WorldWideScience

Sample records for wild yeast colonies

  1. Yeast petites and small colony variants: for everything there is a season.

    Science.gov (United States)

    Day, Martin

    2013-01-01

    The yeast petite mutant was first found in the yeast Saccharomyces cerevisiae. The colony is small because of a block in the aerobic respiratory chain pathway, which generates ATP. The petite yeasts are thus unable to grow on nonfermentable carbon sources (such as glycerol or ethanol), and form small anaerobic-sized colonies when grown in the presence of fermentable carbon sources (such as glucose). The petite phenotype results from mutations in the mitochondrial genome, loss of mitochondria, or mutations in the host cell genome. The latter mutations affect nuclear-encoded genes involved in oxidative phosphorylation and these mutants are termed neutral petites. They all produce wild-type progeny when crossed with a wild-type strain. The staphylococcal small colony variant (SCV) is a slow-growing mutant that typically exhibits the loss of many phenotypic characteristics and pathogenic traits. SCVs are mostly small, nonpigmented, and nonhaemolytic. Their small size is often due to an inability to synthesize electron transport chain components and so cannot generate ATP by oxidative phosphorylation. Evidence suggests that they are responsible for persistent and/or recurrent infections. This chapter compares the physiological and genetic basis of the petite mutants and SCVs. The review focuses principally on two representatives, the eukaryote S. cerevisiae and the prokaryote Staphylococcus aureus. There is, clearly, commonality in the physiological response. Interestingly, the similarity, based on their physiological states, has not been commented on previously. The finding of an overlapping physiological response that occurs across a taxonomic divide is novel. © 2013 Elsevier Inc. All rights reserved.

  2. Colony size measurement of the yeast gene deletion strains for functional genomics

    Directory of Open Access Journals (Sweden)

    Mir-Rashed Nadereh

    2007-04-01

    Full Text Available Abstract Background Numerous functional genomics approaches have been developed to study the model organism yeast, Saccharomyces cerevisiae, with the aim of systematically understanding the biology of the cell. Some of these techniques are based on yeast growth differences under different conditions, such as those generated by gene mutations, chemicals or both. Manual inspection of the yeast colonies that are grown under different conditions is often used as a method to detect such growth differences. Results Here, we developed a computerized image analysis system called Growth Detector (GD, to automatically acquire quantitative and comparative information for yeast colony growth. GD offers great convenience and accuracy over the currently used manual growth measurement method. It distinguishes true yeast colonies in a digital image and provides an accurate coordinate oriented map of the colony areas. Some post-processing calculations are also conducted. Using GD, we successfully detected a genetic linkage between the molecular activity of the plant-derived antifungal compound berberine and gene expression components, among other cellular processes. A novel association for the yeast mek1 gene with DNA damage repair was also identified by GD and confirmed by a plasmid repair assay. The results demonstrate the usefulness of GD for yeast functional genomics research. Conclusion GD offers significant improvement over the manual inspection method to detect relative yeast colony size differences. The speed and accuracy associated with GD makes it an ideal choice for large-scale functional genomics investigations.

  3. Yeast Colonies: A Model for Studies of Aging, Environmental Adaptation, and Longevity

    Directory of Open Access Journals (Sweden)

    Libuše Váchová

    2012-01-01

    Full Text Available When growing on solid surfaces, yeast, like other microorganisms, develops organized multicellular populations (colonies and biofilms that are composed of differentiated cells with specialized functions. Life within these populations is a prevalent form of microbial existence in natural settings that provides the cells with capabilities to effectively defend against environmental attacks as well as efficiently adapt and survive long periods of starvation and other stresses. Under such circumstances, the fate of an individual yeast cell is subordinated to the profit of the whole population. In the past decade, yeast colonies, with their complicated structure and high complexity that are also developed under laboratory conditions, have become an excellent model for studies of various basic cellular processes such as cell interaction, signaling, and differentiation. In this paper, we summarize current knowledge on the processes related to chronological aging, adaptation, and longevity of a colony cell population and of its differentiated cell constituents. These processes contribute to the colony ability to survive long periods of starvation and mostly differ from the survival strategies of individual yeast cells.

  4. Study of budding yeast colony formation and its characterizations by using circular granular cell

    Science.gov (United States)

    Aprianti, D.; Haryanto, F.; Purqon, A.; Khotimah, S. N.; Viridi, S.

    2016-03-01

    Budding yeast can exhibit colony formation in solid substrate. The colony of pathogenic budding yeast can colonize various surfaces of the human body and medical devices. Furthermore, it can form biofilm that resists drug effective therapy. The formation of the colony is affected by the interaction between cells and with its growth media. The cell budding pattern holds an important role in colony expansion. To study this colony growth, the molecular dynamic method was chosen to simulate the interaction between budding yeast cells. Every cell was modelled by circular granular cells, which can grow and produce buds. Cohesion force, contact force, and Stokes force govern this model to mimic the interaction between cells and with the growth substrate. Characterization was determined by the maximum (L max) and minimum (L min) distances between two cells within the colony and whether two lines that connect the two cells in the maximum and minimum distances intersect each other. Therefore, it can be recognized the colony shape in circular, oval, and irregular shapes. Simulation resulted that colony formation are mostly in oval shape with little branch. It also shows that greater cohesion strength obtains more compact colony formation.

  5. Metabolic diversification of cells during the development of yeast colonies

    Czech Academy of Sciences Publication Activity Database

    Váchová, Libuše; Kučerová, Helena; Devaux, F.; Úlehlová, M.; Palková, Z.

    2009-01-01

    Roč. 11, č. 2 (2009), s. 494-504 ISSN 1462-2912 R&D Projects: GA ČR GA204/05/0294; GA ČR GA204/08/0718; GA MŠk(CZ) LC531 Grant - others:GB(GB) Howard Hughes Medical Institute International Research Award Institutional research plan: CEZ:AV0Z50200510 Keywords : yeast * yeast colonies * saccharomyces cerevisiae Subject RIV: EE - Microbiology, Virology Impact factor: 4.909, year: 2009

  6. Study of hantavirus infection in captive breed colonies of wild rodents

    Directory of Open Access Journals (Sweden)

    RC Oliveira

    2004-10-01

    Full Text Available Wild sigmondontine rodents are known to be the reservoir of several serotypes of New World hantaviruses. The mechanism of viral transmission is by aerosol inhalation of the excreta from infected rodents. Considering that the captive breed colonies of various wild mammals may present a potencial risk for hantaviral transmission, we examined 85 speciemens of Thrichomys spp. (Echimyidae and 17 speciemens of Nectomys squamipes (Sigmodontinae from our colony for the presence of hantavirus infections. Blood samples were assayed for the presence of antibodies to Andes nucleocapsid antigen using enzyme-linked immunosorbent assay (ELISA. Additionally, serum samples from workers previously exposed to wild rodents, in the laboratories where the study was conducted, were also tested by ELISA to investigate prevalence of anti-hantavirus IgG antibodies. All blood samples were negative for hantavirus antibodies. Although these results suggest that those rodent's colonies are hantavirus free, the work emphasizes the need for hantavirus serological monitoring in wild colonized rodents and secure handling potentially infected rodents as important biosafety measures.

  7. Morphological Instabilities in a Growing Yeast Colony: Experiment and Theory

    DEFF Research Database (Denmark)

    Sams, Thomas; Sneppen, Kim; Jensen, Mogens

    1997-01-01

    We study the growth of colonies of the yeast Pichia membranaefaciens on agarose film. The growth conditions are controlled in a setup where nutrients are supplied through an agarose film suspended over a solution of nutrients. As the thickness of the agarose film is varied, the morphology of the ...

  8. Yeast species associated with the spontaneous fermentation of cider.

    OpenAIRE

    Suárez, Belén; Pando, Rosa; Fernández, Norman; Querol, Amparo; Rodríguez, Roberto

    2018-01-01

    This paper reports the influence of cider-making technology (pneumatic and traditional pressing) on the dynamics of wild yeast populations. Yeast colonies isolated from apple juice before and throughout fermentation at a cider cellar of Asturias (Spain), during two consecutive years were studied. The yeast strains were identified by restriction fragment length polymorphism analysis of the 5.8S rRNA gene and the two flanking internal transcribed sequences (ITS). The musts obtained by ...

  9. Effect of 905 MHz microwave radiation on colony growth of the yeast Saccharomyces cerevisiae strains FF18733, FF1481 and D7

    International Nuclear Information System (INIS)

    Vrhovac, Ivana; Hrascan, Reno; Franekic, Jasna

    2010-01-01

    The aim of this study was to evaluate the effect of weak radiofrequency microwave (RF/MW) radiation emitted by mobile phones on colony growth of the yeast Saccharomyces cerevisiae. S. cerevisiae strains FF18733 (wild-type), FF1481 (rad1 mutant) and D7 (commonly used to detect reciprocal and nonreciprocal mitotic recombinations) were exposed to a 905 MHz electromagnetic field that closely matched the Global System for Mobile Communication (GSM) pulse modulation signals for mobile phones at a specific absorption rate (SAR) of 0.12 W/kg. Following 15-, 30- and 60-minutes exposure to RF/MW radiation, strain FF18733 did not show statistically significant changes in colony growth compared to the control sample. The irradiated strains FF1481 and D7 demonstrated statistically significant reduction of colony growth compared to non-irradiated strains after all exposure times. Furthermore, strain FF1481 was more sensitive to RF/MW radiation than strain D7. The findings indicate that pulsed RF/MW radiation at a low SAR level can affect the rate of colony growth of different S. cerevisiae strains

  10. Scanning electron microscopy as a tool for the analysis of colony architecture produced by phenotypic switching of a human pathogenic yeast Candida tropicalis

    International Nuclear Information System (INIS)

    Furlaneto, M C; França, E J G; Moralez, A T P; Ferreira, L C S; Andrade, C G T J; Aragão, P H A

    2012-01-01

    Candida tropicalis has been identified as one of the most prevalent pathogenic yeast species of the Candida-non-albicans group. Phenotypic switching is a biological phenomenon related to the occurrence of spontaneous emergence of colonies with different morphologies that provides variability within colonizing populations in order to adapt to different environments. Currently, studies of the microstructure of switching variant colonies are not subject of extensive research. SEM analysis was used to verify the architecture of whole Candida colonies. The strain 49/07 exhibited a hemispherical shape character, while the strain 335/07 showed a volcano shape with mycelated-edge colony. The ring switch variant is characterized by a highly wrinkled centre and an irregular periphery. The rough phenotype exhibited a three-dimensional architecture and was characterized by the presence of deep central and peripheral depressions areas. The ultrastructural analysis also allowed the observation of the arrangement of individual cells within the colonies. The whole smooth colony consisted entirely of yeast cells. Differently, aerial filaments were found all around the colony periphery of the volcano shape colony. For this colony type the mycelated-edge consisted mainly of hyphae, although yeast cells are also seen. The ring and rough colonies phenotypes comprised mainly yeast cells with the presence of extracellular material connecting neighbouring cells. This study has shown that SEM can be used effectively to examine the microarchitecture of colonies morphotypes of the yeast C. tropicalis and further our understanding of switching event in this pathogen.

  11. How Honey Bee Colonies Survive in the Wild: Testing the Importance of Small Nests and Frequent Swarming.

    Directory of Open Access Journals (Sweden)

    J Carter Loftus

    Full Text Available The ectoparasitic mite, Varroa destructor, and the viruses that it transmits, kill the colonies of European honey bees (Apis mellifera kept by beekeepers unless the bees are treated with miticides. Nevertheless, there exist populations of wild colonies of European honey bees that are persisting without being treated with miticides. We hypothesized that the persistence of these wild colonies is due in part to their habits of nesting in small cavities and swarming frequently. We tested this hypothesis by establishing two groups of colonies living either in small hives (42 L without swarm-control treatments or in large hives (up to 168 L with swarm-control treatments. We followed the colonies for two years and compared the two groups with respect to swarming frequency, Varroa infesttion rate, disease incidence, and colony survival. Colonies in small hives swarmed more often, had lower Varroa infestation rates, had less disease, and had higher survival compared to colonies in large hives. These results indicate that the smaller nest cavities and more frequent swarming of wild colonies contribute to their persistence without mite treatments.

  12. How Honey Bee Colonies Survive in the Wild: Testing the Importance of Small Nests and Frequent Swarming

    Science.gov (United States)

    Loftus, J. Carter; Smith, Michael L.; Seeley, Thomas D.

    2016-01-01

    The ectoparasitic mite, Varroa destructor, and the viruses that it transmits, kill the colonies of European honey bees (Apis mellifera) kept by beekeepers unless the bees are treated with miticides. Nevertheless, there exist populations of wild colonies of European honey bees that are persisting without being treated with miticides. We hypothesized that the persistence of these wild colonies is due in part to their habits of nesting in small cavities and swarming frequently. We tested this hypothesis by establishing two groups of colonies living either in small hives (42 L) without swarm-control treatments or in large hives (up to 168 L) with swarm-control treatments. We followed the colonies for two years and compared the two groups with respect to swarming frequency, Varroa infesttion rate, disease incidence, and colony survival. Colonies in small hives swarmed more often, had lower Varroa infestation rates, had less disease, and had higher survival compared to colonies in large hives. These results indicate that the smaller nest cavities and more frequent swarming of wild colonies contribute to their persistence without mite treatments. PMID:26968000

  13. Sok2p plays a role in lactate/lactic acid uptake in yeast colonies

    Czech Academy of Sciences Publication Activity Database

    Strachotová, Dita; Paiva, S.; Váchová, Libuše; Casal, M.; Palková, Z.

    2009-01-01

    Roč. 26, č. 1 (2009), s. 226-226 ISSN 0749-503X. [International Conference on Yeast Genetics and Molecular Biology /24./. 19.07.2009-24.07.2009, Manchester] R&D Projects: GA ČR GA204/08/0718; GA MŠk(CZ) LC531 Institutional research plan: CEZ:AV0Z50200510 Keywords : cell * yeast colonies Subject RIV: EE - Microbiology, Virology

  14. Physical Forces Modulate Oxidative Status and Stress Defense Meditated Metabolic Adaptation of Yeast Colonies: Spaceflight and Microgravity Simulations

    Science.gov (United States)

    Hammond, Timothy G.; Allen, Patricia L.; Gunter, Margaret A.; Chiang, Jennifer; Giaever, Guri; Nislow, Corey; Birdsall, Holly H.

    2018-05-01

    Baker's yeast ( Saccharomyces cerevisiae) has broad genetic homology to human cells. Although typically grown as 1-2mm diameter colonies under certain conditions yeast can form very large (10 + mm in diameter) or `giant' colonies on agar. Giant yeast colonies have been used to study diverse biomedical processes such as cell survival, aging, and the response to cancer pharmacogenomics. Such colonies evolve dynamically into complex stratified structures that respond differentially to environmental cues. Ammonia production, gravity driven ammonia convection, and shear defense responses are key differentiation signals for cell death and reactive oxygen system pathways in these colonies. The response to these signals can be modulated by experimental interventions such as agar composition, gene deletion and application of pharmaceuticals. In this study we used physical factors including colony rotation and microgravity to modify ammonia convection and shear stress as environmental cues and observed differences in the responses of both ammonia dependent and stress response dependent pathways We found that the effects of random positioning are distinct from rotation. Furthermore, both true and simulated microgravity exacerbated both cellular redox responses and apoptosis. These changes were largely shear-response dependent but each model had a unique response signature as measured by shear stress genes and the promoter set which regulates them These physical techniques permitted a graded manipulation of both convection and ammonia signaling and are primed to substantially contribute to our understanding of the mechanisms of drug action, cell aging, and colony differentiation.

  15. Physical Forces Modulate Oxidative Status and Stress Defense Meditated Metabolic Adaptation of Yeast Colonies: Spaceflight and Microgravity Simulations

    Science.gov (United States)

    Hammond, Timothy G.; Allen, Patricia L.; Gunter, Margaret A.; Chiang, Jennifer; Giaever, Guri; Nislow, Corey; Birdsall, Holly H.

    2017-12-01

    Baker's yeast (Saccharomyces cerevisiae) has broad genetic homology to human cells. Although typically grown as 1-2mm diameter colonies under certain conditions yeast can form very large (10 + mm in diameter) or `giant' colonies on agar. Giant yeast colonies have been used to study diverse biomedical processes such as cell survival, aging, and the response to cancer pharmacogenomics. Such colonies evolve dynamically into complex stratified structures that respond differentially to environmental cues. Ammonia production, gravity driven ammonia convection, and shear defense responses are key differentiation signals for cell death and reactive oxygen system pathways in these colonies. The response to these signals can be modulated by experimental interventions such as agar composition, gene deletion and application of pharmaceuticals. In this study we used physical factors including colony rotation and microgravity to modify ammonia convection and shear stress as environmental cues and observed differences in the responses of both ammonia dependent and stress response dependent pathways We found that the effects of random positioning are distinct from rotation. Furthermore, both true and simulated microgravity exacerbated both cellular redox responses and apoptosis. These changes were largely shear-response dependent but each model had a unique response signature as measured by shear stress genes and the promoter set which regulates them These physical techniques permitted a graded manipulation of both convection and ammonia signaling and are primed to substantially contribute to our understanding of the mechanisms of drug action, cell aging, and colony differentiation.

  16. Effects of feedstock and co-culture of Lactobacillus fermentum and wild Saccharomyces cerevisiae strain during fuel ethanol fermentation by the industrial yeast strain PE-2.

    Science.gov (United States)

    Reis, Vanda R; Bassi, Ana Paula G; Cerri, Bianca C; Almeida, Amanda R; Carvalho, Isis G B; Bastos, Reinaldo G; Ceccato-Antonini, Sandra R

    2018-02-16

    Even though contamination by bacteria and wild yeasts are frequently observed during fuel ethanol fermentation, our knowledge regarding the effects of both contaminants together is very limited, especially considering that the must composition can vary from exclusively sugarcane juice to a mixture of molasses and juice, affecting the microbial development. Here we studied the effects of the feedstock (sugarcane juice and molasses) and the co-culture of Lactobacillus fermentum and a wild Saccharomyces cerevisiae strain (rough colony and pseudohyphae) in single and multiple-batch fermentation trials with an industrial strain of S. cerevisiae (PE-2) as starter yeast. The results indicate that in multiple-cycle batch system, the feedstock had a minor impact on the fermentation than in single-cycle batch system, however the rough yeast contamination was more harmful than the bacterial contamination in multiple-cycle batch fermentation. The inoculation of both contaminants did not potentiate the detrimental effect in any substrate. The residual sugar concentration in the fermented broth had a higher concentration of fructose than glucose for all fermentations, but in the presence of the rough yeast, the discrepancy between fructose and glucose concentrations were markedly higher, especially in molasses. The biggest problem associated with incomplete fermentation seemed to be the lower consumption rate of sugar and the reduced fructose preference of the rough yeast rather than the lower invertase activity. Lower ethanol production, acetate production and higher residual sugar concentration are characteristics strongly associated with the rough yeast strain and they were not potentiated with the inoculation of L. fermentum.

  17. Characteristics of Saccharomyces cerevisiae yeasts exhibiting rough colonies and pseudohyphal morphology with respect to alcoholic fermentation.

    Science.gov (United States)

    Reis, Vanda Renata; Bassi, Ana Paula Guarnieri; da Silva, Jessica Carolina Gomes; Ceccato-Antonini, Sandra Regina

    2013-12-01

    Among the native yeasts found in alcoholic fermentation, rough colonies associated with pseudohyphal morphology belonging to the species Saccharomyces cerevisiae are very common and undesirable during the process. The aim of this work was to perform morphological and physiological characterisations of S. cerevisiae strains that exhibited rough and smooth colonies in an attempt to identify alternatives that could contribute to the management of rough colony yeasts in alcoholic fermentation. Characterisation tests for invasiveness in Agar medium, killer activity, flocculation and fermentative capacity were performed on 22 strains (11 rough and 11 smooth colonies). The effects of acid treatment at different pH values on the growth of two strains ("52"--rough and "PE-02"--smooth) as well as batch fermentation tests with cell recycling and acid treatment of the cells were also evaluated. Invasiveness in YPD Agar medium occurred at low frequency; ten of eleven rough yeasts exhibited flocculation; none of the strains showed killer activity; and the rough strains presented lower and slower fermentative capacities compared to the smooth strains in a 48-h cycle in a batch system with sugar cane juice. The growth of the rough strain was severely affected by the acid treatment at pH values of 1.0 and 1.5; however, the growth of the smooth strain was not affected. The fermentative efficiency in mixed fermentation (smooth and rough strains in the same cell mass proportion) did not differ from the efficiency obtained with the smooth strain alone, most likely because the acid treatment was conducted at pH 1.5 in a batch cell-recycle test. A fermentative efficiency as low as 60% was observed with the rough colony alone.

  18. Classification of Cryptococcus neoformans and yeast-like fungus isolates from pigeon droppings by colony phenotyping and ITS genotyping and their seasonal variations in Korea.

    Science.gov (United States)

    Chae, H S; Jang, G E; Kim, N H; Son, H R; Lee, J H; Kim, S H; Park, G N; Jo, H J; Kim, J T; Chang, K S

    2012-03-01

    Cryptococcus neoformans (C neoformans) is a frequent cause of invasive fungal disease in immunocompromised human hosts. Ninety-eight samples of pigeon droppings were collected from the pigeon shelters in Seoul, and cultured on birdseed agar (BSA) and Sabouraud dextrose agar (SDA). One hundred yeast-like colonies were selected and identified via phenotype characteristics, such as colony morphology and biochemical characteristics. This was then followed with genotyping via sequencing of the internal transcribed spacer (ITS) region. The colonies were classified into four kinds of colony color types: brown type (BrT), beige type (BeT), pink type (PT), and white type (WT). Numbers of isolated BrT, BeT, PT, and WT colonies were 22 (22%), 30 (30%), 19 (19%), and 39 (39%), respectively. All BrT colonies were identified as C neoformans. BeT were identified as 19 isolates of Cryptococcus laurentii, 10 isolates of Malassezia furfur, and 1 isolate of Cryptococcus uniguttulatus. PT was divided into two colony color types: light-PT (l-PT) and deep-PT (d-PT). Eighteen of l-PT and one of d-PT were identified as Rhodotorula glutinis and Rhodotorula mucilaginosa, respectively. WT were identified as 34 isolates of Cryptococcus guilliermondii, 3 isolates of Cryptococcus zeylanoides, 1 isolate of Cryptococcus sake, and 1 isolate of Stephanoascus ciferrii. Most strains were classified identically with the use of either phenotype or genotyping techniques, but C uniguttulatus and C sake classified by phenotyping were Pseudozyma aphidis and Cryptococcus famata by genotyping. This rapid screening technique of pathogenic yeast-like fungi by only colony characteristics is also expected to be very useful for primary yeast screening. Additionally, we investigated the seasonal variations of C neoformans and other yeast-like fungi from 379 pigeon-dropping samples that were collected from February 2011 to March 2011. We isolated 685 yeast-like fungi from the samples. Almost all C neoformans and

  19. How to survive within a yeast colony?: Change metabolism or cope with stress?

    Czech Academy of Sciences Publication Activity Database

    Čáp, M.; Váchová, Libuše; Palková, Z.

    2010-01-01

    Roč. 3, č. 2 (2010), s. 198-200 ISSN 1942-0889 R&D Projects: GA ČR GA204/08/0718; GA MŠk(CZ) LC531 Institutional research plan: CEZ:AV0Z50200510 Keywords : yeast colonies * stress defense and metabolic adaption * differentiation Subject RIV: EE - Microbiology, Virology

  20. Divergence of iron metabolism in wild Malaysian yeast.

    Science.gov (United States)

    Lee, Hana N; Mostovoy, Yulia; Hsu, Tiffany Y; Chang, Amanda H; Brem, Rachel B

    2013-12-09

    Comparative genomic studies have reported widespread variation in levels of gene expression within and between species. Using these data to infer organism-level trait divergence has proven to be a key challenge in the field. We have used a wild Malaysian population of S. cerevisiae as a test bed in the search to predict and validate trait differences based on observations of regulatory variation. Malaysian yeast, when cultured in standard medium, activated regulatory programs that protect cells from the toxic effects of high iron. Malaysian yeast also showed a hyperactive regulatory response during culture in the presence of excess iron and had a unique growth defect in conditions of high iron. Molecular validation experiments pinpointed the iron metabolism factors AFT1, CCC1, and YAP5 as contributors to these molecular and cellular phenotypes; in genome-scale sequence analyses, a suite of iron toxicity response genes showed evidence for rapid protein evolution in Malaysian yeast. Our findings support a model in which iron metabolism has diverged in Malaysian yeast as a consequence of a change in selective pressure, with Malaysian alleles shifting the dynamic range of iron response to low-iron concentrations and weakening resistance to extreme iron toxicity. By dissecting the iron scarcity specialist behavior of Malaysian yeast, our work highlights the power of expression divergence as a signpost for biologically and evolutionarily relevant variation at the organismal level. Interpreting the phenotypic relevance of gene expression variation is one of the primary challenges of modern genomics.

  1. Yeast Colonies: A Model for Studies of Aging, Environmental Adaptation, and Longevity

    OpenAIRE

    Libuše Váchová; Michal Čáp; Zdena Palková

    2012-01-01

    When growing on solid surfaces, yeast, like other microorganisms, develops organized multicellular populations (colonies and biofilms) that are composed of differentiated cells with specialized functions. Life within these populations is a prevalent form of microbial existence in natural settings that provides the cells with capabilities to effectively defend against environmental attacks as well as efficiently adapt and survive long periods of starvation and other stresses. Under such circum...

  2. Synchronous plasma membrane electrochemical potential oscillations during yeast colony development and aging

    Czech Academy of Sciences Publication Activity Database

    Palková, Z.; Váchová, Libuše; Gášková, D.; Kučerová, Helena

    2009-01-01

    Roč. 26, č. 4 (2009), s. 228-235 ISSN 0968-7688 R&D Projects: GA ČR GA204/05/0294; GA ČR GA204/08/0718; GA MŠk(CZ) LC531 Grant - others:US(US) Howard Hughes Medical Institute International Research Award (#55005623) Institutional research plan: CEZ:AV0Z50200510 Keywords : yeast colony population * transmembrane potential oscillations * cell energetics Subject RIV: EE - Microbiology, Virology Impact factor: 2.777, year: 2009

  3. Attraction of wild-like and colony-reared Bactrocera cucurbitae (Diptera: Tephritidae) to Cuelure in the field

    Science.gov (United States)

    The attraction of wild tephritids to semiochemical-based lures are the ideal basis for trap network design in detection programs, but in practice, mass-reared colony insects are usually used to determine trap efficiency. For Bactrocera cucurbitae Coquillett, a lower response by wild males compared w...

  4. Interspecies Variation in the Susceptibility of a Wild-Derived Colony of Mice to Pinworms (Aspiculuris tetraptera).

    Science.gov (United States)

    Curtis, Ryan C; Murray, Jill K; Campbell, Polly; Nagamori, Yoko; Molnar, Adam; Jackson, Todd A

    2017-01-01

    Pinworms are common parasites in wild and laboratory rodents. Despite their relative nonpathogenicity in immunocompetent models, pinworm infections add an unwanted variable and may confound some types of research. For this reason, health monitoring programs and biosecurity measures aim to minimize the spread of pinworm infections into colonies free from the organisms. Wild-derived and laboratory strains of mice have shown varied susceptibility to infection with Aspiculuris tetraptera, the most commonly found murine pinworm. In particular, susceptibility is increased in wild-derived mice, young animals, and males. Routine surveillance at our institution revealed pinworm infection (A. tetraptera only) within a colony of multiple, wild-derived species of Mus, although only specific species showed positive results during initial sampling. To assess whether species-associated differences in susceptibility were present, we analyzed fecal egg counts of A. tetraptera in every cage of the colony. Our results revealed significant differences in susceptibility between various species and subspecies of Mus. Egg counts were significantly higher in Mus spicilegus than Mus m. domesticus (WSB/EiJ) and Mus macedonicus. Mus spretus had higher egg counts than M. m. domesticus (WSB/EiJ), M. m. musculus (PWK/PhJ), and M. macedonicus. Egg counts did not differ in regard to age, sex, or number of mice per cage. As wild-derived mouse models continue to compliment research largely based on laboratory strains, it will be important to understand host-parasite interactions and their effects on research, particularly studies evaluating immune responses, behavior, growth, and other physiologic parameters.

  5. Influence of feeding bee colonies on colony strenght and honey authenticity

    Directory of Open Access Journals (Sweden)

    Andreja KANDOLF BOROVŠAK

    2015-12-01

    Full Text Available For the natural development of bee colonies, there is the need for appropriate nutrition. Lack of natural honey flow must be supplemented by feeding bee colonies with sugar syrups or candy paste. This supplementary feeding encourages brood breeding and forage activity, whereby stronger colonies collect more honey. Sugar syrups can cause honey adulteration, which is more frequent with the reversing of the brood combs with the bee food, with the combs moved from the brood chamber to the upper chamber. Authentication of honey from the standpoint of the presence of sugar syrup is very complex, because there is no single method by which honey adulteration can be reliably confirmed. Feeding the colonies in spring should result in stronger colonies and hence the collection of more honey in the brood chambers. The objective of the present study was to determine whether this has effects also on honey authenticity, and to discover a simple method for detection of honey adulteration. The colonies were fed with candy paste that had added yeast and blue dye, to provide markers for detection of honey adulteration. The strength of the colonies and quantity of honey in the brood chambers were monitored. The results of the analysis of stable isotope and activity of foreign enzymes were compared with the results of yeast quantity and colour of the honey (absorbance, L*, a*, b* parameters. Detection of yeast in the honey samples and presence of colour as a consequence of added dye appear to be appropriate methods to follow honey adulteration, and further studies are ongoing.

  6. Influence of quantities of brewer yeast on the performance of Anastrepha obliqua wild females (Diptera, Tephritidae

    Directory of Open Access Journals (Sweden)

    Cresoni-Pereira Carla

    2001-01-01

    Full Text Available Using artificial solid diets, experiments were performed with Anastrepha obliqua (Macquart, 1835 wild females in order to verify the influence of different quantities of brewer yeast on the performance and compensation behavior to unbalanced diets ingestion. The observed parameters were egg production, ingestion, diet efficiency and survival in the reproductive phase. Results indicated that there was no compensatory ingestion to different quantities of yeast and that the diet with 12.5g of yeast provided the best performance. The absence of compensatory ingestion is discussed based on the yeast phagostimulation and on the costs involved in solid diets ingestion. The relation between the analyzed parameters and the protein quantities in the diet were discussed.

  7. Influence of quantities of brewer yeast on the performance of Anastrepha obliqua wild females (Diptera, Tephritidae)

    International Nuclear Information System (INIS)

    Cresoni-Pereira, Carla; Zucoloto, Fernando Sergio

    2001-01-01

    Using artificial solid diets, experiments were performed with Anastrepha obliqua (Macquart, 1835) wild females in order to verify the influence of different quantities of brewer yeast on the performance and compensation behavior to unbalanced diets ingestion. The observed parameters were egg production, ingestion, diet efficiency and survival in the reproductive phase. Results indicated that there was no compensatory ingestion to different quantities of yeast and that the diet with 12.5g of yeast provided the best performance. The absence of compensatory ingestion is discussed based on the yeast phagostimulation and on the costs involved in solid diets ingestion. The relation between the analyzed parameters and the protein quantities in the diet were discussed. (author)

  8. Influence of quantities of brewer yeast on the performance of Anastrepha obliqua wild females (Diptera, Tephritidae)

    Energy Technology Data Exchange (ETDEWEB)

    Cresoni-Pereira, Carla; Zucoloto, Fernando Sergio [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Biologia

    2001-11-15

    Using artificial solid diets, experiments were performed with Anastrepha obliqua (Macquart, 1835) wild females in order to verify the influence of different quantities of brewer yeast on the performance and compensation behavior to unbalanced diets ingestion. The observed parameters were egg production, ingestion, diet efficiency and survival in the reproductive phase. Results indicated that there was no compensatory ingestion to different quantities of yeast and that the diet with 12.5g of yeast provided the best performance. The absence of compensatory ingestion is discussed based on the yeast phagostimulation and on the costs involved in solid diets ingestion. The relation between the analyzed parameters and the protein quantities in the diet were discussed. (author)

  9. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus.

    Science.gov (United States)

    Peris, David; Langdon, Quinn K; Moriarty, Ryan V; Sylvester, Kayla; Bontrager, Martin; Charron, Guillaume; Leducq, Jean-Baptiste; Landry, Christian R; Libkind, Diego; Hittinger, Chris Todd

    2016-07-01

    Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike ale-style beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains to each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. We conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes.

  10. The genomics of wild yeast populations sheds light on the domestication of man's best (micro) friend.

    Science.gov (United States)

    Eberlein, Chris; Leducq, Jean-Baptiste; Landry, Christian R

    2015-11-01

    The domestication of plants, animals and microbes by humans are the longest artificial evolution experiments ever performed. The study of these long-term experiments can teach us about the genomics of adaptation through the identification of the genetic bases underlying the traits favoured by humans. In laboratory evolution, the characterization of the molecular changes that evolved specifically in some lineages is straightforward because the ancestors are readily available, for instance in the freezer. However, in the case of domesticated species, the ancestor is often missing, which leads to the necessity of going back to nature in order to infer the most likely ancestral state. Significant and relatively recent examples of this approach include wolves as the closest wild relative to domestic dogs (Axelsson et al. 2013) and teosinte as the closest relative to maize (reviewed in Hake & Ross-Ibarra 2015). In both cases, the joint analysis of domesticated lineages and their wild cousins has been key in reconstructing the molecular history of their domestication. While the identification of closest wild relatives has been done for many plants and animals, these comparisons represent challenges for micro-organisms. This has been the case for the budding yeast Saccharomyces cerevisiae, whose natural ecological niche is particularly challenging to define. For centuries, this unicellular fungus has been the cellular factory for wine, beer and bread crafting, and currently for bioethanol and drug production. While the recent development of genomics has lead to the identification of many genetic elements associated with important wine characteristics, the historical origin of some of the domesticated wine strains has remained elusive due to the lack of knowledge of their close wild relatives. In this issue of Molecular Ecology, Almeida et al. (2015) identified what is to date the closest known wild population of the wine yeast. This population is found associated with

  11. Yeast species associated with the spontaneous fermentation of cider.

    Science.gov (United States)

    Valles, Belén Suárez; Bedriñana, Rosa Pando; Tascón, Norman Fernández; Simón, Amparo Querol; Madrera, Roberto Rodríguez

    2007-02-01

    This paper reports the influence of cider-making technology (pneumatic and traditional pressing) on the dynamics of wild yeast populations. Yeast colonies isolated from apple juice before and throughout fermentation at a cider cellar of Asturias (Spain), during two consecutive years were studied. The yeast strains were identified by restriction fragment length polymorphism analysis of the 5.8S rRNA gene and the two flanking internal transcribed sequences (ITS). The musts obtained by pneumatic pressing were dominated by non-Saccharomyces yeasts (Hanseniaspora genus and Metschnikowia pulcherrima) whereas in the apple juices obtained by traditional pressing Saccharomyces together with non-Saccharomyces, were always present. The species Saccharomyces present were S. cerevisiae and S. bayanus. Apparently S. bayanus, was the predominant species at the beginning and the middle fermentation steps of the fermentation process, reaching a percentage of isolation between 33% and 41%, whereas S. cerevisiae took over the process in the final stages of fermentation. During the 2001 harvest, with independence of cider-making technology, the species Hanseniaspora valbyensis was always isolated at the end of fermentations.

  12. Effect of poly-A:U, dextran sulfate and yeast RNA on the bone marrow colony-forming ability in irradiated mice

    International Nuclear Information System (INIS)

    Chernyavskij, V.I.; Lysenko, A.I.; Kulakova, G.S.

    1977-01-01

    It has been shown, that poly-A:U, dextran sulfate and yeast RNA increased a number of endogenic colonies (COE) in the mouse spleen sublethally irradiated, as a result of, apparently, their mitogenic effect on proliferous COE. The preparations did not affect the number of exogenic colonies when introducting them together with transfer of syngenic cells of bone marrow, taken from the intact donors. Dextran sulfate increased 2.7 times the number of the endogenic colonies in the spleens of nonuniformly irradiated mice mainly due to the COE migration from protected bone marrow areas. The complex of poly-A:U and yest RNA in such experiment type were ineffective. One of the most important factors in the mechanism of the dextran sulfate adjuvant activity possibly is its ability to increase migration potencies of the stem blood-forming cells

  13. Comparison of the proteomes of three yeast wild type strains: CEN.PK2, FY1679 and W303

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, A.; Mose Larsen, P.; Blomberg, A.

    2001-01-01

    Yeast deletion strains created during gene function analysis projects very often show drastic phenotypic differences depending on the genetic background used. These results indicate the existence of important molecular differences between the CEN.PK2, FY1679 and W303 wild type strains...

  14. The relationship between salivary histatin levels and oral yeast carriage.

    Science.gov (United States)

    Jainkittivong, A; Johnson, D A; Yeh, C K

    1998-06-01

    Candida species are common commensal inhabitants of the oral cavity. Human saliva contains antifungal proteins called histatins. We tested the hypothesis that oral yeast status is related to salivary histatin levels. Thirty subjects were divided into two groups based on the presence (n = 15) or absence (n = 15) of yeast on oral mucosa surfaces. Unstimulated and stimulated submandibular and sublingual and parotid saliva was collected from each subject. Salivary flow rates were measured and histatin concentrations were determined in the stimulated saliva samples. The yeast colony positive group showed lower median unstimulated parotid saliva flow rates as well as lower median concentrations of total histatins in submandibular and sublingual saliva. There was a negative correlation between yeast colony-forming units and unstimulated parotid saliva flow rates and between yeast colony-forming units and submandibular and sublingual saliva histatin concentration and secretion. The results suggest that oral yeast status may be influenced by unstimulated parotid saliva flow rates and by submandibular and sublingual histatin concentration and secretion.

  15. Yeast biofilm colony as an orchestrated multicellular organism

    Czech Academy of Sciences Publication Activity Database

    Šťovíček, V.; Váchová, Libuše; Palková, Zdena

    2012-01-01

    Roč. 5, č. 2 (2012), s. 203-205 ISSN 1942-0889 R&D Projects: GA ČR GA204/08/0718; GA MŠk(CZ) LC531 Grant - others:GA MŠk(CZ) LC06063 Program:LC Institutional research plan: CEZ:AV0Z50200510 Keywords : yeast biofilm * yeast cell Subject RIV: EE - Microbiology, Virology

  16. Increased biological activity of deglycosylated recombinant human granulocyte/macrophage colony-stimulating factor produced by yeast or animal cells

    International Nuclear Information System (INIS)

    Moonen, P.; Mermod, J.J.; Ernst, J.F.; Hirschi, M.; DeLamarter, J.F.

    1987-01-01

    Human granulocyte/macrophage colony-stimulating factor (hGM-CSF) produced by several recombinant sources including Escherichia coli, yeast, and animal cells was studied. Recombinant animal cells produced hGM-CSF in low quantities and in multiple forms of varying size. Mammalian hGM-CSF was purified 200,000-fold using immunoaffinity and lectin chromatography. Partially purified proteins produced in yeast and mammalian cells were assayed for the effects of deglycosylation. Following enzymatic deglycosylation, immunoreactivity was measured by radioimmunoassay and biological activity was measured in vitro on responsive human primary cells. Removal of N-linked oligosaccharides from both proteins increased their immunoreactivities by 4- to 8-fold. Removal of these oligosaccharides also increased their specific biological activities about 20-fold, to reach approximately the specific activity of recombinant hGM-CSF from E. coli. The E. coli produced-protein-lacking any carbohydrate- had by far the highest specific activity observed for the recombinant hGM-CSFs

  17. Biosynthesis of polyhydroxyalkanotes in wildtype yeasts | Desuoky ...

    African Journals Online (AJOL)

    Biosynthesis of the biodegradable polymers polyhydroxyalkanotes (PHAs) are studied extensively in wild type and genetically modified prokaryotic cells, however the content and structure of PHA in wild type yeasts are not well documented. The purpose of this study was to screen forty yeast isolates collected from different ...

  18. Genetic control of mitotic crossing over in yeast. 2. Influence of UV irradiation

    International Nuclear Information System (INIS)

    Zakharov, I.A.; Marfin, S.V.; Koval'tsova, S.V.; Kasinova, G.V.

    1982-01-01

    UV-induced crossing-over and general mitotic segregation of the following strains of Saccharomyces cerevisiae yeasts were studied: a wild-type diploid, diploids homozygous with respect to the radiosensitivity of rad 2, rad 15, rad 54, xrs 4, rad 2 rad 54, rad 15 rad 54. Wild-type diploids rad 2 and rad 15 have a high frequency of the induced mitotic crossing-over. Diploids rad 15, rad 54 can not cause UV-induced mitotic crossing-over. Reddish-pink and reddish-pink-white colonies ratio (the first appear if the crossing-over occurs during the first after the irradiation division, the second - during the second division) is 4.8:1 for the wild type, 1.6:1 for rad 2, and 1.1:1 for rad 15. Nonreciprocal mitotic segregation of high frequency was observed for the wild type rad 2, rad 15, xrs 4, and diploids rad 54, rad 2 rad 54, rad 15 rad 54 had a lower frequency. We suppose that after UV-irradiation there exist at least three types of repair in yeast diploid cells: excision repair, prereplication recombinating repair after the excision of dimers, and post-replication recombinating repair. Rad 2 and rad 15 mutations blow the first and second types, rad 54 mutation partially block the second and third parths. It seems that xrs 4 mutation does not block the recombinating capability but somehow changes the process of recombination in such a way that much nonreciprocal products recorded as seqregants are produced [ru

  19. Responses of phylloplane yeasts to UV-B (290-320 nm) radiation: interspecific differences in sensitivity

    International Nuclear Information System (INIS)

    Gunasekera, T.S.; Paul, N.D.; Ayres, P.G.

    1997-01-01

    The sensitivity to UV-B (290–320 nm) radiation of common phylloplane yeasts from two contrasting UV-B environments was compared in the laboratory using mixtures of white light (PAR: 400–700 nm) and UV-B radiation from artificial lamp sources. Sporidiobolus salmonicolor, Rhodotorula mucilaginosa and Cryptococcus sp., the dominant yeasts on leaves of tea (Camellia sinensis), were isolated in Sri Lanka (SL), while Sporidiobolus sp. and Bullera alba, dominant on faba bean (Vicia faba), were isolated in the U.K. Dose responses were determined separately for each yeast. UV-B reduced colony forming units (due to cell mortality or inactivation) and colony size (due to reduced multiplication) of all yeasts. The LD 50 values and doses causing 50% reduction of cells per colony were higher for SL isolates than U.K. isolates. Results indicated that each yeast is somewhat vulnerable to UV-B doses representative of its natural habitat. The relative insensitivity of SL isolates was shown when SL and U.K. isolates were irradiated simultaneously with the same dose of UV-B. Of the two U.K. yeasts, B. alba was significantly more sensitive than Sporidiobolus sp. to UV-B. Except for R. mucilaginosa from SL, all yeasts demonstrated some photorepair in the presence of white light. White light provided relatively little protection for the U.K. isolate of Sporidiobolus sp. although it allowed increased colony size. The spectral responses of Sporidiobolus sp. (U.K.) and of B. alba (U.K.) were broadly similar. Wavelengths longer than 320 nm had no measurable effect on colony forming units. However, colony survival was significantly reduced at 310 nm and all shorter wavebands. No colonies were counted at 290 nm or below. (author)

  20. Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations.

    Science.gov (United States)

    Steensels, Jan; Verstrepen, Kevin J

    2014-01-01

    Yeasts are the main driving force behind several industrial food fermentation processes, including the production of beer, wine, sake, bread, and chocolate. Historically, these processes developed from uncontrolled, spontaneous fermentation reactions that rely on a complex mixture of microbes present in the environment. Because such spontaneous processes are generally inconsistent and inefficient and often lead to the formation of off-flavors, most of today's industrial production utilizes defined starter cultures, often consisting of a specific domesticated strain of Saccharomyces cerevisiae, S. bayanus, or S. pastorianus. Although this practice greatly improved process consistency, efficiency, and overall quality, it also limited the sensorial complexity of the end product. In this review, we discuss how Saccharomyces yeasts were domesticated to become the main workhorse of food fermentations, and we investigate the potential and selection of nonconventional yeasts that are often found in spontaneous fermentations, such as Brettanomyces, Hanseniaspora, and Pichia spp.

  1. Aging and differentiation in yeast populations: elders with different properties and functions.

    Science.gov (United States)

    Palková, Zdena; Wilkinson, Derek; Váchová, Libuše

    2014-02-01

    Over the past decade, it has become evident that similarly to cells forming metazoan tissues, yeast cells have the ability to differentiate and form specialized cell types. Examples of yeast cellular differentiation have been identified both in yeast liquid cultures and within multicellular structures occupying solid surfaces. Most current knowledge on different cell types comes from studies of the spatiotemporal internal architecture of colonies developing on various media. With a few exceptions, yeast cell differentiation often concerns nongrowing, stationary-phase cells and leads to the formation of cell subpopulations differing in stress resistance, cell metabolism, respiration, ROS production, and others. These differences can affect longevity of particular subpopulations. In contrast to liquid cultures, where various cell types are dispersed within stationary-phase populations, cellular differentiation depends on the specific position of particular cells within multicellular colonies. Differentiated colonies, thus, resemble primitive multicellular organisms, in which the gradients of certain compounds and the position of cells within the structure affect cellular differentiation. In this review, we summarize and compare the properties of diverse types of differentiated chronologically aging yeast cells that have been identified in colonies growing on different media, as well as of those found in liquid cultures. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Radiation-induced mitotic and meiotic aneuploidy in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Parry, J M; Sharp, D; Tippins, R S; Parry, E M

    1979-06-01

    A number of genetic systems are described which in yeast may be used to monitor the induction of chromosome aneuploidy during both mitotic and meiotic cell division. Using these systems we have been able to demonstrate the induction of both monosomic and trisomic cells in mitotically dividing cells and disomic spores in meiotically dividing cells after both UV light and X-ray exposure. The frequency of UV-light-induced monosomic colonies were reduced by post-treatment with photoreactivity light and both UV-light- and X-ray-induced monosomic colonies were reduced by liquid holding post-treatment under non-nutrient conditions. Both responses indicate an involvement of DNA-repair mechanisms in the removal of lesions which may lead to monosomy in yeast. This was further confirmed by the response of an excision-defective yeast strain which showed considerably increased sensitivity to the induction of monosomic colonies by UV-light treatment at low doses. Yeast cultures irradiated at different stages of growth showed variation in their responses to both UV-light and X-rays, cells at the exponential phase of growth show maximum sensitivity to the induction of monosomic colonies at low doses whereas stationary phase cultures showed maximum induction of monosomic colonies at high does. The frequencies of X-ray-induced chromosome aneuploidy during meiosis leading to the production of disomic spores was shown to be dependent upon the stage of meiosis at which the yeast cells were exposed to radiation. Cells which had proceeded beyond the DNA synthetic stage of meiosis were shown to produce disomic spores at considerably lower radiation doses than those cells which had only recently been inoculated into sporulation medium. The results obtained suggest that the yeast sustem may be suitable for the study of sensitivities of the various stages of meiotic cell division to the induction of chromosome aneuploidy after radiation exposure.

  3. Screening of respiration deficiency mutants of yeasts (Saccharomyces cerevisiae) induced by ion irradiation and the mtDNA restriction analysis

    International Nuclear Information System (INIS)

    Mao Shuhong; Chinese Academy of Sciences, Beijing; Jin Genming; Wei Zengquan; Xie Hongmei; Ma Qiufeng; Gu Ying

    2005-01-01

    Screening of the respiration deficiency mutants of Saccharomyces cerevisiae induced by 5.19 MeV/u 22 Ne 5+ ion irradiation is reported in this paper. Some respiration deficiency mutants of white colony phenotype, in a condition of selective culture of TTC medium, were obtained. A new and simplified method based on mtDNA restriction analysis is described. The authors found that there are many obvious differences in mtDNAs between wild yeasts and the respiration deficiency mutants. The mechanism of obtaining the respiration deficiency mutants induced by heavy ion irradiation is briefly discussed. (authors)

  4. Yeast genes involved in regulating cysteine uptake affect production of hydrogen sulfide from cysteine during fermentation.

    Science.gov (United States)

    Huang, Chien-Wei; Walker, Michelle E; Fedrizzi, Bruno; Gardner, Richard C; Jiranek, Vladimir

    2017-08-01

    An early burst of hydrogen sulfide (H2S) produced by Saccharomyces cerevisiae during fermentation could increase varietal thiols and therefore enhance desirable tropical aromas in varieties such as Sauvignon Blanc. Here we attempted to identify genes affecting H2S formation from cysteine by screening yeast deletion libraries via a colony colour assay on media resembling grape juice. Both Δlst4 and Δlst7 formed lighter coloured colonies and produced significantly less H2S than the wild type on high concentrations of cysteine, likely because they are unable to take up cysteine efficiently. We then examined the nine known cysteine permeases and found that deletion of AGP1, GNP1 and MUP1 led to reduced production of H2S from cysteine. We further showed that deleting genes involved in the SPS-sensing pathway such as STP1 and DAL81 also reduced H2S from cysteine. Together, this study indirectly confirms that Agp1p, Gnp1p and Mup1p are the major cysteine permeases and that they are regulated by the SPS-sensing and target of rapamycin pathways under the grape juice-like, cysteine-supplemented, fermentation conditions. The findings highlight that cysteine transportation could be a limiting factor for yeast to generate H2S from cysteine, and therefore selecting wine yeasts without defects in cysteine uptake could maximise thiol production potential. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts

    Czech Academy of Sciences Publication Activity Database

    Pálková, Z.; Váchová, Libuše

    2016-01-01

    Roč. 57, SEP (2016), s. 110-119 ISSN 1084-9521 R&D Projects: GA ČR GA13-08605S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Pathogenic yeasts * Biofilms and colonies * Cell differentiation Subject RIV: EE - Microbiology, Virology Impact factor: 6.614, year: 2016

  6. Characterization of global yeast quantitative proteome data generated from the wild-type and glucose repression Saccharomyces cerevisiae strains: The comparison of two quantitative methods

    DEFF Research Database (Denmark)

    Usaite, Renata; Wohlschlegel, James; Venable, John D.

    2008-01-01

    The quantitative proteomic analysis of complex protein mixtures is emerging as a technically challenging but viable systems-level approach for studying cellular function. This study presents a large-scale comparative analysis of protein abundances from yeast protein lysates derived from both wild......-type yeast and yeast strains lacking key components of the Snf1 kinase complex. Four different strains were grown under well-controlled chemostat conditions. Multidimensional protein identification technology followed by quantitation using either spectral counting or stable isotope labeling approaches...... labeling strategy. The stable isotope labeling based quantitative approach was found to be highly reproducible among biological replicates when complex protein mixtures containing small expression changes were analyzed. Where poor correlation between stable isotope labeling and spectral counting was found...

  7. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    Science.gov (United States)

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered.

    Science.gov (United States)

    Jolly, Neil P; Varela, Cristian; Pretorius, Isak S

    2014-03-01

    Saccharomyces cerevisiae and grape juice are 'natural companions' and make a happy wine marriage. However, this relationship can be enriched by allowing 'wild' non-Saccharomyces yeast to participate in a sequential manner in the early phases of grape must fermentation. However, such a triangular relationship is complex and can only be taken to 'the next level' if there are no spoilage yeast present and if the 'wine yeast' - S. cerevisiae - is able to exert its dominance in time to successfully complete the alcoholic fermentation. Winemakers apply various 'matchmaking' strategies (e.g. cellar hygiene, pH, SO2 , temperature and nutrient management) to keep 'spoilers' (e.g. Dekkera bruxellensis) at bay, and allow 'compatible' wild yeast (e.g. Torulaspora delbrueckii, Pichia kluyveri, Lachancea thermotolerans and Candida/Metschnikowia pulcherrima) to harmonize with potent S. cerevisiae wine yeast and bring the best out in wine. Mismatching can lead to a 'two is company, three is a crowd' scenario. More than 40 of the 1500 known yeast species have been isolated from grape must. In this article, we review the specific flavour-active characteristics of those non-Saccharomyces species that might play a positive role in both spontaneous and inoculated wine ferments. We seek to present 'single-species' and 'multi-species' ferments in a new light and a new context, and we raise important questions about the direction of mixed-fermentation research to address market trends regarding so-called 'natural' wines. This review also highlights that, despite the fact that most frontier research and technological developments are often focussed primarily on S. cerevisiae, non-Saccharomyces research can benefit from the techniques and knowledge developed by research on the former. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Tapping into yeast diversity.

    Science.gov (United States)

    Fay, Justin C

    2012-11-01

    Domesticated organisms demonstrate our capacity to influence wild species but also provide us with the opportunity to understand rapid evolution in the context of substantially altered environments and novel selective pressures. Recent advances in genetics and genomics have brought unprecedented insights into the domestication of many organisms and have opened new avenues for further improvements to be made. Yet, our ability to engineer biological systems is not without limits; genetic manipulation is often quite difficult. The budding yeast, Saccharomyces cerevisiae, is not only one of the most powerful model organisms, but is also the premier producer of fermented foods and beverages around the globe. As a model system, it entertains a hefty workforce dedicated to deciphering its genome and the function it encodes at a rich mechanistic level. As a producer, it is used to make leavened bread, and dozens of different alcoholic beverages, such as beer and wine. Yet, applying the awesome power of yeast genetics to understanding its origins and evolution requires some knowledge of its wild ancestors and the environments from which they were derived. A number of surprisingly diverse lineages of S. cerevisiae from both primeval and secondary forests in China have been discovered by Wang and his colleagues. These lineages substantially expand our knowledge of wild yeast diversity and will be a boon to elucidating the ecology, evolution and domestication of this academic and industrial workhorse.

  10. Observation of microorganism colonies using a scanning-laser-beam pH-sensing microscope

    International Nuclear Information System (INIS)

    Nakao, M.; Inoue, S.; Oishi, R.; Yoshinobu, T.; Iwasaki, H.

    1995-01-01

    The extracellular pH-distribution of colonies of Saccharomyces cerevisiae (yeast) and Escherichia coli (E. coli) were observed using a newly-developed scanning-laser-beam pH-sensing microscope. Colonies were incubated either on top of agarose plates or between the pH-sensing surface and the agar. In the latter case, colony growth was observed in-situ. The colonies could be observed within a period as short as 8 h for E. coli. The pH-distribution profiles by the colonies were found to be very sharp, in agreement with simulation results. (author)

  11. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast

    Science.gov (United States)

    Libkind, Diego; Hittinger, Chris Todd; Valério, Elisabete; Gonçalves, Carla; Dover, Jim; Johnston, Mark; Gonçalves, Paula; Sampaio, José Paulo

    2011-01-01

    Domestication of plants and animals promoted humanity's transition from nomadic to sedentary lifestyles, demographic expansion, and the emergence of civilizations. In contrast to the well-documented successes of crop and livestock breeding, processes of microbe domestication remain obscure, despite the importance of microbes to the production of food, beverages, and biofuels. Lager-beer, first brewed in the 15th century, employs an allotetraploid hybrid yeast, Saccharomyces pastorianus (syn. Saccharomyces carlsbergensis), a domesticated species created by the fusion of a Saccharomyces cerevisiae ale-yeast with an unknown cryotolerant Saccharomyces species. We report the isolation of that species and designate it Saccharomyces eubayanus sp. nov. because of its resemblance to Saccharomyces bayanus (a complex hybrid of S. eubayanus, Saccharomyces uvarum, and S. cerevisiae found only in the brewing environment). Individuals from populations of S. eubayanus and its sister species, S. uvarum, exist in apparent sympatry in Nothofagus (Southern beech) forests in Patagonia, but are isolated genetically through intrinsic postzygotic barriers, and ecologically through host-preference. The draft genome sequence of S. eubayanus is 99.5% identical to the non-S. cerevisiae portion of the S. pastorianus genome sequence and suggests specific changes in sugar and sulfite metabolism that were crucial for domestication in the lager-brewing environment. This study shows that combining microbial ecology with comparative genomics facilitates the discovery and preservation of wild genetic stocks of domesticated microbes to trace their history, identify genetic changes, and suggest paths to further industrial improvement. PMID:21873232

  12. Isolation and characterization of yeasts capable of efficient utilization of hemicellulosic hydrolyzate as the carbon source.

    Science.gov (United States)

    Cassa-Barbosa, L A; Procópio, R E L; Matos, I T S R; Filho, S A

    2015-09-28

    Few yeasts have shown the potential to efficiently utilize hemicellulosic hydrolyzate as the carbon source. In this study, microorganisms isolated from the Manaus region in Amazonas, Brazil, were characterized based on their utilization of the pentoses, xylose, and arabinose. The yeasts that showed a potential to assimilate these sugars were selected for the better utilization of lignocellulosic biomass. Two hundred and thirty seven colonies of unicellular microorganisms grown on hemicellulosic hydrolyzate, xylose, arabinose, and yeast nitrogen base selective medium were analyzed. Of these, 231 colonies were subjected to sugar assimilation tests. One hundred and twenty five of these were shown to utilize hydrolyzed hemicellulose, xylose, or arabinose as the carbon source for growth. The colonies that showed the best growth (N = 57) were selected, and their internal transcribed spacer-5.8S rDNA was sequenced. The sequenced strains formed four distinct groups in the phylogenetic tree, and showed a high percentage of similarity with Meyerozyma caribbica, Meyerozyma guilliermondii, Trichosporon mycotoxinivorans, Trichosporon loubieri, Pichia kudriavzevii, Candida lignohabitans, and Candida ethanolica. The discovery of these xylose-fermenting yeasts could attract widespread interest, as these can be used in the cost-effective production of liquid fuel from lignocellulosic materials.

  13. Production and Its Anti-hyperglycemic Effects of γ-Aminobutyric Acid from the Wild Yeast Strain Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1.

    Science.gov (United States)

    Han, Sang-Min; Lee, Jong-Soo

    2017-09-01

    This study was done to produce γ-aminobutyric acid (GABA) from wild yeast as well as investigate its anti-hyperglycemic effects. Among ten GABA-producing yeast strains, Pichia silvicola UL6-1 and Sporobolomyces carnicolor 402-JB-1 produced high GABA concentration of 134.4 µg/mL and 179.2 µg/mL, respectively. P. silvicola UL6-1 showed a maximum GABA yield of 136.5 µg/mL and 200.8 µg/mL from S. carnicolor 402-JB-1 when they were cultured for 30 hr at 30℃ in yeast extract-peptone-dextrose medium. The cell-free extract from P. silvicola UL6-1 and S. carnicolor 402-JB-1 showed very high anti-hyperglycemic α-glucosidase inhibitory activity of 72.3% and 69.9%, respectively. Additionally, their cell-free extract-containing GABA showed the anti-hyperglycemic effect in streptozotocin-induced diabetic Sprague-Dawley rats.

  14. Asynchronous spore germination in isogenic natural isolates of Saccharomyces paradoxus.

    Science.gov (United States)

    Stelkens, Rike B; Miller, Eric L; Greig, Duncan

    2016-05-01

    Spores from wild yeast isolates often show great variation in the size of colonies they produce, for largely unknown reasons. Here we measure the colonies produced from single spores from six different wild Saccharomyces paradoxus strains. We found remarkable variation in spore colony sizes, even among spores that were genetically identical. Different strains had different amounts of variation in spore colony sizes, and variation was not affected by the number of preceding meioses, or by spore maturation time. We used time-lapse photography to show that wild strains also have high variation in spore germination timing, providing a likely mechanism for the variation in spore colony sizes. When some spores from a laboratory strain make small colonies, or no colonies, it usually indicates a genetic or meiotic fault. Here, we demonstrate that in wild strains spore colony size variation is normal. We discuss and assess potential adaptive and non-adaptive explanations for this variation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Checkpoint independence of most DNA replication origins in fission yeast.

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-12-19

    In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (approximately 3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in checkpoint

  16. Checkpoint independence of most DNA replication origins in fission yeast

    Science.gov (United States)

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-01-01

    Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleoside triphosphates (dNTPs) and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR) or cds1 (which encodes the fission yeast homologue of Chk2). Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation) that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3%) behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild-type cells as in

  17. Checkpoint independence of most DNA replication origins in fission yeast

    Directory of Open Access Journals (Sweden)

    Scott Donna

    2007-12-01

    Full Text Available Abstract Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU, which limits the pool of deoxyribonucleoside triphosphates (dNTPs and activates the replication checkpoint. The checkpoint-mutant cells carried deletions either of rad3 (which encodes the fission yeast homologue of ATR or cds1 (which encodes the fission yeast homologue of Chk2. Results Our microarray results proved to be largely consistent with those independently obtained and recently published by three other laboratories. However, we were able to reconcile differences between the previous studies regarding the extent to which fission yeast replication origins are affected by the replication checkpoint. We found (consistent with the three previous studies after appropriate interpretation that, in surprising contrast to budding yeast, most fission yeast origins, including both early- and late-firing origins, are not significantly affected by checkpoint mutations during replication in the presence of HU. A few origins (~3% behaved like those in budding yeast: they replicated earlier in the checkpoint mutants than in wild type. These were located primarily in the heterochromatic subtelomeric regions of chromosomes 1 and 2. Indeed, the subtelomeric regions defined by the strongest checkpoint restraint correspond precisely to previously mapped subtelomeric heterochromatin. This observation implies that subtelomeric heterochromatin in fission yeast differs from heterochromatin at centromeres, in the mating type region, and in ribosomal DNA, since these regions replicated at least as efficiently in wild

  18. Ammonia production and its possible role as a mediator of communication for Debaryomyces hansenii and other cheese-relevant yeast species

    DEFF Research Database (Denmark)

    Gori, Klaus; Mortensen, Henrik Dam; Arneborg, Nils

    2007-01-01

    lipolytica, and Geotrichum candidum was determined on glycerol medium (GM) agar and cheese agar. The ammonia production was found to vary, especially among yeast species, but also within strains of D. hansenii. In addition, variations in ammonia production were found between GM agar and cheese agar. Ammonia...... yeasts. On GM agar and cheese agar, D. hansenii showed ammonia production oriented toward neighboring colonies when colonies were grown close to other colonies of the same species; however, the time to oriented ammonia production differed among strains and media. In addition, an increase of ammonia...... production was determined for double colonies compared with single colonies of D. hansenii on GM agar. In general, similar levels of ammonia production were determined for both single and double colonies of D. hansenii on cheese agar....

  19. Simple, Reliable, and Cost-Effective Yeast Identification Scheme for the Clinical Laboratory

    OpenAIRE

    Koehler, Ann P.; Chu, Kai-Cheong; Houang, Elizabeth T. S.; Cheng, Augustine F. B.

    1999-01-01

    The appearance of colonies on the chromogenic medium CHROMagar Candida combined with observation of morphology on corn meal–Tween 80 agar was used for the identification of 353 clinical yeast isolates. The results were compared with those obtained with API yeast identification kits. The accuracy of identification and the turnaround time were equivalent for each method, and our cultural method was less expensive.

  20. Effects of gamma radiation on Sporothrix schenckii yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Camila M. de Sousa; Martins, Estefania Mara Nascimento; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: cmsl@cdtn.br, e-mail: estefaniabio@yahoo.com.br, e-mail: antero@cdtn.br; Resende, Maria Aparecida de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail: maressend@mono.icb.ufmg.br

    2009-07-01

    Sporotrichosis is a subacute or chronic infection caused by the fungus Sporothrix schenckii. Zoonotic transmission can occur after scratches or bites of animals, mainly cats, rodents, and armadillos. Up to the moment, no approved vaccine was reported for S. schenckii or to any important pathogenic fungi infection in humans, indicating the need to expand the research in this field and to explore new alternatives. The aim of this study was to evaluate the effects of gamma radiation in the viability, metabolic activity and reproductive ability of S. schenckii yeast cells for further studies on the development of a vaccine for immunization of cats and dogs. The culture of S. schenckii, in solid medium, was irradiated at doses ranging from 1.0 to 9.0 kGy. After each dose the reproductive capacity, viability and protein synthesis were estimated. The results showed that a reduction of 6 log{sub 10} cycles in the number of colonies was achieved at 6.0 kGy and after 8.0 kGy no colonies could be recovered. The viability analysis indicated that yeast cells remained viable up to 9.0 kGy. The results of protein synthesis analysis showed that the yeast cells, irradiated up to 9.0 kGy, were able to synthesize proteins. Our preliminary results indicated that for the yeast cells of S. schenckii, it is possible to find an absorbed dose in which the pathogen loses its reproductive ability, while retaining its viability, a necessary condition for the development of a radioattenuated yeast vaccine. (author)

  1. Effects of gamma radiation on Sporothrix schenckii yeast cells

    International Nuclear Information System (INIS)

    Lacerda, Camila M. de Sousa; Martins, Estefania Mara Nascimento; Andrade, Antero S.R.; Resende, Maria Aparecida de

    2009-01-01

    Sporotrichosis is a subacute or chronic infection caused by the fungus Sporothrix schenckii. Zoonotic transmission can occur after scratches or bites of animals, mainly cats, rodents, and armadillos. Up to the moment, no approved vaccine was reported for S. schenckii or to any important pathogenic fungi infection in humans, indicating the need to expand the research in this field and to explore new alternatives. The aim of this study was to evaluate the effects of gamma radiation in the viability, metabolic activity and reproductive ability of S. schenckii yeast cells for further studies on the development of a vaccine for immunization of cats and dogs. The culture of S. schenckii, in solid medium, was irradiated at doses ranging from 1.0 to 9.0 kGy. After each dose the reproductive capacity, viability and protein synthesis were estimated. The results showed that a reduction of 6 log 10 cycles in the number of colonies was achieved at 6.0 kGy and after 8.0 kGy no colonies could be recovered. The viability analysis indicated that yeast cells remained viable up to 9.0 kGy. The results of protein synthesis analysis showed that the yeast cells, irradiated up to 9.0 kGy, were able to synthesize proteins. Our preliminary results indicated that for the yeast cells of S. schenckii, it is possible to find an absorbed dose in which the pathogen loses its reproductive ability, while retaining its viability, a necessary condition for the development of a radioattenuated yeast vaccine. (author)

  2. A chemical genetic screen for modulators of asymmetrical 2,2'-dimeric naphthoquinones cytotoxicity in yeast.

    Directory of Open Access Journals (Sweden)

    Ashkan Emadi

    Full Text Available BACKGROUND: Dimeric naphthoquinones (BiQ were originally synthesized as a new class of HIV integrase inhibitors but have shown integrase-independent cytotoxicity in acute lymphoblastic leukemia cell lines suggesting their use as potential anti-neoplastic agents. The mechanism of this cytotoxicity is unknown. In order to gain insight into the mode of action of binaphthoquinones we performed a systematic high-throughput screen in a yeast isogenic deletion mutant array for enhanced or suppressed growth in the presence of binaphthoquinones. METHODOLOGY/PRINCIPAL FINDINGS: Exposure of wild type yeast strains to various BiQs demonstrated inhibition of yeast growth with IC(50s in the microM range. Drug sensitivity and resistance screens were performed by exposing arrays of a haploid yeast deletion mutant library to BiQs at concentrations near their IC(50. Sensitivity screens identified yeast with deletions affecting mitochondrial function and cellular respiration as having increased sensitivity to BiQs. Corresponding to this, wild type yeast grown in the absence of a fermentable carbon source were particularly sensitive to BiQs, and treatment with BiQs was shown to disrupt the mitochondrial membrane potential and lead to the generation of reactive oxygen species (ROS. Furthermore, baseline ROS production in BiQ sensitive mutant strains was increased compared to wild type and could be further augmented by the presence of BiQ. Screens for resistance to BiQ action identified the mitochondrial external NAD(PH dehydrogenase, NDE1, as critical to BiQ toxicity and over-expression of this gene resulted in increased ROS production and increased sensitivity of wild type yeast to BiQ. CONCLUSIONS/SIGNIFICANCE: In yeast, binaphthoquinone cytotoxicity is likely mediated through NAD(PH:quonine oxidoreductases leading to ROS production and dysfunctional mitochondria. Further studies are required to validate this mechanism in mammalian cells.

  3. Mutations induced by X-radiation in the yeast Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Loprieno, N.; Barale, R.; Baroncelli, S.; Cammellini, A.; Melani, M.; Nieri, R.; Nozzolini, M.; Rossi, A.M.; Pisa Univ.

    1975-01-01

    Experiments on strains of yeast with different genetic backgrounds were done to evaluate the kinetics of inactivation and mutation induction by X-radiation. A system of forward mutation induction in five loci was used and a specific mutation rate was evaluated for the wild type. From a comparison of observations with wild type and radiation-sensitive strains, it may be assumed that in this yeast, mutations are mainly the result of a repair-active process. The range of genotypic and phenotypic influence upon the specific locus mutation rate was evaluated with appropriate biological material and experiments

  4. Saccharomyces cerevisiae: a sexy yeast with a prion problem.

    Science.gov (United States)

    Kelly, Amy C; Wickner, Reed B

    2013-01-01

    Yeast prions are infectious proteins that spread exclusively by mating. The frequency of prions in the wild therefore largely reflects the rate of spread by mating counterbalanced by prion growth slowing effects in the host. We recently showed that the frequency of outcross mating is about 1% of mitotic doublings with 23-46% of total matings being outcrosses. These findings imply that even the mildest forms of the [PSI+], [URE3] and [PIN+] prions impart > 1% growth/survival detriment on their hosts. Our estimate of outcrossing suggests that Saccharomyces cerevisiae is far more sexual than previously thought and would therefore be more responsive to the adaptive effects of natural selection compared with a strictly asexual yeast. Further, given its large effective population size, a growth/survival detriment of > 1% for yeast prions should strongly select against prion-infected strains in wild populations of Saccharomyces cerevisiae.

  5. A comparison of the radiosensitivity of stationary, exponential and G1 phase wild type and repair deficient yeast cultures: supporting evidence for stationary phase yeast cells being in G0

    International Nuclear Information System (INIS)

    Tippins, R.S.; Parry, J.M.

    1982-01-01

    The main points to emerge from this comparison of the radiosensitivity of stationary, exponential and G 1 phase yeast cultures were: (1) In wild type yeast cultures, G 1 cells were the most sensitive to the lethal effects of X-rays, exponential phase cells were the most resistant and stationary phase cells were intermediate in sensitivity. (2) With the excision-repair-defective strain D61-3 (rad 3) stationary phase cells were more resistant than exponential cells with G 1 cells again being most sensitive. (3) The rad 50 gene present in JD50 had a marked effect on the X-ray inactivation response of this strain. In the presence of the defective rad 50 allele, exponential phase cells were as sensitive as G 1 phase cells, with stationary phase cells being more resistant than either. (4) There were marked differences in sensitivity between stationary phase and G 1 phase cells. These differences, along with other physiological differences reported by other workers, lead the authors to suggest that stationary phase cells can be better described as being in G 0 phase, i.e. a stage which is outside the normal mitotic cell cycle of an exponential culture. (author)

  6. Accelerating Yeast Prion Biology using Droplet Microfluidics

    Science.gov (United States)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  7. FluG affects secretion in colonies of Aspergillus niger.

    Science.gov (United States)

    Wang, Fengfeng; Krijgsheld, Pauline; Hulsman, Marc; de Bekker, Charissa; Müller, Wally H; Reinders, Marcel; de Vries, Ronald P; Wösten, Han A B

    2015-01-01

    Colonies of Aspergillus niger are characterized by zonal heterogeneity in growth, sporulation, gene expression and secretion. For instance, the glucoamylase gene glaA is more highly expressed at the periphery of colonies when compared to the center. As a consequence, its encoded protein GlaA is mainly secreted at the outer part of the colony. Here, multiple copies of amyR were introduced in A. niger. Most transformants over-expressing this regulatory gene of amylolytic genes still displayed heterogeneous glaA expression and GlaA secretion. However, heterogeneity was abolished in transformant UU-A001.13 by expressing glaA and secreting GlaA throughout the mycelium. Sequencing the genome of UU-A001.13 revealed that transformation had been accompanied by deletion of part of the fluG gene and disrupting its 3' end by integration of a transformation vector. Inactivation of fluG in the wild-type background of A. niger also resulted in breakdown of starch under the whole colony. Asexual development of the ∆fluG strain was not affected, unlike what was previously shown in Aspergillus nidulans. Genes encoding proteins with a signal sequence for secretion, including part of the amylolytic genes, were more often downregulated in the central zone of maltose-grown ∆fluG colonies and upregulated in the intermediate part and periphery when compared to the wild-type. Together, these data indicate that FluG of A. niger is a repressor of secretion.

  8. Comparisons of radiosensitivity and damage repair potential between mutants from the Saccharomyces cerevisiae strain of yeast and laboratory-bred wild yeasts with particular attention being given to giant cell formation after X-radiation

    International Nuclear Information System (INIS)

    Heinen, A.

    1988-01-01

    Yeast cells were exposed to X-rays at dose levels up to 10 kGy to induce damage to the DNA and investigate its effects on cellular growth patterns. For this purpose, comparisons were carried out between one diploid strain and six haploid strains of the Saccharomyces uvarum and Saccharomyces cerevisiae species, which permitted the individual recovery and damage repair pathways to be described in more detail. The laboratory-bred wild strains ATCC 9080, 211 and 706 were judged to have unimpaired repair mechanisms as compared to the auxotrophs, which fact was evident from the higher radiosensitivity of the latter. A further parameter in this evaluation of growth behaviours was giant cell formation. The results here provided evidence in confirmation of deviations between wild strains and mutants. Even though the ceiling values for the formation of giant cells were similarly high in all strains, impairments of cell division and initial development were observed for the mutants already at considerably lower dose levels. (orig./MG) [de

  9. Yeast hulls: effect on spontaneous fermentation in different vinification conditions

    Directory of Open Access Journals (Sweden)

    Rosa López

    2000-09-01

    Full Text Available The effect of the addition of yeast hulls in vinification was investigated during three consecutive years. The study was carried out in the experimental winery of C.I.D.A in La Rioja (Spain with free running white grape juice of the Viura variety. Four different vinifications were studied. In two of these vinifications, stuck fermentations were detected. In all the studies, the addition of yeast hulls (yeast ghosts improved the fermentation kinetics, increasing the number of viable yeasts at the end of the exponential stage and decreasing the final content of reducing sugars. This work revealed a new effect of yeast hull addition which had not been identified previously; their selection effect on the wild yeast strain in spontaneous fermentation.

  10. Regularities of radiorace formation in yeasts

    International Nuclear Information System (INIS)

    Korogodin, V.I.; Bliznik, K.M.; Kapul'tsevich, Yu.G.; Petin, V.G.; Akademiya Meditsinskikh Nauk SSSR, Obninsk. Nauchno-Issledovatel'skij Inst. Meditsinskoj Radiologii)

    1977-01-01

    Two strains of diploid yeast, namely, Saccharomyces ellipsoides, Megri 139-B, isolated under natural conditions, and Saccharomyces cerevisiae 5a x 3Bα, heterozygous by genes ade 1 and ade 2, were exposed to γ-quanta of Co 60 . The content of cells-saltants forming colonies with changed morphology, that of the nonviable cells, cells that are respiration mutants, and cells-recombinants by gene ade 1 and ade 2, has been determined. A certain regularity has been revealed in the distribution among the colonies of cells of the four types mentioned above: the higher the content of cells of some one of the types, the higher that of the cells having other hereditary changes

  11. Screening for proteins interacting with MCM7 in human lung cancer library using yeast two hybrid system

    Directory of Open Access Journals (Sweden)

    Yuchen HAN

    2008-08-01

    Full Text Available Background and objective MCM7 is a subunit of the MCM complex that plays a key role in DNA replication initiation. But little is known about its interaction proteins. In this study yeast two hybrid screening was used to identify the MCM7 interacting proteins. Methods Yeast expression vector containing human full length MCM7-pGBKT7 plasmid was constructed, and with a library of cDNAs from human lung cancer-pACT2 plasmid was transformed into yeast strain AH109, and was electively grew in X-a-gal auxotrophy medium SD/-Trp-Leu-His-Ade, and the blue colonies were picked up, the plasmid of the yeast colonies was extracted , and transformed into E. Coli to extract DNA and performed sequence analysis. Results Eleven proteins were identified which could specifically interact with MCM7 proteins, among these five were cytoskeleton proteins, six were enzymes, kinases and related receptors. Conclusion The investigation provides functional clues for further exploration of MCM7 gene.

  12. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.

    Science.gov (United States)

    Tsolmonbaatar, Ariunzaya; Hashida, Keisuke; Sugimoto, Yukiko; Watanabe, Daisuke; Furukawa, Shuhei; Takagi, Hiroshi

    2016-12-05

    During bread-making processes, yeast cells are exposed to baking-associated stresses such as freeze-thaw, air-drying, and high-sucrose concentrations. Previously, we reported that self-cloning diploid baker's yeast strains that accumulate proline retained higher-level fermentation abilities in both frozen and sweet doughs than the wild-type strain. Although self-cloning yeasts do not have to be treated as genetically modified yeasts, the conventional methods for breeding baker's yeasts are more acceptable to consumers than the use of self-cloning yeasts. In this study, we isolated mutants resistant to the proline analogue azetidine-2-carboxylate (AZC) derived from diploid baker's yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular proline, and among them, 5 mutants showed higher cell viability than that observed in the parent wild-type strain under freezing or high-sucrose stress conditions. Two of them carried novel mutations in the PRO1 gene encoding the Pro247Ser or Glu415Lys variant of γ-glutamyl kinase (GK), which is a key enzyme in proline biosynthesis in S. cerevisiae. Interestingly, we found that these mutations resulted in AZC resistance of yeast cells and desensitization to proline feedback inhibition of GK, leading to intracellular proline accumulation. Moreover, baker's yeast cells expressing the PRO1 P247S and PRO1 E415K gene were more tolerant to freezing stress than cells expressing the wild-type PRO1 gene. The approach described here could be a practical method for the breeding of proline-accumulating baker's yeasts with higher tolerance to baking-associated stresses. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Automatic Evaluation of Colonies Growth rate of Yeasts incubated in Petri dishes using Mobile Platform

    Directory of Open Access Journals (Sweden)

    Alecsander Pereira Martins

    2015-10-01

    Full Text Available This paper proposes an automatic method based on computer vision implemented in mobile platform capable of monitoring the growth of microbial colonies incubated in Petri dishes. The developed optimized image processing algorithm performs this task without human intervention from images of colonies of the microorganism in different evolution phases. The contribution of this paper is the development of a fast and robust mobile tool to assist bioprocess experts in monitoring the growth of colonies without using the conventional error prone evaluation techniques. The obtained results successfully demonstrated dimensional alterations in colonies in a faster and more precise fashion when compared with the conventional method, with the additional advantage of versatility in producing reliable estimation of the growth rates with higher statistical significance.

  14. Catalytic site interactions in yeast OMP synthase

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Barr, Eric W.; Jensen, Kaj Frank

    2014-01-01

    45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal...

  15. [Yeast urinary tract infections. Multicentre study in 14 hospitals belonging to the Buenos Aires City Mycology Network].

    Science.gov (United States)

    Maldonado, Ivana; Arechavala, Alicia; Guelfand, Liliana; Relloso, Silvia; Garbasz, Claudia

    2016-01-01

    Urinary tract infections are a frequent ailment in patients in intensive care units. Candida and other yeasts cause 5-12% of these infections. The value of the finding of any yeast is controversial, and there is no consensus about which parameters are adequate for differentiating urinary infections from colonization or contamination. To analyse the epidemiological characteristics of patients with funguria, to determine potential cut-off points in cultures (to distinguish an infection from other conditions), to identify the prevalent yeast species, and to determine the value of a second urine sample. A multicentre study was conducted in intensive care units of 14 hospitals in the Buenos Aires City Mycology Network. The first and second samples of urine from every patient were cultured. The presence of white cells and yeasts in direct examination, colony counts, and the identification of the isolated species, were evaluated. Yeasts grew in 12.2% of the samples. There was no statistical correlation between the number of white cells and the fungal colony-forming units. Eighty five percent of the patients had indwelling catheters. Funguria was not prevalent in women or in patients over the age of 65. Candida albicans, followed by Candida tropicalis, were the most frequently isolated yeasts. Candida parapsilosis and Candida glabrata appeared less frequently. The same species were isolated in 70% of second samples, and in 23% of the cases the second culture was negative. It was not possible to determine a useful cut-off point for colony counts to help in the diagnosis of urinary infections. As in other publications, C. albicans, followed by C. tropicalis, were the most prevalent species. Copyright © 2015 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  16. [Overexpression of FKS1 to improve yeast autolysis-stress].

    Science.gov (United States)

    Li, Jia; Wang, Jinjing; Li, Qi

    2015-09-01

    With the development of high gravity brewing, yeast cells are exposed to multiple brewing-associated stresses, such as increased osmotic pressure, enhanced alcohol concentration and nutritional imbalance. These will speed up yeast autolysis, which seriously influence beer flavor and quality. To increase yeast anti-autolytic ability, FKS1 overexpression strain was constructed by 18S rDNA. The concentration of β-1,3-glucan of overexpression strain was 62% higher than that of wild type strain. Meantime, FKS1 overexpression strain increased anti-stress ability at 8% ethanol, 0.4 mol/L NaCl and starvation stress. Under simulated autolysis, FKS1 showed good anti-autolytic ability by slower autolysis. These results confirms the potential of FKS1 overexpression to tackle yeast autolysis in high-gravity brewing.

  17. Construction of a novel selection system for endoglucanases exhibiting carbohydrate-binding modules optimized for biomass using yeast cell-surface engineering.

    Science.gov (United States)

    Nakanishi, Akihito; Bae, Jungu; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2012-10-23

    To permit direct cellulose degradation and ethanol fermentation, Saccharomyces cerevisiae BY4741 (Δsed1) codisplaying 3 cellulases (Trichoderma reesei endoglucanase II [EG], T. reesei cellobiohydrolase II [CBH], and Aspergillus aculeatus β-glucosidase I [BG]) was constructed by yeast cell-surface engineering. The EG used in this study consists of a family 1 carbohydrate-binding module (CBM) and a catalytic module. A comparison with family 1 CBMs revealed conserved amino acid residues and flexible amino acid residues. The flexible amino acid residues were at positions 18, 23, 26, and 27, through which the degrading activity for various cellulose structures in each biomass may have been optimized. To select the optimal combination of CBMs of EGs, a yeast mixture with comprehensively mutated CBM was constructed. The mixture consisted of yeasts codisplaying EG with mutated CBMs, in which 4 flexible residues were comprehensively mutated, CBH, and BG. The yeast mixture was inoculated in selection medium with newspaper as the sole carbon source. The surviving yeast consisted of RTSH yeast (the mutant sequence of CBM: N18R, S23T, S26S, and T27H) and wild-type yeast (CBM was the original) in a ratio of 1:46. The mixture (1 RTSH yeast and 46 wild-type yeasts) had a fermentation activity that was 1.5-fold higher than that of wild-type yeast alone in the early phase of saccharification and fermentation, which indicates that the yeast mixture with comprehensively mutated CBM could be used to select the optimal combination of CBMs suitable for the cellulose of each biomass.

  18. Cadmium, ATPase-P, yeast. From transport to toxicity

    International Nuclear Information System (INIS)

    Gardarin, Aurelie

    2007-01-01

    Two projects has been developed during my PhD. One consisting in the functional study of CadA, the Cd 2+ -ATPase from Listeria monocytogenes, the other one was focused on the toxicity of cadmium and the associated response of the yeast Saccharomyces cerevisiae. This two studies used a a phenotype of sensitivity to cadmium induced by CadA expression in yeast. This phenotype was used as a screening tool to identify essential amino acids of Cd transport by CadA and to study cadmium toxicity and the corresponding yeast cellular response. CadA actively transports Cd using ATP hydrolysis as energy source. Directed mutagenesis of the membranous polar, sulphur and charged amino-acids revealed that Cd transport pathway implied four transmembrane segments (Tm) and more precisely the cysteine C 354 , C 356 and proline P 355 of the CPC motif located in Tm6, aspartate D 692 in Tm8, glutamate E 164 in Tm4 and methionine M 149 in Tm5. From our studies, 2 Cd ions would be translocated for each hydrolysis ATP. Expression of CadA in the yeast Saccharomyces cerevisiae induces an hypersensitivity to Cd. A wild type cell can grow up to 100 μm cadmium whereas CadA expressing yeast cannot grow with 1 μm cadmium in the culture medium. This cadmium sensitivity was due to the localisation of CadA in the endoplasmic reticulum membrane. Transport of cadmium in this compartment produces an accumulation of mis-folded proteins that induces the Unfolded Protein Response (UPR). As UPR also occurs in a wild type yeast exposed to low Cd concentration, one can point out endoplasmic reticulum as a extremely sensitive cellular compartment. UPR also appears as an early response to Cd as it happens far before any visible signs of toxicity. (author) [fr

  19. Yeasts in sustainable bioethanol production: A review.

    Science.gov (United States)

    Mohd Azhar, Siti Hajar; Abdulla, Rahmath; Jambo, Siti Azmah; Marbawi, Hartinie; Gansau, Jualang Azlan; Mohd Faik, Ainol Azifa; Rodrigues, Kenneth Francis

    2017-07-01

    Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  20. Yeasts in sustainable bioethanol production: A review

    Directory of Open Access Journals (Sweden)

    Siti Hajar Mohd Azhar

    2017-07-01

    Full Text Available Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  1. Neonicotinoid pesticide reduces bumble bee colony growth and queen production.

    Science.gov (United States)

    Whitehorn, Penelope R; O'Connor, Stephanie; Wackers, Felix L; Goulson, Dave

    2012-04-20

    Growing evidence for declines in bee populations has caused great concern because of the valuable ecosystem services they provide. Neonicotinoid insecticides have been implicated in these declines because they occur at trace levels in the nectar and pollen of crop plants. We exposed colonies of the bumble bee Bombus terrestris in the laboratory to field-realistic levels of the neonicotinoid imidacloprid, then allowed them to develop naturally under field conditions. Treated colonies had a significantly reduced growth rate and suffered an 85% reduction in production of new queens compared with control colonies. Given the scale of use of neonicotinoids, we suggest that they may be having a considerable negative impact on wild bumble bee populations across the developed world.

  2. Checkpoint independence of most DNA replication origins in fission yeast

    OpenAIRE

    Mickle, Katie L; Ramanathan, Sunita; Rosebrock, Adam; Oliva, Anna; Chaudari, Amna; Yompakdee, Chulee; Scott, Donna; Leatherwood, Janet; Huberman, Joel A

    2007-01-01

    Abstract Background In budding yeast, the replication checkpoint slows progress through S phase by inhibiting replication origin firing. In mammals, the replication checkpoint inhibits both origin firing and replication fork movement. To find out which strategy is employed in the fission yeast, Schizosaccharomyces pombe, we used microarrays to investigate the use of origins by wild-type and checkpoint-mutant strains in the presence of hydroxyurea (HU), which limits the pool of deoxyribonucleo...

  3. Culturable yeasts in meltwaters draining from two glaciers in the Italian Alps

    Science.gov (United States)

    Buzzini, Pietro; Turchetti, Benedetta; Diolaiuti, Guglielmina; D'Agata, Carlo; Martini, Alessandro; Smiraglia, Claudio

    The meltwaters draining from two glaciers in the Italian Alps contain metabolically active yeasts isolable by culture-based laboratory procedures. The average number of culturable yeast cells in the meltwaters was 10 20 colony-forming units (CFU) L-1, whereas supraglacial stream waters originating from overlying glacier ice contained 80% of isolated strains (Cryptococcus spp. and Rhodotorula spp. were 33.3% and 17.8% of total strains, respectively). Culturable yeasts were psychrotolerant, predominantly obligate aerobes and able to degrade organic macromolecules (e.g. starch, esters, lipids, proteins). To the authors' knowledge, this is the first study to report the presence of culturable yeasts in meltwaters originating from glaciers. On the basis of these results, it is reasonable to suppose that the viable yeasts observed in meltwaters derived predominantly from the subglacial zone and that they originated from the subglacial microbial community. Their metabolic abilities could contribute to the microbial activity occurring in subglacial environments.

  4. Prevalence of candida and non-candida yeasts isolated from patients with yeast fungal infections in Tehran labs

    Directory of Open Access Journals (Sweden)

    Hashemi SJ

    2011-04-01

    Full Text Available "n 800x600 Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Background: Infections caused by opportunistic yeasts such as Candida species, Trichosporon, Rhodotorula and Saccharomyces have increased in immunocompromis-ed patients and their identification is crucial as intrinsic and acquired resistance of some yeast species to antifungal agents are on the rise. The aim of this study was to identify the organisms to the species level in order to suggest accurate and effective antifungal therapies."n"nMethods: In this study that carried out in Tehran, Iran in 2009, 200 patients with yeast infection were medically examined and clinical specimens were prepared for direct examination and culture on Sabouraud dextrose agar. Subsequently, the isolated yeast colonies were identified using various tests including culture on Corn Meal agar with Tween 80, CHROMagar Candida and casein agar. For the definite identification of organisms some biochemical tests were done based on carbohydrate assimilation by RapID Yeast Plus System kit, and, finally, a molecular method, PCR-RFLP, using Hpa II enzyme, was performed for the remaining unknown yeast species."n"nResults: A total of 211 yeast isolates were identified in 200 patients with yeast infections. The most frequent isolated yeasts were Candida albicans, 124 (58.77%, followed by Candida parapsilosis, 36 (17.06%, Candida tropicalis, 17 (8.06%, Candida glabrata, 13 (6.16%, Candida krusei, 8 (3.79%, Candida guilliermondii, 2 (0.96%, Trichosporon, 3 (1.14%, Rhodotorula, 1 (0.47%, Saccaromyces cerevisiae, 1 (0.47% and other

  5. Comparison of New and Traditional Culture-Dependent Media for Enumerating Foodborne Yeasts and Molds.

    Science.gov (United States)

    Beuchat, Larry R; Mann, David A

    2016-01-01

    Fifty-six foods and food ingredients were analyzed for populations of naturally occurring yeasts and molds using Petrifilm rapid yeast and mold (RYM) count plates, Petrifilm yeast and mold (YM) count plates, dichloran rose bengal chloramphenicol (DRBC) agar plates, acidified potato dextrose agar (APDA) plates, and dichloran 18% glycerol (DG18) agar plates. Colonies were counted after incubating plates for 48, 72, and 120 h at 25°C. Of 56 foods in which either yeasts or molds were detected on at least one medium incubated for 120 h, neither yeasts nor molds were detected in 55.4, 73.2, 21.4, 19.6, and 71.4% of foods plated on the five respective media and incubated for 48 h; 10.7, 14.3, 3.6, 1.8, and 19.6% of foods were negative after 72 h, and 3.6, 1.8, 0, 0, and 0% of foods were negative after 120 h. Considering all enumeration media, correlation coefficients were 0.03 to 0.97 at 48 h of incubation; these values increased to 0.75 to 0.99 at 120 h. Coefficients of variation for total yeasts and molds were as high as 30.0, 30.8, and 27.2% at 48, 72, and 120 h, respectively. The general order of performance was DRBC = APDA > RYM Petrifilm > YM Petrifilm ≥ DG18 when plates were incubated for 48 h, DRBC > APDA > RYM Petrifilm > YM Petrifilm ≥ DG18 when plates were incubated for 72 h, and DRBC > APDA > RYM Petrifilm > YM Petrifilm > DG18 when plates were incubated for 120 h. Differences in performance among media are attributed to the diversity of yeasts and molds likely to be present in test foods and differences in nutrient, pH, and water activity requirements for resuscitation of stressed cells and colony development.

  6. Colony-PCR Is a Rapid Method for DNA Amplification of Hyphomycetes

    Directory of Open Access Journals (Sweden)

    Georg Walch

    2016-04-01

    Full Text Available Fungal pure cultures identified with both classical morphological methods and through barcoding sequences are a basic requirement for reliable reference sequences in public databases. Improved techniques for an accelerated DNA barcode reference library construction will result in considerably improved sequence databases covering a wider taxonomic range. Fast, cheap, and reliable methods for obtaining DNA sequences from fungal isolates are, therefore, a valuable tool for the scientific community. Direct colony PCR was already successfully established for yeasts, but has not been evaluated for a wide range of anamorphic soil fungi up to now, and a direct amplification protocol for hyphomycetes without tissue pre-treatment has not been published so far. Here, we present a colony PCR technique directly from fungal hyphae without previous DNA extraction or other prior manipulation. Seven hundred eighty-eight fungal strains from 48 genera were tested with a success rate of 86%. PCR success varied considerably: DNA of fungi belonging to the genera Cladosporium, Geomyces, Fusarium, and Mortierella could be amplified with high success. DNA of soil-borne yeasts was always successfully amplified. Absidia, Mucor, Trichoderma, and Penicillium isolates had noticeably lower PCR success.

  7. Genetical control of mitotic crossing over in yeast

    International Nuclear Information System (INIS)

    Fedorova, I.V.; Marfin, A.B.

    1982-01-01

    Lethal effect of 8 methoxypsoralen (8-MOP) and long-wave ultraviolet radiation (LUR) on diploid and haploid radiosensitive strains of yeast LSaccharomyces cerevisiae has been studied. It is shown that wild type diploids and homozygous with respect to locus rad 2 is considerably more stable than corresponding haploids, while diploid homozygous with respect to rad 54 locus is more sensitive than haploid. Use of the method of repeated irradiation permitted to study capability of radiosensitive diploids to remove 8 MOP-induced DNA photodamages-monoadducts. This process proceeds effectively in the wild type strain and rad 54 rad 54 diploid and was absent in rad 2 rad 2 diploid. Very strong recombinogenous effect of 8-MOP and LUR was discovered when studying mitotic segregation and crossing-over. It is also shown that rad 2 mutation increases slightly and rad 54 mutation decreases sharply frequency of recombination events in yeast cells. It is established by means of the repeated irradiation method that the main contribution to the 8 MOP and LUR recombinogenous effect is made with DNA sutures induced with these agents. Possible participation of different repair systems in the recombination processes induced with 8 MOP and LUR in yeast cells is discussed

  8. Intestinal Parasites and Anthelmintic Treatments in a Laboratory Colony of Wild-caught African Pouched Rats (Cricetomys ansorgei)

    Science.gov (United States)

    Cullin, Cassandra O; Sellers, Matthew S; Rogers, Erin R; Scott, Kathleen E; Lee, Danielle N; Ophir, Alexander G; Jackson, Todd A

    2017-01-01

    African giant pouched rats (Cricetomys spp.) are large rodents native to subSaharan Africa. Wild-caught pouched rats identified as Cricetomys ansorgei (n = 49) were imported from Tanzania. A survey of gastrointestinal parasitism by fecal flotation revealed the presence of multiple parasites, including Nippostrongylus spp., Heterakis spp., Trichuris spp., Hymenolepis spp., Raillietina spp., and Eimeria spp. Oral self-administered fenbendazole (150 ppm), topical moxidectin (2 mg/kg), pyrantel pamoate (15 mg/kg), piperazine (100 mg/kg daily), and injectable ivermectin (0.25 mg/kg) were used to determine effective treatment options for the gastrointestinal parasites present in the colony. Pyrantel pamoate in a treat vehicle and piperazine in water bottles were easily administered and significantly reduced the numbers of animals shedding Nippostrongylus spp. and Heterakis spp. during the study. Moxidectin and ivermectin were clinically ineffective at reducing fecal egg shedding. Fenbendazole was most effective at clearing infection with Trichuris spp. Although 10 mg/kg praziquantel was ineffective, a single dose of 30 mg/kg praziquantel significantly reduced the number of African pouched rats that shed cestode embryos. A combination treatment may be necessary to successfully treat all parasites present in any given animal. PMID:28935004

  9. Aging and differentiation in yeast populations: elders with different properties and functions

    Czech Academy of Sciences Publication Activity Database

    Palková, Z.; Wilkinson, D.; Váchová, Libuše

    2014-01-01

    Roč. 14, č. 1 (2014), s. 96-108 ISSN 1567-1356 R&D Projects: GA ČR GA13-08605S Institutional support: RVO:61388971 Keywords : yeast colonies * stationary-phase liquid cultures * comparison of differentiated cell subpopulations Subject RIV: EE - Microbiology, Virology Impact factor: 2.818, year: 2014

  10. Defective quiescence entry promotes the fermentation performance of bottom-fermenting brewer's yeast.

    Science.gov (United States)

    Oomuro, Mayu; Kato, Taku; Zhou, Yan; Watanabe, Daisuke; Motoyama, Yasuo; Yamagishi, Hiromi; Akao, Takeshi; Aizawa, Masayuki

    2016-11-01

    One of the key processes in making beer is fermentation. In the fermentation process, brewer's yeast plays an essential role in both the production of ethanol and the flavor profile of beer. Therefore, the mechanism of ethanol fermentation by of brewer's yeast is attracting much attention. The high ethanol productivity of sake yeast has provided a good basis from which to investigate the factors that regulate the fermentation rates of brewer's yeast. Recent studies found that the elevated fermentation rate of sake Saccharomyces cerevisiae species is closely related to a defective transition from vegetative growth to the quiescent (G 0 ) state. In the present study, to clarify the relationship between the fermentation rate of brewer's yeast and entry into G 0 , we constructed two types of mutant of the bottom-fermenting brewer's yeast Saccharomyces pastorianus Weihenstephan 34/70: a RIM15 gene disruptant that was defective in entry into G 0 ; and a CLN3ΔPEST mutant, in which the G 1 cyclin Cln3p accumulated at high levels. Both strains exhibited higher fermentation rates under high-maltose medium or high-gravity wort conditions (20° Plato) as compared with the wild-type strain. Furthermore, G 1 arrest and/or G 0 entry were defective in both the RIM15 disruptant and the CLN3ΔPEST mutant as compared with the wild-type strain. Taken together, these results indicate that regulation of the G 0 /G 1 transition might govern the fermentation rate of bottom-fermenting brewer's yeast in high-gravity wort. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Yeast vitality during cider fermentation: assessment by energy metabolism.

    Science.gov (United States)

    Dinsdale, M G; Lloyd, D; McIntyre, P; Jarvis, B

    1999-03-15

    In an apple juice-based medium, an ethanol-tolerant Australian wine-yeast used for cider manufacture produced more than 10% ethanol over a 5 week period. Growth of the inoculum (10(6) organisms ml(-1)) occurred to a population of 3.1 x 10(7) ml(-1) during the first few days; at the end of the fermentation only 5 x 10(5) yeasts ml(-1) could be recovered as colony-forming units on plates. Respiratory and fermentative activities were measured by mass spectrometric measurements (O2 consumption and CO2 and ethanol production) of washed yeast suspensions taken from the cider fermentation at intervals. Both endogenous and glucose-supported energy-yielding metabolism declined, especially during the first 20 days. Levels of adenine nucleotides also showed decreases after day 1, as did adenylate energy charge, although in a prolonged (16.5 week) fermentation the lowest value calculated was 0.55. AMP was released into the medium. 31P-NMR spectra showed that by comparison with aerobically grown yeast, that from the later stages of the cider fermentation showed little polyphosphate. However, as previously concluded from studies of 'acidification power' and fluorescent oxonol dye exclusion (Dinsdale et al., 1995), repitching of yeast indicated little loss of viability despite considerable loss of vitality.

  12. Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations.

    Science.gov (United States)

    Fernández-López, C L; Torrestiana-Sánchez, B; Salgado-Cervantes, M A; García, P G Mendoza; Aguilar-Uscanga, M G

    2012-05-01

    Molasses "B" is a rich co-product of the sugarcane process. It is obtained from the second step of crystallization and is richer in fermentable sugars (50-65%) than the final molasses, with a lower non-sugar solid content (18-33%); this co-product also contains good vitamin and mineral levels. The use of molasses "B" for ethanol production could be a good option for the sugarcane industry when cane sugar prices diminish in the market. In a complex medium like molasses, osmotolerance is a desirable characteristic for ethanol producing strains. The aim of this work was to evaluate the use of molasses "B" for ethanol production using Saccharomyces cerevisiae ITV-01 (a wild-type yeast isolated from sugarcane molasses) using different initial sugar concentrations (70-291 g L(-1)), two inoculum sizes and the addition of nutrients such as yeast extract, urea, and ammonium sulphate to the culture medium. The results obtained showed that the strain was able to grow at 291 g L(-1) total sugars in molasses "B" medium; the addition of nutrients to the culture medium did not produce a statistically significant difference. This yeast exhibits high osmotolerance in this medium, producing high ethanol yields (0.41 g g(-1)). The best conditions for ethanol production were 220 g L(-1) initial total sugars in molasses "B" medium, pH 5.5, using an inoculum size of 6 × 10(6) cell mL(-1); ethanol production was 85 g L(-1), productivity 3.8 g L(-1 )h(-1) with 90% preserved cell viability.

  13. Genetic control of radiosensitivity modification of some yeast strons

    International Nuclear Information System (INIS)

    Petin, V.G.; Zhurakovskaya, I.P.

    1982-01-01

    The genetic determination of the relative biological effectiveness (RBE) of densely ionizing particles and cysteamine's radioprotective effect on irradiated cells, demonstrated earlier on yeast cells of different genotype, has been proved on diploid wild-type cells of Saccharomyces cerevisial yeasts, solitary mutants, homozygous with respect to rad 2 and rad 54, and double mutant containing both locuses in homozygous state. It is shown that RBE of α-particles and radioprotector's efficiency depend on repair system's activity. A possible mechanism of the participation of postirradiation recovery processes in the modification of cell radiosensitivity is discussed [ru

  14. Content of endogenous thiols and radioresistance of gemmating cells of Saccharomyces ellipsoideus and Saccharomyces cerevisiale yeasts

    International Nuclear Information System (INIS)

    Simonyan, N.V.; Avakyan, Ts.M.; Dzhanpoladyan, N.L.; Stepanyan, L.G.

    1983-01-01

    It has been shown that gemmating cells of ''wild type'' yeasts are more radioresistant and contain more endogenous thiols, than resting cells. Gemmating cells of Saccharomyces cerevisial yeasts, carrying the mutation rad 51, as to radioresistance and content of SH groups do not differ from resting cells. The results obtained testify to a connec-- tion between increased radioresistance of the yeast gemmating cells and increased content of endogenous thiols in them

  15. Yeast: An Overlooked Component of Bactrocera tryoni (Diptera: Tephritidae) Larval Gut Microbiota.

    Science.gov (United States)

    Deutscher, Ania T; Reynolds, Olivia L; Chapman, Toni A

    2017-02-01

    Yeasts, often in hydrolyzed form, are key ingredients in the larval and adult diets of tephritid fruit fly colonies. However, very little is known about the presence or role of yeasts in the diets of tephritid fruit flies in nature. Previous studies have identified bacteria but not detected yeasts in the gut of Queensland fruit fly, Bactrocera tryoni (Froggatt), one of Australia's most economically damaging insect pests of horticultural crops and of significant biosecurity concern domestically and internationally. Here we demonstrate that cultivable yeasts are commonly found in the gut of B. tryoni larvae from fruit hosts. Analysis of the ITS1, 5.8S rRNA gene, and ITS2 sequences of randomly selected isolates identified yeasts and yeast-like fungi of the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Pichia, and Starmerella. The prevalence of these yeasts in fruits suggests that larvae consume the yeasts as part of their diet. This work highlights that yeasts should be considered in future tephritid larval gut microbiota studies. Understanding tephritid-microbial symbiont interactions will lead to improvements in artificial diets and the quality of mass-reared tephritids for the sterile insect technique. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Presence and distribution of yeasts in the reproductive tract in healthy female horses.

    Science.gov (United States)

    Azarvandi, A; Khosravi, A R; Shokri, H; Talebkhan Garoussi, M; Gharahgouzlou, F; Vahedi, G; Sharifzadeh, A

    2017-09-01

    Yeasts are commensal organisms found in the reproductive and gastrointestinal tracts, and on the skin and other mucosa in mammals. The purpose of this study was to isolate and identify yeast flora in the caudal reproductive tract in healthy female horses. Longitudinal study. A total of 453 samples were collected using double-guarded swabs from the vestibule, clitoral fossa and vagina in 151 horses. All samples were cultured on Sabouraud 4% dextrose agar and incubated at 35°C for 7-10 days. Isolates were identified according to their morphological characteristics and biochemical profiles. Yeast colonies were isolated from 60 (39.7%) of the 151 horses. The isolated yeasts belonged to nine genera, and included Candida spp. (53.2%), Cryptococcus spp. (12.2%), Saccharomyces spp. (10.5%), Geotrichum spp. (8.0%), Rhodotorula spp. (7.1%), Malassezia spp. (3.7%), Trichosporon spp. (2.6%), Kluyveromyces spp. (2.6%) and Sporothrix spp. (0.2%). Candida krusei (43.1%) was the most frequent Candida species isolated. There was a significant difference in prevalence between C. krusei and other Candida species (Pyeast isolates (48.0%) than the vagina (18.3%). The isolation of yeast colonies from multiparous females (76.8%) was significantly higher than from maiden mares (P<0.05). The study was limited by the difficulty of distinguishing between normal flora and potential pathogens. Candida spp., in particular C. krusei, represent important flora resident in the caudal reproductive tract in healthy female horses. This is particularly important in contexts that require the initiation of empirical treatment prior to the completion of culture results. © 2016 EVJ Ltd.

  17. Rapidly developing yeast microcolonies differentiate in a similar way to aging giant colonies

    Czech Academy of Sciences Publication Activity Database

    Váchová, Libuše; Hatáková, L.; Čáp, M.; Pokorná, M.; Palková, Z.

    2013-01-01

    Roč. 2013, JUL 2013 (2013) ISSN 1942-0900 R&D Projects: GA ČR GA13-08605S Institutional support: RVO:61388971 Keywords : yeast microcolonies * cell * Microcolony Subject RIV: EE - Microbiology, Virology Impact factor: 3.363, year: 2013

  18. Seed coating with a neonicotinoid insecticide negatively affects wild bees.

    Science.gov (United States)

    Rundlöf, Maj; Andersson, Georg K S; Bommarco, Riccardo; Fries, Ingemar; Hederström, Veronica; Herbertsson, Lina; Jonsson, Ove; Klatt, Björn K; Pedersen, Thorsten R; Yourstone, Johanna; Smith, Henrik G

    2015-05-07

    Understanding the effects of neonicotinoid insecticides on bees is vital because of reported declines in bee diversity and distribution and the crucial role bees have as pollinators in ecosystems and agriculture. Neonicotinoids are suspected to pose an unacceptable risk to bees, partly because of their systemic uptake in plants, and the European Union has therefore introduced a moratorium on three neonicotinoids as seed coatings in flowering crops that attract bees. The moratorium has been criticized for being based on weak evidence, particularly because effects have mostly been measured on bees that have been artificially fed neonicotinoids. Thus, the key question is how neonicotinoids influence bees, and wild bees in particular, in real-world agricultural landscapes. Here we show that a commonly used insecticide seed coating in a flowering crop can have serious consequences for wild bees. In a study with replicated and matched landscapes, we found that seed coating with Elado, an insecticide containing a combination of the neonicotinoid clothianidin and the non-systemic pyrethroid β-cyfluthrin, applied to oilseed rape seeds, reduced wild bee density, solitary bee nesting, and bumblebee colony growth and reproduction under field conditions. Hence, such insecticidal use can pose a substantial risk to wild bees in agricultural landscapes, and the contribution of pesticides to the global decline of wild bees may have been underestimated. The lack of a significant response in honeybee colonies suggests that reported pesticide effects on honeybees cannot always be extrapolated to wild bees.

  19. Speciation driven by hybridization and chromosomal plasticity in a wild yeast.

    Science.gov (United States)

    Leducq, Jean-Baptiste; Nielly-Thibault, Lou; Charron, Guillaume; Eberlein, Chris; Verta, Jukka-Pekka; Samani, Pedram; Sylvester, Kayla; Hittinger, Chris Todd; Bell, Graham; Landry, Christian R

    2016-01-11

    Hybridization is recognized as a powerful mechanism of speciation and a driving force in generating biodiversity. However, only few multicellular species, limited to a handful of plants and animals, have been shown to fulfil all the criteria of homoploid hybrid speciation. This lack of evidence could lead to the interpretation that speciation by hybridization has a limited role in eukaryotes, particularly in single-celled organisms. Laboratory experiments have revealed that fungi such as budding yeasts can rapidly develop reproductive isolation and novel phenotypes through hybridization, showing that in principle homoploid speciation could occur in nature. Here, we report a case of homoploid hybrid speciation in natural populations of the budding yeast Saccharomyces paradoxus inhabiting the North American forests. We show that the rapid evolution of chromosome architecture and an ecological context that led to secondary contact between nascent species drove the formation of an incipient hybrid species with a potentially unique ecological niche.

  20. Identification and Characterization of Yeast Isolates from Pharmaceutical Waste Water

    Directory of Open Access Journals (Sweden)

    Marjeta Recek

    2002-01-01

    Full Text Available In order to develop an efficient an system for waste water pretreatment, the isolation of indigenous population of microorganisms from pharmaceutical waste water was done. We obtained pure cultures of 16 yeast isolates that differed slightly in colony morphology. Ten out of 16 isolates efficiently reduced COD in pharmaceutical waste water. Initial physiological characterization failed to match the 10 yeast isolates to either Pichia anomala or Pichia ciferrii. Restriction analysis of rDNA (rDNA-RFLP using three different restriction enzymes: HaeIII, MspI and CfoI, showed identical patterns of the isolates and Pichia anomala type strain. Separation of chromosomal DNAs of yeast isolates by the pulsed field gel electrophoresis revealed that the 10 isolates could be grouped into 6 karyotypes. Growth characteristics of the 6 isolates with distinct karyotypes were then studied in batch cultivation in pharmaceutical waste water for 80 hours.

  1. Deletion of flbA results in increased secretome complexity and reduced secretion heterogeneity in colonies of Aspergillus niger.

    Science.gov (United States)

    Krijgsheld, Pauline; Nitsche, Benjamin M; Post, Harm; Levin, Ana M; Müller, Wally H; Heck, Albert J R; Ram, Arthur F J; Altelaar, A F Maarten; Wösten, Han A B

    2013-04-05

    Aspergillus niger is a cell factory for the production of enzymes. This fungus secretes proteins in the central part and at the periphery of the colony. The sporulating zone of the colony overlapped with the nonsecreting subperipheral zone, indicating that sporulation inhibits protein secretion. Indeed, strain ΔflbA that is affected early in the sporulation program secreted proteins throughout the colony. In contrast, the ΔbrlA strain that initiates but not completes sporulation did not show altered spatial secretion. The secretome of 5 concentric zones of xylose-grown ΔflbA colonies was assessed by quantitative proteomics. In total 138 proteins with a signal sequence for secretion were identified in the medium of ΔflbA colonies. Of these, 18 proteins had never been reported to be part of the secretome of A. niger, while 101 proteins had previously not been identified in the culture medium of xylose-grown wild type colonies. Taken together, inactivation of flbA results in spatial changes in secretion and in a more complex secretome. The latter may be explained by the fact that strain ΔflbA has a thinner cell wall compared to the wild type, enabling efficient release of proteins. These results are of interest to improve A. niger as a cell factory.

  2. Viral prevalence increases with regional colony abundance in honey bee drones (Apis mellifera L).

    Science.gov (United States)

    Forfert, Nadège; Natsopoulou, Myrsini E; Paxton, Robert J; Moritz, Robin F A

    2016-10-01

    Transmission among colonies is a central feature for the epidemiology of honey bee pathogens. High colony abundance may promote transmission among colonies independently of apiary layout, making colony abundance a potentially important parameter determining pathogen prevalence in populations of honey bees. To test this idea, we sampled male honey bees (drones) from seven distinct drone congregation areas (DCA), and used their genotypes to estimate colony abundance at each site. A multiplex ligation dependent probe amplification assay (MLPA) was used to assess the prevalence of ten viruses, using five common viral targets, in individual drones. There was a significant positive association between colony abundance and number of viral infections. This result highlights the potential importance of high colony abundance for pathogen prevalence, possibly because high population density facilitates pathogen transmission. Pathogen prevalence in drones collected from DCAs may be a useful means of estimating the disease status of a population of honey bees during the mating season, especially for localities with a large number of wild or feral colonies. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The ecology of the Drosophila-yeast mutualism in wineries

    Science.gov (United States)

    2018-01-01

    The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila. PMID:29768432

  4. Input of seabird-derived nitrogen into rice-paddy fields near a breeding/roosting colony of the Great Cormorant (Phalacrocorax carbo), and its effects on wild grass

    International Nuclear Information System (INIS)

    Kazama, Kentaro; Murano, Hirotatsu; Tsuzuki, Kazuhide; Fujii, Hidenori; Niizuma, Yasuaki; Mizota, Chitoshi

    2013-01-01

    Terrestrial ecosystems near breeding/roosting colonies of piscivorous seabirds can receive a large amount of marine-derived N in the form of bird feces. It has been well demonstrated that N input from seabirds strongly affects plant communities in forests or coastal grasslands. The effects of nutrient input on plant communities in agricultural ecosystems near seabird colonies, however, have rarely been evaluated. This relationship was examined in rice-paddy fields irrigated by a pond system located near a colony of the Great Cormorant Phalacrocorax carbo in Aichi, central Japan. In the present study, spatial variations in N content (N %) and N stable isotope composition (δ 15 N) of soils and wild grass species together with the growth height of plants in paddy fields in early spring (fallow period) were examined. Soils had a higher N % and δ 15 N values in fields associated with an irrigation pond that had N input from cormorants. The δ 15 N values tended to be higher around the inlet of irrigation waters, relative to the outlet. These results indicate that cormorant-derived N was input into the paddy fields via the irrigation systems. Plants growing in soil with higher δ 15 N had higher δ 15 N in the above-ground part of the plants and had luxurious growth. A positive correlation in plant height and δ 15 N of NO 3 –N was observed in soil plough horizons.

  5. Mitochondrial Respiratory Thresholds Regulate Yeast Chronological Lifespan and its Extension by Caloric Restriction

    OpenAIRE

    Ocampo, Alejandro; Liu, Jingjing; Schroeder, Elizabeth A.; Shadel, Gerald S.; Barrientos, Antoni

    2012-01-01

    We have explored the role of mitochondrial function in aging by genetically and pharmacologically modifying yeast cellular respiration production during the exponential and/or stationary growth phases, and determining how this affects chronological lifespan (CLS). Our results demonstrate that respiration is essential during both growth phases for standard CLS, but that yeast have a large respiratory capacity and only deficiencies below a threshold (~40% of wild-type) significantly curtail CLS...

  6. Peroxisomal catalase deficiency modulates yeast lifespan depending on growth conditions

    NARCIS (Netherlands)

    Kawalek, Adam; Lefevre, Sophie D.; Veenhuis, Marten; van der Klei, Ida J.

    We studied the role of peroxisomal catalase in chronological aging of the yeast Hansenula polymorpha in relation to various growth substrates. Catalase-deficient (cat) cells showed a similar chronological life span (CLS) relative to the wild-type control upon growth on carbon and nitrogen sources

  7. Yeasts and lactic acid bacteria microbiota from masau (Ziziphus mauritiana) fruits and their fermented fruit pulp in Zimbabwe

    NARCIS (Netherlands)

    Nyanga, L.K.; Nout, M.J.R.; Gadaga, T.H.; Theelen, R.M.C.; Boekhout, T.; Zwietering, M.H.

    2007-01-01

    Masau are Zimbabwean wild fruits, which are usually eaten raw and/ or processed into products such as porridge, traditional cakes, mahewu and jam. Yeasts, yeast-like fungi, and lactic acid bacteria present on the unripe, ripe and dried fruits, and in the fermented masau fruits collected from

  8. 'Killer' character of yeasts isolated from ethanolic fermentations

    Directory of Open Access Journals (Sweden)

    Ceccato-Antonini Sandra Regina

    1999-01-01

    Full Text Available The number of killer, neutral and sensitive yeasts was determined from strains isolated from substrates related to alcoholic fermentations. From 113 isolates, 24 showed killer activity against NCYC 1006 (standard sensitive strain, while 30 were sensitive to NCYC 738 (standard killer strain, and 59 had no reaction in assays at 25-27°C. Two wild yeast strains of Saccharomyces cerevisiae and one of Candida colliculosa were tested against 10 standard killer strains and one standard sensitive strain in a cell x cell and well-test assays at four different pHs. None of the isolates displayed strong killer activity or were sensitive to the standard strains. All belonged to the neutral type. It was concluded that although the number of killer strains was high, this character cannot be used to protect ethanol fermentation processes against yeast contaminants like those which form cell clusters.

  9. Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11.

    Science.gov (United States)

    Hirayama, Satoru; Shimizu, Masashi; Tsuchiya, Noriko; Furukawa, Soichi; Watanabe, Daisuke; Shimoi, Hitoshi; Takagi, Hiroshi; Ogihara, Hirokazu; Morinaga, Yasushi

    2015-05-01

    We examined mixed-species biofilm formation between Lactobacillus plantarum ML11-11 and both foaming and non-foaming mutant strains of Saccharomyces cerevisiae sake yeasts. Wild-type strains showed significantly lower levels of biofilm formation compared with the non-foaming mutants. Awa1p, a protein involved in foam formation during sake brewing, is a glycosylphosphatidylinositol (GPI)-anchored protein and is associated with the cell wall of sake yeasts. The AWA1 gene of the non-foaming mutant strain Kyokai no. 701 (K701) has lost the C-terminal sequence that includes the GPI anchor signal. Mixed-species biofilm formation and co-aggregation of wild-type strain Kyokai no. 7 (K7) were significantly lower than K701 UT-1 (K701 ura3/ura3 trp1/trp1), while the levels of strain K701 UT-1 carrying the AWA1 on a plasmid were comparable to those of K7. The levels of biofilm formation and co-aggregation of the strain K701 UT-1 harboring AWA1 with a deleted GPI anchor signal were similar to those of K701 UT-1. These results clearly demonstrate that Awa1p present on the surface of sake yeast strain K7 inhibits adhesion between yeast cells and L. plantarum ML11-11, consequently impeding mixed-species biofilm formation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Disease dynamics and potential mitigation among restored and wild staghorn coral, Acropora cervicornis

    Science.gov (United States)

    Lohr, Kathryn E.; Cameron, Caitlin M.; Williams, Dana E.; Peters, Esther C.

    2014-01-01

    The threatened status (both ecologically and legally) of Caribbean staghorn coral, Acropora cervicornis, has prompted rapidly expanding efforts in culture and restocking, although tissue loss diseases continue to affect populations. In this study, disease surveillance and histopathological characterization were used to compare disease dynamics and conditions in both restored and extant wild populations. Disease had devastating effects on both wild and restored populations, but dynamics were highly variable and appeared to be site-specific with no significant differences in disease prevalence between wild versus restored sites. A subset of 20 haphazardly selected colonies at each site observed over a four-month period revealed widely varying disease incidence, although not between restored and wild sites, and a case fatality rate of 8%. A tropical storm was the only discernable environmental trigger associated with a consistent spike in incidence across all sites. Lastly, two field mitigation techniques, (1) excision of apparently healthy branch tips from a diseased colony, and (2) placement of a band of epoxy fully enclosing the diseased margin, gave equivocal results with no significant benefit detected for either treatment compared to controls. Tissue condition of associated samples was fair to very poor; unsuccessful mitigation treatment samples had severe degeneration of mesenterial filament cnidoglandular bands. Polyp mucocytes in all samples were infected with suspect rickettsia-like organisms; however, no bacterial aggregates were found. No histological differences were found between disease lesions with gross signs fitting literature descriptions of white-band disease (WBD) and rapid tissue loss (RTL). Overall, our results do not support differing disease quality, quantity, dynamics, nor health management strategies between restored and wild colonies of A. cervicornis in the Florida Keys. PMID:25210660

  11. Semi-wild chimpanzees open hard-shelled fruits differently across communities.

    Science.gov (United States)

    Rawlings, Bruce; Davila-Ross, Marina; Boysen, Sarah T

    2014-07-01

    Researchers investigating the evolutionary roots of human culture have turned to comparing behaviours across nonhuman primate communities, with tool-based foraging in particular receiving much attention. This study examined whether natural extractive foraging behaviours other than tool selection differed across nonhuman primate colonies that had the same foods available. Specifically, the behaviours applied to open the hard-shelled fruits of Strychnos spp. were examined in three socially separate, semi-wild colonies of chimpanzees (Pan troglodytes) that lived under shared ecological conditions at Chimfunshi Wildlife Orphanage, and were comparable in their genetic makeup. The chimpanzees (N=56) consistently applied six techniques to open these fruits. GLMM results revealed differences in the number of combined technique types to open fruits across the colonies. They also showed colony differences in the application of three specific techniques. Two techniques (full biting and fruit cracking) were entirely absent in some colonies. This study provides empirical evidence that natural hard-shelled fruit-opening behaviours are distinct across chimpanzee colonies, differences that most likely have not resulted from ecological and genetic reasons.

  12. Colony-level variation in pollen collection and foraging preferences among wild-caught bumble bees (Hymenoptera: Apidae).

    Science.gov (United States)

    Saifuddin, Mustafa; Jha, Shalene

    2014-04-01

    Given that many pollinators have exhibited dramatic declines related to habitat destruction, an improved understanding of pollinator resource collection across human-altered landscapes is essential to conservation efforts. Despite the importance of bumble bees (Bombus spp.) as global pollinators, little is known regarding how pollen collection patterns vary between individuals, colonies, and landscapes. In this study, Vosnesensky bumble bees (Bombus vosnesenskii Radoszkowski) were collected from a range of human-altered and natural landscapes in northern California. Extensive vegetation surveys and Geographic Information System (GIS)-based habitat classifications were conducted at each site, bees were genotyped to identify colony mates, and pollen loads were examined to identify visited plants. In contrast to predictions based on strong competitive interactions, pollen load composition was significantly more similar for bees captured in a shared study region compared with bees throughout the research area but was not significantly more similar for colony mates. Preference analyses revealed that pollen loads were not composed of the most abundant plant species per study region. The majority of ranked pollen preference lists were significantly correlated for pairwise comparisons of colony mates and individuals within a study region, whereas the majority of pairwise comparisons of ranked pollen preference lists between individuals located at separate study regions were uncorrelated. Results suggest that pollen load composition and foraging preferences are similar for bees throughout a shared landscape regardless of colony membership. The importance of native plant species in pollen collection is illustrated through preference analyses, and we suggest prioritization of specific rare native plant species for enhanced bumble bee pollen collection.

  13. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Directory of Open Access Journals (Sweden)

    Lauren E Hudson

    Full Text Available Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  14. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Science.gov (United States)

    Hudson, Lauren E; Fasken, Milo B; McDermott, Courtney D; McBride, Shonna M; Kuiper, Emily G; Guiliano, David B; Corbett, Anita H; Lamb, Tracey J

    2014-01-01

    Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  15. Regulation of Small Mitochondrial DNA Replicative Advantage by Ribonucleotide Reductase in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Elliot Bradshaw

    2017-09-01

    Full Text Available Small mitochondrial genomes can behave as selfish elements by displacing wild-type genomes regardless of their detriment to the host organism. In the budding yeast Saccharomyces cerevisiae, small hypersuppressive mtDNA transiently coexist with wild-type in a state of heteroplasmy, wherein the replicative advantage of the small mtDNA outcompetes wild-type and produces offspring without respiratory capacity in >95% of colonies. The cytosolic enzyme ribonucleotide reductase (RNR catalyzes the rate-limiting step in dNTP synthesis and its inhibition has been correlated with increased petite colony formation, reflecting loss of respiratory function. Here, we used heteroplasmic diploids containing wild-type (rho+ and suppressive (rho− or hypersuppressive (HS rho− mitochondrial genomes to explore the effects of RNR activity on mtDNA heteroplasmy in offspring. We found that the proportion of rho+ offspring was significantly increased by RNR overexpression or deletion of its inhibitor, SML1, while reducing RNR activity via SML1 overexpression produced the opposite effects. In addition, using Ex Taq and KOD Dash polymerases, we observed a replicative advantage for small over large template DNA in vitro, but only at low dNTP concentrations. These results suggest that dNTP insufficiency contributes to the replicative advantage of small mtDNA over wild-type and cytosolic dNTP synthesis by RNR is an important regulator of heteroplasmy involving small mtDNA molecules in yeast.

  16. Cystobasidiomycetes yeasts from Patagonia (Argentina): description of Rhodotorula meli sp. nov. from glacial meltwater.

    Science.gov (United States)

    Libkind, Diego; Sampaio, José Paulo; van Broock, Maria

    2010-09-01

    A basidiomycetous yeast, strain CRUB 1032(T), which formed salmon-pink colonies, was isolated from glacial meltwater in Patagonia, Argentina. Morphological, physiological and biochemical characterization indicated that this strain belonged to the genus Rhodotorula. Molecular taxonomic analysis based on the 26S rDNA D1/D2 domain and internal transcribed spacer region sequences showed that strain CRUB 1032(T) represents an undescribed yeast species, for which the name Rhodotorula meli sp. nov. is proposed (type strain is CRUB 1032(T)=CBS 10797(T)=JCM 15319(T)). Phylogenetic analysis showed that Rhodotorula lamellibrachii was the closest known species, which, together with R. meli, formed a separate cluster related to the Sakaguchia clade within the Cystobasidiomycetes. Additional Patagonian yeast isolates of the class Cystobasidiomycetes are also investigated in the present work.

  17. WdStuAp, an APSES transcription factor, is a regulator of yeast-hyphal transitions in Wangiella (Exophiala) dermatitidis.

    Science.gov (United States)

    Wang, Qin; Szaniszlo, Paul J

    2007-09-01

    APSES transcription factors are well-known regulators of fungal cellular development and differentiation. To study the function of an APSES protein in the fungus Wangiella dermatitidis, a conidiogenous and polymorphic agent of human phaeohyphomycosis with yeast predominance, the APSES transcription factor gene WdSTUA was cloned, sequenced, disrupted, and overexpressed. Analysis showed that its derived protein was most similar to the APSES proteins of other conidiogenous molds and had its APSES DNA-binding domain located in the amino-terminal half. Deletion of WdSTUA in W. dermatitidis induced convoluted instead of normal smooth colony surface growth on the rich yeast maintenance agar medium yeast extract-peptone-dextrose agar (YPDA) at 37 degrees C. Additionally, deletion of WdSTUA repressed aerial hyphal growth, conidiation, and invasive hyphal growth on the nitrogen-poor, hypha-inducing agar medium potato dextrose agar (PDA) at 25 degrees C. Ectopic overexpression of WdSTUA repressed the convoluted colony surface growth on YPDA at 37 degrees C, and also strongly repressed hyphal growth on PDA at 25 degrees C and 37 degrees C. These new results provide additional insights into the diverse roles played by APSES factors in fungi. They also suggest that the transcription factor encoded by WdSTUA is both a positive and negative morphotype regulator in W. dermatitidis and possibly other of the numerous human pathogenic, conidiogenous fungi capable of yeast growth.

  18. Influence of yeast macromolecules on sweetness in dry wines: role of the saccharomyces cerevisiae protein Hsp12.

    Science.gov (United States)

    Marchal, Axel; Marullo, Philippe; Moine, Virginie; Dubourdieu, Denis

    2011-03-09

    Yeast autolysis during lees contact influences the organoleptic properties of wines especially by increasing their sweet taste. Although observed by winemakers, this phenomenon is poorly explained in enology. Moreover, the compounds responsible for sweetness in wine remain unidentified. This work provides new insights in this way by combining sensorial, biochemical and genetic approaches. First, we verified by sensory analysis that yeast autolysis in red wine has a significant effect on sweetness. Moderate additions of ethanol or glycerol did not have the same effect. Second, a sapid fraction was isolated from lees extracts by successive ultrafiltrations and HPLC purifications. Using nano-LC-MS/MS, peptides released by the yeast heat shock protein Hsp12p were distinctly identified in this sample. Third, we confirmed the sweet contribution of this protein by sensorial comparison of red wines incubated with two kinds of yeast strains: a wild-type strain containing the native Hsp12p and a deletion mutant strain that lacks the Hsp12p protein (Δ°HSP12 strain). Red wines incubated with wild-type strain showed a significantly higher sweetness than control wines incubated with Δ°HSP12 strains. These results demonstrated the contribution of protein Hsp12p in the sweet perception consecutive to yeast autolysis in wine.

  19. An Algorithm to Automate Yeast Segmentation and Tracking

    Science.gov (United States)

    Doncic, Andreas; Eser, Umut; Atay, Oguzhan; Skotheim, Jan M.

    2013-01-01

    Our understanding of dynamic cellular processes has been greatly enhanced by rapid advances in quantitative fluorescence microscopy. Imaging single cells has emphasized the prevalence of phenomena that can be difficult to infer from population measurements, such as all-or-none cellular decisions, cell-to-cell variability, and oscillations. Examination of these phenomena requires segmenting and tracking individual cells over long periods of time. However, accurate segmentation and tracking of cells is difficult and is often the rate-limiting step in an experimental pipeline. Here, we present an algorithm that accomplishes fully automated segmentation and tracking of budding yeast cells within growing colonies. The algorithm incorporates prior information of yeast-specific traits, such as immobility and growth rate, to segment an image using a set of threshold values rather than one specific optimized threshold. Results from the entire set of thresholds are then used to perform a robust final segmentation. PMID:23520484

  20. Segregating YKU80 and TLC1 alleles underlying natural variation in telomere properties in wild yeast.

    Directory of Open Access Journals (Sweden)

    Gianni Liti

    2009-09-01

    Full Text Available In yeast, as in humans, telomere length varies among individuals and is controlled by multiple loci. In a quest to define the extent of variation in telomere length, we screened 112 wild-type Saccharomyces sensu stricto isolates. We found extensive telomere length variation in S. paradoxus isolates. This phenotype correlated with their geographic origin: European strains were observed to have extremely short telomeres (400 bp. Insertions of a URA3 gene near telomeres allowed accurate analysis of individual telomere lengths and telomere position effect (TPE. Crossing the American and European strains resulted in F1 spores with a continuum of telomere lengths consistent with what would be predicted if many quantitative trait loci (QTLs were involved in length maintenance. Variation in TPE is similarly quantitative but only weakly correlated with telomere length. Genotyping F1 segregants indicated several QTLs associated with telomere length and silencing variation. These QTLs include likely candidate genes but also map to regions where there are no known genes involved in telomeric properties. We detected transgressive segregation for both phenotypes. We validated by reciprocal hemizygosity that YKU80 and TLC1 are telomere-length QTLs in the two S. paradoxus subpopulations. Furthermore, we propose that sequence divergence within the Ku heterodimer generates negative epistasis within one of the allelic combinations (American-YKU70 and European-YKU80 resulting in very short telomeres.

  1. Segregating YKU80 and TLC1 alleles underlying natural variation in telomere properties in wild yeast.

    Science.gov (United States)

    Liti, Gianni; Haricharan, Svasti; Cubillos, Francisco A; Tierney, Anna L; Sharp, Sarah; Bertuch, Alison A; Parts, Leopold; Bailes, Elizabeth; Louis, Edward J

    2009-09-01

    In yeast, as in humans, telomere length varies among individuals and is controlled by multiple loci. In a quest to define the extent of variation in telomere length, we screened 112 wild-type Saccharomyces sensu stricto isolates. We found extensive telomere length variation in S. paradoxus isolates. This phenotype correlated with their geographic origin: European strains were observed to have extremely short telomeres (400 bp). Insertions of a URA3 gene near telomeres allowed accurate analysis of individual telomere lengths and telomere position effect (TPE). Crossing the American and European strains resulted in F1 spores with a continuum of telomere lengths consistent with what would be predicted if many quantitative trait loci (QTLs) were involved in length maintenance. Variation in TPE is similarly quantitative but only weakly correlated with telomere length. Genotyping F1 segregants indicated several QTLs associated with telomere length and silencing variation. These QTLs include likely candidate genes but also map to regions where there are no known genes involved in telomeric properties. We detected transgressive segregation for both phenotypes. We validated by reciprocal hemizygosity that YKU80 and TLC1 are telomere-length QTLs in the two S. paradoxus subpopulations. Furthermore, we propose that sequence divergence within the Ku heterodimer generates negative epistasis within one of the allelic combinations (American-YKU70 and European-YKU80) resulting in very short telomeres.

  2. No evidence for extrinsic post-zygotic isolation in a wild Saccharomyces yeast system.

    Science.gov (United States)

    Charron, Guillaume; Landry, Christian R

    2017-06-01

    Although microorganisms account for the largest fraction of Earth's biodiversity, we know little about how their reproductive barriers evolve. Sexual microorganisms such as Saccharomyces yeasts rapidly develop strong intrinsic post-zygotic isolation, but the role of extrinsic isolation in the early speciation process remains to be investigated. We measured the growth of F 1 hybrids between two incipient species of Saccharomyces paradoxus to assess the presence of extrinsic post-zygotic isolation across 32 environments. More than 80% of hybrids showed either partial dominance of the best parent or over-dominance for growth, revealing no fitness defects in F 1 hybrids. Extrinsic reproductive isolation therefore likely plays little role in limiting gene flow between incipient yeast species and is not a requirement for speciation. © 2017 The Author(s).

  3. Exploration of Yeast and Bacteria Contaminants in Seed Culture and Fermented Wort from Gyo Gon Alcohol Distillery

    International Nuclear Information System (INIS)

    Ngwe Thein

    2005-10-01

    Study was made on samples of seed culture and fermented wort from Gyogon alcohol distillery. In all samples bacteria contaminants were observed. Samples were cultured on Sabouraud dextrose agar, Czapek Dox agar, and nutrient agar media and broth. The selected colonies were isolated. Biochemical tests for identification were conducted. The yeast and bacteria contaminants were identified by morphological characteristics and biochemical reactions. The yeast isolated and identified from Gyogon alcohol distillery was Sacchacromyces cerevisiae. The bacteria contaminants isolated and identified were Aeromonas sp. and Pseudomonas sp.

  4. Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    Science.gov (United States)

    Hoang, Don; Kopp, Artyom; Chandler, James Angus

    2015-01-01

    Yeasts play an important role in the biology of the fruit fly, Drosophila melanogaster. In addition to being a valuable source of nutrition, yeasts affect D. melanogaster behavior and interact with the host immune system. Most experiments investigating the role of yeasts in D. melanogaster biology use the baker's yeast, Saccharomyces cerevisiae. However, S. cerevisiae is rarely found with natural populations of D. melanogaster or other Drosophila species. Moreover, the strain of S. cerevisiae used most often in D. melanogaster experiments is a commercially and industrially important strain that, to the best of our knowledge, was not isolated from flies. Since disrupting natural host-microbe interactions can have profound effects on host biology, the results from D. melanogaster-S. cerevisiae laboratory experiments may not be fully representative of host-microbe interactions in nature. In this study, we explore the D. melanogaster-yeast relationship using five different strains of yeast that were isolated from wild Drosophila populations. Ingested live yeasts have variable persistence in the D. melanogaster gastrointestinal tract. For example, Hanseniaspora occidentalis persists relative to S. cerevisiae, while Brettanomyces naardenensis is removed. Despite these differences in persistence relative to S. cerevisiae, we find that all yeasts decrease in total abundance over time. Reactive oxygen species (ROS) are an important component of the D. melanogaster anti-microbial response and can inhibit S. cerevisiae growth in the intestine. To determine if sensitivity to ROS explains the differences in yeast persistence, we measured yeast growth in the presence and absence of hydrogen peroxide. We find that B. naardenesis is completely inhibited by hydrogen peroxide, while H. occidentalis is not, which is consistent with yeast sensitivity to ROS affecting persistence within the D. melanogaster gastrointestinal tract. We also compared the feeding preference of D

  5. Mutations in the Atp1p and Atp3p subunits of yeast ATP synthase differentially affect respiration and fermentation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Francis, Brian R; White, Karen H; Thorsness, Peter E

    2007-04-01

    ATP1-111, a suppressor of the slow-growth phenotype of yme1Delta lacking mitochondrial DNA is due to the substitution of phenylalanine for valine at position 111 of the alpha-subunit of mitochondrial ATP synthase (Atp1p in yeast). The suppressing activity of ATP1-111 requires intact beta (Atp2p) and gamma (Atp3p) subunits of mitochondrial ATP synthase, but not the stator stalk subunits b (Atp4p) and OSCP (Atp5p). ATP1-111 and other similarly suppressing mutations in ATP1 and ATP3 increase the growth rate of wild-type strains lacking mitochondrial DNA. These suppressing mutations decrease the growth rate of yeast containing an intact mitochondrial chromosome on media requiring oxidative phosphorylation, but not when grown on fermentable media. Measurement of chronological aging of yeast in culture reveals that ATP1 and ATP3 suppressor alleles in strains that contain mitochondrial DNA are longer lived than the isogenic wild-type strain. In contrast, the chronological life span of yeast cells lacking mitochondrial DNA and containing these mutations is shorter than that of the isogenic wild-type strain. Spore viability of strains bearing ATP1-111 is reduced compared to wild type, although ATP1-111 enhances the survival of spores that lacked mitochondrial DNA.

  6. Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration.

    Science.gov (United States)

    Borovikova, Diana; Teparić, Renata; Mrša, Vladimir; Rapoport, Alexander

    2016-08-01

    The state of anhydrobiosis is linked with the reversible delay of metabolism as a result of strong dehydration of cells, and is widely distributed in nature. A number of factors responsible for the maintenance of organisms' viability in these conditions have been revealed. This study was directed to understanding how changes in cell wall structure may influence the resistance of yeasts to dehydration-rehydration. Mutants lacking various cell wall mannoproteins were tested to address this issue. It was revealed that mutants lacking proteins belonging to two structurally and functionally unrelated groups (proteins non-covalently attached to the cell wall, and Pir proteins) possessed significantly lower cell resistance to dehydration-rehydration than the mother wild-type strain. At the same time, the absence of the GPI-anchored cell wall protein Ccw12 unexpectedly resulted in an increase of cell resistance to this treatment; this phenomenon is explained by the compensatory synthesis of chitin. The results clearly indicate that the cell wall structure/composition relates to parameters strongly influencing yeast viability during the processes of dehydration-rehydration, and that damage to cell wall proteins during yeast desiccation can be an important factor leading to cell death. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Analysis of the secondary compounds produced by Saccharomyces cerevisiae and wild yeast strains during the production of "cachaça" Análise dos componentes secundários produzidos por Saccharomyces cerevisiae e leveduras selvagens durante a produção de cachaça

    Directory of Open Access Journals (Sweden)

    Maria Cecília Fachine Dato

    2005-03-01

    Full Text Available The aim of this study is to compare the composition of "cachaças" produced in 10 fermentation cycles by Saccharomyces cerevisiae (Sc and wild yeast strains [Pichia silvicola (Ps, Pichia anomala 1 (Pa1, Pichia anomala 2 (Pa2 and Dekkera bruxelensis (Db], isolated from distilleries in Jaboticabal - SP, Brazil. The secondary components of the heart fraction were determined by gas chromatography. The levels of secondary components were influenced by the wine pH, which varied among yeast strains. S. cerevisiae showed slightly more secondary components, whereas wild strains produced more higher alcohols. Wild yeast strains were shown to be adequate for the production of a high quality "cachaça".O presente trabalho visou estabelecer uma comparação entre composição de cachaças produzidas por Saccharomyces cerevisiae (Sc e estirpes de leveduras selvagens [Pichia silvicola (Ps, Pichia anomala 1 (Pa1, Pichia anomala 2 (Pa2 e Dekkera bruxelensis (Db], isoladas em destilarias da região de Jaboticabal-SP. Os componentes secundários da fração denominada coração foram determinados por cromatografia gasosa. Os níveis dos componentes secundários foram influenciados pelo pH dos respectivos vinhos, os quais dependem da estirpe de levedura empregada no processo fermentativo. A Saccharomyces cerevisiae apresentou valores ligeiramente superiores de componentes secundários, enquanto as estirpes selvagens produziram maiores teores de álcoois superiores. As estirpes selvagens de leveduras mostraram-se adequadas para obtenção de uma cachaça de boa qualidade.

  8. Evaluation of Different Yeast Species for Improving Fermentation of Cereal Straws

    Directory of Open Access Journals (Sweden)

    Zuo Wang

    2016-02-01

    Full Text Available Information on the effects of different yeast species on ruminal fermentation is limited. This experiment was conducted in a 3×4 factorial arrangement to explore and compare the effects of addition of three different live yeast species (Candida utilis 1314, Saccharomyces cerevisiae 1355, and Candida tropicalis 1254 at four doses (0, 0.25×107, 0.50×107, and 0.75×107 colony-forming unit [cfu] on in vitro gas production kinetics, fiber degradation, methane production and ruminal fermentation characteristics of maize stover, and rice straw by mixed rumen microorganisms in dairy cows. The maximum gas production (Vf, dry matter disappearance (IVDMD, neutral detergent fiber disappearance (IVNDFD, and methane production in C. utilis group were less (p<0.01 than other two live yeast supplemented groups. The inclusion of S. cerevisiae reduced (p<0.01 the concentrations of ammonia nitrogen (NH3-N, isobutyrate, and isovalerate compared to the other two yeast groups. C. tropicalis addition generally enhanced (p<0.05 IVDMD and IVNDFD. The NH3-N concentration and CH4 production were increased (p<0.05 by the addition of S. cerevisiae and C. tropicalis compared with the control. Supplementation of three yeast species decreased (p<0.05 or numerically decreased the ratio of acetate to propionate. The current results indicate that C. tropicalis is more preferred as yeast culture supplements, and its optimal dose should be 0.25×107 cfu/500 mg substrates in vitro.

  9. Genetic control of yeast cell radiosensitivity modification by oxygen and hypoxic sensitizers

    International Nuclear Information System (INIS)

    Zhuranovskaya, G.P.; Petin, V.G.

    1984-01-01

    Diploid yeast cells Saccharomyces cerevisiae ''of the wild type'', individual mutants, homozygous in rad 2 and rad 54 and double mutants, containing both these loci in homozygous state are considered to prove genetic determination of radiosensitivity modification of hypoxic cells by oxygen and electron acceptor compounds previously demonstrated on yeast cells of other genotypes. It is shown that both ''oxygen effect'' and the effect of hypoxic sensitizers depend on the activity of repair systems. The possible mechanism of participation of post-radiation restoration processes in the modification of cell radiosensitivity, is discussed

  10. Dynamic study of yeast species and Saccharomyces cerevisiae strains during the spontaneous fermentations of Muscat blanc in Jingyang, China.

    Science.gov (United States)

    Wang, Chunxiao; Liu, Yanlin

    2013-04-01

    The evolution of yeast species and Saccharomyces cerevisiae genotypes during spontaneous fermentations of Muscat blanc planted in 1957 in Jingyang region of China was followed in this study. Using a combination of colony morphology on Wallerstein Nutrient (WLN) medium, sequence analysis of the 26S rDNA D1/D2 domain and 5.8S-ITS-RFLP analysis, a total of 686 isolates were identified at the species level. The six species identified were S. cerevisiae, Hanseniaspora uvarum, Hanseniaspora opuntiae, Issatchenkia terricola, Pichia kudriavzevii (Issatchenkia orientalis) and Trichosporon coremiiforme. This is the first report of T. coremiiforme as an inhabitant of grape must. Three new colony morphologies on WLN medium and one new 5.8S-ITS-RFLP profile are described. Species of non-Saccharomyces, predominantly H. opuntiae, were found in early stages of fermentation. Subsequently, S. cerevisiae prevailed followed by large numbers of P. kudriavzevii that dominated at the end of fermentations. Six native genotypes of S. cerevisiae were determined by interdelta sequence analysis. Genotypes III and IV were predominant. As a first step in exploring untapped yeast resources of the region, this study is important for monitoring the yeast ecology in native fermentations and screening indigenous yeasts that will produce wines with regional characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Yeasts associated with fresh and frozen pulps of Brazilian tropical fruits.

    Science.gov (United States)

    Trindade, Rita C; Resende, Maria Aparecida; Silva, Claudia M; Rosa, Carlos A

    2002-08-01

    The occurrence of yeasts on ripe fruits and frozen pulps of pitanga (Eugenia uniflora L), mangaba (Hancornia speciosa Gom.), umbu (Spondias tuberosa Avr. Cam.), and acerola (Malpighia glaba L) was verified. The incidence of proteolytic, pectinolytic, and mycocinogenic yeasts on these communities was also determined. A total of 480 colonies was isolated and grouped in 405 different strains. These corresponded to 42 ascomycetous and 28 basidiomycetous species. Candida sorbosivorans, Pseudozyma antarctica, C. spandovensis-like, C. spandovensis, Kloeckera apis, C. parapsilosis, Rhodotorula graminis, Kluyveromyces marxianus, Cryptococcus laurentii, Metchnikowia sp (isolated only from pitanga ripe fruits), Issatchenkia occidentalis and C. krusei (isolated only from mangaba frozen pulps), were the most frequent species. The yeast communities from pitanga ripe fruits exhibited the highest frequency of species, followed by communities from acerola ripe fruits and mangaba frozen pulps. Yeast communities from frozen pulp and ripe fruits of umbu had the lowest number of species. Except the yeasts from pitanga, yeast communities from frozen pulp exhibited higher number of yeasts than ripe fruit communities. Mycocinogenic yeasts were found in all of the substrates studied except in communities from umbu ripe fruits and pitanga frozen pulps. Most of the yeasts found to produce mycocins were basidiomycetes and included P. antarctica, Cryptococcus albidus, C. bhutanensis-like, R. graminis and R. mucilaginosa-like from pitanga ripe fruits as well as black yeasts from pitanga and acerola ripe fruits. The umbu frozen pulps community had the highest frequency of proteolytic species. Yeasts able to hydrolyse casein at pH 5.0 represented 38.5% of the species isolated. Thirty-seven percent of yeast isolates were able to hydrolyse casein at pH 7.0. Pectinolytic yeasts were found in all of the communities studied, excepted for those of umbu frozen pulps. The highest frequency of

  12. Two portable recombination enhancers direct donor choice in fission yeast heterochromatin

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Holm, Lærke Rebekka; Hansen, Janne Verhein

    2013-01-01

    Mating-type switching in fission yeast results from gene conversions of the active mat1 locus by heterochromatic donors. mat1 is preferentially converted by mat2-P in M cells and by mat3-M in P cells. Here, we report that donor choice is governed by two portable recombination enhancers capable...... transposed together with the cassette contents switched like wild type. Trans-acting mutations that impair directionality affected the wild-type and swapped cassettes in identical ways when the recombination enhancers were transposed together with their cognate cassette, showing essential regulatory steps...

  13. Auxotrophy-stimulated sensitivity to quaternary ammonium salts and its relation to active transport in yeast

    International Nuclear Information System (INIS)

    Lachowicz, T.M.; Oblak, E.; Piatkowski, J.

    1992-01-01

    In previous studies we have observed that auxotrophic mutants of yeast were much more sensitive to quaternary ammonium salts than the corresponding isogenic wild type strains. The super sensitivity of the auxotrophs seems to be a characteristic feature of yeast and yeast-like microorganisms: the level of sensitivity of the quaternary ammonium salts of the bacterial auxotrophs and their original prototrophic forms appeared to be the same. The super sensitivity of yeast auxotrophs disappeared on minimal media with ammonium as a nitrogen source. In this report there are presented the data indicating that enrichment of the minimal medium with arginine restores the super sensitivity of auxotrophic yeast mutants to the quaternary ammonium salts. The results of amino-acid transport into the auxotrophic yeast cells treated with a quaternary ammonium salt in the presence and absence of arginine are given. A working hypothesis of the mechanism of these salts action as a specific inhibition of nutrient transport is discussed. (author). 19 refs, 3 figs, 8 figs

  14. Proteolytic activities in yeast after UV irradiation. Pt. 1

    International Nuclear Information System (INIS)

    Schwencke, J.; Moustacchi, E.

    1982-01-01

    Specific proteolytic activities are known to be induced in Escherichia coli following irradiation. Consequently it seemed of interest to investigate whether variations in proteinase activities occur in yeast. Among the five most well known proteinases of Saccharomyces cerevisiae, we have found that proteinase B activity increases up to three times in wild-type RAD + yeast cells after a dose of 50 Jm -2 of 254 nm ultraviolet light (40% survival). Carboxypeptidase Y and aminopeptidase I (leucin aminopeptidase) activities were only moderately increased. Proteinase A activity was only slightly enhanced, while aminopeptidase II (lysin aminopeptidase) was unaffected in both RAD + strains studied. The observed post UV-increase in proteinase B activity was inhibited by cycloheximide and was dose dependent. Increases in proteinase B levels were independent of the activation method used to destroy the proteinase B-inhibitor complex present in the crude yeast extracts. A standard method for comparison of the postirradiation levels among different proteinases, strains and methods of activation is presented. (orig.)

  15. Proteolytic activities in yeast after UV irradiation. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Schwencke, J.; Moustacchi, E.

    1982-04-01

    Specific proteolytic activities are known to be induced in Escherichia coli following irradiation. Consequently it seemed of interest to investigate whether variations in proteinase activities occur in yeast. Among the five most well known proteinases of Saccharomyces cerevisiae, we have found that proteinase B activity increases up to three times in wild-type RAD/sup +/ yeast cells after a dose of 50 Jm/sup -2/ of 254 nm ultraviolet light (40% survival). Carboxypeptidase Y and aminopeptidase I (leucin aminopeptidase) activities were only moderately increased. Proteinase A activity was only slightly enhanced, while aminopeptidase II (lysin aminopeptidase) was unaffected in both RAD/sup +/ strains studied. The observed post UV-increase in proteinase B activity was inhibited by cycloheximide and was dose dependent. Increases in proteinase B levels were independent of the activation method used to destroy the proteinase B-inhibitor complex present in the crude yeast extracts. A standard method for comparison of the postirradiation levels among different proteinases, strains and methods of activation is presented.

  16. An algorithm to automate yeast segmentation and tracking.

    Directory of Open Access Journals (Sweden)

    Andreas Doncic

    Full Text Available Our understanding of dynamic cellular processes has been greatly enhanced by rapid advances in quantitative fluorescence microscopy. Imaging single cells has emphasized the prevalence of phenomena that can be difficult to infer from population measurements, such as all-or-none cellular decisions, cell-to-cell variability, and oscillations. Examination of these phenomena requires segmenting and tracking individual cells over long periods of time. However, accurate segmentation and tracking of cells is difficult and is often the rate-limiting step in an experimental pipeline. Here, we present an algorithm that accomplishes fully automated segmentation and tracking of budding yeast cells within growing colonies. The algorithm incorporates prior information of yeast-specific traits, such as immobility and growth rate, to segment an image using a set of threshold values rather than one specific optimized threshold. Results from the entire set of thresholds are then used to perform a robust final segmentation.

  17. Indole-3-Acetic Acid-Producing Yeasts in the Phyllosphere of the Carnivorous Plant Drosera indica L

    Science.gov (United States)

    Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture. PMID:25464336

  18. Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains.

    Science.gov (United States)

    Eldarov, M A; Kishkovskaia, S A; Tanaschuk, T N; Mardanov, A V

    2016-12-01

    Saccharomyces yeasts have been used for millennia for the production of beer, wine, bread, and other fermented products. Long-term "unconscious" selection and domestication led to the selection of hundreds of strains with desired production traits having significant phenotypic and genetic differences from their wild ancestors. This review summarizes the results of recent research in deciphering the genomes of wine Saccharomyces strains, the use of comparative genomics methods to study the mechanisms of yeast genome evolution under conditions of artificial selection, and the use of genomic and postgenomic approaches to identify the molecular nature of the important characteristics of commercial wine strains of Saccharomyces. Succinctly, data concerning metagenomics of microbial communities of grapes and wine and the dynamics of yeast and bacterial flora in the course of winemaking is provided. A separate section is devoted to an overview of the physiological, genetic, and biochemical features of sherry yeast strains used to produce biologically aged wines. The goal of the review is to convince the reader of the efficacy of new genomic and postgenomic technologies as tools for developing strategies for targeted selection and creation of new strains using "classical" and modern techniques for improving winemaking technology.

  19. Colonial Figures: Memories of Street Traders in the Colonial and Early Post-colonial Periods

    Directory of Open Access Journals (Sweden)

    Sheri Lynn Gibbings

    2012-12-01

    Full Text Available This article explores post-colonial memories about street traders among individuals who lived in the former colony of the Dutch East Indies. It argues that these narratives romanticize the relationship between Europeans and indigenous peoples. Street vendors are also used to differentiate between periods within colonial and post-colonial history. The nostalgic representation of interracial contact between Europeans and traders is contrasted with representations of other figures such as the Japanese and the nationalist. A recurring feature of these representations is the ability of Europeans to speak with street traders and imagine what they wanted and needed. The traders are remembered as a social type that transgressed politics and represented the neutrality of the economic sphere as a place for shared communication. The article concludes that the figure of the street vendor contributes to the nostalgic reinvention of the colony but is also used in narratives to differentiate between and mark changes across the colonial and post-colonial periods.

  20. The innate immune response may be important for surviving plague in wild Gunnison's prairie dogs

    Science.gov (United States)

    Busch, Joseph D.; Van Andel, Roger; Stone, Nathan E.; Cobble, Kacy R.; Nottingham, Roxanne; Lee, Judy; VerSteeg, Michael; Corcoran, Jeff; Cordova, Jennifer; Van Pelt, William E.; Shuey, Megan M.; Foster, Jeffrey T.; Schupp, James M.; Beckstrom-Sternberg, Stephen; Beckstrom-Sternberg, James; Keim, Paul; Smith, Susan; Rodriguez-Ramos, Julia; Williamson, Judy L.; Rocke, Tonie E.; Wagner, David M.

    2013-01-01

    Prairie dogs (Cynomys spp.) are highly susceptible to Yersinia pestis, with ≥99% mortality reported from multiple studies of plague epizootics. A colony of Gunnison's prairie dogs (Cynomys gunnisoni) in the Aubrey Valley (AV) of northern Arizona appears to have survived several regional epizootics of plague, whereas nearby colonies have been severely affected by Y. pestis. To examine potential mechanisms accounting for survival in the AV colony, we conducted a laboratory Y. pestis challenge experiment on 60 wild-caught prairie dogs from AV and from a nearby, large colony with frequent past outbreaks of plague, Espee (n = 30 per colony). Test animals were challenged subcutaneously with the fully virulent Y. pestis strain CO92 at three doses: 50, 5,000, and 50,000 colony-forming units (cfu); this range is lethal in black-tailed prairie dogs (Cynomys ludovicianus). Contrary to our expectations, only 40% of the animals died. Although mortality trended higher in the Espee colony (50%) compared with AV (30%), the differences among infectious doses were not statistically significant. Only 39% of the survivors developed moderate to high antibody levels to Y. pestis, indicating that mechanisms other than humoral immunity are important in resistance to plague. The ratio of neutrophils to lymphocytes was not correlated with plague survival in this study. However, several immune proteins with roles in innate immunity (VCAM-1, CXCL-1, and vWF) were upregulated during plague infection and warrant further inquiry into their role for protection against this disease. These results suggest plague resistance exists in wild populations of the Gunnison's prairie dog and provide important directions for future studies.

  1. Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis.

    Science.gov (United States)

    Čáp, Michal; Váchová, Libuše; Palková, Zdena

    2015-01-01

    Colonies of Saccharomyces cerevisiae laboratory strains pass through specific developmental phases when growing on solid respiratory medium. During entry into the so-called alkali phase, in which ammonia signaling is initiated, 2 prominent cell types are formed within the colonies: U cells in upper colony regions, which have a longevity phenotype and activate the expression of a large number of metabolic genes, and L cells in lower regions, which die more quickly and exhibit a starvation phenotype. Here, we performed a detailed analysis of the activities of enzymes of central carbon metabolism in lysates of both cell types and determined several fermentation end products, showing that previously reported expression differences are reflected in the different enzymatic capabilities of each cell type. Hence, U cells, despite being grown on respiratory medium, behave as fermenting cells, whereas L cells rely on respiratory metabolism and possess active gluconeogenesis. Using a spectrum of different inhibitors, we showed that glycolysis is essential for the formation, and particularly, the survival of U cells. We also showed that β-1,3-glucans that are released from the cell walls of L cells are the most likely source of carbohydrates for U cells.

  2. Yeast identification in floral nectar of Mimulus aurantiacus (Invited)

    Science.gov (United States)

    Kyauk, C.; Belisle, M.; Fukami, T.

    2009-12-01

    Nectar is such a sugar-rich resource that serves as a natural habitat in which microbes thrive. As a result, yeasts arrive to nectar on the bodies of pollinators such as hummingbirds and bees. Yeasts use the sugar in nectar for their own needs when introduced. This research focuses on the identification of different types of yeast that are found in the nectar of Mimulus aurantiacus (commonly known as sticky monkey-flower). Unopened Mimulus aurantiacus flower buds were tagged at Jasper Ridge and bagged three days later. Floral nectar was then extracted and plated on potato dextrose agar. Colonies on the plates were isolated and DNA was extracted from each sample using QIAGEN DNeasy Plant Mini Kit. The DNA was amplified through PCR and ran through gel electrophoresis. The PCR product was used to clone the nectar samples into an E.coli vector. Finally, a phylogenetic tree was created by BLAST searching sequences in GenBank using the Internal Transcribed Space (ITS) locus. It was found that 18 of the 50 identified species were Candida magnifica, 14 was Candida rancensis, 6 were Crytococcus albidus and there were 3 or less of the following: Starmella bombicola, Candida floricola, Aureobasidium pullulans, Pichia kluyvera, Metschnikowa cibodaserisis, Rhodotorua colostri, and Malassezia globosa. The low diversity of the yeast could have been due to several factors: time of collection, demographics of Jasper Ridge, low variety of pollinators, and sugar concentration of the nectar. The results of this study serve as a necessary first step for a recently started research project on ecological interactions between plants, pollinators, and nectar-living yeast. More generally, this research studies the use of the nectar-living yeast community as a natural microcosm for addressing basic questions about the role of dispersal and competitive and facilitative interactions in ecological succession.

  3. Induction and isolation of DNA transformation mutants in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Hegerich, P.A.; Bruschi, C.V.

    1987-01-01

    The objective of this research was to induce and isolate mutants of the yeast Saccharomyces cerevisiae which have become transformable by purified plasmid DNA. Non-transformable yeast cells were mutagenized by ultraviolet light using a 65% lethal dose (480 ergs/mm 2 ). After a period of overnight liquid holding recovery, the irradiated cells were subjected to DNA transformation using our CaCl 2 protocol with the multi-marker shuttle plasmid pBB carrying the LEU 2 leucine gene. Following transformation the colonies that grew on selective leucineless medium were identified and subjected to further genetic analysis. From a total of 1 x 10 9 cells the authors have isolated 7 colonies deriving from putative mutants that have acquired the capability to uptake plasmid DNA. The transformants were cured from the plasmid by its mitotic loss on non-selective medium, then re-transformed to verify their genetic competence to give rise to a number of transformants comparable to transformable strains. We have identified and isolated one mutant, coded trs-1, which is able to reproduce a frequency of transformation comparable with the tranformable control. They, therefore, conclude that this mutant is specific for plasmid DNA transformation and that the mutation is mitotically stable

  4. Construction of the yeast whole-cell Rhizopus oryzae lipase biocatalyst with high activity.

    Science.gov (United States)

    Chen, Mei-ling; Guo, Qin; Wang, Rui-zhi; Xu, Juan; Zhou, Chen-wei; Ruan, Hui; He, Guo-qing

    2011-07-01

    Surface display is effectively utilized to construct a whole-cell biocatalyst. Codon optimization has been proven to be effective in maximizing production of heterologous proteins in yeast. Here, the cDNA sequence of Rhizopus oryzae lipase (ROL) was optimized and synthesized according to the codon bias of Saccharomyces cerevisiae, and based on the Saccharomyces cerevisiae cell surface display system with α-agglutinin as an anchor, recombinant yeast displaying fully codon-optimized ROL with high activity was successfully constructed. Compared with the wild-type ROL-displaying yeast, the activity of the codon-optimized ROL yeast whole-cell biocatalyst (25 U/g dried cells) was 12.8-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate (pNPP) as the substrate. To our knowledge, this was the first attempt to combine the techniques of yeast surface display and codon optimization for whole-cell biocatalyst construction. Consequently, the yeast whole-cell ROL biocatalyst was constructed with high activity. The optimum pH and temperature for the yeast whole-cell ROL biocatalyst were pH 7.0 and 40 °C. Furthermore, this whole-cell biocatalyst was applied to the hydrolysis of tributyrin and the resulted conversion of butyric acid reached 96.91% after 144 h.

  5. Improvement of lipid production by the oleaginous yeast Rhodosporidium toruloides through UV mutagenesis.

    Science.gov (United States)

    Yamada, Ryosuke; Kashihara, Tomomi; Ogino, Hiroyasu

    2017-05-01

    Oleaginous yeasts are considered a promising alternative lipid source for biodiesel fuel production. In this study, we attempted to improve the lipid productivity of the oleaginous yeast Rhodosporidium toruloides through UV irradiation mutagenesis and selection based on ethanol and H 2 O 2 tolerance or cerulenin, a fatty acid synthetase inhibitor. Glucose consumption, cell growth, and lipid production of mutants were evaluated. The transcription level of genes involved in lipid production was also evaluated in mutants. The ethanol and H 2 O 2 tolerant strain 8766 2-31M and the cerulenin resistant strain 8766 3-11C were generated by UV mutagenesis. The 8766 2-31M mutant showed a higher lipid production rate, and the 8766 3-11C mutant produced a larger amount of lipid and had a higher lipid production rate than the wild type strain. Transcriptional analysis revealed that, similar to the wild type strain, the ACL1 and GND1 genes were expressed at significantly low levels, whereas IDP1 and ME1 were highly expressed. In conclusion, lipid productivity in the oleaginous yeast R. toruloides was successfully improved via UV mutagenesis and selection. The study also identified target genes for improving lipid productivity through gene recombination.

  6. Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure.

    Directory of Open Access Journals (Sweden)

    Christoph Sandrock

    Full Text Available BACKGROUND: Honeybees provide economically and ecologically vital pollination services to crops and wild plants. During the last decade elevated colony losses have been documented in Europe and North America. Despite growing consensus on the involvement of multiple causal factors, the underlying interactions impacting on honeybee health and colony failure are not fully resolved. Parasites and pathogens are among the main candidates, but sublethal exposure to widespread agricultural pesticides may also affect bees. METHODOLOGY/PRINCIPAL FINDINGS: To investigate effects of sublethal dietary neonicotinoid exposure on honeybee colony performance, a fully crossed experimental design was implemented using 24 colonies, including sister-queens from two different strains, and experimental in-hive pollen feeding with or without environmentally relevant concentrations of thiamethoxam and clothianidin. Honeybee colonies chronically exposed to both neonicotinoids over two brood cycles exhibited decreased performance in the short-term resulting in declining numbers of adult bees (-28% and brood (-13%, as well as a reduction in honey production (-29% and pollen collections (-19%, but colonies recovered in the medium-term and overwintered successfully. However, significantly decelerated growth of neonicotinoid-exposed colonies during the following spring was associated with queen failure, revealing previously undocumented long-term impacts of neonicotinoids: queen supersedure was observed for 60% of the neonicotinoid-exposed colonies within a one year period, but not for control colonies. Linked to this, neonicotinoid exposure was significantly associated with a reduced propensity to swarm during the next spring. Both short-term and long-term effects of neonicotinoids on colony performance were significantly influenced by the honeybees' genetic background. CONCLUSIONS/SIGNIFICANCE: Sublethal neonicotinoid exposure did not provoke increased winter losses. Yet

  7. Attenuation of yeast form of Paracoccidioides Brasiliensis by gamma irradiation

    International Nuclear Information System (INIS)

    Demicheli, Marina Cortez

    2006-01-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent mycosis in Latin America, and currently there is no effective vaccine. The aim of this work was to attenuate the yeast form of P. brasiliensis by gamma irradiation for further studies on vaccine research. P. brasiliensis (strain Pb-18) cultures were irradiated at doses between 0.5 and 8.0 kGy. After each dose the fungal cells were plated and after 10 days the colony forming units (CFU) counted. The viability of the irradiated cells was measured using the dyes Janus green and methylene blue, and protein synthesis by incorporation of L 35 S methionine. The comparison between the antigenic profile of irradiated and control yeast was made by Western blot and the virulence evaluated by the inoculation in C 57 Bl/J6 and Balb/c mice. Morphological changes in irradiated yeast were evaluated by electronic microscopy and DNA integrity by electrophoresis in agarose gel. At 6.5 kGy the yeast lost the reproductive capacity. The viability and the incorporation of L- 35 S methionine were the same in control and up to 6.5 kGy irradiated cells, but 6.5 kGy irradiated yeast secreted 40% less proteins. The Western blot profile was clearly similar in control and 6.5 kGy irradiated yeast. No CFU could be recovered from the tissues of the mice infected with the radio attenuated yeast. At the dose of 6.5 kGy the DNA was degraded and this damage was not repaired. The transmission electronic microscopy showed significant alterations in the nucleus of the irradiated cells. The scanning electronic microscopy showed that two hours after the irradiation the cells were collapsed or presented deep folds in the surface, however these injury were reversible. We concluded that for P. brasiliensis yeast cells it was possible to find a dose in which the pathogen loses its reproductive ability and virulence, while retaining its viability, metabolic activity and the antigenic profile. (author)

  8. Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene.

    Science.gov (United States)

    Rao, Suryadevara S; Hildebrand, David

    2009-10-01

    The wild type (Wt) and mutant form of yeast (sphingolipid compensation) genes, SLC1 and SLC1-1, have been shown to have lysophosphatidic acid acyltransferase (LPAT) activities (Nageic et al. in J Biol Chem 269:22156-22163, 1993). Expression of these LPAT genes was reported to increase oil content in transgenic Arabidopsis and Brassica napus. It is of interest to determine if the TAG content increase would also be seen in soybeans. Therefore, the wild type SLC1 was expressed in soybean somatic embryos under the control of seed specific phaseolin promoter. Some transgenic somatic embryos and in both T2 and T3 transgenic seeds showed higher oil contents. Compared to controls, the average increase in triglyceride values went up by 1.5% in transgenic somatic embryos. A maximum of 3.2% increase in seed oil content was observed in a T3 line. Expression of the yeast Wt LPAT gene did not alter the fatty acid composition of the seed oil.

  9. Immobilised Sarawak Malaysia yeast cells for production of bioethanol.

    Science.gov (United States)

    Zain, Masniroszaime Mohd; Kofli, Noorhisham Tan; Rozaimah, Siti; Abdullah, Sheikh

    2011-05-01

    Bioethanol production using yeast has become a popular topic due to worrying depleting worldwide fuel reserve. The aim of the study was to investigate the capability of Malaysia yeast strains isolated from starter culture used in traditional fermented food and alcoholic beverages in producing Bioethanol using alginate beads entrapment method. The starter yeast consists of groups of microbes, thus the yeasts were grown in Sabouraud agar to obtain single colony called ST1 (tuak) and ST3 (tapai). The growth in Yeast Potatoes Dextrose (YPD) resulted in specific growth of ST1 at micro = 0.396 h-1 and ST3 at micro = 0.38 h-1, with maximum ethanol production of 7.36 g L-1 observed using ST1 strain. The two strains were then immobilized using calcium alginate entrapment method producing average alginate beads size of 0.51 cm and were grown in different substrates; YPD medium and Local Brown Sugar (LBS) for 8 h in flask. The maximum ethanol concentration measured after 7 h were at 6.63 and 6.59 g L-1 in YPD media and 1.54 and 1.39 g L-1in LBS media for ST1 and ST3, respectively. The use of LBS as carbon source showed higher yield of product (Yp/s), 0.59 g g-1 compared to YPD, 0.25 g g-1 in ST1 and (Yp/s), 0.54 g g-1 compared to YPD, 0.24 g g-1 in ST3 . This study indicated the possibility of using local strains (STI and ST3) to produce bioethanol via immobilization technique with local materials as substrate.

  10. Nonselective enrichment for yeast adenine mutants by flow cytometry

    Science.gov (United States)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  11. Yeast and Fungal Prions: Amyloid-Handling Systems, Amyloid Structure, and Prion Biology.

    Science.gov (United States)

    Wickner, R B; Edskes, H K; Gorkovskiy, A; Bezsonov, E E; Stroobant, E E

    2016-01-01

    Yeast prions (infectious proteins) were discovered by their outré genetic properties and have become important models for an array of human prion and amyloid diseases. A single prion protein can become any of many distinct amyloid forms (called prion variants or strains), each of which is self-propagating, but with different biological properties (eg, lethal vs mild). The folded in-register parallel β sheet architecture of the yeast prion amyloids naturally suggests a mechanism by which prion variant information can be faithfully transmitted for many generations. The yeast prions rely on cellular chaperones for their propagation, but can be cured by various chaperone imbalances. The Btn2/Cur1 system normally cures most variants of the [URE3] prion that arise. Although most variants of the [PSI+] and [URE3] prions are toxic or lethal, some are mild in their effects. Even the most mild forms of these prions are rare in the wild, indicating that they too are detrimental to yeast. The beneficial [Het-s] prion of Podospora anserina poses an important contrast in its structure, biology, and evolution to the yeast prions characterized thus far. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Genetic diversity and pectinolytic activity of epiphytic yeasts from grape carposphere.

    Science.gov (United States)

    Filho, M Cilião; Bertéli, M B D; Valle, J S; Paccola-Meirelles, L D; Linde, G A; Barcellos, F G; Colauto, N B

    2017-06-20

    The genetic diversity of epiphytic yeasts from grape carposphere is susceptible to environmental variations that determine the predominant carposphere microbiota. Understanding the diversity of yeasts that inhabit grape carposphere in different environments and their pectinolytic activity is a way to understand the biotechnological potential that surrounds us and help improve winemaking. Therefore, this study aimed to evaluate the pectinolytic activity and characterize the genetic diversity of isolated epiphytic yeasts from grape carposphere. Grapes of the Bordeaux cultivar were collected from different regions of Paraná and Rio Grande do Sul States, in Brazil, and the yeasts were isolated from these grape carpospheres. Monosporic isolates were morphologically and genetically characterized on potato dextrose agar medium and by PCR-RFLP and rep-PCR (BOX-PCR) in the ITS1-5.8S-ITS2 region of rDNA. The index of pectinolytic activity of isolates was also evaluated estimating the ratio between the halo diameter of enzymatic degradation and the diameter of the colony when the isolates were grown in cultivation medium containing 10 g/L pectin, 5 g/L yeast extract, 15 g/L agar, 0.12% (w/v) Congo red, and pH 6.2. We observed that the grape carposphere is an environment with a great genetic diversity of epiphytic yeasts of the following genera: Cryptococcus (31.25%), Pichia (25.0%), Candida (25.0%), Dekkera (12.5%), and Saccharomyces (6.25%). The PCR-RFLP technique allowed analyzing existing polymorphism among individuals of a population based on a more restrict and evolutionarily preserved region, mostly utilized to differentiate isolates at the genus level. Approximately 33% of yeast isolates presented pectinolytic activity with potential biotechnological for wine and fruit juice production. This great genetic variability found indicated that it is a potential reservoir of genes to be applied in viniculture improvement programs.

  13. Effects of a spoilage yeast from silage on in vitro ruminal fermentation.

    Science.gov (United States)

    Santos, M C; Lock, A L; Mechor, G D; Kung, L

    2015-04-01

    Feeding silages with high concentrations of yeasts from aerobic spoilage is often implicated as a cause of poor animal performance on dairies. Our objective was to determine if a commonly found spoilage yeast, isolated from silage, had the potential to alter in vitro ruminal fermentations. A single colony of Issatchenkia orientalis, isolated from high-moisture corn, was grown in selective medium. The yeast culture was purified and added to in vitro culture tubes containing a total mixed ration (43% concentrate, 43% corn silage, 11% alfalfa haylage, and 3% alfalfa hay on a dry matter basis), buffer, and ruminal fluid to achieve added theoretical final concentrations of 0 (CTR), 4.40 (low yeast; LY), 6.40 (medium yeast; MY), and 8.40 (high yeast; HY) log10 cfu of yeast/mL of in vitro fluid. Seven separate tubes were prepared for each treatment and each time point and incubated for 12 and 24h at 39 °C. At the end of the incubation period, samples were analyzed for pH, yeast number, neutral detergent fiber (NDF) digestibility, volatile fatty acids (VFA), and fatty acids (FA). We found that total viable yeast counts decreased for all treatments in in vitro incubations but were still relatively high (5.3 log10 cfu of yeasts/mL) for HY after 24h of incubation. Addition of HY resulted in a lower pH and higher concentration of total VFA in culture fluid compared with other treatments. Moreover, additions of MY and HY decreased in vitro NDF digestibility compared with CTR, and the effect was greatest for HY. Overall, the biohydrogenation of dietary unsaturated FA was not altered by addition of I. orientalis and decreased over time with an increase in the accumulation of saturated FA, especially palmitic and stearic acids. We conclude that addition of I. orientalis, especially at high levels, has the potential to reduce in vitro NDF digestion and alter other aspects of ruminal fermentations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All

  14. Unexpected expansion of tRNA substrate recognition by the yeast m1G9 methyltransferase Trm10.

    Science.gov (United States)

    Swinehart, William E; Henderson, Jeremy C; Jackman, Jane E

    2013-08-01

    N-1 Methylation of the nearly invariant purine residue found at position 9 of tRNA is a nucleotide modification found in multiple tRNA species throughout Eukarya and Archaea. First discovered in Saccharomyces cerevisiae, the tRNA methyltransferase Trm10 is a highly conserved protein both necessary and sufficient to catalyze all known instances of m1G9 modification in yeast. Although there are 19 unique tRNA species that contain a G at position 9 in yeast, and whose fully modified sequence is known, only 9 of these tRNA species are modified with m1G9 in wild-type cells. The elements that allow Trm10 to distinguish between structurally similar tRNA species are not known, and sequences that are shared between all substrate or all nonsubstrate tRNAs have not been identified. Here, we demonstrate that the in vitro methylation activity of yeast Trm10 is not sufficient to explain the observed pattern of modification in vivo, as additional tRNA species are substrates for Trm10 m1G9 methyltransferase activity. Similarly, overexpression of Trm10 in yeast yields m1G9 containing tRNA species that are ordinarily unmodified in vivo. Thus, yeast Trm10 has a significantly broader tRNA substrate specificity than is suggested by the observed pattern of modification in wild-type yeast. These results may shed light onto the suggested involvement of Trm10 in other pathways in other organisms, particularly in higher eukaryotes that contain up to three different genes with sequence similarity to the single TRM10 gene in yeast, and where these other enzymes have been implicated in pathways beyond tRNA processing.

  15. Within-Colony Variation in the Immunocompetency of Managed and Feral Honey Bees (Apis mellifera L.) in Different Urban Landscapes

    OpenAIRE

    Appler, R.; Frank, Steven; Tarpy, David

    2015-01-01

    Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living) and managed (beekeeper-owned) honey bee colonies. We sampled foragers from feral and managed colonies in rural, suburban, and urban landscapes in and around Raleigh, NC, USA. We then analyzed adult workers using two standard bioassays for insect imm...

  16. The yeast Sks1p kinase signaling network regulates pseudohyphal growth and glucose response.

    Directory of Open Access Journals (Sweden)

    Cole Johnson

    2014-03-01

    Full Text Available The yeast Saccharomyces cerevisiae undergoes a dramatic growth transition from its unicellular form to a filamentous state, marked by the formation of pseudohyphal filaments of elongated and connected cells. Yeast pseudohyphal growth is regulated by signaling pathways responsive to reductions in the availability of nitrogen and glucose, but the molecular link between pseudohyphal filamentation and glucose signaling is not fully understood. Here, we identify the glucose-responsive Sks1p kinase as a signaling protein required for pseudohyphal growth induced by nitrogen limitation and coupled nitrogen/glucose limitation. To identify the Sks1p signaling network, we applied mass spectrometry-based quantitative phosphoproteomics, profiling over 900 phosphosites for phosphorylation changes dependent upon Sks1p kinase activity. From this analysis, we report a set of novel phosphorylation sites and highlight Sks1p-dependent phosphorylation in Bud6p, Itr1p, Lrg1p, Npr3p, and Pda1p. In particular, we analyzed the Y309 and S313 phosphosites in the pyruvate dehydrogenase subunit Pda1p; these residues are required for pseudohyphal growth, and Y309A mutants exhibit phenotypes indicative of impaired aerobic respiration and decreased mitochondrial number. Epistasis studies place SKS1 downstream of the G-protein coupled receptor GPR1 and the G-protein RAS2 but upstream of or at the level of cAMP-dependent PKA. The pseudohyphal growth and glucose signaling transcription factors Flo8p, Mss11p, and Rgt1p are required to achieve wild-type SKS1 transcript levels. SKS1 is conserved, and deletion of the SKS1 ortholog SHA3 in the pathogenic fungus Candida albicans results in abnormal colony morphology. Collectively, these results identify Sks1p as an important regulator of filamentation and glucose signaling, with additional relevance towards understanding stress-responsive signaling in C. albicans.

  17. Solving ethanol production problems with genetically modified yeast strains

    Directory of Open Access Journals (Sweden)

    A. Abreu-Cavalheiro

    2013-09-01

    Full Text Available The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

  18. Solving ethanol production problems with genetically modified yeast strains.

    Science.gov (United States)

    Abreu-Cavalheiro, A; Monteiro, G

    2013-01-01

    The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products) has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

  19. Spermine modulates fungal morphogenesis and activates plasma membrane H+-ATPase during yeast to hyphae transition

    Directory of Open Access Journals (Sweden)

    Antônio Jesus Dorighetto Cogo

    2018-02-01

    Full Text Available Polyamines play a regulatory role in eukaryotic cell growth and morphogenesis. Despite many molecular advances, the underlying mechanism of action remains unclear. Here, we investigate a mechanism by which spermine affects the morphogenesis of a dimorphic fungal model of emerging relevance in plant interactions, Yarrowia lipolytica, through the recruitment of a phytohormone-like pathway involving activation of the plasma membrane P-type H+-ATPase. Morphological transition was followed microscopically, and the H+-ATPase activity was analyzed in isolated membrane vesicles. Proton flux and acidification were directly probed at living cell surfaces by a non-invasive selective ion electrode technique. Spermine and indol-3-acetic acid (IAA induced the yeast-hypha transition, influencing the colony architecture. Spermine induced H+-ATPase activity and H+ efflux in living cells correlating with yeast-hypha dynamics. Pharmacological inhibition of spermine and IAA pathways prevented the physio-morphological responses, and indicated that spermine could act upstream of the IAA pathway. This study provides the first compelling evidence on the fungal morphogenesis and colony development as modulated by a spermine-induced acid growth mechanism analogous to that previously postulated for the multicellular growth regulation of plants.

  20. Development and characterization of antiserum to murine granulocyte-macrophage colony-stimulating factor

    International Nuclear Information System (INIS)

    Mochizuki, D.Y.; Eisenman, J.R.; Conlon, P.J.; Park, L.S.; Urdal, D.L.

    1986-01-01

    The expression in yeast of a cDNA clone encoding murine granulocyte-macrophage colony-stimulating factor (GM-CSF) has made possible the purification of large quantities of this recombinant protein. Rabbits immunized with pure recombinant GM-CSF generated antibodies that were shown to be specific for both recombinant GM-CSF and GM-CSF isolated from natural sources. Other lymphokines, including IL 1β, IL 2, IL 3, and recombinant human GM-CSF did not react with the antiserum. The antiserum together with recombinant GM-CSF that had been radiolabeled with 125 I to high specific activity, formed the foundation for a rapid, sensitive, and quantitative radioimmunoassay specific for murine GM-CSF. Furthermore, the antiserum was found to inhibit the biologic activities of GM-CSF as measured in both a bone marrow proliferation assay and a colony assay, and thus should prove to be a useful reagent for dissecting the complex growth factor activities involved in murine hematopoiesis

  1. Mating Frequencies of Honey Bee Queens (Apis mellifera L.) in a Population of Feral Colonies in the Northeastern United States

    OpenAIRE

    Tarpy, David R.; Delaney, Deborah A.; Seeley, Thomas D.

    2015-01-01

    Across their introduced range in North America, populations of feral honey bee (Apis mellifera L.) colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens-and the increased intracolony genetic diversity it confers-has been attributed, in part, to improved disease resis...

  2. The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast.

    Science.gov (United States)

    Molon, Mateusz; Szajwaj, Monika; Tchorzewski, Marek; Skoczowski, Andrzej; Niewiadomska, Ewa; Zadrag-Tecza, Renata

    2016-02-01

    Despite many controversies, the yeast Saccharomyces cerevisiae continues to be used as a model organism for the study of aging. Numerous theories and hypotheses have been created for several decades, yet basic mechanisms of aging have remained unclear. Therefore, the principal aim of this work is to propose a possible mechanism leading to increased longevity in yeast. In this paper, we suggest for the first time that there is a link between decreased metabolic activity, fertility and longevity expressed as time of life in yeast. Determination of reproductive potential and total lifespan with the use of fob1Δ and sfp1Δ mutants allows us to compare the "longevity" presented as the number of produced daughters with the longevity expressed as the time of life. The results of analyses presented in this paper suggest the need for a change in the definition of longevity of yeast by taking into consideration the time parameter. The mutants that have been described as "long-lived" in the literature, such as the fob1Δ mutant, have an increased reproductive potential but live no longer than their standard counterparts. On the other hand, the sfp1Δ mutant and the wild-type strain produce a similar number of daughter cells, but the former lives much longer. Our results demonstrate a correlation between the decreased efficiency of the translational apparatus and the longevity of the sfp1Δ mutant. We suggest that a possible factor regulating the lifespan is the rate of cell metabolism. To measure the basic metabolism of the yeast cells, we used the isothermal microcalorimetry method. In the case of sfp1Δ, the flow of energy, ATP concentration, polysome profile and translational fitness are significantly lower in comparison with the wild-type strain and the fob1Δ mutant.

  3. The Genomic Landscape and Evolutionary Resolution of Antagonistic Pleiotropy in Yeast

    Directory of Open Access Journals (Sweden)

    Wenfeng Qian

    2012-11-01

    Full Text Available Antagonistic pleiotropy (AP, or genetic tradeoff, is an important concept that is frequently invoked in theories of aging, cancer, genetic disease, and other common phenomena. However, the prevalence of AP, which genes are subject to AP, and to what extent and how AP may be resolved remain unclear. By measuring the fitness difference between the wild-type and null alleles of ∼5,000 nonessential genes in yeast, we found that in any given environment, yeast expresses hundreds of genes that harm rather than benefit the organism, demonstrating widespread AP. Nonetheless, under sufficient selection, AP is often resolvable through regulatory evolution, primarily by trans-acting changes, although in one case we also detected a cis-acting change and localized its causal mutation. However, AP is resolved more slowly in smaller populations, predicting more unresolved AP in multicellular organisms than in yeast. These findings provide an empirical foundation for AP-dependent theories and have broad biomedical and evolutionary implications.

  4. Identification of point mutations in clinical Staphylococcus aureus strains that produce small-colony variants auxotrophic for menadione.

    Science.gov (United States)

    Dean, Melissa A; Olsen, Randall J; Long, S Wesley; Rosato, Adriana E; Musser, James M

    2014-04-01

    Staphylococcus aureus small-colony variants (SCVs) are implicated in chronic and relapsing infections that are difficult to diagnose and treat. Despite many years of study, the underlying molecular mechanisms and virulence effect of the small-colony phenotype remain incompletely understood. We sequenced the genomes of five S. aureus SCV strains recovered from human patients and discovered previously unidentified nonsynonymous point mutations in three genes encoding proteins in the menadione biosynthesis pathway. Analysis of genetic revertants and complementation with wild-type alleles confirmed that these mutations caused the SCV phenotype and decreased virulence for mice.

  5. High-efficiency genome editing and allele replacement in prototrophic and wild strains of Saccharomyces.

    Science.gov (United States)

    Alexander, William G; Doering, Drew T; Hittinger, Chris Todd

    2014-11-01

    Current genome editing techniques available for Saccharomyces yeast species rely on auxotrophic markers, limiting their use in wild and industrial strains and species. Taking advantage of the ancient loss of thymidine kinase in the fungal kingdom, we have developed the herpes simplex virus thymidine kinase gene as a selectable and counterselectable marker that forms the core of novel genome engineering tools called the H: aploid E: ngineering and R: eplacement P: rotocol (HERP) cassettes. Here we show that these cassettes allow a researcher to rapidly generate heterogeneous populations of cells with thousands of independent chromosomal allele replacements using mixed PCR products. We further show that the high efficiency of this approach enables the simultaneous replacement of both alleles in diploid cells. Using these new techniques, many of the most powerful yeast genetic manipulation strategies are now available in wild, industrial, and other prototrophic strains from across the diverse Saccharomyces genus. Copyright © 2014 by the Genetics Society of America.

  6. Proteolytic activities in yeast after UV irradiation. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Schwencke, J.; Moustacchi, E.

    1982-04-01

    When the levels of three common yeast proteinases in exponentially growing cells of mutants blocked in different repair pathways are compared to that of isogenic wild-type cells, it can be seen that the level of proteinase B is enhanced in the mutants whereas the levels of leucin aminopeptidase (Leu.AP) and lysine aminopeptidase (Lys.AP) are similar in all strains. As in its corresponding wild type, the level of proteinase B activity is further enhanced after UV-irradiation in a mutant blocked in excision-repair (rad1-3). In contrast, following the same treatment the level of proteinase B remains almost constant in a mutant blocked in a general error-prone repair system (rad6-1) and in a mutant defective in a more specific mutagenic repair pathway (pso2-1). Cycloheximide, an inhibitor of protein synthesis, blocks the post-UV enhancement in proteinase B activity observed in rad1-3 indicating that, as in the wild-type cells, an inducible process is involved. The levels of Lys.AP and Leu.AP are, respectively, either unaffected or only moderately increased following UV-treatment of the repair defective mutants, as in wild-type strains.

  7. Biogenesis of the yeast cytochrome bc1 complex.

    Science.gov (United States)

    Zara, Vincenzo; Conte, Laura; Trumpower, Bernard L

    2009-01-01

    The mitochondrial respiratory chain is composed of four different protein complexes that cooperate in electron transfer and proton pumping across the inner mitochondrial membrane. The cytochrome bc1 complex, or complex III, is a component of the mitochondrial respiratory chain. This review will focus on the biogenesis of the bc1 complex in the mitochondria of the yeast Saccharomyces cerevisiae. In wild type yeast mitochondrial membranes the major part of the cytochrome bc1 complex was found in association with one or two copies of the cytochrome c oxidase complex. The analysis of several yeast mutant strains in which single genes or pairs of genes encoding bc1 subunits had been deleted revealed the presence of a common set of bc1 sub-complexes. These sub-complexes are represented by the central core of the bc1 complex, consisting of cytochrome b bound to subunit 7 and subunit 8, by the two core proteins associated with each other, by the Rieske protein associated with subunit 9, and by those deriving from the unexpected interaction of each of the two core proteins with cytochrome c1. Furthermore, a higher molecular mass sub-complex is that composed of cytochrome b, cytochrome c1, core protein 1 and 2, subunit 6, subunit 7 and subunit 8. The identification and characterization of all these sub-complexes may help in defining the steps and the molecular events leading to bc1 assembly in yeast mitochondria.

  8. Liquid holding recovery kinetics in wild-type and radiosensitive mutants of the yeast Saccharomyces exposed to low- and high-LET radiations

    Energy Technology Data Exchange (ETDEWEB)

    Petin, Vladislav G. [Biophysical Laboratory, Medical Radiological Research Center, 249036 Obninsk (Russian Federation); Kim, Jin Kyu [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)]. E-mail: jkkim@kaeri.re.kr

    2005-02-15

    Three wild-type diploid yeast strains Saccharomyces ellipsoideus and Saccharomyces cerevisiae and five radiosensitive mutants of S. cerevisiae in the diploid state were irradiated with {gamma}-rays from {sup 60}Co and {alpha}-particles from {sup 239}Pu in the stationary phase of growth. Survival curves and the kinetics of the liquid holding recovery were measured. It was shown that the irreversible component was enhanced for the densely ionizing radiation in comparison to the low-LET radiation while the probability of the recovery was identical for both the low- and high-LET radiations for all the strains investigated. It means that the recovery process itself is not damaged after densely ionizing radiation and the enhanced RBE of the high-LET radiation may be caused by the increased yield of the irreversible damage. A parent diploid strain and all its radiosensitive mutants showed the same probability for recovery from radiation damage. Thus, the mechanism of the enhanced radiosensitivity of the mutant cells might not be related to the damage of the repair systems themselves but with the production of some kind of radiation damage from which cells are incapable to recover.

  9. Novel Wine Yeast for Improved Utilisation of Proline during Fermentation

    Directory of Open Access Journals (Sweden)

    Danfeng Long

    2018-02-01

    Full Text Available Proline is the predominant amino acid in grape juice, but it is poorly assimilated by wine yeast under the anaerobic conditions typical of most fermentations. Exploiting the abundance of this naturally occurring nitrogen source to overcome the need for nitrogen supplementation and/or the risk of stuck or sluggish fermentations would be most beneficial. This study describes the isolation and evaluation of a novel wine yeast isolate, Q7, obtained through ethyl methanesulfonate (EMS mutagenesis. The utilisation of proline by the EMS isolate was markedly higher than by the QA23 wild type strain, with approximately 700 and 300 mg/L more consumed under aerobic and self-anaerobic fermentation conditions, respectively, in the presence of preferred nitrogen sources. Higher intracellular proline contents in the wild type strain implied a lesser rate of proline catabolism or incorporation by this strain, but with higher cell viability after freezing treatment. The expression of key genes (PUT1, PUT2, PUT3, PUT4, GAP1 and URE2 involved in proline degradation, transport and repression were compared between the parent strain and the isolate, revealing key differences. The application of these strains for efficient conduct for nitrogen-limited fermentations is a possibility.

  10. Evaluation of Caspofungin Susceptibility Testing by the New Vitek 2 AST-YS06 Yeast Card Using a Unique Collection of FKS Wild-Type and Hot Spot Mutant Isolates, Including the Five Most Common Candida Species

    DEFF Research Database (Denmark)

    Astvad, Karen M; Perlin, David S; Johansen, Helle K

    2013-01-01

    FKS mutant isolates associated with breakthrough or failure cases are emerging in clinical settings. Discrimination of these from wild-type (wt) isolates in a routine laboratory setting is complicated. We evaluated the ability of caspofungin MIC determination using the new Vitek 2 AST-Y06 yeast...... susceptibility card to correctly identify the fks mutants from wt isolates and compared the performance to those of the CLSI and EUCAST reference methods. A collection of 98 Candida isolates, including 31 fks hot spot mutants, were included. Performance was evaluated using the FKS genotype as the "gold standard...

  11. Identification of the Transcription Factor Znc1p, which Regulates the Yeast-to-Hypha Transition in the Dimorphic Yeast Yarrowia lipolytica

    Science.gov (United States)

    Martinez-Vazquez, Azul; Gonzalez-Hernandez, Angelica; Domínguez, Ángel; Rachubinski, Richard; Riquelme, Meritxell; Cuellar-Mata, Patricia; Guzman, Juan Carlos Torres

    2013-01-01

    The dimorphic yeast Yarrowia lipolytica is used as a model to study fungal differentiation because it grows as yeast-like cells or forms hyphal cells in response to changes in environmental conditions. Here, we report the isolation and characterization of a gene, ZNC1, involved in the dimorphic transition in Y. lipolytica. The ZNC1 gene encodes a 782 amino acid protein that contains a Zn(II)2C6 fungal-type zinc finger DNA-binding domain and a leucine zipper domain. ZNC1 transcription is elevated during yeast growth and decreases during the formation of mycelium. Cells in which ZNC1 has been deleted show increased hyphal cell formation. Znc1p-GFP localizes to the nucleus, but mutations within the leucine zipper domain of Znc1p, and to a lesser extent within the Zn(II)2C6 domain, result in a mislocalization of Znc1p to the cytoplasm. Microarrays comparing gene expression between znc1::URA3 and wild-type cells during both exponential growth and the induction of the yeast-to-hypha transition revealed 1,214 genes whose expression was changed by 2-fold or more under at least one of the conditions analyzed. Our results suggest that Znc1p acts as a transcription factor repressing hyphal cell formation and functions as part of a complex network regulating mycelial growth in Y. lipolytica. PMID:23826133

  12. A prolonged chronological lifespan is an unexpected benefit of the [PSI+] prion in yeast.

    Science.gov (United States)

    Wang, Kai; Melki, Ronald; Kabani, Mehdi

    2017-01-01

    Self-replicating 'proteinaceous infectious particles' or prions are responsible for complex heritable traits in the yeast Saccharomyces cerevisiae. Our current understanding of the biology of yeast prions stems from studies mostly done in the context of actively dividing cells in optimal laboratory growth conditions. Evidence suggest that fungal prions exist in the wild where most cells are in a non-dividing quiescent state, because of imperfect growth conditions, scarcity of nutrients and competition. We know little about the faithful transmission of yeast prions in such conditions and their physiological consequences throughout the lifespan of yeast cells. We addressed this issue for the [PSI+] prion that results from the self-assembly of the translation release factor Sup35p into insoluble fibrillar aggregates. [PSI+] leads to increased nonsense suppression and confers phenotypic plasticity in response to environmental fluctuations. Here, we report that while [PSI+] had little to no effect on growth per se, it dramatically improved the survival of yeast cells in stationary phase. Remarkably, prolonged chronological lifespan persisted even after [PSI+] was cured from the cells, suggesting that prions may facilitate the acquisition of complex new traits. Such an important selective advantage may contribute to the evolutionary conservation of the prion-forming ability of Sup35p orthologues in distantly related yeast species.

  13. Warburg effect and translocation-induced genomic instability: two yeast models for cancer cells

    International Nuclear Information System (INIS)

    Tosato, Valentina; Grüning, Nana-Maria; Breitenbach, Michael; Arnak, Remigiusz; Ralser, Markus; Bruschi, Carlo V.

    2013-01-01

    Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression (i) the activity of pyruvate kinase (PK), which recapitulates metabolic features of cancer cells, including the Warburg effect, and (ii) chromosome bridge-induced translocation (BIT) mimiking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect), and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, PK, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and post-translational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (“translocants”), between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the BIT system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  14. Warburg effect and translocation-induced genomic instability: two yeast models for cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tosato, Valentina [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy); Grüning, Nana-Maria [Cambridge System Biology Center, Department of Biochemistry, University of Cambridge, Cambridge (United Kingdom); Breitenbach, Michael [Division of Genetics, Department of Cell Biology, University of Salzburg, Salzburg (Austria); Arnak, Remigiusz [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy); Ralser, Markus [Cambridge System Biology Center, Department of Biochemistry, University of Cambridge, Cambridge (United Kingdom); Bruschi, Carlo V., E-mail: bruschi@icgeb.org [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy)

    2013-01-18

    Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression (i) the activity of pyruvate kinase (PK), which recapitulates metabolic features of cancer cells, including the Warburg effect, and (ii) chromosome bridge-induced translocation (BIT) mimiking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect), and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, PK, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and post-translational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (“translocants”), between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the BIT system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  15. WARBURG EFFECT AND TRANSLOCATION-INDUCED GENOMIC INSTABILITY: TWO YEAST MODELS FOR CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Valentina eTosato

    2013-01-01

    Full Text Available Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression i the activity of pyruvate kinase (PK, which recapitulates metabolic features of cancer cells, including the Warburg effect, and ii Bridge-Induced chromosome Translocation (BIT mimicking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect, and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, pyruvate kinase, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and posttranslational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (translocants, between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the Bridge-Induced Translocation system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  16. Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function.

    Science.gov (United States)

    Shiroma, Shodai; Jayakody, Lahiru Niroshan; Horie, Kenta; Okamoto, Koji; Kitagaki, Hiroshi

    2014-02-01

    Saccharomyces cerevisiae sake yeast strain Kyokai no. 7 has one of the highest fermentation rates among brewery yeasts used worldwide; therefore, it is assumed that it is not possible to enhance its fermentation rate. However, in this study, we found that fermentation by sake yeast can be enhanced by inhibiting mitophagy. We observed mitophagy in wild-type sake yeast during the brewing of Ginjo sake, but not when the mitophagy gene (ATG32) was disrupted. During sake brewing, the maximum rate of CO2 production and final ethanol concentration generated by the atg32Δ laboratory yeast mutant were 7.50% and 2.12% higher than those of the parent strain, respectively. This mutant exhibited an improved fermentation profile when cultured under limiting nutrient concentrations such as those used during Ginjo sake brewing as well as in minimal synthetic medium. The mutant produced ethanol at a concentration that was 2.76% higher than the parent strain, which has significant implications for industrial bioethanol production. The ethanol yield of the atg32Δ mutant was increased, and its biomass yield was decreased relative to the parent sake yeast strain, indicating that the atg32Δ mutant has acquired a high fermentation capability at the cost of decreasing biomass. Because natural biomass resources often lack sufficient nutrient levels for optimal fermentation, mitophagy may serve as an important target for improving the fermentative capacity of brewery yeasts.

  17. Identification of Yeast Species In the Oral Cavity of Iranian Soldiers By Disk Diffusion Method

    Directory of Open Access Journals (Sweden)

    M. Imami

    2008-02-01

    Full Text Available Background:The disk diffusion method for identification of yeasts species was performed based on different but distinct susceptibilities of yeasts spp.to chemicals:janus green, ethidium bromide,2,3,5-triphenyltetrazolium chloride, brilliant green, cycloheximide and rhodamine 6G. Methods: Atotal of 568 Iranian soldiers went under study for isolation and identification of Yeast species from their oral cavity. Asterile swab was used for each individual and specimens were collected from the nasopharynx region, then inoculated to petri dishes containing Sabouraud Dextrose Agar and incubated for 48 hrs at 37 °C. All colonies were counted and stocked in distilled water and stored in a refrigerator for further analysis. The yeasts were identified by the “disk diffusion test” [6,8]. This is a simple, rapid, accurate, and inexpensive technique presented by Sobczak [8]. By this method we identified yeast species within 24-48 hrs. Results: 51.4% of petri dishes were positive for yeast species and 318 strains were identified. Candida albicans, Candida kefyr, Candida tropicalis and Candida guilliermondii were the most common yeast species isolated from the oral cavity of soldiers. Conclusion: We used this method because of its simplicity and other beneficial characteristics for rapid identification of large and numerous isolates and the results were compared with other morphological characters such as chlamydospore and germ tube production. In addition,we used some type strains (Candida parapsilosis: PTCC 5089,Candida tropicalis: PTCC 5028,Saccharomyces cerevisiae:PTCC 5052,Candida lipolytica: PTCC 5063,Candida lipolytica:PTCC 5064,and the results were acceptable.

  18. Colony shape as a genetic trait in the pattern-forming Bacillus mycoides

    Directory of Open Access Journals (Sweden)

    Pisaneschi Giuseppe

    2002-11-01

    Full Text Available Abstract Background Bacillus mycoides Flügge, a Gram-positive, non-motile soil bacterium assigned to Bacillus cereus group, grows on agar as chains of cells linked end to end, forming radial filaments curving clock- or counter-clockwise (SIN or DX morphotypes. The molecular mechanism causing asymmetric curving is not known: our working hypothesis considers regulation of filamentous growth as the prerequisite for these morphotypes. Results SIN and DX strains isolated from the environment were classified as B. mycoides by biochemical and molecular biology tests. Growth on agar of different hardness and nutrient concentration did not abolish colony patterns, nor was conversion between SIN and DX morphotypes ever noticed. A number of morphotype mutants, all originating from one SIN strain, were obtained. Some lost turn direction becoming fluffy, others became round and compact. All mutants lost wild type tight aggregation in liquid culture. Growth on agar was followed by microscopy, exploring the process of colony formation and details of cell divisions. A region of the dcw (division cell wall cluster, including ftsQ, ftsA, ftsZ and murC, was sequenced in DX and SIN strains as a basis for studying cell division. This confirmed the relatedness of DX and SIN strains to the B. cereus group. Conclusions DX and SIN asymmetric morphotypes stem from a close but not identical genomic context. Asymmetry is established early during growth on agar. Wild type bacilli construct mostly uninterrupted filaments with cells dividing at the free ends: they "walk" longer distances compared to mutants, where enhanced frequency of cell separation produces new growing edges resulting in round compact colonies.

  19. Yeasts and coliform bacteria of water accumulated in bromeliads of mangrove and sand dune ecosystems of southeast Brazil.

    Science.gov (United States)

    Hagler, A N; Rosa, C A; Morais, P B; Mendonça-Hagler, L C; Franco, G M; Araujo, F V; Soares, C A

    1993-10-01

    Yeasts and coliform bacteria were isolated from water that accumulated in the central cups and adjacent leaf axilae of two bromeliads, Neoregelia cruenta of a coastal sand dune and Quesnelia quesneliana of a mangrove ecosystem near the city of Rio de Janeiro, Brazil. The mean total coliform counts were above 10,000 per 100 mL for waters of both plants, but the mean fecal coliform counts were only 74 per 100 mL for Q. quesneliana and mostly undetected in water from N. cruenta. Of 90 fecal coliform isolates, 51 were typical of Escherichia coli in colony morphology and indol, methyl red, Volges-Proskauer, and citrate (IMViC) tests. Seven representatives of the typical E. coli cultures were identified as this species, but the identifications of nine other coliform bacteria were mostly dubious. The yeast community of N. cruenta was typical of plant surfaces with basidiomycetous yeasts anamorphs, and the black yeast Aureobasidium pullulans was prevalent. Quesnelia quesneliana had a substantial proportion of ascomycetous yeasts and their anamorphs, including a probable new biotype of Saccharomyces unisporus. Our results suggested that the microbial communities in bromeliad waters are typically autochtonous and not contaminants.

  20. Yeast tRNAPhe expressed in human cells can be selected by HIV-1 for use as a reverse transcription primer

    International Nuclear Information System (INIS)

    Kelly, Nathan J.; Morrow, Casey D.

    2003-01-01

    All naturally occurring human immune deficiency viruses (HIV-1) select and use tRNA Lys,3 as the primer for reverse transcription. Studies to elucidate the mechanism of tRNA selection from the intracellular milieu have been hampered due to the difficulties in manipulating the endogenous levels of tRNA Lys,3 . We have previously described a mutant HIV-1 with a primer binding site (PBS) complementary to yeast tRNA Phe (psHIV-Phe) that relies on transfection of yeast tRNA Phe for infectivity. To more accurately recapitulate the selection process, a cDNA was designed for the intracellular expression of the yeast tRNA Phe . Increasing amounts of the plasmid encoding tRNA Phe resulted in a corresponding increase in levels of yeast tRNA Phe in the cell. The yeast tRNA Phe isolated from cells transfected with the cDNA for yeast tRNA Phe , or in the cell lines expressing yeast tRNA Phe , were aminoacylated, indicating that the expressed yeast tRNA Phe was incorporated into tRNA biogenesis pathways and translation. Increasing the cytoplasmic levels of tRNA Phe resulted in increased encapsidation of tRNA Phe in viruses with a PBS complementary to tRNA Phe (psHIV-Phe) or tRNA Lys,3 (wild-type HIV-1). Production of infectious psHIV-Phe was dependent on the amount of cotransfected tRNA Phe cDNA. Increasing amounts of plasmids encoding yeast tRNA Phe produced an increase of infectious psHIV-Phe that plateaued at a level lower than that from the transfection of the wild-type genome, which uses tRNA Lys,3 as the primer for reverse transcription. Cell lines were generated that expressed yeast tRNA Phe at levels approximately 0.1% of that for tRNA Lys,3 . Even with this reduced level of yeast tRNA Phe , the cell lines complemented psHIV-Phe over background levels. The results of these studies demonstrate that intracellular levels of primer tRNA can have a direct effect on HIV-1 infectivity and further support the role for PBS-tRNA complementarity in the primer selection process

  1. Effect of ion implantation on apple wine yeast

    International Nuclear Information System (INIS)

    Song Andong; Chen Hongge; Zhang Shimin; Jia Cuiying

    2004-01-01

    The wild type apple wine yeast Y 02 was treated by ion implantation with the dose of 8 x 10 15 ion/cm 2 . As results, a special mutant strain, ION II -11 dry, was obtained. The morphology characters, partial biochemistry characters, mycelium protein of the mutant strain were distinctively changed compared with original strain Y 02 . After the fermentation test ,the apple wine producing rate of the mutant strain increased 22.4% compared with original strain. These results showed that ion implantation was an effective method for mutagenesis

  2. Understanding Long-Run African Growth : Colonial Institutions or Colonial Education?

    NARCIS (Netherlands)

    Bolt, J.; Bezemer, D.J.

    2009-01-01

    Long-term growth in developing countries has been explained in four frameworks: 'extractive colonial institutions' (Acemoglu et al., 2001), 'colonial legal origin' (La Porta et al., 2004), 'geography' (Gallup et al., 1998) and 'colonial human capital' (Glaeser et al., 2004). In this paper we test

  3. Distribution of tannin-'tolerant yeasts isolated from Miang, a traditional fermented tea leaf (Camellia sinensis var. assamica) in northern Thailand.

    Science.gov (United States)

    Kanpiengjai, Apinun; Chui-Chai, Naradorn; Chaikaew, Siriporn; Khanongnuch, Chartchai

    2016-12-05

    Miang is a fermented food product prepared from the tea leaves of Camellia sinensis var. assamica, and is traditionally produced in mountainous areas of northern Thailand. Although Miang has a long history and reveals deep-rooted cultural involvement with local people in northern Thailand, little is known regarding its microbial diversity. Yeasts were isolated from 47 Miang samples collected from 28 sampling sites, including eight provinces in upper northern Thailand. A hundred and seven yeast isolates were recovered and identified within 14 species based on the comparison of the D1/D2 sequence of the large subunit (LSU) rRNA gene. Candida ethanolica was determined to be the dominant species that was frequently found in Miang together with minor resident yeast species. All yeast isolates demonstrated their tannin-tolerant capability when cultivated on yeast malt agar (YMA) containing 50g/l tannin, but nine isolates displayed clear zones forming around their colonies, e.g., Debaryomyces hansenii, Cyberlindnera rhodanensis, and Sporidiobolus ruineniae. The results obtained from a visual reading method of tannase revealed that all yeast isolates were positive for methyl gallate, indicating that they possess tannase activity. It is assumed that a tannin-tolerant ability is one of the most important factors for developing a yeast community in Miang. This research study is the first report to describe tannin-tolerant yeasts and yeast communities in traditionally fermented tea leaves. Copyright © 2016. Published by Elsevier B.V.

  4. Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfu enumeration and single colony isolation from diverse samples.

    Science.gov (United States)

    Thomas, Pious; Sekhar, Aparna C; Upreti, Reshmi; Mujawar, Mohammad M; Pasha, Sadiq S

    2015-12-01

    We propose a simple technique for bacterial and yeast cfu estimations from diverse samples with no prior idea of viable counts, designated as single plate-serial dilution spotting (SP-SDS) with the prime recommendation of sample anchoring (10 0 stocks). For pure cultures, serial dilutions were prepared from 0.1 OD (10 0 ) stock and 20 μl aliquots of six dilutions (10 1 -10 6 ) were applied as 10-15 micro-drops in six sectors over agar-gelled medium in 9-cm plates. For liquid samples 10 0 -10 5 dilutions, and for colloidal suspensions and solid samples (10% w/v), 10 1 -10 6 dilutions were used. Following incubation, at least one dilution level yielded 6-60 cfu per sector comparable to the standard method involving 100 μl samples. Tested on diverse bacteria, composite samples and Saccharomyces cerevisiae , SP-SDS offered wider applicability over alternative methods like drop-plating and track-dilution for cfu estimation, single colony isolation and culture purity testing, particularly suiting low resource settings.

  5. Isolation of glutathione-deficient mutants of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kistler, M.; Eckardt, F.; Summer, K.-H.

    1986-01-01

    Glutathione-deficient (gsh - ) mutants of the yeast Saccharomyces cerevisiae were isolated after UV treatment using MNNG as selective agent. For genetic and biochemical characterization 5 mutant strains were chosen which exhibited considerably decreased residual GSH contents varying from 2 to 6% of the wild-type levels. All 5 isolates showed a 2:2 segregation of the gsh - :GSH + phenotypes alluding to a monogenic recessive mutation. Complementation analysis indicates that all gsh - mutants belong to one complementation group. (Auth.)

  6. Impact of honeybee (Apis mellifera L. density on wild bee foraging behaviour

    Directory of Open Access Journals (Sweden)

    Goras Georgios

    2016-06-01

    Full Text Available Honey bees are globally regarded as important crop pollinators and are also valued for their honey production. They have been introduced on an almost worldwide scale. During recent years, however, several studies argue their possible competition with unmanaged pollinators. Here we examine the possible effects of honey bees on the foraging behaviour of wild bees on Cistus creticus flowers in Northern Greece. We gradually introduced one, five, and eight honey-bee hives per site, each containing ca. 20,000 workers. The visitation frequency and visit duration of wild bees before and after the beehive introductions were measured by flower observation. While the visitation frequencies of wild bees were unaffected, the average time wild bees spent on C. creticus increased with the introduction of the honey-bee hives. Although competition between honey bees and wild bees is often expected, we did not find any clear evidence for significant effects even in honey-bee densities much higher than the European-wide average of 3.1 colonies/km2.

  7. Evidence that the synthesis of glucosylphosphodolichol in yeast involves a 35-kDa membrane protein

    International Nuclear Information System (INIS)

    Palamarczyk, G.; Drake, R.; Haley, B.; Lennarz, W.J.

    1990-01-01

    In an effort to identify the polypeptide chain of glucosylphosphodolichol synthase, yeast microsomal membranes were allowed to react with 5-azido[β- 32 P]UDPGlc, a photoactive analogue of UDPGlc, which is a substrate for this enzyme. Upon photolysis the 32 P-labeled probe was shown to link covalently to a 35-kDa protein present in microsomal membranes prepared from several wild-type yeast strains. Binding was either reduced or absent in the microsomal membranes from two yeast mutants (alg5 and dpg1) that are known to be defective in the synthesis of glucosylphosphodolichol. The microsomes isolated from a heterozygous diploid strain alg5::dpg1 generated from these two mutants exhibited partial restoration of both the ability to photolabel the 35-kDa protein and the ability to catalyze the synthesis of glucosylphosphodolichol. Microsomal membranes from a mutant strain that synthesized glucosylphosphodolichol but lacked the ability to transfer the glucosyl residue to the growing lipid-linked oligosaccharide (alg6) exhibited labeling with 5-azido[β- 32 P]UDPGlc comparable to that found in microsomes from the wild-type strain. In all cases photoinsertion of the probe into the 35-kDa protein correlated with the level of synthase assayed in the microsomal membranes. These results strongly support the conclusion that the 35-kDa protein labeled in these experiments is a component of glucosylphosphodolichol synthase

  8. Circadian chronotypes among wild-captured west Andean octodontids

    Directory of Open Access Journals (Sweden)

    ADRIÁN OCAMPO-GARCÉS

    2006-01-01

    Full Text Available Rest activity pattern was studied in wild-captured males of Octodon degus (n=9, Octodon bridgesi (n=3, and Spalacopus cyanus (n=6 (Rodentia: Octodontidae. Ten-minute resolution actograms were constructed from data obtained by an automated acquisition system. After two months of habituation to a stable light-dark schedule, recordings were performed in isolation chambers under a 12: 12 Light Dark schedule. A free-running period (constant darkness was recorded for O. bridgesi and S. cyanus. O. degus displayed a crepuscular pattern of rest activity rhythm. Entrained O. bridgesi and S. cyanus displayed nocturnal preference, with rest anticipating light phase and without crepuscular activity bouts. Under constant darkness, active phase occurred at subjective night in O. bridgesi and S. cyanus. Wild-captured O. bridgesi and S. cyanus possess a circadian driven nocturnal preference, while wild O. degus displays a crepuscular profile. Diurnal active phase preference of wild S. cyanus colonies observed in the field could not be explained solely by photic entrainment, since social and/or masking processes appear to be operative. The genus Octodon includes species with diverse chronotypes. We propose that crepuscular diurnal pattern observed in O. degus is a recent acquisition among the octodontid lineage

  9. A prolonged chronological lifespan is an unexpected benefit of the [PSI+] prion in yeast.

    Directory of Open Access Journals (Sweden)

    Kai Wang

    Full Text Available Self-replicating 'proteinaceous infectious particles' or prions are responsible for complex heritable traits in the yeast Saccharomyces cerevisiae. Our current understanding of the biology of yeast prions stems from studies mostly done in the context of actively dividing cells in optimal laboratory growth conditions. Evidence suggest that fungal prions exist in the wild where most cells are in a non-dividing quiescent state, because of imperfect growth conditions, scarcity of nutrients and competition. We know little about the faithful transmission of yeast prions in such conditions and their physiological consequences throughout the lifespan of yeast cells. We addressed this issue for the [PSI+] prion that results from the self-assembly of the translation release factor Sup35p into insoluble fibrillar aggregates. [PSI+] leads to increased nonsense suppression and confers phenotypic plasticity in response to environmental fluctuations. Here, we report that while [PSI+] had little to no effect on growth per se, it dramatically improved the survival of yeast cells in stationary phase. Remarkably, prolonged chronological lifespan persisted even after [PSI+] was cured from the cells, suggesting that prions may facilitate the acquisition of complex new traits. Such an important selective advantage may contribute to the evolutionary conservation of the prion-forming ability of Sup35p orthologues in distantly related yeast species.

  10. Identification of the major yeasts isolated from high moisture corn and corn silages in the United States using genetic and biochemical methods.

    Science.gov (United States)

    Santos, M C; Golt, C; Joerger, R D; Mechor, G D; Mourão, Gerson B; Kung, L

    2017-02-01

    The objective of this study was to identify species of yeasts in samples of high moisture corn (HMC) and corn silage (CS) collected from farms throughout the United States. Samples were plated and colonies were isolated for identification using DNA analysis. Randomly selected colonies were also identified by fatty acid methyl esters (FAME) and by physiological substrate profiling (ID 32C). For CS, Candida ethanolica, Saccharomyces bulderi, Pichia anomala, Kazachstania unispora, and Saccharomyces cerevisiae were the predominant yeasts. Pichia anomala, Issatchenkia orientalis, S. cerevisiae, and Pichia fermentans were the prevalent species in HMC. The 3 identification methods were in agreement at the species level for 16.6% of the isolates and showed no agreement for 25.7%. Agreement in species identification between ID 32C and DNA analysis, FAME and ID 32C, and FAME and DNA analysis was 41.1, 14.4, and 2.2%, respectively. Pichia anomala and I. orientalis were able to grow on lactic acid, whereas S. cerevisiae metabolized sugars (galactose, sucrose, and glucose) but failed to use lactic acid. The yeast diversity in CS and HMC varied due to type of feed and location. Differences in species assignments were seen among methods, but identification using substrate profiling generally corresponded with that based on DNA analysis. These findings provide information about the species that may be expected in silages, and this knowledge may lead to interventions that control unwanted yeasts. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Yeast communities associated with artisanal mezcal fermentations from Agave salmiana.

    Science.gov (United States)

    Verdugo Valdez, A; Segura Garcia, L; Kirchmayr, M; Ramírez Rodríguez, P; González Esquinca, A; Coria, R; Gschaedler Mathis, A

    2011-11-01

    The aims of this work were to characterize the fermentation process of mezcal from San Luis Potosi, México and identify the yeasts present in the fermentation using molecular culture-dependent methods (RFLP of the 5.8S-ITS and sequencing of the D1/D2 domain) and also by using a culture-independent method (DGGE). The alcoholic fermentations of two separate musts obtained from Agave salmiana were analyzed. Sugar, ethanol and major volatile compounds concentrations were higher in the first fermentation, which shows the importance of having a quality standard for raw materials, particularly in the concentration of fructans, in order to produce fermented Agave salmiana must with similar characteristics. One hundred ninety-two (192) different yeast colonies were identified, from those present on WL agar plates, by RFLP analysis of the ITS1-5.8S- ITS2 from the rRNA gene, with restriction endonucleases, HhaI, HaeIII and HinfI. The identified yeasts were: Saccharomyces cerevisiae, Kluyveromyces marxianus, Pichia kluyveri, Zygosaccharomyces bailii, Clavispora lusitaniae, Torulaspora delbrueckii, Candida ethanolica and Saccharomyces exiguus. These identifications were confirmed by sequencing the D1-D2 region of the 26S rRNA gene. With the PCR-DGGE method, bands corresponding to S. cerevisiae, K. marxianus and T. delbrueckii were clearly detected, confirming the results obtained with classic techniques.

  12. Validation of an automated colony counting system for group A Streptococcus.

    Science.gov (United States)

    Frost, H R; Tsoi, S K; Baker, C A; Laho, D; Sanderson-Smith, M L; Steer, A C; Smeesters, P R

    2016-02-08

    The practice of counting bacterial colony forming units on agar plates has long been used as a method to estimate the concentration of live bacteria in culture. However, due to the laborious and potentially error prone nature of this measurement technique, an alternative method is desirable. Recent technologic advancements have facilitated the development of automated colony counting systems, which reduce errors introduced during the manual counting process and recording of information. An additional benefit is the significant reduction in time taken to analyse colony counting data. Whilst automated counting procedures have been validated for a number of microorganisms, the process has not been successful for all bacteria due to the requirement for a relatively high contrast between bacterial colonies and growth medium. The purpose of this study was to validate an automated counting system for use with group A Streptococcus (GAS). Twenty-one different GAS strains, representative of major emm-types, were selected for assessment. In order to introduce the required contrast for automated counting, 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) dye was added to Todd-Hewitt broth with yeast extract (THY) agar. Growth on THY agar with TTC was compared with growth on blood agar and THY agar to ensure the dye was not detrimental to bacterial growth. Automated colony counts using a ProtoCOL 3 instrument were compared with manual counting to confirm accuracy over the stages of the growth cycle (latent, mid-log and stationary phases) and in a number of different assays. The average percentage differences between plating and counting methods were analysed using the Bland-Altman method. A percentage difference of ±10 % was determined as the cut-off for a critical difference between plating and counting methods. All strains measured had an average difference of less than 10 % when plated on THY agar with TTC. This consistency was also observed over all phases of the growth

  13. Self-Nonself Recognition in the Colonial Protochordate Botryllus schlosseri from Mutsu Bay, Japan

    OpenAIRE

    RINKEVICH, BARUCH; SAITO, YASUNORI

    1992-01-01

    Wild Botryllus schlosseri collected from a 5 × 5 m area in Mutsu Bay (Aomori Prefecture, Japan) were tested for alloresponses in intrapopulation colony allorecognition assays (CAAs). Results indicate that rejection patterns are similar to those recorded previously in the populations from Monterey and Santa Barbara, California, from the Mediterranean coast of Israel, and from the Venetian lagoon, Italy. The only difference was the marked accumulation of bright-yellow blood cells in the tips of...

  14. Mutant power: using mutant allele collections for yeast functional genomics.

    Science.gov (United States)

    Norman, Kaitlyn L; Kumar, Anuj

    2016-03-01

    The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Genetic diversity affects colony survivorship in commercial honey bee colonies

    Science.gov (United States)

    Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

    2013-08-01

    Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  16. Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae

    Science.gov (United States)

    Hyma, Katie E; Saerens, Sofie M; Verstrepen, Kevin J; Fay, Justin C

    2011-01-01

    The budding yeast Saccharomyces cerevisiae is the primary species used by wine makers to convert sugar into alcohol during wine fermentation. Saccharomyces cerevisiae is found in vineyards, but is also found in association with oak trees and other natural sources. Although wild strains of S. cerevisiae as well as other Saccharomyces species are also capable of wine fermentation, a genetically distinct group of S. cerevisiae strains is primarily used to produce wine, consistent with the idea that wine making strains have been domesticated for wine production. In this study, we demonstrate that humans can distinguish between wines produced using wine strains and wild strains of S. cerevisiae as well as its sibling species, Saccharomyces paradoxus. Wine strains produced wine with fruity and floral characteristics, whereas wild strains produced wine with earthy and sulfurous characteristics. The differences that we observe between wine and wild strains provides further evidence that wine strains have evolved phenotypes that are distinct from their wild ancestors and relevant to their use in wine production. PMID:22093681

  17. Growth on Alpha-Ketoglutarate Increases Oxidative Stress Resistance in the Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Maria Bayliak

    2017-01-01

    Full Text Available Alpha-ketoglutarate (AKG is an important intermediate in cell metabolism, linking anabolic and catabolic processes. The effect of exogenous AKG on stress resistance in S. cerevisiae cells was studied. The growth on AKG increased resistance of yeast cells to stresses, but the effects depended on AKG concentration and type of stressor. Wild-type yeast cells grown on AKG were more resistant to hydrogen peroxide, menadione, and transition metal ions (Fe2+ and Cu2+ but not to ethanol and heat stress as compared with control ones. Deficiency in SODs or catalases abolished stress-protective effects of AKG. AKG-supplemented growth led to higher values of total metabolic activity, level of low-molecular mass thiols, and activities of catalase and glutathione reductase in wild-type cells compared with the control. The results suggest that exogenous AKG may enhance cell metabolism leading to induction of mild oxidative stress. It turn, it results in activation of antioxidant system that increases resistance of S. cerevisiae cells to H2O2 and other stresses. The presence of genes encoding SODs or catalases is required for the expression of protective effects of AKG.

  18. On colonial grounds

    NARCIS (Netherlands)

    Dommelen, Peter Alexander René van

    1998-01-01

    As a study of the colonial situations of first millennium BC Sardinia, this book is as much an investigation into colonialism as a sociological category, as it explores the specific historical conditions of a particular region. Taking a fresh look at colonialism in Mediterranean archaeology from a

  19. Characterization of clinically isolated thymidine-dependent small-colony variants of Escherichia coli producing extended-spectrum β-lactamase.

    Science.gov (United States)

    Negishi, Tatsuya; Matsumoto, Takehisa; Horiuchi, Kazuki; Kasuga, Eriko; Natori, Tatsuya; Matsuoka, Mina; Ogiwara, Naoko; Sugano, Mitsutoshi; Uehara, Takeshi; Nagano, Noriyuki; Honda, Takayuki

    2018-01-01

    Thymidine-dependent small-colony variants (TD-SCVs) are difficult to detect or test for antimicrobial susceptibility. We investigated the characteristics of clonal TD-SCVs of Escherichia coli, both with and without blaCTX-M-3, isolated from a patient. Mutation in the thyA gene was analysed by sequencing, and morphological abnormalities in the colonies and cells of the isolates were examined. Additionally, conjugational transfer experiments were performed to prove the horizontal transferability of plasmids harbouring resistance genes. The TD-SCVs contained a single nucleotide substitution in the thyA gene, c.62G>A, corresponding to p.Arg21His. Morphologically, their colonies were more translucent and flattened than those of the wild-type strain. In addition, cells of the TD-SCVs were swollen and elongated, sometimes with abnormal and incomplete divisions; a large amount of cell debris was also observed. Changing c.62G>A back to the wild-type sequence reversed these abnormalities. Conjugational transfer experiments showed that the TD-SCV of E. coli with blaCTX-M-3 failed to transfer blaCTX-M-3 to E. coli CSH2. However, the TD-SCV of E. coli without blaCTX-M-3 experimentally received the plasmid encoding blaSHV-18 from Klebsiella pneumoniae ATCC 700603 and transferred it to E. coli CSH2. Mutation in the thyA gene causes morphological abnormalities in the colonies and cells of E. coli, as well as inducing thymidine auxotrophy. In addition, TD-SCVs horizontally transmit plasmids encoding resistance genes. It is important to detect TD-SCVs based on their characteristics because they serve as reservoirs of transferable antibiotic resistance plasmids.

  20. Mutation induction in haploid yeast after split-dose radiation-exposure. Pt. 1

    International Nuclear Information System (INIS)

    Schenk, K.; Zoelzer, F.; Kiefer, J.

    1989-01-01

    Mutation induction was investigated in wild-type haploid yeast Saccharomyces cerevisiae after split-dose UV-irradiation. Cells were exposed to fractionated 254 nm-UV-doses separated by intervals from 0 to 6 h with incubation either on non-nutrient or nutrient agar between. The test parameter was resistance to canavanine. If modifications of sensitivity due to incubation are appropriately taken into account there is no change of mutation frequency. (orig.)

  1. Avian cholera, a threat to the viability of an Arctic seabird colony?

    Directory of Open Access Journals (Sweden)

    Sébastien Descamps

    Full Text Available Evidence that infectious diseases cause wildlife population extirpation or extinction remains anecdotal and it is unclear whether the impacts of a pathogen at the individual level can scale up to population level so drastically. Here, we quantify the response of a Common eider colony to emerging epidemics of avian cholera, one of the most important infectious diseases affecting wild waterfowl. We show that avian cholera has the potential to drive colony extinction, even over a very short period. Extinction depends on disease severity (the impact of the disease on adult female survival and disease frequency (the number of annual epidemics per decade. In case of epidemics of high severity (i.e., causing >30% mortality of breeding females, more than one outbreak per decade will be unsustainable for the colony and will likely lead to extinction within the next century; more than four outbreaks per decade will drive extinction to within 20 years. Such severity and frequency of avian cholera are already observed, and avian cholera might thus represent a significant threat to viability of breeding populations. However, this will depend on the mechanisms underlying avian cholera transmission, maintenance, and spread, which are currently only poorly known.

  2. Survival of commercial yeasts in the winery environment and their prevalence during spontaneous fermentations.

    Science.gov (United States)

    Blanco, P; Orriols, I; Losada, A

    2011-01-01

    Inoculation of active dry yeasts during the wine-making process has become a common practice in most wine-producing regions; this practice may affect the diversity of the indigenous population of Saccharomyces cerevisiae in the winery. The aim of this work was to study the incidence of commercial yeasts in the experimental winery of Estación de Viticultura e Enoloxía de Galicia (EVEGA) and their ability to lead spontaneous fermentations. To do this, 64 spontaneous fermentations were carried out in the experimental cellar of EVEGA over a period of 7 years. Samples were taken from must and at the beginning, vigorous and final stages of fermentation. A representative number of yeast colonies was isolated from each sample. S. cerevisiae strains were characterised by analysis of mitochondrial DNA restriction patterns. The results showed that although more than 40 different strains of S. cerevisiae were identified, only 10 were found as the dominant strain or in codominance with other strains in spontaneous fermentations. The genetic profiles (mtDNA-RFLPs) of eight of these strains were similar to those of different commercial yeasts that had been previously used in the EVEGA cellar. The remaining two strains were autochthonous ones that were able to reach implantation frequencies as high of those of commercial yeasts. These results clearly indicated that commercial wine yeasts were perfectly adapted to survive in EVEGA cellar conditions, and they successfully competed with the indigenous strains of S. cerevisiae, even during spontaneous fermentations. On the other hand, autochthonous dominant strains that presented desirable oenological traits could be of interest to preserve wine typicity.

  3. Seasonal Food Scarcity Prompts Long-Distance Foraging by a Wild Social Bee.

    Science.gov (United States)

    Pope, Nathaniel S; Jha, Shalene

    2018-01-01

    Foraging is an essential process for mobile animals, and its optimization serves as a foundational theory in ecology and evolution; however, drivers of foraging are rarely investigated across landscapes and seasons. Using a common bumblebee species from the western United States (Bombus vosnesenskii), we ask whether seasonal decreases in food resources prompt changes in foraging behavior and space use. We employ a unique integration of population genetic tools and spatially explicit foraging models to estimate foraging distances and rates of patch visitation for wild bumblebee colonies across three study regions and two seasons. By mapping the locations of 669 wild-caught individual foragers, we find substantial variation in colony-level foraging distances, often exhibiting a 60-fold difference within a study region. Our analysis of visitation rates indicates that foragers display a preference for destination patches with high floral cover and forage significantly farther for these patches, but only in the summer, when landscape-level resources are low. Overall, these results indicate that an increasing proportion of long-distance foraging bouts take place in the summer. Because wild bees are pollinators, their foraging dynamics are of urgent concern, given the potential impacts of global change on their movement and services. The behavioral shift toward long-distance foraging with seasonal declines in food resources suggests a novel, phenologically directed approach to landscape-level pollinator conservation and greater consideration of late-season floral resources in pollinator habitat management.

  4. Nanolaser Spectroscopy of Genetically Engineered Yeast: New Tool for a Better Brew?

    Science.gov (United States)

    Gourley, Paul L.; Hendricks, Judy K.; Naviaux, Robert K.; Yaffe, Michael P.

    2006-03-01

    A basic function of the cell membrane is to selectively uptake ions or molecules from its environment to concentrate them into the interior. This concentration difference results in an osmostic pressure difference across the membrane. Ultimately, this pressure and its fluctuation from cell to cell will be limited by the availability and fluctuations of the solute concentrations in solution, the extent of inter-cell communication, and the state of respiring intracellular mitochondria that fuel the process. To measure these fluctuations, we have employed a high-speed nanolaser technique that samples the osmotic pressure in individual yeast cells and isolated mitochondria. We analyzed 2 yeast cell strains, normal baker’s yeast and a genetically-altered version, that differ only by the presence of mitochondrial DNA. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes. These cells have mitochondria, but the mitochondria lack most normal respiratory chain complexes. The frequency distributions in the nanolaser spectra produced by wild-type and modified cells and mitochondria show a striking shift from Gaussian to Poissonian distributions, revealing a powerful novel method for studying statistical physics of yeast.

  5. [Intragenic mitotic recombination induced by ultraviolet and gamma rays in radiosensitive mutants of Saccharomyces cerevisiae yeasts].

    Science.gov (United States)

    Zakharov, I A; Kasinova, G V; Koval'tsova, S V

    1983-01-01

    The effect of UV- and gamma-irradiation on the survival and intragenic mitotic recombination (gene conversion) of 5 radiosensitive mutants was studied in comparison with the wild type. The level of spontaneous conversion was similar for RAD, rad2 and rad15, mutations xrs2 and xrs4 increasing and rad54 significantly decreasing it. The frequency of conversion induced by UV-light was greater in rad2, rad15 and xrs2 mutants and lower in xrs4, as compared to RAD. Gamma-irradiation caused induction of gene conversion with an equal frequency in RAD, rad2, rad15. Xrs2 and xrs4 mutations slightly decreased gamma-induced conversion. In rad54 mutant, UV-and gamma-induced conversion was practically absent. In the wild type yeast, a diploid strain is more resistant than a haploid, whereas in rad54 a diploid strain has the same or an increased sensitivity, as compared to a haploid strain (the "inverse ploidy effect"). This effect and also the block of induced mitotic recombination caused by rad54 indicate the presence in the yeast Saccharomyces cerevisiae of repair pathways of UV- and gamma-induced damages acting in diploid cells and realised by recombination. The data obtained as a result of many years' investigation of genetic effects in radiosensitive mutants of yeast are summarised and considered.

  6. Inheritance and organisation of the mitochondrial genome differ between two Saccharomyces yeasts

    DEFF Research Database (Denmark)

    Petersen, Randi Føns; Langkjær, Rikke Breinhold; Hvidtfeldt, J.

    2002-01-01

    Petite-positive Saccharomyces yeasts can be roughly divided into the sensu stricto, including Saccharomyces cerevisiae, and sensu lato group, including Saccharomyces castellii; the latter was recently studied for transmission and the organisation of its mitochondrial genome. S. castellii mitochon......Petite-positive Saccharomyces yeasts can be roughly divided into the sensu stricto, including Saccharomyces cerevisiae, and sensu lato group, including Saccharomyces castellii; the latter was recently studied for transmission and the organisation of its mitochondrial genome. S. castellii...... mitochondrial molecules (mtDNA) carrying point mutations, which confer antibiotic resistance, behaved in genetic crosses as the corresponding point mutants of S. cerevisiae. While S. castellii generated spontaneous petite mutants in a similar way as S. cerevisiae, the petites exhibited a different inheritance...... pattern. In crosses with the wild type strains a majority of S. castellii petites was neutral, and the suppressivity in suppressive petites was never over 50%. The two yeasts also differ in organisation of their mtDNA molecules. The 25,753 bp sequence of S. castellii mtDNA was determined and the coding...

  7. Heavy ion effects on yeast: Inhibition of ribosomal RNA synthesis

    International Nuclear Information System (INIS)

    Weber, K.J.; Schneider, E.; Kiefer, J.; Kraft, G.

    1990-01-01

    Diploid wild-type yeast cells were exposed to beams of heavy ions covering a wide range of linear energy transfer (LET) (43-13,700 keV/microns). Synthesis of ribosomal RNA (rRNA) was assessed as a functional measure of damage produced by particle radiation. An exponential decrease of relative rRNA synthesis with particle fluence was demonstrated in all cases. The inactivation cross sections derived were found to increase with LET over the entire range of LET studied. The corresponding values for relative biological effectiveness were slightly less than unity. Maximum cross sections measured were close to 1 micron 2, implying that some larger structure within the yeast nucleus (e.g., the nucleolus) might represent the target for an impairment of synthetic activity by very heavy ions rather than the genes coding for rRNA. Where tested, an oxygen effect for rRNA synthesis could not be demonstrated

  8. Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA.

    Science.gov (United States)

    Karavaeva, Iuliia E; Golyshev, Sergey A; Smirnova, Ekaterina A; Sokolov, Svyatoslav S; Severin, Fedor F; Knorre, Dmitry A

    2017-04-01

    Non-identical copies of mitochondrial DNA (mtDNA) compete with each other within a cell and the ultimate variant of mtDNA present depends on their relative replication rates. Using yeast Saccharomyces cerevisiae cells as a model, we studied the effects of mitochondrial inhibitors on the competition between wild-type mtDNA and mutant selfish mtDNA in heteroplasmic zygotes. We found that decreasing mitochondrial transmembrane potential by adding uncouplers or valinomycin changes the competition outcomes in favor of the wild-type mtDNA. This effect was significantly lower in cells with disrupted mitochondria fission or repression of the autophagy-related genes ATG8 , ATG32 or ATG33 , implying that heteroplasmic zygotes activate mitochondrial degradation in response to the depolarization. Moreover, the rate of mitochondrially targeted GFP turnover was higher in zygotes treated with uncoupler than in haploid cells or untreated zygotes. Finally, we showed that vacuoles of zygotes with uncoupler-activated autophagy contained DNA. Taken together, our data demonstrate that mitochondrial depolarization inhibits clonal expansion of selfish mtDNA and this effect depends on mitochondrial fission and autophagy. These observations suggest an activation of mitochondria quality control mechanisms in heteroplasmic yeast zygotes. © 2017. Published by The Company of Biologists Ltd.

  9. Metabolic differentiation of surface and invasive cells of yeast colony biofilms revealed by gene expression profiling

    Czech Academy of Sciences Publication Activity Database

    Maršíková, J.; Wilkinson, D.; Hlaváček, Otakar; Gilfillan, G.D.; Mizeranschi, A.; Hughes, T.; Begany, Markéta; Rešetárová, Stanislava; Váchová, Libuše; Palková, Z.

    2017-01-01

    Roč. 18, OCT 23 (2017), s. 814 ISSN 1471-2164 R&D Projects: GA MŠk(CZ) 7F14083; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Saccharomyces cerevisiae * Colony biofilms * Cell differentiation Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.729, year: 2016

  10. Ireland – a test case of Post-colonialism / Post colonialism

    Directory of Open Access Journals (Sweden)

    Brenda Murray

    2006-05-01

    Full Text Available Contextualisation This review attempts to set the stage for post-colonial theorising, in the light of alternative representations of ‘whiteness’, on issues of gender, race and language within the discourse of equality. In this paper Ireland and the Irish provide a backdrop against which the nature and impact of colonialism on the colonised and the coloniser are explored. Many challenging questions emerge about the ideological basis of post colonial theory, not least when traditional paradigms of racism, as conveyed by the black / white dichotomy, are examined: Ireland presents a context, it is argued, where subjugation is of white on white. Linked to this is the language of the coloniser, a powerful hegemonic force which, in some situations, has been nurtured by the colonised and later developed into a text which is unique, producing a new literature which, it is asserted, truly invokes the ‘post colonial’. Abstract: Post-colonialism – essentially a critique of colonialism, is characterised by a process of disengagement from the colonial epoch and has taken many forms. In this article a set of phenomena are examined that have become inscribed in the cultures of the colonised with a view to identifying alternative cultural origins and dispositions recovered in this post-colonial era. Ireland and the Irish provide the background context of this exploration into perspectives generated by the peripheral or post-colonial nations. Globalisation, too, has had a role to play in the increasing de-territorialisation of communities as a result of cross-frontier mobility, increased intra-community mobility and new communication technologies. A critical reflection on the process of disengagement leads the author to conclude that we must come to recognise new cultural forms which are accepting of a heterogeneous and inclusive society: one which is not characterised by difference.

  11. Induction of mutation for increased sulfur content in the CFI strain of yeast by gamma-irradiation

    International Nuclear Information System (INIS)

    Faustino, C.C.

    1977-08-01

    From all current source of protein concentration the food yeast offers the greatest potential for development. Yeast protein is a good source of lysine and has adeqouate acounts of other essential amino acids such as trytophan and threonine, however, it was found to be relatively poor in the sulfur-containing amino acids which limits its nutrient value. A lasting remedy is genetic modification of the microorganisms to produce protein with a better amino acid balance. Gamma radiation from Co-60 was tried in these experiments being reported to induce mutations in the new CFI strain. A way of screening for increased sulfur content was devised. These are; 1) Incorporation of (NH 4 ) 2 35 S0 4 into the yeast cells; 2) Autoradiography; and 3) Quantitative determination of S-incorporation in submerse cultures of yeasts by use of a liquid scintillation counter. About seven hundred individual colonies were carefully and meticulously autQradiographically screened for high-S0 4 incorporation. Based on the results of autoradiography, 7.8% (50 strains) of the whole population were considered high in 35 S0 4 incorporation. The 50 yeast strains selected by autoradiography to be high in S0 4 incorporation were analyzed with the use of a liquid scintillation counter. From the data gathered, 29 mutants were se--lected. The data from these 29 mutants are presented in tabulated form. Only yeast strains no. 1, 42, 44, 47, 4, 3, 49, 50, 2 and 39 appear to show any promise as putative high-S mutants

  12. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts.

    Science.gov (United States)

    Gonçalves, Margarida; Pontes, Ana; Almeida, Pedro; Barbosa, Raquel; Serra, Marta; Libkind, Diego; Hutzler, Mathias; Gonçalves, Paula; Sampaio, José Paulo

    2016-10-24

    Beer is one of the oldest alcoholic beverages and is produced by the fermentation of sugars derived from starches present in cereal grains. Contrary to lager beers, made by bottom-fermenting strains of Saccharomyces pastorianus, a hybrid yeast, ale beers are closer to the ancient beer type and are fermented by S. cerevisiae, a top-fermenting yeast. Here, we use population genomics to investigate (1) the closest relatives of top-fermenting beer yeasts; (2) whether top-fermenting yeasts represent an independent domestication event separate from those already described; (3) whether single or multiple beer yeast domestication events can be inferred; and (4) whether top-fermenting yeasts represent non-recombinant or recombinant lineages. Our results revealed that top-fermenting beer yeasts are polyphyletic, with a main clade composed of at least three subgroups, dominantly represented by the German, British, and wheat beer strains. Other beer strains were phylogenetically close to sake, wine, or bread yeasts. We detected genetic signatures of beer yeast domestication by investigating genes previously linked to brewing and using genome-wide scans. We propose that the emergence of the main clade of beer yeasts is related with a domestication event distinct from the previously known cases of wine and sake yeast domestication. The nucleotide diversity of the main beer clade more than doubled that of wine yeasts, which might be a consequence of fundamental differences in the modes of beer and wine yeast domestication. The higher diversity of beer strains could be due to the more intense and different selection regimes associated to brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Prions in yeast

    OpenAIRE

    Bezdíčka, Martin

    2013-01-01

    The thesis describes yeast prions and their biological effects on yeast in general. It defines the basic characteristics of yeast prions, that distinguish prions from other proteins. The thesis introduces various possibilities of prion formation, and propagation as well as specific types of yeast prions, including various functions of most studied types of prions. The thesis also focuses on chaperones that affect the state of yeast prions in cells. Lastly, the thesis indicates similarities be...

  14. Random substitution of large parts of the propeptide of yeast proteinase A

    DEFF Research Database (Denmark)

    van den Hazel, H B; Kielland-Brandt, Morten; Winther, Jakob R.

    1995-01-01

    The yeast aspartic protease, proteinase A, has a 54 amino-acid propeptide, which is removed during activation of the zymogen in the vacuole. Apart from being involved inhibition/activation, the propeptide has been shown to be essential for formation of a stable active enzyme (van den Hazel, H. B...... of the mutants were subjected to a colony screen for ones exhibiting activity. A high frequency (around 1%) of active constructs was found, which indicates a very high tolerance for mutations in the propeptide. Thirty-nine functional mutant forms containing random sequence at either the N- or C-terminal half...

  15. GROWTH RATE AND IDENTIFICATION OF YEASTS IN THREE DIFFERENT MEDIA: FLOUR, SPROUT OF CEREALS AND COMMERCIAL MEDIA

    Directory of Open Access Journals (Sweden)

    P DEHGHAN

    2002-12-01

    Full Text Available Introduction. The yeasts are a large group of fungi. In addition to their different uses in food industries and pharmacology they can also cause human and animal infections under predisposing factors. For investigating the yeast"s growth phases and diagnosis of the species, they should culture in media from natural sources like the seeds on the commercial media. According to yeast"s nutritinal requierments and considering the various nutritional materials of seeds like wheat, rice, barney and better use of these seed"s compounds during sprouting, this research was done with the aim of measurment of growth rate and yeasts characterization in such media. Methods. For making seeds media, a fixed quantity of seed"s flour or sprout"s flour was added to a certain amount of agar in acidotic condition (pH=5.8. The germination of seeds was done by Hus method and for colony counting Mc, Farland tubes were used and microscopic and macroscopic characteristics were investigated and compared in both synthetic and seed media Results. The results showed that the rate of yeasts growth in all germinated seeds was more than the seeds themeselves. Statistical analysis showed no significal difference between the growth rate of yeasts in both wheat and barney sprout compared to the commercial media. In the microscopic studies, the species of Candida albicans in wheat flour has produced more chlamydoconidia than the synthetic medium of corn meal agar. Also production of the capsule in C.neoformans in the seed"s media has been better than the synthetic media. Discussion. According to the promising results obtained from the present study regard to the growth rate and differentiation of the fungal species in such media, standardization and mass production of them in our country would seem to be an productive step towards self sufficiency.

  16. Performance of CHROMAGAR candida and BIGGY agar for identification of yeast species

    Directory of Open Access Journals (Sweden)

    Marol Serhat

    2003-10-01

    Full Text Available Abstract Background The importance of identifying the pathogenic fungi rapidly has encouraged the development of differential media for the presumptive identification of yeasts. In this study two differential media, CHROMagar Candida and bismuth sulphite glucose glycine yeast agar, were evaluated for the presumptive identification of yeast species. Methods A total number of 270 yeast strains including 169 Candida albicans, 33 C. tropicalis, 24 C. glabrata, 18 C. parapsilosis, 12 C. krusei, 5 Trichosporon spp., 4 C. kefyr, 2 C. lusitaniae, 1 Saccharomyces cerevisiae and 1 Geotrichum candidum were included. The strains were first identified by germ tube test, morphological characteristics on cornmeal tween 80 agar and Vitek 32 and API 20 C AUX systems. In parallel, they were also streaked onto CHROMagar Candida and bismuth sulphite glucose glycine yeast agar plates. The results were read according to the color, morphology of the colonies and the existance of halo around them after 48 hours of incubation at 37°C. Results The sensitivity and specificity values for C. albicans strains were found to be 99.4, 100% for CHROMagar Candida and 87.0, 75.2% for BiGGY agar, respectively. The sensitivity of CHROMagar Candida to identify C. tropicalis, C. glabrata and C. krusei ranged between 90.9 and 100% while the specificity was 100%. The sensitivity rates for BiGGY agar were 66.6 and 100% while the specificity values were found to be 95.4 and 100% for C. tropicalis and C. krusei, respectively. Conclusions It can be concluded that the use of CHROMagar Candida is an easy and reliable method for the presumptive identification of most commonly isolated Candida species especially C. albicans, C. tropicalis and C. krusei. The lower sensitivity and specificity of BiGGY agar to identify commonly isolated Candida species potentially limits the clinical usefulness of this agar.

  17. Performance of CHROMAGAR candida and BIGGY agar for identification of yeast species.

    Science.gov (United States)

    Yücesoy, Mine; Marol, Serhat

    2003-10-29

    The importance of identifying the pathogenic fungi rapidly has encouraged the development of differential media for the presumptive identification of yeasts. In this study two differential media, CHROMagar Candida and bismuth sulphite glucose glycine yeast agar, were evaluated for the presumptive identification of yeast species. A total number of 270 yeast strains including 169 Candida albicans, 33 C. tropicalis, 24 C. glabrata, 18 C. parapsilosis, 12 C. krusei, 5 Trichosporon spp., 4 C. kefyr, 2 C. lusitaniae, 1 Saccharomyces cerevisiae and 1 Geotrichum candidum were included. The strains were first identified by germ tube test, morphological characteristics on cornmeal tween 80 agar and Vitek 32 and API 20 C AUX systems. In parallel, they were also streaked onto CHROMagar Candida and bismuth sulphite glucose glycine yeast agar plates. The results were read according to the color, morphology of the colonies and the existance of halo around them after 48 hours of incubation at 37 degrees C. The sensitivity and specificity values for C. albicans strains were found to be 99.4, 100% for CHROMagar Candida and 87.0, 75.2% for BiGGY agar, respectively. The sensitivity of CHROMagar Candida to identify C. tropicalis, C. glabrata and C. krusei ranged between 90.9 and 100% while the specificity was 100%. The sensitivity rates for BiGGY agar were 66.6 and 100% while the specificity values were found to be 95.4 and 100% for C. tropicalis and C. krusei, respectively. It can be concluded that the use of CHROMagar Candida is an easy and reliable method for the presumptive identification of most commonly isolated Candida species especially C. albicans, C. tropicalis and C. krusei. The lower sensitivity and specificity of BiGGY agar to identify commonly isolated Candida species potentially limits the clinical usefulness of this agar.

  18. Yeast biodiversity from Vitis vinifera L., subsp. sylvestris (Gmelin Hegi to face up the oenological consequences of climate change

    Directory of Open Access Journals (Sweden)

    Puig-Pujol Anna

    2016-01-01

    Full Text Available The impact of climate change in the viticulture is affecting the quality of grapes and their wines. As consequence, climatic variations are producing a mismatch between technological and phenolic maturity and are affecting the microbiota's ecology, biodiversity and their metabolism in vineyard, grape, must and wine. However, there are natural resources that can help to mitigate the effects of global warming. It has been noticed that grapes from female plants of wild vines (Vitis vinifera subsp. sylvestris have very appropriate characteristics to face up this problem: later maturing, high acidity, high polyphenol content,…A molecular study of 819 strains isolated at the end of spontaneous fermentations of grapes of Vitis vinifera subsp. sylvestris grapevines from 30 locations in northern of Spain revealed 8 different genera and 18 different species. 71,5% of the yeasts were classified as non-Saccharomycesand 28,5% were identified as Saccharomyces cerevisiae. This latter specie was characterized at strain level, classifying 30 different groups, 6 of which as the majority from 2 up to 4 different locations. These findings demonstrate a wide diversity of yeast microbiota in wild grapes that will allow a yeast selection for the wine industry in a scenario of climate change.

  19. How does yeast respond to pressure?

    Directory of Open Access Journals (Sweden)

    Fernandes P.M.B.

    2005-01-01

    Full Text Available The brewing and baking yeast Saccharomyces cerevisiae has been used as a model for stress response studies of eukaryotic cells. In this review we focus on the effect of high hydrostatic pressure (HHP on S. cerevisiae. HHP exerts a broad effect on yeast cells characteristic of common stresses, mainly associated with protein alteration and lipid bilayer phase transition. Like most stresses, pressure induces cell cycle arrest. Below 50 MPa (500 atm yeast cell morphology is unaffected whereas above 220 MPa wild-type cells are killed. S. cerevisiae cells can acquire barotolerance if they are pretreated with a sublethal stress due to temperature, ethanol, hydrogen peroxide, or pressure. Nevertheless, pressure only leads to protection against severe stress if, after pressure pretreatment, the cells are also re-incubated at room pressure. We attribute this effect to the inhibition of the protein synthesis apparatus under HHP. The global genome expression analysis of S. cerevisiae cells submitted to HHP revealed a stress response profile. The majority of the up-regulated genes are involved in stress defense and carbohydrate metabolism while most repressed genes belong to the cell cycle progression and protein synthesis categories. However, the signaling pathway involved in the pressure response is still to be elucidated. Nitric oxide, a signaling molecule involved in the regulation of a large number of cellular functions, confers baroprotection. Furthermore, S. cerevisiae cells in the early exponential phase submitted to 50-MPa pressure show induction of the expression level of the nitric oxide synthase inducible isoform. As pressure becomes an important biotechnological tool, studies concerning this kind of stress in microorganisms are imperative.

  20. Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite.

    Science.gov (United States)

    Mikheyev, Alexander S; Tin, Mandy M Y; Arora, Jatin; Seeley, Thomas D

    2015-08-06

    Understanding genetic changes caused by novel pathogens and parasites can reveal mechanisms of adaptation and genetic robustness. Using whole-genome sequencing of museum and modern specimens, we describe the genomic changes in a wild population of honey bees in North America following the introduction of the ectoparasitic mite, Varroa destructor. Even though colony density in the study population is the same today as in the past, a major loss of haplotypic diversity occurred, indicative of a drastic mitochondrial bottleneck, caused by massive colony mortality. In contrast, nuclear genetic diversity did not change, though hundreds of genes show signs of selection. The genetic diversity within each bee colony, particularly as a consequence of polyandry by queens, may enable preservation of genetic diversity even during population bottlenecks. These findings suggest that genetically diverse honey bee populations can recover from introduced diseases by evolving rapid tolerance, while maintaining much of the standing genetic variation.

  1. Estuarine predation on radiotagged wild and domesticated sea trout ( Salmo trutta L.) smolts

    DEFF Research Database (Denmark)

    Dieperink, C.; Pedersen, Stig; Pedersen, Michael Ingemann

    2001-01-01

    days after entering the sea, both wild and domesticated smolts suffered a severe daily predation rate (range 20-34%). The results support the hypothesis of a transient period immediately after exposure to full-strength sea water, where smolts experience an elevated risk of predation. A transient......Avian predation on emigrating wild and domesticated sea trout smolts was investigated in a fjord in the western Baltic Sea. In April 1997, 50 domesticated and 50 wild smolts were intraperitoneally tagged with radio-transmitters and released in a small coastal stream. Predation was recorded...... by signal interception in an estuarine breeding colony of cormorants and herons near the outlet of the stream. Of the 78 emigrating smolts, 51 (65%) were recorded as eaten. Predation rates were significantly higher among small than large smolts and significantly higher among domesticated smolts. The first 2...

  2. Hybridization of halotolerant yeast for alcohol fermentation

    International Nuclear Information System (INIS)

    Limtong, S.

    1991-01-01

    Attempt have been made to construct a new yeast strain from alcohol fermenting strains and salt tolerant strains. It is anticipated that the new yeast strain will be able to ferment alcohol in molasses mash with high salinity, up to 3% of NaCl. Another characteristics is its ability to tolerate up to 40 C temperature which is desirable for alcohol fermentation in tropical countries. Commercial and wild strains of Saccharomyces cerevisiae were screened for their fermenting ability and strain SC90, 191 TJ3, and AM12 were selected as parental strains for fusion among themselves and with other halo tolerant species. Halo tolerant strains selected at 5% NaCl in molasses mash were tentatively identified as Torulopsis grabrata, T. candida, T. Bovina and S. Rouxii whereas all of those strains selected at 17% NaCl were Citeromyces sp. It was found that fusant TA73 derived from wild strain and sake fermenting strain performed best among 4,087 fusants investigated. This fusant fermented much better than their parental strains when salt concentrations were increased to 5 and 7% NaCl. Experiment was carried out in fermentor, 1.5 liter working volume using molasses mash with 3% NaCl and temperature was controlled at 35 degree C. Fermentation rate of TA73, TJ3 and AM12 were 2.17, 1.50 and 1.87 g/L/hr respectively, Maximum ethanol concentration obtained were 7.6, 6.7 and 7.4% by weight after 60 and 78 hours respectively. Other fusants derived from fusion of Saccharomyces cerevisiae with other halo tolerant species were mostly inferior to their parental strains and only 7 fusants were slightly better than parental strains. (author)

  3. Extending Jak2V617F and MplW515 mutation analysis to single hematopoietic colonies and B and T lymphocytes.

    Science.gov (United States)

    Pardanani, Animesh; Lasho, Terra L; Finke, Christy; Mesa, Ruben A; Hogan, William J; Ketterling, Rhett P; Gilliland, Dwight Gary; Tefferi, Ayalew

    2007-09-01

    JAK2V617F and MPLW515L/K are myeloproliferative disorder (MPD)-associated mutations. We genotyped 552 individual hematopoietic colonies obtained by CD34+ cell culture from 16 affected patients (13 JAK2V617F and 3 MPLW515L/K) to determine (a) the proportion of colonies harboring a particular mutation in the presence or absence of cytokines, (b) the lineage distribution of endogenous colonies for each mutation, and (c) the differences (if any) in the pattern of mutation among the various MPDs, as established by genotyping of individual colonies. Genotyping analysis revealed cohabitation of mutation-negative and mutation-positive endogenous colonies in polycythemia vera as well as other MPDs. Culture of progenitor cells harboring MPLW515L/K yielded virtually no endogenous erythroid colonies in contrast to JAK2V617F-harboring progenitor cells. The mutation pattern (i.e., relative distribution of homozygous, heterozygous, or wild-type colonies) was not a distinguishing feature among the MPDs, and MPLW515 mutations were detected in B and/or T lymphocytes in all three patients tested. These observations suggest that clonal myelopoiesis antedates acquisition of JAK2V617F or MPLW515L/K mutations and that the latter is acquired in a lympho-myeloid progenitor cell.

  4. A quantitative characterization of the yeast heterotrimeric G protein cycle

    Science.gov (United States)

    Yi, Tau-Mu; Kitano, Hiroaki; Simon, Melvin I.

    2003-01-01

    The yeast mating response is one of the best understood heterotrimeric G protein signaling pathways. Yet, most descriptions of this system have been qualitative. We have quantitatively characterized the heterotrimeric G protein cycle in yeast based on direct in vivo measurements. We used fluorescence resonance energy transfer to monitor the association state of cyan fluorescent protein (CFP)-Gα and Gβγ-yellow fluorescent protein (YFP), and we found that receptor-mediated G protein activation produced a loss of fluorescence resonance energy transfer. Quantitative time course and dose–response data were obtained for both wild-type and mutant cells possessing an altered pheromone response. These results paint a quantitative portrait of how regulators such as Sst2p and the C-terminal tail of α-factor receptor modulate the kinetics and sensitivity of G protein signaling. We have explored critical features of the dynamics including the rapid rise and subsequent decline of active G proteins during the early response, and the relationship between the G protein activation dose–response curve and the downstream dose–response curves for cell-cycle arrest and transcriptional induction. Fitting the data to a mathematical model produced estimates of the in vivo rates of heterotrimeric G protein activation and deactivation in yeast. PMID:12960402

  5. Yeast Starter as a Biotechnological Tool for Reducing Copper Content in Wine

    Directory of Open Access Journals (Sweden)

    Angela Capece

    2018-01-01

    Full Text Available Copper is widely used in agriculture as a traditional fungicide in organic farming to control downy mildew on grapes, consequently it is possible to find this metal during all stages of the vinification process. Low amounts of copper play a key role on the function of key cell enzymes, whereas excess quantities can exert amount-dependent cytotoxicity, resulting in general cellular damage. Nowadays the excessive copper ions in wines is removed by addition of adsorbents, but these additives can influence the sensory characteristics of wine, as well as detrimental to the health of consumers. It is well known that high concentrations of Cu2+ can be toxic to yeasts, inhibiting growth and activity, causing sluggish fermentation and reducing alcohol production. In this study, 47 S. cerevisiae strains were tested for copper tolerance by two different tests, growth on copper added medium and fermentative activity in copper added grape must. The results obtained by the two different tests were comparable and the high strain variability found was used to select four wild strains, possessing this characteristic at the highest (PP1-13 and A20 and the lowest level (MPR2-24 and A13. The selected strains were tested in synthetic and natural grape must fermentation for ability to reduce copper content in wine. The determination of copper content in wines and yeast cells revealed that at the lowest copper residual in wine corresponded the highest content in yeast cells, indicating a strong strain ability to reduce the copper content in wine. This effect was inversely correlated with strain copper resistance and the most powerful strain in copper reduction was the most sensitive strain, MPR2-24. This wild strain was finally tested as starter culture in cellar pilot scale fermentation in comparison to a commercial starter, confirming the behavior exhibited at lab scale. The use of this wild strain to complete the alcoholic fermentation and remove the copper from

  6. Off-target effects of psychoactive drugs revealed by genome-wide assays in yeast.

    Directory of Open Access Journals (Sweden)

    Elke Ericson

    2008-08-01

    Full Text Available To better understand off-target effects of widely prescribed psychoactive drugs, we performed a comprehensive series of chemogenomic screens using the budding yeast Saccharomyces cerevisiae as a model system. Because the known human targets of these drugs do not exist in yeast, we could employ the yeast gene deletion collections and parallel fitness profiling to explore potential off-target effects in a genome-wide manner. Among 214 tested, documented psychoactive drugs, we identified 81 compounds that inhibited wild-type yeast growth and were thus selected for genome-wide fitness profiling. Many of these drugs had a propensity to affect multiple cellular functions. The sensitivity profiles of half of the analyzed drugs were enriched for core cellular processes such as secretion, protein folding, RNA processing, and chromatin structure. Interestingly, fluoxetine (Prozac interfered with establishment of cell polarity, cyproheptadine (Periactin targeted essential genes with chromatin-remodeling roles, while paroxetine (Paxil interfered with essential RNA metabolism genes, suggesting potential secondary drug targets. We also found that the more recently developed atypical antipsychotic clozapine (Clozaril had no fewer off-target effects in yeast than the typical antipsychotics haloperidol (Haldol and pimozide (Orap. Our results suggest that model organism pharmacogenetic studies provide a rational foundation for understanding the off-target effects of clinically important psychoactive agents and suggest a rational means both for devising compound derivatives with fewer side effects and for tailoring drug treatment to individual patient genotypes.

  7. A soluble diacylglycerol acyltransferase is involved in triacylglycerol biosynthesis in the oleaginous yeast Rhodotorula glutinis.

    Science.gov (United States)

    Rani, Sapa Hima; Saha, Saikat; Rajasekharan, Ram

    2013-01-01

    The biosynthesis of triacylglycerol (TAG) occurs in the microsomal membranes of eukaryotes. Here, we report the identification and functional characterization of diacylglycerol acyltransferase (DGAT), a member of the 10 S cytosolic TAG biosynthetic complex (TBC) in Rhodotorula glutinis. Both a full-length and an N-terminally truncated cDNA clone of a single gene were isolated from R. glutinis. The DGAT activity of the protein encoded by RgDGAT was confirmed in vivo by the heterologous expression of cDNA in a Saccharomyces cerevisiae quadruple mutant (H1246) that is defective in TAG synthesis. RgDGAT overexpression in yeast was found to be capable of acylating diacylglycerol (DAG) in an acyl-CoA-dependent manner. Quadruple mutant yeast cells exhibit growth defects in the presence of oleic acid, but wild-type yeast cells do not. In an in vivo fatty acid supplementation experiment, RgDGAT expression rescued quadruple mutant growth in an oleate-containing medium. We describe a soluble acyl-CoA-dependent DAG acyltransferase from R. glutinis that belongs to the DGAT3 class of enzymes. The study highlights the importance of an alternative TAG biosynthetic pathway in oleaginous yeasts.

  8. Genomic and Phenotypic Characterization of Yeast Biosensor for Deep-space Radiation

    Science.gov (United States)

    Marina, Diana B.; Santa Maria, Sergio; Bhattacharya, Sharmila

    2016-01-01

    The BioSentinel mission was selected to launch as a secondary payload onboard NASA Exploration Mission 1 (EM-1) in 2018. In BioSentinel, the budding yeast Saccharomyces cerevisiae will be used as a biosensor to measure the long-term impact of deep-space radiation to living organisms. In the 4U-payload, desiccated yeast cells from different strains will be stored inside microfluidic cards equipped with 3-color LED optical detection system to monitor cell growth and metabolic activity. At different times throughout the 12-month mission, these cards will be filled with liquid yeast growth media to rehydrate and grow the desiccated cells. The growth and metabolic rates of wild-type and radiation-sensitive strains in deep-space radiation environment will be compared to the rates measured in the ground- and microgravity-control units. These rates will also be correlated with measurements obtained from onboard physical dosimeters. In our preliminary long-term desiccation study, we found that air-drying yeast cells in 10% trehalose is the best method of cell preservation in order to survive the entire 18-month mission duration (6-month pre-launch plus 12-month full-mission periods). However, our study also revealed that desiccated yeast cells have decreasing viability over time when stored in payload-like environment. This suggests that the yeast biosensor will have different population of cells at different time points during the long-term mission. In this study, we are characterizing genomic and phenotypic changes in our yeast biosensor due to long-term storage and desiccation. For each yeast strain that will be part of the biosensor, several clones were reisolated after long-term storage by desiccation. These clones were compared to their respective original isolate in terms of genomic composition, desiccation tolerance and radiation sensitivity. Interestingly, clones from a radiation-sensitive mutant have better desiccation tolerance compared to their original isolate

  9. Mating frequencies of honey bee queens (Apis mellifera L.) in a population of feral colonies in the Northeastern United States.

    Science.gov (United States)

    Tarpy, David R; Delaney, Deborah A; Seeley, Thomas D

    2015-01-01

    Across their introduced range in North America, populations of feral honey bee (Apis mellifera L.) colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens-and the increased intracolony genetic diversity it confers-has been attributed, in part, to improved disease resistance and may be a factor in the survival of these populations of feral colonies. We estimated the mating frequencies of queens in feral colonies in the Arnot Forest in New York State to determine if the level of polyandry of these queens is especially high and so might contribute to their survival success. We genotyped the worker offspring from 10 feral colonies in the Arnot Forest of upstate New York, as well as those from 20 managed colonies closest to this forest. We found no significant differences in mean mating frequency between the feral and managed queens, suggesting that queens in the remote, low-density population of colonies in the Arnot Forest are neither mate-limited nor adapted to mate at an especially high frequency. These findings support the hypothesis that the hyperpolyandry of honey bees has been shaped on an evolutionary timescale rather than on an ecological one.

  10. Mating frequencies of honey bee queens (Apis mellifera L. in a population of feral colonies in the Northeastern United States.

    Directory of Open Access Journals (Sweden)

    David R Tarpy

    Full Text Available Across their introduced range in North America, populations of feral honey bee (Apis mellifera L. colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens-and the increased intracolony genetic diversity it confers-has been attributed, in part, to improved disease resistance and may be a factor in the survival of these populations of feral colonies. We estimated the mating frequencies of queens in feral colonies in the Arnot Forest in New York State to determine if the level of polyandry of these queens is especially high and so might contribute to their survival success. We genotyped the worker offspring from 10 feral colonies in the Arnot Forest of upstate New York, as well as those from 20 managed colonies closest to this forest. We found no significant differences in mean mating frequency between the feral and managed queens, suggesting that queens in the remote, low-density population of colonies in the Arnot Forest are neither mate-limited nor adapted to mate at an especially high frequency. These findings support the hypothesis that the hyperpolyandry of honey bees has been shaped on an evolutionary timescale rather than on an ecological one.

  11. Mating Frequencies of Honey Bee Queens (Apis mellifera L.) in a Population of Feral Colonies in the Northeastern United States

    Science.gov (United States)

    Tarpy, David R.; Delaney, Deborah A.; Seeley, Thomas D.

    2015-01-01

    Across their introduced range in North America, populations of feral honey bee (Apis mellifera L.) colonies have supposedly declined in recent decades as a result of exotic parasites, most notably the ectoparasitic mite Varroa destructor. Nonetheless, recent studies have documented several wild populations of colonies that have persisted. The extreme polyandry of honey bee queens—and the increased intracolony genetic diversity it confers—has been attributed, in part, to improved disease resistance and may be a factor in the survival of these populations of feral colonies. We estimated the mating frequencies of queens in feral colonies in the Arnot Forest in New York State to determine if the level of polyandry of these queens is especially high and so might contribute to their survival success. We genotyped the worker offspring from 10 feral colonies in the Arnot Forest of upstate New York, as well as those from 20 managed colonies closest to this forest. We found no significant differences in mean mating frequency between the feral and managed queens, suggesting that queens in the remote, low-density population of colonies in the Arnot Forest are neither mate-limited nor adapted to mate at an especially high frequency. These findings support the hypothesis that the hyperpolyandry of honey bees has been shaped on an evolutionary timescale rather than on an ecological one. PMID:25775410

  12. Radiation stimulation of yeast crops for increasing output of alcohol and baker yeasts

    International Nuclear Information System (INIS)

    Vlad, E.; Marsheu, P.

    1974-01-01

    The purpose of this study was to stimulate by gamma radiation the existing commercial types of yeast so as to obtain yeasts that would better reflect the substrate and have improved reproductive capacity. The experiments were conducted under ordinary conditions using commercial yeasts received from one factory producing alcohol and bakery yeasts and isolated as pure cultures. Irradiating yeast cultures with small doses (up to 10 krad) was found to stimulate the reproduction and fermenting activity of yeast cells as manifested in increased accumulation of yeast biomass and greater yield of ethyl alcohol. (E.T.)

  13. Mutation induction in haploid yeast after split-dose radiation-exposure. I. Fractionated UV-irradiation.

    Science.gov (United States)

    Schenk, K; Zölzer, F; Kiefer, J

    1989-01-01

    Mutation induction was investigated in wild-type haploid yeast Saccharomyces cerevisiae after split-dose UV-irradiation. Cells were exposed to fractionated 254 nm-UV-doses separated by intervals from 0 to 6 h with incubation either on non-nutrient or nutrient agar between. The test parameter was resistance to canavanine. If modifications of sensitivity due to incubation are appropriately taken into account there is no change of mutation frequency.

  14. Museum samples reveal rapid evolution by wild honey bees exposed to a novel parasite

    Science.gov (United States)

    Mikheyev, Alexander S.; Tin, Mandy M. Y.; Arora, Jatin; Seeley, Thomas D.

    2015-01-01

    Understanding genetic changes caused by novel pathogens and parasites can reveal mechanisms of adaptation and genetic robustness. Using whole-genome sequencing of museum and modern specimens, we describe the genomic changes in a wild population of honey bees in North America following the introduction of the ectoparasitic mite, Varroa destructor. Even though colony density in the study population is the same today as in the past, a major loss of haplotypic diversity occurred, indicative of a drastic mitochondrial bottleneck, caused by massive colony mortality. In contrast, nuclear genetic diversity did not change, though hundreds of genes show signs of selection. The genetic diversity within each bee colony, particularly as a consequence of polyandry by queens, may enable preservation of genetic diversity even during population bottlenecks. These findings suggest that genetically diverse honey bee populations can recover from introduced diseases by evolving rapid tolerance, while maintaining much of the standing genetic variation. PMID:26246313

  15. Insight into the molecular mechanism of yeast acetyl-coenzyme A carboxylase mutants F510I, N485G, I69E, E477R, and K73R resistant to soraphen A

    Science.gov (United States)

    Gao, Jian; Liang, Li; Chen, Qingqing; Zhang, Ling; Huang, Tonghui

    2018-02-01

    Acetyl-coenzyme A carboxylases (ACCs) is the first committed enzyme of fatty acid synthesis pathway. The inhibition of ACC is thought to be beneficial not only for diseases related to metabolism, such as type-2 diabetes, but also for infectious disease like bacterial infection disease. Soraphen A, a potent allosteric inhibitor of BC domain of yeast ACC, exhibit lower binding affinities to several yeast ACC mutants and the corresponding drug resistance mechanisms are still unknown. We report here a theoretical study of binding of soraphen A to wild type and yeast ACC mutants (including F510I, N485G, I69E, E477R, and K73R) via molecular dynamic simulation and molecular mechanics/generalized Born surface area free energy calculations methods. The calculated binding free energies of soraphen A to yeast ACC mutants are weaker than to wild type, which is highly consistent with the experimental results. The mutant F510I weakens the binding affinity of soraphen A to yeast ACC mainly by decreasing the van der Waals contributions, while the weaker binding affinities of Soraphen A to other yeast ACC mutants including N485G, I69E, E477R, and K73R are largely attributed to the decreased net electrostatic (ΔE ele + ΔG GB) interactions. Our simulation results could provide important insights for the development of more potent ACC inhibitors.

  16. Limitations of the Current Microbial Identification System for Identification of Clinical Yeast Isolates

    Science.gov (United States)

    Kellogg, James A.; Bankert, David A.; Chaturvedi, Vishnu

    1998-01-01

    The ability of the rapid, computerized Microbial Identification System (MIS; Microbial ID, Inc.) to identify a variety of clinical isolates of yeast species was compared to the abilities of a combination of tests including the Yeast Biochemical Card (bioMerieux Vitek), determination of microscopic morphology on cornmeal agar with Tween 80, and when necessary, conventional biochemical tests and/or the API 20C Aux system (bioMerieux Vitek) to identify the same yeast isolates. The MIS chromatographically analyzes cellular fatty acids and compares the results with the fatty acid profiles in its database. Yeast isolates were subcultured onto Sabouraud dextrose agar and were incubated at 28°C for 24 h. The resulting colonies were saponified, methylated, extracted, and chromatographically analyzed (by version 3.8 of the MIS YSTCLN database) according to the manufacturer’s instructions. Of 477 isolates of 23 species tested, 448 (94%) were given species names by the MIS and 29 (6%) were unidentified (specified as “no match” by the MIS). Of the 448 isolates given names by the MIS, only 335 (75%) of the identifications were correct to the species level. While the MIS correctly identified only 102 (82%) of 124 isolates of Candida glabrata, the predictive value of an MIS identification of unknown isolates as C. glabrata was 100% (102 of 102) because no isolates of other species were misidentified as C. glabrata. In contrast, while the MIS correctly identified 100% (15 of 15) of the isolates of Saccharomyces cerevisiae, the predictive value of an MIS identification of unknown isolates as S. cerevisiae was only 47% (15 of 32), because 17 isolates of C. glabrata were misidentified as S. cerevisiae. The low predictive values for accuracy associated with MIS identifications for most of the remaining yeast species indicate that the procedure and/or database for the system need to be improved. PMID:9574676

  17. A genetic and pharmacological analysis of isoprenoid pathway by LC-MS/MS in fission yeast.

    Directory of Open Access Journals (Sweden)

    Tomonori Takami

    Full Text Available Currently, statins are the only drugs acting on the mammalian isoprenoid pathway. The mammalian genes in this pathway are not easily amenable to genetic manipulation. Thus, it is difficult to study the effects of the inhibition of various enzymes on the intermediate and final products in the isoprenoid pathway. In fission yeast, antifungal compounds such as azoles and terbinafine are available as inhibitors of the pathway in addition to statins, and various isoprenoid pathway mutants are also available. Here in these mutants, treated with statins or antifungals, we quantified the final and intermediate products of the fission yeast isoprenoid pathway using liquid chromatography-mass spectrometry/mass spectrometry. In hmg1-1, a mutant of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR, ergosterol (a final sterol product, and squalene (an intermediate pathway product, were decreased to approximately 80% and 10%, respectively, compared with that of wild-type cells. Consistently in wild-type cells, pravastatin, an HMGR inhibitor decreased ergosterol and squalene, and the effect was more pronounced on squalene. In hmg1-1 mutant and in wild-type cells treated with pravastatin, the decrease in the levels of farnesyl pyrophosphate and geranylgeranyl pyrophosphate respectively was larger than that of ergosterol but was smaller than that of squalene. In Δerg6 or Δsts1 cells, mutants of the genes involved in the last step of the pathway, ergosterol was not detected, and the changes of intermediate product levels were distinct from that of hmg1-1 mutant. Notably, in wild-type cells miconazole and terbinafine only slightly decreased ergosterol level. Altogether, these studies suggest that the pleiotropic phenotypes caused by the hmg1-1 mutation and pravastatin might be due to decreased levels of isoprenoid pyrophosphates or other isoprenoid pathway intermediate products rather than due to a decreased ergosterol level.

  18. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Teeraphan Laomettachit

    Full Text Available To understand the molecular mechanisms that regulate cell cycle progression in eukaryotes, a variety of mathematical modeling approaches have been employed, ranging from Boolean networks and differential equations to stochastic simulations. Each approach has its own characteristic strengths and weaknesses. In this paper, we propose a "standard component" modeling strategy that combines advantageous features of Boolean networks, differential equations and stochastic simulations in a framework that acknowledges the typical sorts of reactions found in protein regulatory networks. Applying this strategy to a comprehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of standard component modeling. The deterministic version of our model reproduces the phenotypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the CLB2-dbΔ clb5Δ mutant strain. Our simulations show that mathematical modeling with "standard components" can capture in quantitative detail many essential properties of cell cycle control in budding yeast.

  19. Pichia pastoris versus Saccharomyces cerevisiae: a case study on the recombinant production of human granulocyte-macrophage colony-stimulating factor.

    Science.gov (United States)

    Tran, Anh-Minh; Nguyen, Thanh-Thao; Nguyen, Cong-Thuan; Huynh-Thi, Xuan-Mai; Nguyen, Cao-Tri; Trinh, Minh-Thuong; Tran, Linh-Thuoc; Cartwright, Stephanie P; Bill, Roslyn M; Tran-Van, Hieu

    2017-04-04

    Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) is a glycoprotein that has been approved by the FDA for the treatment of neutropenia and leukemia in combination with chemotherapies. Recombinant hGM-CSF is produced industrially using the baker's yeast, Saccharomyces cerevisiae, by large-scale fermentation. The methylotrophic yeast, Pichia pastoris, has emerged as an alternative host cell system due to its shorter and less immunogenic glycosylation pattern together with higher cell density growth and higher secreted protein yield than S. cerevisiae. In this study, we compared the pipeline from gene to recombinant protein in these two yeasts. Codon optimization in silico for both yeast species showed no difference in frequent codon usage. However, rhGM-CSF expressed from S. cerevisiae BY4742 showed a significant discrepancy in molecular weight from those of P. pastoris X33. Analysis showed purified rhGM-CSF species with molecular weights ranging from 30 to more than 60 kDa. Fed-batch fermentation over 72 h showed that rhGM-CSF was more highly secreted from P. pastoris than S. cerevisiae (285 and 64 mg total secreted protein/L, respectively). Ion exchange chromatography gave higher purity and recovery than hydrophobic interaction chromatography. Purified rhGM-CSF from P. pastoris was 327 times more potent than rhGM-CSF from S. cerevisiae in terms of proliferative stimulating capacity on the hGM-CSF-dependent cell line, TF-1. Our data support a view that the methylotrophic yeast P. pastoris is an effective recombinant host for heterologous rhGM-CSF production.

  20. Review Essay A history of colonialism through post-colonial lenses ...

    African Journals Online (AJOL)

    Review Essay A history of colonialism through post-colonial lenses: reading Mahmood Mamdani's citizen and subject. Sanya Osha. Abstract. No Abstract. The Nigerian Journal of Economic History Vol. 2, 1999: 155-161. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  1. Health assessments of brown pelican (Pelecanus occidentalis) nestlings from colonies in South Carolina and Georgia, U.S.A.

    Science.gov (United States)

    Ferguson, L.M.; Norton, Terry M.; Cray, Carolyn; Oliva, M.; Jodice, Patrick G.R.

    2014-01-01

    Health evaluations of brown pelican (Pelecanus occidentalis) nestlings from three colonies along the Atlantic coast of the southeastern United States were performed in 2005, 2007, and 2008. The primary objective of this study was to establish baseline data for hematologic, biochemical, and serologic values from a relatively healthy population of free-living pelicans during early chick development. Relationships among health variables and colony site, ectoparasite infestation, sex, and body condition index were also evaluated. Reference intervals are presented for health variables, including novel analytes for the species, as well as a comparison of these results with previously published values for wild pelicans. No significant relationships were found between health variables and nestling sex or body condition; however, differences between colony sites and the presence of ectoparasites were detected. The inclusion of health assessments as a regular component of management programs for seabirds can provide data to better understand the effect to species of concern when drastic changes occur to the population and its environment.

  2. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    Science.gov (United States)

    Barik, Debashis; Ball, David A; Peccoud, Jean; Tyson, John J

    2016-12-01

    The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs) and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization) of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  3. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.

    Directory of Open Access Journals (Sweden)

    Debashis Barik

    2016-12-01

    Full Text Available The cell division cycle of eukaryotes is governed by a complex network of cyclin-dependent protein kinases (CDKs and auxiliary proteins that govern CDK activities. The control system must function reliably in the context of molecular noise that is inevitable in tiny yeast cells, because mistakes in sequencing cell cycle events are detrimental or fatal to the cell or its progeny. To assess the effects of noise on cell cycle progression requires not only extensive, quantitative, experimental measurements of cellular heterogeneity but also comprehensive, accurate, mathematical models of stochastic fluctuations in the CDK control system. In this paper we provide a stochastic model of the budding yeast cell cycle that accurately accounts for the variable phenotypes of wild-type cells and more than 20 mutant yeast strains simulated in different growth conditions. We specifically tested the role of feedback regulations mediated by G1- and SG2M-phase cyclins to minimize the noise in cell cycle progression. Details of the model are informed and tested by quantitative measurements (by fluorescence in situ hybridization of the joint distributions of mRNA populations in yeast cells. We use the model to predict the phenotypes of ~30 mutant yeast strains that have not yet been characterized experimentally.

  4. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts

    Science.gov (United States)

    Baker, EmilyClare; Wang, Bing; Bellora, Nicolas; Peris, David; Hulfachor, Amanda Beth; Koshalek, Justin A.; Adams, Marie; Libkind, Diego; Hittinger, Chris Todd

    2015-01-01

    The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae (S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts have experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. Our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions. PMID:26269586

  5. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications.

    Science.gov (United States)

    Xue, Si-Jia; Chi, Zhe; Zhang, Yu; Li, Yan-Feng; Liu, Guang-Lei; Jiang, Hong; Hu, Zhong; Chi, Zhen-Ming

    2018-02-01

    Oleaginous yeasts, fatty acids biosynthesis and regulation in the oleaginous yeasts and the fatty acids from the oleaginous yeasts and their applications are reviewed in this article. Oleaginous yeasts such as Rhodosporidium toruloides, Yarrowia lipolytica, Rhodotorula mucilaginosa, and Aureobasidium melanogenum, which can accumulate over 50% lipid of their cell dry weight, have many advantages over other oleaginous microorganisms. The fatty acids from the oleaginous yeasts have many potential applications. Many oleaginous yeasts have now been genetically modified to over-produce fatty acids and their derivatives. The most important features of the oleaginous yeasts are that they have special enzymatic systems for enhanced biosynthesis and regulation of fatty acids in their lipid particles. Recently, some oleaginous yeasts such as R. toruloides have been found to have a unique fatty acids synthetase and other oleaginous yeasts such as A. melanogenum have a unique highly reducing polyketide synthase (HR-PKS) involved in the biosynthesis of hydroxyl fatty acids. It is necessary to further enhance lipid biosynthesis using metabolic engineering and explore new applications of fatty acids in biotechnology.

  6. Nest initiation in three North American bumble bees (Bombus): gyne number and presence of honey bee workers influence establishment success and colony size.

    Science.gov (United States)

    Strange, James P

    2010-01-01

    Three species of bumble bees, Bombus appositus Cresson, Bombus bifarius, Cresson and Bombus centralis Cresson (Hymenoptera: Apidae) were evaluated for nest initiation success under three sets of initial conditions. In the spring, gynes of each species were caught in the wild and introduced to nest boxes in one of three ways. Gynes were either introduced in conspecific pairs, singly with two honey bees, Apis mellifera L. (Hymenoptera: Apidae) workers, or alone. Nesting success and colony growth parameters were measured to understand the effects of the various treatments on nest establishment. Colonies initiated from pairs of conspecific gynes were most successful in producing worker bees (59.1%), less successful were colonies initiated with honey bee workers (33.3%), and least successful were bumble bee gynes initiating colonies alone (16.7%). There was a negative correlation between the numbers of days to the emergence of the first worker in a colony to the attainment of ultimate colony size, indicating that gynes that have not commenced oviposition in 21 days are unlikely to result in colonies exceeding 50 workers. B. appositus had the highest rate of nest establishment followed by B. bifarius and B. centralis. Nest establishment rates in three western bumble bee species can be increased dramatically by the addition of either honey bee workers or a second gyne to nesting boxes at colony initiation.

  7. Protein levels and colony development of Africanized and European honey bees fed natural and artificial diets.

    Science.gov (United States)

    Morais, M M; Turcatto, A P; Pereira, R A; Francoy, T M; Guidugli-Lazzarini, K R; Gonçalves, L S; de Almeida, J M V; Ellis, J D; De Jong, D

    2013-12-19

    Pollen substitute diets are a valuable resource for maintaining strong and health honey bee colonies. Specific diets may be useful in one region or country and inadequate or economically unviable in others. We compared two artificial protein diets that had been formulated from locally-available ingredients in Brazil with bee bread and a non-protein sucrose diet. Groups of 100 newly-emerged, adult workers of Africanized honey bees in Brazil and European honey bees in the USA were confined in small cages and fed on one of four diets for seven days. The artificial diets included a high protein diet made of soy milk powder and albumin, and a lower protein level diet consisting of soy milk powder, brewer's yeast and rice bran. The initial protein levels in newly emerged bees were approximately 18-21 µg/µL hemolymph. After feeding on the diets for seven days, the protein levels in the hemolymph were similar among the protein diet groups (~37-49 µg/µL after seven days), although Africanized bees acquired higher protein levels, increasing 145 and 100% on diets D1 and D2, respectively, versus 83 and 60% in the European bees. All the protein diets resulted in significantly higher levels of protein than sucrose solution alone. In the field, the two pollen substitute diets were tested during periods of low pollen availability in the field in two regions of Brazil. Food consumption, population development, colony weight, and honey production were evaluated to determine the impact of the diets on colony strength parameters. The colonies fed artificial diets had a significant improvement in all parameters, while control colonies dwindled during the dearth period. We conclude that these two artificial protein diets have good potential as pollen substitutes during dearth periods and that Africanized bees more efficiently utilize artificial protein diets than do European honey bees.

  8. Colonial Legal Reasoning in the Post-Colonial African State: A ...

    African Journals Online (AJOL)

    Colonial Legal Reasoning in the Post-Colonial African State: A Critique and a Defense of the Argument from African Metaphysical Epistemology. ... Africa, as it has the advantageous result of helping in the search for truth concerning such offences, thereby promoting the delivery of effective legal justice, and thus contributing ...

  9. Life in the colonies: learning the alien ways of colonial organisms.

    Science.gov (United States)

    Winston, Judith E

    2010-12-01

    Who needs to go to outer space to study alien beings when the oceans of our own planet abound with bizarre and unknown creatures? Many of them belong to sessile clonal and colonial groups, including sponges, hydroids, corals, octocorals, ascidians, bryozoans, and some polychaetes. Their life histories, in many ways unlike our own, are a challenge for biologists. Studying their ecology, behavior, and taxonomy means trying to “think like a colony” to understand the factors important in their lives. Until the 1980s, most marine ecologists ignored these difficult modular organisms. Plant ecologists showed them ways to deal with the two levels of asexually produced modules and genetic individuals, leading to a surge in research on the ecology of clonal and colonial marine invertebrates. Bryozoans make excellent model colonial animals. Their life histories range from ephemeral to perennial. Aspects of their lives such as growth, reproduction, partial mortality due to predation or fouling, and the behavior of both autozooids and polymorphs can be studied at the level of the colony, as well as that of the individual module, in living colonies and over time.

  10. Distemper-like disease and encephalitozoonosis in wild dogs (Lycaon pictus).

    Science.gov (United States)

    Van Heerden, J; Bainbridge, N; Burroughs, R E; Kriek, N P

    1989-01-01

    Clinical signs of a fatal disease resembling those of canine distemper were observed in two groups of captive wild dog (Lycaon pictus) pups 13 days after vaccination with a commercially available combination vaccine for dogs which contained a live attenuated strain of canine distemper virus. Histopathological examination of tissues revealed the presence of intranuclear inclusion bodies in neurons and lesions resembling canine distemper as well as colonies of an Encephalitozoon sp. in the central nervous system and kidneys. Lesions were observed in both organs which resembled those described in other species infected with Encephalitozoon cuniculi.

  11. Chimerism in wild adult populations of the broadcast spawning coral Acropora millepora on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Eneour Puill-Stephan

    2009-11-01

    Full Text Available Chimeras are organisms containing tissues or cells of two or more genetically distinct individuals, and are known to exist in at least nine phyla of protists, plants, and animals. Although widespread and common in marine invertebrates, the extent of chimerism in wild populations of reef corals is unknown.The extent of chimerism was explored within two populations of a common coral, Acropora millepora, on the Great Barrier Reef, Australia, by using up to 12 polymorphic DNA microsatellite loci. At least 2% and 5% of Magnetic Island and Pelorus Island populations of A. millepora, respectively, were found to be chimeras (3% overall, based on conservative estimates. A slightly less conservative estimate indicated that 5% of colonies in each population were chimeras. These values are likely to be vast underestimates of the true extent of chimerism, as our sampling protocol was restricted to a maximum of eight branches per colony, while most colonies consist of hundreds of branches. Genotypes within chimeric corals showed high relatedness, indicating that genetic similarity is a prerequisite for long-term acceptance of non-self genotypes within coral colonies.While some brooding corals have been shown to form genetic chimeras in their early life history stages under experimental conditions, this study provides the first genetic evidence of the occurrence of coral chimeras in the wild and of chimerism in a broadcast spawning species. We hypothesize that chimerism is more widespread in corals than previously thought, and suggest that this has important implications for their resilience, potentially enhancing their capacity to compete for space and respond to stressors such as pathogen infection.

  12. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.

    Science.gov (United States)

    Sasano, Yu; Takahashi, Shunsuke; Shima, Jun; Takagi, Hiroshi

    2010-03-31

    During bread-making processes, yeast cells are exposed to multiple stresses. Air-drying stress is one of the most harmful stresses by generation of reactive oxygen species (ROS). Previously, we discovered that the novel N-acetyltransferase Mpr1/2 confers oxidative stress tolerance by reducing intracellular ROS level in Saccharomyces cerevisiae Sigma1278b strain. In this study, we revealed that Japanese industrial baker's yeast possesses one MPR gene. The nucleotide sequence of the MPR gene in industrial baker's yeast was identical to the MPR2 gene in Sigma1278b strain. Gene disruption analysis showed that the MPR2 gene in industrial baker's yeast is involved in air-drying stress tolerance by reducing the intracellular oxidation levels. We also found that expression of the Lys63Arg and Phe65Leu variants with enhanced enzymatic activity and stability, respectively, increased the fermentation ability of bread dough after exposure to air-drying stress compared with the wild-type Mpr1. In addition, our recent study showed that industrial baker's yeast cells accumulating proline exhibited enhanced freeze tolerance in bread dough. Proline accumulation also enhanced the fermentation ability after air-drying stress treatment in industrial baker's yeast. Hence, the antioxidant enzyme Mpr1/2 could be promising for breeding novel yeast strains that are tolerant to air-drying stress. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Fitness of isogenic colony morphology variants of Pseudomonas aeruginosa in murine airway infection.

    Directory of Open Access Journals (Sweden)

    Elza Rakhimova

    Full Text Available Chronic lung infections with Pseudomonas aeruginosa are associated with the diversification of the persisting clone into niche specialists and morphotypes, a phenomenon called 'dissociative behaviour'. To explore the potential of P. aeruginosa to change its morphotype by single step loss-of-function mutagenesis, a signature-tagged mini-Tn5 plasposon library of the cystic fibrosis airway isolate TBCF10839 was screened for colony morphology variants under nine different conditions in vitro. Transposon insertion into 1% of the genome changed colony morphology into eight discernable morphotypes. Half of the 55 targets encode features of primary or secondary metabolism whereby quinolone production was frequently affected. In the other half the transposon had inserted into genes of the functional categories transport, regulation or motility/chemotaxis. To mimic dissociative behaviour of isogenic strains in lungs, pools of 25 colony morphology variants were tested for competitive fitness in an acute murine airway infection model. Six of the 55 mutants either grew better or worse in vivo than in vitro, respectively. Metabolic proficiency of the colony morphology variant was a key determinant for survival in murine airways. The most common morphotype of self-destructive autolysis did unexpectedly not impair fitness. Transposon insertions into homologous genes of strain PAO1 did not reproduce the TBCF10839 mutant morphotypes for 16 of 19 examined loci pointing to an important role of the genetic background on colony morphology. Depending on the chosen P. aeruginosa strain, functional genome scans will explore other areas of the evolutionary landscape. Based on our discordant findings of mutant phenotypes in P. aeruginosa strains PAO1, PA14 and TBCF10839, we conclude that the current focus on few reference strains may miss modes of niche adaptation and dissociative behaviour that are relevant for the microevolution of complex traits in the wild.

  14. Yeast for virus research

    Science.gov (United States)

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  15. Yeasts of the genital region of patients attending the dermatology service at Hospital São Paulo, Brazil.

    Science.gov (United States)

    Bentubo, Henri Donnarumma Levy; Mantovani, Ariane; Yamashita, Jane Tomimori; Gambale, Walderez; Fischman, Olga

    2015-01-01

    The knowledge of the diversity of yeasts that make up the skin microbiota of human beings is essential for the efficient monitoring of infections to which a person may be predisposed. This study identified yeasts comprising the genital skin microbiota of patients attending the Dermatology Service at the Hospital São Paulo-UNIFESP, Brazil. Samples were collected from the genital region of each patient and cultured on Sabouraud dextrose agar. Individual colonies were carefully transferred to tubes daily. Yeasts were identified based on classical methodologies and confirmed using a commercial kit. Eighty-three patients were included in the study. Approximately 80% were women and 20% were men. The average age was 55 years. Hypertension, diabetes, kidney transplant and AIDS were the main underlying diseases reported by the patients. The most prevalent yeasts were Candida parapsilosis (36.1%), Rhodotorula mucilaginosa (9.2%), Rhodotorula glutinis (8.3%), Candida tropicalis (5.5%) and Trichosporon inkin (1.8%). Approximately 78% of the isolates were obtained in pure cultures. Trichosporon inkin was isolated only from women, in contrast to literature describing a high prevalence in males. Our results suggest that Candida albicans is not the main yeast found on genital skin as previously thought, and opportunistic pathogens such as C. parapsilosis, C. tropicalis, Rhodotorula spp. and T. inkin make up the genital skin microbiota, representing a risk for infection in immunocompromised subjects. These results also indicate that women are carriers of T. inkin, the etiological agent of white piedra and trichosporonosis. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  16. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  17. The In Vivo Granulopoietic Response to Dexamethasone Injection Is Abolished in Perforin-Deficient Mutant Mice and Corrected by Lymphocyte Transfer from Nonsensitized Wild-Type Donors

    Directory of Open Access Journals (Sweden)

    Pedro Xavier-Elsas

    2015-01-01

    Full Text Available Exogenously administered glucocorticoids enhance eosinophil and neutrophil granulocyte production from murine bone-marrow. A hematological response dependent on endogenous glucocorticoids underlies bone-marrow eosinophilia induced by trauma or allergic sensitization/challenge. We detected a defect in granulopoiesis in nonsensitized, perforin-deficient mice. In steady-state conditions, perforin- (Pfp- deficient mice showed significantly decreased bone-marrow and blood eosinophil and neutrophil counts, and colony formation in response to GM-CSF, relative to wild-type controls of comparable age and/or weight. By contrast, peripheral blood or spleen total cell and lymphocyte numbers were not affected by perforin deficiency. Dexamethasone enhanced colony formation by GM-CSF-stimulated progenitors from wild-type controls, but not Pfp mice. Dexamethasone injection increased bone-marrow eosinophil and neutrophil counts in wild-type controls, but not Pfp mice. Because perforin is expressed in effector lymphocytes, we examined whether this defect would be corrected by transferring wild-type lymphocytes into perforin-deficient recipients. Short-term reconstitution of the response to dexamethasone was separately achieved for eosinophils and neutrophils by transfer of distinct populations of splenic lymphocytes from nonsensitized wild-type donors. Transfer of the same amount of splenic lymphocytes from perforin-deficient donors was ineffective. This demonstrates that the perforin-dependent, granulopoietic response to dexamethasone can be restored by transfer of innate lymphocyte subpopulations.

  18. Indigenous and inoculated yeast fermentation of gabiroba (Campomanesia pubescens) pulp for fruit wine production.

    Science.gov (United States)

    Duarte, Whasley Ferreira; Dias, Disney Ribeiro; de Melo Pereira, Gilberto Vinicius; Gervásio, Ivani Maria; Schwan, Rosane Freitas

    2009-04-01

    The objectives of this study were to evaluate the potential of gabiroba Campomanesia pubescens (DC) O. Berg in the production of a beverage fermented using selected and wild yeasts from indigenous fermentation, analyze the volatile compounds profile present during the process of fermentation, and evaluate the sensory quality of the final beverage produced. Throughout the process of fermentation, when Saccharomyces cerevisiae UFLA CA 1162 was inoculated, there were stable viable populations around 9 log cells ml(-1). During indigenous fermentation, yeast population increased from 3.7 log CFU ml(-1) to 8.1 log CFU ml(-1) after 14 days. The diversity and dynamics of the yeast population during indigenous fermentation observed by PFGE analysis showed five different karyotyping profiles in the first days of fermentation. After the seventh day, there was a higher frequency of a similar S. cerevisiae profile. The yeast non-Saccharomyces were identified by sequencing of the ITS region as Candida quercitrusa and Issatchenkia terricola. Inoculated fermentations yielded a higher amount of alcohol than indigenous ones, indicating the efficiency of selected strains. There was also a greater concentration of higher alcohols, which are usually responsible for the flavor found in alcoholic beverages. Based on the characteristics of the pulp and acceptance in the sensory analysis, gabiroba fruits showed good potential for use in the production of fermented beverage.

  19. The splicing mutant of the human tumor suppressor protein DFNA5 induces programmed cell death when expressed in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Van Rossom, Sofie; Op de Beeck, Ken; Franssens, Vanessa; Swinnen, Erwin; Schepers, Anne; Ghillebert, Ruben; Caldara, Marina; Van Camp, Guy; Winderickx, Joris

    2012-01-01

    DFNA5 was first identified as a gene responsible for autosomal dominant deafness. Different mutations were found, but they all resulted in exon 8 skipping during splicing and premature termination of the protein. Later, it became clear that the protein also has a tumor suppression function and that it can induce apoptosis. Epigenetic silencing of the DFNA5 gene is associated with different types of cancers, including gastric and colorectal cancers as well as breast tumors. We introduced the wild-type and mutant DFNA5 allele in the yeast Saccharomyces cerevisiae. The expression of the wild-type protein was well tolerated by the yeast cells, although the protein was subject of degradation and often deposited in distinct foci when cells entered the diauxic shift. In contrast, cells had problems to cope with mutant DFNA5 and despite an apparent compensatory reduction in expression levels, the mutant protein still triggered a marked growth defect, which in part can be ascribed to its interaction with mitochondria. Consistently, cells with mutant DFNA5 displayed significantly increased levels of ROS and signs of programmed cell death. The latter occurred independently of the yeast caspase, Mca1, but involved the mitochondrial fission protein, Fis1, the voltage-dependent anion channel protein, Por1 and the mitochondrial adenine nucleotide translocators, Aac1 and Aac3. Recent data proposed DFNA5 toxicity to be associated to a globular domain encoded by exon 2–6. We confirmed these data by showing that expression of solely this domain confers a strong growth phenotype. In addition, we identified a point mutant in this domain that completely abrogated its cytotoxicity in yeast as well as human Human Embryonic Kidney 293T cells (HEK293T). Combined, our data underscore that the yeast system offers a valuable tool to further dissect the apoptotic properties of DFNA5.

  20. The splicing mutant of the human tumor suppressor protein DFNA5 induces programmed cell death when expressed in the yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Van Rossom, Sofie [Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee (Belgium); Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp, Wilrijk-Antwerp (Belgium); Op de Beeck, Ken [Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp, Wilrijk-Antwerp (Belgium); Franssens, Vanessa; Swinnen, Erwin [Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee (Belgium); Schepers, Anne [Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp, Wilrijk-Antwerp (Belgium); Ghillebert, Ruben; Caldara, Marina [Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee (Belgium); Van Camp, Guy [Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp, Wilrijk-Antwerp (Belgium); Winderickx, Joris, E-mail: guy.vancamp@ua.ac.be, E-mail: joris.winderickx@bio.kuleuven.be [Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee (Belgium)

    2012-07-25

    DFNA5 was first identified as a gene responsible for autosomal dominant deafness. Different mutations were found, but they all resulted in exon 8 skipping during splicing and premature termination of the protein. Later, it became clear that the protein also has a tumor suppression function and that it can induce apoptosis. Epigenetic silencing of the DFNA5 gene is associated with different types of cancers, including gastric and colorectal cancers as well as breast tumors. We introduced the wild-type and mutant DFNA5 allele in the yeast Saccharomyces cerevisiae. The expression of the wild-type protein was well tolerated by the yeast cells, although the protein was subject of degradation and often deposited in distinct foci when cells entered the diauxic shift. In contrast, cells had problems to cope with mutant DFNA5 and despite an apparent compensatory reduction in expression levels, the mutant protein still triggered a marked growth defect, which in part can be ascribed to its interaction with mitochondria. Consistently, cells with mutant DFNA5 displayed significantly increased levels of ROS and signs of programmed cell death. The latter occurred independently of the yeast caspase, Mca1, but involved the mitochondrial fission protein, Fis1, the voltage-dependent anion channel protein, Por1 and the mitochondrial adenine nucleotide translocators, Aac1 and Aac3. Recent data proposed DFNA5 toxicity to be associated to a globular domain encoded by exon 2–6. We confirmed these data by showing that expression of solely this domain confers a strong growth phenotype. In addition, we identified a point mutant in this domain that completely abrogated its cytotoxicity in yeast as well as human Human Embryonic Kidney 293T cells (HEK293T). Combined, our data underscore that the yeast system offers a valuable tool to further dissect the apoptotic properties of DFNA5.

  1. Hyperpolarized [U-(2) H, U-(13) C]Glucose reports on glycolytic and pentose phosphate pathway activity in EL4 tumors and glycolytic activity in yeast cells.

    Science.gov (United States)

    Timm, Kerstin N; Hartl, Johannes; Keller, Markus A; Hu, De-En; Kettunen, Mikko I; Rodrigues, Tiago B; Ralser, Markus; Brindle, Kevin M

    2015-12-01

    A resonance at ∼181 ppm in the (13) C spectra of tumors injected with hyperpolarized [U-(2) H, U-(13) C]glucose was assigned to 6-phosphogluconate (6PG), as in previous studies in yeast, whereas in breast cancer cells in vitro this resonance was assigned to 3-phosphoglycerate (3PG). These peak assignments were investigated here using measurements of 6PG and 3PG (13) C-labeling using liquid chromatography tandem mass spectrometry (LC-MS/MS) METHODS: Tumor-bearing mice were injected with (13) C6 glucose and the (13) C-labeled and total 6PG and 3PG concentrations measured. (13) C MR spectra of glucose-6-phosphate dehydrogenase deficient (zwf1Δ) and wild-type yeast were acquired following addition of hyperpolarized [U-(2) H, U-(13) C]glucose and again (13) C-labeled and total 6PG and 3PG were measured by LC-MS/MS RESULTS: Tumor (13) C-6PG was more abundant than (13) C-2PG/3PG and the resonance at ∼181 ppm matched more closely that of 6PG. (13) C MR spectra of wild-type and zwf1Δ yeast cells showed a resonance at ∼181 ppm after labeling with hyperpolarized [U-(2) H, U-(13) C]glucose, however, there was no 6PG in zwf1Δ cells. In the wild-type cells 3PG was approximately four-fold more abundant than 6PG CONCLUSION: The resonance at ∼181 ppm in (13) C MR spectra following injection of hyperpolarized [U-(2) H, U-(13) C]glucose originates predominantly from 6PG in EL4 tumors and 3PG in yeast cells. © 2014 Wiley Periodicals, Inc.

  2. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains.

    Science.gov (United States)

    Wang, Pin-Mei; Zheng, Dao-Qiong; Chi, Xiao-Qin; Li, Ou; Qian, Chao-Dong; Liu, Tian-Zhe; Zhang, Xiao-Yang; Du, Feng-Guang; Sun, Pei-Yong; Qu, Ai-Min; Wu, Xue-Chang

    2014-01-01

    The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Seabird Colonies in Western Greenland

    DEFF Research Database (Denmark)

    Boertmann, D.; Mosbech, A.; Falk, K.

    About 1 million seabirds (indvs) breed in 1032 colonies distributed along the coasts of western Greenland (Fig. 1). However, this figure does not include the little auk colonies in Avanersuaq. These colonies are roughly estimated to hold about 20 mill. pairs. All the basic information on seabird...... colonies in Greenland is compiled in a database maintained by NERI-AE. This report presents data on distribution, population numbers and population trends of 19 species of breeding colonial seabirds in western Greenland. Distributions are depicted on maps in Fig. 18-39. It is apparent that the major...... colonies are found in the northern part of the region, viz. Upernavik and Avanersuaq. The numbers of birds recorded in the database for each species are presented in Tab. 4, and on the basis of these figures estimates of the populations in western Greenland are given (Tab. 5). The most numerous species...

  4. Colony Dimorphism in Bradyrhizobium Strains

    Science.gov (United States)

    Sylvester-Bradley, Rosemary; Thornton, Philip; Jones, Peter

    1988-01-01

    Ten isolates of Bradyrhizobium spp. which form two colony types were studied; the isolates originated from a range of legume species. The two colony types differed in the amount of gum formed or size or both, depending on the strain. Whole 7-day-old colonies of each type were subcultured to determine the proportion of cells which had changed to the other type. An iterative computerized procedure was used to determine the rate of switching per generation between the two types and to predict proportions reached at equilibrium for each strain. The predicted proportions of the wetter (more gummy) or larger colony type at equilibrium differed significantly between strains, ranging from 0.9999 (strain CIAT 2383) to 0.0216 (strain CIAT 2469), because some strains switched faster from dry to wet (or small to large) and others switched faster from wet to dry (or large to small). Predicted equilibrium was reached after about 140 generations in strain USDA 76. In all but one strain (CIAT 3030) the growth rate of the wetter colony type was greater than or similar to that of the drier type. The mean difference in generation time between the two colony types was 0.37 h. Doubling times calculated for either colony type after 7 days of growth on the agar surface ranged from 6.0 to 7.3 h. The formation of two persistent colony types by one strain (clonal or colony dimorphism) may be a common phenomenon among Bradyrhizobium strains. Images PMID:16347599

  5. Intraspecific Variation among Social Insect Colonies: Persistent Regional and Colony-Level Differences in Fire Ant Foraging Behavior.

    Directory of Open Access Journals (Sweden)

    Alison A Bockoven

    Full Text Available Individuals vary within a species in many ecologically important ways, but the causes and consequences of such variation are often poorly understood. Foraging behavior is among the most profitable and risky activities in which organisms engage and is expected to be under strong selection. Among social insects there is evidence that within-colony variation in traits such as foraging behavior can increase colony fitness, but variation between colonies and the potential consequences of such variation are poorly documented. In this study, we tested natural populations of the red imported fire ant, Solenopsis invicta, for the existence of colony and regional variation in foraging behavior and tested the persistence of this variation over time and across foraging habitats. We also reared single-lineage colonies in standardized environments to explore the contribution of colony lineage. Fire ants from natural populations exhibited significant and persistent colony and regional-level variation in foraging behaviors such as extra-nest activity, exploration, and discovery of and recruitment to resources. Moreover, colony-level variation in extra-nest activity was significantly correlated with colony growth, suggesting that this variation has fitness consequences. Lineage of the colony had a significant effect on extra-nest activity and exploratory activity and explained approximately half of the variation observed in foraging behaviors, suggesting a heritable component to colony-level variation in behavior.

  6. Improving the Organoleptic Properties of a Craft Mezcal Beverage by Increasing Fatty Acid Ethyl Ester Contents through ATF1 Expression in an Engineered Kluyveromyces marxianus UMPe-1 Yeast.

    Science.gov (United States)

    Campos-García, Jesús; Vargas, Alejandra; Farías-Rosales, Lorena; Miranda, Ana L; Meza-Carmen, Víctor; Díaz-Pérez, Alma L

    2018-05-02

    Mezcal, a traditional beverage that originated in Mexico, is produced from species of the Agavaceae family. The esters associated with the yeasts utilized during fermentation are important for improving the organoleptic properties of the beverage. We improved the ester contents in a mezcal beverage by using the yeast Kluyveromyces marxianus, which was engineered with the ATF1 gene. ATF1 expression in the recombinant yeast significantly increased compared with that in the parental yeast, but its fermentative parameters were unchanged. Volatile-organic-compound-content analysis showed that esters had significantly increased in the mezcal produced with the engineered yeast. In a sensory-panel test, 48% of the panelists preferred the mezcal produced from the engineered yeast, 30% preferred the mezcal produced from the wild type, and 15 and 7% preferred the two mezcal types produced following the routine procedure. Correlation analysis showed that the fruitiness/sweetness description of the mezcal produced using the ATF1-engineered K. marxianus yeast correlated with the content of the esters, whose presence improved the organoleptic properties of the craft mezcal beverage.

  7. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids

    Directory of Open Access Journals (Sweden)

    Johnson Christopher B

    2011-01-01

    Full Text Available Abstract Background Terpenoids constitute a large family of natural products, attracting commercial interest for a variety of uses as flavours, fragrances, drugs and alternative fuels. Saccharomyces cerevisiae offers a versatile cell factory, as the precursors of terpenoid biosynthesis are naturally synthesized by the sterol biosynthetic pathway. Results S. cerevisiae wild type yeast cells, selected for their capacity to produce high sterol levels were targeted for improvement aiming to increase production. Recyclable integration cassettes were developed which enable the unlimited sequential integration of desirable genetic elements (promoters, genes, termination sequence at any desired locus in the yeast genome. The approach was applied on the yeast sterol biosynthetic pathway genes HMG2, ERG20 and IDI1 resulting in several-fold increase in plant monoterpene and sesquiterpene production. The improved strains were robust and could sustain high terpenoid production levels for an extended period. Simultaneous plasmid-driven co-expression of IDI1 and the HMG2 (K6R variant, in the improved strain background, maximized monoterpene production levels. Expression of two terpene synthase enzymes from the sage species Salvia fruticosa and S. pomifera (SfCinS1, SpP330 in the modified yeast cells identified a range of terpenoids which are also present in the plant essential oils. Co-expression of the putative interacting protein HSP90 with cineole synthase 1 (SfCinS1 also improved production levels, pointing to an additional means to improve production. Conclusions Using the developed molecular tools, new yeast strains were generated with increased capacity to produce plant terpenoids. The approach taken and the durability of the strains allow successive rounds of improvement to maximize yields.

  8. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts.

    Science.gov (United States)

    Baker, EmilyClare; Wang, Bing; Bellora, Nicolas; Peris, David; Hulfachor, Amanda Beth; Koshalek, Justin A; Adams, Marie; Libkind, Diego; Hittinger, Chris Todd

    2015-11-01

    The dramatic phenotypic changes that occur in organisms during domestication leave indelible imprints on their genomes. Although many domesticated plants and animals have been systematically compared with their wild genetic stocks, the molecular and genomic processes underlying fungal domestication have received less attention. Here, we present a nearly complete genome assembly for the recently described yeast species Saccharomyces eubayanus and compare it to the genomes of multiple domesticated alloploid hybrids of S. eubayanus × S. cerevisiae (S. pastorianus syn. S. carlsbergensis), which are used to brew lager-style beers. We find that the S. eubayanus subgenomes of lager-brewing yeasts have experienced increased rates of evolution since hybridization, and that certain genes involved in metabolism may have been particularly affected. Interestingly, the S. eubayanus subgenome underwent an especially strong shift in selection regimes, consistent with more extensive domestication of the S. cerevisiae parent prior to hybridization. In contrast to recent proposals that lager-brewing yeasts were domesticated following a single hybridization event, the radically different neutral site divergences between the subgenomes of the two major lager yeast lineages strongly favor at least two independent origins for the S. cerevisiae × S. eubayanus hybrids that brew lager beers. Our findings demonstrate how this industrially important hybrid has been domesticated along similar evolutionary trajectories on multiple occasions. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. A set of nutrient limitations trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation.

    Directory of Open Access Journals (Sweden)

    Camille Duc

    Full Text Available Yeast cell death can occur during wine alcoholic fermentation. It is generally considered to result from ethanol stress that impacts membrane integrity. This cell death mainly occurs when grape musts processing reduces lipid availability, resulting in weaker membrane resistance to ethanol. However the mechanisms underlying cell death in these conditions remain unclear. We examined cell death occurrence considering yeast cells ability to elicit an appropriate response to a given nutrient limitation and thus survive starvation. We show here that a set of micronutrients (oleic acid, ergosterol, pantothenic acid and nicotinic acid in low, growth-restricting concentrations trigger cell death in alcoholic fermentation when nitrogen level is high. We provide evidence that nitrogen signaling is involved in cell death and that either SCH9 deletion or Tor inhibition prevent cell death in several types of micronutrient limitation. Under such limitations, yeast cells fail to acquire any stress resistance and are unable to store glycogen. Unexpectedly, transcriptome analyses did not reveal any major changes in stress genes expression, suggesting that post-transcriptional events critical for stress response were not triggered by micronutrient starvation. Our data point to the fact that yeast cell death results from yeast inability to trigger an appropriate stress response under some conditions of nutrient limitations most likely not encountered by yeast in the wild. Our conclusions provide a novel frame for considering both cell death and the management of nutrients during alcoholic fermentation.

  10. Kant's Second Thoughts on Colonialism

    NARCIS (Netherlands)

    Kleingeld, Pauline; Flikschuh, Katrin; Ypi, Lea

    2014-01-01

    Kant is widely regarded as a fierce critic of colonialism. In Toward Perpetual Peace and the Metaphysics of Morals, for example, he forcefully condemns European conduct in the colonies as a flagrant violation of the principles of right. His earlier views on colonialism have not yet received much

  11. [Inhibitory effects of butyl alcohol extract of Baitouweng decoction on yeast-to-hyphae transition of Candida albicans isolates from VVC in alkaline pH environment].

    Science.gov (United States)

    Zhang, Meng-xiang; Xia, Dan; Shi, Gao-xiang; Shao, Jing; Wang, Tian-ming; Tang, Chuan-chao; Wang, Chang-zhong

    2015-02-01

    To investigate the effects of butyl alcohol extract of Baitouweng decoction ( BAEB) on yeast-to-hyphae transition of Candida albicans isolates from vulvovaginal candidiasis (VVC) in alkaline pH. Serial 2-fold dilution assay was used to determine the minimal inhibitory concentrations (MICs) of Baitouweng decoction extracts against C. albicans isolates from VVC, XTT assay was applied to determine the metabolic activity of C. albicans hypha treated by BAEB for 6 h. The morphological change of C. albicans treated by BAEB was inspected at different pH by inverted microscope, fluorescence microscope, scanning electron microscopy (SEM). Solid agar plate and semi-solid agar were utilized to evaluate colony morphology and invasive growth of C. albicans, respectively. Quantitative Real-time PCR (qRT-PCR) was adopted to observe the expressions of hyphae-specific genes including HWP1, ALS3, CSH1, SUN41 and CaPDE2. The MIC of BAEB against C. albicans is less than that of other extracts; hyphae grow best at pH 8. 0; 512 mg · L(-1) and 1,024 mg · L(-1) BAEB could inhibit formation of hyphae and influence colony morphology. When treated by 512 mg · L(-1) and 1,024 mg · L(-1) BAEB, the colonies became smooth; while by 0 and 256 mg · L(-1) BAEB, the colonies became wrinkled. In semi-solid agar, the length of hyphae decreased steadily as the concentration of BAEB lowered. The expression of HWP1, ALS3, CSHl, SUN41 were downregulated by 5.12, 4.26, 3.2 and 2.74 folds, and CaPDE2 was upregulated by 2.38 fold. BAEB could inhibit yeast-to-hyphae transition of C. albicans isolates from VVC in alkaline pH.

  12. Behavioral Modulation of Infestation by Varroa destructor in Bee Colonies. Implications for Colony Stability.

    Science.gov (United States)

    de Figueiró Santos, Joyce; Coelho, Flávio Codeço; Bliman, Pierre-Alexandre

    2016-01-01

    Colony Collapse Disorder (CCD) has become a global problem for beekeepers and for the crops that depend on bee pollination. While many factors are known to increase the risk of colony collapse, the ectoparasitic mite Varroa destructor is considered to be the most serious one. Although this mite is unlikely to cause the collapse of hives itself, it is the vector for many viral diseases which are among the likely causes for Colony Collapse Disorder. The effects of V. destructor infestation differ from one part of the world to another, with greater morbidity and higher colony losses in European honey bees (EHB) in Europe, Asia and North America. Although this mite has been present in Brazil for many years, there have been no reports of colony losses amongst Africanized Honey Bees (AHB). Studies carried out in Mexico have highlighted different behavioral responses by the AHB to the presence of the mite, notably as far as grooming and hygienic behavior are concerned. Could these explain why the AHB are less susceptible to Colony Collapse Disorder? In order to answer this question, we have developed a mathematical model of the infestation dynamics to analyze the role of resistance behavior by bees in the overall health of the colony, and as a consequence, its ability to face epidemiological challenges.

  13. Behavioral Modulation of Infestation by Varroa destructor in Bee Colonies. Implications for Colony Stability.

    Directory of Open Access Journals (Sweden)

    Joyce de Figueiró Santos

    Full Text Available Colony Collapse Disorder (CCD has become a global problem for beekeepers and for the crops that depend on bee pollination. While many factors are known to increase the risk of colony collapse, the ectoparasitic mite Varroa destructor is considered to be the most serious one. Although this mite is unlikely to cause the collapse of hives itself, it is the vector for many viral diseases which are among the likely causes for Colony Collapse Disorder. The effects of V. destructor infestation differ from one part of the world to another, with greater morbidity and higher colony losses in European honey bees (EHB in Europe, Asia and North America. Although this mite has been present in Brazil for many years, there have been no reports of colony losses amongst Africanized Honey Bees (AHB. Studies carried out in Mexico have highlighted different behavioral responses by the AHB to the presence of the mite, notably as far as grooming and hygienic behavior are concerned. Could these explain why the AHB are less susceptible to Colony Collapse Disorder? In order to answer this question, we have developed a mathematical model of the infestation dynamics to analyze the role of resistance behavior by bees in the overall health of the colony, and as a consequence, its ability to face epidemiological challenges.

  14. Colonialism, customary law and the post-colonial state in Africa: the ...

    African Journals Online (AJOL)

    Colonialism became a fact of life in many African countries. An effect of colonialism especially in the former British colonized countries was the transplantation of the British legal system, which led to recognition of both systems and the gradual relegation of the indigenous system otherwise called customary law. The use and ...

  15. Violence Patterns in Peckinpah's The Wild Bunch (1969: Critical Reading

    Directory of Open Access Journals (Sweden)

    Baker Bani-Khair

    2017-03-01

    Full Text Available This paper focuses on the issue of violence in Sam Peckinpah's The Wild Bunch (1969 through explaining some of the cultural and historical implications of violence in the 1960s such as Vietnam War, the Mexican war and also the explosion of the feminist movement and some other important social and political upheavals that shaped the cultural context of the 1960s in America. It also sheds light on Sam Peckinpah’s approach of violence screen and stylizing violence and the representations of violence as a tormenting and brutalizing reality that matches the spirit of the age in addition to the social, political, and colonial conflicts of the 1960s. Violence and the implications of violence in The Wild Bunch whether social , cultural, psychological, or humanistic have been discussed in brief in order to show the critical approach of the film as being a rich and didactic film to watch, especially in terms of its rich cultural and historical contexts.

  16. Public Heath in Colonial and Post-Colonial Ghana: Lesson-Drawing for The Twenty-First Century

    Directory of Open Access Journals (Sweden)

    Adu-Gyamfi, Samuel

    2017-06-01

    Full Text Available Public health in twenty-first century Ghana is mired with several issues ranging from the inadequacy of public health facilities, improper settlement planning, insanitary conditions, and the inadequacy of laws and their implementation. This situation compared to the colonial era is a direct contradiction. Development in the pre-colonial era to the colonial era sought to make the prevention of diseases a priority in the colonial administration. This was begun with the establishment of the health branch in 1909 as a response to the bubonic plague that was fast spreading in the colony. From here public health policies and strategies were enacted to help the diseases prevention cause. Various public health boards, the medical research institute or the laboratory branch, the waste management department, the use of preventive medicine and maintenance of good settlement planning and sanitation were public health measures in the colonial era. This research seeks to analyse the public health system in the colonial era so as to draw basic lessons for twenty-first century Ghana. Archival data and other secondary sources are reviewed and analysed to help draw these lessons. Richard Rose’s lesson-drawing approach was used to draw the lessons.

  17. A novel biosurfactant produced by Aureobasidium pullulans L3-GPY from a tiger lily wild flower, Lilium lancifolium Thunb.

    Science.gov (United States)

    Kim, Jong Shik; Lee, In Kyoung; Yun, Bong Sik

    2015-01-01

    Yeast biosurfactants are important biotechnological products in the food industry, and they have medical and cosmeceutical applications owing to their specific modes of action, low toxicity, and applicability. Thus, we have isolated and examined biosurfactant-producing yeast for various industrial and medical applications. A rapid and simple method was developed to screen biosurfactant-producing yeasts for high production of eco-friendly biosurfactants. Using this method, several potential niches of biosurfactant-producing yeasts, such as wild flowers, were investigated. We successfully selected a yeast strain, L3-GPY, with potent surfactant activity from a tiger lily, Lilium lancifolium Thunb. Here, we report the first identification of strain L3-GPY as the black yeast Aureobasidium pullulans. In addition, we isolated a new low-surface-tension chemical, designated glycerol-liamocin, from the culture supernatant of strain L3-GPY through consecutive chromatography steps, involving an ODS column, solvent partition, silica gel, Sephadex LH-20, and an ODS Sep-Pak cartridge column. The chemical structure of glycerol-liamocin, determined by mass spectrometry and nuclear magnetic resonance spectroscopy, indicates that it is a novel compound with the molecular formula C33H62O12. Furthermore, glycerol-liamocin exhibited potent biosurfactant activity (31 mN/m). These results suggest that glycerol-liamocin is a potential novel biosurfactantfor use in various industrial applications.

  18. Yeast Flocculation—Sedimentation and Flotation

    Directory of Open Access Journals (Sweden)

    Graham G. Stewart

    2018-04-01

    Full Text Available Unlike most fermentation alcohol beverage production processes, brewers recycle their yeast. This is achieved by employing a yeast culture’s: flocculation, adhesion, sedimentation, flotation, and cropping characteristics. As a consequence of yeast recycling, the quality of the cropped yeast culture’s characteristics is critical. However, the other major function of brewer’s yeast is to metabolise wort into ethanol, carbon dioxide, glycerol, and other fermentation products, many of which contribute to beer’s overall flavour characteristics. This review will only focus on brewer’s yeast flocculation characteristics.

  19. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  20. A Mutation in PGM2 Causing Inefficient Galactose Metabolism in the Probiotic Yeast Saccharomyces boulardii.

    Science.gov (United States)

    Liu, Jing-Jing; Zhang, Guo-Chang; Kong, In Iok; Yun, Eun Ju; Zheng, Jia-Qi; Kweon, Dae-Hyuk; Jin, Yong-Su

    2018-05-15

    The probiotic yeast Saccharomyces boulardii has been extensively studied for the prevention and treatment of diarrheal diseases, and it is now commercially available in some countries. S. boulardii displays notable phenotypic characteristics, such as a high optimal growth temperature, high tolerance against acidic conditions, and the inability to form ascospores, which differentiate S. boulardii from Saccharomyces cerevisiae The majority of prior studies stated that S. boulardii exhibits sluggish or halted galactose utilization. Nonetheless, the molecular mechanisms underlying inefficient galactose uptake have yet to be elucidated. When the galactose utilization of a widely used S. boulardii strain, ATCC MYA-796, was examined under various culture conditions, the S. boulardii strain could consume galactose, but at a much lower rate than that of S. cerevisiae While all GAL genes were present in the S. boulardii genome, according to analysis of genomic sequencing data in a previous study, a point mutation (G1278A) in PGM2 , which codes for phosphoglucomutase, was identified in the genome of the S. boulardii strain. As the point mutation resulted in the truncation of the Pgm2 protein, which is known to play a pivotal role in galactose utilization, we hypothesized that the truncated Pgm2 might be associated with inefficient galactose metabolism. Indeed, complementation of S. cerevisiae PGM2 in S. boulardii restored galactose utilization. After reverting the point mutation to a full-length PGM2 in S. boulardii by Cas9-based genome editing, the growth rates of wild-type (with a truncated PGM2 gene) and mutant (with a full-length PGM2 ) strains with glucose or galactose as the carbon source were examined. As expected, the mutant (with a full-length PGM2 ) was able to ferment galactose faster than the wild-type strain. Interestingly, the mutant showed a lower growth rate than that of the wild-type strain on glucose at 37°C. Also, the wild-type strain was enriched in the

  1. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites.

    Science.gov (United States)

    Husseneder, Claudia; Donaldson, Jennifer R; Foil, Lane D

    2016-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival.

  2. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  3. Fine structure of Tibetan kefir grains and their yeast distribution, diversity, and shift.

    Directory of Open Access Journals (Sweden)

    Man Lu

    Full Text Available Tibetan kefir grains (TKGs, a kind of natural starter for fermented milk in Tibet, China, host various microorganisms of lactic acid bacteria, yeasts, and occasionally acetic acid bacteria in a polysaccharide/protein matrix. In the present study, the fine structure of TKGs was studied to shed light on this unusual symbiosis with stereomicroscopy and thin sections. The results reveal that TKGs consist of numerous small grain units, which are characterized by a hollow globular structure with a diameter between 2.0 and 9.0 mm and a wall thickness of approximately 200 µm. A polyhedron-like net structure, formed mainly by the bacteria, was observed in the wall of the grain units, which has not been reported previously to our knowledge. Towards the inside of the grain unit, the polyhedron-like net structures became gradually larger in diameter and fewer in number. Such fine structures may play a crucial role in the stability of the grains. Subsequently, the distribution, diversity, and shift of yeasts in TKGs were investigated based on thin section, scanning electron microscopy, cloning and sequencing of D1/D2 of the 26S rRNA gene, real-time quantitative PCR, and in situ hybridization with specific fluorescence-labeled oligonucleotide probes. These show that (i yeasts appear to localize on the outer surface of the grains and grow normally together to form colonies embedded in the bacterial community; (ii the diversity of yeasts is relatively low on genus level with three dominant species--Saccharomyces cerevisiae, Kluyveromyces marxianus, and Yarrowia lipolytica; (iii S. cerevisiae is the stable predominant yeast species, while the composition of Kluyveromyces and Yarrowia are subject to change over time. Our results indicate that TKGs are relatively stable in structure, and culture conditions to some extent shape the microbial community and interaction in kefir grains. These findings pave the way for further study of the specific symbiotic

  4. Fine Structure of Tibetan Kefir Grains and Their Yeast Distribution, Diversity, and Shift

    Science.gov (United States)

    Lu, Man; Wang, Xingxing; Sun, Guowei; Qin, Bing; Xiao, Jinzhou; Yan, Shuling; Pan, Yingjie; Wang, Yongjie

    2014-01-01

    Tibetan kefir grains (TKGs), a kind of natural starter for fermented milk in Tibet, China, host various microorganisms of lactic acid bacteria, yeasts, and occasionally acetic acid bacteria in a polysaccharide/protein matrix. In the present study, the fine structure of TKGs was studied to shed light on this unusual symbiosis with stereomicroscopy and thin sections. The results reveal that TKGs consist of numerous small grain units, which are characterized by a hollow globular structure with a diameter between 2.0 and 9.0 mm and a wall thickness of approximately 200 µm. A polyhedron-like net structure, formed mainly by the bacteria, was observed in the wall of the grain units, which has not been reported previously to our knowledge. Towards the inside of the grain unit, the polyhedron-like net structures became gradually larger in diameter and fewer in number. Such fine structures may play a crucial role in the stability of the grains. Subsequently, the distribution, diversity, and shift of yeasts in TKGs were investigated based on thin section, scanning electron microscopy, cloning and sequencing of D1/D2 of the 26S rRNA gene, real-time quantitative PCR, and in situ hybridization with specific fluorescence-labeled oligonucleotide probes. These show that (i) yeasts appear to localize on the outer surface of the grains and grow normally together to form colonies embedded in the bacterial community; (ii) the diversity of yeasts is relatively low on genus level with three dominant species – Saccharomyces cerevisiae, Kluyveromyces marxianus, and Yarrowia lipolytica; (iii) S. cerevisiae is the stable predominant yeast species, while the composition of Kluyveromyces and Yarrowia are subject to change over time. Our results indicate that TKGs are relatively stable in structure, and culture conditions to some extent shape the microbial community and interaction in kefir grains. These findings pave the way for further study of the specific symbiotic associations between S

  5. Evaluation of the Hydrophobic Grid Membrane Filter for the Enumeration of Moulds and Yeasts in Naturally-Contaminated Foods

    Directory of Open Access Journals (Sweden)

    V.H. Tournas

    2009-01-01

    Full Text Available Over 240 food samples from six food groups (tree nuts, grains and grain products, dried fruits, fresh produce, fruit juice, and dairy products were tested for levels of fungal contamination using the NEO-GRID hydrophobic grid membrane filter (HGMF and the FDA official (BAM method. Results showed that HGMF performed very well for all tested commodities giving yeast and mould (YM counts similar to those of the BAM (reference method. Statistical analysis of the data (t-test revealed no significant differences between the two methods for all foods tested. Regression analysis showed that there was a good fit linear relationship between the two methods for most of the commodities examined. Some difficulties were encountered during counting of the colonies on HGMF since the size of the grid is very small and the number of possible colonies per plate can reach 1600.

  6. Cth2 Protein Mediates Early Adaptation of Yeast Cells to Oxidative Stress Conditions.

    Directory of Open Access Journals (Sweden)

    Laia Castells-Roca

    Full Text Available Cth2 is an mRNA-binding protein that participates in remodeling yeast cell metabolism in iron starvation conditions by promoting decay of the targeted molecules, in order to avoid excess iron consumption. This study shows that in the absence of Cth2 immediate upregulation of expression of several of the iron regulon genes (involved in high affinity iron uptake and intracellular iron redistribution upon oxidative stress by hydroperoxide is more intense than in wild type conditions where Cth2 is present. The oxidative stress provokes a temporary increase in the levels of Cth2 (itself a member of the iron regulon. In such conditions Cth2 molecules accumulate at P bodies-like structures when the constitutive mRNA decay machinery is compromised. In addition, a null Δcth2 mutant shows defects, in comparison to CTH2 wild type cells, in exit from α factor-induced arrest at the G1 stage of the cell cycle when hydroperoxide treatment is applied. The cell cycle defects are rescued in conditions that compromise uptake of external iron into the cytosol. The observations support a role of Cth2 in modulating expression of diverse iron regulon genes, excluding those specifically involved in the reductive branch of the high-affinity transport. This would result in immediate adaptation of the yeast cells to an oxidative stress, by controlling uptake of oxidant-promoting iron cations.

  7. Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate

    OpenAIRE

    Stamps, Judy A.; Yang, Louie H.; Morales, Vanessa M.; Boundy-Mills, Kyria L.

    2012-01-01

    Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast densit...

  8. Reinforcement of the radiative and thermic stresses of the grapevine. Repercussions on yeast surface microflora

    International Nuclear Information System (INIS)

    Salmon, J.M.; Mailhac, N.; Sauvage, F.X.; Biron, M.J.; Robin, J.P.

    1997-01-01

    All along the ripening period, the radiative and thermic stresses of the grapevine may be reinforced by the use of a reflective soil cover (aluminized film). Such a treatment leads to repercussions on the berries, on the must composition and finally on the wine quality. During such a preliminary experiment, we demonstrated that the temperature increase and/or the reinforcement of the reflected ultraviolet radiations (measured at 254 nm) at the level of grape berries severely impaired the development of yeast cells at their surfaces. By means of an artificial inoculation of grapes at the beginning of the ripening period with a mixture of four different yeast genera (Saccharomyces cerevisiae, Hanseniaspora uvarum, Pichia fermentans and Schizosaccharomyces pombe), we demonstrated that the repartition of yeast genera amongst this population was affected by the treatment of stocks with the aluminized film: during the experiment presented in this paper, the Saccharomyces genus was favoured. One may consider by extension similar effects resulting from the reflective properties of some natural soils. Such effects may considerably influence the distribution of wild yeast flora during the spontaneous fermentation of musts. If such an hypothesis is confirmed at a local or regional level, it will represent a first significant piece of the definition of one of the aspects of the ''terroir'' effect on the characteristics of wines [fr

  9. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol.

    Science.gov (United States)

    Lee, Cho-Ryong; Sung, Bong Hyun; Lim, Kwang-Mook; Kim, Mi-Jin; Sohn, Min Jeong; Bae, Jung-Hoon; Sohn, Jung-Hoon

    2017-06-30

    To realize the economical production of ethanol and other bio-based chemicals from lignocellulosic biomass by consolidated bioprocessing (CBP), various cellulases from different sources were tested to improve the level of cellulase secretion in the yeast Saccharomyces cerevisiae by screening an optimal translational fusion partner (TFP) as both a secretion signal and fusion partner. Among them, four indispensable cellulases for cellulose hydrolysis, including Chaetomium thermophilum cellobiohydrolase (CtCBH1), Chrysosporium lucknowense cellobiohydrolase (ClCBH2), Trichoderma reesei endoglucanase (TrEGL2), and Saccharomycopsis fibuligera β-glucosidase (SfBGL1), were identified to be highly secreted in active form in yeast. Despite variability in the enzyme levels produced, each recombinant yeast could secrete approximately 0.6-2.0 g/L of cellulases into the fermentation broth. The synergistic effect of the mixed culture of the four strains expressing the essential cellulases with the insoluble substrate Avicel and several types of cellulosic biomass was demonstrated to be effective. Co-fermentation of these yeast strains produced approximately 14 g/L ethanol from the pre-treated rice straw containing 35 g/L glucan with 3-fold higher productivity than that of wild type yeast using a reduced amount of commercial cellulases. This process will contribute to the cost-effective production of bioenergy such as bioethanol and biochemicals from cellulosic biomass.

  10. Dynamics of the Presence of Israeli Acute Paralysis Virus in Honey Bee Colonies with Colony Collapse Disorder

    Directory of Open Access Journals (Sweden)

    Chunsheng Hou

    2014-05-01

    Full Text Available The determinants of Colony Collapse Disorder (CCD, a particular case of collapse of honey bee colonies, are still unresolved. Viruses including the Israeli acute paralysis virus (IAPV were associated with CCD. We found an apiary with colonies showing typical CCD characteristics that bore high loads of IAPV, recovered some colonies from collapse and tested the hypothesis if IAPV was actively replicating in them and infectious to healthy bees. We found that IAPV was the dominant pathogen and it replicated actively in the colonies: viral titers decreased from April to September and increased from September to December. IAPV extracted from infected bees was highly infectious to healthy pupae: they showed several-fold amplification of the viral genome and synthesis of the virion protein VP3. The health of recovered colonies was seriously compromised. Interestingly, a rise of IAPV genomic copies in two colonies coincided with their subsequent collapse. Our results do not imply IAPV as the cause of CCD but indicate that once acquired and induced to replication it acts as an infectious factor that affects the health of the colonies and may determine their survival. This is the first follow up outside the US of CCD-colonies bearing IAPV under natural conditions.

  11. The use of lactic acid-producing, malic acid-producing, or malic acid-degrading yeast strains for acidity adjustment in the wine industry.

    Science.gov (United States)

    Su, Jing; Wang, Tao; Wang, Yun; Li, Ying-Ying; Li, Hua

    2014-03-01

    In an era of economic globalization, the competition among wine businesses is likely to get tougher. Biotechnological innovation permeates the entire world and intensifies the severity of the competition of the wine industry. Moreover, modern consumers preferred individualized, tailored, and healthy and top quality wine products. Consequently, these two facts induce large gaps between wine production and wine consumption. Market-orientated yeast strains are presently being selected or developed for enhancing the core competitiveness of wine enterprises. Reasonable biological acidity is critical to warrant a high-quality wine. Many wild-type acidity adjustment yeast strains have been selected all over the world. Moreover, mutation breeding, metabolic engineering, genetic engineering, and protoplast fusion methods are used to construct new acidity adjustment yeast strains to meet the demands of the market. In this paper, strategies and concepts for strain selection or improvement methods were discussed, and many examples based upon selected studies involving acidity adjustment yeast strains were reviewed. Furthermore, the development of acidity adjustment yeast strains with minimized resource inputs, improved fermentation, and enological capabilities for an environmentally friendly production of healthy, top quality wine is presented.

  12. Quantitative characterization of pyrimidine dimer excision from UV-irradiated DNA (excision capacity) by cell-free extracts of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Bekker, M.L.; Kaboev, O.K.; Akhmedov, A.T.; Luchkina, L.A.

    1984-01-01

    Cell-free extracts from wild-type yeast (RAD + ) and from rad mutants belonging to the RAD3 epistatic group (rad1-1, rad2-1, rad3-1, rad4-1) contain activities catalyzing the excision of pyrimidine dimers (PD) from purified ultraviolet-irradiated DNA which was not pre-treated with exogenous UV-endonuclease. The level of these activities in cell-free extracts from rad mutants did not differ from that in wild-type extract and was close to the in vivo excision capacity of the latter calculated from the LD 37 (about 10 4 PD per haploid genome). (Auth.)

  13. Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator

    Science.gov (United States)

    Usaite, Renata; Jewett, Michael C; Oliveira, Ana Paula; Yates, John R; Olsson, Lisbeth; Nielsen, Jens

    2009-01-01

    Highly conserved among eukaryotic cells, the AMP-activated kinase (AMPK) is a central regulator of carbon metabolism. To map the complete network of interactions around AMPK in yeast (Snf1) and to evaluate the role of its regulatory subunit Snf4, we measured global mRNA, protein and metabolite levels in wild type, Δsnf1, Δsnf4, and Δsnf1Δsnf4 knockout strains. Using four newly developed computational tools, including novel DOGMA sub-network analysis, we showed the benefits of three-level ome-data integration to uncover the global Snf1 kinase role in yeast. We for the first time identified Snf1's global regulation on gene and protein expression levels, and showed that yeast Snf1 has a far more extensive function in controlling energy metabolism than reported earlier. Additionally, we identified complementary roles of Snf1 and Snf4. Similar to the function of AMPK in humans, our findings showed that Snf1 is a low-energy checkpoint and that yeast can be used more extensively as a model system for studying the molecular mechanisms underlying the global regulation of AMPK in mammals, failure of which leads to metabolic diseases. PMID:19888214

  14. The phytopathogenic virulent effector protein RipI induces apoptosis in budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Deng, Meng-Ying; Sun, Yun-Hao; Li, Pai; Fu, Bei; Shen, Dong; Lu, Yong-Jun

    2016-10-01

    Virulent protein toxins secreted by the bacterial pathogens can cause cytotoxicity by various molecular mechanisms to combat host cell defense. On the other hand, these proteins can also be used as probes to investigate the defense pathway of host innate immunity. Ralstonia solanacearum, one of the most virulent bacterial phytopathogens, translocates more than 70 effector proteins via type III secretion system during infection. Here, we characterized the cytotoxicity of effector RipI in budding yeast Saccharomyce scerevisiae, an alternative host model. We found that over-expression of RipI resulted in severe growth defect and arginine (R) 117 within the predicted integrase motif was required for inhibition of yeast growth. The phenotype of death manifested the hallmarks of apoptosis. Our data also revealed that RipI-induced apoptosis was independent of Yca1 and mitochondria-mediated apoptotic pathways because Δyca1 and Δaif1 were both sensitive to RipI as compared with the wild type. We further demonstrated that RipI was localized in the yeast nucleus and the N-terminal 1-174aa was required for the localization. High-throughput RNA sequencing analysis showed that upon RipI over-expression, 101 unigenes of yeast ribosome presented lower expression level, and 42 GO classes related to the nucleus or recombination were enriched with differential expression levels. Taken together, our data showed that a nuclear-targeting effector RipI triggers yeast apoptosis, potentially dependent on its integrase function. Our results also provided an alternative strategy to dissect the signaling pathway of cytotoxicity induced by the protein toxins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. New yeasts-new brews: modern approaches to brewing yeast design and development.

    Science.gov (United States)

    Gibson, B; Geertman, J-M A; Hittinger, C T; Krogerus, K; Libkind, D; Louis, E J; Magalhães, F; Sampaio, J P

    2017-06-01

    The brewing industry is experiencing a period of change and experimentation largely driven by customer demand for product diversity. This has coincided with a greater appreciation of the role of yeast in determining the character of beer and the widespread availability of powerful tools for yeast research. Genome analysis in particular has helped clarify the processes leading to domestication of brewing yeast and has identified domestication signatures that may be exploited for further yeast development. The functional properties of non-conventional yeast (both Saccharomyces and non-Saccharomyces) are being assessed with a view to creating beers with new flavours as well as producing flavoursome non-alcoholic beers. The discovery of the psychrotolerant S. eubayanus has stimulated research on de novo S. cerevisiae × S. eubayanus hybrids for low-temperature lager brewing and has led to renewed interest in the functional importance of hybrid organisms and the mechanisms that determine hybrid genome function and stability. The greater diversity of yeast that can be applied in brewing, along with an improved understanding of yeasts' evolutionary history and biology, is expected to have a significant and direct impact on the brewing industry, with potential for improved brewing efficiency, product diversity and, above all, customer satisfaction. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Rhodosporidium BANNO: Inactivation of yeast phase cells by ultraviolet light and N-methyl-N'-nitro-N-nitrosoguanidine

    International Nuclear Information System (INIS)

    Boettcher, F.; Samsonova, I.A.

    1977-01-01

    The inactivation of stationary phase cells by ultraviolet light (UV) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was examined in eight wild strains of Rhodotorula, six of which are the sporidial yeast phase of Rhodosporidium, a basidiomycetous fungus. It thas been found that (1) the UV-resistance of Rhodosporidium and Rhodotorula yeasts is higher and the MNNG-resistance lower than the resistance of Candida and Hansenula yeasts, (2) the shape of the survival curves is sigmoid in the case of UV and two-phase exponential in the case of MNNG, (3) the mutagen sensitivities but not the inactivation kinetics of the strains are different, (4) the UV- and MNNG-sensitivities for each of the strains are correlated, (5) the relatively high resistance to UV cannot be due to the carotenoid pigments of the cells, (6) mutations to UV-sensitivity can be induced with a high rate, (7) the sigmoidal character of the UV survival curves were reduced or transformed to an exponential shape by the UVS-mutations. (author)

  17. Vaginal yeast infection

    Science.gov (United States)

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts ...

  18. Within-Colony Variation in the Immunocompetency of Managed and Feral Honey Bees (Apis mellifera L.) in Different Urban Landscapes.

    Science.gov (United States)

    Appler, R Holden; Frank, Steven D; Tarpy, David R

    2015-10-29

    Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living) and managed (beekeeper-owned) honey bee colonies. We sampled foragers from feral and managed colonies in rural, suburban, and urban landscapes in and around Raleigh, NC, USA. We then analyzed adult workers using two standard bioassays for insect immune function (encapsulation response and phenoloxidase activity). We found that there was far more variation within colonies for encapsulation response or phenoloxidase activity than among rural to urban landscapes, and we did not observe any significant difference in immune response between feral and managed bees. These findings suggest that social pollinators, like honey bees, may be sufficiently robust or variable in their immune responses to obscure any subtle effects of urbanization. Additional studies of immune physiology and disease ecology of social and solitary bees in urban, suburban, and natural ecosystems will provide insights into the relative effects of changing urban environments on several important factors that influence pollinator productivity and health.

  19. Chemical-genetic profile analysis of five inhibitory compounds in yeast.

    Science.gov (United States)

    Alamgir, Md; Erukova, Veronika; Jessulat, Matthew; Azizi, Ali; Golshani, Ashkan

    2010-08-06

    Chemical-genetic profiling of inhibitory compounds can lead to identification of their modes of action. These profiles can help elucidate the complex interactions between small bioactive compounds and the cell machinery, and explain putative gene function(s). Colony size reduction was used to investigate the chemical-genetic profile of cycloheximide, 3-amino-1,2,4-triazole, paromomycin, streptomycin and neomycin in the yeast Saccharomyces cerevisiae. These compounds target the process of protein biosynthesis. More than 70,000 strains were analyzed from the array of gene deletion mutant yeast strains. As expected, the overall profiles of the tested compounds were similar, with deletions for genes involved in protein biosynthesis being the major category followed by metabolism. This implies that novel genes involved in protein biosynthesis could be identified from these profiles. Further investigations were carried out to assess the activity of three profiled genes in the process of protein biosynthesis using relative fitness of double mutants and other genetic assays. Chemical-genetic profiles provide insight into the molecular mechanism(s) of the examined compounds by elucidating their potential primary and secondary cellular target sites. Our follow-up investigations into the activity of three profiled genes in the process of protein biosynthesis provided further evidence concerning the usefulness of chemical-genetic analyses for annotating gene functions. We termed these genes TAE2, TAE3 and TAE4 for translation associated elements 2-4.

  20. Growth Mechanism of Microbial Colonies

    Science.gov (United States)

    Zhu, Minhui; Martini, K. Michael; Kim, Neil H.; Sherer, Nicholas; Lee, Jia Gloria; Kuhlman, Thomas; Goldenfeld, Nigel

    Experiments on nutrient-limited E. coli colonies, growing on agar gel from single cells reveal a power-law distribution of sizes, both during the growth process and in the final stage when growth has ceased. We developed a Python simulation to study the growth mechanism of the bacterial population and thus understand the broad details of the experimental findings. The simulation takes into account nutrient uptake, metabolic function, growth and cell division. Bacteria are modeled in two dimensions as hard circle-capped cylinders with steric interactions and elastic stress dependent growth characteristics. Nutrient is able to diffuse within and between the colonies. The mechanism of microbial colony growth involves reproduction of cells within the colonies and the merging of different colonies. We report results on the dynamic scaling laws and final state size distribution, that capture in semi-quantitative detail the trends observed in experiment. Supported by NSF Grant 0822613.

  1. Pollen foraging in colonies of Melipona bicolor (Apidae, Meliponini): effects of season, colony size and queen number.

    Science.gov (United States)

    Hilário, S D; Imperatriz-Fonseca, V L

    2009-01-01

    We evaluated the ratio between the number of pollen foragers and the total number of bees entering colonies of Melipona bicolor, a facultative polygynous species of stingless bees. The variables considered in our analysis were: seasonality, colony size and the number of physogastric queens in each colony. The pollen forager ratios varied significantly between seasons; the ratio was higher in winter than in summer. However, colony size and number of queens per colony had no significant effect. We conclude that seasonal differences in pollen harvest are related to the production of sexuals and to the number of individuals and their body size.

  2. Biological effectiveness of pulsed and continuous neutron radiation for cells of yeast Saccharomyces

    International Nuclear Information System (INIS)

    Tsyb, T.S.; Komarova, E.V.; Potetnya, V.I.; Obaturov, G.M.

    2001-01-01

    Data are presented on biological effectiveness of fast neutrons generated by BR-10 reactor (dose rate up to 3.8 Gy/s) in comparison with neutrons of pulsed BARS-6 reactor (dose rate ∼6x10 6 Gy/s) for yeast Saccharomyces vini cells of a wild type Menri 139-B and radiosensitive Saccharomyces cerevisiae (rad52/rad52; rad54/rad54) mutants which are defective over different systems of DNA reparation. Value of relative biological efficiency (RBE) of continuous radiation for wild stam is from 3.5 up to 2.5 when survival level being 75-10 %, and RBE of pulsed neutron radiation is in the limits of 2.0-1.7 at the same levels. For mutant stam the value of RBE (1.4-1.6) of neutrons is constant at all survival levels and does not depend on dose rate [ru

  3. Schizosaccharomyces japonicus: the fission yeast is a fusion of yeast and hyphae.

    Science.gov (United States)

    Niki, Hironori

    2014-03-01

    The clade of Schizosaccharomyces includes 4 species: S. pombe, S. octosporus, S. cryophilus, and S. japonicus. Although all 4 species exhibit unicellular growth with a binary fission mode of cell division, S. japonicus alone is dimorphic yeast, which can transit from unicellular yeast to long filamentous hyphae. Recently it was found that the hyphal cells response to light and then synchronously activate cytokinesis of hyphae. In addition to hyphal growth, S. japonicas has many properties that aren't shared with other fission yeast. Mitosis of S. japonicas is referred to as semi-open mitosis because dynamics of nuclear membrane is an intermediate mode between open mitosis and closed mitosis. Novel genetic tools and the whole genomic sequencing of S. japonicas now provide us with an opportunity for revealing unique characters of the dimorphic yeast. © 2013 The Author. Yeast Published by John Wiley & Sons Ltd.

  4. Alternative sources of supplements for Africanized honeybees submitted to royal jelly production

    OpenAIRE

    Sereia, Maria Josiane; Toledo, Vagner de Alencar Arnaut de; Furlan, Antonio Claudio; Faquinello, Patrícia; Maia, Fabiana Martins Costa; Wielewski, Priscila

    2013-01-01

    This study was carried out to evaluate the effect of supplements with isolated soy protein, brewer's yeast, a mixture of isolated soy protein with brewer's yeast, linseed oil, palm oil and mixture of linseed oil with palm oil in the production of royal jelly by Africanized honeybee colonies. Total royal jelly production was higher (p < 0.05) in colonies fed with isolated soy protein and brewer's yeast (11.68 g colony-1), followed by linseed oil and palm oil (11.30 g colony-1) and palm oil (9....

  5. Development and characterization of hybrids from native wine yeasts

    Directory of Open Access Journals (Sweden)

    Verónica García

    2012-06-01

    Full Text Available For commercial purposes, the winemaking industry is constantly searching for new yeast strains. Historically, this has been achieved by collecting wild strains and selecting the best for industrial use through an enological evaluation. Furthermore, the increasing consumer demands have forced the industry to incorporate new strategies such as genetic engineering to obtain improved strains. In response to the lack of public acceptance of this methodology, alternative strategies based on breeding have gained acceptance in recent years. Through the use of conjugation of individual spores without the support of genetic engineering methods we generated intraspecific hybrids from wild strains with outstanding enological characteristics and interdelta fingerprinting was used to confirm the hybrid condition. A detailed enological characterization of the hybrids in synthetic and natural must indicates that physiological parameters such as sporulation, residual sugar, ethanol yield and total nitrogen uptake are within the levels determined for the parental strains, however, other parameters such as growth rate, lag phase and ethanol production show statistical differences with some parental or commercial strains. These findings allow us to propose these hybrids as new wine-making strains.

  6. Political instability and discontinuity in Nigeria: The pre-colonial past and public goods provision under colonial and post-colonial political orders

    NARCIS (Netherlands)

    Papaioannou, K.I.; Dalrymple-Smith, A.E.

    2015-01-01

    This article explores the relative importance of pre-colonial institutional capacity and the effects of periods of peace and stability on long-term development outcomes in Nigeria. We use data on education, health, and public works at a provincial level from a variety of colonial and Nigerian state

  7. Yeast mating and image-based quantification of spatial pattern formation.

    Directory of Open Access Journals (Sweden)

    Christian Diener

    2014-06-01

    Full Text Available Communication between cells is a ubiquitous feature of cell populations and is frequently realized by secretion and detection of signaling molecules. Direct visualization of the resulting complex gradients between secreting and receiving cells is often impossible due to the small size of diffusing molecules and because such visualization requires experimental perturbations such as attachment of fluorescent markers, which can change diffusion properties. We designed a method to estimate such extracellular concentration profiles in vivo by using spatiotemporal mathematical models derived from microscopic analysis. This method is applied to populations of thousands of haploid yeast cells during mating in order to quantify the extracellular distributions of the pheromone α-factor and the activity of the aspartyl protease Bar1. We demonstrate that Bar1 limits the range of the extracellular pheromone signal and is critical in establishing α-factor concentration gradients, which is crucial for effective mating. Moreover, haploid populations of wild type yeast cells, but not BAR1 deletion strains, create a pheromone pattern in which cells differentially grow and mate, with low pheromone regions where cells continue to bud and regions with higher pheromone levels and gradients where cells conjugate to form diploids. However, this effect seems to be exclusive to high-density cultures. Our results show a new role of Bar1 protease regulating the pheromone distribution within larger populations and not only locally inside an ascus or among few cells. As a consequence, wild type populations have not only higher mating efficiency, but also higher growth rates than mixed MATa bar1Δ/MATα cultures. We provide an explanation of how a rapidly diffusing molecule can be exploited by cells to provide spatial information that divides the population into different transcriptional programs and phenotypes.

  8. Attenuation of yeast form of Paracoccidioides Brasiliensis by gamma irradiation; Atenuacao da forma leveduriforme do Paraccocidioides Brasiliensis por irradicao gama

    Energy Technology Data Exchange (ETDEWEB)

    Demicheli, Marina Cortez

    2006-07-01

    Paracoccidioides brasiliensis is the agent of paracoccidioidomycosis, the most prevalent mycosis in Latin America, and currently there is no effective vaccine. The aim of this work was to attenuate the yeast form of P. brasiliensis by gamma irradiation for further studies on vaccine research. P. brasiliensis (strain Pb-18) cultures were irradiated at doses between 0.5 and 8.0 kGy. After each dose the fungal cells were plated and after 10 days the colony forming units (CFU) counted. The viability of the irradiated cells was measured using the dyes Janus green and methylene blue, and protein synthesis by incorporation of L {sup 35}S methionine. The comparison between the antigenic profile of irradiated and control yeast was made by Western blot and the virulence evaluated by the inoculation in C{sub 57}Bl/J6 and Balb/c mice. Morphological changes in irradiated yeast were evaluated by electronic microscopy and DNA integrity by electrophoresis in agarose gel. At 6.5 kGy the yeast lost the reproductive capacity. The viability and the incorporation of L- {sup 35}S methionine were the same in control and up to 6.5 kGy irradiated cells, but 6.5 kGy irradiated yeast secreted 40% less proteins. The Western blot profile was clearly similar in control and 6.5 kGy irradiated yeast. No CFU could be recovered from the tissues of the mice infected with the radio attenuated yeast. At the dose of 6.5 kGy the DNA was degraded and this damage was not repaired. The transmission electronic microscopy showed significant alterations in the nucleus of the irradiated cells. The scanning electronic microscopy showed that two hours after the irradiation the cells were collapsed or presented deep folds in the surface, however these injury were reversible. We concluded that for P. brasiliensis yeast cells it was possible to find a dose in which the pathogen loses its reproductive ability and virulence, while retaining its viability, metabolic activity and the antigenic profile. (author)

  9. Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Leão, Mariana; Gomes, Sara; Bessa, Cláudia; Soares, Joana; Raimundo, Liliana [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal); Monti, Paola; Fronza, Gilberto [Mutagenesis Unit, Istituto di Ricerca e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa (Italy); Pereira, Clara [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal); Saraiva, Lucília, E-mail: lucilia.saraiva@ff.up.pt [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal)

    2015-01-01

    In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either per se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73.

  10. Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules

    International Nuclear Information System (INIS)

    Leão, Mariana; Gomes, Sara; Bessa, Cláudia; Soares, Joana; Raimundo, Liliana; Monti, Paola; Fronza, Gilberto; Pereira, Clara; Saraiva, Lucília

    2015-01-01

    In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either per se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73

  11. Reinforcement of the radiative and thermic stresses of the grape vine. Repercussions on yeast surface microflora

    Directory of Open Access Journals (Sweden)

    Jean-Michel Salmon

    1997-12-01

    Full Text Available All along the ripening period, the radiative and thermic stresses of the grapevine may be reinforced by the use of a reflective soil cover (aluminized film. Such a treatment leads to repercussions on the berries, on the must composition and finally on the wine quality. During such a preliminary experiment, we demonstrated that the temperature increase and/or the reinforcement of the reflected ultraviolet radiations (measured at 254 nm at the level of grape berries severely impaired the development of yeast cells at their surfaces. By means of an artificial inoculation of grapes at the beginning of the ripening period with a mixture of four different yeast genera (Saccharomyces cerevisiae, Hanseniaspora uvarum, Pichiafermentans and Schizosaccharomyces pombe, we demonstrated that the repartition of yeast genera amongst this population was affected by the treatment of stocks with the aluminized film: during the experiment presented in this paper, the Saccharomyces genus was favoured. One may consider by extension similar effects resulting from the reflective properties of some natural soils. Such effects may considerably influence the distribution of wild yeast flora during the spontaneous fermentation of musts. If such an hypothesis is confirmed at a local or regional level, it will represent a first significant piece of the definition of one of the aspects of the" terroir" effect on the characteristics of wines.

  12. Yeast ecology of Kombucha fermentation.

    Science.gov (United States)

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  13. Energetics of cellular repair processes in a respiratory-deficient mutant of yeast

    International Nuclear Information System (INIS)

    Jain, V.K.; Gupta, I.; Lata, K.

    1982-01-01

    Repair of potentially lethal damage induced by cytoxic agents like UV irradiation (254 nm), psorelen-plus-UVA (365 mn), and methyl methanesulfonate has been studied in the presence of a glucose analog, 2-deoxy-D-glucose, in yeast cells. Simultaneously, effects of 2-deoxy-D-glucose were also investigated on parameters of energy metabolism like glucose utilization, rate of ATP production, and ATP content of cells. The following results were obtained. (i) 2-Deoxy-D-glucose is able to inhibit repair of potentially lethal damage induced by all the cytotoxic agents tested. The 2-deoxy-D-glucose-induced inhibition of repair depends upon the type of lesion and the pattern of cellular energy metabolism, the inhibition being greater in respiratory-deficient mutants than in the wild type. (ii) A continuous energy flow is necessary for repair of potentially lethal damage in yeast cells. Energy may be supplied by the glycolytic and/or the respiratory pathway; respiratory metabolism is not essential for this purpose. (iii) The magnitude of repair correlates with the rate of ATP production in a sigmoid manner

  14. Queen promiscuity lowers disease within honeybee colonies

    Science.gov (United States)

    Seeley, Thomas D; Tarpy, David R

    2006-01-01

    Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony with a genetically diverse worker force. The adaptive significance of polyandry by social insect queens remains an evolutionary puzzle. Using the honeybee (Apis mellifera), we tested the hypothesis that polyandry improves a colony's resistance to disease. We established colonies headed by queens that had been artificially inseminated by either one or 10 drones. Later, we inoculated these colonies with spores of Paenibacillus larvae, the bacterium that causes a highly virulent disease of honeybee larvae (American foulbrood). We found that, on average, colonies headed by multiple-drone inseminated queens had markedly lower disease intensity and higher colony strength at the end of the summer relative to colonies headed by single-drone inseminated queens. These findings support the hypothesis that polyandry by social insect queens is an adaptation to counter disease within their colonies. PMID:17015336

  15. Pro-region engineering for improved yeast display and secretion of brain derived neurotrophic factor.

    Science.gov (United States)

    Burns, Michael L; Malott, Thomas M; Metcalf, Kevin J; Puguh, Arthya; Chan, Jonah R; Shusta, Eric V

    2016-03-01

    Brain derived neurotrophic factor (BDNF) is a promising therapeutic candidate for a variety of neurological diseases. However, it is difficult to produce as a recombinant protein. In its native mammalian context, BDNF is first produced as a pro-protein with subsequent proteolytic removal of the pro-region to yield mature BDNF protein. Therefore, in an attempt to improve yeast as a host for heterologous BDNF production, the BDNF pro-region was first evaluated for its effects on BDNF surface display and secretion. Addition of the wild-type pro-region to yeast BDNF production constructs improved BDNF folding both as a surface-displayed and secreted protein in terms of binding its natural receptors TrkB and p75, but titers remained low. Looking to further enhance the chaperone-like functions provided by the pro-region, two rounds of directed evolution were performed, yielding mutated pro-regions that further improved the display and secretion properties of BDNF. Subsequent optimization of the protease recognition site was used to control whether the produced protein was in pro- or mature BDNF forms. Taken together, we have demonstrated an effective strategy for improving BDNF compatibility with yeast protein engineering and secretion platforms. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  17. Fluorinated Phenylalanine Precursor Resistance in Yeast

    Directory of Open Access Journals (Sweden)

    Ian S. Murdoch

    2018-06-01

    Full Text Available Development of a counter-selection method for phenylalanine auxotrophy could be a useful tool in the repertoire of yeast genetics. Fluorinated and sulfurated precursors of phenylalanine were tested for toxicity in Saccharomyces cerevisiae. One such precursor, 4-fluorophenylpyruvate (FPP, was found to be toxic to several strains from the Saccharomyces and Candida genera. Toxicity was partially dependent on ARO8 and ARO9, and correlated with a strain’s ability to convert FPP into 4-fluorophenylalanine (FPA. Thus, strains with deletions in ARO8 and ARO9, having a mild phenylalanine auxotrophy, could be separated from a culture of wild-type strains using FPP. Tetrad analysis suggests FPP resistance in one strain is due to two genes. Strains resistant to FPA have previously been shown to exhibit increased phenylethanol production. However, FPP resistant isolates did not follow this trend. These results suggest that FPP could effectively be used for counter-selection but not for enhanced phenylethanol production.

  18. Identifying yeast isolated from spoiled peach puree and assessment of its batch culture for invertase production

    Directory of Open Access Journals (Sweden)

    Marcela Vega FERREIRA

    Full Text Available Abstract The identification of yeasts isolated from spoiled Jubileu peach puree using the API 20C AUX method and a commercial yeast as witness were studied. Subsequently, the yeast’s growth potential using two batch culture treatments were performed to evaluate number of colonies (N, reducing sugar concentration (RS, free-invertase (FI, and culture-invertase activity (CI. Stock cultures were maintained on potato dextrose agar (PDA slants at 4 °C and pH 5 for later use for batch-culture (150 rpm at 30°C for 24 h, then they were stored at 4 °C for subsequent invertase extraction. The FI extract was obtained using NaHCO3 as autolysis agent, and CI activity was determined on the supernatant after batch-cultured centrifugation. The activity was followed by an increase in absorbance at 490 nm using the acid 3,5-DNS method with glucose standard. Of the four yeasts identified, Saccharomyces cerevisiae was chosen for legal reasons. It showed logarithmic growth up to 18 h of fermentation with positive correlation CI activity and inverse with RS. FI showed greater activity by the end of the log phase and an inverse correlation with CI activity. Finally, it was concluded that treatment “A” is more effective than “B” to produce invertase (EC 3.2.1.26.

  19. JAX Colony Management System (JCMS): an extensible colony and phenotype data management system.

    Science.gov (United States)

    Donnelly, Chuck J; McFarland, Mike; Ames, Abigail; Sundberg, Beth; Springer, Dave; Blauth, Peter; Bult, Carol J

    2010-04-01

    The Jackson Laboratory Colony Management System (JCMS) is a software application for managing data and information related to research mouse colonies, associated biospecimens, and experimental protocols. JCMS runs directly on computers that run one of the PC Windows operating systems, but can be accessed via web browser interfaces from any computer running a Windows, Macintosh, or Linux operating system. JCMS can be configured for a single user or multiple users in small- to medium-size work groups. The target audience for JCMS includes laboratory technicians, animal colony managers, and principal investigators. The application provides operational support for colony management and experimental workflows, sample and data tracking through transaction-based data entry forms, and date-driven work reports. Flexible query forms allow researchers to retrieve database records based on user-defined criteria. Recent advances in handheld computers with integrated barcode readers, middleware technologies, web browsers, and wireless networks add to the utility of JCMS by allowing real-time access to the database from any networked computer.

  20. NetPhosYeast: prediction of protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Ingrell, C.R.; Miller, Martin Lee; Jensen, O.N.

    2007-01-01

    sites compared to those in humans, suggesting the need for an yeast-specific phosphorylation site predictor. NetPhosYeast achieves a correlation coefficient close to 0.75 with a sensitivity of 0.84 and specificity of 0.90 and outperforms existing predictors in the identification of phosphorylation sites...

  1. Influence of intracellular adenosine-triphosphate concentration of yeast cells on survival following X-irradiation

    International Nuclear Information System (INIS)

    Reinhard, R.D.; Pohlit, W.

    1975-01-01

    The effect of D-glucose, 2-deoxy-D-glucose and starvation in buffer on the ATP-concentration of yeast cells has been studied. In both the wild-type and a respiratory-deficient mutant strain 2-deoxy-D-glucose decreases the value for ATP, while it is enhanced by glucose only in the mutant strain. Populations with different ATP-concentrations have been irradiated. The results suggest that ATP may be an essential factor in the system that determines the length of the shoulder of the dose effect curves. (orig.) [de

  2. Collective Memories of Portuguese Colonial Action in Africa: Representations of the Colonial Past among Mozambicans and Portuguese Youths

    Directory of Open Access Journals (Sweden)

    João Feijó

    2010-05-01

    Full Text Available Social representations of the colonization and decolonization processes among young people from a former European colonial power (Portugal and from an African ex-colony (Mozambique were investigated through surveys using open- and closed-ended questions about national history, focusing on the identity functions of collective memories. Hegemonic and contested representations were found of the most prominent events related to Portuguese colonization of Mozambique, arousing a range of collective emotions. A central place is occupied by memories of the Colonial War, which ended with the Carnation Revolution in Portugal and the subsequent independence of the Portuguese African colonies. Overall, the depiction of colonialism was more negative for Mozambican than for Portuguese participants. The violent effects of colonial action were very salient in Mozambican memories, which stressed the most oppressive aspects of the colonial period, associated with slave trade and brutal repression. On the Portuguese side, the idealization of the voyages of discovery persisted, obscuring the most violent effects of colonial expansion. However, collective memories of colonization of former colonizer and former colonized do not simply stand opposed. Both Mozambican and Portuguese participants reported ambivalent feelings towards the colonization process.

  3. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis.

    Directory of Open Access Journals (Sweden)

    Débora L Oliveira

    2010-06-01

    Full Text Available Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown.We characterized extracellular vesicle production in wild type (WT and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex or MVB functionality (vps23, late endosomal trafficking revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells.Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the

  4. Chronic Exposure of Imidacloprid and Clothianidin Reduce Queen Survival, Foraging, and Nectar Storing in Colonies of Bombus impatiens

    Science.gov (United States)

    Scholer, Jamison; Krischik, Vera

    2014-01-01

    In an 11-week greenhouse study, caged queenright colonies of Bombus impatiens Cresson, were fed treatments of 0 (0 ppb actual residue I, imidacloprid; C, clothianidin), 10 (14 I, 9 C), 20 (16 I, 17C), 50 (71 I, 39 C) and 100 (127 I, 76 C) ppb imidacloprid or clothianidin in sugar syrup (50%). These treatments overlapped the residue levels found in pollen and nectar of many crops and landscape plants, which have higher residue levels than seed-treated crops (less than 10 ppb, corn, canola and sunflower). At 6 weeks, queen mortality was significantly higher in 50 ppb and 100 ppb and by 11 weeks in 20 ppb–100 ppb neonicotinyl-treated colonies. The largest impact for both neonicotinyls starting at 20 (16 I, 17 C) ppb was the statistically significant reduction in queen survival (37% I, 56% C) ppb, worker movement, colony consumption, and colony weight compared to 0 ppb treatments. Bees at feeders flew back to the nest box so it appears that only a few workers were collecting syrup in the flight box and returning the syrup to the nest. The majority of the workers sat immobilized for weeks on the floor of the flight box without moving to fed at sugar syrup feeders. Neonicotinyl residues were lower in wax pots in the nest than in the sugar syrup that was provided. At 10 (14) ppb I and 50 (39) ppb C, fewer males were produced by the workers, but queens continued to invest in queen production which was similar among treatments. Feeding on imidacloprid and clothianidin can cause changes in behavior (reduced worker movement, consumption, wax pot production, and nectar storage) that result in detrimental effects on colonies (queen survival and colony weight). Wild bumblebees depending on foraging workers can be negatively impacted by chronic neonicotinyl exposure at 20 ppb. PMID:24643057

  5. Chronic exposure of imidacloprid and clothianidin reduce queen survival, foraging, and nectar storing in colonies of Bombus impatiens.

    Directory of Open Access Journals (Sweden)

    Jamison Scholer

    Full Text Available In an 11-week greenhouse study, caged queenright colonies of Bombus impatiens Cresson, were fed treatments of 0 (0 ppb actual residue I, imidacloprid; C, clothianidin, 10 (14 I, 9 C, 20 (16 I, 17C, 50 (71 I, 39 C and 100 (127 I, 76 C ppb imidacloprid or clothianidin in sugar syrup (50%. These treatments overlapped the residue levels found in pollen and nectar of many crops and landscape plants, which have higher residue levels than seed-treated crops (less than 10 ppb, corn, canola and sunflower. At 6 weeks, queen mortality was significantly higher in 50 ppb and 100 ppb and by 11 weeks in 20 ppb-100 ppb neonicotinyl-treated colonies. The largest impact for both neonicotinyls starting at 20 (16 I, 17 C ppb was the statistically significant reduction in queen survival (37% I, 56% C ppb, worker movement, colony consumption, and colony weight compared to 0 ppb treatments. Bees at feeders flew back to the nest box so it appears that only a few workers were collecting syrup in the flight box and returning the syrup to the nest. The majority of the workers sat immobilized for weeks on the floor of the flight box without moving to fed at sugar syrup feeders. Neonicotinyl residues were lower in wax pots in the nest than in the sugar syrup that was provided. At 10 (14 ppb I and 50 (39 ppb C, fewer males were produced by the workers, but queens continued to invest in queen production which was similar among treatments. Feeding on imidacloprid and clothianidin can cause changes in behavior (reduced worker movement, consumption, wax pot production, and nectar storage that result in detrimental effects on colonies (queen survival and colony weight. Wild bumblebees depending on foraging workers can be negatively impacted by chronic neonicotinyl exposure at 20 ppb.

  6. Chronic exposure of imidacloprid and clothianidin reduce queen survival, foraging, and nectar storing in colonies of Bombus impatiens.

    Science.gov (United States)

    Scholer, Jamison; Krischik, Vera

    2014-01-01

    In an 11-week greenhouse study, caged queenright colonies of Bombus impatiens Cresson, were fed treatments of 0 (0 ppb actual residue I, imidacloprid; C, clothianidin), 10 (14 I, 9 C), 20 (16 I, 17C), 50 (71 I, 39 C) and 100 (127 I, 76 C) ppb imidacloprid or clothianidin in sugar syrup (50%). These treatments overlapped the residue levels found in pollen and nectar of many crops and landscape plants, which have higher residue levels than seed-treated crops (less than 10 ppb, corn, canola and sunflower). At 6 weeks, queen mortality was significantly higher in 50 ppb and 100 ppb and by 11 weeks in 20 ppb-100 ppb neonicotinyl-treated colonies. The largest impact for both neonicotinyls starting at 20 (16 I, 17 C) ppb was the statistically significant reduction in queen survival (37% I, 56% C) ppb, worker movement, colony consumption, and colony weight compared to 0 ppb treatments. Bees at feeders flew back to the nest box so it appears that only a few workers were collecting syrup in the flight box and returning the syrup to the nest. The majority of the workers sat immobilized for weeks on the floor of the flight box without moving to fed at sugar syrup feeders. Neonicotinyl residues were lower in wax pots in the nest than in the sugar syrup that was provided. At 10 (14) ppb I and 50 (39) ppb C, fewer males were produced by the workers, but queens continued to invest in queen production which was similar among treatments. Feeding on imidacloprid and clothianidin can cause changes in behavior (reduced worker movement, consumption, wax pot production, and nectar storage) that result in detrimental effects on colonies (queen survival and colony weight). Wild bumblebees depending on foraging workers can be negatively impacted by chronic neonicotinyl exposure at 20 ppb.

  7. Post-colonial identity in Greenland?

    DEFF Research Database (Denmark)

    Gad, Ulrik Pram

    2009-01-01

    could be furthered by bringing politics back in. Based on a discourse analysis of the Greenlandic debate on language, this paper makes three claims: First, the identity projects promoted in Greenland are based on an essentialist conception of identity. Secondly, Greenlandic identity discourse combines......In the gradual unravelling of Greenland’s colonial relationship to Denmark, an essentialist conceptualization of Greenlandic identity has played a significant role. However, both our scholarly understanding of post-colonial Greenlandic identity and the process towards independence for Greenland...... elements of traditional Inuit culture and elements of colonial modernity. Thirdly, monolingual Greenlanders are those with the most to gain from abandoning the dichotomy of essentialist identities. Strategically, the paper suggests a post-post-colonial Greenlandic identity as a means of avoiding...

  8. Identification of Candidate Genes Involved in the Salt Tolerance of Date Palm (Phoenix dactylifera L.) Based on a Yeast Functional Bioassay.

    Science.gov (United States)

    Patankar, Himanshu V; Al-Harrasi, Ibtisam; Al-Yahyai, Rashid; Yaish, Mahmoud W

    2018-06-01

    Although date palm is a relatively salt-tolerant plant, the molecular basis of this tolerance is complex and poorly understood. Therefore, this study aimed to identify the genes involved in salinity tolerance using a basic yeast functional bioassay. To achieve this, a date palm cDNA library was overexpressed in Saccharomyces cerevisiae cells. The expression levels of selected genes that make yeast cells tolerant to salt were subsequently validated in the leaf and root tissues of date palm seedlings using a quantitative PCR method. About 6000 yeast transformant cells were replica printed and screened on a synthetic minimal medium containing 1.0 M of NaCl. The screening results showed the presence of 62 salt-tolerant transformant colonies. Sequence analysis of the recombinant yeast plasmids revealed the presence of a group of genes with potential salt-tolerance functions, such as aquaporins (PIP), serine/threonine protein kinases (STKs), ethylene-responsive transcription factor 1 (ERF1), and peroxidases (PRX). The expression pattern of the selected genes endorsed the hypothesis that these genes may be involved in salinity tolerance, as they showed a significant (p < 0.05) overexpression trend in both the leaf and root tissues in response to salinity. The genes identified in this project are suitable candidates for the further functional characterization of date palms.

  9. Genetic effects of decay of radionuclides, products of nuclear fission, in Saccharomyces cerevisiae yeast cells

    International Nuclear Information System (INIS)

    Korolev, V.G.; Gracheva, L.M.

    1988-01-01

    Decay of 89 Sr incorporated in yeast cells produces a pronounced inactivating effect. The transmutation mainly contributes (about 80%) to cell inactivation. Haploid cells are more sensitive to 89 Sr disintegration than diploid and tetraploid ones. A radiosensitive mutant XRS2, that is particularly sensitive to the transmutation effect of radionuclides, has proved to be sensitive to 89 Sr transmutation as well. At the same time, another radiosensitive mutant, rad 54, does not virtually differ from the wild-type strain by its sensitivity to 89 Sr decay

  10. Selective sweeps in growing microbial colonies

    International Nuclear Information System (INIS)

    Korolev, Kirill S; Müller, Melanie J I; Murray, Andrew W; Nelson, David R; Karahan, Nilay; Hallatschek, Oskar

    2012-01-01

    Evolutionary experiments with microbes are a powerful tool to study mutations and natural selection. These experiments, however, are often limited to the well-mixed environments of a test tube or a chemostat. Since spatial organization can significantly affect evolutionary dynamics, the need is growing for evolutionary experiments in spatially structured environments. The surface of a Petri dish provides such an environment, but a more detailed understanding of microbial growth on Petri dishes is necessary to interpret such experiments. We formulate a simple deterministic reaction–diffusion model, which successfully predicts the spatial patterns created by two competing species during colony expansion. We also derive the shape of these patterns analytically without relying on microscopic details of the model. In particular, we find that the relative fitness of two microbial strains can be estimated from the logarithmic spirals created by selective sweeps. The theory is tested with strains of the budding yeast Saccharomyces cerevisiae for spatial competitions with different initial conditions and for a range of relative fitnesses. The reaction–diffusion model also connects the microscopic parameters like growth rates and diffusion constants with macroscopic spatial patterns and predicts the relationship between fitness in liquid cultures and on Petri dishes, which we confirmed experimentally. Spatial sector patterns therefore provide an alternative fitness assay to the commonly used liquid culture fitness assays. (paper)

  11. Selective sweeps in growing microbial colonies

    Science.gov (United States)

    Korolev, Kirill S.; Müller, Melanie J. I.; Karahan, Nilay; Murray, Andrew W.; Hallatschek, Oskar; Nelson, David R.

    2012-04-01

    Evolutionary experiments with microbes are a powerful tool to study mutations and natural selection. These experiments, however, are often limited to the well-mixed environments of a test tube or a chemostat. Since spatial organization can significantly affect evolutionary dynamics, the need is growing for evolutionary experiments in spatially structured environments. The surface of a Petri dish provides such an environment, but a more detailed understanding of microbial growth on Petri dishes is necessary to interpret such experiments. We formulate a simple deterministic reaction-diffusion model, which successfully predicts the spatial patterns created by two competing species during colony expansion. We also derive the shape of these patterns analytically without relying on microscopic details of the model. In particular, we find that the relative fitness of two microbial strains can be estimated from the logarithmic spirals created by selective sweeps. The theory is tested with strains of the budding yeast Saccharomyces cerevisiae for spatial competitions with different initial conditions and for a range of relative fitnesses. The reaction-diffusion model also connects the microscopic parameters like growth rates and diffusion constants with macroscopic spatial patterns and predicts the relationship between fitness in liquid cultures and on Petri dishes, which we confirmed experimentally. Spatial sector patterns therefore provide an alternative fitness assay to the commonly used liquid culture fitness assays.

  12. Absence of fks1p in lager brewing yeast results in aberrant cell wall composition and improved beer flavor stability.

    Science.gov (United States)

    Wang, Jin-jing; Xu, Wei-na; Li, Xin'er; Li, Jia; Li, Qi

    2014-06-01

    The flavor stability during storage is very important to the freshness and shelf life of beer. However, beer fermented with a yeast strain which is prone to autolyze will significantly affect the flavor of product. In this study, the gene encoding β-1,3-glucan synthetase catalytic subunit (fks1) of the lager yeast was destroyed via self-clone strategy. β-1,3-glucan is the principle cell wall component, so fks1 disruption caused a decrease in β-1,3-glucan level and increase in chitin level in cell wall, resulting in the increased cell wall thickness. Comparing with wild-type strain, the mutant strain had 39.9 and 63.41 % less leakage of octanoic acid and decanoic acid which would significantly affect the flavor of beer during storage. Moreover, the results of European Brewery Convention tube fermentation test showed that the genetic manipulation to the industrial brewing yeast helped with the anti-staling ability, rather than affecting the fermentation ability. The thiobarbituric acid value reduced by 65.59 %, and the resistant staling value increased by 26.56 %. Moreover, the anti-staling index of the beer fermented with mutant strain increased by 2.64-fold than that from wild-type strain respectively. China has the most production and consumption of beer around the world, so the quality of beer has a significant impact on Chinese beer industry. The result of this study could help with the improvement of the quality of beer in China as well as around the world.

  13. Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling during ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Lili Li

    2017-03-01

    Full Text Available Objectives: To improve ethanolic fermentation performance of self-flocculating yeast, difference between a flocculating yeast strain and a regular industrial yeast strain was analyzed by transcriptional and metabolic approaches. Results: The number of down-regulated (industrial yeast YIC10 vs. flocculating yeast GIM2.71 and up-regulated genes were 4503 and 228, respectively. It is the economic regulation for YIC10 that non-essential genes were down-regulated, and cells put more “energy” into growth and ethanol production. Hexose transport and phosphorylation were not the limiting-steps in ethanol fermentation for GIM2.71 compared to YIC10, whereas the reaction of 1,3-disphosphoglycerate to 3-phosphoglycerate, the decarboxylation of pyruvate to acetaldehyde and its subsequent reduction to ethanol were the most limiting steps. GIM2.71 had stronger stress response than non-flocculating yeast and much more carbohydrate was distributed to other bypass, such as glycerol, acetate and trehalose synthesis. Conclusions: Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling will provide clues for improving the fermentation performance of GIM2.71.

  14. Early Developmental Program Shapes Colony Morphology in Bacteria

    Directory of Open Access Journals (Sweden)

    Gideon Mamou

    2016-03-01

    Full Text Available When grown on a solid surface, bacteria form highly organized colonies, yet little is known about the earliest stages of colony establishment. Following Bacillus subtilis colony development from a single progenitor cell, a sequence of highly ordered spatiotemporal events was revealed. Colony was initiated by the formation of leading-cell chains, deriving from the colony center and extending in multiple directions, typically in a “Y-shaped” structure. By eradicating particular cells during these early stages, we could influence the shape of the resulting colony and demonstrate that Y-arm extension defines colony size. A mutant in ymdB encoding a phosphodiesterase displayed unordered developmental patterns, indicating a role in guiding these initial events. Finally, we provide evidence that intercellular nanotubes contribute to proper colony formation. In summary, we reveal a “construction plan” for building a colony and provide the initial molecular basis for this process.

  15. Does pathogen spillover from commercially reared bumble bees threaten wild pollinators?

    Directory of Open Access Journals (Sweden)

    Michael C Otterstatter

    Full Text Available The conservation of insect pollinators is drawing attention because of reported declines in bee species and the 'ecosystem services' they provide. This issue has been brought to a head by recent devastating losses of honey bees throughout North America (so called, 'Colony Collapse Disorder'; yet, we still have little understanding of the cause(s of bee declines. Wild bumble bees (Bombus spp. have also suffered serious declines and circumstantial evidence suggests that pathogen 'spillover' from commercially reared bumble bees, which are used extensively to pollinate greenhouse crops, is a possible cause. We constructed a spatially explicit model of pathogen spillover in bumble bees and, using laboratory experiments and the literature, estimated parameter values for the spillover of Crithidia bombi, a destructive pathogen commonly found in commercial Bombus. We also monitored wild bumble bee populations near greenhouses for evidence of pathogen spillover, and compared the fit of our model to patterns of C. bombi infection observed in the field. Our model predicts that, during the first three months of spillover, transmission from commercial hives would infect up to 20% of wild bumble bees within 2 km of the greenhouse. However, a travelling wave of disease is predicted to form suddenly, infecting up to 35-100% of wild Bombus, and spread away from the greenhouse at a rate of 2 km/wk. In the field, although we did not observe a large epizootic wave of infection, the prevalences of C. bombi near greenhouses were consistent with our model. Indeed, we found that spillover has allowed C. bombi to invade several wild bumble bee species near greenhouses. Given the available evidence, it is likely that pathogen spillover from commercial bees is contributing to the ongoing decline of wild Bombus in North America. Improved management of domestic bees, for example by reducing their parasite loads and their overlap with wild congeners, could diminish or even

  16. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees.

    Science.gov (United States)

    Vadkertiová, Renáta; Molnárová, Jana; Vránová, Dana; Sláviková, Elena

    2012-12-01

    Yeasts are common inhabitants of the phyllosphere, but our knowledge of their diversity in various plant organs is still limited. This study focused on the diversity of yeasts and yeast-like organisms associated with matured fruits and fully open blossoms of apple, plum, and pear trees, during 2 consecutive years at 3 localities in southwest Slovakia. The occurrence of yeasts and yeast-like organisms in fruit samples was 2½ times higher and the yeast community more diverse than that in blossom samples. Only 2 species (Aureobasidium pullulans and Metschnikowia pulcherrima) occurred regularly in the blossom samples, whereas Galactomyces candidus, Hanseniaspora guilliermondii, Hanseniaspora uvarum, M. pulcherrima, Pichia kluyveri, Pichia kudriavzevii, and Saccharomyces cerevisiae were the most frequently isolated species from the fruit samples. The ratio of the number of samples where only individual species were present to the number of samples where 2 or more species were found (consortium) was counted. The occurrence of individual species in comparison with consortia was much higher in blossom samples than in fruit samples. In the latter, consortia predominated. Aureobasidium pullulans, M. pulcherrima, and S. cerevisiae, isolated from both the fruits and blossoms, can be considered as resident yeast species of various fruit tree species cultivated in southwest Slovakia localities.

  17. An American termite in Paris: temporal colony dynamics.

    Science.gov (United States)

    Baudouin, Guillaume; Dedeine, Franck; Bech, Nicolas; Bankhead-Dronnet, Stéphanie; Dupont, Simon; Bagnères, Anne-Geneviève

    2017-12-01

    Termites of the genus Reticulitermes are widespread invaders, particularly in urban habitats. Their cryptic and subterranean lifestyle makes them difficult to detect, and we know little about their colony dynamics over time. In this study we examined the persistence of Reticulitermes flavipes (Kollar) colonies in the city of Paris over a period of 15 years. The aim was (1) to define the boundaries of colonies sampled within the same four areas over two sampling periods, (2) to determine whether the colonies identified during the first sampling period persisted to the second sampling period, and (3) to compare the results obtained when colonies were delineated using a standard population genetic approach versus a Bayesian clustering method that combined both spatial and genetic information. Herein, colony delineations were inferred from genetic differences at nine microsatellite loci and one mitochondrial locus. Four of the 18 identified colonies did not show significant differences in their genotype distributions between the two sampling periods. While allelic richness was low, making it hard to reliably distinguish colony family type, most colonies appeared to retain the same breeding structure over time. These large and expansive colonies showed an important ability to fuse (39% were mixed-family colonies), contained hundreds of reproductives and displayed evidence of isolation-by-distance, suggesting budding dispersal. These traits, which favor colony persistence over time, present a challenge for pest control efforts, which apply treatment locally. The other colonies showed significant differences, but we cannot exclude the possibility that their genotype distributions simply changed over time.

  18. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  19. Dose selenomethionine have radio-protective effect on cell lines with wild type p53?

    International Nuclear Information System (INIS)

    Tsuji, K.; Hagihira, T.; Ohnishi, K.; Ohnishi, T.; Matsumoto, H.

    2003-01-01

    Full text: Selenium compounds are known to have cancer preventive effects. It is reported recently that selenium in the form of selenomethionine (SeMet) can protect cells with wild type p53 from UV-induced cell killing by activating the DNA repair mechanism of p53 tumor suppressor protein via redox factor Ref1 by reducing p53 cysteine residue 275 and 277. In contrast, SeMet has no protective effect on UV-induced cell killing in p53-null cells. If SeMet also has protective effect in cells with wild type p53 on cell killing by photon irradiation, SeMet can be used as normal tissue radio-protector. We examined the effect of SeMet on cell killing by X-ray irradiation in several cell lines with different p53 status at exponentially growing phase. Cell lines used in this experiment were as follows: H1299/neo; human lung cancer cell line of p53 null type tranfected with control vector with no p53, H1299/wp53; wild type p53 transfected counterpart. A172/neo; human glioblastoma cell line with wild type p53, A172/mp53-248; mp53-248 (248-mutant, ARG >TRP) transfected counterpart. SAS/neo; human tongue cancer cell line with wild type p53, and SAS/mp53-248; mp53-248 transfected counterpart. Cells were subcultured at monolayer in D-MEM containing 10% FBS. Survivals of the cells were determined by colony forming ability. Ten-MV linac X-ray was used to irradiate the cells. Exponentially growing cells were incubated with 20μM of SeMet for 15 hours before irradiation. After 24 hours exposure of SeMet, cells were incubated up to two weeks in growth medium for colony formation. Twenty-four hours exposure of 20μM of SeMet had no cytotoxicity on these cell lines. SeMet had no modification effect on cell killing by photon irradiation in H1299/neo, H1299/wp53, SAS/neo, SAS/mp53-248, and A172/mp53-248. On the other hand, SeMet sensitized A172/neo in radiation cell killing. The effects of p53 on interaction of SeMet and photon irradiation differ according to cell lines

  20. Within-Colony Variation in the Immunocompetency of Managed and Feral Honey Bees (Apis mellifera L. in Different Urban Landscapes

    Directory of Open Access Journals (Sweden)

    R. Holden Appler

    2015-10-01

    Full Text Available Urbanization has the potential to dramatically affect insect populations worldwide, although its effects on pollinator populations are just beginning to be understood. We compared the immunocompetency of honey bees sampled from feral (wild-living and managed (beekeeper-owned honey bee colonies. We sampled foragers from feral and managed colonies in rural, suburban, and urban landscapes in and around Raleigh, NC, USA. We then analyzed adult workers using two standard bioassays for insect immune function (encapsulation response and phenoloxidase activity. We found that there was far more variation within colonies for encapsulation response or phenoloxidase activity than among rural to urban landscapes, and we did not observe any significant difference in immune response between feral and managed bees. These findings suggest that social pollinators, like honey bees, may be sufficiently robust or variable in their immune responses to obscure any subtle effects of urbanization. Additional studies of immune physiology and disease ecology of social and solitary bees in urban, suburban, and natural ecosystems will provide insights into the relative effects of changing urban environments on several important factors that influence pollinator productivity and health.

  1. Chemical-genetic profile analysis of five inhibitory compounds in yeast

    Directory of Open Access Journals (Sweden)

    Alamgir Md

    2010-08-01

    Full Text Available Abstract Background Chemical-genetic profiling of inhibitory compounds can lead to identification of their modes of action. These profiles can help elucidate the complex interactions between small bioactive compounds and the cell machinery, and explain putative gene function(s. Results Colony size reduction was used to investigate the chemical-genetic profile of cycloheximide, 3-amino-1,2,4-triazole, paromomycin, streptomycin and neomycin in the yeast Saccharomyces cerevisiae. These compounds target the process of protein biosynthesis. More than 70,000 strains were analyzed from the array of gene deletion mutant yeast strains. As expected, the overall profiles of the tested compounds were similar, with deletions for genes involved in protein biosynthesis being the major category followed by metabolism. This implies that novel genes involved in protein biosynthesis could be identified from these profiles. Further investigations were carried out to assess the activity of three profiled genes in the process of protein biosynthesis using relative fitness of double mutants and other genetic assays. Conclusion Chemical-genetic profiles provide insight into the molecular mechanism(s of the examined compounds by elucidating their potential primary and secondary cellular target sites. Our follow-up investigations into the activity of three profiled genes in the process of protein biosynthesis provided further evidence concerning the usefulness of chemical-genetic analyses for annotating gene functions. We termed these genes TAE2, TAE3 and TAE4 for translation associated elements 2-4.

  2. Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications.

    Science.gov (United States)

    Kim, J; Alizadeh, P; Harding, T; Hefner-Gravink, A; Klionsky, D J

    1996-01-01

    The accumulation of trehalose is a critical determinant of stress resistance in the yeast Saccharomyces cerevisiae. We have constructed a yeast strain in which the activity of the trehalose-hydrolyzing enzyme, acid trehalase (ATH), has been abolished. Loss of ATH activity was accomplished by disrupting the ATH1 gene, which is essential for ATH activity. The delta ath1 strain accumulated greater levels of cellular trehalose and grew to a higher cell density than the isogenic wild-type strain. In addition, the elevated levels of trehalose in the delta ath1 strain correlated with increased tolerance to dehydration, freezing, and toxic levels of ethanol. The improved resistance to stress conditions exhibited by the delta ath1 strain may make this strain useful in commercial applications, including baking and brewing. PMID:8633854

  3. Entropy analysis in yeast DNA

    International Nuclear Information System (INIS)

    Kim, Jongkwang; Kim, Sowun; Lee, Kunsang; Kwon, Younghun

    2009-01-01

    In this article, we investigate the language structure in yeast 16 chromosomes. In order to find it, we use the entropy analysis for codons (or amino acids) of yeast 16 chromosomes, developed in analysis of natural language by Montemurro et al. From the analysis, we can see that there exists a language structure in codons (or amino acids) of yeast 16 chromosomes. Also we find that the grammar structure of amino acids of yeast 16 chromosomes has a deep relationship with secondary structure of protein.

  4. Antimicrobial-resistant bacteria in wild game in Slovenia

    Science.gov (United States)

    Križman, M.; Kirbiš, A.; Jamnikar-Ciglenečki, U.

    2017-09-01

    Wildlife is usually not exposed to clinically-used antimicrobial agents but can acquire antimicrobial resistance throughout contact with humans, domesticated animals and environments. Samples of faeces from intestines (80 in total) were collected from roe deer (52), wild boars (11), chamois (10) red deer (6) and moufflon (1). After culture on ChromID extended spectrum β-lactamase (ESBL) plates to select for growth of ESBL-producing bacteria, 25 samples produced bacterial colonies for further study. Six species of bacteria were identified from the 25 samples: Stenotrophomonas maltophilia, Serratia fonticola, Stenotrophomonas nitritireducens, Enterococcus faecium, Enterococcus faecalis and Escherichia coli. Two ESBL enzymes were amplified from group TEM and three from group CTX-M-1. Undercooked game meat and salami can be a source of resistant bacteria when animals are not eviscerated properly.

  5. Yeast flocculation: New story in fuel ethanol production.

    Science.gov (United States)

    Zhao, X Q; Bai, F W

    2009-01-01

    Yeast flocculation has been used in the brewing industry to facilitate biomass recovery for a long time, and thus its mechanism of yeast flocculation has been intensively studied. However, the application of flocculating yeast in ethanol production garnered attention mainly in the 1980s and 1990s. In this article, updated research progress in the molecular mechanism of yeast flocculation and the impact of environmental conditions on yeast flocculation are reviewed. Construction of flocculating yeast strains by genetic approach and utilization of yeast flocculation for ethanol production from various feedstocks were presented. The concept of self-immobilized yeast cells through their flocculation is revisited through a case study of continuous ethanol fermentation with the flocculating yeast SPSC01, and their technical and economic advantages are highlighted by comparing with yeast cells immobilized with supporting materials and regular free yeast cells as well. Taking the flocculating yeast SPSC01 as an example, the ethanol tolerance of the flocculating yeast was also discussed.

  6. Post-Colonial Theory and Action Research

    Directory of Open Access Journals (Sweden)

    Jim Parsons

    2011-02-01

    Full Text Available This essay explores connections between post-colonial theory and action research. Post-colonial theory is committed to addressing the plague of colonialism. Action research, at its core, promises to problematize uncontested ‘colonial’ hegemonies of any form. Both post-colonial theory and action research engage dialogic, critically reflective and collaborative values to offer a fuller range of human wisdom. The authors contend that post-colonialism theory calls for justice and seeks to speak to social and psychological suffering, exploitation, violence and enslavement done to the powerless victims of colonization around the world by challenging the superiority of dominant perspectives and seeking to re-position and empower the marginalized and subordinated. In similar ways, action research works to eradicate oppression, powerlessness and worthlessness by affirming solidarity with the oppressed, helping humans move from passive to active and by fundamentally reshaping power. Because both post-colonial theory and action research position the insider or oppressed in an ethic of efficacy, it values community, relationships, communication and equality, and is committed to reciprocity, reflexivity and reflection. Thus, both hold the potential to help reconstruct conditions for a more democratic and just society

  7. Post-Colonial Theory and Action Research

    Directory of Open Access Journals (Sweden)

    Jim B. Parsons

    2011-04-01

    Full Text Available This essay explores connections between post-colonial theory and action research. Post-colonial theory is committed to addressing the plague of colonialism. Action research, at its core, promises to problematize uncontested ‘colonial’ hegemonies of any form. Both post-colonial theory and action research engage dialogic, critically reflective and collaborative values to offer a fuller range of human wisdom. The authors contend that post-colonialism theory calls for justice and seeks to speak to social and psychological suffering, exploitation, violence and enslavement done to the powerless victims of colonization around the world by challenging the superiority of dominant perspectives and seeking to re-position and empower the marginalized and subordinated. In similar ways, action research works to eradicate oppression, powerlessness and worthlessness by affirming solidarity with the oppressed, helping humans move from passive to active and by fundamentally reshaping power. Because both post-colonial theory and action research position the insider or oppressed in an ethic of efficacy, it values community, relationships, communication and equality, and is committed to reciprocity, reflexivity and reflection. Thus, both hold the potential to help reconstruct conditions for a more democratic and just society.

  8. Brewing characteristics of piezosensitive sake yeasts

    Science.gov (United States)

    Nomura, Kazuki; Hoshino, Hirofumi; Igoshi, Kazuaki; Onozuka, Haruka; Tanaka, Erika; Hayashi, Mayumi; Yamazaki, Harutake; Takaku, Hiroaki; Iguchi, Akinori; Shigematsu, Toru

    2018-04-01

    Application of high hydrostatic pressure (HHP) treatment to food processing is expected as a non-thermal fermentation regulation technology that supresses over fermentation. However, the yeast Saccharomyces cerevisiae used for Japanese rice wine (sake) brewing shows high tolerance to HHP. Therefore, we aimed to generate pressure-sensitive (piezosensitive) sake yeast strains by mating sake with piezosensitive yeast strains to establish an HHP fermentation regulation technology and extend the shelf life of fermented foods. The results of phenotypic analyses showed that the generated yeast strains were piezosensitive and exhibited similar fermentation ability compared with the original sake yeast strain. In addition, primary properties of sake brewed using these strains, such as ethanol concentration, sake meter value and sake flavor compounds, were almost equivalent to those obtained using the sake yeast strain. These results suggest that the piezosensitive strains exhibit brewing characteristics essentially equivalent to those of the sake yeast strain.

  9. Colony formation in the cyanobacterium Microcystis.

    Science.gov (United States)

    Xiao, Man; Li, Ming; Reynolds, Colin S

    2018-02-22

    Morphological evolution from a unicellular to multicellular state provides greater opportunities for organisms to attain larger and more complex living forms. As the most common freshwater cyanobacterial genus, Microcystis is a unicellular microorganism, with high phenotypic plasticity, which forms colonies and blooms in lakes and reservoirs worldwide. We conducted a systematic review of field studies from the 1990s to 2017 where Microcystis was dominant. Microcystis was detected as the dominant genus in waterbodies from temperate to subtropical and tropical zones. Unicellular Microcystis spp. can be induced to form colonies by adjusting biotic and abiotic factors in laboratory. Colony formation by cell division has been induced by zooplankton filtrate, high Pb 2+ concentration, the presence of another cyanobacterium (Cylindrospermopsis raciborskii), heterotrophic bacteria, and by low temperature and light intensity. Colony formation by cell adhesion can be induced by zooplankton grazing, high Ca 2+ concentration, and microcystins. We hypothesise that single cells of all Microcystis morphospecies initially form colonies with a similar morphology to those found in the early spring. These colonies gradually change their morphology to that of M. ichthyoblabe, M. wesenbergii and M. aeruginosa with changing environmental conditions. Colony formation provides Microcystis with many ecological advantages, including adaption to varying light, sustained growth under poor nutrient supply, protection from chemical stressors and protection from grazing. These benefits represent passive tactics responding to environmental stress. Microcystis colonies form at the cost of decreased specific growth rates compared with a unicellular habit. Large colony size allows Microcystis to attain rapid floating velocities (maximum recorded for a single colony, ∼ 10.08 m h -1 ) that enable them to develop and maintain a large biomass near the surface of eutrophic lakes, where they may shade

  10. CHRISTIANITY AND COLONIALISM IN SOME ENGLISH SHORT STORIES

    Directory of Open Access Journals (Sweden)

    Tatang Iskarna

    2017-04-01

    Full Text Available Colonial and postcolonial studies are often linked to the power domination of the West upon the East in the way that the East economically, politically, and socially oppressed. Colonialism is often associated with three elements, the explorers dealing with geographical information, missionaries approaching the local people culturally, and the colonial administrators ruling the colony. Gold, glory, and gospel are the European’s concern. However, in representing the relation between Christianity and colonialism there is critical dialectic amongst historians, anthropologists, Christian missions, or cultural critics. Some propose that Christianity is considered to be the religious arm of colonialism. Others state that Christianity is spread without any secular interest as it is a great commandment of Jesus Christ. A few believe that Christianity give critical resistance against colonialism. The relation between Christianity and colonialism cannot be simplified as being neutral, in complicity, or in opposition. So, it is worth-discussing to understand how European writers construct the relation between Christianity and colonialism in their literary work. How Christianity is constructed and how Christianity is related to colonialism will be discussed in this paper. Using postcolonial paradigm, two English short stories will be analyzed in that way. They are Rudyard Kipling’s “Lispeth” and Doris Lessing’s “No Witchcraft for Sale”.

  11. Mortality of Siberian polecats and black-footed ferrets released onto prairie dog colonies

    Science.gov (United States)

    Biggins, D.E.; Miller, B.J.; Hanebury, L.R.; Powell, R.A.

    2011-01-01

    Black-footed ferrets (Mustela nigripes) likely were extirpated from the wild in 19851986, and their repatriation depends on captive breeding and reintroduction. Postrelease survival of animals can be affected by behavioral changes induced by captivity. We released neutered Siberian polecats (M. eversmanii), close relatives of ferrets, in 19891990 on black-tailed prairie dog (Cynomys ludovicianus) colonies in Colorado and Wyoming initially to test rearing and reintroduction techniques. Captive-born polecats were reared in cages or cages plus outdoor pens, released from elevated cages or into burrows, and supplementally fed or not fed. We also translocated wild-born polecats from China in 1990 and released captive-born, cage-reared black-footed ferrets in 1991, the 1st such reintroduction of black-footed ferrets. We documented mortality for 55 of 92 radiotagged animals in these studies, mostly due to predation (46 cases). Coyotes (Canis latrans) killed 31 ferrets and polecats. Supplementally fed polecats survived longer than nonprovisioned polecats. With a model based on deaths per distance moved, survival was highest for wild-born polecats, followed by pen-experienced, then cage-reared groups. Indexes of abundance (from spotlight surveys) for several predators were correlated with mortality rates of polecats and ferrets due to those predators. Released black-footed ferrets had lower survival rates than their ancestral population in Wyoming, and lower survival than wild-born and translocated polecats, emphasizing the influence of captivity. Captive-born polecats lost body mass more rapidly postrelease than did captive-born ferrets. Differences in hunting efficiency and prey selection provide further evidence that these polecats and ferrets are not ecological equivalents in the strict sense. ?? 2011 American Society of Mammalogists.

  12. Antimicrobial Activity of Endemic Herbs from Tangkahan Conservation Forest North Sumatera to Bacteria and Yeast

    Directory of Open Access Journals (Sweden)

    KIKI NURTJAHJA

    2013-12-01

    Full Text Available Tangkahan Conservation Forest in Karo County, North Sumatera has high biodiversity of endemic herbs. Many species of the wild herbs are well known used as traditional medicine not only by local people but also by people out of the area. The methanol extract of the medicinal wild herbs in Tangkahan Conservation Forest, Karo County to relief skin diseases caused by bacteria and fungi never been studied medically. The antimicrobial activity leave extract of the medicinal herbs to pathogenic microorganisms are studied. The leaves extract of kembu-kembu (Callicarpa candicans, rintih bulung (Piper muricatum, cep-cepan (Castanopsis costata, and sereh kayu (Eugenia grandis, has antimicrobial to bacteria (Bacillus sp., Escherichia coli, Serratia marcescens, Staphylococcus aureus and yeast (Candida albicans. Toxicity assay of these plants by brine shrimp method using Artemia salina indicates that cep-cepan dan sereh kayu have lethal concentration higher than kembu-kembu and rintih bulung.

  13. The Caribbean and the Wild Coast

    Directory of Open Access Journals (Sweden)

    Marian Goslinga

    1992-07-01

    Full Text Available [First paragraph] Suriname: a bibliography, 1980-1989. Jo DERKX & IRENE ROLFES. Leiden, the Netherlands: Department of Caribbean Studies, KITLV/Royal Institute of Linguistics and Anthropology, 1990. x + 297 pp. (Paper NLG 25.00 La Caraïbe politique et internationale: bibliographie politologique avec références économiques et socio-culturelles. MICHEL L. MARTIN. Paris: L'Harmattan, 1990. xvii + 287 pp. Suriname. ROSEMARIJN HOEFTE. Oxford and Santa Barbara CA: Clio Press, 1990. xxx + 229 pp. (Cloth US$ 45.00 Although in North American academie circles interest in Suriname (or the Wild Coast, as the area was originally called has always been marginal, the same cannot be said for the Dutch, for whom the former colony continues to hold an enduring fascination. Not only have the Dutch studied the country's historical beginnings assiduously, but Suriname's controversial relationship with the former mother country assures it a definite place in contemporary social and political thought.

  14. Biological properties in vitro of a combination of recombinant murine interleukin-3 and granulocyte-macrophage colony-stimulating factor.

    Science.gov (United States)

    Riklis, I; Kletter, Y; Bleiberg, I; Fabian, I

    1989-04-01

    The effect of recombinant murine interleukin-3 (rIL-3) and recombinant murine granulocyte-macrophage colony-stimulating factor (rGM-CSF) on in vitro murine myeloid progenitor cell (CFU-C) growth and on the function of murine resident peritoneal macrophages was investigated. Both rIL-3 and rGM-CSF are known to support the growth of CFU-C and, when combined, were found to act synergistically to induce the development of an increased number of CFU-C. The distribution pattern of myeloid colonies in the presence of these two growth factors was in general similar to that in the presence of rGM-CSF alone. Both rGM-CSF and rIL-3 enhanced the phagocytosis of Candida albicans (CA) by mature macrophages producing an increase in the percentage of phagocytosing cells as well as an increase in the number of yeast particles ingested per cell. No additive effect on the phagocytosis was observed when the two growth factors were added concurrently. rGM-CSF, but not rIL-3, enhanced the killing of CA by macrophages. This killing was inhibited by scavengers of oxygen radicals.

  15. Endophytic Colonization and In Planta Nitrogen Fixation by a Herbaspirillum sp. Isolated from Wild Rice Species

    Science.gov (United States)

    Elbeltagy, Adel; Nishioka, Kiyo; Sato, Tadashi; Suzuki, Hisa; Ye, Bin; Hamada, Toru; Isawa, Tsuyoshi; Mitsui, Hisayuki; Minamisawa, Kiwamu

    2001-01-01

    Nitrogen-fixing bacteria were isolated from the stems of wild and cultivated rice on a modified Rennie medium. Based on 16S ribosomal DNA (rDNA) sequences, the diazotrophic isolates were phylogenetically close to four genera: Herbaspirillum, Ideonella, Enterobacter, and Azospirillum. Phenotypic properties and signature sequences of 16S rDNA indicated that three isolates (B65, B501, and B512) belong to the Herbaspirillum genus. To examine whether Herbaspirillum sp. strain B501 isolated from wild rice, Oryza officinalis, endophytically colonizes rice plants, the gfp gene encoding green fluorescent protein (GFP) was introduced into the bacteria. Observations by fluorescence stereomicroscopy showed that the GFP-tagged bacteria colonized shoots and seeds of aseptically grown seedlings of the original wild rice after inoculation of the seeds. Conversely, for cultivated rice Oryza sativa, no GFP fluorescence was observed for shoots and only weak signals were observed for seeds. Observations by fluorescence and electron microscopy revealed that Herbaspirillum sp. strain B501 colonized mainly intercellular spaces in the leaves of wild rice. Colony counts of surface-sterilized rice seedlings inoculated with the GFP-tagged bacteria indicated significantly more bacterial populations inside the original wild rice than in cultivated rice varieties. Moreover, after bacterial inoculation, in planta nitrogen fixation in young seedlings of wild rice, O. officinalis, was detected by the acetylene reduction and 15N2 gas incorporation assays. Therefore, we conclude that Herbaspirillum sp. strain B501 is a diazotrophic endophyte compatible with wild rice, particularly O. officinalis. PMID:11679357

  16. Production of Food Grade Yeasts

    Directory of Open Access Journals (Sweden)

    Argyro Bekatorou

    2006-01-01

    Full Text Available Yeasts have been known to humans for thousands of years as they have been used in traditional fermentation processes like wine, beer and bread making. Today, yeasts are also used as alternative sources of high nutritional value proteins, enzymes and vitamins, and have numerous applications in the health food industry as food additives, conditioners and flavouring agents, for the production of microbiology media and extracts, as well as livestock feeds. Modern scientific advances allow the isolation, construction and industrial production of new yeast strains to satisfy the specific demands of the food industry. Types of commercial food grade yeasts, industrial production processes and raw materials are highlighted. Aspects of yeast metabolism, with respect to carbohydrate utilization, nutritional aspects and recent research advances are also discussed.

  17. Effects of 60 Cobalt ionizing radiation in morphology and metabolism of yeasts and Chlamydospore of Candida albicans

    International Nuclear Information System (INIS)

    Grillo, Michel R.F.; Demicheli, Marina C.; Andrade Junior, Heitor F.; Galiesteo Junior, Andres A.J.

    2015-01-01

    Candida albicans is a fungus responsible for 80-90% of fungal infections, as the symptoms are similar to those of systemic bacterial infections there is a difficulty for immediate diagnosis. These difficulties can lead to delays of antifungal therapy, which contributes to the high mortality rates associated with this infection. Resistance structures referred to as chlamydospores are very common in the pathogen, representing different cell types that form in response to certain genetic or environmental conditions. Recently, various antifungal agents and new therapeutic strategies have come into use, allowing the fungus to acquire a resistance to the drugs. The use of ionizing radiation has been widely employed for the production of immunogens against various parasites. In this work, we evaluate the effects of gamma radiation ( 60 Co) in yeast and chlamydospore of C. albicans with doses ranging from 320 to 10.240 Gy with Cobalt 60. Subsequently the samples were plated and after seven days, the colony forming units (CFU) told. The viability of irradiated cells were evaluated using the Janus green dye. A dose of 6000 Gy was considered ideal for the mitigation of chlamydospore and yeast. The dimorphic change mechanisms of both fungal structures were not harmed. The viability of chlamydospores remained above 70% while the yeast viability remained above 85%. By transmission electron microscopy and fluorescence microscopy may be noted cytoplasmic changes, defects in the cell wall, mitochondria, and the presence of partially preserved vesicles of both morphological forms of C. albicans. Irradiation both chlamydospore as C. albicans yeast allows the suppression of their reproduction, opening the possibility of their use in future candidate immunogens. (author)

  18. Effects of 60 Cobalt ionizing radiation in morphology and metabolism of yeasts and Chlamydospore of Candida albicans

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Michel R.F.; Demicheli, Marina C.; Andrade Junior, Heitor F.; Galiesteo Junior, Andres A.J., E-mail: galisteo@usp.br [Universidade de Sao Paulo (IMTSP/USP), Sao Paulo, SP (Brazil). Instituto de Medicina Tropical. Lab. de Protozoologia; Takakura, Cleusa F.H. [Universidade de Sao Paulo (FM/USP), Sao Paulo, SP (Brazil). Departamento de Patologia de Molestias Transmissiveis. Lab. de Patologia; Negro, Gilda M.B. del [Universidade de Sao Paulo (HCFM/USP/IMTSP/LIM-53), Sao Paulo, SP (Brazil). Hospital das Clinicas. Lab. de Micologia; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Candida albicans is a fungus responsible for 80-90% of fungal infections, as the symptoms are similar to those of systemic bacterial infections there is a difficulty for immediate diagnosis. These difficulties can lead to delays of antifungal therapy, which contributes to the high mortality rates associated with this infection. Resistance structures referred to as chlamydospores are very common in the pathogen, representing different cell types that form in response to certain genetic or environmental conditions. Recently, various antifungal agents and new therapeutic strategies have come into use, allowing the fungus to acquire a resistance to the drugs. The use of ionizing radiation has been widely employed for the production of immunogens against various parasites. In this work, we evaluate the effects of gamma radiation ({sup 60}Co) in yeast and chlamydospore of C. albicans with doses ranging from 320 to 10.240 Gy with Cobalt 60. Subsequently the samples were plated and after seven days, the colony forming units (CFU) told. The viability of irradiated cells were evaluated using the Janus green dye. A dose of 6000 Gy was considered ideal for the mitigation of chlamydospore and yeast. The dimorphic change mechanisms of both fungal structures were not harmed. The viability of chlamydospores remained above 70% while the yeast viability remained above 85%. By transmission electron microscopy and fluorescence microscopy may be noted cytoplasmic changes, defects in the cell wall, mitochondria, and the presence of partially preserved vesicles of both morphological forms of C. albicans. Irradiation both chlamydospore as C. albicans yeast allows the suppression of their reproduction, opening the possibility of their use in future candidate immunogens. (author)

  19. Neonicotinoid pesticides can reduce honeybee colony genetic diversity.

    Directory of Open Access Journals (Sweden)

    Nadège Forfert

    Full Text Available Neonicotinoid insecticides can cause a variety of adverse sub-lethal effects in bees. In social species such as the honeybee, Apis mellifera, queens are essential for reproduction and colony functioning. Therefore, any negative effect of these agricultural chemicals on the mating success of queens may have serious consequences for the fitness of the entire colony. Queens were exposed to the common neonicotinoid pesticides thiamethoxam and clothianidin during their developmental stage. After mating, their spermathecae were dissected to count the number of stored spermatozoa. Furthermore, their worker offspring were genotyped with DNA microsatellites to determine the number of matings and the genotypic composition of the colony. Colonies providing the male mating partners were also inferred. Both neonicotinoid and control queens mated with drones originating from the same drone source colonies, and stored similar number of spermatozoa. However, queens reared in colonies exposed to both neonicotinoids experienced fewer matings. This resulted in a reduction of the genetic diversity in their colonies (i.e. higher intracolonial relatedness. As decreased genetic diversity among worker bees is known to negatively affect colony vitality, neonicotinoids may have a cryptic effect on colony health by reducing the mating frequency of queens.

  20. Human NKCC2 cation–Cl– co-transporter complements lack of Vhc1 transporter in yeast vacuolar membranes.

    Science.gov (United States)

    Petrezselyova, Silvia; Dominguez, Angel; Herynkova, Pavla; Macias, Juan F; Sychrova, Hana

    2013-10-01

    Cation–chloride co-transporters serve to transport Cl– and alkali metal cations. Whereas a large family of these exists in higher eukaryotes, yeasts only possess one cation–chloride co-transporter, Vhc1, localized to the vacuolar membrane. In this study, the human cation–chloride co-transporter NKCC2 complemented the phenotype of VHC1 deletion in Saccharomyces cerevisiae and its activity controlled the growth of salt-sensitive yeast cells in the presence of high KCl, NaCl and LiCl. A S. cerevisiae mutant lacking plasma-membrane alkali–metal cation exporters Nha1 and Ena1-5 and the vacuolar cation–chloride co-transporter Vhc1 is highly sensitive to increased concentrations of alkali–metal cations, and it proved to be a suitable model for characterizing the substrate specificity and transport activity of human wild-type and mutated cation–chloride co-transporters. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Substitution of arginine for histidine-47 in the coenzyme binding site of yeast alcohol dehydrogenase I

    International Nuclear Information System (INIS)

    Gould, R.M.; Plapp, B.V.

    1990-01-01

    Molecular modeling of alcohol dehydrogenases suggests that His-47 in the yeast enzyme (His-44 in the protein sequence, corresponding to Arg-47 in the horse liver enzyme) binds the pyrophosphate of the NAD coenzyme. His-47 in the Saccharomyces cerevisiae isoenzyme I was substituted with an arginine by a directed mutation. Steady-state kinetic results at pH 7.3 and 30 degree C of the mutant and wild-type enzymes were consistent with an ordered Bi-Bi mechanism. The substitution decreased dissociation constants by 4-fold for NAD + and 2-fold for NADH while turnover numbers were decreased by 4-fold for ethanol oxidation and 6-fold for acetaldehyde reduction. The magnitudes of these effects are smaller than those found for the same mutation in the human liver β enzyme, suggesting that other amino acid residues in the active site modulate the effects of the substitution. The pH dependencies of dissociation constants and other kinetic constants were similar in the two yeast enzymes. Thus, it appears that His-47 is not solely responsible for a pK value near 7 that controls activity and coenzyme binding rates in the wild-type enzyme. The small substrate deuterium isotope effect above pH 7 and the single exponential phase of NADH production during the transient oxidation of ethanol by the Arg-47 enzyme suggest that the mutation makes an isomerization of the enzyme-NAD + complex limiting for turnover with ethanol

  2. The Small Colony Variant of Listeria monocytogenes Is More Tolerant to Antibiotics and Has Altered Survival in RAW 264.7 Murine Macrophages

    DEFF Research Database (Denmark)

    Curtis, Thomas; Gram, Lone; Knudsen, Gitte Maegaard

    2016-01-01

    Small Colony Variant (SCV) cells of bacteria are a slow-growing phenotype that result from specific defects in the electron transport chain. They form pinpoint colonies on agar plates and have a variety of phenotypic characteristics, such as altered carbon metabolism, decreased toxin and lytic...... monocytogenes (strain SCV E18), similar to the high persister mutant phenotype, survived significantly better than the wild type when exposed over a 48-h period to concentrations above Minimal Inhibitory Concentration for most tested antibiotics. SCV E18 survived more poorly than the wildtype in unactivated RAW......264.7 macrophage cells, presumably because of its reduced listeriolysin O expression, however, it survived better in reactive oxygen species producing, phorbol 12-myristate 13-acetate-activated macrophages. Although SCV E18 was sensitive to oxygen as it entered the stationary phase...

  3. The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mathias Klein

    2016-12-01

    Full Text Available Glycerol is an abundant by-product during biodiesel production and additionally has several assets compared to sugars when used as a carbon source for growing microorganisms in the context of biotechnological applications. However, most strains of the platform production organism Saccharomyces cerevisiae grow poorly in synthetic glycerol medium. It has been hypothesized that the uptake of glycerol could be a major bottleneck for the utilization of glycerol in S. cerevisiae. This species exclusively relies on an active transport system for glycerol uptake. This work demonstrates that the expression of predicted glycerol facilitators (Fps1 homologues from superior glycerol-utilizing yeast species such as Pachysolen tannophilus, Komagataella pastoris, Yarrowia lipolytica and Cyberlindnera jadinii significantly improves the growth performance on glycerol of the previously selected glycerol-consuming S. cerevisiae wild-type strain (CBS 6412-13A. The maximum specific growth rate increased from 0.13 up to 0.18 h−1 and a biomass yield coefficient of 0.56 gDW/gglycerol was observed. These results pave the way for exploiting the assets of glycerol in the production of fuels, chemicals and pharmaceuticals based on baker's yeast. Keywords: Yeast, Saccharomyces cerevisiae, Glycerol, Transport, Glycerol facilitator, Fps1, Stl1

  4. Varroa-Virus Interaction in Collapsing Honey Bee Colonies

    DEFF Research Database (Denmark)

    Francis, Roy Mathew; Nielsen, Steen L.; Kryger, Per

    2013-01-01

    Varroa mites and viruses are the currently the high-profile suspects in collapsing bee colonies. Therefore, seasonal variation in varroa load and viruses (Acute-Kashmir-Israeli complex (AKI) and Deformed Wing Virus (DWV)) were monitored in a year-long study. We investigated the viral titres...... in honey bees and varroa mites from 23 colonies (15 apiaries) under three treatment conditions: Organic acids (11 colonies), pyrethroid (9 colonies) and untreated (3 colonies). Approximately 200 bees were sampled every month from April 2011 to October 2011, and April 2012. The 200 bees were split to 10...... subsamples of 20 bees and analysed separately, which allows us to determine the prevalence of virus-infected bees. The treatment efficacy was often low for both treatments. In colonies where varroa treatment reduced the mite load, colonies overwintered successfully, allowing the mites and viruses...

  5. Effect of yeast storage temperature and flour composition on fermentative activities of baker's yeast

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2009-01-01

    Full Text Available Baker's yeast is a set of living cells of Saccharomyces cerevisiae. It contains around 70-72% of water, 42-45% of proteins, around 40% of carbohydrates, around 7.5% of lipids (based on dry matter, and vitamin B-complex. On the basis of yeast cell analysis it can be concluded that yeast is a complex biological system which changes in time. The intensity of the changes depends on temperature. Yeast sample was stored at 4°C i 24°C for 12 days. During storage at 4°C, the content of total carbohydrates decreased from 48.81% to 37.50% (dry matter, whereas carbohydrate loss ranged from 40.81% to 29.28% at 24°C. The content of trehalose was 12.33% in the yeast sample stored at 4°C and 0.24% at 24°C. Loss of fermentative activity was 81.76% in the sample stored at 24°C for 12 days. The composition of five samples of 1st category flour was investigated. It was found that flours containing more reducing sugars and maltose enable higher fermentation activities. The flours with higher ash content (in the range 0.5-0.94% had higher contents of phytic acid. Higher ash and phytic contents in flour increased the yeast fermentative efficiency. In bakery industry, a range of ingredients has been applied to improve the product's quality such as surface active substances (emulsifiers, enzymes, sugars and fats. In the paper, the effect of some ingredients added to dough (margarine, saccharose, sodium chloride and malted barley on the yeast fermentative activity was studied. The mentioned ingredients were added to dough at different doses: 0.5, 1.0, 1.5 and 2.0%, flour basis. It was found that the investigated ingredients affected the fermentative activity of yeast and improved the bread quality.

  6. Lager Yeast Comes of Age

    Science.gov (United States)

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  7. First recorded loss of an emperor penguin colony in the recent period of Antarctic regional warming: implications for other colonies.

    Directory of Open Access Journals (Sweden)

    Philip N Trathan

    Full Text Available In 1948, a small colony of emperor penguins Aptenodytes forsteri was discovered breeding on Emperor Island (67° 51' 52″ S, 68° 42' 20″ W, in the Dion Islands, close to the West Antarctic Peninsula (Stonehouse 1952. When discovered, the colony comprised approximately 150 breeding pairs; these numbers were maintained until 1970, after which time the colony showed a continuous decline. By 1999 there were fewer than 20 pairs, and in 2009 high-resolution aerial photography revealed no remaining trace of the colony. Here we relate the decline and loss of the Emperor Island colony to a well-documented rise in local mean annual air temperature and coincident decline in seasonal sea ice duration. The loss of this colony provides empirical support for recent studies (Barbraud & Weimerskirch 2001; Jenouvrier et al 2005, 2009; Ainley et al 2010; Barber-Meyer et al 2005 that have highlighted the vulnerability of emperor penguins to changes in sea ice duration and distribution. These studies suggest that continued climate change is likely to impact upon future breeding success and colony viability for this species. Furthermore, a recent circumpolar study by Fretwell & Trathan (2009 highlighted those Antarctic coastal regions where colonies appear most vulnerable to such changes. Here we examine which other colonies might be at risk, discussing various ecological factors, some previously unexplored, that may also contribute to future declines. The implications of this are important for future modelling work and for understanding which colonies actually are most vulnerable.

  8. Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy.

    Science.gov (United States)

    Rappaz, Benjamin; Cano, Elena; Colomb, Tristan; Kühn, Jonas; Depeursinge, Christian; Simanis, Viesturs; Magistretti, Pierre J; Marquet, Pierre

    2009-01-01

    Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.

  9. Yeast strains and methods of use thereof

    OpenAIRE

    Goddard, Matthew Robert; Gardner, Richard Clague; Anfang, Nicole

    2013-01-01

    The present invention relates to yeast strains and, in particular, to yeast stains for use in fermentation processes. The invention also relates to methods of fermentation using the yeast strains of the invention either alone or in combination with other yeast strains. The invention thither relates to methods for the selection of yeast strains suitable for fermentation cultures by screening for various metabolic products and the use of specific nutrient sources.

  10. Immobilization of yeast cells by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Fujimura, T.; Kaetsu, I.

    1982-01-01

    Radiation-induced polymerization method was applied to the immobilization of yeast cells. The effects of irradiation, cooling and monomer, which are neccessary for polymerization, were recovered completely by subsequent aerobical incubation of yeast cells. The ethanol productive in immobilized yeast cells increased with the increase of aerobical incubation period. The growth of yeast cells in immobilized yeast cells was indicated. The maximum ethanol productivity in immobilized yeast cell system was around three times as much as that in free yeast cell system. (orig.)

  11. Evolutionary History of Ascomyceteous Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Haridas, Sajeet; Riley, Robert; Salamov, Asaf; Goker, Markus; Klenk, Hans-Peter; Kurtzman, Cletus P.; Blackwell, Meredith; Grigoriev, Igor; Jeffries, Thomas W.

    2014-06-06

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comparison of these with several other previously published yeast genomes have added increased confidence to the phylogenetic positions of previously poorly placed species including Saitoella complicata, Babjeviella inositovora and Metschnikowia bicuspidata. Phylogenetic analysis also showed that yeasts with alternative nuclear codon usage where CUG encodes serine instead of leucine are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes with Lipomyces starkeyi and the previously published Pneumocystis jirovecii being notable exceptions. Intron analysis suggests that early diverging species have more introns. We also observed a large number of unclassified lineage specific non-simple repeats in these genomes.

  12. C-Terminal Tyrosine Residue Modifications Modulate the Protective Phosphorylation of Serine 129 of α-Synuclein in a Yeast Model of Parkinson's Disease.

    Science.gov (United States)

    Kleinknecht, Alexandra; Popova, Blagovesta; Lázaro, Diana F; Pinho, Raquel; Valerius, Oliver; Outeiro, Tiago F; Braus, Gerhard H

    2016-06-01

    Parkinson´s disease (PD) is characterized by the presence of proteinaceous inclusions called Lewy bodies that are mainly composed of α-synuclein (αSyn). Elevated levels of oxidative or nitrative stresses have been implicated in αSyn related toxicity. Phosphorylation of αSyn on serine 129 (S129) modulates autophagic clearance of inclusions and is prominently found in Lewy bodies. The neighboring tyrosine residues Y125, Y133 and Y136 are phosphorylation and nitration sites. Using a yeast model of PD, we found that Y133 is required for protective S129 phosphorylation and for S129-independent proteasome clearance. αSyn can be nitrated and form stable covalent dimers originating from covalent crosslinking of two tyrosine residues. Nitrated tyrosine residues, but not di-tyrosine-crosslinked dimers, contributed to αSyn cytotoxicity and aggregation. Analysis of tyrosine residues involved in nitration and crosslinking revealed that the C-terminus, rather than the N-terminus of αSyn, is modified by nitration and di-tyrosine formation. The nitration level of wild-type αSyn was higher compared to that of A30P mutant that is non-toxic in yeast. A30P formed more dimers than wild-type αSyn, suggesting that dimer formation represents a cellular detoxification pathway in yeast. Deletion of the yeast flavohemoglobin gene YHB1 resulted in an increase of cellular nitrative stress and cytotoxicity leading to enhanced aggregation of A30P αSyn. Yhb1 protected yeast from A30P-induced mitochondrial fragmentation and peroxynitrite-induced nitrative stress. Strikingly, overexpression of neuroglobin, the human homolog of YHB1, protected against αSyn inclusion formation in mammalian cells. In total, our data suggest that C-terminal Y133 plays a major role in αSyn aggregate clearance by supporting the protective S129 phosphorylation for autophagy and by promoting proteasome clearance. C-terminal tyrosine nitration increases pathogenicity and can only be partially detoxified by

  13. Sexual differentiation in fission yeast

    DEFF Research Database (Denmark)

    Egel, R; Nielsen, O; Weilguny, D

    1990-01-01

    The regulation of sexual reproduction in yeast constitutes the highest level of differentiation observed in these unicellular organisms. The various ramifications of this system involve DNA rearrangement, transcriptional control, post-translational modification (such as protein phosphorylation) a......) and receptor/signal processing. A few basic similarities are common to both fission and budding yeasts. The wiring of the regulatory circuitry, however, varies considerably between these divergent yeast groups....

  14. Occurrence of Killer Yeast Strains in Fruit and Berry Wine Yeast Populations

    Directory of Open Access Journals (Sweden)

    Gintare Gulbiniene

    2004-01-01

    Full Text Available Apple, cranberry, chokeberry and Lithuanian red grape wine yeast populations were used for the determination of killer yeast occurrence. According to the tests of the killer characteristics and immunity the isolated strains were divided into seven groups. In this work the activity of killer toxins purified from some typical strains was evaluated. The analysed strains produced different amounts of active killer toxin and some of them possessed new industrially significant killer properties. Total dsRNA extractions in 11 killer strains of yeast isolated from spontaneous fermentations revealed that the molecular basis of the killer phenomenon was not only dsRNAs, but also unidentified genetic determinants.

  15. Biomedical applications of yeast- a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines.

    Science.gov (United States)

    Roohvand, Farzin; Shokri, Mehdi; Abdollahpour-Alitappeh, Meghdad; Ehsani, Parastoo

    2017-08-01

    Yeasts, as Eukaryotes, offer unique features for ease of growth and genetic manipulation possibilities, making it an exceptional microbial host. Areas covered: This review provides general and patent-oriented insights into production of biopharmaceuticals by yeasts. Patents, wherever possible, were correlated to the original or review articles. The review describes applications of major GRAS (generally regarded as safe) yeasts for the production of therapeutic proteins and subunit vaccines; additionally, immunomodulatory properties of yeast cell wall components were reviewed for use of whole yeast cells as a new vaccine platform. The second part of the review will discuss yeast- humanization strategies and innovative applications. Expert opinion: Biomedical applications of yeasts were initiated by utilization of Saccharomyces cerevisiae, for production of leavened (fermented) products, and advanced to serve to produce biopharmaceuticals. Higher biomass production and expression/secretion yields, more similarity of glycosylation patterns to mammals and possibility of host-improvement strategies through application of synthetic biology might enhance selection of Pichia pastoris (instead of S. cerevisiae) as a host for production of biopharmaceutical in future. Immunomodulatory properties of yeast cell wall β-glucans and possibility of intracellular expression of heterologous pathogen/tumor antigens in yeast cells have expanded their application as a new platform, 'Whole Yeast Vaccines'.

  16. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2012-08-01

    The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consumption rates, and poor cell growth compared with an oxidoreductase pathway and, additionally, often require adaptive strain evolution. Here, we report on the directed evolution of the Piromyces sp. xylose isomerase (encoded by xylA) for use in yeast. After three rounds of mutagenesis and growth-based screening, we isolated a variant containing six mutations (E15D, E114G, E129D, T142S, A177T, and V433I) that exhibited a 77% increase in enzymatic activity. When expressed in a minimally engineered yeast host containing a gre3 knockout and tal1 and XKS1 overexpression, the strain expressing this mutant enzyme improved its aerobic growth rate by 61-fold and both ethanol production and xylose consumption rates by nearly 8-fold. Moreover, the mutant enzyme enabled ethanol production by these yeasts under oxygen-limited fermentation conditions, unlike the wild-type enzyme. Under microaerobic conditions, the ethanol production rates of the strain expressing the mutant xylose isomerase were considerably higher than previously reported values for yeast harboring a xylose isomerase pathway and were also comparable to those of the strains harboring an oxidoreductase pathway. Consequently, this study shows the potential to evolve a xylose isomerase pathway for more efficient xylose utilization.

  17. N-acetyl cysteine protects against ionizing radiation-induced DNA damage but not against cell killing in yeast and mammals

    Energy Technology Data Exchange (ETDEWEB)

    Reliene, Ramune [Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 (United States); Department of Medicine, Center for Human Nutrition, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 (United States); Pollard, Julianne M. [Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 (United States); Biomedical Physics Interdepartmental Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 (United States); Sobol, Zhanna; Trouiller, Benedicte [Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 (United States); Gatti, Richard A. [Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 (United States); Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 (United States); Schiestl, Robert H., E-mail: rschiestl@mednet.ucla.edu [Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 (United States); Biomedical Physics Interdepartmental Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 (United States); Department of Radiation Oncology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 (United States); Department of Environmental Health Sciences, School of Public Health, University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2009-06-01

    Ionizing radiation (IR) induces DNA strand breaks leading to cell death or deleterious genome rearrangements. In the present study, we examined the role of N-acetyl-L-cysteine (NAC), a clinically proven safe agent, for it's ability to protect against {gamma}-ray-induced DNA strand breaks and/or DNA deletions in yeast and mammals. In the yeast Saccharomyces cerevisiae, DNA deletions were scored by reversion to histidine prototrophy. Human lymphoblastoid cells were examined for the frequency of {gamma}-H2AX foci formation, indicative of DNA double strand break formation. DNA strand breaks were also measured in mouse peripheral blood by the alkaline comet assay. In yeast, NAC reduced the frequency of IR-induced DNA deletions. However, NAC did not protect against cell death. NAC also reduced {gamma}-H2AX foci formation in human lymphoblastoid cells but had no protective effect in the colony survival assay. NAC administration via drinking water fully protected against DNA strand breaks in mice whole-body irradiated with 1 Gy but not with 4 Gy. NAC treatment in the absence of irradiation was not genotoxic. These data suggest that, given the safety and efficacy of NAC in humans, NAC may be useful in radiation therapy to prevent radiation-mediated genotoxicity, but does not interfere with efficient cancer cell killing.

  18. Development of industrial brewing yeast with low acetaldehyde production and improved flavor stability.

    Science.gov (United States)

    Wang, Jinjing; Shen, Nan; Yin, Hua; Liu, Chunfeng; Li, Yongxian; Li, Qi

    2013-02-01

    Higher acetaldehyde concentration in beer is one of the main concerns of current beer industry in China. Acetaldehyde is always synthesized during beer brewing by the metabolism of yeast. Here, using ethanol as the sole carbon source and 4-methylpyrazole as the selection marker, we constructed a new mutant strain with lower acetaldehyde production and improved ethanol tolerance via traditional mutagenesis strategy. European Brewery Convention tube fermentation tests comparing the fermentation broths of mutant strain and industrial brewing strain showed that the acetaldehyde concentration of mutant strain was 81.67 % lower, whereas its resistant staling value was 1.0-fold higher. Owing to the mutation, the alcohol dehydrogenase activity of the mutant strain decreased to about 30 % of the wild-type strain. In the meantime, the fermentation performance of the newly screened strain has little difference compared with the wild-type strain, and there are no safety problems regarding the industrial usage of the mutant strain. Therefore, we suggest that the newly screened strain could be directly applied to brewing industry.

  19. Virgin olive oil yeasts: A review.

    Science.gov (United States)

    Ciafardini, Gino; Zullo, Biagi Angelo

    2018-04-01

    This review summarizes current knowledge on virgin olive oil yeasts. Newly produced olive oil contains solid particles and micro drops of vegetation water in which yeasts reproduce to become the typical microbiota of olive oil. To date, about seventeen yeast species have been isolated from different types of olive oils and their by-products, of which six species have been identified as new species. Certain yeast species contribute greatly to improving the sensorial characteristics of the newly produced olive oil, whereas other species are considered harmful as they can damage the oil quality through the production of unpleasant flavors and triacylglycerol hydrolysis. Studies carried out in certain yeast strains have demonstrated the presence of defects in olive oil treated with Candida adriatica, Nakazawaea wickerhamii and Candida diddensiae specific strains, while other olive oil samples treated with other Candida diddensiae strains were defect-free after four months of storage and categorized as extra virgin. A new acetic acid producing yeast species, namely, Brettanomyces acidodurans sp. nov., which was recently isolated from olive oil, could be implicated in the wine-vinegary defect of the product. Other aspects related to the activity of the lipase-producing yeasts and the survival of the yeast species in the flavored olive oils are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Assessing pathogenicity of MLH1 variants by co-expression of human MLH1 and PMS2 genes in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Vogelsang, Matjaz; Comino, Aleksandra; Zupanec, Neja [Department for Biosynthesis and Biotransformation, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana (Slovenia); Hudler, Petra [Medical Center for Molecular Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana (Slovenia); Komel, Radovan [Department for Biosynthesis and Biotransformation, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana (Slovenia); Medical Center for Molecular Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana (Slovenia)

    2009-10-28

    Loss of DNA mismatch repair (MMR) in humans, mainly due to mutations in the hMLH1 gene, is linked to hereditary nonpolyposis colorectal cancer (HNPCC). Because not all MLH1 alterations result in loss of MMR function, accurate characterization of variants and their classification in terms of their effect on MMR function is essential for reliable genetic testing and effective treatment. To date, in vivo assays for functional characterization of MLH1 mutations performed in various model systems have used episomal expression of the modified MMR genes. We describe here a novel approach to determine accurately the functional significance of hMLH1 mutations in vivo, based on co-expression of human MLH1 and PMS2 in yeast cells. Yeast MLH1 and PMS1 genes, whose protein products form the MutLα complex, were replaced by human orthologs directly on yeast chromosomes by homologous recombination, and the resulting MMR activity was tested. The yeast strain co-expressing hMLH1 and hPMS2 exhibited the same mutation rate as the wild-type. Eight cancer-related MLH1 variants were introduced, using the same approach, into the prepared yeast model, and their effect on MMR function was determined. Five variants (A92P, S93G, I219V, K618R and K618T) were classified as non-pathogenic, whereas variants T117M, Y646C and R659Q were characterized as pathogenic. Results of our in vivo yeast-based approach correlate well with clinical data in five out of seven hMLH1 variants and the described model was thus shown to be useful for functional characterization of MLH1 variants in cancer patients found throughout the entire coding region of the gene.

  1. Assessing pathogenicity of MLH1 variants by co-expression of human MLH1 and PMS2 genes in yeast

    Directory of Open Access Journals (Sweden)

    Hudler Petra

    2009-10-01

    Full Text Available Abstract Background Loss of DNA mismatch repair (MMR in humans, mainly due to mutations in the hMLH1 gene, is linked to hereditary nonpolyposis colorectal cancer (HNPCC. Because not all MLH1 alterations result in loss of MMR function, accurate characterization of variants and their classification in terms of their effect on MMR function is essential for reliable genetic testing and effective treatment. To date, in vivo assays for functional characterization of MLH1 mutations performed in various model systems have used episomal expression of the modified MMR genes. We describe here a novel approach to determine accurately the functional significance of hMLH1 mutations in vivo, based on co-expression of human MLH1 and PMS2 in yeast cells. Methods Yeast MLH1 and PMS1 genes, whose protein products form the MutLα complex, were replaced by human orthologs directly on yeast chromosomes by homologous recombination, and the resulting MMR activity was tested. Results The yeast strain co-expressing hMLH1 and hPMS2 exhibited the same mutation rate as the wild-type. Eight cancer-related MLH1 variants were introduced, using the same approach, into the prepared yeast model, and their effect on MMR function was determined. Five variants (A92P, S93G, I219V, K618R and K618T were classified as non-pathogenic, whereas variants T117M, Y646C and R659Q were characterized as pathogenic. Conclusion Results of our in vivo yeast-based approach correlate well with clinical data in five out of seven hMLH1 variants and the described model was thus shown to be useful for functional characterization of MLH1 variants in cancer patients found throughout the entire coding region of the gene.

  2. Assessing pathogenicity of MLH1 variants by co-expression of human MLH1 and PMS2 genes in yeast

    International Nuclear Information System (INIS)

    Vogelsang, Matjaz; Comino, Aleksandra; Zupanec, Neja; Hudler, Petra; Komel, Radovan

    2009-01-01

    Loss of DNA mismatch repair (MMR) in humans, mainly due to mutations in the hMLH1 gene, is linked to hereditary nonpolyposis colorectal cancer (HNPCC). Because not all MLH1 alterations result in loss of MMR function, accurate characterization of variants and their classification in terms of their effect on MMR function is essential for reliable genetic testing and effective treatment. To date, in vivo assays for functional characterization of MLH1 mutations performed in various model systems have used episomal expression of the modified MMR genes. We describe here a novel approach to determine accurately the functional significance of hMLH1 mutations in vivo, based on co-expression of human MLH1 and PMS2 in yeast cells. Yeast MLH1 and PMS1 genes, whose protein products form the MutLα complex, were replaced by human orthologs directly on yeast chromosomes by homologous recombination, and the resulting MMR activity was tested. The yeast strain co-expressing hMLH1 and hPMS2 exhibited the same mutation rate as the wild-type. Eight cancer-related MLH1 variants were introduced, using the same approach, into the prepared yeast model, and their effect on MMR function was determined. Five variants (A92P, S93G, I219V, K618R and K618T) were classified as non-pathogenic, whereas variants T117M, Y646C and R659Q were characterized as pathogenic. Results of our in vivo yeast-based approach correlate well with clinical data in five out of seven hMLH1 variants and the described model was thus shown to be useful for functional characterization of MLH1 variants in cancer patients found throughout the entire coding region of the gene

  3. Terroir of yeasts? – Application of FTIR spectroscopy and molecular methods for strain typing of yeasts

    Directory of Open Access Journals (Sweden)

    Gerhards Daniel

    2015-01-01

    Full Text Available The site specific influence on wine (Terroir is an often by wine producers, consumers and scientists discussed topic in the world of wine. A study on grapes and (spontaneous fermentations from six different vineyards was done to investigate the biodiversity of yeasts and to answer the question if there is a terroir of yeast and how it could be influenced. Randomly isolated yeasts were identified by FTIR-spectroscopy and molecular methods on species and strain level. Vineyard specific yeast floras would be observed but they are not such important as expected. Only a few overlapping strain patterns would be identified during both vintages. The yeast flora of the winery had a huge impact on the spontaneous fermentations, but is not really constant and influenced by different factors from outside.

  4. Kex1 protease is involved in yeast cell death induced by defective N-glycosylation, acetic acid, and chronological aging.

    Science.gov (United States)

    Hauptmann, Peter; Lehle, Ludwig

    2008-07-04

    N-glycosylation in the endoplasmic reticulum is an essential protein modification and highly conserved in evolution from yeast to humans. The key step of this pathway is the transfer of the lipid-linked core oligosaccharide to the nascent polypeptide chain, catalyzed by the oligosaccharyltransferase complex. Temperature-sensitive oligosaccharyltransferase mutants of Saccharomyces cerevisiae at the restrictive temperature, such as wbp1-1, as well as wild-type cells in the presence of the N-glycosylation inhibitor tunicamycin display typical apoptotic phenotypes like nuclear condensation, DNA fragmentation, phosphatidylserine translocation, caspase-like activity, and reactive oxygen species accumulation. Since deletion of the yeast metacaspase YCA1 did not abrogate this death pathway, we postulated a different proteolytic process to be responsible. Here, we show that Kex1 protease is involved in the programmed cell death caused by defective N-glycosylation. Its disruption decreases caspase-like activity, production of reactive oxygen species, and fragmentation of mitochondria and, conversely, improves growth and survival of cells. Moreover, we demonstrate that Kex1 contributes also to the active cell death program induced by acetic acid stress or during chronological aging, suggesting that Kex1 plays a more general role in cellular suicide of yeast.

  5. Treatment of an Aedes aegypti colony with the Cry11Aa toxin for 54 generations results in the development of resistance

    Directory of Open Access Journals (Sweden)

    Gloria Cadavid-Restrepo

    2012-02-01

    Full Text Available To study the potential for the emergence of resistance in Aedes aegypti populations, a wild colony was subjected to selective pressure with Cry11Aa, one of four endotoxins that compose the Bacillus thuringiensis serovar israelensis toxin. This bacterium is the base component of the most important biopesticide used in the control of mosquitoes worldwide. After 54 generations of selection, significant resistance levels were observed. At the beginning of the selection experiment, the half lethal concentration was 26.3 ng/mL and had risen to 345.6 ng/mL by generation 54. The highest rate of resistance, 13.1, was detected in the 54th generation. Because digestive proteases play a key role in the processing and activation of B. thuringiensis toxin, we analysed the involvement of insect gut proteases in resistance to the Cry11Aa B. thuringiensis serovar israelensis toxin. The protease activity from larval gut extracts from the Cry11Aa resistant population was lower than that of the B. thuringiensisserovar israelensis susceptible colony. We suggest that differences in protoxin proteolysis could contribute to the resistance of this Ae. aegypti colony.

  6. 21 CFR 184.1983 - Bakers yeast extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b) The...

  7. Endoplasmic reticulum involvement in yeast cell death

    International Nuclear Information System (INIS)

    Nicanor Austriaco, O.

    2012-01-01

    Yeast cells undergo programed cell death (PCD) with characteristic markers associated with apoptosis in mammalian cells including chromatin breakage, nuclear fragmentation, reactive oxygen species generation, and metacaspase activation. Though significant research has focused on mitochondrial involvement in this phenomenon, more recent work with both Saccharomyces cerevisiae and Schizosaccharomyces pombe has also implicated the endoplasmic reticulum (ER) in yeast PCD. This minireview provides an overview of ER stress-associated cell death (ER-SAD) in yeast. It begins with a description of ER structure and function in yeast before moving to a discussion of ER-SAD in both mammalian and yeast cells. Three examples of yeast cell death associated with the ER will be highlighted here including inositol starvation, lipid toxicity, and the inhibition of N-glycosylation. It closes by suggesting ways to further examine the involvement of the ER in yeast cell death.

  8. PBI creams: a spontaneously mutated mouse strain showing wild animal-type reactivity.

    Science.gov (United States)

    Hendrie, C A; Van Driel, K S; Talling, J C; Inglis, I R

    2001-01-01

    PBI creams are mice derived from warfarin-resistant wild stock that has been maintained under laboratory conditions since the 1970s. This study compares their behaviour to that of laboratory mice and wild house and wood mice. Animals were tested in a black/white box and a 2.64x1.4 m runway. In the black/white box, the behaviour of PBI creams was not significantly different from that of house mice and differed most from that of laboratory mice. Notably, the PBI creams showed the greatest activity and escape-orientated behaviours. When animals were approached by the experimenter in the open runway test, the PBI creams had higher flight speeds than both house and wood mice, whilst laboratory mice failed to respond. In the closed runway test where the animals could not escape, the PBI creams, house mice and wood mice all turned and attempted to run past the approaching experimenter, whilst the laboratory mice again failed to react. At the end of this test session, the time taken to catch each animal was recorded. It took less than 5 s to catch laboratory mice but significantly longer to catch the wild strains and the PBI creams (90-100 s for the latter). In these tests, the PBI creams showed wild animal-type reactivity, and as this behaviour has been retained in the laboratory colony for over 30 years, these animals may be useful in the study of the physiological and genetic basis of fear/anxiety in mice.

  9. [Control levels of Sin3 histone deacetylase for spontaneous and UV-induced mutagenesis in yeasts Saccharomyces cerevisiae].

    Science.gov (United States)

    Lebovka, I Iu; Kozhina, T N; Fedorova, I V; Peshekhonov, V T; Evstiukhina, T A; Chernenkov, A Iu; Korolev, V G

    2014-01-01

    SIN3 gene product operates as a repressor for a huge amount of genes in Saccharomyces cerevisiae. Sin3 protein with a mass of about 175 kDa is a member of the RPD3 protein complex with an assessed mass of greater than 2 million Da. It was previously shownthat RPD3 gene mutations influence recombination and repair processes in S. cerevisiae yeasts. We studied the impacts of the sin3 mutation on UV-light sensitivity and UV-induced mutagenesis in budding yeast cells. The deletion ofthe SIN3 gene causes weak UV-sensitivity of mutant budding cells as compared to the wild-type strain. These results show that the sin3 mutation decreases both spontaneous and UV-induced levels of levels. This fact is hypothetically related to themalfunction of ribonucleotide reductase activity regulation, which leads to a decrease in the dNTP pool and the inaccurate error-prone damage bypass postreplication repair pathway, which in turn provokes a reduction in the incidence of mutations.

  10. JAX Colony Management System (JCMS): an extensible colony and phenotype data management system

    OpenAIRE

    Donnelly, Chuck J.; McFarland, Mike; Ames, Abigail; Sundberg, Beth; Springer, Dave; Blauth, Peter; Bult, Carol J.

    2010-01-01

    The Jackson Laboratory Colony Management System (JCMS) is a software application for managing data and information related to research mouse colonies, associated biospecimens, and experimental protocols. JCMS runs directly on computers that run one of the PC Windows® operating systems, but can be accessed via web browser interfaces from any computer running a Windows, Macintosh®, or Linux® operating system. JCMS can be configured for a single user or multiple users in small- to medium-size wo...

  11. History of genome editing in yeast.

    Science.gov (United States)

    Fraczek, Marcin G; Naseeb, Samina; Delneri, Daniela

    2018-05-01

    For thousands of years humans have used the budding yeast Saccharomyces cerevisiae for the production of bread and alcohol; however, in the last 30-40 years our understanding of the yeast biology has dramatically increased, enabling us to modify its genome. Although S. cerevisiae has been the main focus of many research groups, other non-conventional yeasts have also been studied and exploited for biotechnological purposes. Our experiments and knowledge have evolved from recombination to high-throughput PCR-based transformations to highly accurate CRISPR methods in order to alter yeast traits for either research or industrial purposes. Since the release of the genome sequence of S. cerevisiae in 1996, the precise and targeted genome editing has increased significantly. In this 'Budding topic' we discuss the significant developments of genome editing in yeast, mainly focusing on Cre-loxP mediated recombination, delitto perfetto and CRISPR/Cas. © 2018 The Authors. Yeast published by John Wiley & Sons, Ltd.

  12. 21 CFR 172.898 - Bakers yeast glycan.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized, and...

  13. Improved Ant Colony Clustering Algorithm and Its Performance Study

    Science.gov (United States)

    Gao, Wei

    2016-01-01

    Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering. PMID:26839533

  14. The wine and beer yeast Dekkera bruxellensis.

    Science.gov (United States)

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  15. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  16. Is colonialism history? The declining impact of colonial legacies on African institutional and economic development : The declining impact of colonial legacies on African institutional and economic development

    NARCIS (Netherlands)

    Maseland, Robbert

    2018-01-01

    This paper investigates the claim that colonial history has left an enduring imprint on Africa's institutional and economic development. The literature following Acemoglu, Johnson and Robinson (2001) and Sokoloff and Engerman (2000) maintains that different types of colonialism affected the

  17. Prevalence of Trichomonas, Salmonella, and Listeria in Wild Birds from Southeast Texas.

    Science.gov (United States)

    Brobey, Britni; Kucknoor, Ashwini; Armacost, Jim

    2017-09-01

    Infectious diseases can be a major threat to wildlife populations, especially in human-modified habitats, but infection rates in populations of wild animals are often poorly studied. Trichomonas, Salmonella, and Listeria are all pathogens known to infect birds, but their infection rates in wild bird populations are not well documented. This study documents infection rates of the three pathogens in wild bird populations inhabiting a suburban to rural gradient in Southeast Texas. Various species of wild birds were sampled at five sites in Southeastern Texas representing rural (Birds were captured in mist nets and samples were taken from the oral cavity, crop, and vent to detect the presence of pathogens. Samples were screened for Trichomonas by examining wet mounts under a light microscope, whereas samples were screened for Salmonella and Listeria by examining colonies grown on agar plates. Pathogens detected during the initial screening were further confirmed by PCR and DNA sequencing. Infection rates for Trichomonas, Salmonella, and Listeria were 9%, 17%, and 5%, respectively. The distributions of infection rates across habitats (i.e., rural, exurban, rural) did not differ significantly from the expected null distributions for any of the three pathogens; however, the data suggested some interesting patterns that should be confirmed with a larger dataset. Infection rates for Trichomonas and Salmonella were highest at the suburban sites, whereas the infection rate for Listeria was highest at the rural site. Feeder birds were more likely to be infected by all three pathogens than non-feeder birds. Small sample sizes prevent definitive conclusions regarding variation in infection rates along the suburban to rural gradient, but the results suggest that pathogens followed the predicted patterns. For many of the bird species sampled, this study presents the first report of infection rates by these three pathogens in wild populations.

  18. Engaging With Colonial Archives: Reflections Of An End-User

    Directory of Open Access Journals (Sweden)

    Ayodeji Olukoju

    2016-06-01

    Full Text Available Official and/or public archives were a byproduct of colonial rule in Africa. (Archives are a byproduct of administrative governance everywhere. Given the density and diversity of colonial archival records, historians have tended to rely on them for the study of the colonial period. Publications on the use of archives have not captured the perspective of end-users, who often face peculiar challenges in the use of colonial and metropolitan archives. This paper provides an end-user perspective on colonial archives in Nigeria and the United Kingdom. It highlights the challenges of data collection and prospects of optimal use of archival source material. The discussion is of general application to users of colonial archives especially in the former British colonies in Africa.

  19. The CUP2 gene product regulates the expression of the CUP1 gene, coding for yeast metallothionein.

    OpenAIRE

    Welch, J; Fogel, S; Buchman, C; Karin, M

    1989-01-01

    The yeast CUP1 gene codes for a copper-binding protein similar to metallothionein. Copper sensitive cup1s strains contain a single copy of the CUP1 locus. Resistant strains (CUP1r) carry 12 or more multiple tandem copies. We isolated 12 ethyl methane sulfonate-induced copper sensitive mutants in a wild-type CUP1r parental strain, X2180-1A. Most mutants reduce the copper resistance phenotype only slightly. However, the mutant cup2 lowers resistance by nearly two orders of magnitude. We cloned ...

  20. Laser-induced speckle scatter patterns in Bacillus colonies

    Directory of Open Access Journals (Sweden)

    Huisung eKim

    2014-10-01

    Full Text Available Label-free bacterial colony phenotyping technology called BARDOT (BActerial Rapid Detection using Optical scattering Technology provided successful classification of several different bacteria at the genus, species, and serovar level. Recent experiments with colonies of Bacillus species provided strikingly different characteristics of elastic light scatter (ELS patterns, which were comprised of random speckles compared to other bacteria, which are dominated by concentric rings and spokes. Since this laser-based optical sensor interrogates the whole volume of the colony, 3-D information of micro- and macro-structures are all encoded in the far-field scatter patterns. Here, we present a theoretical model explaining the underlying mechanism of the speckle formation by the colonies from Bacillus species. Except for Bacillus polymyxa, all Bacillus spp. produced random bright spots on the imaging plane, which presumably dependent on the cellular and molecular organization and content within the colony. Our scatter model-based analysis revealed that colony spread resulting in variable surface roughness can modify the wavefront of the scatter field. As the center diameter of the Bacillus spp. colony grew from 500 μm to 900 μm, average speckles area decreased 2-fold and the number of small speckles increased 7-fold. In conclusion, as Bacillus colony grows, the average speckle size in the scatter pattern decreases and the number of smaller speckle increases due to the swarming growth characteristics of bacteria within the colony.

  1. Between science and industry-applied yeast research.

    Science.gov (United States)

    Korhola, Matti

    2018-03-01

    I was fortunate to enter yeast research at the Alko Research Laboratories with a strong tradition in yeast biochemistry and physiology studies. At the same time in the 1980s there was a fundamental or paradigm change in molecular biology research with discoveries in DNA sequencing and other analytical and physical techniques for studying macromolecules and cells. Since that time biotechnological research has expanded the traditional fermentation industries to efficient production of industrial and other enzymes and specialty chemicals. Our efforts were directed towards improving the industrial production organisms: minerals enriched yeasts (Se, Cr, Zn) and high glutathione content yeast, baker´s, distiller´s, sour dough and wine yeasts, and the fungal Trichoderma reesei platform for enzyme production. I am grateful for the trust of my colleagues in several leadership positions at the Alko Research Laboratories, Yeast Industry Platform and at the international yeast community.

  2. The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yiwei; Gulis, Galina; Buckner, Scott; Johnson, P. Connor; Sullivan, Daniel [Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 (United States); Busenlehner, Laura [Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487 (United States); Marcus, Stevan, E-mail: smarcus@bama.ua.edu [Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2010-08-20

    Research highlights: {yields} Rotenone induces generation of ROS and mitochondrial fragmentation in fission yeast. {yields} The MAPK Pmk1 and PKA are required for rotenone resistance in fission yeast. {yields} Pmk1 and PKA are required for ROS clearance in rotenone treated fission yeast cells. {yields} PKA plays a role in ROS clearance under normal growth conditions in fission yeast. -- Abstract: Rotenone is a widely used pesticide that induces Parkinson's disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death of dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.

  3. The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Wang, Yiwei; Gulis, Galina; Buckner, Scott; Johnson, P. Connor; Sullivan, Daniel; Busenlehner, Laura; Marcus, Stevan

    2010-01-01

    Research highlights: → Rotenone induces generation of ROS and mitochondrial fragmentation in fission yeast. → The MAPK Pmk1 and PKA are required for rotenone resistance in fission yeast. → Pmk1 and PKA are required for ROS clearance in rotenone treated fission yeast cells. → PKA plays a role in ROS clearance under normal growth conditions in fission yeast. -- Abstract: Rotenone is a widely used pesticide that induces Parkinson's disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death of dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.

  4. Yeast-based biosensors: design and applications.

    Science.gov (United States)

    Adeniran, Adebola; Sherer, Michael; Tyo, Keith E J

    2015-02-01

    Yeast-based biosensing (YBB) is an exciting research area, as many studies have demonstrated the use of yeasts to accurately detect specific molecules. Biosensors incorporating various yeasts have been reported to detect an incredibly large range of molecules including but not limited to odorants, metals, intracellular metabolites, carcinogens, lactate, alcohols, and sugars. We review the detection strategies available for different types of analytes, as well as the wide range of output methods that have been incorporated with yeast biosensors. We group biosensors into two categories: those that are dependent upon transcription of a gene to report the detection of a desired molecule and those that are independent of this reporting mechanism. Transcription-dependent biosensors frequently depend on heterologous expression of sensing elements from non-yeast organisms, a strategy that has greatly expanded the range of molecules available for detection by YBBs. Transcription-independent biosensors circumvent the problem of sensing difficult-to-detect analytes by instead relying on yeast metabolism to generate easily detected molecules when the analyte is present. The use of yeast as the sensing element in biosensors has proven to be successful and continues to hold great promise for a variety of applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  5. Coalescing colony model: Mean-field, scaling, and geometry

    Science.gov (United States)

    Carra, Giulia; Mallick, Kirone; Barthelemy, Marc

    2017-12-01

    We analyze the coalescing model where a `primary' colony grows and randomly emits secondary colonies that spread and eventually coalesce with it. This model describes population proliferation in theoretical ecology, tumor growth, and is also of great interest for modeling urban sprawl. Assuming the primary colony to be always circular of radius r (t ) and the emission rate proportional to r (t) θ , where θ >0 , we derive the mean-field equations governing the dynamics of the primary colony, calculate the scaling exponents versus θ , and compare our results with numerical simulations. We then critically test the validity of the circular approximation for the colony shape and show that it is sound for a constant emission rate (θ =0 ). However, when the emission rate is proportional to the perimeter, the circular approximation breaks down and the roughness of the primary colony cannot be discarded, thus modifying the scaling exponents.

  6. Inhibition of ribosomal RNA synthesis in yeast by ionizing radiations

    Energy Technology Data Exchange (ETDEWEB)

    Weber, K; Kiefer, J [Giessen Univ. (Germany, F.R.). Strahlenzentrum

    1984-12-01

    Synthesis of ribosomal RNA(r-RNA) was measured for 1 h after exposure of Saccharomyces cerevisiae to ..gamma..-rays, X-rays or ..cap alpha.. particles. ..gamma..- or X-ray induced transcription inhibition was always found to decrease exponentially with dose. D/sub 0/ values of 2150 or 1950 Gy were determined in wild-type cells, corresponding to a mean energy of about 60 eV per r-RNA gene. The finding of differential sensitivities of the two high molecular-weight r-RNA species which are cotranscribed from r-DNA is compatible with the existence of a transcription terminating mechanism. Cells from a mutant strain (rad-9), radiation sensitive to colony forming ability, showed an approximately equal sensitivity for transcription inhibition compared to the wild-type (D/sub 0/ (2095) = 2400 Gy). Inactivation of r-RNA synthesis in cells exposed to ..cap alpha..-particles at room-temperature showed a decreased sensitivity with higher particle fluences ('resistant tail'). This phenomenon was drastically reduced if the temperature during irradiation was lowered to 4/sup 0/C and completely abolished when dried cells were used. An inactivation cross-section for ..cap alpha..-particle induced transcription inhibition of about 0.02 ..mu..m/sup 2/ can be derived from the experimental data.

  7. Oral yeast colonization throughout pregnancy.

    Science.gov (United States)

    Rio, R; Simões-Silva, L; Garro, S; Silva, M-J; Azevedo, Á; Sampaio-Maia, B

    2017-03-01

    Recent studies suggest that placenta may harbour a unique microbiome that may have origin in maternal oral microbiome. Although the major physiological and hormonal adjustments observed in pregnant women lead to biochemical and microbiological modifications of the oral environment, very few studies evaluated the changes suffered by the oral microbiota throughout pregnancy. So, the aim of our study was to evaluate oral yeast colonization throughout pregnancy and to compare it with non-pregnant women. The oral yeast colonization was assessed in saliva of 30 pregnant and non-pregnant women longitudinally over a 6-months period. Demographic information was collected, a non-invasive intra-oral examination was performed and saliva flow and pH were determined. Pregnant and non-pregnant groups were similar regarding age and level of education. Saliva flow rate did not differ, but saliva pH was lower in pregnant than in non-pregnant women. Oral yeast prevalence was higher in pregnant than in non-pregnant women, either in the first or in the third trimester, but did not attain statistical significance. In individuals colonized with yeast, the total yeast quantification (Log10CFU/mL) increase from the 1st to the 3rd trimester in pregnant women, but not in non-pregnant women. Pregnancy may favour oral yeast growth that may be associated with an acidic oral environment.

  8. Biotechnological Applications of Dimorphic Yeasts

    Science.gov (United States)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  9. Electron transport chain in a thermotolerant yeast.

    Science.gov (United States)

    Mejía-Barajas, Jorge A; Martínez-Mora, José A; Salgado-Garciglia, Rafael; Noriega-Cisneros, Ruth; Ortiz-Avila, Omar; Cortés-Rojo, Christian; Saavedra-Molina, Alfredo

    2017-04-01

    Yeasts capable of growing and surviving at high temperatures are regarded as thermotolerant. For appropriate functioning of cellular processes and cell survival, the maintenance of an optimal redox state is critical of reducing and oxidizing species. We studied mitochondrial functions of the thermotolerant Kluyveromyces marxianus SLP1 and the mesophilic OFF1 yeasts, through the evaluation of its mitochondrial membrane potential (ΔΨ m ), ATPase activity, electron transport chain (ETC) activities, alternative oxidase activity, lipid peroxidation. Mitochondrial membrane potential and the cytoplasmic free Ca 2+ ions (Ca 2+ cyt) increased in the SLP1 yeast when exposed to high temperature, compared with the mesophilic yeast OFF1. ATPase activity in the mesophilic yeast diminished 80% when exposed to 40° while the thermotolerant SLP1 showed no change, despite an increase in the mitochondrial lipid peroxidation. The SLP1 thermotolerant yeast exposed to high temperature showed a diminution of 33% of the oxygen consumption in state 4. The uncoupled state 3 of oxygen consumption did not change in the mesophilic yeast when it had an increase of temperature, whereas in the thermotolerant SLP1 yeast resulted in an increase of 2.5 times when yeast were grown at 30 o , while a decrease of 51% was observed when it was exposed to high temperature. The activities of the ETC complexes were diminished in the SLP1 when exposed to high temperature, but also it was distinguished an alternative oxidase activity. Our results suggest that the mitochondria state, particularly ETC state, is an important characteristic of the thermotolerance of the SLP1 yeast strain.

  10. Hegemony and Accommodation in the History Curriculum in Colonial Botswana

    Science.gov (United States)

    Mafela, Lily

    2014-01-01

    A reanalysis of colonial education is necessary in order to highlight its multifaceted and hybrid nature in specific colonial contexts. Although in general, colonial education served the socio-political needs of the colonial machinery, the colonial government's hegemonic authority over the school curriculum did not operate as a totalising project.…

  11. Colonial Institutions

    DEFF Research Database (Denmark)

    McAtackney, Laura; Palmer, Russell

    2016-01-01

    and the USA which reveal that the study of colonial institutions should not be limited to the functional life of these institutions—or solely those that take the form of monumental architecture—but should include the long shadow of “imperial debris” (Stoler 2008) and immaterial institutions....

  12. [Genetic control of mitotic crossing-over in yeasts. III. Induction by 8-methoxypsoralen and long-wave UV irradiation (lambda=365 nm)].

    Science.gov (United States)

    Fedorova, I V; Marfin, S V

    1982-02-01

    The lethal effect of 8-methoxypsoralen (8-MOP) plus 365 nm light has been studied in haploid radiosensitive strains of Saccharomyces cerevisiae. The diploid of wild type and the diploid homozygous for the rad2 mutation (this mutation blocks the excision of UV-induced pyrimidine dimers) were more resistant to the lethal effect of 8-MOP plus 365 nm light than the haploid of wild type and rad2 haploid, respectively. The diploid homozygous for rad54 mutation (the mutation blocks the repair of double-strand breaks in DNA) was more sensitive than haploid rad54. The method of repeated irradiation allowed to study the capacity of radiosensitive diploids to remove monoadducts induced by 8-MOP in DNA. This process was very effective in diploids of wild type and in the rad54 rad54 diploid, while the rad2 rad2 diploid was characterized by nearly complete absence of monoadduct excision. The study of mitotic crossing over and mitotic segregation in yeast diploids, containing a pair of complementing alleles of the ade2 gene (red/pink) has shown a very high recombinogenic effect of 8-MOP plus 365 nm light. The rad2 mutation slightly increased the frequency of mitotic segregation and mitotic crossing over. The rad54 mutation decreased the frequency of mitotic segregation and entirely suppressed mitotic crossing over. The method of repeated irradiation showed that the cross-links, but not monoadducts, are the main cause of high recombinogenic effect of 8-MOP plus 365 nm light. The possible participation of different repair systems in recombinational processes induced by 8-MOP in yeast cells is discussed.

  13. Defining the pathogenesis of the human Atp12p W94R mutation using a Saccharomyces cerevisiae yeast model.

    Science.gov (United States)

    Meulemans, Ann; Seneca, Sara; Pribyl, Thomas; Smet, Joel; Alderweirldt, Valerie; Waeytens, Anouk; Lissens, Willy; Van Coster, Rudy; De Meirleir, Linda; di Rago, Jean-Paul; Gatti, Domenico L; Ackerman, Sharon H

    2010-02-05

    Studies in yeast have shown that a deficiency in Atp12p prevents assembly of the extrinsic domain (F(1)) of complex V and renders cells unable to make ATP through oxidative phosphorylation. De Meirleir et al. (De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, J., and Van Coster, R. (2004) J. Med. Genet. 41, 120-124) have reported that a homozygous missense mutation in the gene for human Atp12p (HuAtp12p), which replaces Trp-94 with Arg, was linked to the death of a 14-month-old patient. We have investigated the impact of the pathogenic W94R mutation on Atp12p structure/function. Plasmid-borne wild type human Atp12p rescues the respiratory defect of a yeast ATP12 deletion mutant (Deltaatp12). The W94R mutation alters the protein at the most highly conserved position in the Pfam sequence and renders HuAtp12p insoluble in the background of Deltaatp12. In contrast, the yeast protein harboring the corresponding mutation, ScAtp12p(W103R), is soluble in the background of Deltaatp12 but not in the background of Deltaatp12Deltafmc1, a strain that also lacks Fmc1p. Fmc1p is a yeast mitochondrial protein not found in higher eukaryotes. Tryptophan 94 (human) or 103 (yeast) is located in a positively charged region of Atp12p, and hence its mutation to arginine does not alter significantly the electrostatic properties of the protein. Instead, we provide evidence that the primary effect of the substitution is on the dynamic properties of Atp12p.

  14. Biodegradation of high concentrations of phenol by baker’s yeast in anaerobic sequencing batch reactor

    Directory of Open Access Journals (Sweden)

    Ali Asghar Najafpoor

    2015-06-01

    Full Text Available Background: Phenol, as a pure substance, is used in many fields because of its disinfectant, germicidal, local anesthetic, and peptizing properties. Aqueous solutions of phenol are produced as waste in industries and discharged into the environment. Therefore, elevated concentrations of phenol may be found in air or water because of industrial discharge or the use of phenolic products. Method: The strains of Saccharomyces cerevisiae used in this project were natural strains previously purchased from Razavy company. They were grown at 30°C on Petri plates containing yeast extract glucose (YGC and then purified by being spread onto new plates, and isolated colonies were obtained. These colonies provided the basis of selection. Prepared strains were applied in anaerobic sequencing batch reactors (ASBRs as first seed. The experiment conditions were optimized using response surface methodology (RSM. After the determined runs were performed using Design-Expert software, data were analyzed using mentioned software as well. Results: This study evaluated the capability of baker’s yeast to remove phenol in high concentrations. The tested strains showed excellent tolerance to phenol toxicity at concentrations up to 6100 mg/L. Study of the batch degradation process showed that the phenol removal rate could exceed 99.9% in 24 hours at a concentration of 1000 mg/L. The results showed catechol is the first intermediate product of phenol degradation. In survey results of the Design–Expert software, R2 and Adeq precision were 0.97 and 25.65, respectively. Conclusion: The results demonstrated that ASBR performs robustly under variable influent concentrations of inhibitory compounds. The high removal performance despite the high phenol concentration may be a result of reactor operating strategies. Based on the progressive increase of inlet phenol concentration, allowing for an enhanced biomass acclimation in a short time, results at the microbiological levels

  15. Total DNA of Glycyrrhiza uralensis transformed into Hansenula anomala by ion implantation:Preparing Glycyrrhizic acid in recombined yeasts

    International Nuclear Information System (INIS)

    Jin Xiang; Mao Peihong; Lu Jie; Ma Yuan

    2010-01-01

    Glycyrrhizic acid (GA) in Glycyrrhiza uralensis (G. uralensis) is physiologically active. In this study, the total DNA of wild G. uralensis was randomly transformed into Hansenula anomaly by implantation of low-energy Ar + and N + , to produce five recombinant yeast strains relating to biological synthesis of the GA or Glycyrrhetinic acid (GAs). After culturing in liquid medium for 96 h, the resultant GA, 18α-GAs and 18β-Gas were determined by reversed-phase high performance liquid chromatography (RP-HPLC), and the corresponding concentrations were 114.49, 0.56, and 0.81 mg·L -1 . After one hundred primers were analyzed with random amplified polymorphic DNA (RAPD), the seven different DNA fragments were produced by the N7059 strain of recombined yeasts, and, the polymerase chain reaction (PCR) verified that one of them came from the genome of G. uralensis, indicating a successful transfer of genetic information by ion implantation. (authors)

  16. Cellular radiation effects and hyperthermia: Cytokinetic investigations with stationary phase yeast cells

    International Nuclear Information System (INIS)

    Fingerhut, R.; Otto, F.; Oldiges, H.; Kiefer, J.

    1980-01-01

    Wild type diploid yeast, Saccharomyces cerevisiae strain 211, was subjected to 250 kV X-rays or 50 0 C heat treatment for 30 min or to a combination of both. X-ray exposure took place either in air or in nitrogen. Cell number, percentage of budding cells and cell cycle progression was followed for up to 12 h post irradiation. The distribution of cell cycle stages was determined by flow cytofluorometry. All treatments cause a retardation of cell division rate. Hyperthermia leads mainly to a lengthening of G 1 , whereas X-rays arrest the cells reversibly in G 2 . The effect of the combined treatment appears to be merely additive. No selective action of hyperthermia on hypoxic cells was found. (orig.) [de

  17. 21 CFR 866.2170 - Automated colony counter.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2170 Automated colony counter. (a) Identification. An automated colony counter is a mechanical device intended for medical...

  18. The formation and repair of cisplatin-DNA adducts in wild-type and cisplatin-resistant L1210 cells : comparison of immunocytochemical determination with detection in isolated DNA

    NARCIS (Netherlands)

    Blommaert, F.A.; Floot, B.G.J.; Dijk-Knijnenburg, H.C.M. van; Berends, F.; Baan, R.A.; Schornagel, J.H.; Engelse, L. den; Fichtinger-Schepman, A.M.J.

    1998-01-01

    We have studied the formation and repair of cisplatin-DNA adducts in wild-type mouse leukemia L1210/0 cells and in the sublines L1210/2 and L1210/5, which differ in cisplatin sensitivity. In a colony-formation assay these sublines were 9- and 22-fold more resistant compared to L1210/0, respectively.

  19. Novel pathways for ameliorating the fitness cost of gentamicin resistant small colony variants

    DEFF Research Database (Denmark)

    Vestergaard, Martin; Paulander, Wilhelm Erik Axel; Leng, Bingfeng

    2016-01-01

    Small colony variants (SCVs) of the human pathogen Staphylococcus aureus are associated with persistent infections. Phenotypically, SCVs are characterized by slow growth and they can arise upon interruption of the electron transport chain that consequently reduce membrane potential and thereby...... limit uptake of aminoglycosides (e.g., gentamicin). In this study, we have examined the pathways by which the fitness cost of SCVs can be ameliorated. Five gentamicin resistant SCVs derived from S. aureus JE2 were independently selected on agar plates supplemented with gentamicin. The SCVs carried...... mutations in the menaquinone and hemin biosynthesis pathways, which caused a significant reduction in exponential growth rates relative to wild type (WT; 0.59-0.72) and reduced membrane potentials. Fifty independent lineages of the low-fitness, resistant mutants were serially passaged for up to 500...

  20. Overexpression of the genes PDC1 and ADH1 activates glycerol conversion to ethanol in the thermotolerant yeast Ogataea (Hansenula) polymorpha.

    Science.gov (United States)

    Kata, Iwona; Semkiv, Marta V; Ruchala, Justyna; Dmytruk, Kostyantyn V; Sibirny, Andriy A

    2016-08-01

    Conversion of byproduct from biodiesel production glycerol to high-value compounds is of great importance. Ethanol is considered a promising product of glycerol bioconversion. The methylotrophic thermotolerant yeast Ogataea (Hansenula) polymorpha is of great interest for this purpose as the glycerol byproduct contains methanol and heavy metals as contaminants, and this yeast utilizes methanol and is relatively resistant to heavy metals. Besides, O. polymorpha shows robust growth on glycerol and produces ethanol from various carbon sources. The thermotolerance of this yeast is an additional advantage, allowing increased fermentation temperature to 45-48 °C, leading to increased rate of the fermentation process and a fall in the cost of distillation. The wild-type strain of O. polymorpha produces insignificant amounts of ethanol from glycerol (0.8 g/l). Overexpression of PDC1 coding for pyruvate decarboxylase enhanced ethanol production up to 3.1 g/l, whereas simultaneous overexpression of PDC1 and ADH1 (coding for alcohol dehydrogenase) led to further increase in ethanol production from glycerol. Moreover, the increased temperature of fermentation up to 45 °C stimulated the production of ethanol from glycerol used as the only carbon source up to 5.0 g/l, which exceeds the data obtained by methylotrophic yeast strains reported so far. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Inbred or Outbred? Genetic Diversity in Laboratory Rodent Colonies

    Science.gov (United States)

    Brekke, Thomas D.; Steele, Katherine A.; Mulley, John F.

    2017-01-01

    Nonmodel rodents are widely used as subjects for both basic and applied biological research, but the genetic diversity of the study individuals is rarely quantified. University-housed colonies tend to be small and subject to founder effects and genetic drift; so they may be highly inbred or show substantial genetic divergence from other colonies, even those derived from the same source. Disregard for the levels of genetic diversity in an animal colony may result in a failure to replicate results if a different colony is used to repeat an experiment, as different colonies may have fixed alternative variants. Here we use high throughput sequencing to demonstrate genetic divergence in three isolated colonies of Mongolian gerbil (Meriones unguiculatus) even though they were all established recently from the same source. We also show that genetic diversity in allegedly “outbred” colonies of nonmodel rodents (gerbils, hamsters, house mice, deer mice, and rats) varies considerably from nearly no segregating diversity to very high levels of polymorphism. We conclude that genetic divergence in isolated colonies may play an important role in the “replication crisis.” In a more positive light, divergent rodent colonies represent an opportunity to leverage genetically distinct individuals in genetic crossing experiments. In sum, awareness of the genetic diversity of an animal colony is paramount as it allows researchers to properly replicate experiments and also to capitalize on other genetically distinct individuals to explore the genetic basis of a trait. PMID:29242387

  2. Biosentinel: Improving Desiccation Tolerance of Yeast Biosensors for Deep-Space Missions

    Science.gov (United States)

    Dalal, Sawan; Santa Maria, Sergio R.; Liddell, Lauren; Bhattacharya, Sharmila

    2017-01-01

    BioSentinel is one of 13 secondary payloads to be deployed on Exploration Mission 1 (EM-1) in 2019. We will use the budding yeast Saccharomyces cerevisiae as a biosensor to determine how deep-space radiation affects living organisms and to potentially quantify radiation levels through radiation damage analysis. Radiation can damage DNA through double strand breaks (DSBs), which can normally be repaired by homologous recombination. Two yeast strains will be air-dried and stored in microfluidic cards within the payload: a wild-type control strain and a radiation sensitive rad51 mutant that is deficient in DSB repairs. Throughout the mission, the microfluidic cards will be rehydrated with growth medium and an indicator dye. Growth rates of each strain will be measured through LED detection of the reduction of the indicator dye, which correlates with DNA repair and the amount of radiation damage accumulated. Results from BioSentinel will be compared to analog experiments on the ISS and on Earth. It is well known that desiccation can damage yeast cells and decrease viability over time. We performed a screen for desiccation-tolerant rad51 strains. We selected 20 re-isolates of rad51 and ran a weekly screen for desiccation-tolerant mutants for five weeks. Our data shows that viability decreases over time, confirming previous research findings. Isolates L2, L5 and L14 indicate desiccation tolerance and are candidates for whole-genome sequencing. More time is needed to determine whether a specific strain is truly desiccation tolerant. Furthermore, we conducted an intracellular trehalose assay to test how intracellular trehalose concentrations affect or protect the mutant strains against desiccation stress. S. cerevisiae cell and reagent concentrations from a previously established intracellular trehalose protocol did not yield significant absorbance measurements, so we tested varying cell and reagent concentrations and determined proper concentrations for successful

  3. Yeast β-1,6-glucan is a primary target for the Saccharomyces cerevisiae K2 toxin.

    Science.gov (United States)

    Lukša, Juliana; Podoliankaitė, Monika; Vepštaitė, Iglė; Strazdaitė-Žielienė, Živilė; Urbonavičius, Jaunius; Servienė, Elena

    2015-04-01

    Certain Saccharomyces cerevisiae strains secrete different killer proteins of double-stranded-RNA origin. These proteins confer a growth advantage to their host by increasing its survival. K2 toxin affects the target cell by binding to the cell surface, disrupting the plasma membrane integrity, and inducing ion leakage. In this study, we determined that K2 toxin saturates the yeast cell surface receptors in 10 min. The apparent amount of K2 toxin, bound to a single cell of wild type yeast under saturating conditions, was estimated to be 435 to 460 molecules. It was found that an increased level of β-1,6-glucan directly correlates with the number of toxin molecules bound, thereby impacting the morphology and determining the fate of the yeast cell. We observed that the binding of K2 toxin to the yeast surface receptors proceeds in a similar manner as in case of the related K1 killer protein. It was demonstrated that the externally supplied pustulan, a poly-β-1,6-glucan, but not the glucans bearing other linkage types (such as laminarin, chitin, and pullulan) efficiently inhibits the K2 toxin killing activity. In addition, the analysis of toxin binding to the intact cells and spheroplasts confirmed that majority of K2 protein molecules attach to the β-1,6-glucan, rather than the plasma membrane-localized receptors. Taken together, our results reveal that β-1,6-glucan is a primary target of K2 toxin and is important for the execution of its killing property. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Life History Responses and Gene Expression Profiles of the Nematode Pristionchus pacificus Cultured on Cryptococcus Yeasts.

    Directory of Open Access Journals (Sweden)

    Gaurav V Sanghvi

    Full Text Available Nematodes, the earth's most abundant metazoa are found in all ecosystems. In order to survive in diverse environments, they have evolved distinct feeding strategies and they can use different food sources. While some nematodes are specialists, including parasites of plants and animals, others such as Pristionchus pacificus are omnivorous feeders, which can live on a diet of bacteria, protozoans, fungi or yeast. In the wild, P. pacificus is often found in a necromenic association with beetles and is known to be able to feed on a variety of microbes as well as on nematode prey. However, in laboratory studies Escherichia coli OP50 has been used as standard food source, similar to investigations in Caenorhabditis elegans and it is unclear to what extent this biases the obtained results and how relevant findings are in real nature. To gain first insight into the variation in traits induced by a non-bacterial food source, we study Pristionchus-fungi interactions under laboratory conditions. After screening different yeast strains, we were able to maintain P. pacificus for at least 50-60 generations on Cryptococcus albidus and Cryptococcus curvatus. We describe life history traits of P. pacificus on both yeast strains, including developmental timing, survival and brood size. Despite a slight developmental delay and problems to digest yeast cells, which are both reflected at a transcriptomic level, all analyses support the potential of Cryptococcus strains as food source for P. pacificus. In summary, our work establishes two Cryptococcus strains as alternative food source for P. pacificus and shows change in various developmental, physiological and morphological traits, including the transcriptomic profiles.

  5. Genomics and the making of yeast biodiversity.

    Science.gov (United States)

    Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P

    2015-12-01

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces cerevisiae; the common human commensal and opportunistic pathogen, Candida albicans; and over 1000 other known species (with more continuing to be discovered). Yeasts are found in every biome and continent and are more genetically diverse than angiosperms or chordates. Ease of culture, simple life cycles, and small genomes (∼10-20Mbp) have made yeasts exceptional models for molecular genetics, biotechnology, and evolutionary genomics. Here we discuss recent developments in understanding the genomic underpinnings of the making of yeast biodiversity, comparing and contrasting natural and human-associated evolutionary processes. Only a tiny fraction of yeast biodiversity and metabolic capabilities has been tapped by industry and science. Expanding the taxonomic breadth of deep genomic investigations will further illuminate how genome function evolves to encode their diverse metabolisms and ecologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Latin America: Essays Interpretating Colonial Legacy

    Directory of Open Access Journals (Sweden)

    María Pia López

    2013-12-01

    Full Text Available A large part of the Latin–American literature of the 19th and 20th century tried to deal with the national question intertwining different dimensions: the weight of colonial legacy, the cultural peculiarity of the nation and the inner relations between social classes and ethnic groups. Thinking the nation implied, in any case, to think the difference and the conflict with others, as well as the inner conflict and the logic of local colonialism. Analyzing some of these essays that played a central role in such process of recasting the origin of the nation, the author moves around three main axes: the formulation of dualist writings (colonial/national; white /indigenous; civilization/wilderness, the issue of language (the language inherited from the colonial experience versus the multilingual nature of indigenous Latin American societies, and the hypothesis about the birth of the nation – appointed to different groups – and its normal functioning as legitimization of the order sprung from independences.

  7. 21 CFR 866.2180 - Manual colony counter.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2180 Manual colony counter. (a) Identification. A manual colony counter is a device intended for medical purposes that consists...

  8. Full Data of Yeast Interacting Proteins Database (Original Version) - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Yeast Interacting Proteins Database Full Data of Yeast Interacting Proteins Database (Origin...al Version) Data detail Data name Full Data of Yeast Interacting Proteins Database (Original Version) DOI 10....18908/lsdba.nbdc00742-004 Description of data contents The entire data in the Yeast Interacting Proteins Database...eir interactions are required. Several sources including YPD (Yeast Proteome Database, Costanzo, M. C., Hoga...ematic name in the SGD (Saccharomyces Genome Database; http://www.yeastgenome.org /). Bait gene name The gen

  9. Induction of ploidy level increments in an asporogenous industrial strain of the yeast Saccaromyces cerevisiae by UV irradiation

    International Nuclear Information System (INIS)

    Sasaki, Takashi

    1992-01-01

    Cells of an asporogenous industrial strain of the yeast Saccaromyces cerevisiae were irradiated with UV light by using a method that was developed previously. This treatment gave rise to large-cell clones among the surviving cells, from which colonies consisting of cells with a normal morphology and a prototropic property were obtained. The large-cell trait of these was stably inheritable, with the cell volumes being about twice that of the parent for 7 years on a slant agar medium at 4C with repeated transfers. The cellular DNA content of these clones, in comparison to those of two authentic haploid strains, was determined by chemical analysis. The ratio of the DNA contents showed that the parent and its large-cell derivatives were a diploid and tetraploids, respectively. No abnormality was found in the chromosomal DNA patterns of the large-cell clones, at least as determined by agarose gel electrophoresis with a CHEF-DR II pulsed-field electrophoresis system. These findings led to the conclusion that the UV light method is applicable for inducing ploidy level increments in the widely used yeast species S. cerevisiae

  10. Characterization of two second-site mutations preventing wild type protein aggregation caused by a dominant negative PMA1 mutant.

    Directory of Open Access Journals (Sweden)

    Pilar Eraso

    Full Text Available The correct biogenesis and localization of Pma1 at the plasma membrane is essential for yeast growth. A subset of PMA1 mutations behave as dominant negative because they produce aberrantly folded proteins that form protein aggregates, which in turn provoke the aggregation of the wild type protein. One approach to understand this dominant negative effect is to identify second-site mutations able to suppress the dominant lethal phenotype caused by those mutant alleles. We isolated and characterized two intragenic second-site suppressors of the PMA1-D378T dominant negative mutation. We present here the analysis of these new mutations that are located along the amino-terminal half of the protein and include a missense mutation, L151F, and an in-frame 12bp deletion that eliminates four residues from Cys409 to Ala412. The results show that the suppressor mutations disrupt the interaction between the mutant and wild type enzymes, and this enables the wild type Pma1 to reach the plasma membrane.

  11. Colonial Army Formats in Africa and Post-Colonial Military Coups:

    African Journals Online (AJOL)

    BSOS USER

    The centralised and autocratic features of Caliphate rule were .... latter's participation in the affairs of their respective societies, and leadership ..... deployment of the army by the NPC for internal colonial-style repression duties in the Middle Belt ...

  12. Genomics and the making of yeast biodiversity

    NARCIS (Netherlands)

    Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P

    2015-01-01

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces

  13. Post-Colonialism Perspectives on Educational Competition

    Science.gov (United States)

    Yeh, Chuan-Rong

    2016-01-01

    Educational competition has always been the puzzle issue of educational researches. In this article, I analyze several aspects of educational competition within the perspective of post-colonialism discourse. In the political aspect, Taiwanese education is linked with political power, to present the post-colonial spirit by continuing dynastic…

  14. An Observational Study of Honey Bee Colony Winter Losses and Their Association with Varroa destructor, Neonicotinoids and Other Risk Factors

    Science.gov (United States)

    van der Zee, Romée; Gray, Alison; Pisa, Lennard; de Rijk, Theo

    2015-01-01

    This article presents results of an analysis of honey bee losses over the winter of 2011-2012 in the Netherlands, from a sample of 86 colonies, located at 43 apiaries. The apiaries were selected using spatially stratified random sampling. Colony winter loss data were collected and related to various measures of colony strength recorded in summer, as well as data from laboratory analysis of sample material taken from two selected colonies in each of the 43 apiaries. The logistic regression model which best explained the risk of winter loss included, in order of statistical importance, the variables (1) Varroa destructor mite infestation rate in October 2011, (2) presence of the cyano-substituted neonicotinoids acetamiprid or thiacloprid in the first 2 weeks of August 2011 in at least one of the honey bee matrices honey, bees or bee bread (pollen), (3) presence of Brassica napus (oilseed rape) or Sinapis arvensis (wild mustard) pollen in bee bread in early August 2011, and (4) a measure of the unexplained winter losses for the postal code area where the colonies were located, obtained from a different dataset. We consider in the discussion that reduced opportunities for foraging in July and August because of bad weather may have added substantially to the adverse effects of acetamiprid and thiacloprid. A novel feature of this work is its use of postal code random effects from two other independent datasets collected in the annual national monitoring by questionnaires of winter losses of honey bees in the Netherlands. These were used to plan the sample selection and also in the model fitting of the data in this study. It should however be noted that the results of the present pilot study are based on limited data, which may consequently reveal strong factors but fail to demonstrate possible interaction effects. PMID:26154346

  15. An Observational Study of Honey Bee Colony Winter Losses and Their Association with Varroa destructor, Neonicotinoids and Other Risk Factors.

    Directory of Open Access Journals (Sweden)

    Romée van der Zee

    Full Text Available This article presents results of an analysis of honey bee losses over the winter of 2011-2012 in the Netherlands, from a sample of 86 colonies, located at 43 apiaries. The apiaries were selected using spatially stratified random sampling. Colony winter loss data were collected and related to various measures of colony strength recorded in summer, as well as data from laboratory analysis of sample material taken from two selected colonies in each of the 43 apiaries. The logistic regression model which best explained the risk of winter loss included, in order of statistical importance, the variables (1 Varroa destructor mite infestation rate in October 2011, (2 presence of the cyano-substituted neonicotinoids acetamiprid or thiacloprid in the first 2 weeks of August 2011 in at least one of the honey bee matrices honey, bees or bee bread (pollen, (3 presence of Brassica napus (oilseed rape or Sinapis arvensis (wild mustard pollen in bee bread in early August 2011, and (4 a measure of the unexplained winter losses for the postal code area where the colonies were located, obtained from a different dataset. We consider in the discussion that reduced opportunities for foraging in July and August because of bad weather may have added substantially to the adverse effects of acetamiprid and thiacloprid. A novel feature of this work is its use of postal code random effects from two other independent datasets collected in the annual national monitoring by questionnaires of winter losses of honey bees in the Netherlands. These were used to plan the sample selection and also in the model fitting of the data in this study. It should however be noted that the results of the present pilot study are based on limited data, which may consequently reveal strong factors but fail to demonstrate possible interaction effects.

  16. An Observational Study of Honey Bee Colony Winter Losses and Their Association with Varroa destructor, Neonicotinoids and Other Risk Factors.

    Science.gov (United States)

    van der Zee, Romée; Gray, Alison; Pisa, Lennard; de Rijk, Theo

    2015-01-01

    This article presents results of an analysis of honey bee losses over the winter of 2011-2012 in the Netherlands, from a sample of 86 colonies, located at 43 apiaries. The apiaries were selected using spatially stratified random sampling. Colony winter loss data were collected and related to various measures of colony strength recorded in summer, as well as data from laboratory analysis of sample material taken from two selected colonies in each of the 43 apiaries. The logistic regression model which best explained the risk of winter loss included, in order of statistical importance, the variables (1) Varroa destructor mite infestation rate in October 2011, (2) presence of the cyano-substituted neonicotinoids acetamiprid or thiacloprid in the first 2 weeks of August 2011 in at least one of the honey bee matrices honey, bees or bee bread (pollen), (3) presence of Brassica napus (oilseed rape) or Sinapis arvensis (wild mustard) pollen in bee bread in early August 2011, and (4) a measure of the unexplained winter losses for the postal code area where the colonies were located, obtained from a different dataset. We consider in the discussion that reduced opportunities for foraging in July and August because of bad weather may have added substantially to the adverse effects of acetamiprid and thiacloprid. A novel feature of this work is its use of postal code random effects from two other independent datasets collected in the annual national monitoring by questionnaires of winter losses of honey bees in the Netherlands. These were used to plan the sample selection and also in the model fitting of the data in this study. It should however be noted that the results of the present pilot study are based on limited data, which may consequently reveal strong factors but fail to demonstrate possible interaction effects.

  17. Yeasts preservation: alternatives for lyophilisation

    OpenAIRE

    Nyanga, Loveness K.; Nout, Martinus J. R.; Smid, Eddy J.; Boekhout, Teun; Zwietering, Marcel H.

    2012-01-01

    The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts during 6 months storage at 4 and 25 °C. None of the yeast cultures showed a significant loss in viable cell count during 6 months of storage at 4 °C upon lyophilisation and preservation in dry rice cak...

  18. Colony Development and Density-Dependent Processes in Breeding Grey Herons

    Directory of Open Access Journals (Sweden)

    Takeshi Shirai

    2013-01-01

    Full Text Available The density-dependent processes that limit the colony size of colonially breeding birds such as herons and egrets remain unclear, because it is difficult to monitor colonies from the first year of their establishment, and the most previous studies have considered mixed-species colonies. In the present study, single-species colonies of the Grey Heron (Ardea cinerea were observed from the first year of their establishment for 16 years in suburban Tokyo. Colony size increased after establishment, illustrating a saturation curve. The breeding duration (days from nest building to fledging by a pair increased, but the number of fledglings per nest decreased, with colony size. The reproductive season in each year began earlier, and there was greater variation in the timing of individual breeding when the colony size was larger. The prolonged duration until nestling feeding by early breeders of the colony suggests that herons at the beginning of the new breeding season exist in an unsteady state with one another, likely owing to interactions with immigrant individuals. Such density-dependent interference may affect reproductive success and limit the colony size of Grey Herons.

  19. Relationship of colony-stimulating activity to apparent kill of human colony-forming cells by irradiation and hydroxyurea

    International Nuclear Information System (INIS)

    Broxmeyer, H.E.; Galbraith, P.R.; Baker, F.L.

    1976-01-01

    Suspensions of human bone marrow cells were subjected to 137 Cs irradiation in vitro and then cultured in semisolid agar medium. Cultures of irradiated cells were stimulated with colony-stimulating activity (CSA) of different potencies, and it was found that the amount of stimulation applied to cultures influenced the apparent kill of colony-forming cells (CFC). It was also found that the effects of irradiation on colony formation were not confined to CFC kill since medium conditioned by cells during irradiation exhibited stimulatory and inhibitory properties after treatment by 600 and 1000 rads, respectively. Studies in which irradiated cells were pretreated with hydroxyurea indicated that CFC in the DNA synthetic phase of the cell cycle were particularly sensitive to low doses of irradiation. The proliferative capacity of CFC surviving 1000 rads was undiminished as judged by their ability to form large colonies. Estimates of CFC kill by hydroxyurea were also affected by the level of CSA

  20. Queen promiscuity lowers disease within honeybee colonies

    OpenAIRE

    Seeley, Thomas D; Tarpy, David R

    2006-01-01

    Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony with a genetically diverse worker force. The adaptive significance of polyandry by social insect queens remains an evolutionary puzzle. Using the honeybee (Apis mellifera), we tested the hypothesis that polyandry improves a colony's resistance to disease. We established colonies headed by queens that had been artificially inseminated by either one or 10 drones. ...

  1. Yeasts Diversity in Fermented Foods and Beverages

    Science.gov (United States)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  2. Effect of fluid motion on colony formation in Microcystis aeruginosa

    Directory of Open Access Journals (Sweden)

    Lin Li

    2013-01-01

    Full Text Available Microcystis aeruginosa, generally occurring in large colonies under natural conditions, mainly exists as single cells in laboratory cultures. The mechanisms involved in colony formation in Microcystis aeruginosa and their roles in algal blooms remain unknown. In this study, based on previous research findings that fluid motion may stimulate the colony formation in green algae, culture experiments were conducted under axenic conditions in a circular water chamber where the flow rate, temperature, light, and nutrients were controlled. The number of cells of Microcystis aeruginosa, the number of cells per colony, and the colonial characteristics in various growth phases were observed and measured. The results indicated that the colony formation in Microcystis aeruginosa, which was not observed under stagnant conditions, was evident when there was fluid motion, with the number of cells per largest colony reaching 120 and the proportion of the number of cells in colonial form to the total number of cells and the mean number of cells per colony reaching their peak values at a flow rate of 35 cm/s. Based on the analysis of colony formation process, fluid motion stimulates the colony formation in Microcystis aeruginosa in the lag growth phase, while flushes and disaggregates the colonies in the exponential growth phase. The stimulation effect in the lag growth phase may be attributable to the involvement of fluid motion in a series of physiological processes, including the uptake of trace elements and the synthesis and secretion of polysaccharides. In addition, the experimental groups exhibiting typical colonial characteristics in the lag growth phase were found to have higher cell biomass in the later phase.

  3. Investigating the effects of statins on cellular lipid metabolism using a yeast expression system.

    Directory of Open Access Journals (Sweden)

    Agata Leszczynska

    Full Text Available In humans, defects in lipid metabolism are associated with a number of severe diseases such as atherosclerosis, obesity and type II diabetes. Hypercholesterolemia is a primary risk factor for coronary artery disease, the major cause of premature deaths in developed countries. Statins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR, the key enzyme of the sterol synthesis pathway. Since yeast Saccharomyces cerevisiae harbours many counterparts of mammalian enzymes involved in lipid-synthesizing pathways, conclusions drawn from research with this single cell eukaryotic organism can be readily applied to higher eukaryotes. Using a yeast strain with deletions of both HMG1 and HMG2 genes (i.e. completely devoid of HMGR activity with introduced wild-type or mutant form of human HMGR (hHMGR gene we investigated the effects of statins on the lipid metabolism of the cell. The relative quantification of mRNA demonstrated a different effect of simvastatin on the expression of the wild-type and mutated hHMGR gene. GC/MS analyses showed a significant decrease of sterols and enhanced conversion of squalene and sterol precursors into ergosterol. This was accompanied by the mobilization of ergosterol precursors localized in lipid particles in the form of steryl esters visualized by confocal microscopy. Changes in the level of ergosterol and its precursors in cells treated with simvastatin depend on the mutation in the hHMGR gene. HPLC/MS analyses indicated a reduced level of phospholipids not connected with the mevalonic acid pathway. We detected two significant phenomena. First, cells treated with simvastatin develop an adaptive response compensating the lower activity of HMGR. This includes enhanced conversion of sterol precursors into ergosterol, mobilization of steryl esters and increased expression of the hHMGR gene. Second, statins cause a substantial drop in the level of glycerophospholipids.

  4. Structural organisation and dynamics in king penguin colonies

    Science.gov (United States)

    Gerum, Richard; Richter, Sebastian; Fabry, Ben; Le Bohec, Céline; Bonadonna, Francesco; Nesterova, Anna; Zitterbart, Daniel P.

    2018-04-01

    During breeding, king penguins do not build nests, however they show strong territorial behaviour and keep a pecking distance to neighbouring penguins. Penguin positions in breeding colonies are highly stable over weeks and appear regularly spaced, but thus far no quantitative analysis of the structural order inside a colony has been performed. In this study, we use the radial distribution function to analyse the spatial coordinates of penguin positions. Coordinates are obtained from aerial images of two colonies that were observed for several years. Our data demonstrate that the structural order in king penguin colonies resembles a 2D liquid of particles with a Lennard-Jones-type interaction potential. We verify this using a molecular dynamics simulation with thermally driven particles, whereby temperature corresponds to penguin movements, the energy well depth ɛ of the attractive potential corresponds to the strength of the colony-forming behaviour, and the repulsive zone corresponds to the pecking radius. We can recapitulate the liquid disorder of the colony, as measured by the radial distribution function, when the particles have a temperature of several (1.4–10) \

  5. Genetics of Yeasts

    Science.gov (United States)

    Querol, Amparo; Fernández-Espinar, M. Teresa; Belloch, Carmela

    The use of yeasts in biotechnology processes dates back to ancient days. Before 7000 BC, beer was produced in Sumeria. Wine was made in Assyria in 3500 BC, and ancient Rome had over 250 bakeries, which were making leavened bread by 100 BC. And milk has been made into Kefyr and Koumiss in Asia for many centuries (Demain, Phaff, & Kurtzman, 1999). However, the importance of yeast in the food and beverage industries was only realized about 1860, when their role in food manufacturing became evident.

  6. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  7. 21 CFR 172.590 - Yeast-malt sprout extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived from...

  8. Colonial army recruitment patterns and post-colonial Military Coups ...

    African Journals Online (AJOL)

    Since time immemorial, societies, states and state builders have been challenged and transformed by the need and quest for military manpower. European states relied on conscript armies to 'pacify' and retain colonies in parts of the non-European world. These facts underscore the meticulous attention paid by the British to ...

  9. An exposure study to assess the potential impact of fipronil in treated sunflower seeds on honey bee colony losses in Spain.

    Science.gov (United States)

    Bernal, José; Martin-Hernandez, Raquel; Diego, Juan C; Nozal, María J; Gozalez-Porto, Amelia V; Bernal, José L; Higes, Mariano

    2011-10-01

    There is great concern about the high losses and strong depopulation of honey bee colonies in some areas of Spain. Some beekeepers have suggested that sunflower seeds treated with the insecticide fipronil could be an important factor in causing those losses. Therefore, an in-depth field study has been carried out in two regions of Spain where sunflower production is intense (Cuenca and Andalucía) and where, for some crops and varieties, fipronil has been used as seed insecticide. Samples of adult bees and pollen were analysed for bee pathogens and pesticide residues respectively. Neither fipronil residues nor its metabolites were detected in any of the samples analysed, indicating that short-term or chronic exposure of bees to fipronil and/or its metabolites can be ruled out in the apiaries surveyed. Varroa destructor and Nosema ceranae were found to be very prevalent. The combination of the two pathogens could augment the risk of colony death in infected colonies, without fipronil residues exerting a significant effect in the given field conditions. Indeed, in this study the losses observed in apiaries located close to sunflower crops were similar to those in apiaries situated in forested areas with wild vegetation. Copyright © 2011 Society of Chemical Industry.

  10. Wild Maid, Wild Soul, A Wild Wild Weed: Niki de Saint Phalle’s Fierce Femininities, c. 1960-66

    Directory of Open Access Journals (Sweden)

    Amelia Jones

    2015-11-01

    Full Text Available Self-described as “wild maid,” “wild soul,” “a wild wild weed,” Niki de Saint Phalle narrated herself as artistic subject in a concerted way that stands out in the history of art: as both creatively driven and emotionally renegade and excessive, as both definitively woman and definitively artist. In this essay I take this special case of self-narration, and the particular power of St. Phalle’s work, as an opportunity to explore the relationship between.(auto-biography and artistic practice. The case of St. Phalle, a radical sculptor, performance artist, writer, and filmmaker, allows us to understand the exaggerated way in which women artists were until very recently forced to adopt “fierce femininities” to make a place for themselves as artists. In this way, I suggest that St. Phalle represents a key inspirational force opening the door for second wave feminism and the feminist art movement.

  11. Comet assay on tetraploid yeast cells

    DEFF Research Database (Denmark)

    Rank, Jette; Syberg, Kristian; Jensen, Klara

    2009-01-01

    Tetraploid yeast cells (Saccharomyces cerevisiae) were used in the comet assay with the intention of developing a new, fast and easy assay for detecting environmental genotoxic agents without using higher organisms. Two DNA-damaging chemicals, H2O2 and acrylamide, together with wastewater from...... three municipal treatment plants were tested for their effect on the yeast-cell DNA. The main problem with using yeast in the comet assay is the necessity to degrade the cell wall. This was achieved by using Zymolase 100 T twice during the procedure, since Zymolase 20 T did not open the cell wall....... Analytical problems that arose due to the small amount of DNA in the yeast nuclei in haploid and diploid cells, which contain 13 Mbp and 26 Mbp DNA per cell, respectively, were solved by using tetraploid yeast cells (52 Mbp) instead. DNA damage was shown after exposure to H2O2 and acrylamide. The lowest dose...

  12. Ant- and Ant-Colony-Inspired ALife Visual Art.

    Science.gov (United States)

    Greenfield, Gary; Machado, Penousal

    2015-01-01

    Ant- and ant-colony-inspired ALife art is characterized by the artistic exploration of the emerging collective behavior of computational agents, developed using ants as a metaphor. We present a chronology that documents the emergence and history of such visual art, contextualize ant- and ant-colony-inspired art within generative art practices, and consider how it relates to other ALife art. We survey many of the algorithms that artists have used in this genre, address some of their aims, and explore the relationships between ant- and ant-colony-inspired art and research on ant and ant colony behavior.

  13. The Role of Non-Foraging Nests in Polydomous Wood Ant Colonies.

    Science.gov (United States)

    Ellis, Samuel; Robinson, Elva J H

    2015-01-01

    A colony of red wood ants can inhabit more than one spatially separated nest, in a strategy called polydomy. Some nests within these polydomous colonies have no foraging trails to aphid colonies in the canopy. In this study we identify and investigate the possible roles of non-foraging nests in polydomous colonies of the wood ant Formica lugubris. To investigate the role of non-foraging nests we: (i) monitored colonies for three years; (ii) observed the resources being transported between non-foraging nests and the rest of the colony; (iii) measured the amount of extra-nest activity around non-foraging and foraging nests. We used these datasets to investigate the extent to which non-foraging nests within polydomous colonies are acting as: part of the colony expansion process; hunting and scavenging specialists; brood-development specialists; seasonal foragers; or a selfish strategy exploiting the foraging effort of the rest of the colony. We found that, rather than having a specialised role, non-foraging nests are part of the process of colony expansion. Polydomous colonies expand by founding new nests in the area surrounding the existing nests. Nests founded near food begin foraging and become part of the colony; other nests are not founded near food sources and do not initially forage. Some of these non-foraging nests eventually begin foraging; others do not and are abandoned. This is a method of colony growth not available to colonies inhabiting a single nest, and may be an important advantage of the polydomous nesting strategy, allowing the colony to expand into profitable areas.

  14. Revaluation of Waste Yeast from Beer Production

    Directory of Open Access Journals (Sweden)

    Nicoleta Suruceanu

    2013-11-01

    Full Text Available Brewing yeast is an important waste product from beer production. The valorification of slurry yeast mainly consists of separation of vitamins and important nitrogen compounds. The hops compounds, one of the most important raw materials in beer technology are removed beforehand valorification. The prenylflavonoids compounds from hops are important bioactive compounds that can be revaluation with proper technology. Revaluation of prenylflavonoids from waste yeast into dietary supplement, identification and quantification of xanthohumol by HPLC method. Waste yeast from brewery pilot plant of USAMV Cluj Napoca it was dried by atomization and the powder was analyzed on xanthohumol content by HPLC method. For quantification a calibration curve it was used. The process of drying by atomisation lead to a powder product. It was used malt dextrin powder for stabilisation. The final product it was encapsulated. The xanthohumol content of powdered yeast it was 1.94 µg/ml. In conclusion the slurry yeast from beer production it is an important source of prenylflavonoids compounds.

  15. Dynamic Metabolic Footprinting Reveals the Key Components of Metabolic Network in Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Chumnanpuen, Pramote; Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    2014-01-01

    relies on analysis at a single time point. Using direct infusion-mass spectrometry (DI-MS), we could observe the dynamic metabolic footprinting in yeast S. cerevisiae BY4709 (wild type) cultured on 3 different C-sources (glucose, glycerol, and ethanol) and sampled along 10 time points with 5 biological...... replicates. In order to analyze the dynamic mass spectrometry data, we developed the novel analysis methods that allow us to perform correlation analysis to identify metabolites that significantly correlate over time during growth on the different carbon sources. Both positive and negative electrospray...... reconstructed an interaction map that provides information of how different metabolic pathways have correlated patterns during growth on the different carbon sources....

  16. Between Past and Present: The Sociopsychological Constructs of Colonialism, Coloniality and Postcolonialism.

    Science.gov (United States)

    Tomicic, Ana; Berardi, Filomena

    2018-03-01

    If one of the major aspirations of postcolonial theory is to re-establish a balance in the relationship between the (former) colonizer and the colonized by engaging the voices of the "subaltern", and on the other hand to illuminate how power relations of the present are embedded in history (Mills 2007), we argue that important theoretical insights might inform research by anchoring post-colonial theory within a sociopsychological framework. While there is a growing corpus of sociopsychological research articles focusing on how major geopolitical events and historical processes bear on people's lives, we aim to investigate the theoretical potential of postcolonial theory within the disciplines aiming at a sociopsychological approach. By focusing on the social dynamics of power imbalances, post-colonial theory finds its operational meaning: the feelings stemming from actions committed in the past are indeed crucial in determining reparatory attitudes and policies towards members of former colonized groups. Firstly, drawing from the sociopsychological scientific production related to consequences of colonial past, seen in recent years as a growing research interest in the field, we will explore patterns and trends through a thematic analysis of literature. Social Psychology as well as adjacent disciplines can greatly benefit from this theoretical fertilization, especially in the way post-colonial ideologies relate to the symbolic promotion versus exclusion of indigenous culture (Sengupta et al., International Journal of Intercultural Relations, 36(4), 506-517, 2012). Furthermore, by comparing and contrasting the ideological cosmologies relating to this particular topic, this study aims to establish the state of knowledge in the field, to identify how research methods and thematic fields are paired, to find "gaps" and create spaces for research that become integrative of postcolonial theory. While focusing on academic production, we also hope to contribute to develop

  17. Aboveground Deadwood Deposition Supports Development of Soil Yeasts

    Directory of Open Access Journals (Sweden)

    Thorsten Wehde

    2012-12-01

    Full Text Available Unicellular saprobic fungi (yeasts inhabit soils worldwide. Although yeast species typically occupy defined areas on the biome scale, their distribution patterns within a single type of vegetation, such as forests, are more complex. In order to understand factors that shape soil yeast communities, soils collected underneath decaying wood logs and under forest litter were analyzed. We isolated and identified molecularly a total of 25 yeast species, including three new species. Occurrence and distribution of yeasts isolated from these soils provide new insights into ecology and niche specialization of several soil-borne species. Although abundance of typical soil yeast species varied among experimental plots, the analysis of species abundance and community composition revealed a strong influence of wood log deposition and leakage of organic carbon. Unlike soils underneath logs, yeast communities in adjacent areas harbored a considerable number of transient (phylloplane-related yeasts reaching 30% of the total yeast quantity. We showed that distinguishing autochthonous community members and species transient in soils is essential to estimate appropriate effects of environmental factors on soil fungi. Furthermore, a better understanding of species niches is crucial for analyses of culture-independent data, and may hint to the discovery of unifying patterns of microbial species distribution.

  18. [Distiller Yeasts Producing Antibacterial Peptides].

    Science.gov (United States)

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  19. Colony strength and queen replacement in Melipona marginata (Apidae: Meliponini

    Directory of Open Access Journals (Sweden)

    A. de M. P. Kleinert

    Full Text Available Physogastric queens of Melipona marginata were removed from their colonies in order to verify the acceptance of a new queen by workers. Colony strength was evaluated according to queen oviposition rate and comb diameters. Replacement was observed seven times. Its occurrence and speed related positively to colony strength, independently of queen's age. In weak colonies, queen replacement was observed only once, following colony population increase that occurred after introduction of combs from another colony. Worker oviposition after queen removal was observed three times: in a strong colony with virgin queens and males, and in two of the weak colonies. In the first two or three days of new queen oviposition, during which most of the eggs were eaten by the queen, worker oviposition preceded almost all provisioning and oviposition processes (POPs. After this period, worker oviposition decreased until it reached around 25% of the POPs. Daily oviposition rate of young queens decreased or was even interrupted by hatching of their first brood.

  20. Made for Each Other: Ascomycete Yeasts and Insects.

    Science.gov (United States)

    Blackwell, Meredith

    2017-06-01

    Fungi and insects live together in the same habitats, and many species of both groups rely on each other for success. Insects, the most successful animals on Earth, cannot produce sterols, essential vitamins, and many enzymes; fungi, often yeast-like in growth form, make up for these deficits. Fungi, however, require constantly replenished substrates because they consume the previous ones, and insects, sometimes lured by volatile fungal compounds, carry fungi directly to a similar, but fresh, habitat. Yeasts associated with insects include Ascomycota (Saccharomycotina, Pezizomycotina) and a few Basidiomycota. Beetles, homopterans, and flies are important associates of fungi, and in turn the insects carry yeasts in pits, specialized external pouches, and modified gut pockets. Some yeasts undergo sexual reproduction within the insect gut, where the genetic diversity of the population is increased, while others, well suited to their stable environment, may never mate. The range of interactions extends from dispersal of yeasts on the surface of insects (e.g., cactus- Drosophila -yeast and ephemeral flower communities, ambrosia beetles, yeasts with holdfasts) to extremely specialized associations of organisms that can no longer exist independently, as in the case of yeast-like symbionts of planthoppers. In a few cases yeast-like fungus-insect associations threaten butterflies and other species with extinction. Technical advances improve discovery and identification of the fungi but also inform our understanding of the evolution of yeast-insect symbioses, although there is much more to learn.

  1. Colonial Bilingual Heritage and Post-Colonial Myths in Cameroon's ...

    African Journals Online (AJOL)

    Thus, the study traces and shows that an uncritical support of the existing school bilingualism, a aspect of the general political objective of national unity and integration, hinges on a fictitious collective post-colonial dream about using the bilingual heritage of French and English, and the cultures that lie behind them, ...

  2. The growth of solar radiated yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, T.

    1995-09-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  3. The growth of solar radiated yeast

    Science.gov (United States)

    Kraft, Tyrone

    1995-01-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  4. California gull chicks raised near colony edges have elevated stress levels

    Science.gov (United States)

    Herring, Garth; Ackerman, Joshua T.

    2011-01-01

    Coloniality in nesting birds represents an important life history strategy for maximizing reproductive success. Birds nesting near the edge of colonies tend to have lower reproductive success than individuals nesting near colony centers, and offspring of edge-nesting parents may be impaired relative to those of central-nesting parents. We used fecal corticosterone metabolites in California gull chicks (Larus californicus) to examine whether colony size or location within the colony influenced a chick's physiological condition. We found that chicks being raised near colony edges had higher fecal corticosterone metabolite concentrations than chicks raised near colony centers, but that colony size (ranging from 150 to 11,554 nests) had no influence on fecal corticosterone levels. Fecal corticosterone metabolite concentrations also increased with chick age. Our results suggest that similarly aged California gull chicks raised near colony edges may be more physiologically stressed, as indicated by corticosterone metabolites, than chicks raised near colony centers.

  5. Experimental Study for Automatic Colony Counting System Based Onimage Processing

    Science.gov (United States)

    Fang, Junlong; Li, Wenzhe; Wang, Guoxin

    Colony counting in many colony experiments is detected by manual method at present, therefore it is difficult for man to execute the method quickly and accurately .A new automatic colony counting system was developed. Making use of image-processing technology, a study was made on the feasibility of distinguishing objectively white bacterial colonies from clear plates according to the RGB color theory. An optimal chromatic value was obtained based upon a lot of experiments on the distribution of the chromatic value. It has been proved that the method greatly improves the accuracy and efficiency of the colony counting and the counting result is not affected by using inoculation, shape or size of the colony. It is revealed that automatic detection of colony quantity using image-processing technology could be an effective way.

  6. Multi-Locus Next-Generation Sequence Typing of DNA Extracted From Pooled Colonies Detects Multiple Unrelated Candida albicans Strains in a Significant Proportion of Patient Samples

    Directory of Open Access Journals (Sweden)

    Ningxin Zhang

    2018-06-01

    Full Text Available The yeast Candida albicans is an important opportunistic human pathogen. For C. albicans strain typing or drug susceptibility testing, a single colony recovered from a patient sample is normally used. This is insufficient when multiple strains are present at the site sampled. How often this is the case is unclear. Previous studies, confined to oral, vaginal and vulvar samples, have yielded conflicting results and have assessed too small a number of colonies per sample to reliably detect the presence of multiple strains. We developed a next-generation sequencing (NGS modification of the highly discriminatory C. albicans MLST (multilocus sequence typing method, 100+1 NGS-MLST, for detection and typing of multiple strains in clinical samples. In 100+1 NGS-MLST, DNA is extracted from a pool of colonies from a patient sample and also from one of the colonies. MLST amplicons from both DNA preparations are analyzed by high-throughput sequencing. Using base call frequencies, our bespoke DALMATIONS software determines the MLST type of the single colony. If base call frequency differences between pool and single colony indicate the presence of an additional strain, the differences are used to computationally infer the second MLST type without the need for MLST of additional individual colonies. In mixes of previously typed pairs of strains, 100+1 NGS-MLST reliably detected a second strain. Inferred MLST types of second strains were always more similar to their real MLST types than to those of any of 59 other isolates (22 of 31 inferred types were identical to the real type. Using 100+1 NGS-MLST we found that 7/60 human samples, including three superficial candidiasis samples, contained two unrelated strains. In addition, at least one sample contained two highly similar variants of the same strain. The probability of samples containing unrelated strains appears to differ considerably between body sites. Our findings indicate the need for wider surveys to

  7. Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade.

    Science.gov (United States)

    Urbina, Hector; Frank, Robert; Blackwell, Meredith

    2013-01-01

    The gut of wood-feeding insects is a microhabitat for a specialized community of microbes, including bacteria and several groups of eukaryotes such as nematodes, parabasalids and fungi. The characterization of gut yeast communities from a variety of insects has shown that certain yeasts often are associated with the insects. The gut of wood-feeding insects is rich in ascomycete yeasts and in particular xylose-fermenting (X-F) and assimilating yeasts have been consistently present in the gut of lignicolous insects. The objective of this study was the characterization of the yeast flora from the gut of the wood roach Cryptocercus sp. (Blattodea: Cryptocercidae). Five wood roaches were collected along the Appalachian Trail near the border between Tennessee and North Carolina, USA. We isolated 18 yeast strains from the wood roaches identified as Sugiyamaella paludigena and Sugiyamaella lignohabitans, xylose-assimilating yeasts, and Scheffersomyces cryptocercus (NRRL Y-48824(T) = CBS 12658) a new species of X-F yeast. The presence of X-F and certain non X-F yeasts in the gut of the subsocial wood roach Cryptocercus sp. extends the previous findings of associations between certain ascomycete yeasts and lignicolous insects. New combinations were made for 13 asexual members of the Sugiyamaella clade.

  8. Effect of increasing growth temperature on yeast fermentation ...

    African Journals Online (AJOL)

    The effect of increasing growth temperature on yeast fermentation was studied at approximately 5 oC intervals over a range of 18 – 37 oC, using one strain each of ale, lager and wine yeast. The ale and wine yeasts grew at all the temperatures tested, but lager yeast failed to grow at 37 oC. All these strains gave lower ...

  9. Yeasts preservation: alternatives for lyophilisation

    NARCIS (Netherlands)

    Nyanga, L.K.; Nout, M.J.R.; Smid, E.J.; Boekhout, T.; Zwietering, M.H.

    2012-01-01

    The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts

  10. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.

  11. Diversidad genética de levaduras aisladas a partir de uvas de Vitis vinifera ssp. Sylvestris (Gmelin Hegi en el área Euroasiática

    Directory of Open Access Journals (Sweden)

    Cordero-Bueso Gustavo

    2017-01-01

    Full Text Available Vitis vinifera L. ssp. Sylvestris(Gmelin Hegi is recognized as the dioecious parental generation of today's cultivars. Climatic change and the arrival in Europe of pathogens and pests have led it to be included on the IUCN Red List of Threatened Species in 1997. At best of our knowledge, no studies on microbial populations of grape-berry surfaces have been done. The present work has been focused on the study of yeast occurrence and diversity on grape-berries collected from wild vines. Final outputs have allowed: ito obtain precise information about yeast communities; ii to provide an objective framework for the classification of the broadest range of species according to their extinction risk; iii to select attractive yeast strains for their biotechnological potential, offering new opportunities to winemakers. Sampling plan was performed in Azerbaijan, Georgia, Italy, Romania and Spain. In all, 3180 yeast colonies were isolated and identified as belonging to 50 species, including Saccharomyces cerevisiae, by 26S rDNA D1/D2 domains and ITS region sequencing. Isolates of S. cerevisiaewere also analysed by SSR-PCR obtaining 163 different genotypes. This study highlights the biodiversity potential of pristine environments that still represent a fascinating source to face common problems in winemaking.

  12. Oral delivery of live yeast Debaryomyces hansenii modulates the main innate immune parameters and the expression of immune-relevant genes in the gilthead seabream (Sparus aurata L.).

    Science.gov (United States)

    Reyes-Becerril, Martha; Salinas, Irene; Cuesta, Alberto; Meseguer, José; Tovar-Ramirez, Dariel; Ascencio-Valle, Felipe; Esteban, Maria Angeles

    2008-12-01

    Microorganisms isolated from fish can be used as prophylactic tools for aquaculture in the form of probiotic preparations. The purpose of this study was to evaluate the effects of dietary administration of the live yeast Debaryomyces hansenii CBS 8339 on the gilthead seabream (Sparus aurata L.) innate immune responses. Seabream were fed control or D. hansenii-supplemented diets (10(6) colony forming units, CFU g(-1)) for 4 weeks. Humoral (seric alternative complement and peroxidase activities), and cellular (peroxidase, phagocytic, respiratory burst and cytotoxic activities) innate immune parameters and antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) were measured from serum, head-kidney leucocytes and liver, respectively, after 2 and 4 weeks of feeding. Expression levels of immune-associated genes, Hep, IgM, TCR-beta, NCCRP-1, MHC-II alpha, CSF-1R, C3, TNF-alpha and IL-1 beta, were also evaluated by real-time PCR in head-kidney, liver and intestine. Humoral immune parameters were not significantly affected by the dietary supplementation of yeast at any time of the experiment. On the other hand, D. hansenii administration significantly enhanced leucocyte peroxidase and respiratory burst activity at week 4. Phagocytic and cytotoxic activities had significantly increased by week 2 of feeding yeast but unchanged by week 4. A significant increase in liver SOD activity was observed at week 2 of feeding with the supplemented diet; however CAT activity was not affected by the dietary yeast supplement at any time of the experiment. Finally, the yeast supplemented diet down-regulated the expression of most seabream genes, except C3, in liver and intestine and up-regulated all of them in the head-kidney. These results strongly support the idea that live yeast Debaryomyces hansenii strain CBS 8339 can stimulate the innate immune parameters in seabream, especially at cellular level.

  13. Colony collapse disorder: a descriptive study.

    Directory of Open Access Journals (Sweden)

    Dennis Vanengelsdorp

    Full Text Available BACKGROUND: Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L. colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD because the main trait was a rapid loss of adult worker bees. We initiated a descriptive epizootiological study in order to better characterize CCD and compare risk factor exposure between populations afflicted by and not afflicted by CCD. METHODS AND PRINCIPAL FINDINGS: Of 61 quantified variables (including adult bee physiology, pathogen loads, and pesticide levels, no single measure emerged as a most-likely cause of CCD. Bees in CCD colonies had higher pathogen loads and were co-infected with a greater number of pathogens than control populations, suggesting either an increased exposure to pathogens or a reduced resistance of bees toward pathogens. Levels of the synthetic acaricide coumaphos (used by beekeepers to control the parasitic mite Varroa destructor were higher in control colonies than CCD-affected colonies. CONCLUSIONS/SIGNIFICANCE: This is the first comprehensive survey of CCD-affected bee populations that suggests CCD involves an interaction between pathogens and other stress factors. We present evidence that this condition is contagious or the result of exposure to a common risk factor. Potentially important areas for future hypothesis-driven research, including the possible legacy effect of mite parasitism and the role of honey bee resistance to pesticides, are highlighted.

  14. Iridovirus and microsporidian linked to honey bee colony decline.

    Science.gov (United States)

    Bromenshenk, Jerry J; Henderson, Colin B; Wick, Charles H; Stanford, Michael F; Zulich, Alan W; Jabbour, Rabih E; Deshpande, Samir V; McCubbin, Patrick E; Seccomb, Robert A; Welch, Phillip M; Williams, Trevor; Firth, David R; Skowronski, Evan; Lehmann, Margaret M; Bilimoria, Shan L; Gress, Joanna; Wanner, Kevin W; Cramer, Robert A

    2010-10-06

    In 2010 Colony Collapse Disorder (CCD), again devastated honey bee colonies in the USA, indicating that the problem is neither diminishing nor has it been resolved. Many CCD investigations, using sensitive genome-based methods, have found small RNA bee viruses and the microsporidia, Nosema apis and N. ceranae in healthy and collapsing colonies alike with no single pathogen firmly linked to honey bee losses. We used Mass spectrometry-based proteomics (MSP) to identify and quantify thousands of proteins from healthy and collapsing bee colonies. MSP revealed two unreported RNA viruses in North American honey bees, Varroa destructor-1 virus and Kakugo virus, and identified an invertebrate iridescent virus (IIV) (Iridoviridae) associated with CCD colonies. Prevalence of IIV significantly discriminated among strong, failing, and collapsed colonies. In addition, bees in failing colonies contained not only IIV, but also Nosema. Co-occurrence of these microbes consistently marked CCD in (1) bees from commercial apiaries sampled across the U.S. in 2006-2007, (2) bees sequentially sampled as the disorder progressed in an observation hive colony in 2008, and (3) bees from a recurrence of CCD in Florida in 2009. The pathogen pairing was not observed in samples from colonies with no history of CCD, namely bees from Australia and a large, non-migratory beekeeping business in Montana. Laboratory cage trials with a strain of IIV type 6 and Nosema ceranae confirmed that co-infection with these two pathogens was more lethal to bees than either pathogen alone. These findings implicate co-infection by IIV and Nosema with honey bee colony decline, giving credence to older research pointing to IIV, interacting with Nosema and mites, as probable cause of bee losses in the USA, Europe, and Asia. We next need to characterize the IIV and Nosema that we detected and develop management practices to reduce honey bee losses.

  15. Lipid engineering reveals regulatory roles for membrane fluidity in yeast flocculation and oxygen-limited growth

    Energy Technology Data Exchange (ETDEWEB)

    Degreif, Daniel [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Technical Univ. of Darmstadt (Germany); de Rond, Tristan [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States); Bertl, Adam [Technical Univ. of Darmstadt (Germany); Keasling, Jay D. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Technical Univ. of Denmark, Lyngby (Denmark); Budin, Itay [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States)

    2017-03-18

    Cells modulate lipid metabolism in order to maintain membrane homeostasis. In this paper, we use a metabolic engineering approach to manipulate the stoichiometry of fatty acid unsaturation, a regulator of cell membrane fluidity, in Saccharomyces cerevisiae. Unexpectedly, reduced lipid unsaturation triggered cell-cell adhesion (flocculation), a phenomenon characteristic of industrial yeast but uncommon in laboratory strains. We find that ER lipid saturation sensors induce expression of FLO1 – encoding a cell wall polysaccharide binding protein – independently of its canonical regulator. In wild-type cells, Flo1p-dependent flocculation occurs under oxygen-limited growth, which reduces unsaturated lipid synthesis and thus serves as the environmental trigger for flocculation. Transcriptional analysis shows that FLO1 is one of the most highly induced genes in response to changes in lipid unsaturation, and that the set of membrane fluidity-sensitive genes is globally activated as part of the cell's long-term response to hypoxia during fermentation. Finally, our results show how the lipid homeostasis machinery of budding yeast is adapted to carry out a broad response to an environmental stimulus important in biotechnology.

  16. Colony form variation of Bacillus pumilus E601 after cultured and neutron irradiation

    International Nuclear Information System (INIS)

    Chen Xiaoming; Wei Baoli; Zhang Jianguo

    2008-01-01

    The distribution of two colony forms of Bacillus pumilus E601 and the effect of neutron irradiation on the colony form were reported. The translucent and opaque colonies were cultured several generations to observe the proportion of two form colonies. The spores of opaque colony were irradiated at 80, 800 and 2000 Gy of fast neutron from CFBR-II pulse pile, and the survivors of opaque colony were irradiated again at the same doses. The results showed that: (1) Bacillus pumilus E601 observed two types of colony form: translucent and opaque colony; (2) the translucent colony could produce both translucent and opaque colonies in equal, while the opaque colony couldn't produce translucent colony generally; (3) neutron irradiation could affect the colony form distribution. The ratio of survival translucent colony was increased with the increase of the first neutron irradiation doses, and the second neutron irradiation also increased the ratio of translucent colony. It was concluded that the instability of translucent colony was the main reason to produce two colony forms of Bacillus pumilus E601. The strain of translucent colony had a stronger ability to resist neutron irradiation than the opaque colony. (authors)

  17. Colony mapping: A new technique for monitoring crevice-nesting seabirds

    Science.gov (United States)

    Renner, H.M.; Renner, M.; Reynolds, J.H.; Harping, A.M.A.; Jones, I.L.; Irons, D.B.; Byrd, G.V.

    2006-01-01

    Monitoring populations of auklets and other crevice-nesting seabirds remains problematic, although numerous methods have been attempted since the mid-1960s. Anecdotal evidence suggests several large auklet colonies have recently decreased in both abundance and extent, concurrently with vegetation encroachment and succession. Quantifying changes in the geographical extent of auklet colonies may be a useful alternative to monitoring population size directly. We propose a standardized method for colony mapping using a randomized systematic grid survey with two components: a simple presence/absence survey and an auklet evidence density survey. A quantitative auklet evidence density index was derived from the frequency of droppings and feathers. This new method was used to map the colony on St. George Island in the southeastern Bering Sea and results were compared to previous colony mapping efforts. Auklet presence was detected in 62 of 201 grid cells (each grid cell = 2500 m2) by sampling a randomly placed 16 m2 plot in each cell; estimated colony area = 155 000 m2. The auklet evidence density index varied by two orders of magnitude across the colony and was strongly correlated with means of replicated counts of birds socializing on the colony surface. Quantitatively mapping all large auklet colonies is logistically feasible using this method and would provide an important baseline for monitoring colony status. Regularly monitoring select colonies using this method may be the best means of detecting changes in distribution and population size of crevice-nesting seabirds. ?? The Cooper Ornithological Society 2006.

  18. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Science.gov (United States)

    Bellon, Jennifer R; Schmid, Frank; Capone, Dimitra L; Dunn, Barbara L; Chambers, Paul J

    2013-01-01

    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  19. Deconstructive Pedagogy and Ideological Demystification in Post-Colonial Pakistan

    Science.gov (United States)

    Mansoor, Asma; Malik, Samina

    2016-01-01

    With post-colonial Pakistan inheriting the British colonial ideological and governmental apparatus, the English literature curriculum implemented at the university level in Pakistan carried the interpellatory baggage of its colonial past. Our interdisciplinary exploration focuses on using deconstructive pedagogy to demystify and subvert the…

  20. Induction of pure and sectored mutant clones in excision-proficient and deficient strains of yeast.

    Science.gov (United States)

    Eckardt, F; Haynes, R H

    1977-06-01

    We have found that UV-induced mutation frequency in a forward non-selective assay system (scoring white adex ade2 double auxotroph mutants among the red pigmented ade2 clones) increases linearly with dose up to a maximum frequency of about 3 X 10(-3) mutants per survivor and then declines in both RAD wild-type and rad2 excision deficient strains of Saccharomyces cerevisiae. Mutation frequencies of the RAD and the rad2 strains plotted against survival are nearly identical over the entire survival range. On this basis we conclude that unexcised pyrimidine dimers are the predominant type of pre-mutational lesions in both strains. In the RAD wild-type strain pure mutant clones outnumber sectors in a 10:1 ratio at all doses used; in rad2 this ratio varies from 1:1 at low doses up to 10:1 at high doses. As others have concluded for wild-type strains we find also in the rad2 strain that pure clone formation cannot be accounted for quantitatively by lethal sectoring events alone. We conclude that heteroduplex repair is a crucial step in pure mutant clone formation and we examine the plausibility of certain macromolecular mechanisms according to which heteroduplex repair may be coupled with replication, repair and sister strand exchange in yeast mutagenesis.

  1. Induction of pure and sectored mutant clones in excision-proficient and deficient strains of yeast

    International Nuclear Information System (INIS)

    Eckardt, F.; Haynes, R.H.

    1977-01-01

    It was found that UV-induced mutation frequency in a forward non-selective assay system (scoring white adex ade2 double auxotroph mutants among the red pigmented ade2 clones) increases linearly with dose up to a maximum frequency of about 3 x 10 -3 mutants per survivor and then declines in both RAD wild-type and rad2 excision deficient strains of Saccharomyces cerevisiae. Mutation frequencies of the RAD and the rad2 strains plotted against survival are nearly identical over the entire survival range. On this basis it is concluded that unexcised pyrimidine dimers are the predominant type of pre-mutational lesions in both strains. In the RAD wild-type strain pure mutant clones outnumber sectors in a 10:1 ratio at all doses used; in rad2 this ratio varies from 1:1 at low doses up to 10:1 at high doses. In agreement with conclusions of others, it was also found that for wild-type strains in the rad2 strain pure clone formation cannot be accounted for quantitatively by lethal sectoring events alone. It is concluded that heteroduplex repair is a crucial step in pure mutant clone formation and the plausibility of certain macromolecular mechanisms according to which heteroduplex repair may be coupled with replication, repair and sister strand exchange in yeast mutagenesis is examined

  2. PSI1 is responsible for the stearic acid enrichment that is characteristic of phosphatidylinositol in yeast

    DEFF Research Database (Denmark)

    Le Guédard, Marina; Bessoule, Jean-Jacques; Boyer, Valérie

    2009-01-01

    complete disappearance of stearic (but not of palmitic acid) at the sn-1 position of this phospholipid. Moreover, it was found that, whereas glycerol 3-phosphate, lysophosphatidic acid and 1-acyl lysophosphatidylinositol acyltransferase activities were similar in microsomal membranes isolated from wild......-acyl-1-lysolysophosphatidylinositol acyltransferase activity was recovered, and was accompanied by a strong increase in the stearic acid content of lysophosphatidylinositol. As previously suggested for phosphatidylinositol from animal cells (which contains almost exclusively stearic acid...... as the saturated fatty acid), the results obtained in the present study demonstrate that the existence of phosphatidylinositol species containing stearic acid in yeast results from a remodeling of neo-synthesized molecules of phosphatidylinositol....

  3. Yeast Interacting Proteins Database: YFR015C, YFR015C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...ression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into stationary ...tion, nitrogen starvation, environmental stress, and entry into stationary phase Rows with this bait as bait..., the more highly expressed yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental

  4. The involvement of topoisomerases and DNA polymerase I in the mechanism of induced thermal and radiation resistance in yeast

    International Nuclear Information System (INIS)

    Boreham, D.R.; Trivedi, A.; Weinberger, P.; Mitchel, R.E.

    1990-01-01

    Either an ionizing radiation exposure or a heat shock is capable of inducing both thermal tolerance and radiation resistance in yeast. Yeast mutants, deficient in topoisomerase I, in topoisomerase II, or in DNA polymerase I, were used to investigate the mechanism of these inducible resistances. The absence of either or both topoisomerase activities did not prevent induction of either heat or radiation resistance. However, if both topoisomerase I and II activities were absent, the sensitivity of yeast to become thermally tolerant (in response to a heat stress) was markedly increased. The absence of only topoisomerase I activity (top1) resulted in the constitutive expression of increased radiation resistance equivalent to that induced by a heat shock in wild-type cells, and the topoisomerase I-deficient cells were not further inducible by heat. This heat-inducible component of radiation resistance (or its equivalent constitutive expression in top1 cells) was, in turn, only a portion of the full response inducible by radiation. The absence of polymerase I activity had no detectable effect on either response. Our results indicate that the actual systems that confer resistance to heat or radiation are independent of either topoisomerase activity or DNA polymerase function, but suggest that topoisomerases may have a regulatory role during the signaling of these mechanisms. The results of our experiments imply that maintenance of correct DNA topology prevents induction of the heat-shock response, and that heat-shock induction of a component of the full radiation resistance in yeast may be the consequence of topoisomerase I inactivation

  5. Radiodiagnosis of yeast alveolits (a clinicoexperimental study)

    International Nuclear Information System (INIS)

    Amosov, I.S.; Smirnov, V.A.

    1984-01-01

    A clinicoroetgenological study was made of 115 workers engaged in the yeast production for different periods of time. Disorders of the respiration biomechanics were revealed depending on the period of service. These data were obtained as a result of the use of roentgenopneumopolygraphy. An experimental study was conducted to establish the nature of lesions in the bronchopulmonary system in allergic alveolitis. The effect of finely divided yeast dust on the bronchopulmonary system was studied on 132 guinea-pigs usinq microbronchography and morphological examination. As a result of the study it has been established that during the inhalation of yeast dust, notnceable dystrophy of the bronchi develops, the sizes of alveoli enlarge and part of them undergo emphysematous distension with the rupture of the interalveolar septa. In the course of the study, it has been shown that yeast dust is little agreessive, yeast alveolitis develops after many years of work. The clinical symptoms are non-specific and insignificant. X-ray and morphological changes are followed by the physical manifestations of yeast alveolitis

  6. The regulation of British colonial lunatic asylums and the origins of colonial psychiatry, 1860-1864.

    Science.gov (United States)

    Swartz, Sally

    2010-05-01

    In this paper I outline a brief period in the history of the British Empire, during which colonial lunatic asylum policy began to be formulated. I begin with a scandal that erupted in Jamaica and suggest that this set in motion processes that led to critical changes in asylum administration. The first of these processes was an audit of hospitals and asylums in the colonies. The results of the audit and the policy that emerged from it marked the beginning of systematic regulation of lunatic asylum practice across the British Empire. It revealed a formulation of policy that was intended to cut across the self-governing regimes that had up to this point been allowed to evolve. Drawing on the work of Michel Foucault and Nikolas Rose, I argue that the policy and the practices associated with it contribute to an understanding of the emergence of the psy-sciences in colonial settings. They illustrate the establishment of a panoptic gaze on previously neglected insane spaces. Systematic surveillance constituted government at a distance and made colonial lunacy administration a governable discursive space. The regulation of the medical officers, lunatic attendants, and hospital boards began the process of creating a professional psychiatric workforce. I conclude with a discussion of the implications and the mixed impact of this policy change for the mentally ill across the empire, over the ensuing decades.

  7. p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200.

    Science.gov (United States)

    Morselli, Eugenia; Shen, Shensi; Ruckenstuhl, Christoph; Bauer, Maria Anna; Mariño, Guillermo; Galluzzi, Lorenzo; Criollo, Alfredo; Michaud, Mickael; Maiuri, Maria Chiara; Chano, Tokuhiro; Madeo, Frank; Kroemer, Guido

    2011-08-15

    The tumor suppressor protein p53 tonically suppresses autophagy when it is present in the cytoplasm. This effect is phylogenetically conserved from mammals to nematodes, and human p53 can inhibit autophagy in yeast, as we show here. Bioinformatic investigations of the p53 interactome in relationship to the autophagy-relevant protein network underscored the possible relevance of a direct molecular interaction between p53 and the mammalian ortholog of the essential yeast autophagy protein Atg17, namely RB1-inducible coiled-coil protein 1 (RB1CC1), also called FAK family kinase-interacting protein of 200 KDa (FIP200). Mutational analyses revealed that a single point mutation in p53 (K382R) abolished its capacity to inhibit autophagy upon transfection into p53-deficient human colon cancer or yeast cells. In conditions in which wild-type p53 co-immunoprecipitated with RB1CC1/FIP200, p53 (K382R) failed to do so, underscoring the importance of the physical interaction between these proteins for the control of autophagy. In conclusion, p53 regulates autophagy through a direct molecular interaction with RB1CC1/FIP200, a protein that is essential for the very apical step of autophagy initiation.

  8. Heterologous expression of the yeast Tpo1p or Pdr5p membrane transporters in Arabidopsis confers plant xenobiotic tolerance.

    Science.gov (United States)

    Remy, Estelle; Niño-González, María; Godinho, Cláudia P; Cabrito, Tânia R; Teixeira, Miguel C; Sá-Correia, Isabel; Duque, Paula

    2017-07-03

    Soil contamination is a major hindrance for plant growth and development. The lack of effective strategies to remove chemicals released into the environment has raised the need to increase plant resilience to soil pollutants. Here, we investigated the ability of two Saccharomyces cerevisiae plasma-membrane transporters, the Major Facilitator Superfamily (MFS) member Tpo1p and the ATP-Binding Cassette (ABC) protein Pdr5p, to confer Multiple Drug Resistance (MDR) in Arabidopsis thaliana. Transgenic plants expressing either of the yeast transporters were undistinguishable from the wild type under control conditions, but displayed tolerance when challenged with the herbicides 2,4-D and barban. Plants expressing ScTPO1 were also more resistant to the herbicides alachlor and metolachlor as well as to the fungicide mancozeb and the Co 2+ , Cu 2+ , Ni 2+ , Al 3+ and Cd 2+ cations, while ScPDR5-expressing plants exhibited tolerance to cycloheximide. Yeast mutants lacking Tpo1p or Pdr5p showed increased sensitivity to most of the agents tested in plants. Our results demonstrate that the S. cerevisiae Tpo1p and Pdr5p transporters are able to mediate resistance to a broad range of compounds of agricultural interest in yeast as well as in Arabidopsis, underscoring their potential in future biotechnological applications.

  9. MALDI-TOF MS as a tool to identify foodborne yeasts and yeast-like fungi.

    Science.gov (United States)

    Quintilla, Raquel; Kolecka, Anna; Casaregola, Serge; Daniel, Heide M; Houbraken, Jos; Kostrzewa, Markus; Boekhout, Teun; Groenewald, Marizeth

    2018-02-02

    Since food spoilage by yeasts causes high economic losses, fast and accurate identifications of yeasts associated with food and food-related products are important for the food industry. In this study the efficiency of the matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify food related yeasts was evaluated. A CBS in-house MALDI-TOF MS database was created and later challenged with a blinded test set of 146 yeast strains obtained from food and food related products. Ninety eight percent of the strains were correctly identified with log score values>1.7. One strain, Mrakia frigida, gained a correct identification with a score value1.7. Ambiguous identifications were observed due to two incorrect reference mass spectra's found in the commercial database BDAL v.4.0, namely Candida sake DSM 70763 which was re-identified as Candida oleophila, and Candida inconspicua DSM 70631 which was re-identified as Pichia membranifaciens. MALDI-TOF MS can distinguish between most of the species, but for some species complexes, such as the Kazachstania telluris and Mrakia frigida complexes, MALDI-TOF MS showed limited resolution and identification of sibling species was sometimes problematic. Despite this, we showed that the MALDI-TOF MS is applicable for routine identification and validation of foodborne yeasts, but a further update of the commercial reference databases is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Leisure, economy and colonial urbanism: Darjeeling, 1835-1930.

    Science.gov (United States)

    Bhattacharya, Nandini

    2013-08-01

    This article posits that the hill station of Darjeeling was a unique form of colonial urbanism. It shifts historiographical interest from major urban centres in colonial India (such as Bombay or Calcutta) and instead attempts a greater understanding of smaller urban centres. In the process, it also interrogates the category of hill stations, which have been understood as exotic and scenic sites rather than as towns that were integral to the colonial economy. In arguing that hill stations, particularly Darjeeling, were not merely the scenic and healthy 'other' of the clamorous, dirty and diseased plains of India, it refutes suggestions that the 'despoiling' or overcrowding of Darjeeling was incremental to the purposes of its establishment. Instead, it suggests that Darjeeling was part of the colonial mainstream; its urbanization and inclusion into the greater colonial economy was effected from the time of its establishment. Therefore, a constant tension between its exotic and its functional elements persisted throughout.

  11. Evaluation of pollen collected by honey bee, Apis mellifera L. colonies at Fayoum Governorate, Egypt. Part 1: Botanical origin

    Directory of Open Access Journals (Sweden)

    Abdel-Halim M. Ismail

    2013-06-01

    Full Text Available The present work is the 1st part of 3-part study carried out at Fayoum Governorate, Egypt to evaluate the pollen species collected by honey bee, Apis mellifera L., colonies during two successive years, 2009 and 2010. Obtained results showed that, in 2009, total amount of trapped pollen (fresh weight was 2354.89 g/colony/year (mean 588.72 g/colony/season, with peaks in summer and spring, while declined in autumn and winter. Correlation between mean maximum and minimum temperatures and weekly pollen weights was highly positive, while it was insignificant for relative humidity. In 2010, total amount of trapped pollen decreased to 1635.36 g/colony/year (mean 408.84 g/colony/season. The largest amounts were collected in summer followed by winter then spring, while least ones were in autumn. Correlation was highly positive between weekly mean of pollen weights and maximum temperature, while it was insignificant for minimum temperature or relative humidity. There were 24 plant species of 16 botanical families from which bees collected pollen. These sources were ranked according to their predominant quantities in the 1st and 2nd years by two numbers, respectively as the following: sesame 1 and 1, maize 2 and 2, clover 3 and 7, sunflower 4 and 8, wild mustard 5 and 3, casuarina 6 and 13, olive 7 and 11, eucalyptus 8 and 4, pumpkin 9 and 9, cocklebur 10 and 5, date palm 11 and 10, chamomile 12 and 12, field bindweed 13 and 6, pepper 14 and 20, coriander 15 and 16, acacia 16 and 24, citrus 17 and 0, marigold 18 and 0, common red 19 and 17, Christ’s thorn 20 and 22, tooth pick 21 and 21, brood bean 22 and 15, belladonna 23 and 23, pea 0 and 14, marjoram 0 and 18 and fennel 0 and 19. The 1st five plants seem to be the main pollen sources for honey bee colonies and consequently pollen producing during the whole year in the tested region. These sources represented 75.61% and 66.95% of the total annual yield in the two surveyed years, respectively.

  12. Differential analysis of the inactivation of yeast cells induced by irradiation with various ionization densities

    International Nuclear Information System (INIS)

    Grundler, W.

    1979-03-01

    A quantitative investigation is presented on the radiation-induced inactivation of yeast cells in the first generations as a function of dose, repair, and various ionization densities. The study has been made to solve two main questions, i.e.: How do these cells reproduce, and how do they look like at the end of the investigation. Finding the answer to these questions, it was hoped, would lead to a description of survival in the colony test by defining the final fate of the cells which represent the stationary end state. The experiments were to clarify to what extent the dose-response curve yields only relatively general information on radiation-induced damage, or what kind of damage is mainly and best described. This supplementary information will help to improve the interpretation of many experiments having been made with this strain. (orig./MG) [de

  13. Is there a Space for Post-Colonial Theory in the Socio-Psychological Research on Consequences of Colonial Past?

    Science.gov (United States)

    Leone, Giovanna

    2018-04-26

    The focus of my commentary is two-fold. First, I discuss what appeared to me as the central theoretical focus of the article; the possibility to create a space, if at all, for integrating post-colonial theory into the broader research field of social and psychological studies of the consequences of colonial past. Second, I intend to show why, in my opinion, the methodological choices of the authors and the criteria adopted for corpus construction allowed for data that, although too thin to establishing the state of knowledge in the field of study on consequences of colonial past, is nevertheless very informative and thoughts-provoking. My conclusions suggest that this study is an innovative attempt at describing and grasping the results of a search guided by two among the more consolidated electronic datasets currently available for English-speaking scholars. However, this study may not easily understand which can be the space to integrate post-colonial theory in the field of research on consequences of colonial past. To better reach this aim, it is perhaps necessary to build another kind of corpus, open to other languages (starting from French) and focused also on other scientific products, as books or proceedings of congress. In addition, disciplinary boundaries have to be even more explored, starting from interdisciplinary studies on education and historical culture. In spite of these limitations, I am convinced that this innovative study by Tomicic and Berardi tackles issues of relevance to any serious effort towards reflecting on long-term consequences of colonial violence and opens up to valuable new research questions and methods, to be taken into serious account and further explored in future works.

  14. Yeasts are essential for cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  15. Mechanisms of uv mutagenesis in yeast

    International Nuclear Information System (INIS)

    Lawrence, C.W.; Christensen, R.; Schwartz, A.

    1982-01-01

    The uv mutagenesis in yeast depends on the function of the RAD6 locus, a gene that is also responsible for a substantial fraction of wild-type resistance, suggesting that this eukaryote may possess a misrepair mechanism analogous to that proposed for Escherichia coli. The molecular mechanism responsible for RAD6 repair or recovery is not yet known, but it is different from either excision or recombination-dependent repair, processes carried out by the other two main repair pathways in yeast. RAD6-dependent mutagenesis has been found to have the following characteristics. It is associated at best with only a small fraction of RAD6-dependent repair, the majority of the sensitivity of rad6 mutants being due to their lack of nonmutagenic repair. SRS2 metabolic suppressors restore a substantial fraction of uv resistance to rad6 mutants but do not restore their uv mutability. Strains containing mutations at loci (rev, umr) that are probably more directly involved in mutagenesis are only mildly sensitive, and there is a poor correlation between their sensitivity and mutational deficiency. The uv mutagenesis appears to require a large number of gene functions, perhaps ten or more. Where examined in detail, these genes have been found to be concerned in the production of only a specific range of mutational events, not all of them. Mating experiments have shown that a substantial fraction, probably 40% or more, of uv-induced mutations are untargeted, that is, occur in lesion-free regions of DNA. The uv irradiation, therefore, produces a general reduction in the normally high fidelity with which DNA is replicated on undamaged templates. It does not appear to be necessary for the causal lesion to be present in the same chromosome as the mutation it induces. The reduction in fidelity may be the consequence of the production of a diffusible factor in uv-irradiated cells, but definite evidence supporting this proposal has not yet been obtained

  16. Calorie Restriction-Mediated Replicative Lifespan Extension in Yeast Is Non-Cell Autonomous

    Science.gov (United States)

    Mei, Szu-Chieh; Brenner, Charles

    2015-01-01

    In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR) allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell. PMID:25633578

  17. Breeding Strategy To Generate Robust Yeast Starter Cultures for Cocoa Pulp Fermentations

    Science.gov (United States)

    Meersman, Esther; Steensels, Jan; Paulus, Tinneke; Struyf, Nore; Saels, Veerle; Mathawan, Melissa; Koffi, Jean; Vrancken, Gino

    2015-01-01

    Cocoa pulp fermentation is a spontaneous process during which the natural microbiota present at cocoa farms is allowed to ferment the pulp surrounding cocoa beans. Because such spontaneous fermentations are inconsistent and contribute to product variability, there is growing interest in a microbial starter culture that could be used to inoculate cocoa pulp fermentations. Previous studies have revealed that many different fungi are recovered from different batches of spontaneous cocoa pulp fermentations, whereas the variation in the prokaryotic microbiome is much more limited. In this study, therefore, we aimed to develop a suitable yeast starter culture that is able to outcompete wild contaminants and consistently produce high-quality chocolate. Starting from specifically selected Saccharomyces cerevisiae strains, we developed robust hybrids with characteristics that allow them to efficiently ferment cocoa pulp, including improved temperature tolerance and fermentation capacity. We conducted several laboratory and field trials to show that these new hybrids often outperform their parental strains and are able to dominate spontaneous pilot scale fermentations, which results in much more consistent microbial profiles. Moreover, analysis of the resulting chocolate showed that some of the cocoa batches that were fermented with specific starter cultures yielded superior chocolate. Taken together, these results describe the development of robust yeast starter cultures for cocoa pulp fermentations that can contribute to improving the consistency and quality of commercial chocolate production. PMID:26150457

  18. Calorie restriction-mediated replicative lifespan extension in yeast is non-cell autonomous.

    Directory of Open Access Journals (Sweden)

    Szu-Chieh Mei

    2015-01-01

    Full Text Available In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA, are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell.

  19. KONSTRUKSI MUTAN PROTEIN FOSFATASE ptc2D Saccharomyces cerevisiae DENGAN METODE PENGGANTIAN GEN TARGET DENGAN POLYMERASE CHAIN REACTION (PCR

    Directory of Open Access Journals (Sweden)

    Hermansyah

    2011-05-01

    Full Text Available Yeast Saccharomyces cerevisiae is an excellent model to studi genes function of eukarotic cells such as study of gene encoding protein phosphatase PTC2. Novel phenotypic caused by mutated gene is an important step to study function of gene. In this study constructed mutant of PTC2 gene encoding protein phosphatase. Method that used in this construction was replacement of target gene (PTC2 with auxotroph marker Candida albicans HIS3 by Polymer Chain Reaction (PCR or called by PCR-mediated disruption. Mutant colonies which grew in selective medium SC without histidine were confirmed by PCR amplification. By using 1% Agarose gel electrophoresis the result showed that size of ptc2D::CgHIS3 transformant was 3.52 kb while wild type strain was 2.9 kb, indicated that ptc2D::CgHIS3 has integrated on chromosome V replacing PTC2 wild type.

  20. Parent–offspring resemblance in colony-specific adult survival of cliff swallows

    Science.gov (United States)

    Brown, Charles R.; Roche, Erin A.; Brown, Mary Bomberger

    2015-01-01

    Survival is a key component of fitness. Species that occupy discrete breeding colonies with different characteristics are often exposed to varying costs and benefits associated with group size or environmental conditions, and survival is an integrative net measure of these effects. We investigated the extent to which survival probability of adult (≥1-year old) cliff swallows (Petrochelidon pyrrhonota) occupying different colonies resembled that of their parental cohort and thus whether the natal colony had long-term effects on individuals. Individuals were cross-fostered between colonies soon after hatching and their presence as breeders monitored at colonies in the western Nebraska study area for the subsequent decade. Colony-specific adult survival probabilities of offspring born and reared in the same colony, and those cross-fostered away from their natal colony soon after birth, were positively and significantly related to subsequent adult survival of the parental cohort from the natal colony. This result held when controlling for the effect of natal colony size and the age composition of the parental cohort. In contrast, colony-specific adult survival of offspring cross-fostered to a site was unrelated to that of their foster parent cohort or to the cohort of non-fostered offspring with whom they were reared. Adult survival at a colony varied inversely with fecundity, as measured by mean brood size, providing evidence for a survival–fecundity trade-off in this species. The results suggest some heritable variation in adult survival, likely maintained by negative correlations between fitness components. The study provides additional evidence that colonies represent non-random collections of individuals.