, 10.99%, 35.39%, 42.26%, 0 , 81 and 233.80 kcallbar. Keywords: Emergency food, food bars, red bean flour, white millet flour   ABSTRAK Penelitian ini bertujuan untuk memperoleh formula pangan darurat berbentuk food bars berbahan dasar tepung millet putih dan tepung kacang merah. Food bars dibuat dengan teknologi Intermediate Moisture Food (IMF dengan teknik pencelupan basah. Penelitian ini menggunakan Rancangan Acak Lengkap (RAL yang terdiri dari satu faktor yaitu variasi formula tepung millet putih dan tepung kacang merah (15:10; 12,5:12,5; 10:15. Hasil penelitian menunjukkan bahwa formula food bars dengan tingkat penerimaan konsumen tertinggi pada komposisi tepung millet putih 15 g, tepung kacang merah 10 g, gula halus 2 g, margarine 10 g, susu full cream 13 g, dan penambahan air 6,043 g. Dalam 100 g food bars terkandung air, abu, protein, lemak, karbohidrat nilai a  dan kalori berturut-turut sebesar 16,45%,1,45%, 10,99%, 35,39%, 42,26%, 0,81 dan 233,80 kkallbar. Kata kunci: Food bars, pangan darurat, tepung kacang merah, tepung millet putih

  14. Distribution of 15N fertilizer in field-lysimeters sown with garlic (Allium sativum) and foxtail millet (Setaria italica)

    International Nuclear Information System (INIS)

    Lazzari, M.A.

    1982-01-01

    We examined the distribution of residual 15 N and its uptake by a foxtail millet crop grown in field lysimeters following a previous garlic crop fertilized with either 15 N-urea or 15 N-ammonium sulphate. Garlic apparently removed more N from the lysimeters treated with urea-N than from those treated with (NH 4 ) 2 SO 4 . Fertilizer-N in the lysimeters was similar (ca. 32% of original) following millet harvest. About 16 per cent of both fertilizers in the lysimeters was removed by the millet. (orig.)

  15. Replacing corn with pearl millet (raw and sprouted) with and without enzyme in chickens' diet.

    Science.gov (United States)

    Afsharmanesh, M; Ghorbani, N; Mehdipour, Z

    2016-04-01

    An experiment was conducted to compare a commercial corn-soya bean meal diet with a pearl millet (raw and sprouted) diet containing less soya bean meal, alone or in combination with exogenous enzyme, on growth performance and ileal villus development of chicks. Two-hundred-and-forty-one-day-old male broilers (10/pen) were randomly allocated to one of the following dietary treatments: (i) a standard corn-soya bean meal control diet (CTL); (ii) a raw pearl millet-soya bean meal diet (PM); (iii) a sprouted pearl millet-soya bean meal diet (SPM); (iv) CTL + exogenous enzymes (CE); (v) PM + exogenous enzymes (PE); and (vi) SPM + exogenous enzymes (SPE) with four replicate pens/treatment. Body weight of birds at day 21 did not differ between those fed the CTL, and SPM and PE diets. In comparison with feeding broilers the CTL diet, feeding the PE and SPM diets caused significant decrease in feed intake, but with equivalent growth and feed efficiency. However, at day 21, feed conversion ratio did not differ between birds fed the CTL diet and those fed the PM, PE and SPM diets. At day 21, broilers fed the PM and PE diets had longer villi (p diet. At day 21, villi width was reduced (p diet. It is concluded that, in comparison with corn, broiler diets formulated with sprouted pearl millet or pearl millet with enzyme require less soya bean meal and can be used to improve growth performance traits and villus development. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  16. Characteristics and expression patterns of the aldehyde dehydrogenase (ALDH gene superfamily of foxtail millet (Setaria italica L..

    Directory of Open Access Journals (Sweden)

    Zhu Chen

    Full Text Available Recent genomic sequencing of the foxtail millet, an abiotic, stress-tolerant crop, has provided a great opportunity for novel gene discovery and functional analysis of this popularly-grown grass. However, few stress-mediated gene families have been studied. Aldehyde dehydrogenases (ALDHs comprise a gene superfamily encoding NAD (P +-dependent enzymes that play the role of "aldehyde scavengers", which indirectly detoxify cellular ROS and reduce the effect of lipid peroxidation meditated cellular toxicity under various environmental stresses. In the current paper, we identified a total of 20 ALDH genes in the foxtail millet genome using a homology search and a phylogenetic analysis and grouped them into ten distinct families based on their amino acid sequence identity. Furthermore, evolutionary analysis of foxtail millet reveals that both tandem and segmental duplication contributed significantly to the expansion of its ALDH genes. The exon-intron structures of members of the same family in foxtail millet or the orthologous genes in rice display highly diverse distributions of their exonic and intronic regions. Also, synteny analysis shows that the majority of foxtail millet and rice ALDH gene homologs exist in the syntenic blocks between the two, implying that these ALDH genes arose before the divergence of cereals. Semi-quantitative and real-time quantitative PCR data reveals that a few SiALDH genes are expressed in an organ-specific manner and that the expression of a number of foxtail millet ALDH genes, such as, SiALDH7B1, SiALDH12A1 and SiALDH18B2 are up-regulated by osmotic stress, cold, H2O2, and phytohormone abscisic acid (ABA. Furthermore, the transformation of SiALDH2B2, SiALDH10A2, SiALDH5F1, SiALDH22A1, and SiALDH3E2 into Escherichia coli (E.coli was able to improve their salt tolerance. Taken together, our results show that genome-wide identification characteristics and expression analyses provide unique opportunities for assessing

  17. Characteristics and expression patterns of the aldehyde dehydrogenase (ALDH) gene superfamily of foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Chen, Zhu; Chen, Ming; Xu, Zhao-shi; Li, Lian-cheng; Chen, Xue-ping; Ma, You-zhi

    2014-01-01

    Recent genomic sequencing of the foxtail millet, an abiotic, stress-tolerant crop, has provided a great opportunity for novel gene discovery and functional analysis of this popularly-grown grass. However, few stress-mediated gene families have been studied. Aldehyde dehydrogenases (ALDHs) comprise a gene superfamily encoding NAD (P) +-dependent enzymes that play the role of "aldehyde scavengers", which indirectly detoxify cellular ROS and reduce the effect of lipid peroxidation meditated cellular toxicity under various environmental stresses. In the current paper, we identified a total of 20 ALDH genes in the foxtail millet genome using a homology search and a phylogenetic analysis and grouped them into ten distinct families based on their amino acid sequence identity. Furthermore, evolutionary analysis of foxtail millet reveals that both tandem and segmental duplication contributed significantly to the expansion of its ALDH genes. The exon-intron structures of members of the same family in foxtail millet or the orthologous genes in rice display highly diverse distributions of their exonic and intronic regions. Also, synteny analysis shows that the majority of foxtail millet and rice ALDH gene homologs exist in the syntenic blocks between the two, implying that these ALDH genes arose before the divergence of cereals. Semi-quantitative and real-time quantitative PCR data reveals that a few SiALDH genes are expressed in an organ-specific manner and that the expression of a number of foxtail millet ALDH genes, such as, SiALDH7B1, SiALDH12A1 and SiALDH18B2 are up-regulated by osmotic stress, cold, H2O2, and phytohormone abscisic acid (ABA). Furthermore, the transformation of SiALDH2B2, SiALDH10A2, SiALDH5F1, SiALDH22A1, and SiALDH3E2 into Escherichia coli (E.coli) was able to improve their salt tolerance. Taken together, our results show that genome-wide identification characteristics and expression analyses provide unique opportunities for assessing the functional

  18. REPELLENCE OF NATURAL AND SYNTHETIC SUBSTANCES TO THE CONSUMING WILD MAMMALS OF Araucaria angustifolia (Bertol. Kuntze SEEDS AT FIELD SOWING

    Directory of Open Access Journals (Sweden)

    Guilherme O. S. Ferraz de Arruda

    2009-10-01

    Full Text Available This work aimed at testing some natural and synthetic substances, not phytotoxics and not lethal for the fauna, to verify the repellence action for the consuming wild animals of Parana-Pine seeds, in two direct sowing experiments in the field. In experiment I, there was the direct application of the treatments in the Parana-Pine seeds and, in the experiment II, there was the application of the treatments only in the surface of the plantation hollows, after the sowing of Parana-Pine seeds. The Parana-Pine seeds and the treatments were prepared at Laboratory of Center of Agroveterinary Sciences, University of Santa Catarina State, at Lages city, Brazil. The experiments were carried to a native-antropic field area at Lages city. It was adopted the experimental design of randomized blocks for both experiments. Experiment I was composed of 15 treatments, 10 seeds per treatment, with 4 replications, and experiment II was composed of 11 treatments, 10 seeds per treatment, with 4 replications. The tested substances, isolated or in mixtures, were: fruit of red pepper, root of parsley, stem and leaf of wormwood herb, lemon scented gum essential oil, linseed oil, castor bean oil, rosin, copper oxychloride, copper sulphate, sulphur, látex ink and calcium lignosulfonate. Through the periodic inspections, during 167 and 165 days respectively for the experiments I and II, data were collected and organized through the attacked and not attacked Paraná-Pine seeds, being submitted to statistical analysis later. The predation rates were considered high for both experiments: 86,7% in experiment I and 84,3% in experiment II. In the experiment with treated Parana-Pine seeds, the longer time for the beginning of the predation was 104 days after the sowing, while, in the experiment with treatment in the environment (hollows, it was 64 days after the sowing. Solution of rosin and alcohol + lemon scented gum oil, applied in the seeds, presented potential for reduction

  19. Flavonoids and phenolic acids from pearl millet (Pennisetum glaucum based foods and their functional implications

    Directory of Open Access Journals (Sweden)

    Vanisha S Nambiar

    2012-07-01

    Full Text Available Background: Pearl millet (Pennisetum glaucum, considered a poor man’s cereal, may be a repository of dietary antioxidants, especially flavonoids and phenolic acids, which provide bioactive mechanisms to reduce free radical induced oxidative stress and probably play a role in the prevention of ageing and various diseases associated with oxidative stress, such as cancer, cardiovascular, and neurodegenerative diseases.Objective: The present study focused on the identification of individual flavonoids and phenolic acids from seven commercial varieties of pearl millet and five samples of pearl millet-based traditional recipes of Banaskantha, Gujarat, India.Methods: Total phenols were determined by the Folin-Ciocalteu method, and individual polyphenol separation included the isolation and identification of (a flavonoids, (b phenolic acids, and (c glycoflavones involving interaction with diagnostic reagents and paper chromatographic separation of compounds and their UV-visible spectroscopic studies including hypsochromic and bathchromic shifts with reagents such as AlCl3, AlCl3/HCl, NaOMe, NaOAc,and NaOAc/H3PO3. Five traditional recipes consumed in the pearl millet producing belt of Banaskantha, Gujarat, India, were standardized in the laboratory and analyzed for phenol and individual flavonoids. Results: Total phenols in raw samples ranged from 268.5 - 420mg/100g of DW and 247.5 -Functional Foods in Health and Disease 2012, 2(7:251-264335mg/100g of DW in cooked recipes. The commonly identified flavonoids were tricin, acacetin, 3, 4 Di-OMe luteolin, and 4-OMe tricin. Five phenolic acids were identified: namely vanilic acid, syringic acid, melilotic acid, para-hydroxyl benzoic acid, and salicylic acid.Conclusion: The presence of flavonoids, such as tricin, acacetin, 3, 4 Di-OMe luteolin, and 4-OMe tricin, indicate the chemopreventive efficacy of pearl millet. They may be inversely related to mortality from coronary heart disease and to the incidence

  20. [MYB-like transcription factor SiMYB42 from foxtail millet (Setaria italica L.) enhances Arabidopsis tolerance to low-nitrogen stress].

    Science.gov (United States)

    Ding, Qing Qian; Wang, Xiao Ting; Hu, Li Qin; Qi, Xin; Ge, Lin Hao; Xu, Wei Ya; Xu, Zhao Shi; Zhou, Yong Bin; Jia, Guan Qing; Diao, Xian Min; Min, Dong Hong; Ma, You Zhi; Chen, Ming

    2018-04-20

    Myeloblastosis (MYB) transcription factors are one of the largest families of transcription factors in higher plants. They play an important role in plant development, defense response processes, and non-biological stresses, i.e., drought stress. Foxtail millet (Setaria italica L.), originated in China, is resistant to drought and low nutrition stresses and has been regarded as an ideal material for studying abiotic stress resistance in monocotyledon. In this study, we ran a transcription profile analysis of zheng 204 under low-nitrogen conditions and identified a MYB-like transcription factor SiMYB42, which was up-regulated under low-nitrogen stress. Phylogenetic tree analysis showed that SiMYB42 belongs to R2R3-MYB subfamily and has two MYB conserved domains. Expression pattern analysis showed that SiMYB42 was significantly up-regulated under various stress conditions, including low-nitrogen stress, high salt, drought and ABA conditions. The results of subcellular localization, quantitative real-time PCR and transcriptional activation analysis indicated that SiMYB42 protein localizes to the nucleus and cell membrane of plant cells, mainly expressed in the leaf or root of foxtail millet, and has transcription activation activity. Functional analysis showed that there was no significant difference between transgenic SiMYB42 Arabidopsis and wild-type (WT) Arabidopsis under normal conditions; however, under low-nitrogen condition, the root length, surface area and seedling fresh weight in transgenic SiMYB42 Arabidopsis, were significantly higher than their counterparts in WT. These results suggest that SiMYB42 transgenic plants exhibit higher tolerance to low-nitrogen stress. Expression levels of nitrate transporters genes NRT2.1, NRT2.4 and NRT2.5, which are the transcriptional targets of SiMYB42, were higher in transgenic SiMYB42 Arabidopsis plants than those in WT; the promoter regions of NRT2.1, NRT2.4 and NRT2.5 all have MYB binding sites. These results indicate

  1. Nutrient content of seeds of some wild plants | Nkafamiya | African ...

    African Journals Online (AJOL)

    saponification values were in the range 122 ± 0.14 to 201 ± 0.05 mg KOH. Proximate values of the protein, oil and carbohydrate content of the seeds suggest that they may be adequate for the formulation of animal feeds. The mineral elements present also suggest that the seeds could contribute partially to the overall daily ...

  2. Seed-specific overexpression of AtFAX1 increases seed oil content in Arabidopsis.

    Science.gov (United States)

    Tian, Yinshuai; Lv, Xueyan; Xie, Guilan; Zhang, Jing; Xu, Ying; Chen, Fang

    2018-06-02

    Biosynthesis of plant seed oil is accomplished through the coordinate action of multiple enzymes in multiple subcellular compartments. Fatty acid (FA) has to be transported from plastid to endoplasmic reticulum (ER) for TAG synthesis. However, the role of plastid FA transportation during seed oil accumulation has not been evaluated. AtFAX1 (Arabidopsis fatty acid export1) mediated the FA export from plastid. In this study, we overexpressed AtFAX1 under the control of a seed specific promoter in Arabidopsis. The resultant overexpression lines (OEs) produced seeds which contained 21-33% more oil and 24-30% more protein per seed than those of the wild type (WT). The increased oil content was probably because of the enhanced FA and TAG synthetic activity. The seed size and weight were both increased accordingly. In addition, the seed number per silique and silique number per plant had no changes in transgenic plants. Taken together, our results demonstrated that seed specific overexpression of AtFAX1 could promote oil accumulation in Arabidopsis seeds and manipulating FA transportation is a feasible strategy for increasing the seed oil content. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Effect of X-rays on germination of some wild papilionaceous seeds

    International Nuclear Information System (INIS)

    Chaghtai, S.A.; Khan, S.S.; Sultan, Suman

    1978-01-01

    Dry seeds of Aeschynomene indica Linn., Alysicarpus rugosus, Desmodium gangeticum (Linn.) DC., three species of Indigofera Tephrosia purpurea (Linn.) Pers. and Zorniagibbosa were irradiated with 1500r dose of X-rays for breaking their dormancy. Whereas none of the seeds of Alysicarpus rugosus, Indigo fera enneaphylla, I.linifolia and Zornia gibbosa could germinate. 23%, 10%, 3% and 2% germination was recorded for the seeds of Indigofera hirsuta sansu Baker, Tephrosia purpurea Aeschynomene indica and Desmodium gangeticum respectively. (author)

  4. 7 CFR 457.165 - Millet crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... costs associated with normal harvesting, handling, and marketing of the millet; except, if the value of... pounds per bushel; or (ii) Substances or conditions are present that are identified by the Food and Drug... after it has been conditioned by the cost of conditioning but not lower than the value of the production...

  5. Seedling characters at different temperatures in pearl millet ...

    African Journals Online (AJOL)

    The effect of six temperatures ranging from 20 to 45°C on the germination and seedling length of six grain pearl millet genotypes (KS, AM, HG, EC, ZZ and D) was determined. There was significant variation in germination and seedling length across temperatures and among genotypes. As a result, significant temperature ...

  6. Prevalence of Finger Millet Diseases in Kaberamaido Subcounty ...

    African Journals Online (AJOL)

    world, the most important disease of finger mil- let is blast caused by the fungus Pyricularia grisea (Cook) Sacc (Adipala, 1980; Emechebe,. 1975i MCrae, 1922). Tar spot, caused by. Phyllachora eleusines P. Hen, is common on fin- ger millet approaching maturity especially in cooler and wetter areas of Uganda (Hen, 1970).

  7. Synthetic seeds of a wild passionfruit species with ornamental potential

    Directory of Open Access Journals (Sweden)

    Maurecilne Lemes Silva

    2015-12-01

    Full Text Available Passiflora cincinnata is a wild species of passion fruit with a wide geographical distribution. It has vigorous growth, climbing habit and very showy and fragrant flowers. The aim of the present investigation was to obtain synthetic seeds from encapsulated zygotic and somatic embryos of P. cincinnata, cultivated under different conditions. Precotyledonary and cotyledonary stage embryos were obtained from zygotic embryos cultivated on MS medium supplemented with 18.1 μM of 2,4-Acid-dichlorophenoxyacetic (2,4-D and 4.5 μM of Benzyladenine (BA. Zygotic embryos and somatic embryos stages were encapsulated using sodium alginate (2.5% w v-1 and CaCl2.2H2O (1 mM as complexing agent. The zygotic and somatic embryos were encapsulated in a matrix containing (I sodium alginate, (II sodium alginate + artificial endosperm and (III sodium alginate + artificial endosperm supplemented with activated charcoal (0.15% w/v. Zygotic embryos encapsulated in the matrix (I, matrix (II and matrix (III and cultivated in flasks, germinated at rates of 79%, 76% and 86% respectively. The cotyledonary somatic embryos encapsulated in the 3 different matrices showed better germination rates when cultivated on cellulose plugs, with more than 50% of embryos converted into plants. Precotyledonary somatic embryos did not germinated regardless the matrix and cultivation. When cultivating the alginate beads ex vitro, both substrate Plantmax and Florialite showed low number of germinated embryos, and the best result (12.67% were obtained using Florialite and embryos encapsulated in the matrix (I.

  8. Impact of seed predators on the herb Baptista lanceolata (Fabales: Fabacae).

    Energy Technology Data Exchange (ETDEWEB)

    Scott Horn; James L. Hanula.

    2004-09-01

    Leguminous seeds are a concentrated source of nutrition (Brashier 2000). In a nutrient-poor habitat, these seeds are important resources for many of the animal species residing there. Several insect predators are known to feed on Baptisia seeds. One such insect is Apion rostrum Say (Coleoptera: Curculionidae), a weevil that feeds on seeds of several wild indigo species. Females lay eggs in developing seed pods where the larvae eat the seeds.

  9. Mechanical Properties of Millet Husk Ash Bitumen Stabilized Soil ...

    African Journals Online (AJOL)

    Akorede

    lateritic soil blocks using Millet Husk Ash (MHA) and Bitumen as additives so as to reduce its high cost and find ... eliminating the need for air-conditioning and are warm during the cold ... The mix properties were used in producing soil bricks of ...

  10. Effect of malting conditions on pearl millet malt quality

    CSIR Research Space (South Africa)

    Pelembe, LAM

    2002-01-01

    Full Text Available The effect of malting conditions on pearl millet malt quality in two varieties, SDMV 89004 and SDMV 91018, was investigated. Grain was steeped and germinated at four temperatures, 20degrees, 25degrees, 30degrees and 35degreesC, over 5 days...

  11. Finger millet (Eleucine coracana) flour as a vehicle for fortification with zinc.

    Science.gov (United States)

    Tripathi, Bhumika; Platel, Kalpana

    2010-01-01

    Millets, being less expensive compared to cereals and the staple for the poorer sections of population, could be the choice for fortification with micronutrients such as zinc. In view of this, finger millet, widely grown and commonly consumed in southern India, was explored as a vehicle for fortification with zinc in this investigation. Finger millet flour fortified with either zinc oxide or zinc stearate so as to provide 50mg zinc per kg flour, was specifically examined for the bioaccessibility of the fortified mineral, as measured by in vitro simulated gastrointestinal digestion procedure and storage stability. Addition of the zinc salts increased the bioaccessible zinc content by 1.5-3 times that of the unfortified flour. Inclusion of EDTA along with the fortified salt significantly enhanced the bioaccessibility of zinc from the fortified flours, the increase being three-fold. Inclusion of citric acid along with the zinc salt and EDTA during fortification did not have any additional beneficial effect on zinc bioaccessiblity. Moisture and free fatty acid contents of the stored fortified flours indicated the keeping quality of the same, up to 60 days. Both zinc oxide and zinc stearate were equally effective as fortificants, when used in combination with EDTA as a co-fortificant. The preparation of either roti or dumpling from the fortified flours stored up to 60 days did not result in any significant compromise in the bioaccessible zinc content. Thus, the present study has revealed that finger millet flour can effectively be used as a vehicle for zinc fortification to derive additional amounts of bioaccessible zinc, with reasonably good storage stability, to combat zinc deficiency. Copyright 2009 Elsevier GmbH. All rights reserved.

  12. A Review of Nutrient Management Studies Involving Finger Millet in the Semi-Arid Tropics of Asia and Africa

    Directory of Open Access Journals (Sweden)

    Malinda S. Thilakarathna

    2015-06-01

    Full Text Available Finger millet (Eleusine coracana (L. Gaertn is a staple food crop grown by subsistence farmers in the semi-arid tropics of South Asia and Africa. It remains highly valued by traditional farmers as it is nutritious, drought tolerant, short duration, and requires low inputs. Its continued propagation may help vulnerable farmers mitigate climate change. Unfortunately, the land area cultivated with this crop has decreased, displaced by maize and rice. Reversing this trend will involve achieving higher yields, including through improvements in crop nutrition. The objective of this paper is to comprehensively review the literature concerning yield responses of finger millet to inorganic fertilizers (macronutrients and micronutrients, farmyard manure (FYM, green manures, organic by-products, and biofertilizers. The review also describes the impact of these inputs on soils, as well as the impact of diverse cropping systems and finger millet varieties, on nutrient responses. The review critically evaluates the benefits and challenges associated with integrated nutrient management, appreciating that most finger millet farmers are economically poor and primarily use farmyard manure. We conclude by identifying research gaps related to nutrient management in finger millet, and provide recommendations to increase the yield and sustainability of this crop as a guide for subsistence farmers.

  13. Dinâmica da água nas palhadas de milho, milheto e soja utilizadas em plantio direto Water fluxes in maize, millet and soybean plant-residue mulches used in direct seeding

    Directory of Open Access Journals (Sweden)

    Fernando Antônio Macena da Silva

    2006-05-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito das palhadas de milho, milheto e soja na capacidade de interceptação e de armazenamento de água, velocidade de dessecamento, porcentagem de cobertura do solo, interceptação da radiação solar e escoamento superficial, assim como incorporar estes efeitos em um modelo de crescimento de plantas. As palhadas de milheto e de milho apresentaram capacidade maior de armazenar água do que a de soja: 3,26, 3,24 e 2,62 g de água por grama de palhada, respectivamente. A quantidade de água perdida pelos resíduos foi proporcional à evapotranspiração potencial. As taxas de cobertura foram equivalentes nos três tipos de material. Os três tipos de palhada foram similares na interceptação das radiações fotossinteticamente ativa e infravermelha. Os resíduos do milheto foram eficientes no controle do escoamento superficial: do total de 843,5 mm de água precipitada, apenas 45,5 mm foram perdidos pelo escoamento superficial no sistema de plantio direto enquanto no convencional as perdas de água foram de 222,5 mm. Os modelos linear e exponencial expressam de forma significativa a maior parte das relações estudadas.The objective of this work was to evaluate the effects of crop residue mulches from maize, millet and soybean on water storage capacity, water evaporation, soil cover, solar radiation interception and surface water run-off as well as to incorporate these effects in a crop growth model. The mulch of millet and maize presented higher capacity for water storage than soybean mulch: 3.26, 3.24 and 2.62 g of water per gram of dry matter, respectively. Water losses from wet mulches were related to the potential evapotranspiration. The soil cover levels were similar among the three types of material. The three types of mulch intercepted similar quantities of photosynthetically active radiation and infrared radiation. The mulch of maize straw was slightly more efficient in intercepting radiation

  14. Evaluation of the nutritional characteristics of a finger millet based complementary food.

    Science.gov (United States)

    Mbithi-Mwikya, Stephen; Van Camp, John; Mamiro, Peter R S; Ooghe, Wilfried; Kolsteren, Patrick; Huyghebaert, Andre

    2002-05-08

    Finger millet (Eleusine coracana), kidney beans (Phaseolus vulgaris), peanuts (Arachis hypogoea), and mango (Mangifera indica) were processed separately and then combined, on the basis of their amino acid scores and energy content, into a complementary food for children of weaning age. The finger millet and kidney beans were processed by germination, autoclaving, and lactic acid fermentation. A mixture containing, on a dry matter basis, 65.2, 19.1, 8.0, and 7.7% of the processed finger millet, kidney beans, peanuts, and mango, respectively, gave a composite protein with an in vitro protein digestibility of 90.2% and an amino acid chemical score of 0.84. This mixture had an energy density of 16.3 kJ.g(-1) of dry matter and a decreased antinutrient content and showed a measurable improvement in the in vitro extractability for calcium, iron, and zinc. A 33% (w/v) pap made from a mix of the processed ingredients had an energy density of 5.4 kJ.g(-1) of pap, which is sufficient to meet the energy requirements of well-nourished children of 6-24 months of age at three servings a day and at the FAO average breast-feeding frequency.

  15. The effect of drought stress on morphological and physiological characteristics of millets

    Directory of Open Access Journals (Sweden)

    hamidreza khazaeii

    2009-06-01

    Full Text Available In order to study the effect of drought stress on morphological and physiological characteristics of millets, a field experiment was arranged in a randomised complete block as a split-plot design with three replication during 2004 growing season at Reasearch Farm of Ferdowsi University of Mashhad. Irrigation intervals (weekly interval, 14-day interval and three types of millet (Pennisetum glaceum , Setaria italica and Panicum miliaceum were allocated to main and sub plots, respectively. Results showed that, grain yield, panicle weight, grain weight, number of tillers, number of fertile tillers, panicle harvest index, leaf area and percentage of nitrogen leaf was not affected by water stress treatments. Although, type of millets had significiant effect on these traits. Exposure of plants to water stress led to noticeable decreases in plant height for all three cultivars. In this experiment, grain yield, plant height, panicle weight, grain weight, panicle harvest index and percentage of nitrogen of Panicum miliaceum was lowest, also Pennisetum glucum had relatively highest grain leaf yield, panicle weight, leaf area and percentage of leaf nitrogen and had favorable production potential in semi-arid tropical regions.

  16. Traditional Malian Solid Foods Made from Sorghum and Millet Have Markedly Slower Gastric Emptying than Rice, Potato, or Pasta

    Directory of Open Access Journals (Sweden)

    Fatimata Cisse

    2018-01-01

    Full Text Available From anecdotal evidence that traditional African sorghum and millet foods are filling and provide sustained energy, we hypothesized that gastric emptying rates of sorghum and millet foods are slow, particularly compared to non-traditional starchy foods (white rice, potato, wheat pasta. A human trial to study gastric emptying of staple foods eaten in Bamako, Mali was conducted using a carbon-13 (13C-labelled octanoic acid breath test for gastric emptying, and subjective pre-test and satiety response questionnaires. Fourteen healthy volunteers in Bamako participated in a crossover design to test eight starchy staples. A second validation study was done one year later in Bamako with six volunteers to correct for endogenous 13C differences in the starches from different sources. In both trials, traditional sorghum and millet foods (thick porridges and millet couscous had gastric half-emptying times about twice as long as rice, potato, or pasta (p < 0.0001. There were only minor changes due to the 13C correction. Pre-test assessment of millet couscous and rice ranked them as more filling and aligned well with postprandial hunger rankings, suggesting that a preconceived idea of rice being highly satiating may have influenced subjective satiety scoring. Traditional African sorghum and millet foods, whether viscous in the form of a thick porridge or as non-viscous couscous, had distinctly slow gastric emptying, in contrast to the faster emptying of non-traditional starchy foods, which are popular among West African urban consumers.

  17. Seed anatomy, moisture content and scarification influence on ...

    African Journals Online (AJOL)

    Low and erratic germination in wild banana seed is caused by dormancy due to physical, anatomical or physiological reasons. Imbibition activates germination process and the rate of water uptake during imbibition is influenced by seed molecular composition and internal and external morphological structures. The present ...

  18. Distribution of /sup 15/N fertilizer in field-lysimeters sown with garlic (Allium sativum) and foxtail millet (Setaria italica)

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, M.A. (Universidad Nacional del Sur, Bahia Blanca (Argentina). Dept. de Ciencas Agrarias)

    1982-01-01

    We examined the distribution of residual /sup 15/N and its uptake by a foxtail millet crop grown in field lysimeters following a previous garlic crop fertilized with either /sup 15/N-urea or /sup 15/N-ammonium sulphate. Garlic apparently removed more N from the lysimeters treated with urea-N than from those treated with (NH/sub 4/)/sub 2/SO/sub 4/. Fertilizer-N in the lysimeters was similar (ca. 32% of original) following millet harvest. About 16 per cent of both fertilizers in the lysimeters was removed by the millet.

  19. Scaling Up Small Millet Post-Harvest and Nutritious Food Products ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Technology solutions to improve processing Processing millets for modern food ... Small scale, large impact By the end of the project, two new business models will be ... The Royal Institution for the Advancement of Learning/McGill University.

  20. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential

    DEFF Research Database (Denmark)

    Zhang, Gengyun; Liu, Xin; Quan, Zhiwu

    2012-01-01

    Foxtail millet (Setaria italica), a member of the Poaceae grass family, is an important food and fodder crop in arid regions and has potential for use as a C(4) biofuel. It is a model system for other biofuel grasses, including switchgrass and pearl millet. We produced a draft genome (∼423 Mb) an...

  1. Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review.

    Science.gov (United States)

    Devi, Palanisamy Bruntha; Vijayabharathi, Rajendran; Sathyabama, Sathyaseelan; Malleshi, Nagappa Gurusiddappa; Priyadarisini, Venkatesan Brindha

    2014-06-01

    The growing public awareness of nutrition and health care research substantiates the potential of phytochemicals such as polyphenols and dietary fiber on their health beneficial properties. Hence, there is in need to identify newer sources of neutraceuticals and other natural and nutritional materials with the desirable functional characteristics. Finger millet (Eleusine coracana), one of the minor cereals, is known for several health benefits and some of the health benefits are attributed to its polyphenol and dietary fiber contents. It is an important staple food in India for people of low income groups. Nutritionally, its importance is well recognised because of its high content of calcium (0.38%), dietary fiber (18%) and phenolic compounds (0.3-3%). They are also recognized for their health beneficial effects, such as anti-diabetic, anti-tumerogenic, atherosclerogenic effects, antioxidant and antimicrobial properties. This review deals with the nature of polyphenols and dietary fiber of finger millet and their role with respect to the health benefits associated with millet.

  2. New use of broomcorn millets for production of granular cultures of aphid-pathogenic fungus Pandora neoaphidis for high sporulation potential and infectivity to Myzus persicae.

    Science.gov (United States)

    Hua, Li; Feng, Ming-Guang

    2003-10-24

    Glutinous broomcorn millets from the crop Panicum miliaceum were first used as substrate to produce granular cultures of Pandora neoaphidis, an obligate fungal pathogen specific to aphids. Carrying a water content of 36.5% after being steamed in a regular autoclaving procedure, millet grains of each 15 g (dry weight) in a 100-ml flask were mixed with 3 ml modified Sabouraud dextrose broth containing half a mashed colony of P. neoaphidis grown on egg yolk milk agar and then incubated at 20 degrees C and a light/dark cycle of 12 h/12 h for 21 days. Based on individually monitoring conidial production potential of 20 millet grains sampled from an arbitrarily taken flask at 3-day intervals, the millet cultures incubated for 6-15 days were capable of producing 16.8-23.4 x 10(4) conidia per millet grain with conidial ejection lasting for up to 6 days. The cultured millet grains individually produced significantly more conidia than apterous adults of Myzus persicae killed by P. neoaphidis (8.4 x 10(4) conidia per cadaver) and sporulated twice longer. The modeling of time-dose-mortality data from bioassays on M. persicae apterae exposed to conidial showers from the cultured millet grains and the mycelial mats produced in liquid culture resulted in similar estimates of LC(50) (millets: 21.4, 7.3, and 4.9 conidia mm(-2) on days 5-7 after exposure; mycelial mats: 22.1, 10.6, and 7.7 conidia mm(-2)) although the LT(50) estimated at a given conidial concentration was slightly smaller for the millet cultures than for the mycelial mats. This indicates that the millet grains cultured with P. neoaphidis produced conidia as infective as or slightly more infective to M. persicae than those from the mycelial mats. Based on the sporulation potential, infectivity, and ease and cost of the millet cultures, the method developed in this study highly improved in vitro cultures of P. neoaphidis and may adapt to culturing other entomophthoralean fungi for microbial control of insect pests.

  3. Replacement value of millet for maize on performance and ...

    African Journals Online (AJOL)

    The experiment was conducted to determine the performance characteristics and haematological indices of broiler chickens fed varying levels of millet as a replacement for maize. Three hundred and thirty day old Marshal Broiler chickens were assigned to 5 dietary treatment groups. Each treatment was replicated 3 times ...

  4. Reducing barriers to millet production and consumption in India ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will scale up use of two small millet production innovations developed ... business development support to small- and medium-sized enterprises, training ... The project will also increase skills and knowledge at 10 small enterprises (e.g., ... au programme du sommet mondial sur le gouvernement ouvert à Mexico.

  5. Physical-chemical characteristics and antioxidant potential of seed ...

    African Journals Online (AJOL)

    Ximenia americana popularly known as wild plum grow wildly in Brazilian semiarid region and its fruit were harvested in two maturity stages and evaluated for quality. The experimental design was completely randomized with three treatments (immature, mature pulp and seeds), and treatment effect was evaluated for pulp ...

  6. Optimization of the formulation and technology of pearl millet based 'ready-to-reconstitute' kheer mix powder.

    Science.gov (United States)

    Bunkar, Durga Shankar; Jha, Alok; Mahajan, Ankur

    2014-10-01

    The objective of this study was to optimize the process of manufacturing instant kheer mix based on pearl millet instead of rice. Dairy whitener, pearl millet and powdered sugar were the responses studied by employing the 3-factor Central Composite Rotatable Design. The formulation with 15 g sugar, 30 g dairy whitener and 20 g pearl millet was found suitable for obtaining dry kheer mix. The analyses were based on scores of consistency, cohesiveness, viscosity and overall acceptability. The reconstituted product from the formulated kheer mix had an overall acceptability score of 7.66 and desirability index of 0.7663. The moisture, fat, protein, carbohydrate and ash contents of the dry mix product were 2.8, 4.38, 5.84, 85.88 and 1.1 %, respectively.

  7. Pearl millet utilization in ccommercial laying hen diets formulated on a total or digestible amino acid basis

    Directory of Open Access Journals (Sweden)

    RS Filardi

    2005-06-01

    Full Text Available An experiment was carried out to evaluate the effect of replacing corn with pearl millet in commercial layer diets, formulated according to the minimal requirements for total and digestible amino acids. Two hundred and forty Lohmann LSL laying hens with 25 weeks of age were distributed in a completely randomized experimental design according to a 2 x 5 factorial arrangement with 3 replicates of 8 birds. Feed was formulated on two amino acid basis (total or digestible according to Rostagno et al. (2000 and there were five pearl millet inclusion levels (0%, 25%, 50%, 75%, and 100%. Performance and egg quality were evaluated during five periods of 21 days.At the end of each period, feed intake, egg production, egg weight and feed conversion were evaluated. In the last three days of each period, the following egg quality parameters were evaluated: Haugh Unit, yolk pigmentation index, egg specific weight, shell percentage and shell thickness. Digestible amino acid requirements resulted in decreased feed intake (p<0.01 and increased production costs per mass of eggs (kg or per dozen eggs (p<0.01 compared to total amino acid requirements. There was a linear reduction in feed intake, egg production, egg weight and yolk pigmentation index with increasing inclusion levels of pearl millet. Therefore, increasing levels of replacement of corn by pearl millet affected bird performance negatively. Besides, production costs were higher with increasing pearl millet levels.

  8. A herbicide-resistant ACCase 1781 Setaria mutant shows higher fitness than wild type.

    Science.gov (United States)

    Wang, T; Picard, J C; Tian, X; Darmency, H

    2010-10-01

    It is often alleged that mutations conferring herbicide resistance have a negative impact on plant fitness. A mutant ACCase1781 allele endowing resistance to the sethoxydim herbicide was introgressed from a resistant green foxtail (Setaria viridis (L.) Beauv) population into foxtail millet (S. italica (L.) Beauv.). (1) Better and earlier growth of resistant plants was observed in a greenhouse cabinet. (2) Resistant plants of the advanced BC7 backcross generation showed more vigorous juvenile growth in the field, earlier flowering, more tillers and higher numbers of grains than susceptible plants did, especially when both genotypes were grown in mixture, but their seeds were lighter than susceptible seeds. (3) Field populations originating from segregating hybrids had the expected allele frequencies under normal growth conditions, but showed a genotype shift toward an excess of homozygous resistant plants within 3 years in stressful conditions. Lower seed size, lower germination rate and perhaps unexplored differences in seed longevity and predation could explain how the resistant plants have the same field fitness over the whole life cycle as the susceptible ones although they produce more seeds. More rapid growth kinetics probably accounted for higher fitness of the resistant plants in adverse conditions. The likelihood of a linkage with a beneficial gene is discussed versus the hypothesis of a pleiotropic effect of the ACCase resistance allele. It is suggested that autogamous species like Setaria could not develop a resistant population without the help of a linkage with a gene producing a higher fitness.

  9. Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Pandey, Garima; Yadav, Chandra Bhan; Sahu, Pranav Pankaj; Muthamilarasan, Mehanathan; Prasad, Manoj

    2017-05-01

    Genome-wide methylation analysis of foxtail millet cultivars contrastingly differing in salinity tolerance revealed DNA demethylation events occurring in tolerant cultivar under salinity stress, eventually modulating the expression of stress-responsive genes. Reduced productivity and significant yield loss are the adverse effects of environmental conditions on physiological and biochemical pathways in crop plants. In this context, understanding the epigenetic machinery underlying the tolerance traits in a naturally stress tolerant crop is imperative. Foxtail millet (Setaria italica) is known for its better tolerance to abiotic stresses compared to other cereal crops. In the present study, methylation-sensitive amplified polymorphism (MSAP) technique was used to quantify the salt-induced methylation changes in two foxtail millet cultivars contrastingly differing in their tolerance levels to salt stress. The study highlighted that the DNA methylation level was significantly reduced in tolerant cultivar compared to sensitive cultivar. A total of 86 polymorphic MSAP fragments were identified, sequenced and functionally annotated. These fragments showed sequence similarity to several genes including ABC transporter, WRKY transcription factor, serine threonine-protein phosphatase, disease resistance, oxidoreductases, cell wall-related enzymes and retrotransposon and transposase like proteins, suggesting salt stress-induced methylation in these genes. Among these, four genes were chosen for expression profiling which showed differential expression pattern between both cultivars of foxtail millet. Altogether, the study infers that salinity stress induces genome-wide DNA demethylation, which in turn, modulates expression of corresponding genes.

  10. Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease.

    Science.gov (United States)

    Ignacimuthu, S; Ceasar, S Antony

    2012-03-01

    Finger millet plants conferring resistance to leaf blast disease have been developed by inserting a rice chitinase (chi11) gene through Agrobacterium-mediated transformation. Plasmid pHyg-Chi.11 harbouring the rice chitinase gene under the control of maize ubiquitin promoter was introduced into finger millet using Agrobacterium strain LBA4404 (pSB1). Transformed plants were selected and regenerated on hygromycin-supplemented medium. Transient expression of transgene was confirmed by GUS histochemical staining. The incorporation of rice chitinase gene in R0 and R1 progenies was confirmed by PCR and Southern blot analyses. Expression of chitinase gene in finger millet was confirmed by Western blot analysis with a barley chitinase antibody. A leaf blast assay was also performed by challenging the transgenic plants with spores of Pyricularia grisea. The frequency of transient expression was 16.3% to 19.3%. Stable frequency was 3.5% to 3.9%. Southern blot analysis confirmed the integration of 3.1 kb chitinase gene. Western blot analysis detected the presence of 35 kDa chitinase enzyme. Chitinase activity ranged from 19.4 to 24.8. In segregation analysis, the transgenic R1 lines produced three resistant and one sensitive for hygromycin, confirming the normal Mendelian pattern of transgene segregation. Transgenic plants showed high level of resistance to leaf blast disease compared to control plants. This is the first study reporting the introduction of rice chitinase gene into finger millet for leaf blast resistance.

  11. Nucleotide Sequence Diversity and Linkage Disequilibrium of Four Nuclear Loci in Foxtail Millet (Setaria italica.

    Directory of Open Access Journals (Sweden)

    Shui-Lian He

    Full Text Available Foxtail millet (Setaria italica (L. Beauv is one of the earliest domesticated grains, which has been cultivated in northern China by 8,700 years before present (YBP and across Eurasia by 4,000 YBP. Owing to a small genome and diploid nature, foxtail millet is a tractable model crop for studying functional genomics of millets and bioenergy grasses. In this study, we examined nucleotide sequence diversity, geographic structure, and levels of linkage disequilibrium at four nuclear loci (ADH1, G3PDH, IGS1 and TPI1 in representative samples of 311 landrace accessions across its cultivated range. Higher levels of nucleotide sequence and haplotype diversity were observed in samples from China relative to other sampled regions. Genetic assignment analysis classified the accessions into seven clusters based on nucleotide sequence polymorphisms. Intralocus LD decayed rapidly to half the initial value within ~1.2 kb or less.

  12. Nucleotide Sequence Diversity and Linkage Disequilibrium of Four Nuclear Loci in Foxtail Millet (Setaria italica).

    Science.gov (United States)

    He, Shui-Lian; Yang, Yang; Morrell, Peter L; Yi, Ting-Shuang

    2015-01-01

    Foxtail millet (Setaria italica (L.) Beauv) is one of the earliest domesticated grains, which has been cultivated in northern China by 8,700 years before present (YBP) and across Eurasia by 4,000 YBP. Owing to a small genome and diploid nature, foxtail millet is a tractable model crop for studying functional genomics of millets and bioenergy grasses. In this study, we examined nucleotide sequence diversity, geographic structure, and levels of linkage disequilibrium at four nuclear loci (ADH1, G3PDH, IGS1 and TPI1) in representative samples of 311 landrace accessions across its cultivated range. Higher levels of nucleotide sequence and haplotype diversity were observed in samples from China relative to other sampled regions. Genetic assignment analysis classified the accessions into seven clusters based on nucleotide sequence polymorphisms. Intralocus LD decayed rapidly to half the initial value within ~1.2 kb or less.

  13. Malting process optimization for protein digestibility enhancement in finger millet grain.

    Science.gov (United States)

    Hejazi, Sara Najdi; Orsat, Valérie

    2016-04-01

    Finger millet (Eleusine coracana) is a nutritious, gluten-free, and drought resistant cereal containing high amounts of protein, carbohydrate, and minerals. However, bio-availability of these nutrients is restricted due to the presence of an excessive level of anti-nutrient components, mainly phytic acid, tannin, and oxalate. It has been shown that a well-designed malting/germination process can significantly reduce these anti-nutrients and consequently enhance the nutrient availability. In the present study, the effects of two important germination factors, duration and temperature, on the enhancement of in-vitro protein digestibility of finger millet were thoroughly investigated and optimized. Based on a central composite design, the grains were germinated for 24, 36, and 48 h at 22, 26, and 30 °C. For all factor combinations, protein, peptide, phytic acid, tannin, and oxalate contents were evaluated and digestibility was assessed. It was shown that during the malting/germinating process, both temperature and duration factors significantly influenced the investigated quantities. Germination of finger millet for 48 h at 30 °C increased protein digestibility from 74 % (for native grain) up to 91 %. Besides, it notably decreased phytic acid, tannin, and oxalate contents by 45 %, 46 %, and 29 %, respectively. Linear correlations between protein digestibility and these anti-nutrients were observed.

  14. Quality evaluation of millet-soy blended extrudates formulated through linear programming.

    Science.gov (United States)

    Balasubramanian, S; Singh, K K; Patil, R T; Onkar, Kolhe K

    2012-08-01

    Whole pearl millet, finger millet and decorticated soy bean blended (millet soy) extrudates formulations were designed using a linear programming (LP) model to minimize the total cost of the finished product. LP formulated composite flour was extruded through twin screw food extruder at different feed rate (6.5-13.5 kg/h), screw speed (200-350 rpm, constant feed moisture (14% wb), barrel temperature (120 °C) and cutter speed (15 rpm). The physical, functional, textural and pasting characteristics of extrudates were examined and their responses were studied. Expansion index (2.31) and sectional expansion index (5.39) was found to be was found maximum for feed rate and screw speed combination 9.5 kg/h and 250 rpm. However, density (0.25 × 10(-3) g/mm(3)) was maximum for 9.5 kg/h and 300 rpm combination. Maximum color change (10.32) was found for 9.5 kg/h feed rate and 200 rpm screw speed. The lower hardness was obtained for the samples extruded at lowest feed rate (6.5 kg/h) for all screw speed and feed rate at 9.5 kg/h for 300-350 rpm screw speed. Peak viscosity decreases with all screw speed of 9.5 kg/h feed rate.

  15. Whole plant acclimation responses by finger millet to low nitrogen stress

    Directory of Open Access Journals (Sweden)

    Travis Luc Goron

    2015-08-01

    Full Text Available The small grain cereal, finger millet (FM, Eleusine coracana L. Gaertn, is valued by subsistence farmers in India and East Africa as a low-input crop. It is reported by farmers to require no added nitrogen, or only residual N, to produce grain. Exact mechanisms underlying the acclimation responses of FM to low N are largely unknown, both above and below ground. In particular, the responses of FM roots and root hairs to N or any other nutrient have not previously been reported. Given its low N requirement, FM also provides a rare opportunity to study long-term responses to N starvation in a cereal. The objective of this study was to survey the shoot and root morphometric responses of FM, including root hairs, to low N stress. Plants were grown in pails in a semi-hydroponic system on clay containing extremely low background N, supplemented with N or no N. To our surprise, plants grown without deliberately added N grew to maturity, looked relatively normal and produced healthy seed heads. Plants responded to the low N treatment by decreasing shoot, root and seed head biomass. These declines under low N were associated with decreased shoot tiller number, crown root number, total crown root length and total lateral root length, but with no consistent changes in root hair traits. Changes in tiller and crown root number appeared to coordinate the above and below ground acclimation responses to N. We discuss the remarkable ability of FM to grow to maturity without deliberately added N. The results suggest that FM should be further explored to understand this trait. Our observations are consistent with indigenous knowledge from subsistence farmers in Africa and Asia that this crop can survive extreme environments.

  16. Whole plant acclimation responses by finger millet to low nitrogen stress.

    Science.gov (United States)

    Goron, Travis L; Bhosekar, Vijay K; Shearer, Charles R; Watts, Sophia; Raizada, Manish N

    2015-01-01

    The small grain cereal, finger millet (FM, Eleusine coracana L. Gaertn), is valued by subsistence farmers in India and East Africa as a low-input crop. It is reported by farmers to require no added nitrogen (N), or only residual N, to produce grain. Exact mechanisms underlying the acclimation responses of FM to low N are largely unknown, both above and below ground. In particular, the responses of FM roots and root hairs to N or any other nutrient have not previously been reported. Given its low N requirement, FM also provides a rare opportunity to study long-term responses to N starvation in a cereal species. The objective of this study was to survey the shoot and root morphometric responses of FM, including root hairs, to low N stress. Plants were grown in pails in a semi-hydroponic system on clay containing extremely low background N, supplemented with N or no N. To our surprise, plants grown without deliberately added N grew to maturity, looked relatively normal and produced healthy seed heads. Plants responded to the low N treatment by decreasing shoot, root, and seed head biomass. These declines under low N were associated with decreased shoot tiller number, crown root number, total crown root length and total lateral root length, but with no consistent changes in root hair traits. Changes in tiller and crown root number appeared to coordinate the above and below ground acclimation responses to N. We discuss the remarkable ability of FM to grow to maturity without deliberately added N. The results suggest that FM should be further explored to understand this trait. Our observations are consistent with indigenous knowledge from subsistence farmers in Africa and Asia, where it is reported that this crop can survive extreme environments.

  17. Soil Management Practices to Improve Nutrient-use Efficiencies and Reduce Risk in Millet-based Cropping Systems in the Sahel

    Directory of Open Access Journals (Sweden)

    Koala, S.

    2003-01-01

    Full Text Available Low soil fertility and moisture deficit are among the main constraints to sustainable crop yields in the Sahel. A study therefore, was conducted at the ICRISAT Sahelian Center, Sadore in Niger to test the hypothesis that integrated soil husbandry practices consisting of manure, fertilizer and crop residues in rotational cropping systems use organic and mineral fertilizes efficiently, thereby resulting in higher yields and reduced risk. Results from an analysis of variance showed that choice of cropping systems explained more than 50% of overall variability in millet and cowpea grain yields. Among the cropping systems, rotation gave higher yields than sole crop and intercropping systems and increased millet yield by 46% without fertilizer. Rainfall-use efficiency and partial factor productivity of fertilizer were similarly higher in rotations than in millet monoculture system. Returns from cowpea grown in cowpea-millet rotation without fertilizer and the medium rates of fertilizers (4 kg P.ha-1 + 15 kg N.ha-1 were found to be most profitable in terms of high returns and low risk, principally because of a higher price of cowpea than millet. The study recommends crop diversification, either in the form of rotations or relay intercropping systems for the Sahel as an insurance against total crop failure.

  18. Genetic diversity analysis of pearl millet ( Pennisetum glauccum [L ...

    African Journals Online (AJOL)

    between genotype PT 2835/1 and PT 5552 and lowest similarity index was observed between PT 5554 and PT 2835/1. Analysis of RAPD data appears to be helpful in determining the genetic relationship among 20 pearl millet genotypes. The associations among the 20 genotypes were also examined with Principle ...

  19. SEEDS BANK OF BOTANICAL GARDEN OF CHECHEN STATE UNIVERSITY

    Directory of Open Access Journals (Sweden)

    R. S. Erzhapova

    2013-01-01

    Full Text Available Abstract. One of priorities of seed laboratory is creation of collection of seeds of wild plants, conservation of flora gene pool of the Chechen Republic, neighboring areas and biological diversity of flora of the Caucasus. Inventory data of seed bank of "Seed Laboratory" of Department of Botany of Chechen State University (seeds from botanical gardens, natural habitat of the Chechen Republic and adjacent areas is the basis of this work. Currently, there are more than 350 species, representatives of more than 70 families in the collection.

  20. Aspects of legal communitarianism in Greece: between Millet and citizenship

    Directory of Open Access Journals (Sweden)

    Konstantinos Tsitselikis

    2012-12-01

    Full Text Available Legal and political percepts pertaining to ethnic belonging in Greece are closely linked to the ideological understanding of Greekness, a legacy of the Ottoman Greek-Orthodox millet system. Complementary to this image of the national self, minority protection law on Muslims and Jews was and still is partially formed through millet-like paradigms. Greece’s territorial expansion made all inhabitants of the annexed provinces Greek citizens en masse: in addition to those that were deemed eligible to belong to the Greek nation, Jewish and Muslim communities also acquired Greek citizenship. For these communities the self-autonomy of the Ottoman millet structure in education and religious matters was transformed into minority protection, through special rights (community schools, Moufti’s jurisdiction, Muslim foundations, military conscription attributable through religion to citizens of the state. En Grecia, la interpretación ideológica del carácter griego está estrechamente relacionada con los preceptos legales y políticos relativos a la pertenencia étnica, legado del sistema millet otomano griego-ortodoxo. Como complemento a esta percepción de la identidad nacional, la ley de protección de las minorías musulmanas y judías estuvo, y todavía está parcialmente formada por paradigmas milletianos. La expansión territorial de Grecia convirtió de forma masiva a los habitantes de las provincias anexadas en ciudadanos griegos: entre los que se consideró que reunían los requisitos necesarios para pertenecer a la nación griega, se encontraban las comunidades judías y musulmanas. En ambos casos, la autonomía en temas de educación y religión que disfrutaban dentro de la estructura milletiana de los otomanos, se transformó en protección minoritaria, a través de derechos especiales (escuelas de la comunidad, jurisdicción Moufti, fundaciones musulmanas, el reclutamiento militar atribuibles a los ciudadanos del estado a través de la

  1. Increasing gender equality among small millet farmers in South Asia ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-04-29

    Apr 29, 2016 ... More than 1,600 women were involved in testing small millet varieties. ... has had a special focus on women, working to increase their role in research, ... In Kolli Hills, Tamil Nadu, monocropping of a single, non-edible variety ...

  2. Millet response to water and soil fertility management in the Sahelian Niger : experiments and modeling

    OpenAIRE

    Akponikpe, Pierre

    2008-01-01

    In the 400-600 mm annual rainfall zone of the Sahel, soil fertility is the main determinant of yield in rainfed millet cropping systems in all but the driest years. Numerous on-farm and on-station experiments have addressed the issue of improving soil fertility. Yet the widespread use of the experimental results is restricted by the highly site specific millet response to fertility management practices due to high spatially variable soil properties as well as high intra- and inter-annual rain...

  3. The Effect of Vegetation Productivity on Millet Prices in the Informal Markets of Mali, Burkina Faso and Niger

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.E. [Department of Geography, University of Maryland, NASA Goddard Space Flight Center, Code 923, Greenbelt, MD 20771 (United States); Pinzon, J.E. [Science Systems and Applications Inc., NASA Goddard Space Flight Center, Code 923, Greenbelt, MD (United States); Prince, S.D. [Department of Geography, University of Maryland, College Park, MD (United States)

    2006-09-15

    Systematic evaluation of food security throughout the Sahel has been attempted for nearly two decades. Food security analyses have used both food prices to determine the ability of the population to access food, and satellite-derived vegetation indices that measure vegetation production to establish how much food is available each year. The relationship between these two food security indicators is explored here using correspondence analysis and through the use of Markov chain models. Two sources of quantitative data were used: 8 km normalized difference vegetation index (NDVI) data from the Advanced Very High Resolution Radiometers (AVHRR) carried on the NOAA series of satellites, and monthly millet prices from 445 markets in Mali, Niger and Burkina Faso. The results show that the growing season vegetation production is related to the price of millet at the annual and the seasonal time scales. If the growing season was characterized by erratic, sparse rainfall, it resulted in higher prices, and well-distributed, abundant rainfall resulted in lower prices. The correspondence between vegetation production and millet prices is used to produce maps of millet prices for West Africa.

  4. pathogen isolates of Pyricularia grisea in GULU-E finger millet last

    African Journals Online (AJOL)

    ACSS

    Finger millet is basis for food security which directly supports the livelihoods of rural majority living in ... that resistance was partially dominant and additive, based on mid parent values from crosses. .... Description under artificial infection.

  5. Proteomic analysis of JAZ interacting proteins under methyl jasmonate treatment in finger millet.

    Science.gov (United States)

    Sen, Saswati; Kundu, Sangeeta; Dutta, Samir Kr

    2016-11-01

    Jasmonic acid (JA) signaling pathway in plants is activated against various developmental processes as well as biotic and abiotic stresses. The Jasmonate ZIM-domain (JAZ) protein family, the key regulator of plant JA signaling pathway, also participates in phytohormone crosstalk. This is the first study revealing the in vivo interactions of finger millet (Eleusine coracana (L.) Gaertn.) JAZ protein (EcJAZ) under methyl jasmonate (MJ) treatment. The aim of the study was to explore not only the JA signaling pathway but also the phytohormone signaling crosstalk of finger millet, a highly important future crop. From the MJ-treated finger millet seedlings, the EcJAZ interacting proteins were purified by affinity chromatography with the EcJAZ-matrix. Twenty-one proteins of varying functionalities were successfully identified by MALDI-TOF-TOF Mass spectrometry. Apart from the previously identified JAZ binding proteins, most prominently, EcJAZ was found to interact with transcription factors like NAC, GATA and also with Cold responsive protein (COR), etc. that might have extended the range of functionalities of JAZ proteins. Moreover, to evaluate the interactions of EcJAZ in the JA-co-receptor complex, we generated ten in-silico models containing the EcJAZ degron and the COI1-SKP1 of five monocot cereals viz., rice, wheat, maize, Sorghum and Setaria with JA-Ile or coronatine. Our results indicated that the EcJAZ protein of finger millet could act as the signaling hub for the JA and other phytohormone signaling pathways, in response to a diverse set of stressors and developmental cues to provide survival fitness to the plant. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Nutraceutical Value of Finger Millet [Eleusine coracana (L.) Gaertn.], and Their Improvement Using Omics Approaches.

    Science.gov (United States)

    Kumar, Anil; Metwal, Mamta; Kaur, Sanveen; Gupta, Atul K; Puranik, Swati; Singh, Sadhna; Singh, Manoj; Gupta, Supriya; Babu, B K; Sood, Salej; Yadav, Rattan

    2016-01-01

    The science of nutritional biology has progressed extensively over the last decade to develop food-based nutraceuticals as a form of highly personalized medicine or therapeutic agent. Finger millet [Eleusine coracana (L.) Gaertn.] is a crop with potentially tremendous but under-explored source of nutraceutical properties as compared to other regularly consumed cereals. In the era of growing divide and drawback of nutritional security, these characteristics must be harnessed to develop finger millet as a novel functional food. In addition, introgression of these traits into other staple crops can improve the well-being of the general population on a global scale. The objective of this review is to emphasize the importance of biofortification of finger millet in context of universal health and nutritional crisis. We have specifically highlighted the role that recent biotechnological advancements have to offer for enrichment of its nutritional value and how these developments can commission to the field of nutritional biology by opening new avenues for future research.

  7. Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing.

    Science.gov (United States)

    Rahman, Hifzur; Jagadeeshselvam, N; Valarmathi, R; Sachin, B; Sasikala, R; Senthil, N; Sudhakar, D; Robin, S; Muthurajan, Raveendran

    2014-07-01

    Finger millet (Eleusine coracana L.) is a hardy cereal known for its superior level of tolerance against drought, salinity, diseases and its nutritional properties. In this study, attempts were made to unravel the physiological and molecular basis of salinity tolerance in two contrasting finger millet genotypes viz., CO 12 and Trichy 1. Physiological studies revealed that the tolerant genotype Trichy 1 had lower Na(+) to K(+) ratio in leaves and shoots, higher growth rate (osmotic tolerance) and ability to accumulate higher amount of total soluble sugar in leaves under salinity stress. We sequenced the salinity responsive leaf transcriptome of contrasting finger millet genotypes using IonProton platform and generated 27.91 million reads. Mapping and annotation of finger millet transcripts against rice gene models led to the identification of salinity responsive genes and genotype specific responses. Several functional groups of genes like transporters, transcription factors, genes involved in cell signaling, osmotic homeostasis and biosynthesis of compatible solutes were found to be highly up-regulated in the tolerant Trichy 1. Salinity stress inhibited photosynthetic capacity and photosynthesis related genes in the susceptible genotype CO 12. Several genes involved in cell growth and differentiation were found to be up-regulated in both the genotypes but more specifically in tolerant genotype. Genes involved in flavonoid biosynthesis were found to be down-regulated specifically in the salinity tolerant Trichy 1. This study provides a genome-wide transcriptional analysis of two finger millet genotypes differing in their level of salinity tolerance during a gradually progressing salinity stress under greenhouse conditions.

  8. Feeding behavior and productive performance of steers fed pearl millet grain-based diets containing proportions of babassu mesocarp bran

    Directory of Open Access Journals (Sweden)

    Wanderson Martins Alencar

    2015-12-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the feeding behavior and feedlot productive performance of dairy-origin steers fed for 84 days ground pearl millet grain-based diets with 0, 120, 240, 360, and 480 g kg-1 of babassu mesocarp bran (BMB and a standard diet based on ground corn. Thirty Holstein-Zebu steers with average initial body weight of 371.02±27 kg were used. The experimental design was completely randomized, with five replications. Dry matter intake showed better fit with the quadratic regression equation with the inclusion of BMB, reaching a maximum value in diets with 360 g of this by-product. There was no difference for dry matter intake between pearl millet- and corn-based diets. There was no difference in total digestible nutrients intake between diets. The digestibility coefficient of organic matter decreased linearly with the increase in the dietary level of BMB. The digestibility coefficient of organic matter was not different between corn and millet diets. There was no difference in feeding time between diets. Total requirement of metabolizable energy increased linearly with inclusion of BMB. However, total requirements of metabolizable energy did not differ between the corn- and pearl millet-based diets. Average daily gain decreased linearly with the increase in BMB, with adjustment forced by the sharp decline of this variable in diets with 480 g of BMB. There was no difference in average daily gain between corn- and pearl millet-based diets. The inclusion of levels above 360 g of babassu mesocarp bran in pearl millet-based diets reduces the supply of metabolizable energy and the productive performance of feedlot dairy steers.

  9. Reduced seed germination in Arabidopsis over-expressing SWI/SNF2 ATPase genes.

    Science.gov (United States)

    Leeggangers, Hendrika A C F; Folta, Adam; Muras, Aleksandra; Nap, Jan-Peter; Mlynarova, Ludmila

    2015-02-01

    In the life of flowering plants, seed germination is a critical step to ensure survival into the next generation. Generally the seed prior to germination has been in a dormant state with a low rate of metabolism. In the transition from a dormant seed to a germinating seed, various epigenetic mechanisms play a regulatory role. Here, we demonstrate that the over-expression of chromatin remodeling ATPase genes (AtCHR12 or AtCHR23) reduced the frequency of seed germination in Arabidopsis thaliana up to 30% relative to the wild-type seeds. On the other hand, single loss-of-function mutations of the two genes did not affect seed germination. The reduction of germination in over-expressing mutants was more pronounced in stress conditions (salt or high temperature), showing the impact of the environment. Reduced germinations upon over-expression coincided with increased transcript levels of seed maturation genes and with reduced degradation of their mRNAs stored in dry seeds. Our results indicate that repression of AtCHR12/23 gene expression in germinating wild-type Arabidopsis seeds is required for full germination. This establishes a functional link between chromatin modifiers and regulatory networks towards seed maturation and germination. © 2014 Scandinavian Plant Physiology Society.

  10. The genetic makeup of a global barnyard millet germplasm collection

    Science.gov (United States)

    Barnyard millet (Echinochloa spp.) is an important crop for many smallholder farmers in southern and eastern Asia. It is valued for its drought tolerance, rapid maturation, and superior nutritional qualities. Despite these characteristics there are almost no genetic or genomic resources for this cro...

  11. The Effect of Socio-Economic Factors on Pearl Millet ( Pennisetum ...

    African Journals Online (AJOL)

    The study investigated farmers' socio-economic factor affecting pearl millet production in randomly selected villages in Magumeri Local Government Area of Borno State. A total of 80 farmers were selected through stratified random sampling and were administered with questionnaires. The results revealed that educational ...

  12. Mutation breeding of pearl millet and sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, W W [United States Department of Agriculture, Agricultural Research Service, University of Georgia, College of Agricultural Experiment Stations, Coastal Plain Station, Agronomy Department, Tifton, GA (United States)

    1982-07-01

    Pearl millet and sorghum are important food and feed crops grown mostly in semi-arid regions of the world. Although there exists a large amount of genetic variability in both species, it does not always satisfy the needs of plant breeders in improving varieties with regard to yield, quality, resistance or environmental adaptation. Plant breeders interested in using induced mutations for variety improvement will find in this review information about the techniques used by others. (author)

  13. Mutation breeding of pearl millet and sorghum

    International Nuclear Information System (INIS)

    Hanna, W.W.

    1982-01-01

    Pearl millet and sorghum are important food and feed crops grown mostly in semi-arid regions of the world. Although there exists a large amount of genetic variability in both species, it does not always satisfy the needs of plant breeders in improving varieties with regard to yield, quality, resistance or environmental adaptation. Plant breeders interested in using induced mutations for variety improvement will find in this review information about the techniques used by others. (author)

  14. Rheological properties of reduced fat ice cream mix containing octenyl succinylated pearl millet starch.

    Science.gov (United States)

    Sharma, Monika; Singh, Ashish K; Yadav, Deep N

    2017-05-01

    The octenyl succinyl anhydride (OSA) esterified pearl millet ( Pennisetum typhoides ) starch was evaluated as fat replacer in soft serve ice cream in comparison to other fat replacers viz. inulin, whey protein concentrate-70 and commercial starch. During temperature sweep test, the yield stress and flow behaviour index of un-pasteurized ice cream mixes increased as the temperature increased from 40 to 80 °C, while the consistency index decreased. Consistency index of aged ice cream mixes containing 2% fat replacer was higher as compared to mixes with 1% level. The aged ice cream mixes exhibited non-Newtonian behaviour as flow behaviour index values were less than one. Apparent viscosity (at 50 s -1 shear rate) of control as well as ice cream mix containing 1% OSA-esterified pearl millet starch samples was 417 and 415 mPas, respectively and did not differ significantly. The overrun of the ice cream (with 5 and 7.5% fat) containing 1 and 2% of above fat replacers ranged between 29.7 and 34.3% and was significantly lower than control (40.3%). The percent melted ice cream was also low for the ice creams containing 2% of above fat replacers at 5% fat content as compared to control. However, sensory acceptability and rheological characteristics of reduced fat ice creams containing 1.0 and 2.0% OSA-esterified pearl millet starch were at par with other fat replacers under the study. Thus, OSA-esterified pearl millet starch has potential to be used as fat replacer in reduced fat ice cream.

  15. Effect of different milling methods on glycaemic response of foods made with finger millet (Eucenea coracana) flour.

    Science.gov (United States)

    Jayasinghe, M A; Ekanayake, S; Nugegoda, D B

    2013-12-01

    Compare glycaemic response of foods prepared with finger millet flour, using traditional stone grinding and industrial milling. Crossover study. Healthy volunteers (n=11) consisting of five males and six females), aged between 20 and 30 years, with a body mass index of 18.5-23.5 Kgm-2. Blood glucose concentration was measured at fasting and 30, 45, 60, 90, 120 minutes after ingestion of roti and pittu made with stone ground or industrially milled finger millet flour, containing 50 g of available carbohydrates. Glycaemic Index (GI) values were expressed as the average value of the 11 subjects. Significant differences (p0.05) in proximate compositions of the different foods or raw flours. Foods prepared with finger millet (kurakkan) flour with a larger particle size distribution resulted in a lower glycaemic response.

  16. Some Electrical Properties of Wild Mango Seed ad Mucuna ...

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-06-01

    Jun 1, 2013 ... provide raw materials for pharmaceutical industries. ... materials, checking proper heat treatment of materials ... dimensions of the seeds were determined using .... Critical Reviews in Food Science and Nutrition 44: 465-471.

  17. The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis.

    Science.gov (United States)

    Midhat, Ubaid; Ting, Michael K Y; Teresinski, Howard J; Snedden, Wayne A

    2018-03-01

    We show that the calcium sensor, CML39, is important in various developmental processes from seeds to mature plants. This study bridges previous work on CML39 as a stress-induced gene and highlights the importance of calcium signalling in plant development. In addition to the evolutionarily-conserved Ca 2+ sensor, calmodulin (CaM), plants possess a large family of CaM-related proteins (CMLs). Using a cml39 loss-of-function mutant, we investigated the roles of CML39 in Arabidopsis and discovered a range of phenotypes across developmental stages and in different tissues. In mature plants, loss of CML39 results in shorter siliques, reduced seed number per silique, and reduced number of ovules per pistil. We also observed changes in seed development, germination, and seed coat properties in cml39 mutants in comparison to wild-type plants. Using radicle emergence as a measure of germination, cml39 mutants showed more rapid germination than wild-type plants. In marked contrast to wild-type seeds, the germination of developing, immature cml39 seeds was not sensitive to cold-stratification. In addition, germination of cml39 seeds was less sensitive than wild-type to inhibition by ABA or by treatments that impaired gibberellic acid biosynthesis. Tetrazolium red staining indicated that the seed-coat permeability of cml39 seeds is greater than that of wild-type seeds. RNA sequencing analysis of cml39 seedlings suggests that changes in chromatin modification may underlie some of the phenotypes associated with cml39 mutants, consistent with previous reports that orthologs of CML39 participate in gene silencing. Aberrant ectopic expression of transcripts for seed storage proteins in 7-day old cml39 seedlings was observed, suggesting mis-regulation of early developmental programs. Collectively, our data support a model where CML39 serves as an important Ca 2+ sensor during ovule and seed development, as well as during germination and seedling establishment.

  18. A Genome-wide Combinatorial Strategy Dissects Complex Genetic Architecture of Seed Coat Color in Chickpea.

    Science.gov (United States)

    Bajaj, Deepak; Das, Shouvik; Upadhyaya, Hari D; Ranjan, Rajeev; Badoni, Saurabh; Kumar, Vinod; Tripathi, Shailesh; Gowda, C L Laxmipathi; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K; Parida, Swarup K

    2015-01-01

    The study identified 9045 high-quality SNPs employing both genome-wide GBS- and candidate gene-based SNP genotyping assays in 172, including 93 cultivated (desi and kabuli) and 79 wild chickpea accessions. The GWAS in a structured population of 93 sequenced accessions detected 15 major genomic loci exhibiting significant association with seed coat color. Five seed color-associated major genomic loci underlying robust QTLs mapped on a high-density intra-specific genetic linkage map were validated by QTL mapping. The integration of association and QTL mapping with gene haplotype-specific LD mapping and transcript profiling identified novel allelic variants (non-synonymous SNPs) and haplotypes in a MATE secondary transporter gene regulating light/yellow brown and beige seed coat color differentiation in chickpea. The down-regulation and decreased transcript expression of beige seed coat color-associated MATE gene haplotype was correlated with reduced proanthocyanidins accumulation in the mature seed coats of beige than light/yellow brown seed colored desi and kabuli accessions for their coloration/pigmentation. This seed color-regulating MATE gene revealed strong purifying selection pressure primarily in LB/YB seed colored desi and wild Cicer reticulatum accessions compared with the BE seed colored kabuli accessions. The functionally relevant molecular tags identified have potential to decipher the complex transcriptional regulatory gene function of seed coat coloration and for understanding the selective sweep-based seed color trait evolutionary pattern in cultivated and wild accessions during chickpea domestication. The genome-wide integrated approach employed will expedite marker-assisted genetic enhancement for developing cultivars with desirable seed coat color types in chickpea.

  19. Genetic Diversity and Population Structure of Broomcorn Millet (Panicum miliaceum L.) Cultivars and Landraces in China Based on Microsatellite Markers

    Science.gov (United States)

    Liu, Minxuan; Xu, Yue; He, Jihong; Zhang, Shuang; Wang, Yinyue; Lu, Ping

    2016-01-01

    Broomcorn millet (Panicum miliaceum L.), one of the first domesticated crops, has been grown in Northern China for at least 10,000 years. The species is presently a minor crop, and evaluation of its genetic diversity has been very limited. In this study, we analyzed the genetic diversity of 88 accessions of broomcorn millet collected from various provinces of China. Amplification with 67 simple sequence repeat (SSR) primers revealed moderate levels of diversity in the investigated accessions. A total of 179 alleles were detected, with an average of 2.7 alleles per locus. Polymorphism information content and expected heterozygosity ranged from 0.043 to 0.729 (mean = 0.376) and 0.045 to 0.771 (mean = 0.445), respectively. Cluster analysis based on the unweighted pair group method of mathematical averages separated the 88 accessions into four groups at a genetic similarity level of 0.633. A genetic structure assay indicated a close correlation between geographical regions and genetic diversity. The uncovered information will be valuable for defining gene pools and developing breeding programs for broomcorn millet. Furthermore, the millet-specific SSR markers developed in this study should serve as useful tools for assessment of genetic diversity and elucidation of population structure in broomcorn millet. PMID:26985894

  20. Meiosis in elephant grass (Pennisetum purpureum), pearl millet (Pennisetum glaucum) (Poaceae, Poales) and their interspecific hybrids

    OpenAIRE

    Techio, Vânia Helena; Davide, Lisete Chamma; Pereira, Antônio Vander

    2006-01-01

    The cultivated and sexually compatible species Pennisetum purpureum (elephant grass, 2n = 4x = 28) and Pennisetum glaucum (pearl millet, 2n = 2x = 14) can undergo hybridization which favors the amplification of their genetic background and the introgression of favorable alleles into breeding programs. The main problem with interspecific hybrids of these species is infertility due to triploidy (2n = 3x = 21). This study describes meiosis in elephant grass x pearl millet hybrids and their proge...

  1. Inclusion of brown midrib dwarf pearl millet silage in the diet of lactating dairy cows.

    Science.gov (United States)

    Harper, M T; Melgar, A; Oh, J; Nedelkov, K; Sanchez, G; Roth, G W; Hristov, A N

    2018-06-01

    Brown midrib brachytic dwarf pearl millet (Pennisetum glaucum) forage harvested at the flag leaf visible stage and subsequently ensiled was investigated as a partial replacement of corn silage in the diet of high-producing dairy cows. Seventeen lactating Holstein cows were fed 2 diets in a crossover design experiment with 2 periods of 28 d each. Both diets had forage:concentrate ratios of 60:40. The control diet (CSD) was based on corn silage and alfalfa haylage, and in the treatment diet, 20% of the corn silage dry matter (corresponding to 10% of the dietary dry matter) was replaced with pearl millet silage (PMD). The effects of partial substitution of corn silage with pearl millet silage on dry matter intake, milk yield, milk components, fatty acid profile, apparent total-tract digestibility of nutrients, N utilization, and enteric methane emissions were analyzed. The pearl millet silage was higher in crude protein and neutral detergent fiber and lower in lignin and starch than the corn silage. Diet did not affect dry matter intake or energy-corrected milk yield, which averaged 46.7 ± 1.92 kg/d. The PMD treatment tended to increase milk fat concentration, had no effect on milk fat yield, and increased milk urea N. Concentrations and yields of milk protein and lactose were not affected by diet. Apparent total-tract digestibility of dry matter decreased from 66.5% in CSD to 64.5% in PMD. Similarly, organic matter and crude protein digestibility was decreased by PMD, whereas neutral- and acid-detergent fiber digestibility was increased. Total milk trans fatty acid concentration was decreased by PMD, with a particular decrease in trans-10 18:1. Urinary urea and fecal N excretion increased with PMD compared with CSD. Milk N efficiency decreased with PMD. Carbon dioxide emission was not different between the diets, but PMD increased enteric methane emission from 396 to 454 g/d and increased methane yield and intensity. Substituting corn silage with brown midrib dwarf

  2. Bromatological composition and dry matter digestibility of millet cultivars subjected to nitrogen doses

    Directory of Open Access Journals (Sweden)

    W.H.D. Buso

    2014-06-01

    Full Text Available The bromatological composition and in vitro dry matter digestibility of millet cultivars were assessed for different nitrogen doses and two sowing seasons in the Ceres municipality of Goiás state, Brazil. The treatments consisted of three millet cultivars (ADR-7010, ADR-500 and BRS-1501, four nitrogen (N doses (0, 50, 100 and 200kg ha-1 of N and two sowing seasons. Three replicates and a randomised block design with a 3 x 4 x 2 factorial scheme were used. Two cuttings were performed in each season when plants reached an average height of 0.70 cm. No significant interactions were observed between or among cultivars for N doses and dry matter (DM, crude protein (CP, neutral detergent fibre (NDF and acid detergent fibre (ADF contents. The DM, CP, NDF and ADF contents were significantly different between N doses. The DM and CP contents increased as the N dose increased to 100kg ha-1. The maximum DM and CP contents were 11.14 and 22.53%, respectively. The NDF and ADF contents were higher in the control treatment (60.11 and 30.01%, respectively. In addition, the lowest ADF and NDF concentrations occurred at an N dose of 50kg ha-1 (56.33 and 30.23%, respectively. The DM contents were higher for the February sowing, with an average of 10.59%. The highest CP and ADF contents were found for the December sowing (22.46 and 31.58%, respectively. No significant differences were found for millet cultivars, N doses or sowing seasons. A significant interaction was found between sowing season and millet cultivar. The BRS-1501 cultivar had a higher in vitro dry matter digestibility in the December/2010 sowing (73.88%.

  3. Oxidizable carbon and humic substances in rotation systems with brachiaria/livestock and pearl millet/no livestock in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    A. Loss

    2013-02-01

    Full Text Available The crop-livestock integration system significantly increases the carbon content in chemical fractions of soil organic matter (SOM. This study aimed to evaluate chemical indicators of SOM attributes for sites under brachiaria/livestock and pearl millet/no livestock in Goias, Brazil. A third area covered with natural Cerrado vegetation (Cerradão served as reference. Soil was randomly sampled at 0-5, 5-10, 10-20 and 20-40 cm. Total organic carbon stocks (TOC, oxidizable carbon fractions (OCF (F1>F2>F3>F4, carbon content in the humin (C-HUM, humic acid (C-HAF and fulvic acid (C-FAF fractions were evaluated. F1/F4, F1+F2/F3+F4, C-HAF/C-FAF and (C-HAF+C-FAF/C-HUM indices were calculated, as well as stocks chemical SOM fractions. Brachiaria/livestock produced greater TOC stocks than pearl millet/no livestock (0-5, 5-10 and 10-20 cm. In terms of OCF, brachiaria/livestock generally exhibited higher levels in F1, F2, F4 and F1/F4 than pearl millet/no livestock. C-HUM (0-10 cm and C-HAF (0-20 cm stocks were larger in brachiaria/livestock than pearl millet/no livestock. Compared to the Cerradão, brachiaria/livestock locations displayed higher values for TOC (5-10 and 10-20 cm, C-HAF and C-HAF/C-FAF (5-10 cm stocks. TOC, C-HAF stock and OCF show that land management with brachiaria/livestock was more efficient in increasing SOM than pearl millet/no livestock. Moreover, when compared with pearl millet/no livestock, brachiaria/livestock provided a more balanced distribution of very labile (F1 and recalcitrant (F4 carbon throughout soil layers, greater SOM humification. Brachiaria/livestock leads to higher values of F1 and F4 in depth when compared to pearl millet/livestock and provides a more homogeneous distribution of C-FAF and C-HAF in depth compared to Cerradão.

  4. Extraction and the Fatty Acid Profile of Rosa acicularis Seed Oil.

    Science.gov (United States)

    Du, Huanan; Zhang, Xu; Zhang, Ruchun; Zhang, Lu; Yu, Dianyu; Jiang, Lianzhou

    2017-12-01

    Rosa acicularis seed oil was extracted from Rosa acicularis seeds by the ultrasonic-assisted aqueous enzymatic method using cellulase and protease. Based on a single experiment, Plackett-Burman design was applied to ultrasonic-assisted aqueous enzymatic extraction of wild rose seed oil. The effects of enzyme amount, hydrolysis temperature and initial pH on total extraction rate of wild rose seed oil was studied by using Box-Behnken optimize methodology. Chemical characteristics of a sample of Rosa acicularis seeds and Rosa acicularis seed oil were characterized in this work. The tocopherol content was 200.6±0.3 mg/100 g oil. The Rosa acicularis seed oil was rich in linoleic acid (56.5%) and oleic acid (34.2%). The saturated fatty acids included palmitic acid (4%) and stearic acid (2.9%). The major fatty acids in the sn-2 position of triacylglycerol in Rosa acicularis oil were linoleic acid (60.6%), oleic acid (33.6%) and linolenic acid (3.2%). According to the 1,3-random-2-random hypothesis, the dominant triacylglycerols were LLL (18%), LLnL (1%), LLP (2%), LOL (10%), LLSt (1.2%), PLP (0.2%), LLnP (0.1%), LLnO (0.6%) and LOP (1.1%). This work could be useful for developing applications for Rosa acicularis seed oil.

  5. Enhancement of Short Chain Fatty Acid Production from Millet Fibres ...

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. ... Methods: The effect of millet dietary fibre fermentation on production of short chain fatty ... fildes PYF enrichment solution was used as the .... where Pa is the peak area of SCFA, Ps is the ..... enzymatic- gravimetric method.

  6. In vitro transformation of pearl millet ( Pennisetum glaucum (L). R ...

    African Journals Online (AJOL)

    The plasmids pULGU1 and pEmuGN were introduced by biolistics in embryogenic cell suspensions of pearl millet, Pennisetum glaucum. The plasmid pULGU1 contained the mutant acetolactate synthase (ALS) gene of Arabidopsis thaliana, responsible for resistance to the chlorsulfuron herbicide. The plasmid pEmuGN ...

  7. Harnessing Finger Millet to Combat Calcium Deficiency in Humans: Challenges and Prospects.

    Science.gov (United States)

    Puranik, Swati; Kam, Jason; Sahu, Pranav P; Yadav, Rama; Srivastava, Rakesh K; Ojulong, Henry; Yadav, Rattan

    2017-01-01

    Humans require more than 20 mineral elements for healthy body function. Calcium (Ca), one of the essential macromineral, is required in relatively large quantities in the diet for maintaining a sound overall health. Young children, pregnant and nursing women in marginalized and poorest regions of the world, are at highest risk of Ca malnutrition. Elderly population is another group of people most commonly affected by Ca deficiency mainly in the form of osteoporosis and osteopenia. Improved dietary intake of Ca may be the most cost-effective way to meet such deficiencies. Finger millet [ Eleusine coracana (L.) Gaertn.], a crop with inherently higher Ca content in its grain, is an excellent candidate for understanding genetic mechanisms associated with Ca accumulation in grain crops. Such knowledge will also contribute toward increasing Ca contents in other staple crops consumed on daily basis using plant-breeding (also known as biofortification) methods. However, developing Ca-biofortified finger millet to reach nutritional acceptability faces various challenges. These include identifying and translating the high grain Ca content to an adequately bioavailable form so as to have a positive impact on Ca malnutrition. In this review, we assess some recent advancements and challenges for enrichment of its Ca value and present possible inter-disciplinary prospects for advancing the actual impact of Ca-biofortified finger millet.

  8. Harnessing Finger Millet to Combat Calcium Deficiency in Humans: Challenges and Prospects

    Directory of Open Access Journals (Sweden)

    Swati Puranik

    2017-07-01

    Full Text Available Humans require more than 20 mineral elements for healthy body function. Calcium (Ca, one of the essential macromineral, is required in relatively large quantities in the diet for maintaining a sound overall health. Young children, pregnant and nursing women in marginalized and poorest regions of the world, are at highest risk of Ca malnutrition. Elderly population is another group of people most commonly affected by Ca deficiency mainly in the form of osteoporosis and osteopenia. Improved dietary intake of Ca may be the most cost-effective way to meet such deficiencies. Finger millet [Eleusine coracana (L. Gaertn.], a crop with inherently higher Ca content in its grain, is an excellent candidate for understanding genetic mechanisms associated with Ca accumulation in grain crops. Such knowledge will also contribute toward increasing Ca contents in other staple crops consumed on daily basis using plant-breeding (also known as biofortification methods. However, developing Ca-biofortified finger millet to reach nutritional acceptability faces various challenges. These include identifying and translating the high grain Ca content to an adequately bioavailable form so as to have a positive impact on Ca malnutrition. In this review, we assess some recent advancements and challenges for enrichment of its Ca value and present possible inter-disciplinary prospects for advancing the actual impact of Ca-biofortified finger millet.

  9. Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress.

    Science.gov (United States)

    Park, Won; Feng, Yufeng; Kim, Hyojin; Suh, Mi Chung; Ahn, Sung-Ju

    2015-09-01

    Under heavy-metal stress, CsHMA3 overexpressing transgenic Camelina plants displayed not only a better quality, but also a higher quantity of unsaturated fatty acids in their seeds compared with wild type. Camelina sativa L. belongs to the Brassicaceae family and is frequently used as a natural vegetable oil source, as its seeds contain a high content of fatty acids. In this study, we observed that, when subjected to heavy metals (Cd, Co, Zn and Pb), the seeds of CsHMA3 (Heavy-Metal P1B-ATPase 3) transgenic lines retained their original golden yellow color and smooth outline, unlike wild-type seeds. Furthermore, we investigated the fatty acids content and composition of wild type and CsHMA3 transgenic lines after heavy metal treatments compared to the control. The results showed higher total fatty acid amounts in seeds of CsHMA3 transgenic lines compared with those in wild-type seeds under heavy-metal stresses. In addition, the compositions of unsaturated fatty acids-especially 18:1 (oleic acid), 18:2 (linoleic acid; only in case of Co treatment), 18:3 (linolenic acid) and 20:1 (eicosenoic acid)-in CsHMA3 overexpressing transgenic lines treated with heavy metals were higher than those of wild-type seeds under the same conditions. Furthermore, reactive oxygen species (ROS) contents in wild-type leaves and roots when treated with heavy metal were higher than in CsHMA3 overexpressing transgenic lines. These results indicate that overexpression of CsHMA3 affects fatty acid composition and content-factors that are responsible for the fuel properties of biodiesel-and can alleviate ROS accumulation caused by heavy-metal stresses in Camelina. Due to these factors, we propose that CsHMA3 transgenic Camelina can be used for phytoremediation of metal-contaminated soil as well as for oil production.

  10. Effect of Timing of Potassium Application on Millet (Setaria italica Yield and Grain Protein Content in Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    A. Hayati

    2011-05-01

    Full Text Available The research on reducing the water consumption in conventional cropping system is one of the important strategies to improve the water use efficiency in agriculture. In order to investigate the effect of time of potassium application under different irrigation regimes on millet grain yield and protein percent, a field experiment was carried out in Agricultural Research Center of Yasuj, Iran, in 2009. The experiment was conducted as split plot design in a randomized complete blocks design with 3 replications. Irrigation regime included 7, 14 and 21-day intervals as main factor and sub-plots included time of potassium fertilizer application in four stages: planting, tillering, stem development and flowering. The results showed that the effect of irrigation interval was significant on 1000-seed weight, grain and biological yield, number of grains per spike, harvest index, protein content, and chlorophyll a, b and total of leaves. By increasing the irrigation interval, all the above-mentioned traits decreased, except the protein percent that increased. The 1000-seed weight, grain and biological yield, harvest index and protein content were affected significantly by the time of potassium application. Maximum grain yield was obtained by interaction of 7- day irrigation interval and potassium application at the stem development stage. Maximum grain protein content was measured in potassium application at flowering stage. In general, increasing the irrigation interval, and subsequent water stress, reduced plant growth and yield components. Application of potassium fertilizer at early growth stages increased yield and yield components, while in reproductive stages increased seed quality.

  11. Gamma radiation effects on microbiological, physico-chemical and antioxidant properties of Tunisian millet (Pennisetum Glaucum L.R.Br.).

    Science.gov (United States)

    Ben Mustapha, Maha; Bousselmi, Mehrez; Jerbi, Taïeb; Ben Bettaïeb, Nasreddine; Fattouch, Sami

    2014-07-01

    Hygienic quality of Tunisian pearl millet flour is always of major concern to consumers as well as all involved in the production, processing and distribution sectors. In the present study, the microbiological and biochemical properties of this food were examined following gamma-radiation. The D10-values for the Total Aerobic Plate Count, yeasts and moulds were respectively 1.5 and 3.7kGy. Furthermore, millet flour is commonly susceptible to mycotoxin contaminations, so the Ochratoxin A residues were also investigated; a reduction of 74% was observed with 10kGy. Moreover, the radiation process did not significantly alter fatty acids composition of the millet flour as obtained with Gas chromatography-flame ionisation detector technic. The peroxide value had increased from 26.16 to 34.43meqO2/kg with 3kGy. At 1kGy, we noticed an important loss of vitamin A of about 88.6%. In contrast, the total phenolic content, the ABTS-RSA and the DPPH-RSA of the radiated millet flour exhibited non-significant changes (p<0.05). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Regulation of carotenoid and ABA accumulation during the development and germination of Nicotiana plumbaginifolia seeds.

    Science.gov (United States)

    Frey, Anne; Boutin, Jean-Pierre; Sotta, Bruno; Mercier, Raphaël; Marion-Poll, Annie

    2006-08-01

    Abscisic acid (ABA) is derived from epoxycarotenoid cleavage and regulates seed development and maturation. A detailed carotenoid analysis was undertaken to study the contribution of epoxycarotenoid synthesis to the regulation of ABA accumulation in Nicotiana plumbaginifolia developing seeds. Maximal accumulation of xanthophylls occurred at mid-development in wild type seeds, when total ABA levels also peaked. In contrast, in ABA-deficient mutants xanthophyll synthesis was delayed, in agreement with the retardation in seed maturation. Seed dormancy was restored in mutants impaired in the conversion of zeaxanthin into violaxanthin by zeaxanthin epoxidase (ZEP), by the introduction of the Arabidopsis AtZEP gene under the control of promoters inducing expression during later stages of seed development compared to wild type NpZEP, and in dry and imbibed seeds. Alterations in the timing and level of ZEP expression did not highly affect the temporal regulation of ABA accumulation in transgenic seeds, despite notable perturbations in xanthophyll accumulation. Therefore, major regulatory control of ABA accumulation might occur downstream of epoxycarotenoid synthesis.

  13. Effect of food processing of pearl millet (Pennisetum glaucum) IKMP-5 on the level of phenolics, phytate, iron and zinc

    NARCIS (Netherlands)

    Zanabria Eyzaguirre, R.; Nienaltowska, K.; Jong, de L.E.Q.; Hasenack, B.B.E.; Nout, M.J.R.

    2006-01-01

    Pearl millet is consumed as a staple food in semi-arid tropical regions. With a view to upgrading the micronutrient status of pearl millet-based foods, the effects of single operations and of porridge preparation scenarios on levels and in vitro solubility (IVS) of iron and zinc and mineral

  14. Aflatoxin B1 occurrence in millet, sorghum and maize from four agro ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... African Journal of Food, Agriculture, Nutrition and Development ... This study investigated the occurrence of aflatoxins in maize, millet and sorghum from five counties in Kenya (Kwale, Isiolo, ...

  15. C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses.

    Science.gov (United States)

    Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Mishra, Awdhesh Kumar; Khandelwal, Rohit; Khan, Yusuf; Roy, Riti; Prasad, Manoj

    2014-09-01

    C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I-V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses.

  16. A New Jatropha curcas Variety (JO S2 with Improved Seed Productivity

    Directory of Open Access Journals (Sweden)

    Chengxin Yi

    2014-07-01

    Full Text Available One key reason for the failure of Jatropha plantation is the use of non-improved planting materials. We present in this paper a Jatropha variety (JO S2 through selective breeding with much better seed productivity than wild accessions as proven by field trials in Singapore and India. In a single farm trial in Singapore for two years, a comparison was conducted with accessions from China, India, Indonesia and Africa. It was found that all traits studied like seed yield, seed kernel content, seed oil content, fatty acid composition, phosphorus content and PE content differed significantly among and within the wild accessions. Overall, JO S2 was the best performer with the highest seed yield, high oil content and low phosphorus content. On two sites in Tamil Nadu, Southern India, this Jatropha variety produced up to 2.95 ton/ha of dry seeds in the first year and up to 4.25 ton/ha of dry seeds in the second year, much better than the local variety control. We attribute its higher seed productivity to early flowering, better self-branching, more flower/fruiting bunches, more fruits per bunch and importantly, better uniformity among plants. This exemplifies that breeding has improved Jatropha seed productivity which will lead to better economics for Jatropha plantation.

  17. Isolation and culture of protoplasts of Côte d'Ivoire's pearl millet ...

    African Journals Online (AJOL)

    SARAH

    2015-08-31

    . Journal of Biology and Chemical Science 8 (5):. 2222-2231. Timbo de Oliveira AL, Davide LC, Pereira Pinto JEB,. Pereira AV, 2010. Protoplast production from. Napier grass and Pearl millet triploid hybrids.Ciens.Agrotec.

  18. Finger Millet: A "Certain" Crop for an "Uncertain" Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments.

    Science.gov (United States)

    Gupta, Sanjay Mohan; Arora, Sandeep; Mirza, Neelofar; Pande, Anjali; Lata, Charu; Puranik, Swati; Kumar, J; Kumar, Anil

    2017-01-01

    Crop growth and productivity has largely been vulnerable to various abiotic and biotic stresses that are only set to be compounded due to global climate change. Therefore developing improved varieties and designing newer approaches for crop improvement against stress tolerance have become a priority now-a-days. However, most of the crop improvement strategies are directed toward staple cereals such as rice, wheat, maize etc., whereas attention on minor cereals such as finger millet [ Eleusine coracana (L.) Gaertn.] lags far behind. It is an important staple in several semi-arid and tropical regions of the world with excellent nutraceutical properties as well as ensuring food security in these areas even during harsh environment. This review highlights the importance of finger millet as a model nutraceutical crop. Progress and prospects in genetic manipulation for the development of abiotic and biotic stress tolerant varieties is also discussed. Although limited studies have been conducted for genetic improvement of finger millets, its nutritional significance in providing minerals, calories and protein makes it an ideal model for nutrition-agriculture research. Therefore, improved genetic manipulation of finger millets for resistance to both abiotic and biotic stresses, as well as for enhancing nutrient content will be very effective in millet improvement. Key message: Apart from the excellent nutraceutical value of finger millet, its ability to tolerate various abiotic stresses and resist pathogens make it an excellent model for exploring vast genetic and genomic potential of this crop, which provide us a wide choice for developing strategies for making climate resilient staple crops.

  19. Meiosis in elephant grass (Pennisetum purpureum, pearl millet (Pennisetum glaucum (Poaceae, Poales and their interspecific hybrids

    Directory of Open Access Journals (Sweden)

    Vânia Helena Techio

    2006-01-01

    Full Text Available The cultivated and sexually compatible species Pennisetum purpureum (elephant grass, 2n = 4x = 28 and Pennisetum glaucum (pearl millet, 2n = 2x = 14 can undergo hybridization which favors the amplification of their genetic background and the introgression of favorable alleles into breeding programs. The main problem with interspecific hybrids of these species is infertility due to triploidy (2n = 3x = 21. This study describes meiosis in elephant grass x pearl millet hybrids and their progenitors. Panicles were prepared according to the conventional protocol for meiotic studies and Alexander’s stain was used for assessing pollen viability. Pearl millet accessions presented regular meiosis with seven bivalents and high pollen viability. For elephant grass, 14 bivalents in diakinesis and metaphase I were observed. The BAG 63 elephant grass accession, derived from tissue culture, presented a high frequency of meiotic abnormalities. The three hybrid accessions presented a high frequency of abnormalities characterized by irregular chromosomal segregation which resulted in the formation of sterile pollen.

  20. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Jayaraman, Ananthi; Puranik, Swati; Rai, Neeraj Kumar; Vidapu, Sudhakar; Sahu, Pranav Pankaj; Lata, Charu; Prasad, Manoj

    2008-11-01

    Plant growth and productivity are affected by various abiotic stresses such as heat, drought, cold, salinity, etc. The mechanism of salt tolerance is one of the most important subjects in plant science as salt stress decreases worldwide agricultural production. In our present study we used cDNA-AFLP technique to compare gene expression profiles of a salt tolerant and a salt-sensitive cultivar of foxtail millet (Seteria italica) in response to salt stress to identify early responsive differentially expressed transcripts accumulated upon salt stress and validate the obtained result through quantitative real-time PCR (qRT-PCR). The expression profile was compared between a salt tolerant (Prasad) and susceptible variety (Lepakshi) of foxtail millet in both control condition (L0 and P0) and after 1 h (L1 and P1) of salt stress. We identified 90 transcript-derived fragments (TDFs) that are differentially expressed, out of which 86 TDFs were classified on the basis of their either complete presence or absence (qualitative variants) and 4 on differential expression pattern levels (quantitative variants) in the two varieties. Finally, we identified 27 non-redundant differentially expressed cDNAs that are unique to salt tolerant variety which represent different groups of genes involved in metabolism, cellular transport, cell signaling, transcriptional regulation, mRNA splicing, seed development and storage, etc. The expression patterns of seven out of nine such genes showed a significant increase of differential expression in tolerant variety after 1 h of salt stress in comparison to salt-sensitive variety as analyzed by qRT-PCR. The direct and indirect relationship of identified TDFs with salinity tolerance mechanism is discussed.

  1. 10 Years of Native Seed Certification in Germany - a Summary.

    Science.gov (United States)

    Mainz, Ann Kareen; Wieden, Markus

    2018-06-21

    Many renaturation projects and compensation areas are based on the use of seeds from regional indigenous wild plants, in the following: native or regional seeds. Despite this, such seeds make up only a small proportion of the total number of seeds used for greening projects - in Germany, for example, it is only around 1% (= 200 t/yr). Although the market for regional seeds is small, it is highly competitive. High-priced native seeds compete with flower mixes of unspecified origin and can only be differentiated from them by reliable quality seals. A quality assurance system based on seed legislation (EU Directive 2010/60, preservation mixtures) has been developed in a few European countries. However, quality assurance ends with the sale of the seeds. Thus, seed use remains unmonitored and often unsuitable material, or material foreign to the region, is planted in restoration areas. Unfortunately, nature conservation has not made seed-based restoration one of its key issues, neither at the European, nor at the national level. Currently there are many different local and regional standards, methods and private certificates that are confusing for users and which provide little continuity and predictability for producers. We recommend the establishment of an EU directive or a broadly agreed recommendation to the EU member states, spearheaded by nature conservation, which would define the standards for producing and using native seeds (e.g. harmonized regions that cross national borders, quality regulations). At the same time, wild plant interest groups should combine existing structures in order to strengthen seed-based restoration through international cooperation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Milheto na alimentação de poedeiras = Pearl millet in the diet of laying hens

    Directory of Open Access Journals (Sweden)

    Ana Flávia Quiles Marques Garcia

    2011-01-01

    Full Text Available O presente trabalho teve como objetivo avaliar os efeitos da utilização de milheto como alimento energético, nas rações de poedeiras sobre o desempenho e qualidade de ovos, bem como realizar uma avaliação econômica a fim de verificar a viabilidade da utilização de milheto. Foram utilizadas 336 poedeiras comerciais, distribuídas em um delineamento inteiramente casualizado com seis tratamentos, sete repetições e oito aves por unidade experimental. Os tratamentos consistiram em uma ração-testemunha à base de milho e farelo de soja e as demais com 20, 40, 60, 80 e 100% de substituição ao milho. A inclusão do milheto não influenciou o consumo de ração, porcentagem de postura, conversão alimentar e a qualidade interna e externa dos ovos. Para o índice de coloração de gema, houve redução linear à medida que o nível de milheto foi crescente nas rações. Comrelação à variável econômica, o nível de 20% de substituição por milheto mostrou menor viabilidade, quando comparado ao milho. Assim, o milheto pode substituir o milho em níveis superiores a 20% sem prejuízos para o desempenho e qualidade dos ovos, sendo economicamente viável. Porém, deve-se considerar a necessidade da inclusão de pigmentantes.The present study examined the effects of the use of pearl millet, as energetic source, in the diets of laying hens on the performance and eggs quality, as well as to accomplish an economic evaluation in order to verify the viability of using the pearl millet. Three hundred thirty-six commercial laying hens were used, distributed in a completely randomized experimental design, with six treatments, seven replicates and eight birds for experimental unit. The treatments consisted in a control diet based on corn and soybean meal and the others with different levels of pearl millet (0, 20, 40, 60, 80 and 100%. The pearl millet inclusion did not influence the feed intake, egg production (%, feed conversion and internal and

  3. A simple tentative model of the losses caused by the Senegalese grasshopper, Oedaleus senegalensis (Krauss 1877) to millet in the Sahel

    DEFF Research Database (Denmark)

    Bal, Amadou Bocar; Ouambama, Zakaria; Dieng, Ibnou

    2015-01-01

    Oedaleus senegalensis is a serious pest of millet in the Sahel, but the correlation to crop loss remains largely unknown. Therefore, the correlation between densities of O. senegalensis, defoliation level and millet yields was investigated in Niger in 2008, and a simple model to foresee the yield...

  4. Mechanical properties of millet husk ash bitumen stabilized soil block

    African Journals Online (AJOL)

    This study presents an investigation into the improvement of strength and durability properties of lateritic soil blocks using Millet Husk Ash (MHA) and Bitumen as additives so as to reduce its high cost and find alternative disposal method for agricultural waste. The lateritic soil samples were selected and treated with 0%, ...

  5. A novel millet-based probiotic fermented food for the developing world

    NARCIS (Netherlands)

    Stefano, Di Elisa; White, Jessica; Seney, Shannon; Hekmat, Sharareh; McDowell, Tim; Sumarah, Mark; Reid, Gregor

    2017-01-01

    Probiotic yogurt, comprised of a Fiti sachet containing Lactobacillus rhamnosus GR-1 and Streptococcus thermophilus C106, has been used in the developing world, notably Africa, to alleviate malnutrition and disease. In sub-Saharan African countries, fermentation of cereals such as millet, is

  6. Effect of genotype and environment on branching in weedy green millet (Setaria viridis) and domesticated foxtail millet (Setaria italica) (Poaceae).

    Science.gov (United States)

    Doust, Andrew N; Kellogg, Elizabeth A

    2006-04-01

    Many domesticated crops are derived from species whose life history includes weedy characteristics, such as the ability to vary branching patterns in response to environmental conditions. However, domesticated crop plants are characterized by less variable plant architecture, as well as by a general reduction in vegetative branching compared to their progenitor species. Here we examine weedy green millet and its domesticate foxtail millet that differ in the number of tillers (basal branches) and axillary branches along each tiller. Branch number in F(2:3) progeny of a cross between the two species varies with genotype, planting density, and other environmental variables, with significant genotype-environment interactions (GEI). This is shown by a complex pattern of reaction norms and by variation in the pattern of significant quantitative trait loci (QTL) amongst trials. Individual and joint analyses of high and low density trials indicate that most QTL have significant GEI. Dominance and epistasis also explain some variation in branching. Likely candidate genes underlying the QTL (based on map position and phenotypic effect) include teosinte branched1 and barren stalk1. Phytochrome B, which has been found to affect response to shading in other plants, explains little or no variation. Much variation in branching is explained by QTL that do not have obvious candidate genes from maize or rice.

  7. Effect of processing on the microstructure of finger millet by X-ray diffraction and scanning electron microscopy.

    Science.gov (United States)

    Dharmaraj, Usha; Parameswara, P; Somashekar, R; Malleshi, Nagappa G

    2014-03-01

    Finger millet is one of the important minor cereals, and carbohydrates form its major chemical constituent. Recently, the millet is processed to prepare hydrothermally treated (HM), decorticated (DM), expanded (EM) and popped (PM) products. The present research aims to study the changes in the microstructure of carbohydrates using X-ray diffraction and scanning electron microscopy. Processing the millet brought in significant changes in the carbohydrates. The native millet exhibited A-type pattern of X-ray diffraction with major peaks at 2θ values of 15.3, 17.86 and 23.15°, whereas, all other products showed V-type pattern with single major peak at 2θ values ranging from 19.39 to 19.81°. The corresponding lattice spacing and the number of unit cells in a particular direction of reflection also reduced revealing that crystallinity of starch has been decreased depending upon the processing conditions. Scanning electron microscopic studies also revealed that the orderly pattern of starch granules changed into a coherent mass due to hydrothermal treatment, while high temperature short time treatment rendered a honey-comb like structure to the product. However, the total carbohydrates and non-starch polysaccharide contents almost remained the same in all the products except for DM and EM, but the individual carbohydrate components changed significantly depending on the type of processing.

  8. Relative contribution of phytates, fibers, and tannins to low iron and zinc in vitro solubility in pearl millet (Pennisetum glaucum) flour and grain fractions.

    Science.gov (United States)

    Lestienne, Isabelle; Caporiccio, Bertrand; Besançon, Pierre; Rochette, Isabelle; Trèche, Serge

    2005-10-19

    In vitro digestions were performed on pearl millet flours with decreased phytate contents and on two dephytinized or nondephytinized pearl millet grain fractions, a decorticated fraction, and a bran fraction with low and high fiber and tannin contents, respectively. Insoluble residues of these digestions were then incubated with buffer or enzymatic solutions (xylanases and/or phytases), and the quantities of indigestible iron and zinc released by these different treatments were determined. In decorticated pearl millet grain, iron was chelated by phytates and by insoluble fibers, whereas zinc was almost exclusively chelated by phytates. In the bran of pearl millet grain, a high proportion of iron was chelated by iron-binding phenolic compounds, while the rest of iron as well as the majority of zinc were chelated in complexes between phytates and fibers. The low effect of phytase action on iron and zinc solubility of bran of pearl millet grain shows that, in the case of high fiber and tannin contents, the chelating effect of these compounds was higher than that of phytates.

  9. [cDNA library construction from panicle meristem of finger millet].

    Science.gov (United States)

    Radchuk, V; Pirko, Ia V; Isaenkov, S V; Emets, A I; Blium, Ia B

    2014-01-01

    The protocol for production of full-size cDNA using SuperScript Full-Length cDNA Library Construction Kit II (Invitrogen) was tested and high quality cDNA library from meristematic tissue of finger millet panicle (Eleusine coracana (L.) Gaertn) was created. The titer of obtained cDNA library comprised 3.01 x 10(5) CFU/ml in avarage. In average the length of cDNA insertion consisted about 1070 base pairs, the effectivity of cDNA fragment insertions--99.5%. The selective sequencing of cDNA clones from created library was performed. The sequences of cDNA clones were identified with usage of BLAST-search. The results of cDNA library analysis and selective sequencing represents prove good functionality and full length character of inserted cDNA clones. Obtained cDNA library from meristematic tissue of finger millet panicle represents good and valuable source for isolation and identification of key genes regulating metabolism and meristematic development and for mining of new molecular markers to conduct out high quality genetic investigations and molecular breeding as well.

  10. Antioxidant Activity in Two Pearl Millet (Pennisetum typhoideum Cultivars as Influenced by Processing

    Directory of Open Access Journals (Sweden)

    Florence Suma Pushparaj

    2014-02-01

    Full Text Available Research on the effect of processing on the retention of bioactive components with potential antioxidant activity is gaining importance. The objective of this investigation was to evaluate the effect of various processing methods (milling, boiling, pressure cooking, roasting and germination respectively on the antioxidant components as well as the antioxidant activities in the commonly used pearl millet cultivars—Kalukombu (K and Maharashtra Rabi Bajra (MRB. The methanolic extracts of processed pearl millet flours were analyzed for 1,1-diphenyl-2-picrylhydrazyl (DPPH free radical scavenging activity, reducing power assay (RPA and ferric reducing antioxidant power (FRAP assays respectively. The samples were also evaluated for tannin, phytic acid and flavonoid content which was then correlated with the antioxidant activity assayed using three methods. The results indicated that the bran rich fraction showed high antioxidant activity (RPA owing to high tannin, phytic acid and flavonoid levels. Heat treatments exhibited significantly (P ≤ 0.05 higher antioxidant activity (DPPH scavenging activity and RPA reflecting the high flavonoid content. Processing did not have any significant effect on the FRAP activity of pearl millet. The data on the correlation coefficient suggests that DPPH radical scavenging activity and reducing power assay in the K variety was largely due to the presence of flavonoid content, however in MRB, no relationship was found between antioxidant activities and antioxidant components.

  11. Bioinformatic identification and experimental validation of miRNAs from foxtail millet (Setaria italica).

    Science.gov (United States)

    Han, Jun; Xie, Hao; Sun, Qingpeng; Wang, Jun; Lu, Min; Wang, Weixiang; Guo, Erhu; Pan, Jinbao

    2014-08-10

    MiRNAs are a novel group of non-coding small RNAs that negatively regulate gene expression. Many miRNAs have been identified and investigated extensively in plant species with sequenced genomes. However, few miRNAs have been identified in foxtail millet (Setaria italica), which is an ancient cereal crop of great importance for dry land agriculture. In this study, 271 foxtail millet miRNAs belonging to 44 families were identified using a bioinformatics approach. Twenty-three pairs of sense/antisense miRNAs belonging to 13 families, and 18 miRNA clusters containing members of 8 families were discovered in foxtail millet. We identified 432 potential targets for 38 miRNA families, most of which were predicted to be involved in plant development, signal transduction, metabolic pathways, disease resistance, and environmental stress responses. Gene ontology (GO) analysis revealed that 101, 56, and 23 target genes were involved in molecular functions, biological processes, and cellular components, respectively. We investigated the expression patterns of 43 selected miRNAs using qRT-PCR analysis. All of the miRNAs were expressed ubiquitously with many exhibiting different expression levels in different tissues. We validated five predicted targets of four miRNAs using the RNA ligase mediated rapid amplification of cDNA end (5'-RLM-RACE) method. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Enhanced seed viability and lipid compositional changes during natural ageing by suppressing phospholipase Dα in soybean seed.

    Science.gov (United States)

    Lee, Junghoon; Welti, Ruth; Roth, Mary; Schapaugh, William T; Li, Jiarui; Trick, Harold N

    2012-02-01

    Changes in phospholipid composition and consequent loss of membrane integrity are correlated with loss of seed viability. Furthermore, phospholipid compositional changes affect the composition of the triacylglycerols (TAG), i.e. the storage lipids. Phospholipase D (PLD) catalyses the hydrolysis of phospholipids to phosphatidic acid, and PLDα is an abundant PLD isoform. Although wild-type (WT) seeds stored for 33 months were non-viable, 30%-50% of PLDα-knockdown (PLD-KD) soybean seeds stored for 33 months germinated. WT and PLD-KD seeds increased in lysophospholipid levels and in TAG fatty acid unsaturation during ageing, but the levels of lysophospholipids increased more in WT than in PLD-KD seeds. The loss of viability of WT seeds was correlated with alterations in ultrastructure, including detachment of the plasma membrane from the cell wall complex and disorganization of oil bodies. The data demonstrate that, during natural ageing, PLDα affects the soybean phospholipid profile and the TAG profile. Suppression of PLD activity in soybean seed has potential for improving seed quality during long-term storage. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  13. Using millet as substrate for efficient production of monacolin K by solid-state fermentation of Monascus ruber.

    Science.gov (United States)

    Zhang, Bo-Bo; Xing, Hong-Bo; Jiang, Bing-Jie; Chen, Lei; Xu, Gan-Rong; Jiang, Yun; Zhang, Da-Yong

    2018-03-01

    In this study, various grains such as rice, millet, corn, barley and wheat were used as raw materials for monacolin K production by solid-state fermentation of Monascus ruber. Among these substrates, millet was found to be the best one for monacolin K production, by which the yield reached 7.12 mg/g. For enhanced monacolin K production, the effects of fermentation time, charge amount, initial moisture content and inoculum volume were systematically investigated in the solid-state fermentation of M. ruber. Moreover, complementary carbon source and nitrogen source were added for further improving the production of monacolin K. Results showed that the maximum production of monacolin K (19.81 mg/g) could be obtained at the optimal conditions. Compared with the traditional red mold rice, using millet as substrate is promising for high production of monacolin K in the solid-state fermentation of M. ruber. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Bioaccessible nutrients and bioactive components from fortified products prepared using finger millet (Eleusine coracana).

    Science.gov (United States)

    Oghbaei, Morteza; Prakash, Jamuna

    2012-08-30

    Finger millet (Eleusine coracana), a staple food in semi-arid parts of the world, is a rich source of nutrients and bioactive components comparable to rice and wheat but with higher fibre content. Unprocessed and processed finger millet (whole flour (WFM), sieved flour (SFM), wafers and vermicelli with altered matrices (added Fe or Zn or reduced fibre)) were analysed for chemical composition, bioaccessible Fe, Zn and Ca, in vitro digestible starch (IVSD) and protein (IVPD) and bioactive components (polyphenols and flavonoids). WFM and SFM flours differed significantly in their composition. Sieving decreased the content of both nutrients and antinutrients in WFM but increased their digestibility/bioaccessibility. WFM products with Zn and Fe showed highest IVPD, whereas SFM products with Fe showed highest IVSD. Products with externally added Fe and Zn showed maximum bioaccessibility of Fe and Zn respectively. WFM had the highest levels of total polyphenols and flavonoids, 4.18 and 15.85 g kg⁻¹ respectively; however, bioaccessibility was highest in SFM vermicelli. The availability of nutrients and bioactive components was influenced by both processing methods and compositional alterations of the food matrix in finger millet products, and bioaccessibility of all constituents was higher in vermicelli (wet matrix) than in wafers (dry matrix). Copyright © 2012 Society of Chemical Industry.

  15. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana).

    Science.gov (United States)

    Mousa, Walaa Kamel; Schwan, Adrian L; Raizada, Manish N

    2016-09-03

    Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s) of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H)-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone), and harpagoside (an iridoide glycoside). Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum.

  16. Crops and Culture: Dispersal of African Millets to the Indian Subcontinent and its Cultural Consequences

    Directory of Open Access Journals (Sweden)

    Randi Haaland

    2012-06-01

    Full Text Available In this paper I will discuss the spread of African crops to the Indian subcontinent. The spread was probably related to the Indus civilizations trading network in the Indian Ocean during the late 3rd millennium BC. It was at this time African food plants, the so-called big millets were dispersed across the African savannah to the horn of Africa and further to the Indian sub-continent. The big millets were cultivated as monsoon summer crops complementing the existing barley/wheat winter crops. The African pot/porridge cuisine was added to wheat/barley oven/bread cuisine. Recent study in Nepal shows that the African crops are cultivated today on marginal agricultural land in the foothills of Himalaya. We will look at Nepal as an example of the production and consumption of African big millets. The crops are processed into porridge and beer, and this cuisine is a food tradition similar to the pot and porridge cuisine we find in sub-Saharan Africa.DOI: http://dx.doi.org/10.3126/dsaj.v5i0.6354 Dhaulagiri Journal of Sociology and Anthropology Vol. 5, 2011: 1-30

  17. Defense enzyme responses in dormant wild oat and wheat caryopses challenged with a seed decay pathogen

    Science.gov (United States)

    Seed dormancy and resistance to seed decay organisms are fundamental ecological strategies for weed seed persistence in the weed seed-bank. Seeds have well-established physical, chemical, and biological defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores....

  18. Interactive effects of pests increase seed yield.

    Science.gov (United States)

    Gagic, Vesna; Riggi, Laura Ga; Ekbom, Barbara; Malsher, Gerard; Rusch, Adrien; Bommarco, Riccardo

    2016-04-01

    Loss in seed yield and therefore decrease in plant fitness due to simultaneous attacks by multiple herbivores is not necessarily additive, as demonstrated in evolutionary studies on wild plants. However, it is not clear how this transfers to crop plants that grow in very different conditions compared to wild plants. Nevertheless, loss in crop seed yield caused by any single pest is most often studied in isolation although crop plants are attacked by many pests that can cause substantial yield losses. This is especially important for crops able to compensate and even overcompensate for the damage. We investigated the interactive impacts on crop yield of four insect pests attacking different plant parts at different times during the cropping season. In 15 oilseed rape fields in Sweden, we estimated the damage caused by seed and stem weevils, pollen beetles, and pod midges. Pest pressure varied drastically among fields with very low correlation among pests, allowing us to explore interactive impacts on yield from attacks by multiple species. The plant damage caused by each pest species individually had, as expected, either no, or a negative impact on seed yield and the strongest negative effect was caused by pollen beetles. However, seed yield increased when plant damage caused by both seed and stem weevils was high, presumably due to the joint plant compensatory reaction to insect attack leading to overcompensation. Hence, attacks by several pests can change the impact on yield of individual pest species. Economic thresholds based on single species, on which pest management decisions currently rely, may therefore result in economically suboptimal choices being made and unnecessary excessive use of insecticides.

  19. Endophytic Colonization and In Planta Nitrogen Fixation by a Herbaspirillum sp. Isolated from Wild Rice Species

    Science.gov (United States)

    Elbeltagy, Adel; Nishioka, Kiyo; Sato, Tadashi; Suzuki, Hisa; Ye, Bin; Hamada, Toru; Isawa, Tsuyoshi; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2001-01-01

    Nitrogen-fixing bacteria were isolated from the stems of wild and cultivated rice on a modified Rennie medium. Based on 16S ribosomal DNA (rDNA) sequences, the diazotrophic isolates were phylogenetically close to four genera: Herbaspirillum, Ideonella, Enterobacter, and Azospirillum. Phenotypic properties and signature sequences of 16S rDNA indicated that three isolates (B65, B501, and B512) belong to the Herbaspirillum genus. To examine whether Herbaspirillum sp. strain B501 isolated from wild rice, Oryza officinalis, endophytically colonizes rice plants, the gfp gene encoding green fluorescent protein (GFP) was introduced into the bacteria. Observations by fluorescence stereomicroscopy showed that the GFP-tagged bacteria colonized shoots and seeds of aseptically grown seedlings of the original wild rice after inoculation of the seeds. Conversely, for cultivated rice Oryza sativa, no GFP fluorescence was observed for shoots and only weak signals were observed for seeds. Observations by fluorescence and electron microscopy revealed that Herbaspirillum sp. strain B501 colonized mainly intercellular spaces in the leaves of wild rice. Colony counts of surface-sterilized rice seedlings inoculated with the GFP-tagged bacteria indicated significantly more bacterial populations inside the original wild rice than in cultivated rice varieties. Moreover, after bacterial inoculation, in planta nitrogen fixation in young seedlings of wild rice, O. officinalis, was detected by the acetylene reduction and 15N2 gas incorporation assays. Therefore, we conclude that Herbaspirillum sp. strain B501 is a diazotrophic endophyte compatible with wild rice, particularly O. officinalis. PMID:11679357

  20. Removal and Burial of Weed Seeds by Ants (Hymenoptera: Formicidae) From the Soil Surface of a Cropped Area in Western Australia.

    Science.gov (United States)

    Minkey, D M; Spafford, H

    2016-10-01

    Although granivorous ants are known to collect weed seeds from cropping areas in Australia, the fate of these seeds has not been adequately investigated. Seeds of annual ryegrass (Lolium rigidum Gaud.) and wild radish (Raphanus raphanistrum L.) were placed around the nests of five native ant species (Iridomyrmex greensladei Shattuck, Rhytidoponera metallica Smith, Melophorus turneri Forel, Monomorium rothsteini Forel, and Pheidole hartmeyeri Forel) and tracked continuously over a 24-h period. Removal rates and seed preference of the ant species were evaluated. Ant nests were then excavated to determine the placement of seeds that were taken into each nest. Seed preference, seed removal efficiencies, activity, and seed storage all varied between the ant species. Annual ryegrass seed was collected by three species of ants and was removed from the soil surface more efficiently than wild radish seed. Most ant species stored seed below ground at a depth that is inhibitory to emergence, thereby potentially removing that portion of seed from the seed bank, but some seed was placed at germinable depths. Pheidole hartmeyeri was identified as a likely biological control agent for annual ryegrass seeds and wild radish, while Me. turneri and Mo. rothsteini have potential as biocontrol agents for annual ryegrass, but further research is needed. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. A review of spatio-temporal modelling of quadrat count data with application to striga occurrence in a pearl millet field

    Science.gov (United States)

    Hess, Dale; van Lieshout, Marie-Colette; Payne, Bill; Stein, Alfred

    This paper describes how spatial statistical techniques may be used to analyse weed occurrence in tropical fields. Quadrat counts of weed numbers are available over a series of years, as well as data on explanatory variables, and the aim is to smooth the data and assess spatial and temporal trends. We review a range of models for correlated count data. As an illustration, we consider data on striga infestation of a 60 × 24 m 2 millet field in Niger collected from 1985 until 1991, modelled by independent Poisson counts and a prior auto regression term enforcing spatial coherence. The smoothed fields show the presence of a seed bank, the estimated model parameters indicate a decay in the striga numbers over time, as well as a clear correlation with the amount of rainfall in 15 consecutive days following the sowing date. Such results could contribute to precision agriculture as a guide to more cost-effective striga control strategies.

  2. Endocarp thickness affects seed removal speed by small rodents in a warm-temperate broad-leafed deciduous forest, China

    Science.gov (United States)

    Zhang, Hongmao; Zhang, Zhibin

    2008-11-01

    Seed traits are important factors affecting seed predation by rodents and thereby the success of recruitment. Seeds of many tree species have hard hulls. These are thought to confer mechanical protection, but the effect of endocarp thickness on seed predation by rodents has not been well investigated. Wild apricot ( Prunus armeniaca), wild peach ( Amygdalus davidiana), cultivated walnut ( Juglans regia), wild walnut ( Juglans mandshurica Maxim) and Liaodong oak ( Quercus liaotungensis) are very common tree species in northwestern Beijing city, China. Their seeds vary greatly in size, endocarp thickness, caloric value and tannin content. This paper aims to study the effects of seed traits on seed removal speed of these five tree species by small rodents in a temperate deciduous forest, with emphasis on the effect of endocarp thickness. The results indicated that speed of removal of seeds released at stations in the field decreased significantly with increasing endocarp thickness. We found no significant correlations between seed removal speed and other seed traits such as seed size, caloric value and tannin content. In seed selection experiments in small cages, Père David's rock squirrel ( Sciurotamias davidianus), a large-bodied, strong-jawed rodent, selected all of the five seed species, and the selection order among the five seed species was determined by endocarp thickness and the ratio of endocarp mass/seed mass. In contrast, the Korean field mouse ( Apodemus peninsulae) and Chinese white-bellied rat ( Niviventer confucianus), with relatively small bodies and weak jaws, preferred to select small seeds like acorns of Q. liaotungensis and seeds of P. armeniaca, indicating that rodent body size is also an important factor affecting food selection based on seed size. These results suggest endocarp thickness significantly reduces seed removal speed by rodents and then negatively affects dispersal fitness of seeds before seed removal of tree species in the study

  3. Finger Millet: A “Certain” Crop for an “Uncertain” Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments

    Science.gov (United States)

    Gupta, Sanjay Mohan; Arora, Sandeep; Mirza, Neelofar; Pande, Anjali; Lata, Charu; Puranik, Swati; Kumar, J.; Kumar, Anil

    2017-01-01

    Crop growth and productivity has largely been vulnerable to various abiotic and biotic stresses that are only set to be compounded due to global climate change. Therefore developing improved varieties and designing newer approaches for crop improvement against stress tolerance have become a priority now-a-days. However, most of the crop improvement strategies are directed toward staple cereals such as rice, wheat, maize etc., whereas attention on minor cereals such as finger millet [Eleusine coracana (L.) Gaertn.] lags far behind. It is an important staple in several semi-arid and tropical regions of the world with excellent nutraceutical properties as well as ensuring food security in these areas even during harsh environment. This review highlights the importance of finger millet as a model nutraceutical crop. Progress and prospects in genetic manipulation for the development of abiotic and biotic stress tolerant varieties is also discussed. Although limited studies have been conducted for genetic improvement of finger millets, its nutritional significance in providing minerals, calories and protein makes it an ideal model for nutrition-agriculture research. Therefore, improved genetic manipulation of finger millets for resistance to both abiotic and biotic stresses, as well as for enhancing nutrient content will be very effective in millet improvement. Key message: Apart from the excellent nutraceutical value of finger millet, its ability to tolerate various abiotic stresses and resist pathogens make it an excellent model for exploring vast genetic and genomic potential of this crop, which provide us a wide choice for developing strategies for making climate resilient staple crops. PMID:28487720

  4. Finger Millet: A “Certain” Crop for an “Uncertain” Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2017-04-01

    Full Text Available Crop growth and productivity has largely been vulnerable to various abiotic and biotic stresses that are only set to be compounded due to global climate change. Therefore developing improved varieties and designing newer approaches for crop improvement against stress tolerance have become a priority now-a-days. However, most of the crop improvement strategies are directed toward staple cereals such as rice, wheat, maize etc., whereas attention on minor cereals such as finger millet [Eleusine coracana (L. Gaertn.] lags far behind. It is an important staple in several semi-arid and tropical regions of the world with excellent nutraceutical properties as well as ensuring food security in these areas even during harsh environment. This review highlights the importance of finger millet as a model nutraceutical crop. Progress and prospects in genetic manipulation for the development of abiotic and biotic stress tolerant varieties is also discussed. Although limited studies have been conducted for genetic improvement of finger millets, its nutritional significance in providing minerals, calories and protein makes it an ideal model for nutrition-agriculture research. Therefore, improved genetic manipulation of finger millets for resistance to both abiotic and biotic stresses, as well as for enhancing nutrient content will be very effective in millet improvement.Key message: Apart from the excellent nutraceutical value of finger millet, its ability to tolerate various abiotic stresses and resist pathogens make it an excellent model for exploring vast genetic and genomic potential of this crop, which provide us a wide choice for developing strategies for making climate resilient staple crops.

  5. Inclusion of sorghum, millet and cottonseed meal in broiler diets: a meta-analysis of effects on performance.

    Science.gov (United States)

    Batonon-Alavo, D I; Umar Faruk, M; Lescoat, P; Weber, G M; Bastianelli, D

    2015-07-01

    A meta-analysis was conducted (i) to evaluate broiler response to partial or total substitution of corn by sorghum and millet and (ii) to determine the effect of soybean meal replacement by cottonseed meal in broiler diet. The database included 190 treatments from 29 experiments published from 1990 to 2013. Bird responses to an experimental diet were calculated relative to the control (Experimental-Control), and were submitted to mixed-effect models. Results showed that diets containing millet led to similar performance as the corn-based ones for all parameters, whereas sorghum-based diets decreased growth performance. No major effect of the level of substitution was observed with millet or cottonseed meal. No effect of the level of substitution of sorghum on feed intake was found; however, growth performance decreased when the level of substitution of corn by sorghum increased. Cottonseed meal was substituted to soybean meal up to 40% and found to increase feed intake while reducing growth performance. Young birds were not more sensitive to these ingredients than older birds since there was no negative effect of these ingredients on performance in the starter phase. Results obtained for sorghum pointed out the necessity to find technological improvements that will increase the utilization of these feedstuffs in broiler diet. An additional work is scheduled to validate these statistical results in vivo and to evaluate the interactions induced with the simultaneous inclusions of sorghum, millet and cottonseed meal in broiler feeding.

  6. Spatial and temporal variation in selection of genes associated with pearl millet varietal quantitative traits in situ

    Directory of Open Access Journals (Sweden)

    Cedric Mariac

    2016-07-01

    Full Text Available Ongoing global climate changes imply new challenges for agriculture. Whether plants and crops can adapt to such rapid changes is still a widely debated question. We previously showed adaptation in the form of earlier flowering in pearl millet at the scale of a whole country over three decades. However, this analysis did not deal with variability of year to year selection. To understand and possibly manage plant and crop adaptation, we need more knowledge of how selection acts in situ. Is selection gradual, abrupt, and does it vary in space and over time? In the present study, we tracked the evolution of allele frequency in two genes associated with pearl millet phenotypic variation in situ. We sampled 17 populations of cultivated pearl millet over a period of two years. We tracked changes in allele frequencies in these populations by genotyping more than seven thousand individuals. We demonstrate that several allele frequencies changes are compatible with selection, by correcting allele frequency changes associated with genetic drift. We found marked variation in allele frequencies from year to year, suggesting a variable selection effect in space and over time. We estimated the strength of selection associated with variations in allele frequency. Our results suggest that the polymorphism maintained at the genes we studied is partially explained by the spatial and temporal variability of selection. In response to environmental changes, traditional pearl millet varieties could rapidly adapt thanks to this available functional variability.

  7. Finger millet arabinoxylan protects mice from high-fat diet induced lipid derangements, inflammation, endotoxemia and gut bacterial dysbiosis.

    Science.gov (United States)

    Sarma, Siddhartha Mahadeva; Singh, Dhirendra Pratap; Singh, Paramdeep; Khare, Pragyanshu; Mangal, Priyanka; Singh, Shashank; Bijalwan, Vandana; Kaur, Jaspreet; Mantri, Shrikant; Boparai, Ravneet Kaur; Mazumder, Koushik; Bishnoi, Mahendra; Bhutani, Kamlesh Kumar; Kondepudi, Kanthi Kiran

    2018-01-01

    Arabinoxylan (AX), a non-starch polysaccharide extracted from cereals such as wheat, rice and millets, is known to impart various health promoting effects. Our earlier study suggested that finger millet (FM) could ameliorate high fat diet (HFD)-induced metabolic derangements. The present study is aimed to evaluate the effect of FM-AX supplementation, a key bioactive from finger millet, on HFD-induced metabolic and gut bacterial derangements. Male Swiss albino mice were fed with normal chow diet (NPD) or HFD (60%kcal from fat) for 10 weeks. FM-AX was orally supplemented at doses of 0.5 and 1.0g/kg bodyweight on every alternate day for 10 weeks. Glucose tolerance, serum hormones, hepatic lipid accumulation and inflammation, white adipose tissue marker gene expression, adipocyte size and inflammation; metagenomic alterations in cecal bacteria; cecal short chain fatty acids and colonic tight junction gene expressions were studied. FM-AX supplementation prevented HFD-induced weight gain, alerted glucose tolerance and serum lipid profile, hepatic lipid accumulation and inflammation. Hepatic and white adipose tissue gene expressions were beneficially modulated. Further, AX supplementation prevented metagenomic alterations in cecum; improved ileal and colonic health and overall prevented metabolic endotoxemia. Present work suggests that AX from finger millet can be developed as a nutraceutical for the management of HFD- induced obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The extent of variation in salinity tolerance of the minicore collection of finger millet (Eleusine coracana L. Gaertn.) germplasm.

    Science.gov (United States)

    Krishnamurthy, Lakshmanan; Upadhyaya, Hari Deo; Purushothaman, Ramamoorthy; Gowda, Cholenahalli Lakkegowda Laxmipathi; Kashiwagi, Junichi; Dwivedi, Sangam Lal; Singh, Sube; Vadez, Vincent

    2014-10-01

    Finger millet (Eleusine coracana L. Gaertn.) ranks third in production among the dry land cereals. It is widely cultivated in Africa and South Asia where soil salinization is a major production constraint. It is a potential crop for salt affected soils. To identify salt tolerant germplasm, the minicore finger millet germplasm (n=80) was screened for grain yield performance in a soil saturated with NaCl solution of 100 or 125mM. Genotype effect was significant for most traits, while salinity×genotype interaction was significant only in one year. Salinity delayed phenology, marginally reduced shoot biomass and grain yield. There was a large range of genotypic variation in grain yield under salinity and other traits. The yield loss was higher in accessions with prolific growth and yield potential was associated with saline yields. Based on saline yields, accessions were grouped in to four groups and the top tolerant group had 22 accessions with IE 4797 remaining at the top. Salinity had no adverse impact on grain yield of five accessions. Root anatomy in selected genotype of pearl and finger millet showed presence of porous cortex and well fortified endodermis in finger millet that can exclude Na(+) and enhance N absorption. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Lack of Globulin Synthesis during Seed Development Alters Accumulation of Seed Storage Proteins in Rice

    Directory of Open Access Journals (Sweden)

    Hye-Jung Lee

    2015-06-01

    Full Text Available The major seed storage proteins (SSPs in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and prolamins in dry seeds of a globulin-deficient rice mutant (Glb-RNAi, which was generated with RNA interference (RNAi-induced suppression of globulin expression. The expression of the prolamin and glutelin subfamily genes was reduced in the immature seeds of Glb-RNAi lines compared with those in wild type. A proteomic analysis of Glb-RNAi seeds showed that the reductions in glutelin and prolamin were conserved at the protein level. The decreased pattern in glutelin was also significant in the presence of a reductant, suggesting that the polymerization of the glutelin proteins via intramolecular disulfide bonds could be interrupted in Glb-RNAi seeds. We also observed aberrant and loosely packed structures in the storage organelles of Glb-RNAi seeds, which may be attributable to the reductions in SSPs. In this study, we evaluated the role of rice globulin in seed development, showing that a deficiency in globulin could comprehensively reduce the expression of other SSPs.

  10. Karrikin-KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment.

    Science.gov (United States)

    Wang, Lu; Waters, Mark T; Smith, Steven M

    2018-05-04

    The control of seed germination in response to environmental conditions is important for plant success. We investigated the role of the karrikin receptor KARRIKIN INSENSITIVE2 (KAI2) in the response of Arabidopsis seeds to osmotic stress, salinity and high temperature. Germination of the kai2 mutant was examined in response to NaCl, mannitol and elevated temperature. The effect of karrikin on germination of wild-type seeds, hypocotyl elongation and the expression of karrikin-responsive genes was also examined in response to such stresses. The kai2 seeds germinated less readily than wild-type seeds and germination was more sensitive to inhibition by abiotic stress. Karrikin-induced KAI2 signalling stimulated germination of wild-type seeds under favourable conditions, but, surprisingly, inhibited germination in the presence of osmolytes or at elevated temperature. By contrast, GA stimulated germination of wild-type seeds and mutants under all conditions. Karrikin induced expression of DLK2 and KUF1 genes and inhibited hypocotyl elongation independently of osmotic stress. Under mild osmotic stress, karrikin enhanced expression of DREB2A, WRKY33 and ERF5 genes, but not ABA signalling genes. Thus, the karrikin-KAI2 signalling system can protect against abiotic stress, first by providing stress tolerance, and second by inhibiting germination under conditions unfavourable to seedling establishment. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  11. Wet digestion and differential pulse stripping voltammetry determination of total chromium in the millet

    Directory of Open Access Journals (Sweden)

    Yaqin LIU

    2015-06-01

    Full Text Available The chromium content of millet is measured by HNO3-H2O2 digestion and electrochemical method. In the DTPA-HAc-NaAc system, the oxidation peak current of amalgam formed by hexavalent chrome ion is obtained in the plating mercury electrode, and the pre-treatment technology of wet digestion can meet the electrochemical determination. The optimized detection condition of electrochemical method for hexavalent chrome ion is 130 ℃ of digestion solution, 10 mL hydrogen peroxide, 38 mL nitric acid, and neutral of pH. The linear correlation coefficient of electrochemical method is 0.99, and the recovery of standard addition is 90%~110%. This method can be used to trace chromium (Ⅵ determination in millet.

  12. Evaluation of Eleven Macro and Micro Elements Present in Various Hybrids of Millet (Pennisetum glaucum, or P. Americanum

    Directory of Open Access Journals (Sweden)

    Ghulam Qadir Shar

    2012-06-01

    Full Text Available Maize and Millet Research Institute (MMRI situated in Yousuf wala, District Sahiwal, Punjab, Pakistan was selected to grow nine different hybrids/cultivars of millet for study to comprehend the variable concentration of macro, micro and trace and toxic elements in their grains. Wet digestion method was used for the preparation of samples and flame atomic absorption spectrophotometer for analysis of eleven major and minor elements. High values of macro-elements i.e. sodium and potassium was found in ICMP-451 and magnesium in ICMP-53506. The high value of essential micro-elements i.e.zinc (50mg/kg, manganese (8mg/kg, and copper (8mg/kg was calculated in ICMP-53506, Bullo-94-1, and ICMP-83720 respectively. In case of trace and toxic micro-elements, high concentration of nickel, cobalt, chromium and cadmium was found in O.B.V, Bullo-7704, ICMP-83401, and ICMP-83720 in the edible part of millet plants (grains cultivars respectively.

  13. Evaluation of eleven macro and micro elements present in various hybrids of millet (pennisetum glucum, or P. americanum)

    International Nuclear Information System (INIS)

    Shar, G.Q.; Shar, L.A.

    2012-01-01

    Maize and Millet Research Institute (MMRI) situated in Yousuf wala, District Sahiwal, Punjab, Pakistan was selected to grow nine different hybrids/cultivars of millet for study to comprehend the variable concentration of macro, micro and trace and toxic elements in their grains. Wet digestion method was used for the preparation of samples and flame atomic absorption spectrophotometer for analysis of eleven major and minor elements. High values of macro-elements i.e. sodium and potassium was found in ICMP-45 I and magnesium in ICMP-53506. The high value of essential micro-elements i.e. zinc (50 mg/kg), manganese (8 mg/kg), and copper (8mg/kg) was calculated in ICMP-53506, Bullo-94-1, and ICMP-83120 respectively. In case of trace and toxic micro-elements, high concentration of nickel, cobalt, chromium and cadmium was found in O.B.V, Bullo-1104, ICMP-83401, and ICMP-83120 in the edible part of millet plants (grains) cultivars respectively. (author)

  14. Soil salinity under deficit drip irrigation of potato and millet in in an arid environment

    Directory of Open Access Journals (Sweden)

    Kamel Nagaz

    2017-06-01

    Full Text Available The influence of deficit irrigation (DI with saline water on soil salinity in a drip-irrigated potato and millet fields was investigated. We had compared proportional soil salinity developed under Full and DI under drip irrigation. For both experiments, the treatments were (1 Full, control treatment where rooting zone soil water content was increased to field capacity at each irrigation; (2 DI80; (3 DI60 and DI40; 20, 40 and 60% deficit irrigation compared to Full treatment were applied, respectively. Soil salinity was assessed using the isosalinity maps constructed with grid soil sampling of plant root zone at harvest. Results show that high spatial variability was observed in salinity along soil profiles when applying saline water with drip irrigation for potato. For the DI40 and DI60 treatments, high soil salinity was recorded in the upper soil layer close to the emitter. Increase of soil salinity within soil depths of 30 cm or below was also observed under DI60 and DI40 treatments. The lowest increase was noted under the full treatment. Surface soil salinity was somewhat higher under DI60 and DI40 compared with that of full and DI80 irrigation treatments. The distribution of salts around the dripper changes during the crop season according to applied irrigation treatments, with overall higher concentrations between the drippers and towards the margin of wetted band. Iso-salinity maps at harvest of potato showed that the surface layer of 30 cm depth had the lowest salinity which gradually increased at deeper zones irrespective of the treatment. Salt accumulation essentially occurred at wetting front between the drippers and the plant row. Although salt accumulation was relatively highest along the row under DI treatments, the area of accumulation was relatively shifted toward the center between the rows and the drip line. The results also show the importance of the potato cropping season to benefit from the leaching of soluble salts with the

  15. response of locally adapted pearl millet populations to s1 progeny

    African Journals Online (AJOL)

    ACSS

    Izge, U., Kadams, A.M. and Gungula, D.T. 2006. Studies on character association and path analysis of certain quantitative characters among parental lines of pearl millet. (Pennisetum glaucum ) and their F1 hybrids in a diallel cross. African Journal of. Agricultural Research 1:194-198. Kannan, B., Senapathy, S., Raj, A.G.B., ...

  16. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2016-09-01

    Full Text Available Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone, and harpagoside (an iridoide glycoside. Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum.

  17. Inoculation of plant growth promoting rhizobia in Sudan grass (Sorghum × sudanense (Piper Stapf cv. Sudanense and millet (Pennisetum glaucum (L. R.Br. cv. BRS1501

    Directory of Open Access Journals (Sweden)

    Rafael Goulart Machado

    2018-01-01

    Full Text Available Rhizobia are able to increase yield of non-leguminous species through production of phyto-stimulating substances. This study aimed to evaluate the inoculation effect of rhizobia UFRGS Lc348 and VP16 on millet and Sudan grass yield and germination, and verify the enrichment effect of culture medium with tryptophan, which leads on the rhizobium/plant interaction. Experiments in vitro and greenhouse conditions were conducted. In millet, the inoculation with VP16 grown in culture medium with or without tryptophan induces greater length of hypocotyl and epicotyl under in vitro conditions. UFRGS Lc348 treatment induces longer hypocotyls of millet under in vitro conditions. No effects were observed with the millet inoculation in greenhouse. In Sudan grass, inoculation with VP16 enriched with tryptophan increased dry matter in shoots of adult plants. In millet seedlings had achieved an increasing in elongation in vitro conditions, which could represent an adaptive advantage in the search for water and nutrients in the rhizospheric environment during the initial growth of millet. Similarly, if verified in field conditions, Sudan grass had achieved an increasing in greenhouse conditions with the inoculation of tryptophan-enriched VP16, which could be correlated with a significant gain in crop yield. Therefore, these relationships between tryptophan-enriched VP16 and Sudan grass should be verified in subsequent studies under field conditions.

  18. Evaluation of Growth Indices and Estimation Seed Yield Loss Threshold of Canola in Response to Various Densities of Crop and Wild Mustard

    Directory of Open Access Journals (Sweden)

    Z Anafjeh

    2012-02-01

    Full Text Available ABSTRACT In order to study the effect of various densities of wild mustard (Sinapis arvensis L. on growth indices of Canola (Brassica napus L. in climate of Molathani, Ahvaz, an experiment was conducted in the experimental field of Ramin Agricultural and Natural Resources University, in 2006-2007. The split-plot set of treatments was arranged within randomized complete block design with four replications. Treatments included of wild mustard at five levels (0, 7, 14, 21 and 35 plants m2 and Canola at three densities (60, 80 and 100 plants m2. The results showed that the increase in mustard density rates lead to decreasing total dry matter, leaf area index, crop growth rate, relative growth rate and mean pod dry matter in three canola densities (60, 80 and 100 plants m2. Somewhat the lowest growth indices was obtained in 35 plants mustard (that is the highest mustard density. In addition damage rate of mustard decreased canola seed yield for 7, 14, 21 and 35 plants mustard up to 61, 71, 76 and 91%, respectively. Keywords: Plant density, Competition, Yield loss threshold, Growth indices, Canola, Mustard

  19. Some aspects of the Seed Germination and Seedling Growth of two Savanna tree Species

    OpenAIRE

    D.A. Agboola; A.A. Ajiboye; O.O. Fawibe; M.O. Atayese

    2014-01-01

    Studies were made on some aspects of the seed germination and seedling growth of two multipurpose trees. These include the effect of pre sowing treatments, seed sizes and gibberellic acid on the germination of seeds and seedling growth. The tree species include Prosopis africana (Guil & Perr) Taub and Dialium guineense (wild). Two seed sizes designated small- size (Ss) and Big-size (Bs) were identified in the seed. The effect of gibberellic acid (GA3) had a greater significance effect (P < 0....

  20. II.1.5 Phenotyping pearl millet for adaptation to drought

    Directory of Open Access Journals (Sweden)

    Vincent eVadez

    2012-10-01

    Full Text Available Pearl millet is highly resilient to some of the driest areas of the world, like the Sahel area or fringes of the Thar desert in India. Despite this, there is a wealth of variation in pearl millet genotypes for their adaptation to drought, and the object of this paper was to review some related work in the past 25 years to harness these capacities towards the breeding of better adapted cultivars. Work on short duration cultivars has been a major effort. Pearl millet has also some development plasticity thanks to a high tillering ability, which allows compensating for possible drought-related failure of the main culm under intermittent drought. The development of molecular tools for breeding has made great progress in the last 10-15 years and markers, maps, EST libraries, BACs are now available and a number of QTLs for different traits, including drought, have been identified. Most of the work on drought has focused on the drought tolerance index (DTI, an index that reflect the genetic differences in drought adaptation that are independent of flowering time and yield potential. The DTI is closely associated to the panicle harvest index (PNHI, a trait that relates to a better grain setting and grain filling capacity. Initial work on the DTI involved empirical breeding and selection based on PNHI. A QTL for PNHI has then been identified and introgressed by marker-assisted backcrossing. More recently, a thorough dissection of that QTL has been carried out and shows that high PNHI is related to the constitutive ability of tolerant lines to save water (lower leaf conductance and sensitivity of transpiration to high vapor pressure deficit at a vegetative stage and use it for the grain filling period. However, there is no contribution of root traits in this QTL. Current work is taking place to map these water saving traits, understand their genetic interactions, and design ideotypes having specific genetic make up towards adaptation to specific rainfall

  1. 小米手机战略定位分析%Strategic Positioning Analysis on Millet Mobile Phone

    Institute of Scientific and Technical Information of China (English)

    王睿

    2014-01-01

    小米手机的成本领先战略和差异化战略发挥了小米科技的长处,使小米以一种独特的商业模式迅速将自己推向了科技企业前列,其互联网直销模式、口碑营销、相对低水平的价位、随意更换系统等差异化的用户体验等都是小米手机取得成功的关键。若想获得长期竞争优势,小米手机还需要对其成本领先和差异化战略进行微调,以达到可持续的认可和发展。%The cost leadership strategy and differentiation strategy of millet mobile phone give play to the strength of millet science and technology,make the millet rapidly to the forefront in science and technology enterprises in a unique business model,its differentiation user experience such as Internet direct sales model,word of mouth marketing,relatively low price, random replacement system,etc is the key to success of millet mobile phone. To gain long-term competitive advantage,mil-let mobile phone also needed to fine -tune its cost leadership and differentiation strategy, in order to achieve sustainable recognition and development.

  2. Ecological longevity of Polaskia chende (Cactaceae) seeds in the soil seed bank, seedling emergence and survival.

    Science.gov (United States)

    Ordoñez-Salanueva, C A; Orozco-Segovia, A; Canales-Martínez, M; Seal, C E; Pritchard, H W; Flores-Ortiz, C M

    2017-11-01

    Soil seed banks are essential elements of plant population dynamics, enabling species to maintain genetic variability, withstand periods of adversity and persist over time, including for cactus species. However knowledge of the soil seed bank in cacti is scanty. In this study, over a 5-year period we studied the seed bank dynamics, seedling emergence and nurse plant facilitation of Polaskia chende, an endemic columnar cactus of central Mexico. P. chende seeds were collected for a wild population in Puebla, Mexico. Freshly collected seeds were sown at 25 °C and 12-h photoperiod under white light, far-red light and darkness. The collected seeds were divided in two lots, the first was stored in the laboratory and the second was use to bury seeds in open areas and beneath a shrub canopy. Seeds were exhumed periodically over 5 years. At the same time seeds were sown in open areas and beneath shrub canopies; seedling emergence and survival were recorded over different periods of time for 5 years. The species forms long-term persistent soil seed banks. The timing of seedling emergence via germination in the field was regulated by interaction between light, temperature and soil moisture. Seeds entered secondary dormancy at specific times according to the expression of environmental factors, demonstrating irregular dormancy cycling. Seedling survival of P. chende was improved under Acacia constricta nurse plants. Finally, plant facilitation affected the soil seed bank dynamics as it promoted the formation of a soil seed bank, but not its persistence. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  3. [Study on morphology, quality and germination characteristics of Acanthopanax trifoliatus seeds under different habitats].

    Science.gov (United States)

    Xiao, Juan

    2014-05-01

    To preliminary explore the difference of the morphological, quality and germinal characteristics of Acanthopanax trifoliatus seeds under different habitats. Collect the wild seeds from different habitats in West Mountain, and then observe their external appearances and internal structure, and test the thousand seeds weight,water content and seed vigor. What's more, the influence to germination rates of the seeds from different temperatures and light intensities in artificial bioclimatic chamber was studied. Orthogonal test in experimental plots was carried out to screen the different sowing dates, matrix types and soil depths which may influence germination rate. The external appearances and quality characteristics of wild seeds from three habitats were different. Seeds could germinate in the both light and dark, the germination rate of the habitat II was as high as 70.5% at the optimum temperature 20 degrees C in artificial bioclimatic chamber. The optimal combination A1, B1, C1 was screened out through orthogonal test, namely, the germination rate would be the highest when the seeds sowed in autumn covering with 2 cm depth of matrix type which component of the ratio of soil, sand and organic fertilizer was 6: 3: 1. There was significant difference in the morphology and germination rate of the three habitats seeds. The habitat II seeds were the optimal choice when culture seedling. The influences of different temperatures on germination rate were different, and the dried seeds should sow in current autumn, better than the next spring.

  4. Response of locally adapted pearl millet populations to s1 progeny ...

    African Journals Online (AJOL)

    In the semi-arid zones of Uganda, pearl millet (Pennisetum glaucum (L.) R. Br.) is mainly grown for food and income; but rust (Puccinia substriata var indica (L.) R. Br.) is the main foliar constraint lowering yield. The objective of the study was to genetically improve grain yield and rust resistance of two locally adapted ...

  5. Effect of urea treatment on the nutritive value of local sorghum and millet straw: a comparative study on growing performance of Djallonke rams

    Directory of Open Access Journals (Sweden)

    A.B. Kanwe

    2010-04-01

    Full Text Available Two tons of and chopped millet and sorghum straws have been treated with an urea solution at 5% (100 kg of straw, sprinkled with 50 lt. of solution. Treated straws were used as basic diet (900 g day associated to 100 g of cotton cake for 24 growing Djallonke rams in comparison to non treated straws. Four groups of animals were fed for 98 days with: urea treated sorghum (UTSS, not treated sorghum straw (NTSS, treated millet (UTMS, non treated millet straw (NTMS. Treated straws presented an increase of NDF of about 9%, of total nitrogen from 2 to 3 times while digestibility of dry matter increased respectively by 8,8% and 23,0% respectively in treated sorghum and millet. Also dry matter intake increased by 4,5% and 15,5% for treated sorghum and millet respectively compared to non treated. Mean weekly weight gain were significantly higher (P<0.05 for UTSS e UTMS compared to NTSS e NTMS. While the weekly weight gain, did not differed between UTSS vs. UTMS and NTSS vs. NTMS. At the end of the trial the UTSS and UTMS group presented a weight gain of about 40% and 38.7%, of their initial weight; while the gain for both NTSS and NTMS was respectively of 31.1% and 29.5%.

  6. New Genetic Insights into Pearl Millet Diversity As Revealed by Characterization of Early- and Late-Flowering Landraces from Senegal

    Directory of Open Access Journals (Sweden)

    Oumar Diack

    2017-05-01

    Full Text Available Pearl millet (Pennisetum glaucum (L. R. Br. is a staple food and a drought-tolerant cereal well adapted to Sub-Saharan Africa agro-ecosystems. An important diversity of pearl millet landraces has been widely conserved by farmers and therefore could help copping with climate changes and contribute to future food security. Hence, characterizing its genetic diversity and population structure can contribute to better assist breeding programs for a sustainable agricultural productivity enhancement. Toward this goal, a comprehensive panel of 404 accessions were used that correspond to 12 improved varieties, 306 early flowering and 86 late-flowering cultivated landraces from Senegal. Twelve highly polymorphic SSR markers were used to study diversity and population structure. Two genes, PgMADS11 and PgPHYC, were genotyped to assess their association to flowering phenotypic difference in landraces. Results indicate a large diversity and untapped potential of Senegalese pearl millet germplasm as well as a genetic differentiation between early- and late-flowering landraces. Further, a fine-scale genetic difference of PgPHYC and PgMADS11 (SNP and indel, respectively and co-variation of their alleles with flowering time were found among landraces. These findings highlight new genetic insights of pearl millet useful to define heterotic populations for breeding, genomic association panel, or crosses for trait-specific mapping.

  7. Immunomodulatory activity of purified arabinoxylans from finger millet (Eleusine coracana, v. Indaf 15) bran.

    Science.gov (United States)

    Savitha Prashanth, M R; Shruthi, R R; Muralikrishna, G

    2015-09-01

    Biological activities of alkali extracted (Barium hydroxide: BE-480 kDa, Potassium hydroxide: KE1-1080 and KE2-40 kDa), purified arabinoxylans (AX) from the finger millet bran varying in their molecular weight, phenolic acid content, arabinose to xylose ratios were evaluated for their immune-stimulatory activities using murine lymphocytes and peritoneal exudate macrophages. All three purified AX displayed significant (p 2 fold) and macrophage phagocytosis than KE1 and KE2. The above results clearly documented that the immunostimulatory activity of arabinoxylans is directly proportional to the amount of ferulic acid content (0.11 mg/100 g), whereas molecular weight as well as arabinose/xylose ratio, did not have any bearing. Purified AX from the finger millet bran can be explored as a potent natural immunomodulator.

  8. Elemental analysis of Anethum gravedlens, Sismbrium Irio Linn and Veronia Anthelmintica seeds by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Fatima, I.; Waheed, S.; Zaidi, J.H.

    2013-01-01

    Instrumental neutron activation analysis has been used to characterize As, Ba, Br, Ce, Cl, Co, Cr, Cs, Eu, Fe, Hg, K, Mn, Na, Rb, Sb, Se and Zn, and Sc in seeds of Anethum graveolens (Dill), Sisymbrium irio Linn. (Wild Mustard) and Vernonia anthelmintica (Iron Weed). Dill seed was found to contain high K while Wild Mustard has high Fe, Mn and Na levels. Iron Weed has highest Cl, Co, Cr and Zn content with least concentration of Fe. - Highlights: ► Elemental contents of three medicinal seeds have been analyzed using INAA. ► All three seeds contain K as major element with ample contents of Fe and Na. ► This baseline data that can be used in future research for medicinal preparations.

  9. Micronutrient density and stability in West African pearl millet – potential for biofortification

    DEFF Research Database (Denmark)

    Bürger, Anna; Jensen, Henning Høgh; Gondah, Jadah

    2014-01-01

    for Fe and Zn, indicate a high potential for biofortification of WCA pearl millet. However, screening of additional landraces or introgression of favorable alleles from highly nutrient dense Indian germplasm could expedite achievement of higher densities. Genotype-by environment interaction effects were...

  10. Increasing Selenium and Yellow Pigment Concentrations in Foxtail Millet (Setaria italica L.) Grain with Foliar Application of Selenite.

    Science.gov (United States)

    Ning, Na; Yuan, Xiang-Yang; Dong, Shu-Qi; Wen, Yin-Yuan; Gao, Zhen-Pan; Guo, Mei-Jun; Guo, Ping-Yi

    2016-03-01

    Although addition of selenium (Se) is known to increase Se in crops, it is unclear whether exogenous Se is linked to nutritional and functional components in foxtail millet (Setaria italica L.). In this study, we examined the potential of increasing Se and yellow pigment (YP) in foxtail millet grain by foliar application of Se. Field experiments were conducted during the growing season of foxtail millet in 2013 and 2014 to assess the effects of foliar spray of sodium selenite (10-210 g Se ha(-1)) on the yield, Se uptake and accumulation, total YP, and microminerals in the grain. Average grain yields with Se application were 5.60 and 4.53 t ha(-1) in the 2 years, showing no significant differences from the unfertilized control. However, grain Se concentration increased linearly with Se application rate, by 8.92 and 6.09 μg kg(-1) in the 2 years with application of 1 g Se ha(-1) (maximum grain recovery rates of Se fertilizer, 52 and 28 %). Likewise, total grain YP concentration markedly increased by 0.038 and 0.031 mg kg(-1) in the 2 years with application of 1 g Se ha(-1). Grain Mn, Cu, Fe, and Zn concentrations were not significantly affected by Se application. This study indicated that foliar application of Se effectively and reliably increased the concentrations of Se and YP in foxtail millet grain without affecting the yield or mineral micronutrient concentrations. Thus, foliar-applied selenite has a significant potential to increase the concentrations of selenium and YP (putative lutein (Shen, J Cereal Sci 61:86-93, 2015; Abdel-Aal, Cereal Chem 79:455-457, 2002; Abdel-Aal, J Agric Food Chem 55:787-794, 2007)) of foxtail millet and, thus, the health benefits of this crop.

  11. Assessment of aflatoxigenicAspergillusand other fungi in millet and sesame from Plateau State, Nigeria

    DEFF Research Database (Denmark)

    Ezekiel, C.N.; Udom, I.E.; Frisvad, Jens Christian

    2014-01-01

    . Diverse moulds includingAlternaria,Aspergillus,Cercospora,Fusarium,Mucor,Penicillium,RhizopusandTrichodermawere isolated.Aspergilluswas predominantly present in both crops (46–48%), and amongst the potentially aflatoxigenicAspergillusspecies,A. flavusrecorded the highest incidence (68% in fonio millet; 86...

  12. Effect of malt pretreatment and fermentation on anti-nutritional factors and mineral bioavailability of pearl millet (Pennisetum glaucum L.)

    International Nuclear Information System (INIS)

    Abdelrahman, S. M.

    2004-11-01

    HCl extractability (extractabilities were more than doubled). Phytate content was reduced by 64.4 and 66.6% for Ashana and Dembi, respectively. An increase in polyphenols content of the fermented flour was noticed for both cultivar towards the end of fermentation. Fermentation with 5% malt addition showed significant (P<0.01) enhancement of the HCl-extractability of minerals compared to fermentation alone. Also, phytic acid was significantly reduced by 70.4% and 76.0% for Ashana and Dembi, respectively. Polyphenol showed an increase in content after 14 h of fermentation. Fermentation with malt is a potential process for decreasing the anti nutrient levels and enhancing mineral bioavailability which is attributed to phytase activity inherent in pearl millet seeds. (Author)

  13. Consumo e valor nutritivo de alimentos utilizados para Bicudo-verdadeiro (“Sporophila maximiliani” Consumption and nutritive value of feedstuffs used for great-billed seed finch (“Sporophila maximiliani”

    Directory of Open Access Journals (Sweden)

    Elis Regina de Moraes Garcia

    2011-09-01

    Full Text Available Foi conduzido um estudo para determinar o consumo e o valor nutritivo do alpiste comum (Phalaris Canariensis L., arroz (Oryza Sativa L., painço verde (Panicum Miliaceum L. e capim-arroz (Echinochloa Spp para Bicudo-verdadeiro (Sporophila maximiliani. Foram utilizadas 24 fêmeas adultas com idade média de dois anos, distribuídas em um delineamento inteiramente ao acaso, com quatro tratamentos, três repetições e duas aves por unidade experimental. Foi utilizado o método de coleta total de excretas para determinar os coeficientes de metabolização aparente da matéria seca, proteína e energia, assim como os valores de energia metabolizável aparente e corrigida para o balanço de nitrogênio. Não houve diferença nos consumos, com média de 3,55±0,11 gramas de alimento/ave/dia. O arroz apresentou os melhores valores para os coeficientes de metabolização da matéria seca (90,57% e da energia (90,55%. Os coeficientes de metabolização da proteína não diferiram entre os alimentos. Os melhores valores de energia metabolizável foram obtidos para o alpiste (3.612kcal/EM kg e o capim-arroz (3.509kcal/EM kg.An experiment was carried out to determinate the nutritive value and consumption of canary grass (Phalaris canariensis L., rice (Oryza sativa L., proso millet (Panicum miliaceum L. and barnyard grass (Echinochloa spp for the Great-billed Seed Finch (Sporophila maximiliani. Twenty four adult females averaging two years of age were assigned to a completely randomized design with four treatments, three replicates and two birds per pen. Fecal output was used to determine dry matter, protein and energy metabolizable coefficients, and also the values of apparent metabolizable energy and corrected by nitrogen. No differences were observed in consumption, with 3.55±0.11g of feedstuff/birds/day. Rice provided the best values for metabolization coefficients of dry matter (90.57% and energy (90.55%. No differences were observed for protein

  14. 12-Oxo-Phytodienoic Acid Accumulation during Seed Development Represses Seed Germination in Arabidopsis[C][W][OA

    Science.gov (United States)

    Dave, Anuja; Hernández, M. Luisa; He, Zhesi; Andriotis, Vasilios M.E.; Vaistij, Fabián E.; Larson, Tony R.; Graham, Ian A.

    2011-01-01

    Arabidopsis thaliana COMATOSE (CTS) encodes an ABC transporter involved in peroxisomal import of substrates for β-oxidation. Various cts alleles and mutants disrupted in steps of peroxisomal β-oxidation have previously been reported to exhibit a severe block on seed germination. Oxylipin analysis on cts, acyl CoA oxidase1 acyl CoA oxidase2 (acx1 acx2), and keto acyl thiolase2 dry seeds revealed that they contain elevated levels of 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), and JA-Ile. Oxylipin and transcriptomic analysis showed that accumulation of these oxylipins occurs during late seed maturation in cts. Analysis of double mutants generated by crossing cts with mutants in the JA biosynthesis pathway indicate that OPDA, rather than JA or JA-Ile, contributes to the block on germination in cts seeds. We found that OPDA was more effective at inhibiting wild-type germination than was JA and that this effect was independent of CORONATINE INSENSITIVE1 but was synergistic with abscisic acid (ABA). Consistent with this, OPDA treatment increased ABA INSENSITIVE5 protein abundance in a manner that parallels the inhibitory effect of OPDA and OPDA+ABA on seed germination. These results demonstrate that OPDA acts along with ABA to regulate seed germination in Arabidopsis. PMID:21335376

  15. Good year, bad year: changing strategies, changing networks? A two-year study on seed acquisition in northern Cameroon

    Directory of Open Access Journals (Sweden)

    Chloé Violon

    2016-06-01

    Full Text Available Analysis of seed exchange networks at a single point in time may reify sporadic relations into apparently fixed and long-lasting ones. In northern Cameroon, where environment is not only strongly seasonal but also shows unpredictable interannual variation, farmers' social networks are flexible from year to year. When adjusting their strategies, Tupuri farmers do not systematically solicit the same partners to acquire the desired propagules. Seed acquisitions documented during a single cropping season may thus not accurately reflect the underlying larger social network that can be mobilized at the local level. To test this hypothesis, we documented, at the outset of two cropping seasons (2010 and 2011, the relationships through which seeds were acquired by the members of 16 households in a Tupuri community. In 2011, farmers faced sudden failure of the rains and had to solicit distant relatives, highlighting their ability to quickly trigger specific social relations to acquire necessary seeding material. Observing the same set of individuals during two successive years and the seed sources they solicited in each year enabled us to discriminate repeated relations from sporadic ones. Although farmers did not acquire seeds from the same individuals from one year to the next, they relied on quite similar relational categories of people. However, the worse weather conditions during the second year led to (1 a shift from red sorghum seeds to pearl millet seeds, (2 a geographical extension of the network, and (3 an increased participation of women in seed acquisitions. In critical situations, women mobilized their own kin almost exclusively. We suggest that studying the seed acquisition network over a single year provides a misrepresentation of the underlying social network. Depending on the difficulties farmers face, they may occasionally call on relationships that transcend the local relationships used each year.

  16. Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Frey, Anne; Godin, Béatrice; Bonnet, Magda; Sotta, Bruno; Marion-Poll, Annie

    2004-04-01

    The role of maternally derived abscisic acid (ABA) during seed development has been studied using ABA-deficient mutants of Nicotiana plumbaginifolia Viviani. ABA deficiency induced seed abortion, resulting in reduced seed yield, and delayed growth of the remaining embryos. Mutant grafting onto wild-type stocks and reciprocal crosses indicated that maternal ABA, synthesized in maternal vegetative tissues and translocated to the seed, promoted early seed development and growth. Moreover ABA deficiency delayed both seed coat pigmentation and capsule dehiscence. Mutant grafting did not restore these phenotypes, indicating that ABA synthesized in the seed coat and capsule envelope may have a positive effect on capsule and testa maturation. Together these results shed light on the positive role of maternal ABA during N. plumbaginifolia seed development.

  17. Procyanidins from wild grape (Vitis amurensis) seeds regulate ARE-mediated enzyme expression via Nrf2 coupled with p38 and PI3K/Akt pathway in HepG2 cells.

    Science.gov (United States)

    Bak, Min-Ji; Jun, Mira; Jeong, Woo-Sik

    2012-01-01

    Procyanidins, polymers of flavan-3-ol units, have been reported to exhibit many beneficial health effects such as antioxidant and anti-carcinogenic effects. In this study, we investigated the cancer chemopreventive properties of procyanidins from wild grape (Vitis amurensis) seeds in particular their roles in inducing phase II detoxifying/antioxidant enzymes as well as in modulating the upstream kinases. Ethanolic extract of V. amurensis seeds was fractionated with a series of organic solvents and finally separated into six fractions, F1-F6. Chemical properties of the procyanidins were analyzed by vanillin assay, BuOH-HCl test, and depolymerization with phloroglucinol followed by LC/MS analysis. The F5 had the highest procyanidin content among all the fractions and strongly induced the reporter activity of antioxidant response element as well as the protein expression of nuclear factor E2-related factor (Nrf2) in HepG2 human hepatocarcinoma cells. The procyanidin-rich F5 also strongly induced the expression of the phase II detoxifying and antioxidant enzymes such as NAD(P)H:quinone oxidoreductase1 and hemeoxygenase1. Phosphorylations of the upstream kinases such as MAPKs and PI3K/Akt were significantly increased by treatment with procyanidin fraction. In addition, the procyanidin-mediated Nrf2 expression was partly attenuated by PI3K inhibitor LY294002, and almost completely by p38 inhibitor SB202190, but neither by JNK inhibitor SP600125 nor by MEK1/2 inhibitor U0126. Taken together, the procyanidins from wild grape seeds could be used as a potential natural chemopreventive agent through Nrf2/ARE-mediated phase II detoxifying/antioxidant enzymes induction via p38 and PI3K/Akt pathway.

  18. Saraca asoca (Roxb.) de Wilde Syn. Saraca indica L. (English ...

    Indian Academy of Sciences (India)

    Saraca asoca (Roxb.) de Wilde Syn. Saraca indica L. (English: Ashoka; Hindi: Asok) ofCaesalpilliaceae is a medium sized extremely ornamental evergreen tree with numerous spreading and drooping branches, compound leaves and orange-yellow flowers in clusters. Fruits are black, leathery pods with compressed seeds.

  19. Understanding the cone scale in Cupressaceae: insights from seed-cone teratology in Glyptostrobus pensilis.

    Science.gov (United States)

    Dörken, Veit Martin; Rudall, Paula J

    2018-01-01

    Both wild-type and teratological seed cones are described in the monoecious conifer Glyptostrobus pensilis and compared with those of other Cupressaceae sensu lato and other conifers. Some Cupressaceae apparently possess a proliferation of axillary structures in their cone scales. In our interpretation, in Glyptostrobus each bract of both typical and atypical seed cones bears two descending accessory shoots, interpreted here as seed scales (ovuliferous scales). The primary seed scale is fertile and forms the ovules, the second is sterile and forms characteristic tooth-like structures. The bract and the two axillary seed scales are each supplied with a single distinct vascular bundle that enters the cone axis as a separate strand; this vasculature also characterises the descending accessory short shoots in the vegetative parts of the crown. In wild-type seed cones, the fertile seed scale is reduced to its ovules, and the ovules are always axillary. In contrast, the ovules of some of the teratological seed cones examined were located at the centre of the cone scale. An additional tissue found on the upper surface of the sterile lower seed scale is here interpreted as the axis of the fertile seed scale. Thus, the central position of the ovules can be explained by recaulescent fusion of the upper fertile and lower sterile seed scales. In several teratological cone scales, the ovules were enveloped by an additional sterile tissue that is uniseriate and represents an epidermal outgrowth of the fertile seed scale. Close to the ovules, the epidermis was detached from lower tissue and surrounded the ovule completely, except at the micropyle. These teratological features are potentially significant in understanding seed-cone homologies among extant conifers.

  20. Sequence-based novel genomic microsatellite markers for robust genotyping purposes in foxtail millet [Setaria italica (L.) P. Beauv].

    Science.gov (United States)

    Gupta, Sarika; Kumari, Kajal; Sahu, Pranav Pankaj; Vidapu, Sudhakar; Prasad, Manoj

    2012-02-01

    The unavailability of microsatellite markers and saturated genetic linkage map has restricted the genetic improvement of foxtail millet [Setaria italica (L.) P. Beauv.], despite the fact that in recent times it has been documented as a new model species for biofuel grasses. With the objective to generate a good number of microsatellite markers in foxtail millet cultivar 'Prasad', 690 clones were sequenced which generated 112.95 kb high quality sequences obtained from three genomic libraries each enriched with different microsatellite repeat motifs. Microsatellites were identified in 512 (74.2%) of the 690 positive clones and 172 primer pairs (pp) were successfully designed from 249 (48.6%) unique SSR-containing clones. The efficacies of the microsatellite containing genomic sequences were established by superior primer designing ability (69%), PCR amplification efficiency (85.5%) and polymorphic potential (52%) in the parents of F(2) mapping population. Out of 172 pp, functional 147 markers showed high level of cross-species amplification (~74%) in six grass species. Higher polymorphism rate and broad range of genetic diversity (0.30-0.69 averaging 0.58) obtained in constructed phylogenetic tree using 52 microsatellite markers, demonstrated the utility of markers in germplasm characterizations. In silico comparative mapping of 147 foxtail millet microsatellite containing sequences against the mapping data of sorghum (~18%), maize (~16%) and rice (~5%) indicated the presence of orthologous sequences of the foxtail millet in the respective species. The result thus demonstrates the applicability of microsatellite markers in various genotyping applications, determining phylogenetic relationships and comparative mapping in several important grass species.

  1. Performance of cowpea (Vigna unguiculata) and pearl millet (Pennisetum glaucum) intercropped under Parkia biglobosa in an agroforestry system in Burkina Faso

    DEFF Research Database (Denmark)

    Osman, Ahmed Nur; Ræbild, Anders; Christiansen, Jørgen Lindskrog

    2011-01-01

    In agroforestry systems, crop yields under trees are often low compared to outside. This study explored crop management under trees for improved production and income for farmers. Cowpea (Vigna unguiculata) and pearl millet (Pennisetum glaucum) sole and intercrops were grown under and outside...... the trees and intercrops flowered earlier than sole crops. Cowpea sole crops had significant grain yield losses of up to 21% under trees compared to outside, and pearl millet yield was reduced up to 67% under trees. Intercrop yields were less affected by growth under trees. LER was significantly higher...... under the trees than outside, and were always larger than unity indicating benefits of intercropping over sole cropping. Intercropping with two rows of cowpea and one row of millet gave significantly higher economic benefit than mixture with one row of each of the crops. Results indicate...

  2. Some aspects of the Seed Germination and Seedling Growth of two Savanna tree Species

    Directory of Open Access Journals (Sweden)

    D.A. Agboola

    2014-10-01

    Full Text Available Studies were made on some aspects of the seed germination and seedling growth of two multipurpose trees. These include the effect of pre sowing treatments, seed sizes and gibberellic acid on the germination of seeds and seedling growth. The tree species include Prosopis africana (Guil & Perr Taub and Dialium guineense (wild. Two seed sizes designated small- size (Ss and Big-size (Bs were identified in the seed. The effect of gibberellic acid (GA3 had a greater significance effect (P < 0.05 on seed germination of both D. guineense and P. africana seeds. The big size seeds had a significant effect (P < 0.05 on the seed germination when compared to the small size seeds. The hydration/dehydration, pre sowing treatments on the seeds did not have any significant effects on germination.

  3. Early growth performances of various seed sources of black (Prunus ...

    African Journals Online (AJOL)

    Early growth performances of various seed sources of black (Prunus serotina Erhr.) and wild cherry ( Prunus avium L.) seedlings on low and high elevation sites in the western Black Sea Region of Turkey.

  4. Using publicly available data to quantify plant–pollinator interactions and evaluate conservation seeding mixes in the Northern Great Plains

    Science.gov (United States)

    Otto, Clint R.; O'Dell, Samuel; Bryant, R. B.; Euliss, Ned H. Jr.; Bush, Rachel; Smart, Matthew

    2017-01-01

    Concern over declining pollinators has led to multiple conservation initiatives for improving forage for bees in agroecosystems. Using data available through the Pollinator Library (npwrc.usgs.gov/pollinator/), we summarize plant–pollinator interaction data collected from 2012–2015 on lands managed by the U.S. Fish and Wildlife Service and private lands enrolled in U.S. Department of Agriculture conservation programs in eastern North Dakota (ND). Furthermore, we demonstrate how plant–pollinator interaction data from the Pollinator Library and seed cost information can be used to evaluate hypothetical seeding mixes for pollinator habitat enhancements. We summarize records of 314 wild bee and 849 honey bee (Apis mellifera L.) interactions detected on 63 different plant species. The wild bee observations consisted of 46 species, 15 genera, and 5 families. Over 54% of all wild bee observations were represented by three genera―Bombus, Lassioglossum, and Melissodes. The most commonly visited forbs by wild bees were Monarda fistulosa, Sonchus arvensis, and Zizia aurea. The most commonly visited forbs by A. mellifera were Cirsium arvense, Melilotus officinalis, and Medicago sativa. Among all interactions, 13% of A. mellifera and 77% of wild bee observations were made on plants native to ND. Our seed mix evaluation shows that mixes may often need to be tailored to meet the unique needs of wild bees and managed honey bees in agricultural landscapes. Our evaluation also demonstrates the importance of incorporating both biologic and economic information when attempting to design cost-effective seeding mixes for supporting pollinators in a critically important part of the United States.

  5. Ruptures scolaires. L'école à l'épreuve de la question sociale de Mathias Millet et Daniel Thin

    OpenAIRE

    Yvorel, Jean-Jacques

    2006-01-01

    Mathias Millet, Daniel Thin Ruptures scolaires. L'école à l'épreuve de la question sociale Paris, puf, 2005, 318 pages. 25 € L'ouvrage que nous proposent Mathias Millet et Daniel Thin repose sur l'étude intensive (terme utilisé par les auteurs) d'une vingtaine de situations de rupture scolaire. Par étude intensive, il faut entendre une méthode d'investigation qui confronte les discours et les informations disponibles sur le parcours d'un individu en incluant le discours « autobiographique ». ...

  6. Seed-specific elevation of non-symbiotic hemoglobin AtHb1: beneficial effects and underlying molecular networks in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Tschiersch Henning

    2011-03-01

    Full Text Available Abstract Background Seed metabolism is dynamically adjusted to oxygen availability. Processes underlying this auto-regulatory mechanism control the metabolic efficiency under changing environmental conditions/stress and thus, are of relevance for biotechnology. Non-symbiotic hemoglobins have been shown to be involved in scavenging of nitric oxide (NO molecules, which play a key role in oxygen sensing/balancing in plants and animals. Steady state levels of NO are suggested to act as an integrator of energy and carbon metabolism and subsequently, influence energy-demanding growth processes in plants. Results We aimed to manipulate oxygen stress perception in Arabidopsis seeds by overexpression of the non-symbiotic hemoglobin AtHb1 under the control of the seed-specific LeB4 promoter. Seeds of transgenic AtHb1 plants did not accumulate NO under transient hypoxic stress treatment, showed higher respiratory activity and energy status compared to the wild type. Global transcript profiling of seeds/siliques from wild type and transgenic plants under transient hypoxic and standard conditions using Affymetrix ATH1 chips revealed a rearrangement of transcriptional networks by AtHb1 overexpression under non-stress conditions, which included the induction of transcripts related to ABA synthesis and signaling, receptor-like kinase- and MAP kinase-mediated signaling pathways, WRKY transcription factors and ROS metabolism. Overexpression of AtHb1 shifted seed metabolism to an energy-saving mode with the most prominent alterations occurring in cell wall metabolism. In combination with metabolite and physiological measurements, these data demonstrate that AtHb1 overexpression improves oxidative stress tolerance compared to the wild type where a strong transcriptional and metabolic reconfiguration was observed in the hypoxic response. Conclusions AtHb1 overexpression mediates a pre-adaptation to hypoxic stress. Under transient stress conditions transgenic seeds

  7. Foxtail millet NF-Y families: genome-wide survey and evolution analyses identified two functional genes important in abiotic stresses

    Directory of Open Access Journals (Sweden)

    Zhi-Juan eFeng

    2015-12-01

    Full Text Available It was reported that Nuclear Factor Y (NF-Y genes were involved in abiotic stress in plants. Foxtail millet (Setaria italica, an elite stress tolerant crop, provided an impetus for the investigation of the NF-Y families in abiotic responses. In the present study, a total of 39 NF-Y genes were identified in foxtail millet. Synteny analyses suggested that foxtail millet NF-Y genes had experienced rapid expansion and strong purifying selection during the process of plant evolution. De novo transcriptome assembly of foxtail millet revealed 11 drought up-regulated NF-Y genes. SiNF-YA1 and SiNF-YB8 were highly activated in leaves and/or roots by drought and salt stresses. Abscisic acid (ABA and H2O2 played positive roles in the induction of SiNF-YA1 and SiNF-YB8 under stress treatments. Transient luciferase (LUC expression assays revealed that SiNF-YA1 and SiNF-YB8 could activate the LUC gene driven by the tobacco (Nicotiana tobacam NtERD10, NtLEA5, NtCAT, NtSOD or NtPOD promoter under normal or stress conditions. Overexpression of SiNF-YA1 enhanced drought and salt tolerance by activating stress-related genes NtERD10 and NtCAT1 and by maintaining relatively stable relative water content (RWC and contents of chlorophyll, superoxide dismutase (SOD, peroxidase (POD, catalase (CAT and malondialdehyde (MDA in transgenic lines under stresses. SiNF-YB8 regulated expression of NtSOD, NtPOD, NtLEA5 and NtERD10 and conferred relatively high RWC and chlorophyll contents and low MDA content, resulting in drought and osmotic tolerance in transgenic lines under stresses. Therefore, SiNF-YA1 and SiNF-YB8 could activate stress-related genes and improve physiological traits, resulting in tolerance to abiotic stresses in plants. All these results will facilitate functional characterization of foxtail millet NF-Ys in future studies.

  8. Optimization of the malting process for nutritional improvement of finger millet and amaranth flours in the infant weaning food industry.

    Science.gov (United States)

    Najdi Hejazi, Sara; Orsat, Valérie

    2017-06-01

    Malting is a beneficial approach to improve the nutritional value of cereals used in infant preparations. Malted finger millet and amaranth might be considered as potentially appropriate gluten-free alternatives for common wheat-based weaning products, especially in case of those suffering from celiac disease. In this study, the effects of germination temperature and duration on the main nutrients of malted finger millet and amaranth, are evaluated and optimized. Grains were germinated for 24, 36 and 48 h at 22, 26 and 30 °C. In the case of finger millet, germinating for 48 h at 30 °C resulted into 17% increase in protein availability, 10% increase in total energy and 60% reduction in resistant starch (RS). For amaranth, germinating for 48 h at 26 °C was preferable, resulting in 8% increase in protein availability, 11% increase in total energy, 70% reduction in RS and a 10% increase in the linoleic acid.

  9. Screening of Pearl Millet F1 Hybrids for Heat Tolerance at Early Seedling Stage

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Yadav

    2014-01-01

    Full Text Available Ten pearl millet genotypes selected on the basis of response to supra-optimal temperature tolerance were crossed in a half-diallel mating system. The 45 F1 hybrids produced were tested along with parents for heat tolerance and related traits at seedling stage. Field screening and laboratory screening techniques were simultaneously used for the evaluation of F1 hybrids and their parents. Heat tolerance was measured as seedling thermotolerance index (STI and seed to seedling thermotolerance index (SSTI under field conditions, but membrane thermostability (MTS in the laboratory. The hybrid H77/29-2 × CVJ-2-5-3-1-3 showed highest STI value followed by H77/833-2 × 96AC-93. The genotype H77/833-2 × 96AC-93 had the highest worth for SSTI. These three indices were highly correlated among themselves. STI values were invariably high, whereas SSTI has lower values, as it also covers the effect of under soil mortality (USM. It was seen that the heat tolerance indices STI and SSTI were not showing any perceptible pooled correlation with developmental traits except germination and emergence rate. Based on our results, it could be suggested that membrane thermostability (MTS may be used for screening large number of genotypes. Field based indices STI and SSTI may be used for evaluation of hybrids and varieties before they are released.

  10. Phenotypic characterization of Ethiopian finger millet accessions (Eleusine coracana (L. Gaertn, for their agronomically important traits

    Directory of Open Access Journals (Sweden)

    Tesfaye Kassahun

    2017-12-01

    Full Text Available Cereal finger millet (Eleusine coracana (L. Gaertn is one of the most promising vital crops of Asia and Africa in the face of climate change. It has a capacity to adapt to extreme environmental conditions and can be grown under a wide range of wider agroecology. It is believed to be originated in the highlands of Ethiopia and then disseminated across the globe. It is mainly cultivated as dietary staple food for humans, animal feeds and also used as medicinal crop. Though finger millet is recognized as the most important staple crop, particularly for the poor people in dry and semidry areas, it has been neglected and given little concern in mainstreaming the crop for its improvement research.

  11. Transfer factors of radionuclides 137Cs and 65Zn from soil to pearl millet and sorghum

    International Nuclear Information System (INIS)

    Sachdev, P.; Sachdev, M.S.; Deb, D.L.

    1996-01-01

    The soil to plant transfer factors (TF) of 137 Cs and 65 Zn were determined for two crops, sorghum and pearl millet, under irrigated conditions in greenhouse and under rain fed conditions in field. In the greenhouse experiment, the accumulation of 137 Cs was almost doubled when the soil contamination level was doubled. Under field conditions, 137 Cs concentration in both pearl millet and sorghum grains as well as straw was nearly four times more at 148 kBq Kg -1 level of soil contamination as compared to lower level of 74 kBq kg -1 soil. The TF values for 65 Zn determined under greenhouse conditions for both the crops were nearly a hundred-fold higher as compared to 137 Cs. (author). 7 refs., 2 tabs

  12. Designing Autonomy: Opportunities for New Wildness in the Anthropocene.

    Science.gov (United States)

    Cantrell, Bradley; Martin, Laura J; Ellis, Erle C

    2017-03-01

    Maintaining wild places increasingly involves intensive human interventions. Several recent projects use semi-automated mediating technologies to enact conservation and restoration actions, including re-seeding and invasive species eradication. Could a deep-learning system sustain the autonomy of nonhuman ecological processes at designated sites without direct human interventions? We explore here the prospects for automated curation of wild places, as well as the technical and ethical questions that such co-creation poses for ecologists, conservationists, and designers. Our goal is to foster innovative approaches to creating and maintaining the autonomy of evolving ecological systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Salvia macrosiphon seeds and seed oil: pharmacognostic, anti-inflammatory and analgesic properties

    Directory of Open Access Journals (Sweden)

    A. Hamedi

    2016-10-01

    Full Text Available Background and objectives:Wild Sage(Salvia macrosiphon Boiss. known as “Marvak” in Persian is one of the polymorphic and abundant plants of Lamiaceae. The plants whole seeds usually soaked or boiled in hot water are widely used for inflammatory ailments in folk medicine. Documents have shown that there is scant information on the chemical constituents of this plant seeds. The current study was carried out to assess the phytochemical constituents of Salvia macrosiphon seeds as well as anti-inflammatory activities. Methods: The seed oil extracted via a Soxhlet extractor was subjected to pharmacognostic assays using High Performance Thin Layer Chromatography (HPTLC, Gas chromatography/mass spectrometry (GC/MS analysis of fatty acids and sterols as well as evaluation of the possible anti-inflammatory activities in rats. Results: Total ash, acid insoluble and water soluble ash values were determined as 51.67±7.53, 10.00±0.02 and 30.01±5.01 mg/g, respectively. HPTLC assessment revealed the presence of different steroids, triterpenes and fatty acids. Amount of sterols in oil was found 2.44, 24.92 and 4.60 mg/g for esterified β-sitosterol, free β-sitosterol and free stigmasterol, respectively. The α-linolenic acid (77.69±6.10% was the principal fatty acid. Regarding the anti-inflammatory activity, the seed oil showed low activity in the early phase of formalin test; however, could not significantly inhibit the neutrophil-induced damage by reducing MPO activity in the paws of the rat. Conclusion: The seed oil did not exhibit satisfactory effects on acute inflammation in this study but considering the rich phytosterols content, the seed and its oil can be introduced as useful dietary supplements.

  14. Understanding the cone scale in Cupressaceae: insights from seed-cone teratology in Glyptostrobus pensilis

    Directory of Open Access Journals (Sweden)

    Veit Martin Dörken

    2018-06-01

    Full Text Available Both wild-type and teratological seed cones are described in the monoecious conifer Glyptostrobus pensilis and compared with those of other Cupressaceae sensu lato and other conifers. Some Cupressaceae apparently possess a proliferation of axillary structures in their cone scales. In our interpretation, in Glyptostrobus each bract of both typical and atypical seed cones bears two descending accessory shoots, interpreted here as seed scales (ovuliferous scales. The primary seed scale is fertile and forms the ovules, the second is sterile and forms characteristic tooth-like structures. The bract and the two axillary seed scales are each supplied with a single distinct vascular bundle that enters the cone axis as a separate strand; this vasculature also characterises the descending accessory short shoots in the vegetative parts of the crown. In wild-type seed cones, the fertile seed scale is reduced to its ovules, and the ovules are always axillary. In contrast, the ovules of some of the teratological seed cones examined were located at the centre of the cone scale. An additional tissue found on the upper surface of the sterile lower seed scale is here interpreted as the axis of the fertile seed scale. Thus, the central position of the ovules can be explained by recaulescent fusion of the upper fertile and lower sterile seed scales. In several teratological cone scales, the ovules were enveloped by an additional sterile tissue that is uniseriate and represents an epidermal outgrowth of the fertile seed scale. Close to the ovules, the epidermis was detached from lower tissue and surrounded the ovule completely, except at the micropyle. These teratological features are potentially significant in understanding seed-cone homologies among extant conifers.

  15. Development and evaluation of nutritional, sensory and glycemic properties of finger millet (Eleusine coracana L.) based food products.

    Science.gov (United States)

    Shobana, Shanmugam; Selvi, Ravi Poovizhi; Kavitha, Vasudevan; Gayathri, Nagamuthu; Geetha, Gunasekaran; Gayathri, Rajagopal; Vijayalakshmi, Parthasarthy; Balasubramaniam, K Kandappa Gounder; Ruchi, Vaidya; Sudha, Vasudevan; Anjana, Ranjit Mohan; Unnikrishnan, Ranjit; Malleshi, Nagappa Gurusiddappa; Henry, C Jk; Krishnaswamy, Kamala; Mohan, Viswanathan

    2018-01-01

    Finger millet (Eleusine coracana L.) (FM) is rich in dietary fibre and is therefore expected to elicit a lower glycemic response compared to other grains. However, there is little data on the glycemic properties of FM-based products. We evaluated the nutritional, sensory and glycemic properties of decorticated millet with lower polish (DFM-LDP), flakes (FMF), vermicelli (FMV) and extruded snack (FMES) (both FMV and FMES with 7-8% added soluble fibre). The nutrient contents of the FM products were evaluated by standard AOAC (Association of Official Analytical Chemists) and AACC (American Association of Cereal Chemists) methods. Sensory evaluation was conducted monadically using a 9-point hedonic scale using untrained panel members. GI testing was conducted using a standardized validated protocol. The study was conducted according to the guidelines laid down by the Declaration of Helsinki, and was approved by the Ethics Committee of the Madras Diabetes Research Foundation. The products had dietary fibre (DF) content between 5.8-15.6 g%. FMES was unique in having a very low fat content (0.17%). Evaluation of sensory perception revealed moderate acceptance of millet based products. The glycemic indices (GI) (mean±SEM) of the products were 84.7±7.7%, 82.3±6.4%, 65.5±5.1% and 65.0±6.6% for DFM-LDP, FMF, FMV and FMES respectively. DFM-LDP and FMF (purely finger millet based products) elicited higher glycemic responses. Comparatively, FMV and FMES (with added functional ingredients) exhibited medium GI values and, are healthier dietary options. It is possible to prepare FM products with lower GI by utilizing functional ingredients.

  16. Timing is everything: early degradation of abscission layer is associated with increased seed shattering in U.S. weedy rice

    Directory of Open Access Journals (Sweden)

    Hepler Peter K

    2011-01-01

    Full Text Available Abstract Background Seed shattering, or shedding, is an important fitness trait for wild and weedy grasses. U.S. weedy rice (Oryza sativa is a highly shattering weed, thought to have evolved from non-shattering cultivated ancestors. All U.S. weedy rice individuals examined to date contain a mutation in the sh4 locus associated with loss of shattering during rice domestication. Weedy individuals also share the shattering trait with wild rice, but not the ancestral shattering mutation at sh4; thus, how weedy rice reacquired the shattering phenotype is unknown. To establish the morphological basis of the parallel evolution of seed shattering in weedy rice and wild, we examined the abscission layer at the flower-pedicel junction in weedy individuals in comparison with wild and cultivated relatives. Results Consistent with previous work, shattering wild rice individuals possess clear, defined abscission layers at flowering, whereas non-shattering cultivated rice individuals do not. Shattering weedy rice from two separately evolved populations in the U.S. (SH and BHA show patterns of abscission layer formation and degradation distinct from wild rice. Prior to flowering, the abscission layer has formed in all weedy individuals and by flowering it is already degrading. In contrast, wild O. rufipogon abscission layers have been shown not to degrade until after flowering has occurred. Conclusions Seed shattering in weedy rice involves the formation and degradation of an abscission layer in the flower-pedicel junction, as in wild Oryza, but is a developmentally different process from shattering in wild rice. Weedy rice abscission layers appear to break down earlier than wild abscission layers. The timing of weedy abscission layer degradation suggests that unidentified regulatory genes may play a critical role in the reacquisition of shattering in weedy rice, and sheds light on the morphological basis of parallel evolution for shattering in weedy and wild

  17. Procyanidins from Wild Grape (Vitis amurensis Seeds Regulate ARE-Mediated Enzyme Expression via Nrf2 Coupled with p38 and PI3K/Akt Pathway in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Woo-Sik Jeong

    2012-01-01

    Full Text Available Procyanidins, polymers of flavan-3-ol units, have been reported to exhibit many beneficial health effects such as antioxidant and anti-carcinogenic effects. In this study, we investigated the cancer chemopreventive properties of procyanidins from wild grape (Vitis amurensis seeds in particular their roles in inducing phase II detoxifying/antioxidant enzymes as well as in modulating the upstream kinases. Ethanolic extract of V. amurensis seeds was fractionated with a series of organic solvents and finally separated into six fractions, F1–F6. Chemical properties of the procyanidins were analyzed by vanillin assay, BuOH-HCl test, and depolymerization with phloroglucinol followed by LC/MS analysis. The F5 had the highest procyanidin content among all the fractions and strongly induced the reporter activity of antioxidant response element as well as the protein expression of nuclear factor E2-related factor (Nrf2 in HepG2 human hepatocarcinoma cells. The procyanidin-rich F5 also strongly induced the expression of the phase II detoxifying and antioxidant enzymes such as NAD(PH:quinone oxidoreductase1 and hemeoxygenase1. Phosphorylations of the upstream kinases such as MAPKs and PI3K/Akt were significantly increased by treatment with procyanidin fraction. In addition, the procyanidin-mediated Nrf2 expression was partly attenuated by PI3K inhibitor LY294002, and almost completely by p38 inhibitor SB202190, but neither by JNK inhibitor SP600125 nor by MEK1/2 inhibitor U0126. Taken together, the procyanidins from wild grape seeds could be used as a potential natural chemopreventive agent through Nrf2/ARE-mediated phase II detoxifying/antioxidant enzymes induction via p38 and PI3K/Akt pathway.

  18. Constitutive expression of feedback-insensitive cystathionine γ-synthase increases methionine levels in soybean leaves and seeds

    Institute of Scientific and Technical Information of China (English)

    YU Yang; HOU Wen-sheng; YaeI Hacham; SUN Shi; WU Cun-xiang; Ifat Matityahu; SONG Shikui; RacheI Amir; HAN Tian-fu

    2018-01-01

    Soybean (Glycine max (L.) Merr.) is a major crop that provides plant-origin protein and oil for humans and livestock. Although the soybean vegetative tissues and seeds provide a major source of high-quality protein, they suffer from low concentration of an essential sulfur-containing amino acid, methionine, which significantly limits their nutritional quality. The level of methionine is mainly controlled by the first unique enzyme of methionine synthesis, cystathione γ-synthase (CGS). Aiming to elevate methionine level in vegetative tissues and seeds, we constitutively over-expressed a feedback-insensitive Arabidopsis CGS (AtD-CGS) in soybean cultivars, Zigongdongdou (ZD) and Jilinxiaoli 1 (JX). The levels of soluble methionine increased remarkably in leaves of transgenic soybeans compared to wild-type plants (6.6- and 7.3-fold in two transgenic ZD lines, and 3.7-fold in one transgenic JX line). Furthermore, the total methionine contents were significantly increased in seeds of the transgenic ZD lines (1.5- to 4.8-fold increase) and the transgenic JX lines (1.3- to 2.3-fold increase) than in the wild type. The protein contents of the transgenic soybean seeds were significantly elevated compared to the wild type, suggesting that the scarcity of methionine in soybeans may limit protein accumulation in soybean seeds. The increased protein content did not alter the profile of major storage proteins in the seeds. Generally, this study provides a promising strategy to increase the levels of methionine and protein in soybean through the breeding programs.

  19. Predictive Method for Correct Identification of Archaeological Charred Grape Seeds: Support for Advances in Knowledge of Grape Domestication Process

    Science.gov (United States)

    Ucchesu, Mariano; Orrù, Martino; Grillo, Oscar; Venora, Gianfranco; Paglietti, Giacomo; Ardu, Andrea; Bacchetta, Gianluigi

    2016-01-01

    The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA) method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017–1751 2σ cal. BC), allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants. PMID:26901361

  20. Preliminary investigation into the pressing process of sweet pearl millet and sweet sorghum biomass for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Crepeau, M.; Khelifi, M.; Vanasse, A. [Laval Univ., Quebec City, PQ (Canada). Dept. of Soil Science and Agri-Food Engineering

    2010-07-01

    Corn is the main source for biofuel production in North America. However, both sweet pearl millet and sweet sorghum crops represent an interesting alternative to corn for ethanol production because of their high biomass yield under a wide range of environmental conditions and high concentration of readily fermentable sugars. Coproducts such as pressing residues can be also be utilized so that nothing is lost in the process. However, in order to improve the extraction of juice for ethanol production, the pressing process of this biomass must be optimized. Preliminary experiments were therefore conducted to optimize the juice extraction from sweet pearl millet and sweet sorghum using 2 different presses, notably a screw press and a manually operated hydraulic press. Both types of biomass were either chopped finely or coarsely and were exposed to various pressures with the hydraulic press. The volume of juice extracted from both crops increased linearly with increasing pressure. Sweet sorghum appeared to be a better feedstock for ethanol production because it produced about 0.03 to 0.06 litre of juice per kg of biomass more than sweet pearl millet. Juice extraction was more effective with the screw press, but only a small difference was noted between the 2 chopping modes.

  1. Trait based selection of superior Kodo millet (Paspalum scrobiculatum L.) genotypes

    OpenAIRE

    A.Subramanian, A.Nirmalakumari and P.Veerabadhiran

    2010-01-01

    One hundred and eighty eight germ plasm accessions of Kodo millet (Paspalum scrobiculatum L.) were evaluated in a fieldstudy to assess genetic variability, heritability and genetic advance for eight yield component traits. The ANOVA revealedthat there were significant differences among the accessions for all the traits studied. High genotypic variance, phenotypicvariance, GCV and PCV were observed for dry fodder yield, plant height and grain yield per plant. Broad sense heritabilityranged fro...

  2. Chlorophyll b Reductase Plays an Essential Role in Maturation and Storability of Arabidopsis Seeds1[W

    Science.gov (United States)

    Nakajima, Saori; Ito, Hisashi; Tanaka, Ryouichi; Tanaka, Ayumi

    2012-01-01

    Although seeds are a sink organ, chlorophyll synthesis and degradation occurs during embryogenesis and in a manner similar to that observed in photosynthetic leaves. Some mutants retain chlorophyll after seed maturation, and they are disturbed in seed storability. To elucidate the effects of chlorophyll retention on the seed storability of Arabidopsis (Arabidopsis thaliana), we examined the non-yellow coloring1 (nyc1)/nyc1-like (nol) mutants that do not degrade chlorophyll properly. Approximately 10 times more chlorophyll was retained in the dry seeds of the nyc1/nol mutant than in the wild-type seeds. The germination rates rapidly decreased during storage, with most of the mutant seeds failing to germinate after storage for 23 months, whereas 75% of the wild-type seeds germinated after 42 months. These results indicate that chlorophyll retention in the seeds affects seed longevity. Electron microscopic studies indicated that many small oil bodies appeared in the embryonic cotyledons of the nyc1/nol mutant; this finding indicates that the retention of chlorophyll affects the development of organelles in embryonic cells. A sequence analysis of the NYC1 promoter identified a potential abscisic acid (ABA)-responsive element. An electrophoretic mobility shift assay confirmed the binding of an ABA-responsive transcriptional factor to the NYC1 promoter DNA fragment, thus suggesting that NYC1 expression is regulated by ABA. Furthermore, NYC1 expression was repressed in the ABA-insensitive mutants during embryogenesis. These data indicate that chlorophyll degradation is induced by ABA during seed maturation to produce storable seeds. PMID:22751379

  3. A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans

    Science.gov (United States)

    Blair, Matthew W.; Izquierdo, Paulo; Astudillo, Carolina; Grusak, Michael A.

    2013-01-01

    Common beans (Phaseolus vulgaris L.), like many legumes, are rich in iron, zinc, and certain other microelements that are generally found to be in low concentrations in cereals, other seed crops, and root or tubers and therefore are good candidates for biofortification. But a quandary exists in common bean biofortification: namely that the distribution of iron has been found to be variable between the principal parts of seed; namely the cotyledonary tissue, embryo axis and seed coat. The seed coat represents ten or more percent of the seed weight and must be considered specifically as it accumulates much of the anti-nutrients such as tannins that effect mineral bioavailability. Meanwhile the cotyledons accumulate starch and phosphorus in the form of phytates. The goal of this study was to evaluate a population of progeny derived from an advanced backcross of a wild bean and a cultivated Andean bean for seed coat versus cotyledonary minerals to identify variability and predict inheritance of the minerals. We used wild common beans because of their higher seed mineral concentration compared to cultivars and greater proportion of seed coat to total seed weight. Results showed the most important gene for seed coat iron was on linkage group B04 but also identified other QTL for seed coat and cotyledonary iron and zinc on other linkage groups, including B11 which has been important in studies of whole seed. The importance of these results in terms of physiology, candidate genes and plant breeding are discussed. PMID:23908660

  4. Nitric oxide donor seed priming enhances defense responses and induces resistance against pearl millet downy mildew disease

    DEFF Research Database (Denmark)

    Manjunatha, G.; Raj, S. Niranjan; Shetty, Nandini Prasad

    2008-01-01

    experiments with NO donors showed no adverse effect either on the host or pathogen. Aqueous SNP seed treatment with or without polyethylene glycol (PEG) priming was the most effective in inducing the host resistance against downy mildew both under greenhouse and field conditions. Potassium Ferrocyanide...

  5. Responses of reniform nematode and browntop millet to tillage, cover crop, and herbicides in cotton

    Science.gov (United States)

    Cropping practices that reduce competition from reniform nematode (Rotylenchulus reniformis) and browntop millet (Urochlora ramosum) may help minimize losses in cotton (Gossypium hirsutum). The impacts of tillage, rye cover crop, and preemergence and postemergence herbicides on cotton yields, renifo...

  6. Estimation of loci involved in non-shattering of seeds in early rice domestication.

    Science.gov (United States)

    Ishikawa, Ryo; Nishimura, Akinori; Htun, Than Myint; Nishioka, Ryo; Oka, Yumi; Tsujimura, Yuki; Inoue, Chizuru; Ishii, Takashige

    2017-04-01

    Rice (Oryza sativa L.) is widely cultivated around the world and is known to be domesticated from its wild form, O. rufipogon. A loss of seed shattering is one of the most obvious phenotypic changes selected for during rice domestication. Previously, three seed-shattering loci, qSH1, sh4, and qSH3 were reported to be involved in non-shattering of seeds of Japonica-type cultivated rice, O. sativa cv. Nipponbare. In this study, we focused on non-shattering characteristics of O. sativa Indica cv. IR36 having functional allele at qSH1. We produced backcross recombinant inbred lines having chromosomal segments from IR36 in the genetic background of wild rice, O. rufipogon W630. Histological and quantitative trait loci analyses of abscission layer formation were conducted. In the analysis of quantitative trait loci, a strong peak was observed close to sh4. We, nevertheless, found that some lines showed complete abscission layer formation despite carrying the IR36 allele at sh4, implying that non-shattering of seeds of IR36 could be regulated by the combination of mutations at sh4 and other seed-shattering loci. We also genotyped qSH3, a recently identified seed-shattering locus. Lines that have the IR36 alleles at sh4 and qSH3 showed inhibition of abscission layer formation but the degree of seed shattering was different from that of IR36. On the basis of these results, we estimated that non-shattering of seeds in early rice domestication involved mutations in at least three loci, and these genetic materials produced in this study may help to identify novel seed-shattering loci.

  7. Potential use of pearl millet (Pennisetum glaucum (L.) R. Br.) in Brazil: Food security, processing, health benefits and nutritional products.

    Science.gov (United States)

    Dias-Martins, Amanda M; Pessanha, Kênia Letícia F; Pacheco, Sidney; Rodrigues, José Avelino S; Carvalho, Carlos Wanderlei Piler

    2018-07-01

    Climate change can cause an increase in arid soils, warmer weather, and reduce water availability, which in turn can directly affect food security. This increases food prices and reduces the availability of food. Therefore, knowledge concerning the nutritional and technological potential of non-traditional crops and their resistance to heat and drought is very interesting. Pearl millet is known to produce small nutritious cereal grains, which can endure both heat and dry conditions, and is one of the basic cereals of several African and Asian countries. Although this species has been cultivated in Brazil for at least 50 years it is only used as a cover crop and animal feed, but not for human consumption. Nonetheless, pearl millet grains have a high potential as food for humans because they are gluten-free, higher in dietary fiber content than rice, similar in lipid content to maize and higher content of essential amino acids (leucine, isoleucine and lysine) than other traditional cereals, such as wheat and rye. In addition, the crop is low cost and less susceptible to contamination by aflatoxins compared to corn, for example. Most grains, including pearl millet, can be milled, decorticated, germinated, fermented, cooked and extruded to obtain products such as flours, biscuits, snacks, pasta and non-dairy probiotic beverages. Pearl millet also has functional properties; it has a low glycemic index and therefore it can be used as an alternative food for weight control and to reduce the risk of chronic diseases, such as diabetes. Thus, this review intends to show the potential of pearl millet as an alternative food security crop, particularly in countries, like Brazil, where it is not commonly consumed. Also this review presents different processes and products that have been already reported in the literature in order to introduce the great potential of this important small grain to producers and consumers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Effect of incubation temperature, seed age and scarification on germination and emergence of persian shallot

    International Nuclear Information System (INIS)

    Mohammadi, J.; Sabet, S.A.K.; Golshani, M.; Mortazavi, S.N.; Jafari, F.; Chirani, J.A.O.

    2010-01-01

    Persian shallot grows as a wild plant in some mountains of Iran, The aim of our research was to study the relationship between different temperatures, seed age and duration of sulfuric acid treatment on Persian shallot seed germination. The interactive effect of incubation temperature, seed age and scarification treatments had a significant effect on the germination and emergence percentage of Persian shallot. It is concluded that suitable condition for Persian shallot seed germination is scarification of one year old seeds with sulfuric acid for 15 min, and stratification at 4 deg. C. In fact Persian shallot seeds need both scarification and stratification for germination enhancement. (author)

  9. Expression of a ß-1,3-glucanase from a biocontrol fungus in transgenic pearl millet

    CSIR Research Space (South Africa)

    O'Kennedy, MM

    2011-05-01

    Full Text Available by the rice Act1 intron sequences, were subjected to pathogenicity trials. Apart from one isolated event reducing incidence of S. graminicola infection by 58%, transgenic pearl millet showed no resistance to this phytopathogen. The event conferring decreased...

  10. Identification of microRNAs and their targets in Finger millet by high throughput sequencing.

    Science.gov (United States)

    Usha, S; Jyothi, M N; Sharadamma, N; Dixit, Rekha; Devaraj, V R; Nagesh Babu, R

    2015-12-15

    MicroRNAs are short non-coding RNAs which play an important role in regulating gene expression by mRNA cleavage or by translational repression. The majority of identified miRNAs were evolutionarily conserved; however, others expressed in a species-specific manner. Finger millet is an important cereal crop; nonetheless, no practical information is available on microRNAs to date. In this study, we have identified 95 conserved microRNAs belonging to 39 families and 3 novel microRNAs by high throughput sequencing. For the identified conserved and novel miRNAs a total of 507 targets were predicted. 11 miRNAs were validated and tissue specificity was determined by stem loop RT-qPCR, Northern blot. GO analyses revealed targets of miRNA were involved in wide range of regulatory functions. This study implies large number of known and novel miRNAs found in Finger millet which may play important role in growth and development. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Finger Millet Growth and Nutrient Uptake Is Improved in Intercropping With Pigeon Pea Through “Biofertilization” and “Bioirrigation” Mediated by Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria

    Directory of Open Access Journals (Sweden)

    Krishna Saharan

    2018-06-01

    Full Text Available Legume-cereal intercropping is well known in traditional dry land agriculture. Here, we tested whether finger millet, a shallow-rooted cereal, can profit from neighboring pigeon pea, a deep-rooted legume, in the presence of “biofertilization” with arbuscular mycorrhizal fungi (AMF and plant growth-promoting rhizobacteria (PGPR, under drought conditions. We conducted a greenhouse experiment using compartmented microcosms. Pigeon pea was grown in a deep compartment with access to a moist substrate layer at the bottom, whereas finger millet was grown in a neighboring shallow compartment, separated by 25-μm nylon mesh, without access to the moist substrate layer. In the presence of a common mycorrhizal network (CMN, with or without PGPR, a drought condition had little negative effect on the biomass production of the finger millet plant whereas in absence of biofertilization, finger millet biomass production was less than half compared to well-watered condi