WorldWideScience

Sample records for wild plant pollination

  1. Wild bees enhance honey bees’ pollination of hybrid sunflower

    Science.gov (United States)

    Greenleaf, Sarah S.; Kremen, Claire

    2006-01-01

    Pollinators are required for producing 15–30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages. PMID:16940358

  2. Wild bees enhance honey bees' pollination of hybrid sunflower.

    Science.gov (United States)

    Greenleaf, Sarah S; Kremen, Claire

    2006-09-12

    Pollinators are required for producing 15-30% of the human food supply, and farmers rely on managed honey bees throughout the world to provide these services. Yet honey bees are not always the most efficient pollinators of all crops and are declining in various parts of the world. Crop pollination shortages are becoming increasingly common. We found that behavioral interactions between wild and honey bees increase the pollination efficiency of honey bees on hybrid sunflower up to 5-fold, effectively doubling honey bee pollination services on the average field. These indirect contributions caused by interspecific interactions between wild and honey bees were more than five times more important than the contributions wild bees make to sunflower pollination directly. Both proximity to natural habitat and crop planting practices were significantly correlated with pollination services provided directly and indirectly by wild bees. Our results suggest that conserving wild habitat at the landscape scale and altering selected farm management techniques could increase hybrid sunflower production. These findings also demonstrate the economic importance of interspecific interactions for ecosystem services and suggest that protecting wild bee populations can help buffer the human food supply from honey bee shortages.

  3. Pollination crisis in the butterfly-pollinated wild carnation Dianthus carthusianorum?

    Science.gov (United States)

    Bloch, Daniel; Werdenberg, Niels; Erhardt, Andreas

    2006-01-01

    Knowledge of pollination services provided by flower visitors is a prerequisite for understanding (co)evolutionary processes between plants and their pollinators, for evaluating the degree of specialization in the pollination system, and for assessing threats from a potential pollination crisis. This study examined pollination efficiency and visitation frequency of pollinators--key traits of pollinator-mediated fecundity--in a natural population of the wild carnation Dianthus carthusianorum. The five lepidopteran pollinator species observed differed in pollination efficiency and visitation frequency. Pollinator importance, the product of pollination efficiency and visitation frequency, was determined by the pollinator's visitation frequency. Pollination of D. carthusianorum depended essentially on only two of the five recorded pollinator species. Seed set was pollen-limited and followed a saturating dose-response function with a threshold of c. 50 deposited pollen grains for fruit development. Our results confirm that D. carthusianorum is specialized to lepidopteran pollinators, but is not particularly adapted to the two main pollinator species identified. The local persistence of D. carthusianorum is likely to be at risk as its reproduction depends essentially on only two of the locally abundant, but generally vulnerable, butterfly species.

  4. Landscape alteration and habitat modification: impacts on plant-pollinator systems

    OpenAIRE

    Vanbergen, Adam J.

    2014-01-01

    Insect pollinators provide an important ecosystem service to many crop species and underpin the reproductive assurance of many wild plant species. Multiple, anthropogenic pressures threaten insect pollinators. Land-use change and intensification alters the habitats and landscapes that provide food and nesting resources for pollinators. These impacts vary according to species traits, producing winners and losers, while the intrinsic robustness of plant-pollinator networks may provide stability...

  5. Cover Image Identification of Plant Species for Crop Pollinator Habitat Enhancement in the Northern Prairies

    Directory of Open Access Journals (Sweden)

    Diana Bizecki Robson

    2014-09-01

    Full Text Available Wild pollinators have a positive impact on the productivity of insect-pollinated crops. Consequently, landowners are being encouraged to maintain and grow wildflower patches to provide habitat for important pollinators. Research on plant-pollinator interaction matrices indicates that a small number of “core” plants provide a disproportionately high amount of pollen and nectar to insects. This matrix data can be used to help design wildflower plantings that provide optimal resources for desirable pollinators. Existing interaction matrices from three tall grass prairie preserves in the northern prairies were used to identify core plant species that are visited by wild pollinators of a common insect-pollinated crop, namely canola (Brassica napus L.. The wildflower preferences of each insect taxon were determined using quantitative insect visitation and floral abundance data. Phenology data were used to calculate the degree of floral synchrony between the wildflowers and canola. Using this information I ranked the 41 wildflowers that share insect visitors with canola according to how useful they are for providing pollinators with forage before and after canola flowers. The top five species were smooth blue aster (Symphyotrichum laeve (L. A. & D. Löve, stiff goldenrod (Solidago rigida L., wild bergamot (Monarda fistulosa L., purple prairie-clover (Dalea purpurea Vent. and Lindley’s aster (Symphyotrichum ciliolatum (Lindl. A. & D. Löve. By identifying the most important wild insects for crop pollination, and determining when there will be “pollen and nectar gaps”, appropriate plant species can be selected for companion plantings to increase pollinator populations and crop production.

  6. Predicting plant attractiveness to pollinators with passive crowdsourcing.

    Science.gov (United States)

    Bahlai, Christie A; Landis, Douglas A

    2016-06-01

    Global concern regarding pollinator decline has intensified interest in enhancing pollinator resources in managed landscapes. These efforts frequently emphasize restoration or planting of flowering plants to provide pollen and nectar resources that are highly attractive to the desired pollinators. However, determining exactly which plant species should be used to enhance a landscape is difficult. Empirical screening of plants for such purposes is logistically daunting, but could be streamlined by crowdsourcing data to create lists of plants most probable to attract the desired pollinator taxa. People frequently photograph plants in bloom and the Internet has become a vast repository of such images. A proportion of these images also capture floral visitation by arthropods. Here, we test the hypothesis that the abundance of floral images containing identifiable pollinator and other beneficial insects is positively associated with the observed attractiveness of the same species in controlled field trials from previously published studies. We used Google Image searches to determine the correlation of pollinator visitation captured by photographs on the Internet relative to the attractiveness of the same species in common-garden field trials for 43 plant species. From the first 30 photographs, which successfully identified the plant, we recorded the number of Apis (managed honeybees), non-Apis (exclusively wild bees) and the number of bee-mimicking syrphid flies. We used these observations from search hits as well as bloom period (BP) as predictor variables in Generalized Linear Models (GLMs) for field-observed abundances of each of these groups. We found that non-Apis bees observed in controlled field trials were positively associated with observations of these taxa in Google Image searches (pseudo-R (2) of 0.668). Syrphid fly observations in the field were also associated with the frequency they were observed in images, but this relationship was weak. Apis bee

  7. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Science.gov (United States)

    Davey, Matthew P.; Bruce, Toby J. A.; Caulfield, John C.; Furzer, Oliver J.; Reed, Alison; Robinson, Sophie I.; Miller, Elizabeth; Davis, Christopher N.; Pickett, John A.; Whitney, Heather M.; Glover, Beverley J.; Carr, John P.

    2016-01-01

    Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by ‘buzzing’ (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance

  8. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?

    Directory of Open Access Journals (Sweden)

    Simon C Groen

    2016-08-01

    Full Text Available Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV-infected tomato (Solanum lycopersicum and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris. Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by 'buzzing' (sonicating the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i as female parents, by increasing the probability that ovules are fertilized; ii as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen

  9. Biodiversity and pollination : Flowering plants and flower-visiting insects in agricultural and semi-natural landscapes

    NARCIS (Netherlands)

    Hoffmann, Frank

    2005-01-01

    The dissertation describes the effects of plant and insect diversity on pollination of wild plant species. As biodiversity is decreasing due to human activities, it is important to know the effects of lower species richness on ecosystem functioning. One such ecosystem function is pollination by

  10. Exotic plant species receive adequate pollinator service despite variable integration into plant-pollinator networks.

    Science.gov (United States)

    Thompson, Amibeth H; Knight, Tiffany M

    2018-05-01

    Both exotic and native plant species rely on insect pollinators for reproductive success, and yet few studies have evaluated whether and how exotic plant species receive services from native pollinators for successful reproduction in their introduced range. Plant species are expected to successfully reproduce in their exotic range if they have low reliance on animal pollinators or if they successfully integrate themselves into resident plant-pollinator networks. Here, we quantify the breeding system, network integration, and pollen limitation for ten focal exotic plant species in North America. Most exotic plant species relied on animal pollinators for reproduction, and these species varied in their network integration. However, plant reproduction was limited by pollen receipt for only one plant species. Our results demonstrate that even poorly integrated exotic plant species can still have high pollination service and high reproductive success. The comprehensive framework considered here provides a method to consider the contribution of plant breeding systems and the pollinator community to pollen limitation, and can be applied to future studies to provide a more synthetic understanding of the factors that determine reproductive success of exotic plant species.

  11. Floral Trait Variations Among Wild Tobacco Populations Influence the Foraging Behavior of Hawkmoth Pollinators

    Directory of Open Access Journals (Sweden)

    Alexander Haverkamp

    2018-02-01

    Full Text Available Most pollinators visit flowers in the search of nectar rewards. However, as the floral nectar can often not be directly detected by pollinators, many flower visitors use secondary metabolites such as odor- or taste-proxies to anticipate nectar quantity and quality. Plants might exploit these sensory inferences of the pollinator to increase their pollination rates without increasing their caloric investment into their floral rewards. Here we investigated the effects of natural variation in certain primary and secondary floral metabolites in three populations of the wild tobacco, Nicotiana attenuata, on the pollination behavior of the hawkmoth Manduca sexta. Although offering the same caloric value per flower, the plants of these populations differ in the compositions and concentrations of sugars within the nectar. Moreover, the flowers of these plants emitted highly contrasting levels of attractive floral volatiles (benzyl acetone, but did not differ in the amounts of defensive nectar metabolites (nicotine. In wind tunnel assays with M. sexta moths, plants from those populations that released the largest amount of benzyl acetone as well as those that had a higher ratio of nectar sucrose were more frequently visited and re-visited by the hawkmoth. High emissions of benzyl acetone additionally correlated with a higher time investment of the moths into individual flowers on each visit, leading to the largest foraging success of the moths on those flowers that were most strongly scented. We propose that it is the variation of flower metabolites and their detection by the pollinator rather than the actual caloric value of the nectar, which determines pollinator visitations to a certain flower population. Hence, plants could potentially create a specialist pollinator community by altering their floral signals, either by producing volatiles that pollinators prefer or by providing nectar sugars that pollinators are most sensitive to, while at the same

  12. Using Publicly Available Data to Quantify Plant-Pollinator Interactions and Evaluate Conservation Seeding Mixes in the Northern Great Plains.

    Science.gov (United States)

    Otto, C R V; O'Dell, S; Bryant, R B; Euliss, N H; Bush, R M; Smart, M D

    2017-06-01

    Concern over declining pollinators has led to multiple conservation initiatives for improving forage for bees in agroecosystems. Using data available through the Pollinator Library (npwrc.usgs.gov/pollinator/), we summarize plant-pollinator interaction data collected from 2012-2015 on lands managed by the U.S. Fish and Wildlife Service and private lands enrolled in U.S. Department of Agriculture conservation programs in eastern North Dakota (ND). Furthermore, we demonstrate how plant-pollinator interaction data from the Pollinator Library and seed cost information can be used to evaluate hypothetical seeding mixes for pollinator habitat enhancements. We summarize records of 314 wild bee and 849 honey bee (Apis mellifera L.) interactions detected on 63 different plant species. The wild bee observations consisted of 46 species, 15 genera, and 5 families. Over 54% of all wild bee observations were represented by three genera-Bombus, Lassioglossum, and Melissodes. The most commonly visited forbs by wild bees were Monarda fistulosa, Sonchus arvensis, and Zizia aurea. The most commonly visited forbs by A. mellifera were Cirsium arvense, Melilotus officinalis, and Medicago sativa. Among all interactions, 13% of A. mellifera and 77% of wild bee observations were made on plants native to ND. Our seed mix evaluation shows that mixes may often need to be tailored to meet the unique needs of wild bees and managed honey bees in agricultural landscapes. Our evaluation also demonstrates the importance of incorporating both biologic and economic information when attempting to design cost-effective seeding mixes for supporting pollinators in a critically important part of the United States. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  13. Climate-associated phenological advances in bee pollinators and bee-pollinated plants

    Science.gov (United States)

    Bartomeus, Ignasi; Ascher, John S.; Wagner, David; Danforth, Bryan N.; Colla, Sheila; Kornbluth, Sarah; Winfree, Rachael

    2011-01-01

    The phenology of many ecological processes is modulated by temperature, making them potentially sensitive to climate change. Mutualistic interactions may be especially vulnerable because of the potential for phenological mismatching if the species involved do not respond similarly to changes in temperature. Here we present an analysis of climate-associated shifts in the phenology of wild bees, the most important pollinators worldwide, and compare these shifts to published studies of bee-pollinated plants over the same time period. We report that over the past 130 y, the phenology of 10 bee species from northeastern North America has advanced by a mean of 10.4 ± 1.3 d. Most of this advance has taken place since 1970, paralleling global temperature increases. When the best available data are used to estimate analogous rates of advance for plants, these rates are not distinguishable from those of bees, suggesting that bee emergence is keeping pace with shifts in host-plant flowering, at least among the generalist species that we investigated. PMID:22143794

  14. Forest remnants enhance wild pollinator visits to cashew flowers and mitigate pollination deficit in NE Brazil

    Directory of Open Access Journals (Sweden)

    Breno Magalhães Freitas

    2014-02-01

    Full Text Available Pollination deficit could cause low yields in cashew (Anacardium occidentale and it is possible that deforestation surrounding cashew plantations may prevent effective pollinators from visiting cashew flowers and contribute to this deficit. In the present work, we investigated the proximity effect of small and large forest fragments on the abundance and flower visits by feral Apis mellifera and wild native pollinators to cashew flowers and their interactions with yield in cashew plantations. Cashew nut yield was highest when plantations bordered a small forest fragment and were close to the large forest fragment. Yield from plantations that did not border small forest fragments but were close to the large forest fragment did not differ to yield from plantations at a greater distance to the large forest fragment. Flower visits by wild native pollinators, mainly Trigona spinipes, were negatively affected by distance to the large forest remnant and their numbers were directly correlated to nut yield. The number of A. mellifera visiting cashew flowers did not change significantly with distance to forest fragments, nor was it correlated with yield. We conclude that increasing the number of wild pollinator visits may increase yield, and proximity to large forest fragments are important for this.

  15. Irrigation method does not affect wild bee pollinators of hybrid sunflower

    Directory of Open Access Journals (Sweden)

    Hillary Sardiñas

    2016-09-01

    Full Text Available Irrigation method has the potential to directly or indirectly influence populations of wild bee crop pollinators nesting and foraging in irrigated crop fields. The majority of wild bee species nest in the ground, and their nests may be susceptible to flooding. In addition, their pollination of crops can be influenced by nectar quality and quantity, which are related to water availability. To determine whether different irrigation methods affect crop pollinators, we compared the number of ground-nesting bees nesting and foraging in drip- and furrow-irrigated hybrid sunflower fields in the Sacramento Valley. We found that irrigation method did not impact wild bee nesting rates or foraging bee abundance or bee species richness. These findings suggest that changing from furrow irrigation to drip irrigation to conserve water likely will not alter hybrid sunflower crop pollination.

  16. Wild pollinators enhance oilseed rape yield in small-holder farming systems in China

    NARCIS (Netherlands)

    Zou, Yi; Xiao, Haijun; Bianchi, Felix J.J.A.; Jauker, Frank; Luo, Shudong; Werf, van der Wopke

    2017-01-01

    Background: Insect pollinators play an important role in crop pollination, but the relative contribution of wild pollinators and honey bees to pollination is currently under debate. There is virtually no information available on the strength of pollination services and the identity of pollination

  17. Dynamics of an ant-plant-pollinator model

    Science.gov (United States)

    Wang, Yuanshi; DeAngelis, Donald L.; Nathaniel Holland, J.

    2015-03-01

    In this paper, we consider plant-pollinator-ant systems in which plant-pollinator interaction and plant-ant interaction are both mutualistic, but there also exists interference of pollinators by ants. The plant-pollinator interaction can be described by a Beddington-DeAngelis formula, so we extend the formula to characterize plant-pollinator mutualisms, including the interference by ants, and form a plant-pollinator-ant model. Using dynamical systems theory, we show uniform persistence of the model. Moreover, we demonstrate conditions under which boundary equilibria are globally asymptotically stable. The dynamics exhibit mechanisms by which the three species could coexist when ants interfere with pollinators. We define a threshold in ant interference. When ant interference is strong, it can drive plant-pollinator mutualisms to extinction. Furthermore, if the ants depend on pollination mutualism for their persistence, then sufficiently strong ant interference could lead to their own extinction as well. Yet, when ant interference is weak, plant-ant and plant-pollinator mutualisms can promote the persistence of one another.

  18. Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project

    NARCIS (Netherlands)

    Potts, S.G.; Biesmeijer, J.C.; Bommarco, R.; Felicioli, A.; Fischer, M.; Jokinen, P.; Kleijn, D.; Klein, A.M.; Kunin, W.E.; Neumann, P.; Penev, L.D.; Petanidou, T.; Rasmont, P.; Roberts, S.P.M.; Smith, H.G.; Sorensen, P.B.; Steffan-Dewenter, I.; Vaissiere, B.E.; Vila, M.; Vujic, A.; Woyciechowski, M.; Zobel, M.; Settele, J.; Schweiger, O.

    2011-01-01

    Pollinating insects form a key component of European biodiversity, and provide a vital ecosystem service to crops and wild plants. There is growing evidence of declines in both wild and domesticated pollinators, and parallel declines in plants relying upon them. The STEP project (Status and Trends

  19. Integrating Studies on Plant-Pollinator and Plant-Herbivore Interactions

    NARCIS (Netherlands)

    Lucas-Barbosa, Dani

    2016-01-01

    Research on herbivore-induced plant defence and research on pollination ecology have had a long history of separation. Plant reproduction of most angiosperm species is mediated by pollinators, and the effects of herbivore-induced plant defences on pollinator behaviour have been largely neglected.

  20. Impact of Bee Species and Plant Density on Alfalfa Pollination and Potential for Gene Flow

    Directory of Open Access Journals (Sweden)

    Johanne Brunet

    2010-01-01

    Full Text Available In outcrossing crops like alfalfa, various bee species can contribute to pollination and gene flow in seed production fields. With the increasing use of transgenic crops, it becomes important to determine the role of these distinct pollinators on alfalfa pollination and gene flow. The current study examines the relative contribution of honeybees, three bumble bee species, and three solitary bee species to pollination and gene flow in alfalfa. Two wild solitary bee species and one wild bumble bee species were best at tripping flowers, while the two managed pollinators commonly used in alfalfa seed production, honeybees and leaf cutting bees, had the lowest tripping rate. Honeybees had the greatest potential for gene flow and risk of transgene escape relative to the other pollinators. For honeybees, gene flow and risk of transgene escape were not affected by plant density although for the three bumble bee species gene flow and risk of transgene escape were the greatest in high-density fields.

  1. Wildflower Plantings Do Not Compete With Neighboring Almond Orchards for Pollinator Visits.

    Science.gov (United States)

    Lundin, Ola; Ward, Kimiora L; Artz, Derek R; Boyle, Natalie K; Pitts-Singer, Theresa L; Williams, Neal M

    2017-06-01

    The engineering of flowering agricultural field borders has emerged as a research and policy priority to mitigate threats to pollinators. Studies have, however, rarely addressed the potential that flowering field borders might compete with neighboring crops for pollinator visits if they both are in bloom at the same time, despite this being a concern expressed by growers. We evaluated how wildflower plantings added to orchard borders in a large (512 ha) commercial almond orchard affected honey bee and wild bee visitation to orchard borders and the crop. The study was conducted over two consecutive seasons using three large (0.48 ha) wildflower plantings paired with control orchard borders in a highly simplified agricultural landscape in California. Honey bee (Apis mellifera L.) and wild bee visitation to wildflower plots were at least an order of magnitude higher than to control plots, but increased honey bee visitation to wildflower plots did not lead to any detectable shifts in honey bee visitation to almond flowers in the neighboring orchard. Wild bees were rarely observed visiting almond flowers irrespective of border treatment, indicating a limited short-term potential for augmenting crop pollination using wild bees in highly simplified agricultural landscapes. Although further studies are warranted on bee visitation and crop yield from spatially independent orchards, this study indicates that growers can support bees with alternative forage in almond orchards without risking competition between the wildflower plantings and the crop. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation

    Science.gov (United States)

    Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P.D.; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Westphal, Catrin; Potts, Simon G

    2015-01-01

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments. PMID:26079893

  3. Local Plant Diversity Across Multiple Habitats Supports a Diverse Wild Bee Community in Pennsylvania Apple Orchards.

    Science.gov (United States)

    Kammerer, Melanie A; Biddinger, David J; Rajotte, Edwin G; Mortensen, David A

    2016-02-01

    Wild pollinators supply essential, historically undervalued pollination services to crops and other flowering plant communities with great potential to ensure agricultural production against the loss of heavily relied upon managed pollinators. Local plant communities provision wild bees with crucial floral and nesting resources, but the distribution of floristic diversity among habitat types in North American agricultural landscapes and its effect on pollinators are diverse and poorly understood, especially in orchard systems. We documented floristic diversity in typical mid-Atlantic commercial apple (Malus domestica Borkh.) orchards including the forest and orchard-forest edge ("edge") habitats surrounding orchards in a heterogeneous landscape in south-central Pennsylvania, USA. We also assessed the correlation between plant richness and orchard pollinator communities. In this apple production region, edge habitats are the most species rich, supporting 146 out of 202 plant species recorded in our survey. Plant species richness in the orchard and edge habitats were significant predictors of bee species richness and abundance in the orchard, as well as landscape area of the forest and edge habitats. Both the quantity and quality of forest and edges close to orchards play a significant role in provisioning a diverse wild bee community in this agroecosystem. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Plant diversity increases spatio?temporal niche complementarity in plant?pollinator interactions

    OpenAIRE

    Venjakob, Christine; Klein, Alexandra?Maria; Ebeling, Anne; Tscharntke, Teja; Scherber, Christoph

    2016-01-01

    Ongoing biodiversity decline impairs ecosystem processes, including pollination. Flower visitation, an important indicator of pollination services, is influenced by plant species richness. However, the spatio-temporal responses of different pollinator groups to plant species richness have not yet been analyzed experimentally. Here, we used an experimental plant species richness gradient to analyze plant-pollinator interactions with an unprecedented spatio-temporal resolution. We observed four...

  5. Two bee-pollinated plant species show higher seed production when grown in gardens compared to arable farmland.

    Directory of Open Access Journals (Sweden)

    John Cussans

    2010-07-01

    Full Text Available Insect pollinator abundance, in particular that of bees, has been shown to be high where there is a super-abundance of floral resources; for example in association with mass-flowering crops and also in gardens where flowering plants are often densely planted. Since land management affects pollinator numbers, it is also likely to affect the resultant pollination of plants growing in these habitats. We hypothesised that the seed or fruit set of two plant species, typically pollinated by bumblebees and/or honeybees might respond in one of two ways: 1 pollination success could be reduced when growing in a floriferous environment, via competition for pollinators, or 2 pollination success could be enhanced because of increased pollinator abundance in the vicinity.We compared the pollination success of experimental plants of Glechoma hederacea L. and Lotus corniculatus L. growing in gardens and arable farmland. On the farms, the plants were placed either next to a mass-flowering crop (oilseed rape, Brassica napus L. or field beans, Vicia faba L. or next to a cereal crop (wheat, Triticum spp.. Seed set of G. hederacea and fruit set of L. corniculatus were significantly higher in gardens compared to arable farmland. There was no significant difference in pollination success of G. hederacea when grown next to different crops, but for L. corniculatus, fruit set was higher in the plants growing next to oilseed rape when the crop was in flower.The results show that pollination services can limit fruit set of wild plants in arable farmland, but there is some evidence that the presence of a flowering crop can facilitate their pollination (depending on species and season. We have also demonstrated that gardens are not only beneficial to pollinators, but also to the process of pollination.

  6. Pollination Reservoirs in Lowbush Blueberry (Ericales: Ericaceae)

    OpenAIRE

    Venturini, E. M.; Drummond, F. A.; Hoshide, A. K.; Dibble, A. C.; Stack, L. B.

    2017-01-01

    Abstract Pollinator-dependent agriculture heavily relies upon a single pollinator?the honey bee. To diversify pollination strategies, growers are turning to alternatives. Densely planted reservoirs of pollen- and nectar-rich flowers (pollination reservoirs, hereafter ?PRs?) may improve pollination services provided by wild bees. Our focal agroecosystem, lowbush blueberry (Vaccinium angustifolium Aiton), exists in a simple landscape uniquely positioned to benefit from PRs. First, we contrast b...

  7. Pollination Reservoirs in Lowbush Blueberry (Ericales: Ericaceae).

    Science.gov (United States)

    Venturini, E M; Drummond, F A; Hoshide, A K; Dibble, A C; Stack, L B

    2017-04-01

    Pollinator-dependent agriculture heavily relies upon a single pollinator-the honey bee. To diversify pollination strategies, growers are turning to alternatives. Densely planted reservoirs of pollen- and nectar-rich flowers (pollination reservoirs, hereafter "PRs") may improve pollination services provided by wild bees. Our focal agroecosystem, lowbush blueberry (Vaccinium angustifolium Aiton), exists in a simple landscape uniquely positioned to benefit from PRs. First, we contrast bee visitation rates and use of three types of PR. We consider the effects of PRs on wild bee diversity and the composition of bumble bee pollen loads. We contrast field-level crop pollination services between PRs and controls four years postestablishment. Last, we calculate the time to pay for PR investment. Social bees preferentially used clover plantings; solitary bees preferentially used wildflower plantings. On average, bumble bee pollen loads in treatment fields contained 37% PR pollen. PRs significantly increased visitation rates to the crop in year 4, and exerted a marginally significant positive influence on fruit set. The annualized costs of PRs were covered by the fourth year using the measured increase in pollination services. Our findings provide evidence of the positive impact of PRs on crop pollination services. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  8. Ecology and evolution of plant-pollinator interactions.

    Science.gov (United States)

    Mitchell, Randall J; Irwin, Rebecca E; Flanagan, Rebecca J; Karron, Jeffrey D

    2009-06-01

    Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant-pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant-Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come.

  9. Private channels in plant-pollinator mutualisms

    Science.gov (United States)

    Chen, Chun; Hossaert-McKey, Martine

    2010-01-01

    Volatile compounds often mediate plant-pollinator interactions, and may promote specialization in plant-pollinator relationships, notably through private channels of unusual compounds. Nevertheless, the existence of private channels, i.e., the potential for exclusive communication via unique signals and receptors, is still debated in the literature. Interactions between figs and their pollinating wasps offer opportunities for exploring this concept. Several experiments have demonstrated that chemical mediation is crucial in ensuring the encounter between figs and their species-specific pollinators. Indeed, chemical messages emitted by figs are notably species- and developmental stage-specific, making them reliable cues for the pollinator. In most cases, the species-specificity of wasp attraction is unlikely to result from the presence of a single specific compound. Nevertheless, a recent paper on the role of scents in the interaction between Ficus semicordata and its pollinating wasp Ceratosolen gravelyi showed that a single compound, 4-methylanisole, is the main signal compound in the floral scent, and is sufficient by itself to attract the obligate pollinator. Mainly focusing on these results, we propose here that a floral scent can act as a private channel, attracting only the highly specific pollinator. PMID:20484975

  10. Floral advertisement scent in a changing plant-pollinators market.

    Science.gov (United States)

    Filella, Iolanda; Primante, Clara; Llusià, Joan; Martín González, Ana M; Seco, Roger; Farré-Armengol, Gerard; Rodrigo, Anselm; Bosch, Jordi; Peñuelas, Josep

    2013-12-05

    Plant-pollinator systems may be considered as biological markets in which pollinators choose between different flowers that advertise their nectar/pollen rewards. Although expected to play a major role in structuring plant-pollinator interactions, community-wide patterns of flower scent signals remain largely unexplored. Here we show for the first time that scent advertisement is higher in plant species that bloom early in the flowering period when pollinators are scarce relative to flowers than in species blooming later in the season when there is a surplus of pollinators relative to flowers. We also show that less abundant flowering species that may compete with dominant species for pollinator visitation early in the flowering period emit much higher proportions of the generalist attractant β-ocimene. Overall, we provide a first community-wide description of the key role of seasonal dynamics of plant-specific flower scent emissions, and reveal the coexistence of contrasting plant signaling strategies in a plant-pollinator market.

  11. The relative contribution of diurnal and nocturnal pollinators to plant female fitness in a specialized nursery pollination system.

    Science.gov (United States)

    Scopece, Giovanni; Campese, Lucia; Duffy, Karl J; Cozzolino, Salvatore

    2018-02-01

    Plants involved in specialized pollinator interactions, such as nursery pollination, may experience trade-offs in their female fitness, as the larvae of their pollinators may also consume seeds produced by the flowers they pollinate. These interactions could potentially shift between mutualism and parasitism, depending on the presence and abundance of both the nursery pollinator and of other pollinators. We investigated the fitness trade-off in a Mediterranean plant ( Silene latifolia ), which has a specialist nocturnal nursery pollinator moth ( Hadena bicruris ) and is also visited by several diurnal pollinators. We estimated the pollination rates and fecundity of S. latifolia in both natural and experimental populations in the Mediterranean. We estimated natural pollination rates in different flowering times and with presence/absence of the H. bicruis moth. Then by exposing plants to each pollinator group either during the day or at night, we quantified the contribution of other diurnal pollinators and the specialized nocturnal nursery pollinator to plant female fitness. We found no difference in plant fruit set mediated by diurnal versus nocturnal pollinators, indicating that non-specialist pollinators contribute to plant female fitness. However, in both natural and experimental populations, H. bicruris was the most efficient pollinator in terms of seeds produced per fruit. These results suggest that the female fitness costs generated by nursery pollination can be overcome through higher fertilization rates relative to predation rates, even in the presence of co-pollinators. Quantifying such interactions is important for our understanding of the selective pressures that promote highly specialized mutualisms, such as nursery pollination, in the Mediterranean region, a centre of diversification of the carnation family.

  12. Predominance of self-compatibility in hummingbird-pollinated plants in the Neotropics

    Science.gov (United States)

    Wolowski, Marina; Saad, Carolina Farias; Ashman, Tia-Lynn; Freitas, Leandro

    2013-01-01

    Both plant traits and plant-pollinator interactions are thought to influence plant mating systems. For hummingbird-pollinated plants, foraging strategy (territorial or traplining) is also expected to influence plant mating. We hypothesize that the traplining behavior of hermits promotes outcrossing, whereas the behavior of non-hermits favours self-incompatibility. Thus, selection is expected to maintain self-incompatibility in plants pollinated by non-hermits. We explore the incidence of self-incompatibility in Neotropical hummingbird-pollinated plants and its association with hummingbird behavior and plant traits. We conducted a literature review (56 species) and performed hand-pollination experiments in 27 hummingbird-pollinated plants in an Atlantic rainforest. We found that self-incompatibility (measured as hummingbird-pollinated plants. The interaction of hummingbird and habit type affected ISI, as did phylogenetic relationships. Specifically, herbs pollinated by non-hermits had higher ISI than woody plants pollinated by non-hermits, and herbs pollinated by both hermits and non-hermits. For the Atlantic rainforest plant guild, 30 % of the species were self-incompatible. ISI was higher in herbs than in woody species and increased with plant aggregation but was not dependent on foraging behavior, plant density, or floral display. Although hummingbirds differ in their foraging strategies, these behavioral differences seem to have only a minor influence on the incidence of self-incompatibility. Phylogenetic relatedness seems to be the strongest determinant of mating system in Neotropical hummingbird-pollinated plants.

  13. Effects of landscape composition and configuration on pollination in a native herb : a field experiment

    OpenAIRE

    Ekroos, Johan; Jakobsson, Anna; Wideen, Joel; Herbertsson, Lina; Rundlof, Maj; Smith, Henrik G.

    2015-01-01

    Bumble bee abundance in agricultural landscapes is known to decrease with increasing distance from seminatural grasslands, but whether the pollination of bumble-bee-pollinated wild plants shows a similar pattern is less well known. In addition, the relative effects of landscape composition (landscape heterogeneity) and landscape configuration (distance from seminatural grassland) on wild plant pollination, and the interaction between these landscape effects, have not been studied using landsc...

  14. The effect of habitat modification on plant-pollinator network

    Science.gov (United States)

    Aminatun, Tien; Putra, Nugroho Susetya

    2017-08-01

    The research aimed to determine; (1) the mutualism interaction pattern of plant-pollinator on several habitat modifications; and (2) the habitat modification which showed the most stable pattern of interaction. The study was conducted in one planting season with 20 plots which each plot had 2x2 m2 width and 2 m spacing among plots, and each plot was planted with the same variety of tomato plants, i.e. "intan". Nitrogen manipulation treatment was conducted with four kinds of fertilizers, i.e. NPK (code PU), compost (code PKM), vermicompost (code PC), and manure (code PK). Each treatment had 5 plot replications. We observed the growth of tomato plants, weed and arthropod populationstwo weekly while pollinator visitation twice a week during tomato plant flowering with counting population and visitation frequence of each pollinator on each sample of tomato plants. The nectar of tomato plant flower of each treatment was tested in laboratory to see its reducing sugar and sucrose. Oganic matter and nitrogen of the soil samples of each treatment were tested in laboratory in the beginning and the end of this research. We analized the plant-pollinator network with bipartite program in R-statistics, and the abiotic and other biotic factors with descriptive analysis. The results of the research were; (1) the mutualism interaction pattern of plant-pollinator network of four treatments were varied, and (2) The pattern of plant-pollinator network of NPK fertilizer treatment showed the more stable interaction based on analysis of interaction evenness, Shannon diversity, frequency and longevity of pollinator visitation.

  15. How much flower-rich habitat is enough for wild pollinators? Answering a key policy question with incomplete knowledge.

    Science.gov (United States)

    Dicks, Lynn V; Baude, Mathilde; Roberts, Stuart P M; Phillips, James; Green, Mike; Carvell, Claire

    2015-09-01

    In 2013, an opportunity arose in England to develop an agri-environment package for wild pollinators, as part of the new Countryside Stewardship scheme launched in 2015. It can be understood as a 'policy window', a rare and time-limited opportunity to change policy, supported by a narrative about pollinator decline and widely supported mitigating actions. An agri-environment package is a bundle of management options that together supply sufficient resources to support a target group of species. This paper documents information that was available at the time to develop such a package for wild pollinators. Four questions needed answering: (1) Which pollinator species should be targeted? (2) Which resources limit these species in farmland? (3) Which management options provide these resources? (4) What area of each option is needed to support populations of the target species? Focussing on wild bees, we provide tentative answers that were used to inform development of the package. There is strong evidence that floral resources can limit wild bee populations, and several sources of evidence identify a set of agri-environment options that provide flowers and other resources for pollinators. The final question could only be answered for floral resources, with a wide range of uncertainty. We show that the areas of some floral resource options in the basic Wild Pollinator and Farmland Wildlife Package (2% flower-rich habitat and 1 km flowering hedgerow), are sufficient to supply a set of six common pollinator species with enough pollen to feed their larvae at lowest estimates, using minimum values for estimated parameters where a range was available. We identify key sources of uncertainty, and stress the importance of keeping the Package flexible, so it can be revised as new evidence emerges about how to achieve the policy aim of supporting pollinators on farmland.

  16. Biodiversity Economics: The Value of Pollination Services to Egypt ...

    African Journals Online (AJOL)

    Francis

    of wild and crop plants are fully or partially dependent on pollinators for their ... Agricultural intensification leads to loss and fragmentation of natural pollinator ..... 0.4, pollination 3.1, pest control of native herbivores 4.5, and 'recreation' [food for ... Ehrlich PR & Michener CD (2004) Economic value of tropical forest to coffee.

  17. Nectar alkaloids decrease pollination and female reproduction in a native plant.

    Science.gov (United States)

    Adler, Lynn S; Irwin, Rebecca E

    2012-04-01

    The evolution of floral traits may be shaped by a community of floral visitors that affect plant fitness, including pollinators and floral antagonists. The role of nectar in attracting pollinators has been extensively studied, but its effects on floral antagonists are less understood. Furthermore, the composition of non-sugar nectar components, such as secondary compounds, may affect plant reproduction via changes in both pollinator and floral antagonist behavior. We manipulated the nectar alkaloid gelsemine in wild plants of the native perennial vine Gelsemium sempervirens. We crossed nectar gelsemine manipulations with a hand-pollination treatment, allowing us to determine the effect of both the trait and the interaction on plant female reproduction. We measured pollen deposition, pollen removal, and nectar robbing to assess whether gelsemine altered the behavior of mutualists and antagonists. High nectar gelsemine reduced conspecific pollen receipt by nearly half and also reduced the proportion of conspecific pollen grains received, but had no effect on nectar robbing. Although high nectar gelsemine reduced pollen removal, an estimate of male reproduction, by one-third, this effect was not statistically significant. Fruit set was limited by pollen receipt. However, this effect varied across sites such that the sites that were most pollen-limited were also the sites where nectar alkaloids had the least effect on pollen receipt, resulting in no significant effect of nectar alkaloids on fruit set. Finally, high nectar gelsemine significantly reduced seed weight; however, this effect was mediated by a mechanism other than pollen limitation. Taken together, our work suggests that nectar alkaloids are more costly than beneficial in our system, and that relatively small-scale spatial variation in trait effects and interactions could determine the selective impacts of traits such as nectar composition.

  18. Plant-pollinator interactions in tropical monsoon forests in Southeast Asia.

    Science.gov (United States)

    Kato, Makoto; Kosaka, Yasuyuki; Kawakita, Atsushi; Okuyama, Yudai; Kobayashi, Chisato; Phimminith, Thavy; Thongphan, Daovorn

    2008-11-01

    Forests with different flora and vegetation types harbor different assemblages of flower visitors, and plant-pollinator interactions vary among forests. In monsoon-dominated East and Southeast Asia, there is a characteristic gradient in climate along latitude, creating a broad spectrum of forest types with potentially diverse pollinator communities. To detect a geographical pattern of plant-pollinator interactions, we investigated flowering phenology and pollinator assemblages in the least-studied forest type, i.e., tropical monsoon forest, in the Vientiane plain in Laos. Throughout the 5-year study, we observed 171 plant species blooming and detected flower visitors on 145 species. Flowering occurred throughout the year, although the number of flowering plant species peaked at the end of dry season. The dominant canopy trees, including Dipterocarpaceae, bloomed annually, in contrast to the supra-annual general flowering that occurs in Southeast Asian tropical rain forests. Among the 134 native plant species, 68 were pollinated by hymenopterans and others by lepidopterans, beetles, flies, or diverse insects. Among the observed bees, Xylocopa, megachilids, and honeybees mainly contributed to the pollination of canopy trees, whereas long-tongued Amegilla bees pollinated diverse perennials with long corolla tubes. This is the first community-level study of plant-pollinator interactions in an Asian tropical monsoon forest ecosystem.

  19. Ant aggression and evolutionary stability in plant-ant and plant-pollinator mutualistic interactions.

    Science.gov (United States)

    Oña, L; Lachmann, M

    2011-03-01

    Mutualistic partners derive a benefit from their interaction, but this benefit can come at a cost. This is the case for plant-ant and plant-pollinator mutualistic associations. In exchange for protection from herbivores provided by the resident ants, plants supply various kinds of resources or nests to the ants. Most ant-myrmecophyte mutualisms are horizontally transmitted, and therefore, partners share an interest in growth but not in reproduction. This lack of alignment in fitness interests between plants and ants drives a conflict between them: ants can attack pollinators that cross-fertilize the host plants. Using a mathematical model, we define a threshold in ant aggressiveness determining pollinator survival or elimination on the host plant. In our model we observed that, all else being equal, facultative interactions result in pollinator extinction for lower levels of ant aggressiveness than obligatory interactions. We propose that the capacity to discriminate pollinators from herbivores should not often evolve in ants, and when it does it will be when the plants exhibit limited dispersal in an environment that is not seed saturated so that each seed produced can effectively generate a new offspring or if ants acquire an extra benefit from pollination (e.g. if ants eat fruit). We suggest specific mutualism examples where these hypotheses can be tested empirically. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.

  20. Profiling crop pollinators: life history traits predict habitat use and crop visitation by Mediterranean wild bees.

    Science.gov (United States)

    Pisanty, Gideon; Mandelik, Yael

    2015-04-01

    Wild pollinators, bees in particular, may greatly contribute to crop pollination and provide a safety net against declines in commercial pollinators. However, the identity, life history traits, and environmental sensitivities of main crop pollinator species.have received limited attention. These are crucial for predicting pollination services of different communities and for developing management practices that enhance crop pollinators. We sampled wild bees in three crop systems (almond, confection sunflower, and seed watermelon) in a mosaic Israeli Mediterranean landscape. Bees were sampled in field/orchard edges and interiors, and in seminatural scrub surrounding the fields/orchards. We also analyzed land cover at 50-2500 m radii around fields/orchards. We used this data to distinguish crop from non-crop pollinators based on a set of life history traits (nesting, lecty, sociality, body size) linked to habitat preference and crop visitation. Bee abundance and species richness decreased from the surrounding seminatural habitat to the field/orchard interior, especially across the seminatural habitat-field edge ecotone. Thus, although rich bee communities were found near fields, only small fractions crossed the ecotone and visited crop flowers in substantial numbers. The bee assemblage in agricultural fields/orchards and on crop flowers was dominated by ground-nesting bees of the tribe Halictini, which tend to nest within fields. Bees' habitat preferences were determined mainly by nesting guild, whereas crop visitation was determined mainly by sociality. Lecty and body size also affected both measures. The percentage of surrounding seminatural habitat at 250-2500 m radii had a positive effect on wild bee diversity in field edges, for all bee guilds, while at 50-100 m radii, only aboveground nesters were positively affected. In sum, we found that crop and non-crop pollinators are distinguished by behavioral and morphological traits. Hence, analysis of life

  1. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States.

    Science.gov (United States)

    Williams, Neal M; Ward, Kimiora L; Pope, Nathaniel; Isaacs, Rufus; Wilson, Julianna; May, Emily A; Ellis, Jamie; Daniels, Jaret; Pence, Akers; Ullmann, Katharina; Peters, Jeff

    2015-12-01

    Global trends in pollinator-dependent crops have raised awareness of the need to support managed and wild bee populations to ensure sustainable crop production. Provision of sufficient forage resources is a key element for promoting bee populations within human impacted landscapes, particularly those in agricultural lands where demand for pollination service is high and land use and management practices have reduced available flowering resources. Recent government incentives in North America and Europe support the planting of wildflowers to benefit pollinators; surprisingly, in North America there has been almost no rigorous testing of the performance of wildflower mixes, or their ability to support wild bee abundance and diversity. We tested different wildflower mixes in a spatially replicated, multiyear study in three regions of North America where production of pollinator-dependent crops is high: Florida, Michigan, and California. In each region, we quantified flowering among wildflower mixes composed of annual and perennial species, and with high and low relative diversity. We measured the abundance and species richness of wild bees, honey bees, and syrphid flies at each mix over two seasons. In each region, some but not all wildflower mixes provided significantly greater floral display area than unmanaged weedy control plots. Mixes also attracted greater abundance and richness of wild bees, although the identity of best mixes varied among regions. By partitioning floral display size from mix identity we show the importance of display size for attracting abundant and diverse wild bees. Season-long monitoring also revealed that designing mixes to provide continuous bloom throughout the growing season is critical to supporting the greatest pollinator species richness. Contrary to expectation, perennials bloomed in their first season, and complementarity in attraction of pollinators among annuals and perennials suggests that inclusion of functionally diverse

  2. Kin discrimination allows plants to modify investment towards pollinator attraction.

    Science.gov (United States)

    Torices, Rubén; Gómez, José M; Pannell, John R

    2018-05-22

    Pollinators tend to be preferentially attracted to large floral displays that may comprise more than one plant in a patch. Attracting pollinators thus not only benefits individuals investing in advertising, but also other plants in a patch through a 'magnet' effect. Accordingly, there could be an indirect fitness advantage to greater investment in costly floral displays by plants in kin-structured groups than when in groups of unrelated individuals. Here, we seek evidence for this strategy by manipulating relatedness in groups of the plant Moricandia moricandioides, an insect-pollinated herb that typically grows in patches. As predicted, individuals growing with kin, particularly at high density, produced larger floral displays than those growing with non-kin. Investment in attracting pollinators was thus moulded by the presence and relatedness of neighbours, exemplifying the importance of kin recognition in the evolution of plant reproductive strategies.

  3. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe.

    Science.gov (United States)

    Hass, Annika L; Kormann, Urs G; Tscharntke, Teja; Clough, Yann; Baillod, Aliette Bosem; Sirami, Clélia; Fahrig, Lenore; Martin, Jean-Louis; Baudry, Jacques; Bertrand, Colette; Bosch, Jordi; Brotons, Lluís; Burel, Françoise; Georges, Romain; Giralt, David; Marcos-García, María Á; Ricarte, Antonio; Siriwardena, Gavin; Batáry, Péter

    2018-02-14

    Agricultural intensification is one of the main causes for the current biodiversity crisis. While reversing habitat loss on agricultural land is challenging, increasing the farmland configurational heterogeneity (higher field border density) and farmland compositional heterogeneity (higher crop diversity) has been proposed to counteract some habitat loss. Here, we tested whether increased farmland configurational and compositional heterogeneity promote wild pollinators and plant reproduction in 229 landscapes located in four major western European agricultural regions. High-field border density consistently increased wild bee abundance and seed set of radish ( Raphanus sativus ), probably through enhanced connectivity. In particular, we demonstrate the importance of crop-crop borders for pollinator movement as an additional experiment showed higher transfer of a pollen analogue along crop-crop borders than across fields or along semi-natural crop borders. By contrast, high crop diversity reduced bee abundance, probably due to an increase of crop types with particularly intensive management. This highlights the importance of crop identity when higher crop diversity is promoted. Our results show that small-scale agricultural systems can boost pollinators and plant reproduction. Agri-environmental policies should therefore aim to halt and reverse the current trend of increasing field sizes and to reduce the amount of crop types with particularly intensive management. © 2018 The Author(s).

  4. Floral biology and the effects of plant-pollinator interaction on ...

    African Journals Online (AJOL)

    Reproductive biology and patterns of plant-pollinator interaction are fundamental to gene flow, diversity and evolutionary success of plants. Consequently, we examined the magnitude of insect-plant interaction based on the dynamics of breeding systems and floral biology and their effects on pollination intensity, fruit and ...

  5. Plant pollinator networks along a gradient of urbanisation.

    Science.gov (United States)

    Geslin, Benoît; Gauzens, Benoit; Thébault, Elisa; Dajoz, Isabelle

    2013-01-01

    Habitat loss is one of the principal causes of the current pollinator decline. With agricultural intensification, increasing urbanisation is among the main drivers of habitat loss. Consequently studies focusing on pollinator community structure along urbanisation gradients have increased in recent years. However, few studies have investigated how urbanisation affects plant-pollinator interaction networks. Here we assessed modifications of plant-pollinator interactions along an urbanisation gradient based on the study of their morphological relationships. Along an urbanisation gradient comprising four types of landscape contexts (semi-natural, agricultural, suburban, urban), we set up experimental plant communities containing two plant functional groups differing in their morphological traits ("open flowers" and "tubular flowers"). Insect visitations on these communities were recorded to build plant-pollinator networks. A total of 17 857 interactions were recorded between experimental plant communities and flower-visitors. The number of interactions performed by flower-visitors was significantly lower in urban landscape context than in semi-natural and agricultural ones. In particular, insects such as Syrphidae and solitary bees that mostly visited the open flower functional group were significantly impacted by urbanisation, which was not the case for bumblebees. Urbanisation also impacted the generalism of flower-visitors and we detected higher interaction evenness in urban landscape context than in agricultural and suburban ones. Finally, in urban context, these modifications lowered the potential reproductive success of the open flowers functional group. Our findings show that open flower plant species and their specific flower-visitors are especially sensitive to increasing urbanisation. These results provide new clues to improve conservation measures within urbanised areas in favour of specialist flower-visitors. To complete this functional approach, studies

  6. Constraints imposed by pollinator behaviour on the ecology and evolution of plant mating systems.

    Science.gov (United States)

    Devaux, C; Lepers, C; Porcher, E

    2014-07-01

    Most flowering plants rely on pollinators for their reproduction. Plant-pollinator interactions, although mutualistic, involve an inherent conflict of interest between both partners and may constrain plant mating systems at multiple levels: the immediate ecological plant selfing rates, their distribution in and contribution to pollination networks, and their evolution. Here, we review experimental evidence that pollinator behaviour influences plant selfing rates in pairs of interacting species, and that plants can modify pollinator behaviour through plastic and evolutionary changes in floral traits. We also examine how theoretical studies include pollinators, implicitly or explicitly, to investigate the role of their foraging behaviour in plant mating system evolution. In doing so, we call for more evolutionary models combining ecological and genetic factors, and additional experimental data, particularly to describe pollinator foraging behaviour. Finally, we show that recent developments in ecological network theory help clarify the impact of community-level interactions on plant selfing rates and their evolution and suggest new research avenues to expand the study of mating systems of animal-pollinated plant species to the level of the plant-pollinator networks. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  7. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species.

    Science.gov (United States)

    Ogilvie, Jane E; Thomson, James D

    2016-06-01

    Plant species can influence the pollination and reproductive success of coflowering neighbors that share pollinators. Because some individual pollinators habitually forage in particular areas, it is also possible that plant species could influence the pollination of neighbors that bloom later. When flowers of a preferred forage plant decline in an area, site-fidelity may cause individual flower feeders to stay in an area and switch plant species rather than search for preferred plants in a new location. A newly blooming plant species may quickly inherit a set of visitors from a prior plant species, and therefore experience higher pollination success than it would in an area where the first species never bloomed. To test this, we manipulated the placement and timing of two plant species, Delphinium barbeyi and later-blooming Gentiana parryi. We recorded the responses of individually marked bumble bee pollinators. About 63% of marked individuals returned repeatedly to the same areas to forage on Delphinium. When Delphinium was experimentally taken out of bloom, most of those site-faithful individuals (78%) stayed and switched to Gentiana. Consequently, Gentiana flowers received more visits in areas where Delphinium had previously flowered, compared to areas where Delphinium was still flowering or never occurred. Gentiana stigmas received more pollen in areas where Delphinium disappeared than where it never bloomed, indicating that Delphinium increases the pollination of Gentiana when they are separated in time. Overall, we show that individual bumble bees are often site-faithful, causing one plant species to increase the pollination of another even when separated in time, which is a novel mechanism of pollination facilitation.

  8. Contrasting Pollinators and Pollination in Native and Non-Native Regions of Highbush Blueberry Production.

    Science.gov (United States)

    Gibbs, Jason; Elle, Elizabeth; Bobiwash, Kyle; Haapalainen, Tiia; Isaacs, Rufus

    2016-01-01

    Highbush blueberry yields are dependent on pollination by bees, and introduction of managed honey bees is the primary strategy used for pollination of this crop. Complementary pollination services are also provided by wild bees, yet highbush blueberry is increasingly grown in regions outside its native range where wild bee communities may be less adapted to the crop and growers may still be testing appropriate honey bee stocking densities. To contrast crop pollination in native and non-native production regions, we sampled commercial 'Bluecrop' blueberry fields in British Columbia and Michigan with grower-selected honey bee stocking rates (0-39.5 hives per ha) to compare bee visitors to blueberry flowers, pollination and yield deficits, and how those vary with local- and landscape-scale factors. Observed and Chao-1 estimated species richness, as well as Shannon diversity of wild bees visiting blueberries were significantly higher in Michigan where the crop is within its native range. The regional bee communities were also significantly different, with Michigan farms having greater dissimilarity than British Columbia. Blueberry fields in British Columbia had fewer visits by honey bees than those in Michigan, irrespective of stocking rate, and they also had lower berry weights and a significant pollination deficit. In British Columbia, pollination service increased with abundance of wild bumble bees, whereas in Michigan the abundance of honey bees was the primary predictor of pollination. The proportion of semi-natural habitat at local and landscape scales was positively correlated with wild bee abundance in both regions. Wild bee abundance declined significantly with distance from natural borders in Michigan, but not in British Columbia where large-bodied bumble bees dominated the wild bee community. Our results highlight the varying dependence of crop production on different types of bees and reveal that strategies for pollination improvement in the same crop can

  9. Contrasting Pollinators and Pollination in Native and Non-Native Regions of Highbush Blueberry Production.

    Directory of Open Access Journals (Sweden)

    Jason Gibbs

    Full Text Available Highbush blueberry yields are dependent on pollination by bees, and introduction of managed honey bees is the primary strategy used for pollination of this crop. Complementary pollination services are also provided by wild bees, yet highbush blueberry is increasingly grown in regions outside its native range where wild bee communities may be less adapted to the crop and growers may still be testing appropriate honey bee stocking densities. To contrast crop pollination in native and non-native production regions, we sampled commercial 'Bluecrop' blueberry fields in British Columbia and Michigan with grower-selected honey bee stocking rates (0-39.5 hives per ha to compare bee visitors to blueberry flowers, pollination and yield deficits, and how those vary with local- and landscape-scale factors. Observed and Chao-1 estimated species richness, as well as Shannon diversity of wild bees visiting blueberries were significantly higher in Michigan where the crop is within its native range. The regional bee communities were also significantly different, with Michigan farms having greater dissimilarity than British Columbia. Blueberry fields in British Columbia had fewer visits by honey bees than those in Michigan, irrespective of stocking rate, and they also had lower berry weights and a significant pollination deficit. In British Columbia, pollination service increased with abundance of wild bumble bees, whereas in Michigan the abundance of honey bees was the primary predictor of pollination. The proportion of semi-natural habitat at local and landscape scales was positively correlated with wild bee abundance in both regions. Wild bee abundance declined significantly with distance from natural borders in Michigan, but not in British Columbia where large-bodied bumble bees dominated the wild bee community. Our results highlight the varying dependence of crop production on different types of bees and reveal that strategies for pollination improvement in

  10. Effects of Soil Quality Enhancement on Pollinator-Plant Interactions

    Directory of Open Access Journals (Sweden)

    Yasmin J. Cardoza

    2012-01-01

    Full Text Available Both biotic and abiotic factors can affect soil quality, which can significantly impact plant growth, productivity, and resistance to pests. However, the effects of soil quality on the interactions of plants with beneficial arthropods, such as pollinators, have not been extensively examined. We studied the effects of vermicompost (earthworm compost, VC soil amendment on behavioral and physiological responses of pollinators to flowers and floral resources, using cucumbers, Cucumis sativus, as our model system. Results from experiments conducted over three field seasons demonstrated that, in at least two out of three years, VC amendment significantly increased visit length, while reducing the time to first discovery. Bumblebee (Bombus impatiens workers that fed on flowers from VC-amended plants had significantly larger and more active ovaries, a measure of nutritional quality. Pollen fractions of flowers from VC-grown plants had higher protein compared to those of plants grown in chemically fertilized potting soil. Nectar sugar content also tended to be higher in flowers from VC-grown plants, but differences were not statistically significant. In conclusion, soil quality enhancement, as achieved with VC amendment in this study, can significantly affect plant-pollinator interactions and directly influences pollinator nutrition and overall performance.

  11. Gene flow and genetic diversity in cultivated and wild cacao (Theobroma cacao) in Bolivia.

    Science.gov (United States)

    Chumacero de Schawe, Claudia; Durka, Walter; Tscharntke, Teja; Hensen, Isabell; Kessler, Michael

    2013-11-01

    The role of pollen flow within and between cultivated and wild tropical crop species is little known. To study the pollen flow of cacao, we estimated the degree of self-pollination and pollen dispersal distances as well as gene flow between wild and cultivated cacao (Theobroma cacao L.). We studied pollen flow and genetic diversity of cultivated and wild cacao populations by genotyping 143 wild and 86 cultivated mature plants and 374 seedlings raised from 19 wild and 25 cultivated trees at nine microsatellite loci. A principal component analysis distinguished wild and cultivated cacao trees, supporting the notion that Bolivia harbors truly wild cacao populations. Cultivated cacao had a higher level of genetic diversity than wild cacao, presumably reflecting the varied origin of cultivated plants. Both cacao types had high outcrossing rates, but the paternity analysis revealed 7-14% self-pollination in wild and cultivated cacao. Despite the tiny size of the pollinators, pollen was transported distances up to 3 km; wild cacao showed longer distances (mean = 922 m) than cultivated cacao (826 m). Our data revealed that 16-20% of pollination events occurred between cultivated and wild populations. We found evidence of self-pollination in both wild and cultivated cacao. Pollination distances are larger than those typically reported in tropical understory tree species. The relatively high pollen exchange from cultivated to wild cacao compromises genetic identity of wild populations, calling for the protection of extensive natural forest tracts to protect wild cacao in Bolivia.

  12. Does pathogen spillover from commercially reared bumble bees threaten wild pollinators?

    Directory of Open Access Journals (Sweden)

    Michael C Otterstatter

    Full Text Available The conservation of insect pollinators is drawing attention because of reported declines in bee species and the 'ecosystem services' they provide. This issue has been brought to a head by recent devastating losses of honey bees throughout North America (so called, 'Colony Collapse Disorder'; yet, we still have little understanding of the cause(s of bee declines. Wild bumble bees (Bombus spp. have also suffered serious declines and circumstantial evidence suggests that pathogen 'spillover' from commercially reared bumble bees, which are used extensively to pollinate greenhouse crops, is a possible cause. We constructed a spatially explicit model of pathogen spillover in bumble bees and, using laboratory experiments and the literature, estimated parameter values for the spillover of Crithidia bombi, a destructive pathogen commonly found in commercial Bombus. We also monitored wild bumble bee populations near greenhouses for evidence of pathogen spillover, and compared the fit of our model to patterns of C. bombi infection observed in the field. Our model predicts that, during the first three months of spillover, transmission from commercial hives would infect up to 20% of wild bumble bees within 2 km of the greenhouse. However, a travelling wave of disease is predicted to form suddenly, infecting up to 35-100% of wild Bombus, and spread away from the greenhouse at a rate of 2 km/wk. In the field, although we did not observe a large epizootic wave of infection, the prevalences of C. bombi near greenhouses were consistent with our model. Indeed, we found that spillover has allowed C. bombi to invade several wild bumble bee species near greenhouses. Given the available evidence, it is likely that pathogen spillover from commercial bees is contributing to the ongoing decline of wild Bombus in North America. Improved management of domestic bees, for example by reducing their parasite loads and their overlap with wild congeners, could diminish or even

  13. Florally rich habitats reduce insect pollination and the reproductive success of isolated plants.

    Science.gov (United States)

    Evans, Tracie M; Cavers, Stephen; Ennos, Richard; Vanbergen, Adam J; Heard, Matthew S

    2017-08-01

    Landscape heterogeneity in floral communities has the potential to modify pollinator behavior. Pollinator foraging varies with the diversity, abundance, and spatial configuration of floral resources. However, the implications of this variation for pollen transfer and ultimately the reproductive success of insect pollinated plants remains unclear, especially for species which are rare or isolated in the landscape. We used a landscape-scale experiment, coupled with microsatellite genotyping, to explore how the floral richness of habitats affected pollinator behavior and pollination effectiveness. Small arrays of the partially self-compatible plant Californian poppy ( Eschscholzia californica) were introduced across a landscape gradient to simulate rare, spatially isolated populations. The effects on pollinator activity, outcrossing, and plant reproduction were measured. In florally rich habitats, we found reduced pollen movement between plants, leading to fewer long-distance pollination events, lower plant outcrossing, and a higher incidence of pollen limitation. This pattern indicates a potential reduction in per capita pollinator visitation, as suggested by the lower activity densities and richness of pollinators observed within florally rich habitats. In addition, seed production reduced by a factor of 1.8 in plants within florally rich habitats and progeny germination reduced by a factor of 1.2. We show this to be a consequence of self-fertilization within the partially self-compatible plant, E. californica . These findings indicate that locally rare plants are at a competitive disadvantage within florally rich habitats because neighboring plant species disrupt conspecific mating by co-opting pollinators. Ultimately, this Allee effect may play an important role in determining the long-term persistence of rarer plants in the landscape, both in terms of seed production and viability. Community context therefore requires consideration when designing and

  14. The importance of pollinator generalization and abundance for the reproductive success of a generalist plant.

    Directory of Open Access Journals (Sweden)

    María Belén Maldonado

    Full Text Available Previous studies have examined separately how pollinator generalization and abundance influence plant reproductive success, but none so far has evaluated simultaneously the relative importance of these pollinator attributes. Here we evaluated the extent to which pollinator generalization and abundance influence plant reproductive success per visit and at the population level on a generalist plant, Opuntia sulphurea (Cactaceae. We used field experiments and path analysis to evaluate whether the per-visit effect is determined by the pollinator's degree of generalization, and whether the population level effect (pollinator impact is determined by the pollinator's degree of generalization and abundance. Based on the models we tested, we concluded that the per-visit effect of a pollinator on plant reproduction was not determined by the pollinators' degree of generalization, while the population-level impact of a pollinator on plant reproduction was mainly determined by the pollinators' degree of generalization. Thus, generalist pollinators have the greatest species impact on pollination and reproductive success of O. sulphurea. According to our analysis this greatest impact of generalist pollinators may be partly explained by pollinator abundance. However, as abundance does not suffice as an explanation of pollinator impact, we suggest that vagility, need for resource consumption, and energetic efficiency of generalist pollinators may also contribute to determine a pollinator's impact on plant reproduction.

  15. Constraints imposed by pollinator behaviour on the ecology and evolution of plant mating systems

    OpenAIRE

    Devaux, Christian; Lepers, C.; Porcher, E.

    2014-01-01

    Most flowering plants rely on pollinators for their reproduction. Plant-pollinator interactions, although mutualistic, involve an inherent conflict of interest between both partners and may constrain plant mating systems at multiple levels: the immediate ecological plant selfing rates, their distribution in and contribution to pollination networks, and their evolution. Here, we review experimental evidence that pollinator behaviour influences plant selfing rates in pairs of interacting specie...

  16. Contribution of Plantation Forest on Wild Bees (Hymenoptera: Apoidea Pollinators Conservation in Mount Slamet, Central Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Imam Widhiono

    2017-12-01

    Full Text Available Wild bee pollinators (Hymenoptera : Apiade diversity and abundance were studied in three types of plantation forest on Mt. Slamet (Central Java Province, Indonesia. The aims of the research was to know the diversity and abundance of wild bee pollinators and to determine the possibility of plantation forest contribution on wild bees conservation. Sampling has been done at three stands: a pine forest (PF, with Pinus merkusii, an Agathis forest (AF, with Agathis damara and a community forest (CF, with Albizia falctaria. Each habitat was divided into 5 line transect (100 x 5 m and sweep nets were used to collect the wild bee samples. Sampling was done eah month from April to August 2015. The diversity of wild bees was high (12 species in 9 genera; members of the Apidae (7 species were dominant. The most abundant species across the forests were Apis cerana (343 individuals; 25.5% of total, Trigona laeviceps (195 individuals; 14.5%, and Megachille relativa (165 individuals; 12.3%. Measurements of species diversity (H’, species evenness (E, habitat similarity (Ss and species richness indicated that the wild bee species diversity in the region was relatively high (H’ = 1.275 to (H’ = 1.730;(E= 0.870 to (E = 0.93. The result showed that the diversity of wild bees in three different plantation forest habitats on Mt. Slamet were similar and can be concluded that plantation forest types were important for pollinator conservation, and an appropriate future preservation strategy should include of the areas of all plantation forest types.

  17. Evolution of polyploidy and the diversification of plant-pollinator interactions.

    Science.gov (United States)

    Thompson, John N; Merg, Kurt F

    2008-08-01

    One of the major mechanisms of plant diversification has been the evolution of polyploid populations that differ from their diploid progenitors in morphology, physiology, and environmental tolerances. Recent studies have indicated that polyploidy may also have major effects on ecological interactions with herbivores and pollinators. We evaluated pollination of sympatric diploid and tetraploid plants of the rhizomatous herb Heuchera grossulariifolia (Saxifragaceae) along the Selway and Salmon Rivers of northern Idaho, USA, during four consecutive years. Previous molecular and ecological analyses had indicated that the tetraploid populations along these two river systems are independently derived and differ from each other in multiple traits. In each region, we evaluated floral visitation rate by all insect visitors, pollination efficacy of all major visitors, and relative contribution of all major pollinators to seed set. In both regions, diploid and tetraploid plants attracted different suites of floral visitors. Most pollination was attributable to several bee species and the moth Greya politella. Lasioglossum bees preferentially visited diploid plants at Lower Salmon but not at Upper Selway, queen Bombus centralis preferentially visited tetraploids at both sites, and worker B. centralis differed between sites in their cytotype preference. Hence, diploid and autotetraploid H. grossulariifolia plants act essentially as separate ecological species and may experience partial reproductive isolation through differential visitation and pollination by their major floral visitors. Overall the results, together with recent results from other studies, suggest that the repeated evolution of polyploidy in plants may contribute importantly to the structure and diversification of ecological interactions in terrestrial communities.

  18. Using publicly available data to quantify plant–pollinator interactions and evaluate conservation seeding mixes in the Northern Great Plains

    Science.gov (United States)

    Otto, Clint R.; O'Dell, Samuel; Bryant, R. B.; Euliss, Ned H. Jr.; Bush, Rachel; Smart, Matthew

    2017-01-01

    Concern over declining pollinators has led to multiple conservation initiatives for improving forage for bees in agroecosystems. Using data available through the Pollinator Library (npwrc.usgs.gov/pollinator/), we summarize plant–pollinator interaction data collected from 2012–2015 on lands managed by the U.S. Fish and Wildlife Service and private lands enrolled in U.S. Department of Agriculture conservation programs in eastern North Dakota (ND). Furthermore, we demonstrate how plant–pollinator interaction data from the Pollinator Library and seed cost information can be used to evaluate hypothetical seeding mixes for pollinator habitat enhancements. We summarize records of 314 wild bee and 849 honey bee (Apis mellifera L.) interactions detected on 63 different plant species. The wild bee observations consisted of 46 species, 15 genera, and 5 families. Over 54% of all wild bee observations were represented by three genera―Bombus, Lassioglossum, and Melissodes. The most commonly visited forbs by wild bees were Monarda fistulosa, Sonchus arvensis, and Zizia aurea. The most commonly visited forbs by A. mellifera were Cirsium arvense, Melilotus officinalis, and Medicago sativa. Among all interactions, 13% of A. mellifera and 77% of wild bee observations were made on plants native to ND. Our seed mix evaluation shows that mixes may often need to be tailored to meet the unique needs of wild bees and managed honey bees in agricultural landscapes. Our evaluation also demonstrates the importance of incorporating both biologic and economic information when attempting to design cost-effective seeding mixes for supporting pollinators in a critically important part of the United States.

  19. Pollinator-driven ecological speciation in plants: new evidence and future perspectives.

    Science.gov (United States)

    Van der Niet, Timotheüs; Peakall, Rod; Johnson, Steven D

    2014-01-01

    The hypothesis that pollinators have been important drivers of angiosperm diversity dates back to Darwin, and remains an important research topic today. Mounting evidence indicates that pollinators have the potential to drive diversification at several different stages of the evolutionary process. Microevolutionary studies have provided evidence for pollinator-mediated floral adaptation, while macroevolutionary evidence supports a general pattern of pollinator-driven diversification of angiosperms. However, the overarching issue of whether, and how, shifts in pollination system drive plant speciation represents a critical gap in knowledge. Bridging this gap is crucial to fully understand whether pollinator-driven microevolution accounts for the observed macroevolutionary patterns. Testable predictions about pollinator-driven speciation can be derived from the theory of ecological speciation, according to which adaptation (microevolution) and speciation (macroevolution) are directly linked. This theory is a particularly suitable framework for evaluating evidence for the processes underlying shifts in pollination systems and their potential consequences for the evolution of reproductive isolation and speciation. This Viewpoint paper focuses on evidence for the four components of ecological speciation in the context of plant-pollinator interactions, namely (1) the role of pollinators as selective agents, (2) floral trait divergence, including the evolution of 'pollination ecotypes', (3) the geographical context of selection on floral traits, and (4) the role of pollinators in the evolution of reproductive isolation. This Viewpoint also serves as the introduction to a Special Issue on Pollinator-Driven Speciation in Plants. The 13 papers in this Special Issue range from microevolutionary studies of ecotypes to macroevolutionary studies of historical ecological shifts, and span a wide range of geographical areas and plant families. These studies further illustrate

  20. Pollinator-driven ecological speciation in plants: new evidence and future perspectives

    Science.gov (United States)

    Van der Niet, Timotheüs; Peakall, Rod; Johnson, Steven D.

    2014-01-01

    Background The hypothesis that pollinators have been important drivers of angiosperm diversity dates back to Darwin, and remains an important research topic today. Mounting evidence indicates that pollinators have the potential to drive diversification at several different stages of the evolutionary process. Microevolutionary studies have provided evidence for pollinator-mediated floral adaptation, while macroevolutionary evidence supports a general pattern of pollinator-driven diversification of angiosperms. However, the overarching issue of whether, and how, shifts in pollination system drive plant speciation represents a critical gap in knowledge. Bridging this gap is crucial to fully understand whether pollinator-driven microevolution accounts for the observed macroevolutionary patterns. Testable predictions about pollinator-driven speciation can be derived from the theory of ecological speciation, according to which adaptation (microevolution) and speciation (macroevolution) are directly linked. This theory is a particularly suitable framework for evaluating evidence for the processes underlying shifts in pollination systems and their potential consequences for the evolution of reproductive isolation and speciation. Scope This Viewpoint paper focuses on evidence for the four components of ecological speciation in the context of plant-pollinator interactions, namely (1) the role of pollinators as selective agents, (2) floral trait divergence, including the evolution of ‘pollination ecotypes‘, (3) the geographical context of selection on floral traits, and (4) the role of pollinators in the evolution of reproductive isolation. This Viewpoint also serves as the introduction to a Special Issue on Pollinator-Driven Speciation in Plants. The 13 papers in this Special Issue range from microevolutionary studies of ecotypes to macroevolutionary studies of historical ecological shifts, and span a wide range of geographical areas and plant families. These studies

  1. Phenological change in a spring ephemeral: implications for pollination and plant reproduction.

    Science.gov (United States)

    Gezon, Zachariah J; Inouye, David W; Irwin, Rebecca E

    2016-05-01

    Climate change has had numerous ecological effects, including species range shifts and altered phenology. Altering flowering phenology often affects plant reproduction, but the mechanisms behind these changes are not well-understood. To investigate why altering flowering phenology affects plant reproduction, we manipulated flowering phenology of the spring herb Claytonia lanceolata (Portulacaceae) using two methods: in 2011-2013 by altering snow pack (snow-removal vs. control treatments), and in 2013 by inducing flowering in a greenhouse before placing plants in experimental outdoor arrays (early, control, and late treatments). We measured flowering phenology, pollinator visitation, plant reproduction (fruit and seed set), and pollen limitation. Flowering occurred approx. 10 days earlier in snow-removal than control plots during all years of snow manipulation. Pollinator visitation patterns and strength of pollen limitation varied with snow treatments, and among years. Plants in the snow removal treatment were more likely to experience frost damage, and frost-damaged plants suffered low reproduction despite lack of pollen limitation. Plants in the snow removal treatment that escaped frost damage had higher pollinator visitation rates and reproduction than controls. The results of the array experiment supported the results of the snow manipulations. Plants in the early and late treatments suffered very low reproduction due either to severe frost damage (early treatment) or low pollinator visitation (late treatment) relative to control plants. Thus, plants face tradeoffs with advanced flowering time. While early-flowering plants can reap the benefits of enhanced pollination services, they do so at the cost of increased susceptibility to frost damage that can overwhelm any benefit of flowering early. In contrast, delayed flowering results in dramatic reductions in plant reproduction through reduced pollination. Our results suggest that climate change may constrain the

  2. Linking plant specialization to dependence in interactions for seed set in pollination networks.

    Science.gov (United States)

    Tur, Cristina; Castro-Urgal, Rocío; Traveset, Anna

    2013-01-01

    Studies on pollination networks have provided valuable information on the number, frequency, distribution and identity of interactions between plants and pollinators. However, little is still known on the functional effect of these interactions on plant reproductive success. Information on the extent to which plants depend on such interactions will help to make more realistic predictions of the potential impacts of disturbances on plant-pollinator networks. Plant functional dependence on pollinators (all interactions pooled) can be estimated by comparing seed set with and without pollinators (i.e. bagging flowers to exclude them). Our main goal in this study was thus to determine whether plant dependence on current insect interactions is related to plant specialization in a pollination network. We studied two networks from different communities, one in a coastal dune and one in a mountain. For ca. 30% of plant species in each community, we obtained the following specialization measures: (i) linkage level (number of interactions), (ii) diversity of interactions, and (iii) closeness centrality (a measure of how much a species is connected to other plants via shared pollinators). Phylogenetically controlled regression analyses revealed that, for the largest and most diverse coastal community, plants highly dependent on pollinators were the most generalists showing the highest number and diversity of interactions as well as occupying central positions in the network. The mountain community, by contrast, did not show such functional relationship, what might be attributable to their lower flower-resource heterogeneity and diversity of interactions. We conclude that plants with a wide array of pollinator interactions tend to be those that are more strongly dependent upon them for seed production and thus might be those more functionally vulnerable to the loss of network interaction, although these outcomes might be context-dependent.

  3. Linking plant specialization to dependence in interactions for seed set in pollination networks.

    Directory of Open Access Journals (Sweden)

    Cristina Tur

    Full Text Available Studies on pollination networks have provided valuable information on the number, frequency, distribution and identity of interactions between plants and pollinators. However, little is still known on the functional effect of these interactions on plant reproductive success. Information on the extent to which plants depend on such interactions will help to make more realistic predictions of the potential impacts of disturbances on plant-pollinator networks. Plant functional dependence on pollinators (all interactions pooled can be estimated by comparing seed set with and without pollinators (i.e. bagging flowers to exclude them. Our main goal in this study was thus to determine whether plant dependence on current insect interactions is related to plant specialization in a pollination network. We studied two networks from different communities, one in a coastal dune and one in a mountain. For ca. 30% of plant species in each community, we obtained the following specialization measures: (i linkage level (number of interactions, (ii diversity of interactions, and (iii closeness centrality (a measure of how much a species is connected to other plants via shared pollinators. Phylogenetically controlled regression analyses revealed that, for the largest and most diverse coastal community, plants highly dependent on pollinators were the most generalists showing the highest number and diversity of interactions as well as occupying central positions in the network. The mountain community, by contrast, did not show such functional relationship, what might be attributable to their lower flower-resource heterogeneity and diversity of interactions. We conclude that plants with a wide array of pollinator interactions tend to be those that are more strongly dependent upon them for seed production and thus might be those more functionally vulnerable to the loss of network interaction, although these outcomes might be context-dependent.

  4. Direct and Pollinator-Mediated Effects of Herbivory on Strawberry and the Potential for Improved Resistance

    Directory of Open Access Journals (Sweden)

    Anne Muola

    2017-05-01

    Full Text Available The global decline in pollinators has partly been blamed on pesticides, leading some to propose pesticide-free farming as an option to improve pollination. However, herbivores are likely to be more prevalent in pesticide-free environments, requiring knowledge of their effects on pollinators, and alternative crop protection strategies to mitigate any potential pollination reduction. Strawberry leaf beetles (SLB Galerucella spp. are important strawberry pests in Northern Europe and Russia. Given that SLB attack both leaf and flower tissue, we hypothesized pollinators would discriminate against SLB-damaged strawberry plants (Fragaria vesca, cultivar ‘Rügen’, leading to lower pollination success and yield. In addition we screened the most common commercial cultivar ‘Rügen’ and wild Swedish F. vesca genotypes for SLB resistance to assess the potential for inverse breeding to restore high SLB resistance in cultivated strawberry. Behavioral observations in a controlled experiment revealed that the local pollinator fauna avoided strawberry flowers with SLB-damaged petals. Low pollination, in turn, resulted in smaller more deformed fruits. Furthermore, SLB-damaged flowers produced smaller fruits even when they were hand pollinated, showing herbivore damage also had direct effects on yield, independent of indirect effects on pollination. We found variable resistance in wild woodland strawberry to SLB and more resistant plant genotypes than the cultivar ‘Rügen’ were identified. Efficient integrated pest management strategies should be employed to mitigate both direct and indirect effects of herbivory for cultivated strawberry, including high intrinsic plant resistance.

  5. [Importance of competition for pollination in formation of the entomophylous plants complex structure].

    Science.gov (United States)

    Dlusskiĭ, G M

    2013-01-01

    Many species of entomophylous plants have a wide range of pollinators, and the same insects visit flowers of many plants. The competition for pollination leads to decreasing in seed production of competing species. However, there exists a variety of adaptations that allow plants to reduce the intensity of competition. A comparative analysis of pollinators spectra has allowed to designate groups (subcomplexes) of plants with regard to dominance of various groups of pollinators: myiophylous (flies from the superfamily Muscomorha dominate), syphidophylous (flies from the family Syrphidae dominate), psychophylous (butterflies dominate), cantharophylous (beetles dominate), nonspecialized and specialized melittophylous (Apidae, mainly bumblebees, dominate). The belonging of plants to a specific subcomplex is defined mainly by the structure of flowers and inflorescences. Modes of mechanical and attractive isolation are discussed that lead to restriction of pollinators composition. Competition abatement between species with similar spectra of pollinators and belonging to the same subcomplex is achieved mainly by spatial (ecological) and temporal (different timing of flowering) isolation.

  6. Plant-pollinator interactions in a biodiverse meadow are rather stable and tight for 3 consecutive years.

    Science.gov (United States)

    Fang, Qiang; Huang, Shuangquan

    2016-05-01

    Plant-pollinator interactions can be highly variable across years in natural communities. Although variation in the species composition and its basic structure has been investigated to understand the dynamic nature of pollination networks, little is known about the temporal dynamic of interaction strength between the same plant and pollinator species in any natural community. Pollinator-mediated selection on the evolution of floral traits could be diminished if plant-pollinator interactions vary temporally. To quantify the temporal variation in plant-pollinator interactions and the interaction strength (observed visits), we compared weighted networks between plants and pollinators in a biodiverse alpine meadow in Shangri-La, southwest China for 3 consecutive years. Although plant-pollinator interactions were highly dynamic such that identical interactions only accounted for 10.7% of the total between pair years, the diversity of interactions was stable. These identical interactions contributed 41.2% of total visits and were similar in strength and weighted nestedness. For plant species, 72.6% of species were visited by identical pollinator species between pair years, accounting for over half of the total visits and three-quarters at the functional group level. More generalized pollinators contributed more connectiveness and were more central in networks across years. However, there was no similar or even opposite trend for plant species, which suggested that specialized plant species may also be central in pollinator networks. The variation in pollinator composition decreased as pollinator species numbers increased, suggesting that generalized plants experienced stable pollinator partition. The stable, tight interactions between generalized pollinators and specialized plants represent cornerstones of the studied community. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  7. Reduced sexual compatibility between cultivated and wild chicory and their F1 hybrids

    DEFF Research Database (Denmark)

    Hauser, T.P.; Bagger Jørgensen, Rikke; Toneatto, F.

    2012-01-01

    marked, and when seeds were ripe we determined whether cultivar, wild or hybrid plants had pollinated the seeds, using AFLP markers. Cultivar plants fathered much fewer seeds than expected, both on wild and hybrid plants, suggesting that some degree of incompatibility has evolved between cultivar...... (Cichorium intybus L.) has been bred as a crop at least since Roman times. To test if this has led to a loss in reproductive compatibility with wild chicory, we planted cultivar, wild, and F1 hybrid plants into two field plots, and let them pollinate freely. On 2 days, in the beginning and middle...... of the flowering season, we counted the numbers of flowering capitula and open flowers per capitulum, which in combination with counts of viable pollen per flower were used to estimate the expected proportion of seeds fathered by cultivar, wild, and hybrid plants. Open capitula on wild and hybrid plants were...

  8. Pollination Services of Mango Flower Pollinators

    Science.gov (United States)

    Huda, A. Nurul; Salmah, M. R. Che; Hassan, A. Abu; Hamdan, A.; Razak, M. N. Abdul

    2015-01-01

    Measuring wild pollinator services in agricultural production is very important in the context of sustainable management. In this study, we estimated the contribution of native pollinators to mango fruit set production of two mango cultivars Mangifera indica (L). cv. ‘Sala’ and ‘Chok Anan’. Visitation rates of pollinators on mango flowers and number of pollen grains adhering to their bodies determined pollinator efficiency for reproductive success of the crop. Chok Anan failed to produce any fruit set in the absence of pollinators. In natural condition, we found that Sala produced 4.8% fruit set per hermaphrodite flower while Chok Anan produced 3.1% per flower. Hand pollination tremendously increased fruit set of naturally pollinated flower for Sala (>100%), but only 33% for Chok Anan. Pollinator contribution to mango fruit set was estimated at 53% of total fruit set production. Our results highlighted the importance of insect pollinations in mango production. Large size flies Eristalinus spp. and Chrysomya spp. were found to be effective pollen carriers and visited more mango flowers compared with other flower visitors. PMID:26246439

  9. Host specificity, phenotype matching and the evolution of reproductive isolation in a coevolved plant-pollinator mutualism.

    Science.gov (United States)

    Himler, Anna G; Machado, Carlos A

    2009-12-01

    Coevolutionary interactions between plants and their associated pollinators and seed dispersers are thought to have promoted the diversification of flowering plants (Raven 1977; Regal 1977; Stebbins 1981). The actual mechanisms by which pollinators could drive species diversification in plants are not fully understood. However, it is thought that pollinator host specialization can influence the evolution of reproductive isolation among plant populations because the pollinator's choice of host is what determines patterns of gene flow in its host plant, and host choice may also have important consequences on pollinator and host fitness (Grant 1949; Bawa 1992). In this issue of Molecular Ecology, Smith et al. (2009) present a very interesting study that addresses how host specialization affects pollinator fitness and patterns of gene flow in a plant host. Several aspects of this study match elements of a seminal mathematical model of plant-pollinator codivergence (Kiester et al. 1984) suggesting that reciprocal selection for matched plant and pollinator reproductive traits may lead to speciation in the host and its pollinator when there is strong host specialization and a pattern of geographic subdivision. Smith et al.'s study represents an important step to fill the gap in our understanding of how reciprocal selection may lead to speciation in coevolved plant-pollinator mutualisms.

  10. The promise of genomics in the study of plant-pollinator interactions

    Science.gov (United States)

    2013-01-01

    Flowers exist in exceedingly complex fitness landscapes, in which subtle variation in each trait can affect the pollinators, herbivores and pleiotropically linked traits in other plant tissues. A whole-genome approach to flower evolution will help our understanding of plant-pollinator interactions. PMID:23796166

  11. Effects of landscape composition and configuration on pollination in a native herb: a field experiment.

    Science.gov (United States)

    Ekroos, Johan; Jakobsson, Anna; Wideen, Joel; Herbertsson, Lina; Rundlöf, Maj; Smith, Henrik G

    2015-10-01

    Bumble bee abundance in agricultural landscapes is known to decrease with increasing distance from seminatural grasslands, but whether the pollination of bumble-bee-pollinated wild plants shows a similar pattern is less well known. In addition, the relative effects of landscape composition (landscape heterogeneity) and landscape configuration (distance from seminatural grassland) on wild plant pollination, and the interaction between these landscape effects, have not been studied using landscape-level replication. We performed a field experiment to disentangle these landscape effects on the pollination of a native herb, the sticky catchfly (Lychnis viscaria), while accounting for the proportion of oilseed rape across landscapes and the local abundance of bee forage flowers. We measured pollen limitation (the degree to which seed set is pollen-limited), seed set, and seed set stability using potted plants placed in landscapes that differed in heterogeneity (composition) and distance from seminatural grassland (configuration). Pollen limitation and seed set in individual plants did not respond to landscape composition, landscape configuration, or proportion of oilseed rape. Instead, seed set increased with increasing local bee forage flower cover. However, we found within-plant variability in pollen limitation and seed set to increase with increasing distance from seminatural pasture. Our results suggest that average within-plant levels of pollen limitation and seed set respond less swiftly than the within-plant variability in pollen limitation and seed set to changes in landscape configuration. Although landscape effects on pollination were less important than predicted, we conclude that landscape configuration and local habitat characteristics play larger roles than landscape composition in the pollination of L. viscaria.

  12. Microclimate and Individual Variation in Pollinators: Flowering Plants are More than Their Flowers

    OpenAIRE

    Herrera, Carlos M.

    1995-01-01

    Variation in pollinator composition at the individual plant level is an important prerequisite for plant specialization on pollinators that does not seem to have been investigated previously. I studied variation in pollinator composition in a southeastern Spanish population of the insect-pollinated shrub Lavandula latifolia (Labiatae) and examined its correlates, with particular reference to the distinction between factors intrinsic (flower morphology, nectar standing crop, size of floral dis...

  13. Asynchronous diversification in a specialized plant-pollinator mutualism.

    Science.gov (United States)

    Ramírez, Santiago R; Eltz, Thomas; Fujiwara, Mikiko K; Gerlach, Günter; Goldman-Huertas, Benjamin; Tsutsui, Neil D; Pierce, Naomi E

    2011-09-23

    Most flowering plants establish mutualistic associations with insect pollinators to facilitate sexual reproduction. However, the evolutionary processes that gave rise to these associations remain poorly understood. We reconstructed the times of divergence, diversification patterns, and interaction networks of a diverse group of specialized orchids and their bee pollinators. In contrast to a scenario of coevolution by race formation, we show that fragrance-producing orchids originated at least three times independently after their fragrance-collecting bee mutualists. Whereas orchid diversification has apparently tracked the diversification of orchids' bee pollinators, bees appear to have depended on the diverse chemical environment of neotropical forests. We corroborated this apparent asymmetrical dependency by simulating co-extinction cascades in real interaction networks that lacked reciprocal specialization. These results suggest that the diversification of insect-pollinated angiosperms may have been facilitated by the exploitation of preexisting sensory biases of insect pollinators.

  14. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales.

    Directory of Open Access Journals (Sweden)

    Eduardo Freitas Moreira

    Full Text Available Mutualistic plant-pollinator interactions play a key role in biodiversity conservation and ecosystem functioning. In a community, the combination of these interactions can generate emergent properties, e.g., robustness and resilience to disturbances such as fluctuations in populations and extinctions. Given that these systems are hierarchical and complex, environmental changes must have multiple levels of influence. In addition, changes in habitat quality and in the landscape structure are important threats to plants, pollinators and their interactions. However, despite the importance of these phenomena for the understanding of biological systems, as well as for conservation and management strategies, few studies have empirically evaluated these effects at the network level. Therefore, the objective of this study was to investigate the influence of local conditions and landscape structure at multiple scales on the characteristics of plant-pollinator networks. This study was conducted in agri-natural lands in Chapada Diamantina, Bahia, Brazil. Pollinators were collected in 27 sampling units distributed orthogonally along a gradient of proportion of agriculture and landscape diversity. The Akaike information criterion was used to select models that best fit the metrics for network characteristics, comparing four hypotheses represented by a set of a priori candidate models with specific combinations of the proportion of agriculture, the average shape of the landscape elements, the diversity of the landscape and the structure of local vegetation. The results indicate that a reduction of habitat quality and landscape heterogeneity can cause species loss and decrease of networks nestedness. These structural changes can reduce robustness and resilience of plant-pollinator networks what compromises the reproductive success of plants, the maintenance of biodiversity and the pollination service stability. We also discuss the possible explanations for

  15. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales.

    Science.gov (United States)

    Moreira, Eduardo Freitas; Boscolo, Danilo; Viana, Blandina Felipe

    2015-01-01

    Mutualistic plant-pollinator interactions play a key role in biodiversity conservation and ecosystem functioning. In a community, the combination of these interactions can generate emergent properties, e.g., robustness and resilience to disturbances such as fluctuations in populations and extinctions. Given that these systems are hierarchical and complex, environmental changes must have multiple levels of influence. In addition, changes in habitat quality and in the landscape structure are important threats to plants, pollinators and their interactions. However, despite the importance of these phenomena for the understanding of biological systems, as well as for conservation and management strategies, few studies have empirically evaluated these effects at the network level. Therefore, the objective of this study was to investigate the influence of local conditions and landscape structure at multiple scales on the characteristics of plant-pollinator networks. This study was conducted in agri-natural lands in Chapada Diamantina, Bahia, Brazil. Pollinators were collected in 27 sampling units distributed orthogonally along a gradient of proportion of agriculture and landscape diversity. The Akaike information criterion was used to select models that best fit the metrics for network characteristics, comparing four hypotheses represented by a set of a priori candidate models with specific combinations of the proportion of agriculture, the average shape of the landscape elements, the diversity of the landscape and the structure of local vegetation. The results indicate that a reduction of habitat quality and landscape heterogeneity can cause species loss and decrease of networks nestedness. These structural changes can reduce robustness and resilience of plant-pollinator networks what compromises the reproductive success of plants, the maintenance of biodiversity and the pollination service stability. We also discuss the possible explanations for these relationships and

  16. Benefits of Biotic Pollination for Non-Timber Forest Products and Cultivated Plants

    Directory of Open Access Journals (Sweden)

    Rehel Shiny

    2009-01-01

    Full Text Available Biodiversity supplies multiple goods and services to society and is critical for the support of livelihoods across the globe. Many indigenous people depend upon non-timber forest products (NTFP and crops for a range of goods including food, medicine, fibre and construction materials. However, the dependency of these products on biotic pollination services is poorly understood. We used the biologically and culturally diverse Nilgiri Biosphere Reserve in India to characterise the types of NTFP and crop products of 213 plant species and asses their degree of dependency on animal pollination. We found that 80 per cent of all species benefited from animal pollination in their reproduction, and that 62 per cent of crop products and 40 per cent of NTFP benefited from biotic pollination in their production. Further we identified the likely pollinating taxa documented as responsible for the production of these products, mainly bees and other insects. A lower proportion of indigenous plant products (39 per cent benefited from biotic pollination than products from introduced plants (61 per cent. We conclude that pollinators play an important role in the livelihoods of people in this region.

  17. Pollination and Plant Resources Change the Nutritional Quality of Almonds for Human Health

    Science.gov (United States)

    Brittain, Claire; Kremen, Claire; Garber, Andrea; Klein, Alexandra-Maria

    2014-01-01

    Insect-pollinated crops provide important nutrients for human health. Pollination, water and nutrients available to crops can influence yield, but it is not known if the nutritional value of the crop is also influenced. Almonds are an important source of critical nutrients for human health such as unsaturated fat and vitamin E. We manipulated the pollination of almond trees and the resources available to the trees, to investigate the impact on the nutritional composition of the crop. The pollination treatments were: (a) exclusion of pollinators to initiate self-pollination and (b) hand cross-pollination; the plant resource treatments were: (c) reduced water and (d) no fertilizer. In an orchard in northern California, trees were exposed to a single treatment or a combination of two (one pollination and one resource). Both the fat and vitamin E composition of the nuts were highly influenced by pollination. Lower proportions of oleic to linoleic acid, which are less desirable from both a health and commercial perspective, were produced by the self-pollinated trees. However, higher levels of vitamin E were found in the self-pollinated nuts. In some cases, combined changes in pollination and plant resources sharpened the pollination effects, even when plant resources were not influencing the nutrients as an individual treatment. This study highlights the importance of insects as providers of cross-pollination for fruit quality that can affect human health, and, for the first time, shows that other environmental factors can sharpen the effect of pollination. This contributes to an emerging field of research investigating the complexity of interactions of ecosystem services affecting the nutritional value and commercial quality of crops. PMID:24587215

  18. Phenotypic selection varies with pollination intensity across populations of Sabatia angularis.

    Science.gov (United States)

    Emel, Sarah L; Franks, Steven J; Spigler, Rachel B

    2017-07-01

    Pollinators are considered primary selective agents acting on plant traits, and thus variation in the strength of the plant-pollinator interaction might drive variation in the opportunity for selection and selection intensity across plant populations. Here, we examine whether these critical evolutionary parameters covary with pollination intensity across wild populations of the biennial Sabatia angularis. We quantified pollination intensity in each of nine S. angularis populations as mean stigmatic pollen load per population. For female fitness and three components, fruit number, fruit set (proportion of flowers setting fruit) and number of seeds per fruit, we evaluated whether the opportunity for selection varied with pollination intensity. We used phenotypic selection analyses to test for interactions between pollination intensity and selection gradients for five floral traits, including flowering phenology. The opportunity for selection via fruit set and seeds per fruit declined significantly with increasing pollen receipt, as expected. We demonstrated significant directional selection on multiple traits across populations. We also found that selection intensity for all traits depended on pollination intensity. Consistent with general theory about the relationship between biotic interaction strength and the intensity of selection, our study suggests that variation in pollination intensity drives variation in selection across S. angularis populations. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. How plants connect pollination and herbivory networks and their contribution to community stability.

    Science.gov (United States)

    Sauve, Alix M C; Thébault, Elisa; Pocock, Michael J O; Fontaine, Colin

    2016-04-01

    Pollination and herbivory networks have mainly been studied separately, highlighting their distinct structural characteristics and the related processes and dynamics. However, most plants interact with both pollinators and herbivores, and there is evidence that both types of interaction affect each other. Here we investigated the way plants connect these mutualistic and antagonistic networks together, and the consequences for community stability. Using an empirical data set, we show that the way plants connect pollination and herbivory networks is not random and promotes community stability. Analyses of the structure of binary and quantitative networks show different results: the plants' generalism with regard to pollinators is positively correlated to their generalism with regard to herbivores when considering binary interactions, but not when considering quantitative interactions. We also show that plants that share the same pollinators do not share the same herbivores. However, the way plants connect pollination and herbivory networks promotes stability for both binary and quantitative networks. Our results highlight the relevance of considering the diversity of interaction types in ecological communities, and stress the need to better quantify the costs and benefits of interactions, as well as to develop new metrics characterizing the way different interaction types are combined within ecological networks.

  20. Insect pollination and self-incompatibility in edible and/or medicinal crops in southwestern China, a global hotspot of biodiversity.

    Science.gov (United States)

    Ren, Zong-Xin; Wang, Hong; Bernhardt, Peter; Li, De-Zhu

    2014-10-01

    An increasing global demand for food, coupled with the widespread decline of pollinator diversity, remains an international concern in agriculture and genetic conservation. In particular, there are large gaps in the study of the pollination of economically important and traditionally grown species in China. Many plant species grown in China are both edible and used medicinally. The country retains extensive written records of agricultural and apicultural practices, facilitating contemporary studies of some important taxa. Here, we focus on Yunnan in southwestern China, a mega-biodiversity hotspot for medicinal/food plants. We used plant and insect taxa as model systems to understand the patterns and consequences of pollinator deficit to crops. We identified several gaps and limitations in research on the pollination ecology and breeding systems of domesticated taxa and their wild relatives in Yunnan and asked the following questions: (1) What is known about pollination systems of edible and medicinal plants in Yunnan? (2) What are the most important pollinators of Codonopsis subglobosa (Campanulaceae)? (3) How important are native pollinator species for maximizing yield in Chinese crops compared with the introduced Apis mellifera? We found that some crops that require cross-pollination now depend exclusively on hand pollination. Three domesticated crops are dependent primarily on the native but semidomesticated Apis cerana and the introduced A. mellifera. Other species of wild pollinators often play important roles for certain specialty crops (e.g., Vespa velutina pollinates Codonopsis subglobosa). We propose a more systematic and comprehensive approach to applied research in the future. © 2014 Botanical Society of America, Inc.

  1. Pollination patterns and plant breeding systems in the Galapagos: a review.

    Science.gov (United States)

    Chamorro, Susana; Heleno, Ruben; Olesen, Jens M; McMullen, Conley K; Traveset, Anna

    2012-11-01

    Despite the importance of the Galápagos Islands for the development of central concepts in ecology and evolution, the understanding of many ecological processes in this archipelago is still very basic. One such process is pollination, which provides an important service to both plants and their pollinators. The rather modest level of knowledge on this subject has so far limited our predictive power on the consequences of the increasing threat of introduced plants and pollinators to this unique archipelago. As a first step toward building a unified view of the state of pollination in the Galápagos, a thorough literature search was conducted on the breeding systems of the archipelago's flora and compiled all documented flower-visitor interactions. Based on 38 studies from the last 100 years, we retrieved 329 unique interactions between 123 flowering plant species (50 endemics, 39 non-endemic natives, 26 introduced and eight of unknown origin) from 41 families and 120 animal species from 13 orders. We discuss the emergent patterns and identify promising research avenues in the field. Although breeding systems are known for pollinator fauna does not represent a constraint to the integration of new plant species into the native communities. Most interactions detected (approx. 90 %) come from a single island (most of them from Santa Cruz). Hymenopterans (mainly the endemic carpenter bee Xylocopa darwinii and ants), followed by lepidopterans, were the most important flower visitors. Dipterans were much more important flower visitors in the humid zone than in the dry zone. Bird and lizard pollination has been occasionally reported in the dry zone. Strong biases were detected in the sampling effort dedicated to different islands, time of day, focal plants and functional groups of visitors. Thus, the existing patterns need to be confronted with new and less biased data. The implementation of a community-level approach could greatly increase our understanding of pollination

  2. Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions

    Directory of Open Access Journals (Sweden)

    Victoria L. SCAVEN, Nicole E. RAFFERTY

    2013-06-01

    Full Text Available Growing concern about the influence of climate change on flowering plants, pollinators, and the mutualistic interactions between them has led to a recent surge in research. Much of this research has addressed the consequences of warming for phenological and distributional shifts. In contrast, relatively little is known about the physiological responses of plants and insect pollinators to climate warming and, in particular, how these responses might affect plant-pollinator interactions. Here, we summarize the direct physiological effects of temperature on flowering plants and pollinating insects to highlight ways in which plant and pollinator responses could affect floral resources for pollinators, and pollination success for plants, respectively. We also consider the overall effects of these responses on plant-pollinator interaction networks. Plant responses to warming, which include altered flower, nectar, and pollen production, could modify floral resource availability and reproductive output of pollinating insects. Similarly, pollinator responses, such as altered foraging activity, body size, and life span, could affect patterns of pollen flow and pollination success of flowering plants. As a result, network structure could be altered as interactions are gained and lost, weakened and strengthened, even without the gain or loss of species or temporal overlap. Future research that addresses not only how plant and pollinator physiology are affected by warming but also how responses scale up to affect interactions and networks should allow us to better understand and predict the effects of climate change on this important ecosystem service [Current Zoolo­gy 59 (3: 418–426, 2013].

  3. The long-tongued hawkmoth pollinator niche for native and invasive plants in Africa.

    Science.gov (United States)

    Johnson, Steven D; Raguso, Robert A

    2016-01-01

    Unrelated organisms that share similar niches often exhibit patterns of convergent evolution in functional traits. Based on bimodal distributions of hawkmoth tongue lengths and tubular white flowers in Africa, this study hypothesized that long-tongued hawkmoths comprise a pollination niche (ecological opportunity) that is distinct from that of shorter-tongued hawkmoths. Field observations, light trapping, camera surveillance and pollen load analysis were used to identify pollinators of plant species with very long-tubed (>8 cm) flowers. The nectar properties and spectral reflectance of these flowers were also measured. The frequency distributions of proboscis length for all captured hawkmoths and floral tube length for a representative sample of night-blooming plant species were determined. The geographical distributions of both native and introduced plant species with very long floral tubes were mapped. The convolvulus hawkmoth Agrius convolvuli is identified as the most important pollinator of African plants with very long-tubed flowers. Plants pollinated by this hawkmoth species tend to have a very long (approx. 10 cm) and narrow flower tube or spur, white flowers and large volumes of dilute nectar. It is estimated that >70 grassland and savanna plant species in Africa belong to the Agrius pollination guild. In South Africa, at least 23 native species have very long floral tubes, and pollination by A. convolvuli or, rarely, by the closely related hawkmoth Coelonia fulvinotata, has been confirmed for 11 of these species. The guild is strikingly absent from the species-rich Cape floral region and now includes at least four non-native invasive species with long-tubed flowers that are pre-adapted for pollination by A. convolvuli. This study highlights the value of a niche perspective on pollination, which provides a framework for making predictions about the ecological importance of keystone pollinators, and for understanding patterns of convergent evolution and

  4. Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism.

    Science.gov (United States)

    Hoover, Shelley E R; Ladley, Jenny J; Shchepetkina, Anastasia A; Tisch, Maggie; Gieseg, Steven P; Tylianakis, Jason M

    2012-03-01

    Environmental changes threaten plant-pollinator mutualisms and their critical ecosystem service. Drivers such as land use, invasions and climate change can affect pollinator diversity or species encounter rates. However, nitrogen deposition, climate warming and CO(2) enrichment could interact to disrupt this crucial mutualism by altering plant chemistry in ways that alter floral attractiveness or even nutritional rewards for pollinators. Using a pumpkin model system, we show that these drivers non-additively affect flower morphology, phenology, flower sex ratios and nectar chemistry (sugar and amino acids), thereby altering the attractiveness of nectar to bumble bee pollinators and reducing worker longevity. Alarmingly, bees were attracted to, and consumed more, nectar from a treatment that reduced their survival by 22%. Thus, three of the five major drivers of global environmental change have previously unknown interactive effects on plant-pollinator mutualisms that could not be predicted from studies of individual drivers in isolation. © 2012 Blackwell Publishing Ltd/CNRS.

  5. Disentangling multiple drivers of pollination in a landscape-scale experiment.

    Science.gov (United States)

    Schüepp, Christof; Herzog, Felix; Entling, Martin H

    2014-01-07

    Animal pollination is essential for the reproductive success of many wild and crop plants. Loss and isolation of (semi-)natural habitats in agricultural landscapes can cause declines of plants and pollinators and endanger pollination services. We investigated the independent effects of these drivers on pollination of young cherry trees in a landscape-scale experiment. We included (i) isolation of study trees from other cherry trees (up to 350 m), (ii) the amount of cherry trees in the landscape, (iii) the isolation from other woody habitats (up to 200 m) and (iv) the amount of woody habitats providing nesting and floral resources for pollinators. At the local scale, we considered effects of (v) cherry flower density and (vi) heterospecific flower density. Pollinators visited flowers more often in landscapes with high amount of woody habitat and at sites with lower isolation from the next cherry tree. Fruit set was reduced by isolation from the next cherry tree and by a high local density of heterospecific flowers but did not directly depend on pollinator visitation. These results reveal the importance of considering the plant's need for conspecific pollen and its pollen competition with co-flowering species rather than focusing only on pollinators' habitat requirements and flower visitation. It proved to be important to disentangle habitat isolation from habitat loss, local from landscape-scale effects, and direct effects of pollen availability on fruit set from indirect effects via pollinator visitation to understand the delivery of an agriculturally important ecosystem service.

  6. Circadian clocks of both plants and pollinators influence flower seeking behavior of the pollinator hawkmoth Manduca sexta.

    Science.gov (United States)

    Fenske, Myles P; Nguyen, LeAnn P; Horn, Erin K; Riffell, Jeffrey A; Imaizumi, Takato

    2018-02-12

    Most plant-pollinator interactions occur during specific periods during the day. To facilitate these interactions, many flowers are known to display their attractive qualities, such as scent emission and petal opening, in a daily rhythmic fashion. However, less is known about how the internal timing mechanisms (the circadian clocks) of plants and animals influence their daily interactions. We examine the role of the circadian clock in modulating the interaction between Petunia and one of its pollinators, the hawkmoth Manduca sexta. We find that desynchronization of the Petunia circadian clock affects moth visitation preference for Petunia flowers. Similarly, moths with circadian time aligned to plants show stronger flower-foraging activities than moths that lack this alignment. Moth locomotor activity is circadian clock-regulated, although it is also strongly repressed by light. Moths show a time-dependent burst increase in flight activity during subjective night. In addition, moth antennal responsiveness to the floral scent compounds exhibits a 24-hour rhythm in both continuous light and dark conditions. This study highlights the importance of the circadian clocks in both plants and animals as a crucial factor in initiating specialized plant-pollinator relationships.

  7. Relative floral density of an invasive plant affects pollinator foraging behaviour on a native plant

    Directory of Open Access Journals (Sweden)

    Amy Marie Iler

    2014-08-01

    Full Text Available Interactions between invasive and native plants for pollinators vary from competition to facilitation of pollination of native plants. Theory predicts that relative floral densities should account for some of this variation in outcomes, with facilitation at low floral densities and competition at high floral densities of the invader. We tested this prediction by quantifying pollination and female reproductive success of a native herb, Geranium maculatum, in three experimental arrays that varied in floral density of the invasive shrub Lonicera maackii: control (no L. maackii, low floral density of L. maackii, and high floral density of L. maackii. A low density of L. maackii flowers was associated with an increase in pollinator visitation rate to G. maculatum flowers and an increase in conspecific pollen deposition compared to controls and high density arrays. Increased visitation rates were not associated with an increase in the number of visitors to low density arrays, suggesting instead that a behavioural switch in visitation within the array accounted for increased pollen deposition. In contrast, the only evidence of competition in high density arrays was a shorter duration of visits to G. maculatum flowers relative to the other treatments. The number of seeds per flower did not vary among treatments, although trends in seeds per flower were consistent with patterns of pollinator foraging behaviour. Given increased pollinator visits and pollen deposition at a low density of the invader, our study indicates that complete eradication of invasives as a management or restoration technique may have unintended negative consequences for pollination of native plants.

  8. Nectar bacteria, but not yeast, weaken a plant-pollinator mutualism.

    Science.gov (United States)

    Vannette, Rachel L; Gauthier, Marie-Pierre L; Fukami, Tadashi

    2013-02-07

    Mutualistic interactions are often subject to exploitation by species that are not directly involved in the mutualism. Understanding which organisms act as such 'third-party' species and how they do so is a major challenge in the current study of mutualistic interactions. Here, we show that even species that appear ecologically similar can have contrasting effects as third-party species. We experimentally compared the effects of nectar-inhabiting bacteria and yeasts on the strength of a mutualism between a hummingbird-pollinated shrub, Mimulus aurantiacus, and its pollinators. We found that the common bacterium Gluconobacter sp., but not the common yeast Metschnikowia reukaufii, reduced pollination success, seed set and nectar consumption by pollinators, thereby weakening the plant-pollinator mutualism. We also found that the bacteria reduced nectar pH and total sugar concentration more greatly than the yeasts did and that the bacteria decreased glucose concentration and increased fructose concentration whereas the yeasts affected neither. These distinct changes to nectar chemistry may underlie the microbes' contrasting effects on the mutualism. Our results suggest that it is necessary to understand the determinants of microbial species composition in nectar and their differential modification of floral rewards to explain the mutual benefits that plants and pollinators gain from each other.

  9. How to be an attractive male: floral dimorphism and attractiveness to pollinators in a dioecious plant

    Directory of Open Access Journals (Sweden)

    Waelti Marc O

    2009-08-01

    Full Text Available Abstract Background Sexual selection theory predicts that males are limited in their reproductive success by access to mates, whereas females are more limited by resources. In animal-pollinated plants, attraction of pollinators and successful pollination is crucial for reproductive success. In dioecious plant species, males should thus be selected to increase their attractiveness to pollinators by investing more than females in floral traits that enhance pollinator visitation. We tested the prediction of higher attractiveness of male flowers in the dioecious, moth-pollinated herb Silene latifolia, by investigating floral signals (floral display and fragrance and conducting behavioral experiments with the pollinator-moth, Hadena bicruris. Results As found in previous studies, male plants produced more but smaller flowers. Male flowers, however, emitted significantly larger amounts of scent than female flowers, especially of the pollinator-attracting compounds. In behavioral tests we showed that naïve pollinator-moths preferred male over female flowers, but this preference was only significant for male moths. Conclusion Our data suggest the evolution of dimorphic floral signals is shaped by sexual selection and pollinator preferences, causing sexual conflict in both plants and pollinators.

  10. The potential indirect effects among plants via shared hummingbird pollinators are structured by phenotypic similarity.

    Science.gov (United States)

    Bergamo, Pedro Joaquim; Wolowski, Marina; Maruyama, Pietro Kiyoshi; Vizentin-Bugoni, Jeferson; Carvalheiro, Luísa G; Sazima, Marlies

    2017-07-01

    Plant species within communities may overlap in pollinators' use and influence visitation patterns of shared pollinators, potentially engaging in indirect interactions (e.g., facilitation or competition). While several studies have explored the mechanisms regulating insect-pollination networks, there is a lack of studies on bird-pollination systems, particularly in species-rich tropical areas. Here, we evaluated if phenotypic similarity, resource availability (floral abundance), evolutionary relatedness and flowering phenology affect the potential for indirect effects via shared pollinators in hummingbird-pollinated plant species within four communities in the Brazilian Atlantic forest. Among the evaluated factors, phenotypic similarity (corolla length and anther height) was the most important variable, while resource availability (floral abundance) had a secondary importance. On the other hand, evolutionary relatedness and flowering phenology were less important, which altogether highlights the relevance of convergent evolution and that the contribution of a plant to the diet of the pollinators of another plant is independent of the level of temporal overlap in flowering in this tropical system. Interestingly, our findings contrast with results from multiple insect-pollinated plant communities, mostly from temperate regions, in which floral abundance was the most important driver, followed by evolutionary relatedness and phenotypic similarity. We propose that these contrasting results are due to high level of specialization inherent to tropical hummingbird-pollination systems. Moreover, our results demonstrated that factors defining linkage rules of plant-hummingbird networks also determinate plant-plant potential indirect effects. Future studies are needed to test if these findings can be generalized to other highly specialized systems. Overall, our results have important implications for the understanding of ecological processes due resource sharing in

  11. Valuation of pollinator forage services provided by Eucalyptus Cladocalyx

    CSIR Research Space (South Africa)

    De Lange, Willem J

    2013-08-01

    Full Text Available legislation does not allow the importation of bees for pollination services from outside the province, the risk of unsecured forage is increased. Pollination replacement option All insect pollinators Managed pollinators Wild pollinators US$ millions...). Furthermore, colony collapse disorder outbreaks along with increases in sightings of predatory Vespula Germanica (German wasp or “yellow jackets”) in the Western Cape not only add to the pressure on the beekeeping industry, but also the wild pollinator...

  12. Enhancing legume ecosystem services through an understanding of plant-pollinator interplay

    Directory of Open Access Journals (Sweden)

    Maria Jose eSuso

    2016-03-01

    Full Text Available Legumes are bee-pollinated, but to a different extent. The importance of the plant-pollinator interplay (PPI, in flowering crops such as legumes lies in a combination of the importance of pollination for the production service and breeding strategies, plus the increasing urgency in mitigating the decline of pollinators through the development and implementation of conservation measures. To realize the full potential of the PPI, a multidisciplinary approach is required. This article assembles an international team of genebank managers, geneticists, plant breeders, experts on environmental governance and agro-ecology, and comprises several sections. The contributions in these sections outline both the state of the art of knowledge in the field and the novel aspects under development, and encompass a range of reviews, opinions and perspectives. The first three sections explore the role of PPI in legume breeding strategies. PPI based approaches to crop improvement can make it possible to adapt and re-design breeding strategies to meet both goals of: 1 optimal productivity, based on an efficient use of pollinators, and 2 biodiversity conservation. The next section deals with entomological aspects and focuses on the protection of the pest control service and pollinators in legume crops. The final section addresses general approaches to encourage the synergy between food production and pollination services at farmer field level. Two basic approaches are proposed: a Farming with Alternative Pollinators (FAP and b Crop Design System (CDS.

  13. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification

    Directory of Open Access Journals (Sweden)

    Ignasi Bartomeus

    2014-03-01

    Full Text Available Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production.Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes.Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness.Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild

  14. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification.

    Science.gov (United States)

    Bartomeus, Ignasi; Potts, Simon G; Steffan-Dewenter, Ingolf; Vaissière, Bernard E; Woyciechowski, Michal; Krewenka, Kristin M; Tscheulin, Thomas; Roberts, Stuart P M; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in

  15. Bird Pollinator Visitation is Equivalent in Island and Plantation Planting Designs in Tropical Forest Restoration Sites

    Directory of Open Access Journals (Sweden)

    Ginger M. Thurston

    2013-03-01

    Full Text Available Active restoration is one strategy to reverse tropical forest loss. Given the dynamic nature of climates, human populations, and other ecosystem components, the past practice of using historical reference sites as restoration targets is unlikely to result in self-sustaining ecosystems. Restoring sustainable ecological processes like pollination is a more feasible goal. We investigated how flower cover, planting design, and landscape forest cover influenced bird pollinator visits to Inga edulis trees in young restoration sites in Costa Rica. I. edulis trees were located in island plantings, where seedlings had been planted in patches, or in plantation plantings, where seedlings were planted to cover the restoration area. Sites were located in landscapes with scant (10–21% or moderate (35–76% forest cover. Trees with greater flower cover received more visits from pollinating birds; neither planting design nor landscape forest cover influenced the number of pollinator visits. Resident hummingbirds and a migratory bird species were the most frequent bird pollinators. Pollination in the early years following planting may not be as affected by details of restoration design as other ecological processes like seed dispersal. Future work to assess the quality of various pollinator species will be important in assessing this idea.

  16. Modeling the status, trends, and impacts of wild bee abundance in the United States.

    Science.gov (United States)

    Koh, Insu; Lonsdorf, Eric V; Williams, Neal M; Brittain, Claire; Isaacs, Rufus; Gibbs, Jason; Ricketts, Taylor H

    2016-01-05

    Wild bees are highly valuable pollinators. Along with managed honey bees, they provide a critical ecosystem service by ensuring stable pollination to agriculture and wild plant communities. Increasing concern about the welfare of both wild and managed pollinators, however, has prompted recent calls for national evaluation and action. Here, for the first time to our knowledge, we assess the status and trends of wild bees and their potential impacts on pollination services across the coterminous United States. We use a spatial habitat model, national land-cover data, and carefully quantified expert knowledge to estimate wild bee abundance and associated uncertainty. Between 2008 and 2013, modeled bee abundance declined across 23% of US land area. This decline was generally associated with conversion of natural habitats to row crops. We identify 139 counties where low bee abundances correspond to large areas of pollinator-dependent crops. These areas of mismatch between supply (wild bee abundance) and demand (cultivated area) for pollination comprise 39% of the pollinator-dependent crop area in the United States. Further, we find that the crops most highly dependent on pollinators tend to experience more severe mismatches between declining supply and increasing demand. These trends, should they continue, may increase costs for US farmers and may even destabilize crop production over time. National assessments such as this can help focus both scientific and political efforts to understand and sustain wild bees. As new information becomes available, repeated assessments can update findings, revise priorities, and track progress toward sustainable management of our nation's pollinators.

  17. Parameterization of the InVEST Crop Pollination Model to spatially predict abundance of wild blueberry (Vaccinium angustifolium Aiton) native bee pollinators in Maine, USA

    Science.gov (United States)

    Groff, Shannon C.; Loftin, Cynthia S.; Drummond, Frank; Bushmann, Sara; McGill, Brian J.

    2016-01-01

    Non-native honeybees historically have been managed for crop pollination, however, recent population declines draw attention to pollination services provided by native bees. We applied the InVEST Crop Pollination model, developed to predict native bee abundance from habitat resources, in Maine's wild blueberry crop landscape. We evaluated model performance with parameters informed by four approaches: 1) expert opinion; 2) sensitivity analysis; 3) sensitivity analysis informed model optimization; and, 4) simulated annealing (uninformed) model optimization. Uninformed optimization improved model performance by 29% compared to expert opinion-informed model, while sensitivity-analysis informed optimization improved model performance by 54%. This suggests that expert opinion may not result in the best parameter values for the InVEST model. The proportion of deciduous/mixed forest within 2000 m of a blueberry field also reliably predicted native bee abundance in blueberry fields, however, the InVEST model provides an efficient tool to estimate bee abundance beyond the field perimeter.

  18. Plants and colour: Flowers and pollination

    Science.gov (United States)

    Miller, Renee; Owens, Simon J.; Rørslett, Bjørn

    2011-03-01

    While there is a range of colours found in plants the predominant colour is green. Pigments in plants have several roles e.g. photosynthesis and signalling. If colour is to be used as a signal then it must stand out from green. However, one should be aware that there are also coloured compounds where we have not yet fully investigated the role of colour in their functions—they may have roles in, for example, defence or heat exchange. In this paper, we will describe the basic chemistry of the major pigments found in plants and especially floral pigments. We will then discuss their locations in parts of the flower (such as sepals, petals, pollen and nectar), the cells in which they are found and their sub-cellular locations. Floral pigments have a large role to play in pollination of flowers by animals. They can and are modified in many ways during the development of flowers in nature, for example, at emergence and post-pollination. There are a range of biochemical mechanisms of colour change both within flowers and in isolated pigments. Some of the factors influencing colour are temperature, co-pigments, pH, metals, sugars, anthocyanin stacking and cell shape. There is a renewed interest in analysing floral pigments and how they are modified partly because of advances in recombinant DNA technologies, but also because of pollinators and their significance to biodiversity and for evolutionary studies. There is continued strong interest from the horticultural industry for the introduction of new colours e.g. the blue rose and for the exploitation of natural dyes. Funding in this area may impact future research in a potentially beneficial way but it must not deflect us from science-based conservation.

  19. Flight of the bumble bee: Buzzes predict pollination services.

    Directory of Open Access Journals (Sweden)

    Nicole E Miller-Struttmann

    Full Text Available Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi. We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30-52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97, indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and

  20. Succession influences wild bees in a temperate forest landscape: the value of early successional stages in naturally regenerated and planted forests.

    Science.gov (United States)

    Taki, Hisatomo; Okochi, Isamu; Okabe, Kimiko; Inoue, Takenari; Goto, Hideaki; Matsumura, Takeshi; Makino, Shun'ichi

    2013-01-01

    In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create early successional

  1. Succession influences wild bees in a temperate forest landscape: the value of early successional stages in naturally regenerated and planted forests.

    Directory of Open Access Journals (Sweden)

    Hisatomo Taki

    Full Text Available In many temperate terrestrial forest ecosystems, both natural human disturbances drive the reestablishment of forests. Succession in plant communities, in addition to reforestation following the creation of open sites through harvesting or natural disturbances, can affect forest faunal assemblages. Wild bees perform an important ecosystem function in human-altered and natural or seminatural ecosystems, as they are essential pollinators for both crops and wild flowering plants. To maintain high abundance and species richness for pollination services, it is important to conserve and create seminatural and natural land cover with optimal successional stages for wild bees. We examined the effects of forest succession on wild bees. In particular, we evaluated the importance of early successional stages for bees, which has been suspected but not previously demonstrated. A range of successional stages, between 1 and 178 years old, were examined in naturally regenerated and planted forests. In total 4465 wild bee individuals, representing 113 species, were captured. Results for total bees, solitary bees, and cleptoparasitic bees in both naturally regenerated and planted conifer forests indicated a higher abundance and species richness in the early successional stages. However, higher abundance and species richness of social bees in naturally regenerated forest were observed as the successional stages progressed, whereas the abundance of social bees in conifer planted forest showed a concave-shaped relationship when plotted. The results suggest that early successional stages of both naturally regenerated and conifer planted forest maintain a high abundance and species richness of solitary bees and their cleptoparasitic bees, although social bees respond differently in the early successional stages. This may imply that, in some cases, active forest stand management policies, such as the clear-cutting of planted forests for timber production, would create

  2. Native plant development and deployment [Section VII

    Science.gov (United States)

    Jessica Wright; Kas Dumroese; Amy Symstad; Theresa Pitts-Singer; Jim Cane; Gary Krupnick; Peggy Olwell; Byron Love; Elizabeth Sellers; John Englert; Troy Wood

    2015-01-01

    Native plant materials are needed to create, enhance, or restore pollinator habitat. They provide critical foraging and breeding areas for wild and managed pollinator species, including transnational migratory species such as hummingbirds and monarch butterflies. Although many pollinators and plants are generalists, some have limited, obligate relationships (i.e., one...

  3. Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study

    NARCIS (Netherlands)

    Carvalheiro, L.G.; Barbosa, E.R.; Memmott, J.

    2008-01-01

    1. Despite the essential role of pollination in the maintenance of many rare plant species, conservation management plans rarely consider the service of pollination. 2. This study identifies the main pollinators of a rare English plant species, Trinia glauca (Apiaceae), and provides recommendations

  4. Pollination services enhanced with urbanization despite increasing pollinator parasitism

    Science.gov (United States)

    Radzevičiūtė, Rita; Murray, Tomás E.

    2016-01-01

    Animal-mediated pollination is required for the reproduction of the majority of angiosperms, and pollinators are therefore essential for ecosystem functioning and the economy. Two major threats to insect pollinators are anthropogenic land-use change and the spread of pathogens, whose effects may interact to impact pollination. Here, we investigated the relative effects on the ecosystem service of pollination of (i) land-use change brought on by agriculture and urbanization as well as (ii) the prevalence of pollinator parasites, using experimental insect pollinator-dependent plant species in natural pollinator communities. We found that pollinator habitat (i.e. availability of nesting resources for ground-nesting bees and local flower richness) was strongly related to flower visitation rates at the local scale and indirectly influenced plant pollination success. At the landscape scale, pollination was positively related to urbanization, both directly and indirectly via elevated visitation rates. Bumblebees were the most abundant pollinator group visiting experimental flowers. Prevalence of trypanosomatids, such as the common bumblebee parasite Crithidia bombi, was higher in urban compared with agricultural areas, a relationship which was mediated through higher Bombus abundance. Yet, we did not find any top-down, negative effects of bumblebee parasitism on pollination. We conclude that urban areas can be places of high transmission of both pollen and pathogens. PMID:27335419

  5. Sit-and-wait pollination in the spring flowering woodland plant, Trillium grandiflorum

    Directory of Open Access Journals (Sweden)

    Barrett, Spencer C.H.

    2011-07-01

    Full Text Available In animal-pollinated plants, reproductive success is commonly limited by pollen availability, which can occur in environments where pollinator activity is scarce or variable. Extended floral longevity to maximize a plant’s access to pollinators may be an adaptation to such uncertain pollination environments. Here, we investigated the effects of flower exposure time to pollinators on female fertility (fruit and seed set in the bee-pollinated woodland herb Trillium grandiflorum, a species with long-lived flowers (~17-21 d that blooms in early spring when pollinator activity is often variable. We experimentally exposed flowers to pollinators for different amounts of time to determine the extent to which floral longevity influenced reproductive success. The amount of time that flowers were exposed to pollinators significantly increased fruit set and seed set per flower, but not seed set per fruit. Our results provide experimental evidence that long floral life spans may function as a ‘sit-and-wait’ pollination strategy to increase the amount of exposure time to pollinators and promote seed set in the unpredictable pollination environments often experienced by early spring ephemerals. In large populations with infrequent pollinator visitation, as commonly occurs in T. grandiflorum, pollination may be a largely stochastic process.

  6. Pollination patterns and plant breeding systems in the Galápagos: a review

    Science.gov (United States)

    Chamorro, Susana; Heleno, Ruben; Olesen, Jens M.; McMullen, Conley K.; Traveset, Anna

    2012-01-01

    Background Despite the importance of the Galápagos Islands for the development of central concepts in ecology and evolution, the understanding of many ecological processes in this archipelago is still very basic. One such process is pollination, which provides an important service to both plants and their pollinators. The rather modest level of knowledge on this subject has so far limited our predictive power on the consequences of the increasing threat of introduced plants and pollinators to this unique archipelago. Scope As a first step toward building a unified view of the state of pollination in the Galápagos, a thorough literature search was conducted on the breeding systems of the archipelago's flora and compiled all documented flower–visitor interactions. Based on 38 studies from the last 100 years, we retrieved 329 unique interactions between 123 flowering plant species (50 endemics, 39 non-endemic natives, 26 introduced and eight of unknown origin) from 41 families and 120 animal species from 13 orders. We discuss the emergent patterns and identify promising research avenues in the field. Conclusions Although breeding systems are known for pollinator fauna does not represent a constraint to the integration of new plant species into the native communities. Most interactions detected (approx. 90 %) come from a single island (most of them from Santa Cruz). Hymenopterans (mainly the endemic carpenter bee Xylocopa darwinii and ants), followed by lepidopterans, were the most important flower visitors. Dipterans were much more important flower visitors in the humid zone than in the dry zone. Bird and lizard pollination has been occasionally reported in the dry zone. Strong biases were detected in the sampling effort dedicated to different islands, time of day, focal plants and functional groups of visitors. Thus, the existing patterns need to be confronted with new and less biased data. The implementation of a community-level approach could greatly increase

  7. Floral biology and the effects of plant-pollinator interaction on ...

    African Journals Online (AJOL)

    oyelana

    2012-10-18

    Oct 18, 2012 ... interaction on pollination intensity, fruit and seed set in. Solanum ... which plants offer rewards to flower visitors and they inadvertently ... fragmentation and extinction. Therefore, the ...... Plant resources of tropical Africa 2.

  8. Humming along or buzzing off? The elusive consequences of plant-pollinator mismatches

    Directory of Open Access Journals (Sweden)

    Jason Ryan Straka

    2014-08-01

    Full Text Available Temporal mismatches among plants and pollinators, driven by climate change, are considered a potential cause of population declines of these mutualists. However, field studies demonstrating population declines as a result of climate-driven phenological mismatches are uncommon, and the extent to which mismatches will be a problem in the future remains unclear. We revisit predicted consequences of climate-driven phenological mismatch in plant-pollinator systems by identifying nine previously-applied assumptions that are violated or insufficiently understood in real systems. Briefly, the assumptions are: (1 Dates of first-flowering (DFF or dates of first activity (DFA correctly describe phenology, and disparities between DFF and DFA represent the magnitude of mismatch. (2 “Optimal” matches are measured correctly. (3 Advancement of DFF or DFA will be the primary phenological change in the future. (4 Future phenological shifts will be independent for each species. (5 All plant-pollinator interactions are equally effective. (6 Populations of plants and pollinators are limited by mutualistic interactions. Some previous models have also assumed that the effects of future mismatches will not be influenced by (7 emergence of novel interactions, (8 competition or facilitation from altered co-flowering and co-flight, and (9 phenotypic plasticity and rapid adaptive evolution of phenology. Those assumptions affect the direction, extent, and accuracy of predicted consequences of future phenological mismatch. In discussing them, we identify important topics for future research in pollination ecology.

  9. Visitation by wild and managed bees (Hymenoptera: Apoidea) to eastern U.S. native plants for use in conservation programs.

    Science.gov (United States)

    Tuell, Julianna K; Fiedler, Anna K; Landis, Douglas; Isaacs, Rufus

    2008-06-01

    Addition of floral resources to agricultural field margins has been shown to increase abundance of beneficial insects in crop fields, but most plants recommended for this use are non-native annuals. Native perennial plants with different bloom periods can provide floral resources for bees throughout the growing season for use in pollinator conservation projects. To identify the most suitable plants for this use, we examined the relative attractiveness to wild and managed bees of 43 eastern U.S. native perennial plants, grown in a common garden setting. Floral characteristics were evaluated for their ability to predict bee abundance and taxa richness. Of the wild bees collected, the most common species (62%) was Bombus impatiens Cresson. Five other wild bee species were present between 3 and 6% of the total: Lasioglossum admirandum (Sandhouse), Hylaeus affinis (Smith), Agapostemon virescens (F.), Halictus ligatus Say, and Ceratina calcarata/dupla Robertson/Say. The remaining wild bee species were present at wild bees; 9 were highly attractive, and 20 were moderately attractive. Honey bees visited 24 of the 43 plant species at least once. Floral area was the only measured factor accounting for variation in abundance and richness of wild bees but did not explain variation in honey bee abundance. Results of this study can be used to guide selection of flowering plants to provide season-long forage for conservation of wild bees.

  10. Nectar properties and the role of sunbirds as pollinators of the golden-flowered tea (Camellia petelotii).

    Science.gov (United States)

    Sun, Shi-Guo; Huang, Zhi-Huan; Chen, Zhi-Bao; Huang, Shuang-Quan

    2017-03-01

    Properties of floral nectar have been used to predict if a plant species is pollinated by birds. To see whether winter-flowering plants evolve nectar properties corresponding to bird pollinators, nectar properties of several Camellia species (including the golden-flowered tea), as well as the role of floral visitors as effective pollinators, were examined. Potential pollinators of Camellia petelotii were identified at different times of day and under various weather conditions. A bird exclusion experiment was used to compare the pollination effectiveness of birds and insects. Nectar sugar components (fructose, glucose, and sucrose) from C. petelotii growing wild and another seven Camellia species and 22 additional cultivars (all in cultivation) were examined by high-performance liquid chromatography (HPLC). The sunbird Aethopyga siparaja and honeybees were the most frequent floral visitors to C. petelotii . Honeybee visits were significantly reduced in cloudy/rainy weather. The fruit and seed set of flowers with birds excluded were reduced by 64%, indicating that bird pollination is significant. For the wild populations of C. petelotii , a bagged flower could secrete 157 μL nectar; this nectar has a low sugar concentration (19%) and is sucrose-dominant (87%). The eight Camellia species and 22 cultivars had an average sugar concentration of around 30% and a sucrose concentration of 80%, demonstrating sucrose-dominant nectar in Camellia species. The nectar sugar composition of Camellia species was characterized by sucrose dominance. In addition, the large reduction in seed set when birds are excluded in the golden-flowered tea also supports the suggestion that these winter-flowering plants may have evolved with birds as significant pollinators. © 2017 Botanical Society of America.

  11. Pollination biology of fruit-bearing hedgerow plants and the role of flower-visiting insects in fruit-set.

    Science.gov (United States)

    Jacobs, Jennifer H; Clark, Suzanne J; Denholm, Ian; Goulson, Dave; Stoate, Chris; Osborne, Juliet L

    2009-12-01

    In the UK, the flowers of fruit-bearing hedgerow plants provide a succession of pollen and nectar for flower-visiting insects for much of the year. The fruits of hedgerow plants are a source of winter food for frugivorous birds on farmland. It is unclear whether recent declines in pollinator populations are likely to threaten fruit-set and hence food supply for birds. The present study investigates the pollination biology of five common hedgerow plants: blackthorn (Prunus spinosa), hawthorn (Crataegus monogyna), dog rose (Rosa canina), bramble (Rubus fruticosus) and ivy (Hedera helix). The requirement for insect pollination was investigated initially by excluding insects from flowers by using mesh bags and comparing immature and mature fruit-set with those of open-pollinated flowers. Those plants that showed a requirement for insect pollination were then tested to compare fruit-set under two additional pollination service scenarios: (1) reduced pollination, with insects excluded from flowers bagged for part of the flowering period, and (2) supplemental pollination, with flowers hand cross-pollinated to test for pollen limitation. The proportions of flowers setting fruit in blackthorn, hawthorn and ivy were significantly reduced when insects were excluded from flowers by using mesh bags, whereas fruit-set in bramble and dog rose were unaffected. Restricting the exposure of flowers to pollinators had no significant effect on fruit-set. However, blackthorn and hawthorn were found to be pollen-limited, suggesting that the pollination service was inadequate in the study area. Ensuring strong populations of insect pollinators may be essential to guarantee a winter fruit supply for birds in UK hedgerows.

  12. Plant-Herbivore and Plant-Pollinator Interactions of the Developing Perennial Oilseed Crop, Silphium integrifolium.

    Science.gov (United States)

    Prasifka, J R; Mallinger, R E; Hulke, B S; Larson, S R; Van Tassel, D

    2017-12-08

    Sampling in Kansas and North Dakota documented the plant-herbivore and plant-pollinator interactions of the developing perennial oilseed crop, Silphium integrifolium Michx. The larva of the tortricid moth, Eucosma giganteana (Riley), was the most damaging floret- and seed-feeding pest in Kansas, with infested heads producing ≈85% (2015) or ≈45% (2016) fewer seeds than apparently undamaged heads. Necrosis of apical meristems caused stunting and delayed bloom in Kansas; though the source of the necrosis is not known, observations of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois; Hemiptera: Miridae), in S. integrifolium terminals suggest a possible cause. In North Dakota, E. giganteana larvae were not found, but pupae of Neotephritis finalis (Loew; Diptera: Tephritidae), a minor pest of cultivated sunflower, were common in the heads of S. integrifolium. Bees appeared highly attracted to S. integrifolium, and in all but one observation, bees were seen actively collecting pollen. The most common bees included large apids (Apis mellifera L., Svastra obliqua [Say], Melissodes spp.) and small-bodied halictids (Lasioglossum [Dialictus] spp.). Controlled pollination experiments demonstrated that S. integrifolium is pollinator dependent, due to both mechanical barriers (imperfect florets and protogyny) and genetic self-incompatibility. Subsequent greenhouse tests and AFLP confirmation of putative self-progeny show that a low (<1%) level of self-pollination is possible. If genetic self-incompatibility is eventually reduced through breeding, mechanical barriers would maintain a reliance on bees to move pollen between male and female florets. Collectively, observations on S. integrifolium show that both herbivore and pollinator management are important to maximize seed production. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. Community and species-specific responses of wild bees to insect pest control programs applied to a pollinator-dependent crop.

    Science.gov (United States)

    Tuell, Julianna K; Isaacs, Rufus

    2010-06-01

    Wild bee conservation is regarded as essential for sustainable production of pollinator-dependent crops, yet little is known about the effects on wild bee communities of typical insect pest management programs used postbloom. We developed an insecticide program risk (IPR) index to quantify the relative risk to wild bees of insecticide programs applied to blueberry fields. This was used to determine the relationship between IPR and the abundance, diversity, and richness of wild bee communities sampled during three successive flowering seasons. In 2 of 3 yr, bee abundance and species richness declined with increasing IPR. Bee diversity declined with IPR in one of 3 yr. These results indicate that wild bee communities are negatively affected by increasingly intensive chemical pest management activities in crop fields and that interyear variability in bee populations has the potential to mask such effects in short-term studies. When several wild bee species were analyzed separately, two of three solitary and one of three social blueberry-foraging species declined with increasing IPR values, suggesting that different life histories and nesting habits may help some bee populations escape the negative effects of insecticides applied after bloom. Pollinator conservation programs aimed strictly at reducing insecticide use may have varying success, depending on the biology of the target bee species. The IPR index provides a standard method to compare pest management programs for their potential effect on wild bee communities, with broad application for use in other agricultural systems.

  14. Interactions for pollinator visitation and their consequences for reproduction in a plant community

    Science.gov (United States)

    Hegland, Stein Joar; Totland, Ørjan

    2012-08-01

    Competition and facilitation in species interactions attract much attention in ecology, but their relative importance has seldom been evaluated in a community context. We assessed competitive and facilitative interactions for pollinator visitation among co-flowering species in a plant community, investigated the subsequent consequences for plant reproduction, and investigated whether effects could be trait-based. We removed the flowers of two species attractive to pollinators, in two separate experiments and assessed the effects on pollinator visitation rates and components of reproductive success in 11 co-flowering focal herb species. Overall, most focal species appear not to interact with the removal species with respect to pollinator visitation and subsequent reproduction (neutral interactions). Three focal species in the community had significantly higher reproductive responses (fruit production and seed weight) in the presence of the attractive removal species (facilitative interactions), but species interaction effects were less pronounced in species' flower visitation rates. A community-wide meta-analysis demonstrated that the two experiments did not have a significant effect on either facilitation or competition, and that there was no overall correlation between effect sizes for visitation and reproduction. Based on species-specific responses, it seems likely that floral traits such as similar flower colors contribute to interspecific facilitation of pollinator visitation and, in particular, that high pollinator dependence for plant reproduction, and associated pollen limitation, may contribute to subsequent interaction effects on reproduction in the focal species.

  15. Economic Risk of Bee Pollination in Maine Wild Blueberry, Vaccinium angustifolium.

    Science.gov (United States)

    Asare, Eric; Hoshide, Aaron K; Drummond, Francis A; Criner, George K; Chen, Xuan

    2017-10-01

    Recent pollinator declines highlight the importance of evaluating economic risk of agricultural systems heavily dependent on rented honey bees or native pollinators. Our study analyzed variability of native bees and honey bees, and the risks these pose to profitability of Maine's wild blueberry industry. We used cross-sectional data from organic, low-, medium-, and high-input wild blueberry producers in 1993, 1997-1998, 2005-2007, and from 2011 to 2015 (n = 162 fields). Data included native and honey bee densities (count/m2/min) and honey bee stocking densities (hives/ha). Blueberry fruit set, yield, and honey bee hive stocking density models were estimated. Fruit set is impacted about 1.6 times more by native bees than honey bees on a per bee basis. Fruit set significantly explained blueberry yield. Honey bee stocking density in fields predicted honey bee foraging densities. These three models were used in enterprise budgets for all four systems from on-farm surveys of 23 conventional and 12 organic producers (2012-2013). These budgets formed the basis of Monte Carlo simulations of production and profit. Stochastic dominance of net farm income (NFI) cumulative distribution functions revealed that if organic yields are high enough (2,345 kg/ha), organic systems are economically preferable to conventional systems. However, if organic yields are lower (724 kg/ha), it is riskier with higher variability of crop yield and NFI. Although medium-input systems are stochastically dominant with lower NFI variability compared with other conventional systems, the high-input system breaks even with the low-input system if honey bee hive rental prices triple in the future. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  16. Experimental evidence that wildflower strips increase pollinator visits to crops.

    Science.gov (United States)

    Feltham, Hannah; Park, Kirsty; Minderman, Jeroen; Goulson, Dave

    2015-08-01

    Wild bees provide a free and potentially diverse ecosystem service to farmers growing pollination-dependent crops. While many crops benefit from insect pollination, soft fruit crops, including strawberries are highly dependent on this ecosystem service to produce viable fruit. However, as a result of intensive farming practices and declining pollinator populations, farmers are increasingly turning to commercially reared bees to ensure that crops are adequately pollinated throughout the season. Wildflower strips are a commonly used measure aimed at the conservation of wild pollinators. It has been suggested that commercial crops may also benefit from the presence of noncrop flowers; however, the efficacy and economic benefits of sowing flower strips for crops remain relatively unstudied. In a study system that utilizes both wild and commercial pollinators, we test whether wildflower strips increase the number of visits to adjacent commercial strawberry crops by pollinating insects. We quantified this by experimentally sowing wildflower strips approximately 20 meters away from the crop and recording the number of pollinator visits to crops with, and without, flower strips. Between June and August 2013, we walked 292 crop transects at six farms in Scotland, recording a total of 2826 pollinators. On average, the frequency of pollinator visits was 25% higher for crops with adjacent flower strips compared to those without, with a combination of wild and commercial bumblebees (Bombus spp.) accounting for 67% of all pollinators observed. This effect was independent of other confounding effects, such as the number of flowers on the crop, date, and temperature. Synthesis and applications. This study provides evidence that soft fruit farmers can increase the number of pollinators that visit their crops by sowing inexpensive flower seed mixes nearby. By investing in this management option, farmers have the potential to increase and sustain pollinator populations over time.

  17. Using Pollination Deficits to Infer Pollinator Declines: Can Theory Guide Us?

    Directory of Open Access Journals (Sweden)

    James D. Thomson

    2001-06-01

    Full Text Available Authors examining pollinator declines frequently discuss pollination deficits, either as contemporary evidence that declines have occurred or as a possible negative consequence of future declines. Because pollination deficits can be measured in short-term studies, it would be useful if such studies could somehow replace painstaking documentation of insect population trends. I examine the legitimacy of this type of substitution with reference to evolutionary theory and natural plant populations. Operationally, pollination deficits are detected through pollen supplementation experiments. Although simple, these experiments are subject to subtleties of interpretation because of biases and nonlinear responses, which I discuss. Although it has been found that, in 62% of the natural populations studied, fruit or seed sets are at least sometimes limited by insufficient pollen, other research suggests that intact natural systems ought to arrive at an evolutionary equilibrium in which reproduction is limited equally by pollination and by maternal resources. Therefore, chronic severe pollination deficits may indicate that the pollinator service of a plant population has declined from some higher level in the past. However, there is no evidence of widespread declines, and, because of stochastic factors in nature, occasional shortfalls of pollination should be expected even at equilibrium. Although the effects of pollination deficits on plant population dynamics have been little studied, moderate declines in seed production may have relatively little effect on population growth rates because resources not expended on fruits and seeds may be reallocated to vegetative persistence or spread. It is therefore premature to conclude that pollinator declines are having strong effects on natural plant populations, but this mostly reflects a lack of data and is no cause for complacency. Theory must be supplemented by case studies; I give one example and

  18. Orchid pollination by sexual deception: pollinator perspectives.

    Science.gov (United States)

    Gaskett, A C

    2011-02-01

    becoming well understood for some species, but visual and tactile signals such as colour, shape, and texture remain neglected. Experimental manipulations that test for function, multi-signal interactions, and pollinator perception of these signals are required. Furthermore, other forms of deception such as exploitation of pollinator sensory biases or mating preferences merit more comprehensive investigation. Application of molecular techniques adapted from model plants and animals is likely to deliver new insights into orchid signalling, and pollinator perception and behaviour. There is little current evidence that sexual deception drives any species-level selection on pollinators. Pollinators do learn to avoid deceptive orchids and their locations, but this is not necessarily a response specific to orchids. Even in systems where evidence suggests that orchids do interfere with pollinator mating opportunities, considerable further research is required to determine whether this is sufficient to impose selection on pollinators or generate antagonistic coevolution or an arms race between orchids and their pollinators. Botanists, taxonomists and chemical ecologists have made remarkable progress in the study of deceptive orchid pollination. Further complementary investigations from entomology and behavioural ecology perspectives should prove fascinating and engender a more complete understanding of the evolution and maintenance of such enigmatic plant-animal interactions. © 2010 The Author. Biological Reviews © 2010 Cambridge Philosophical Society.

  19. Investigating plant–pollinator relationships in the Aegean: the approaches of the project POL-AEGIS (The pollinators of the Aegean archipelago: diversity and threats)

    OpenAIRE

    Petanidou, Theodora; Ståhls, Gunilla; Vujić, Ante; Olesen, Jens M.; Rojo Velasco, Santos; Thrasyvoulou, Andreas; Sgardelis, Stefanos; Kallimanis, Athanasios S.; Kokkini, Stella; Tscheulin, Thomas

    2013-01-01

    Worldwide, there is a well-documented crisis for bees and other pollinators which represent a fundamental biotic capital for wild life conservation, ecosystem function, and crop production. Among all pollinators of the world, bees (Hymenoptera: Apoidea) constitute the major group in species number and importance, followed by hover flies (Diptera: Syrphidae). The Aegean constitutes one of the world’s hotspots for wild bee and other pollinator diversity including flies (mainly hover flies and b...

  20. Seasonal and annual variations in the pollination efficiency of a pollinator community of Dictamnus albus L.

    Science.gov (United States)

    Fisogni, A; Rossi, M; Sgolastra, F; Bortolotti, L; Bogo, G; de Manincor, N; Quaranta, M; Galloni, M

    2016-05-01

    The interplay between insect and plant traits outlines the patterns of pollen transfer and the subsequent plant reproductive fitness. We studied the factors that affect the pollination efficiency of a pollinator community of Dictamnus albus L. by evaluating insect behaviour and morphological characteristics in relation to flowering phenology. In order to extrapolate the pollinator importance of single taxa and of the whole pollinator guild, we calculated an index distinguishing between potential (PPI) and realized (RPI) pollinator importance. Although the pollinator species spectrum appeared rather constant, we found high intra- and inter-annual variability of pollinator frequency and importance within the insect community. Flower visitation rate strictly depended on insect abundance and on the overlap between their flying period and flower blooming. All the pollinators visited flowers from the bottom to the top of the racemes, excluding intra-plant geitonogamous pollination, and most of them showed high pollen fidelity. Only medium large-sized bees could contact the upward bending stiles while feeding on nectar, highlighting a specialisation of the plant towards bigger pollinators. Moreover, we found evidence of functional specialisation, since all pollinators were restricted to a single taxonomic group (order: Hymenoptera; superfamily: Apoidea). Both the PPI and RPI indices indicate Habropoda tarsata as the most important pollinator of D. albus. Following hand cross-pollination experiments we revealed the presence of pollination limitation in 1 of the 3 years of field study. We discuss this result in relation to flowering abundance and to possible mismatches of phenological periods between plants and insects. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa.

    Science.gov (United States)

    Stein, Katharina; Coulibaly, Drissa; Stenchly, Kathrin; Goetze, Dethardt; Porembski, Stefan; Lindner, André; Konaté, Souleymane; Linsenmair, Eduard K

    2017-12-18

    Mutualistic biotic interactions as among flowering plants and their animal pollinators are a key component of biodiversity. Pollination, especially by insects, is a key element in ecosystem functioning, and hence constitutes an ecosystem service of global importance. Not only sexual reproduction of plants is ensured, but also yields are stabilized and genetic variability of crops is maintained, counteracting inbreeding depression and facilitating system resilience. While experiencing rapid environmental change, there is an increased demand for food and income security, especially in sub-Saharan communities, which are highly dependent on small scale agriculture. By combining exclusion experiments, pollinator surveys and field manipulations, this study for the first time quantifies the contribution of bee pollinators to smallholders' production of the major cash crops, cotton and sesame, in Burkina Faso. Pollination by honeybees and wild bees significantly increased yield quantity and quality on average up to 62%, while exclusion of pollinators caused an average yield gap of 37% in cotton and 59% in sesame. Self-pollination revealed inbreeding depression effects on fruit set and low germination rates in the F1-generation. Our results highlight potential negative consequences of any pollinator decline, provoking risks to agriculture and compromising crop yields in sub-Saharan West Africa.

  2. Plant--Pollinator Interactions: A Rich Area for Study.

    Science.gov (United States)

    Aston, T. J.

    1987-01-01

    Outlines an adaptive framework for the study of plants and their pollinators in which both partners in the ecological relationship are seen as maximizing fitness through efficient use of the other as a resource. Suggests experimental projects to examine the validity of these assumptions giving an evolutionary emphasis. (Author/CW)

  3. Railway embankments as new habitat for pollinators in an agricultural landscape.

    Science.gov (United States)

    Moroń, Dawid; Skórka, Piotr; Lenda, Magdalena; Rożej-Pabijan, Elżbieta; Wantuch, Marta; Kajzer-Bonk, Joanna; Celary, Waldemar; Mielczarek, Łukasz Emil; Tryjanowski, Piotr

    2014-01-01

    Pollinating insect populations, essential for maintaining wild plant diversity and agricultural productivity, rely on (semi)natural habitats. An increasing human population is encroaching upon and deteriorating pollinator habitats. Thus the population persistence of pollinating insects and their associated ecosystem services may depend upon on man-made novel habitats; however, their importance for ecosystem services is barely understood. We tested if man-made infrastructure (railway embankments) in an agricultural landscape establishes novel habitats that support large populations of pollinators (bees, butterflies, hoverflies) when compared to typical habitats for these insects, i.e., semi-natural grasslands. We also identified key environmental factors affecting the species richness and abundance of pollinators on embankments. Species richness and abundance of bees and butterflies were higher for railway embankments than for grasslands. The occurrence of bare (non-vegetated) ground on embankments positively affected bee species richness and abundance, but negatively affected butterfly populations. Species richness and abundance of butterflies positively depended on species richness of native plants on embankments, whereas bee species richness was positively affected by species richness of non-native flowering plants. The density of shrubs on embankments negatively affected the number of bee species and their abundance. Bee and hoverfly species richness were positively related to wood cover in a landscape surrounding embankments. This is the first study showing that railway embankments constitute valuable habitat for the conservation of pollinators in farmland. Specific conservation strategies involving embankments should focus on preventing habitat deterioration due to encroachment of dense shrubs and maintaining grassland vegetation with patches of bare ground.

  4. Railway embankments as new habitat for pollinators in an agricultural landscape.

    Directory of Open Access Journals (Sweden)

    Dawid Moroń

    Full Text Available Pollinating insect populations, essential for maintaining wild plant diversity and agricultural productivity, rely on (seminatural habitats. An increasing human population is encroaching upon and deteriorating pollinator habitats. Thus the population persistence of pollinating insects and their associated ecosystem services may depend upon on man-made novel habitats; however, their importance for ecosystem services is barely understood. We tested if man-made infrastructure (railway embankments in an agricultural landscape establishes novel habitats that support large populations of pollinators (bees, butterflies, hoverflies when compared to typical habitats for these insects, i.e., semi-natural grasslands. We also identified key environmental factors affecting the species richness and abundance of pollinators on embankments. Species richness and abundance of bees and butterflies were higher for railway embankments than for grasslands. The occurrence of bare (non-vegetated ground on embankments positively affected bee species richness and abundance, but negatively affected butterfly populations. Species richness and abundance of butterflies positively depended on species richness of native plants on embankments, whereas bee species richness was positively affected by species richness of non-native flowering plants. The density of shrubs on embankments negatively affected the number of bee species and their abundance. Bee and hoverfly species richness were positively related to wood cover in a landscape surrounding embankments. This is the first study showing that railway embankments constitute valuable habitat for the conservation of pollinators in farmland. Specific conservation strategies involving embankments should focus on preventing habitat deterioration due to encroachment of dense shrubs and maintaining grassland vegetation with patches of bare ground.

  5. Repeated evolution of vertebrate pollination syndromes in a recently diverged Andean plant clade.

    Science.gov (United States)

    Lagomarsino, Laura P; Forrestel, Elisabeth J; Muchhala, Nathan; Davis, Charles C

    2017-08-01

    Although specialized interactions, including those involving plants and their pollinators, are often invoked to explain high species diversity, they are rarely explored at macroevolutionary scales. We investigate the dynamic evolution of hummingbird and bat pollination syndromes in the centropogonid clade (Lobelioideae: Campanulaceae), an Andean-centered group of ∼550 angiosperm species. We demonstrate that flowers hypothesized to be adapted to different pollinators based on flower color fall into distinct regions of morphospace, and this is validated by morphology of species with known pollinators. This supports the existence of pollination syndromes in the centropogonids, an idea corroborated by ecological studies. We further demonstrate that hummingbird pollination is ancestral, and that bat pollination has evolved ∼13 times independently, with ∼11 reversals. This convergence is associated with correlated evolution of floral traits within selective regimes corresponding to pollination syndrome. Collectively, our results suggest that floral morphological diversity is extremely labile, likely resulting from selection imposed by pollinators. Finally, even though this clade's rapid diversification is partially attributed to their association with vertebrate pollinators, we detect no difference in diversification rates between hummingbird- and bat-pollinated lineages. Our study demonstrates the utility of pollination syndromes as a proxy for ecological relationships in macroevolutionary studies of certain species-rich clades. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  6. A method for under-sampled ecological network data analysis: plant-pollination as case study

    Directory of Open Access Journals (Sweden)

    Peter B. Sorensen

    2012-01-01

    Full Text Available In this paper, we develop a method, termed the Interaction Distribution (ID method, for analysis of quantitative ecological network data. In many cases, quantitative network data sets are under-sampled, i.e. many interactions are poorly sampled or remain unobserved. Hence, the output of statistical analyses may fail to differentiate between patterns that are statistical artefacts and those which are real characteristics of ecological networks. The ID method can support assessment and inference of under-sampled ecological network data. In the current paper, we illustrate and discuss the ID method based on the properties of plant-animal pollination data sets of flower visitation frequencies. However, the ID method may be applied to other types of ecological networks. The method can supplement existing network analyses based on two definitions of the underlying probabilities for each combination of pollinator and plant species: (1, pi,j: the probability for a visit made by the i’th pollinator species to take place on the j’th plant species; (2, qi,j: the probability for a visit received by the j’th plant species to be made by the i’th pollinator. The method applies the Dirichlet distribution to estimate these two probabilities, based on a given empirical data set. The estimated mean values for pi,j and qi,j reflect the relative differences between recorded numbers of visits for different pollinator and plant species, and the estimated uncertainty of pi,j and qi,j decreases with higher numbers of recorded visits.

  7. Invasive species management restores a plant-pollinator mutualism in Hawaii

    Science.gov (United States)

    Hanna, Cause; Foote, David; Kremen, Claire

    2013-01-01

    1.The management and removal of invasive species may give rise to unanticipated changes in plant–pollinator mutualisms because they can alter the composition and functioning of plant–pollinator interactions in a variety of ways. To utilize a functional approach for invasive species management, we examined the restoration of plant–pollinator mutualisms following the large-scale removal of an invasive nectar thief and arthropod predator, Vespula pensylvanica. 2.We reduced V. pensylvanica populations in large plots managed over multiple years to examine the response of plant–pollinator mutualisms and the fruit production of a functionally important endemic Hawaiian tree species, Metrosideros polymorpha. To integrate knowledge of the invader's behaviour and the plant's mating system, we determined the efficacy of V. pensylvanica as a pollinator of M. polymorpha and quantified the dependence of M. polymorpha on animal pollination (e.g. level of self-compatibility and pollen limitation). 3.The reduction of V. pensylvanica in managed sites, when compared to unmanaged sites, resulted in a significant increase in the visitation rates of effective bee pollinators (e.g. introduced Apis mellifera and native Hylaeus spp.) and in the fruit production of M. polymorpha. 4.Apis mellifera, following the management of V. pensylvanica, appears to be acting as a substitute pollinator for M. polymorpha, replacing extinct or threatened bird and bee species in our study system. 5.Synthesis and applications. Fruit production of the native M. polymorpha was increased after management of the invasive pollinator predator V. pensylvanica; however, the main pollinators were no longer native but introduced. This research thus demonstrates the diverse impacts of introduced species on ecological function and the ambiguous role they play in restoration. We recommend incorporating ecological function and context into invasive species management as this approach may enable conservation

  8. Persistence of pollination mutualisms in the presence of ants.

    Science.gov (United States)

    Wang, Yuanshi; Wang, Shikun

    2015-01-01

    This paper considers plant-pollinator-ant systems in which the plant-pollinator interaction is mutualistic but ants have both positive and negative effects on plants. The ants also interfere with pollinators by preventing them from accessing plants. While a Beddington-DeAngelis (BD) formula can describe the plant-pollinator interaction, the formula is extended in this paper to characterize the pollination mutualism under the ant interference. Then, a plant-pollinator-ant system with the extended BD functional response is discussed, and global dynamics of the model demonstrate the mechanisms by which pollination mutualism can persist in the presence of ants. When the ant interference is strong, it can result in extinction of pollinators. Moreover, if the ants depend on pollination mutualism for survival, the strong interference could drive pollinators into extinction, which consequently lead to extinction of the ants themselves. When the ant interference is weak, a cooperation between plant-ant and plant-pollinator mutualisms could occur, which promotes survival of both ants and pollinators, especially in the case that ants (respectively, pollinators) cannot survive in the absence of pollinators (respectively, ants). Even when the level of ant interference remains invariant, varying ants' negative effect on plants can result in survival/extinction of both ants and pollinators. Therefore, our results provide an explanation for the persistence of pollination mutualism when there exist ants.

  9. Floral advertisement and the competition for pollination services.

    Science.gov (United States)

    Fishman, Michael A; Hadany, Lilach

    2015-06-01

    Flowering plants are a major component of terrestrial ecosystems, and most of them depend on animal pollinators for reproduction. Thus, the mutualism between flowering plants and their pollinators is a keystone ecological relationship in both natural and agricultural ecosystems. Though plant-pollinator interactions have received considerable amount of attention, there are still many unanswered questions. In this paper, we use methods of evolutionary game theory to investigate the co-evolution of floral advertisement and pollinator preferences Our results indicate that competition for pollination services among plant species can in some cases lead to specialization of the pollinator population to a single plant species (oligolecty). However, collecting pollen from multiple plants - at least at the population level - is evolutionarily stable under a wider parameter range. Finally, we show that, in the presence of pollinators, plants that optimize their investment in attracting vs. rewarding visiting pollinators outcompete plants that do not. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Generalization versus specialization in pollination systems: visitors, thieves, and pollinators of Hypoestes aristata (Acanthaceae).

    Science.gov (United States)

    Padyšáková, Eliška; Bartoš, Michael; Tropek, Robert; Janeček, Stěpán

    2013-01-01

    Many recent studies have suggested that the majority of animal-pollinated plants have a higher diversity of pollinators than that expected according to their pollination syndrome. This broad generalization, often based on pollination web data, has been challenged by the fact that some floral visitors recorded in pollination webs are ineffective pollinators. To contribute to this debate, and to obtain a contrast between visitors and pollinators, we studied insect and bird visitors to virgin flowers of Hypoestes aristata in the Bamenda Highlands, Cameroon. We observed the flowers and their visitors for 2-h periods and measured the seed production as a metric of reproductive success. We determined the effects of individual visitors using 2 statistical models, single-visit data that were gathered for more frequent visitor species, and frequency data. This approach enabled us to determine the positive as well as neutral or negative impact of visitors on H. aristata's reproductive success. We found that (i) this plant is not generalized but rather specialized; although we recorded 15 morphotaxa of visitors, only 3 large bee species seemed to be important pollinators; (ii) the carpenter bee Xylocopa cf. inconstans was both the most frequent and the most effective pollinator; (iii) the honey bee Apis mellifera acted as a nectar thief with apparent negative effects on the plant reproduction; and (iv) the close relationship between H. aristata and carpenter bees was in agreement with the large-bee pollination syndrome of this plant. Our results highlight the need for studies detecting the roles of individual visitors. We showed that such an approach is necessary to evaluate the pollination syndrome hypothesis and create relevant evolutionary and ecological hypotheses.

  11. Generalization versus specialization in pollination systems: visitors, thieves, and pollinators of Hypoestes aristata (Acanthaceae.

    Directory of Open Access Journals (Sweden)

    Eliška Padyšáková

    Full Text Available Many recent studies have suggested that the majority of animal-pollinated plants have a higher diversity of pollinators than that expected according to their pollination syndrome. This broad generalization, often based on pollination web data, has been challenged by the fact that some floral visitors recorded in pollination webs are ineffective pollinators. To contribute to this debate, and to obtain a contrast between visitors and pollinators, we studied insect and bird visitors to virgin flowers of Hypoestes aristata in the Bamenda Highlands, Cameroon. We observed the flowers and their visitors for 2-h periods and measured the seed production as a metric of reproductive success. We determined the effects of individual visitors using 2 statistical models, single-visit data that were gathered for more frequent visitor species, and frequency data. This approach enabled us to determine the positive as well as neutral or negative impact of visitors on H. aristata's reproductive success. We found that (i this plant is not generalized but rather specialized; although we recorded 15 morphotaxa of visitors, only 3 large bee species seemed to be important pollinators; (ii the carpenter bee Xylocopa cf. inconstans was both the most frequent and the most effective pollinator; (iii the honey bee Apis mellifera acted as a nectar thief with apparent negative effects on the plant reproduction; and (iv the close relationship between H. aristata and carpenter bees was in agreement with the large-bee pollination syndrome of this plant. Our results highlight the need for studies detecting the roles of individual visitors. We showed that such an approach is necessary to evaluate the pollination syndrome hypothesis and create relevant evolutionary and ecological hypotheses.

  12. Pollinator-independent orchid attracts biotic pollinators due the production of lipoidal substances.

    Science.gov (United States)

    Pansarin, E R; Bergamo, P J; Ferreira-Caliman, M J

    2018-03-01

    Flowering plants often depend on the attraction of biotic pollinators for sexual reproduction. Consequently, the emergence and maintenance of selected floral attributes related to pollinator attraction and rewarding are driven by pollinator pressure. In this paper we explore the effect of pollinators, rainfall, temperature and air humidity on the reproduction of a Brazilian terrestrial orchid, Cranichis candida based on data of phenology, flower resources, olfactory and visual attraction cues, pollinators and breeding system. The flowers of C. candida are strongly protandrous and pollinated by workers of the social native bee Tetragonisca angustula. The bees collect labellar lipoidal substances (wax scales), which are transported to the nest. The lipoidal substance is composed of sterols, hydrocarbons and terpenes. The last presumably protects the bees and their nests against pathogens and other arthropods. C. candida sets fruits through biotic self- and cross-pollination, and spontaneously due the action of raindrops on flowers. Our results indicate that in C. candida, although rain-mediated spontaneous self-pollination happens, fructification mediated by biotic pollinations also occurs, which may result in fruit set by cross-pollination. A mixed pollination system must result in higher genetic variability when compared to species whose fruits are produced entirely by self-pollination. On the other hand, autogamy is a form of reproductive assurance, and has commonly evolved where pollination services are rare or absent. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  13. Pollination syndromes ignored

    DEFF Research Database (Denmark)

    Maruyama, P. K.; Oliveira, G. M.; Ferreira, Célia Maria Dias

    2013-01-01

    Generalization prevails in flower-animal interactions, and although animal visitors are not equally effective pollinators, most interactions likely represent an important energy intake for the animal visitor. Hummingbirds are nectar-feeding specialists, and many tropical plants are specialized...... to increase the overall nectar availability. We showed that mean nectar offer, at the transect scale, was the only parameter related to hummingbird visitation frequency, more so than nectar offer at single flowers and at the plant scale, or pollination syndrome. Centrality indices, calculated using...... energy provided by non-ornithophilous plants may facilitate reproduction of truly ornithophilous flowers by attracting and maintaining hummingbirds in the area. This may promote asymmetric hummingbird-plant associations, i.e., pollination depends on floral traits adapted to hummingbird morphology...

  14. Evaluating pollination deficits in pumpkin production in New York.

    Science.gov (United States)

    Petersen, J D; Huseth, A S; Nault, B A

    2014-10-01

    Potential decreases in crop yield from reductions in bee-mediated pollination services threaten food production demands of a growing population. Many fruit and vegetable growers supplement their fields with bee colonies during crop bloom. The extent to which crop production requires supplementary pollination services beyond those provided by wild bees is not well documented. Pumpkin, Cucurbita pepo L., requires bee-mediated pollination for fruit development. Previous research identified the common eastern bumble bee, Bombus impatiens (Cresson), as the most efficient pumpkin pollinator. Two concomitant studies were conducted to examine pollination deficits in New York pumpkin fields from 2011 to 2013. In the first study, fruit weight, seed set, and B. impatiens visits to pumpkin flowers were compared across fields supplemented with B. impatiens colonies at a recommended stocking density of five colonies per hectare, a high density of 15 colonies per hectare, or not supplemented with bees. In the second study, fruit weight and seed set of pumpkins that received supplemental pollen through hand-pollination were compared with those that were open-pollinated by wild bees. Results indicated that supplementing pumpkin fields with B. impatiens colonies, regardless of stocking density, did not increase fruit weight, seed set, or B. impatiens visits to pumpkin flowers. Fruit weight and seed set did not differ between hand- and open-pollinated treatments. In general, we conclude that pumpkin production in central New York is not limited by inadequate pollination services provided by wild bees and that on average, supplementation with B. impatiens colonies did not improve pumpkin yield.

  15. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species.

    Directory of Open Access Journals (Sweden)

    Hella Schlinkert

    Full Text Available Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground, the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness. We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their

  16. Phenotypic selection on flowering phenology and pollination efficiency traits between Primula populations with different pollinator assemblages.

    Science.gov (United States)

    Wu, Yun; Li, Qing-Jun

    2017-10-01

    Floral traits have largely been attributed to phenotypic selection in plant-pollinator interactions. However, the strength of this link has rarely been ascertained with real pollinators. We conducted pollinator observations and estimated selection through female fitness on flowering phenology and floral traits between two Primula secundiflora populations. We quantified pollinator-mediated selection by subtracting estimates of selection gradients of plants receiving supplemental hand pollination from those of plants receiving open pollination. There was net directional selection for an earlier flowering start date at populations where the dominant pollinators were syrphid flies, and flowering phenology was also subjected to stabilized quadratic selection. However, a later flowering start date was significantly selected at populations where the dominant pollinators were legitimate (normal pollination through the corolla tube entrance) and illegitimate bumblebees (abnormal pollination through nectar robbing hole which located at the corolla tube), and flowering phenology was subjected to disruptive quadratic selection. Wider corolla tube entrance diameter was selected at both populations. Furthermore, the strength of net directional selection on flowering start date and corolla tube entrance diameter was stronger at the population where the dominant pollinators were syrphid flies. Pollinator-mediated selection explained most of the between-population variations in the net directional selection on flowering phenology and corolla tube entrance diameter. Our results suggested the important influence of pollinator-mediated selection on floral evolution. Variations in pollinator assemblages not only resulted in variation in the direction of selection but also the strength of selection on floral traits.

  17. Competition for pollinators and intra-communal spectral dissimilarity of flowers.

    Science.gov (United States)

    van der Kooi, C J; Pen, I; Staal, M; Stavenga, D G; Elzenga, J T M

    2016-01-01

    Competition for pollinators occurs when, in a community of flowering plants, several simultaneously flowering plant species depend on the same pollinator. Competition for pollinators increases interspecific pollen transfer rates, thereby reducing the number of viable offspring. In order to decrease interspecific pollen transfer, plant species can distinguish themselves from competitors by having a divergent phenotype. Floral colour is an important signalling cue to attract potential pollinators and thus a major aspect of the flower phenotype. In this study, we analysed the amount of spectral dissimilarity of flowers among pollinator-competing plants in a Dutch nature reserve. We expected pollinator-competing plants to exhibit more spectral dissimilarity than non-competing plants. Using flower visitation data of 2 years, we determined the amount of competition for pollinators by different plant species. Plant species that were visited by the same pollinator were considered specialist and competing for that pollinator, whereas plant species visited by a broad array of pollinators were considered non-competing generalists. We used principal components analysis to quantify floral reflectance, and found evidence for enhanced spectral dissimilarity among plant species within specialist pollinator guilds (i.e. groups of plant species competing for the same pollinator). This is the first study that examined intra-communal dissimilarity in floral reflectance with a focus on the pollination system. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Do managed bees have negative effects on wild bees?: A systematic review of the literature.

    Directory of Open Access Journals (Sweden)

    Rachel E Mallinger

    Full Text Available Managed bees are critical for crop pollination worldwide. As the demand for pollinator-dependent crops increases, so does the use of managed bees. Concern has arisen that managed bees may have unintended negative impacts on native wild bees, which are important pollinators in both agricultural and natural ecosystems. The goal of this study was to synthesize the literature documenting the effects of managed honey bees and bumble bees on wild bees in three areas: (1 competition for floral and nesting resources, (2 indirect effects via changes in plant communities, including the spread of exotic plants and decline of native plants, and (3 transmission of pathogens. The majority of reviewed studies reported negative effects of managed bees, but trends differed across topical areas. Of studies examining competition, results were highly variable with 53% reporting negative effects on wild bees, while 28% reported no effects and 19% reported mixed effects (varying with the bee species or variables examined. Equal numbers of studies examining plant communities reported positive (36% and negative (36% effects, with the remainder reporting no or mixed effects. Finally, the majority of studies on pathogen transmission (70% reported potential negative effects of managed bees on wild bees. However, most studies across all topical areas documented the potential for impact (e.g. reporting the occurrence of competition or pathogens, but did not measure direct effects on wild bee fitness, abundance, or diversity. Furthermore, we found that results varied depending on whether managed bees were in their native or non-native range; managed bees within their native range had lesser competitive effects, but potentially greater effects on wild bees via pathogen transmission. We conclude that while this field has expanded considerably in recent decades, additional research measuring direct, long-term, and population-level effects of managed bees is needed to understand

  19. Do managed bees have negative effects on wild bees?: A systematic review of the literature.

    Science.gov (United States)

    Mallinger, Rachel E; Gaines-Day, Hannah R; Gratton, Claudio

    2017-01-01

    Managed bees are critical for crop pollination worldwide. As the demand for pollinator-dependent crops increases, so does the use of managed bees. Concern has arisen that managed bees may have unintended negative impacts on native wild bees, which are important pollinators in both agricultural and natural ecosystems. The goal of this study was to synthesize the literature documenting the effects of managed honey bees and bumble bees on wild bees in three areas: (1) competition for floral and nesting resources, (2) indirect effects via changes in plant communities, including the spread of exotic plants and decline of native plants, and (3) transmission of pathogens. The majority of reviewed studies reported negative effects of managed bees, but trends differed across topical areas. Of studies examining competition, results were highly variable with 53% reporting negative effects on wild bees, while 28% reported no effects and 19% reported mixed effects (varying with the bee species or variables examined). Equal numbers of studies examining plant communities reported positive (36%) and negative (36%) effects, with the remainder reporting no or mixed effects. Finally, the majority of studies on pathogen transmission (70%) reported potential negative effects of managed bees on wild bees. However, most studies across all topical areas documented the potential for impact (e.g. reporting the occurrence of competition or pathogens), but did not measure direct effects on wild bee fitness, abundance, or diversity. Furthermore, we found that results varied depending on whether managed bees were in their native or non-native range; managed bees within their native range had lesser competitive effects, but potentially greater effects on wild bees via pathogen transmission. We conclude that while this field has expanded considerably in recent decades, additional research measuring direct, long-term, and population-level effects of managed bees is needed to understand their

  20. Indirect effects of domestic and wild herbivores on butterflies in an African savanna.

    Science.gov (United States)

    Wilkerson, Marit L; Roche, Leslie M; Young, Truman P

    2013-10-01

    Indirect interactions driven by livestock and wild herbivores are increasingly recognized as important aspects of community dynamics in savannas and rangelands. Large ungulate herbivores can both directly and indirectly impact the reproductive structures of plants, which in turn can affect the pollinators of those plants. We examined how wild herbivores and cattle each indirectly affect the abundance of a common pollinator butterfly taxon, Colotis spp., at a set of long-term, large herbivore exclosure plots in a semiarid savanna in central Kenya. We also examined effects of herbivore exclusion on the main food plant of Colotis spp., which was also the most common flowering species in our plots: the shrub Cadaba farinosa. The study was conducted in four types of experimental plots: cattle-only, wildlife-only, cattle and wildlife (all large herbivores), and no large herbivores. Across all plots, Colotis spp. abundances were positively correlated with both Cadaba flower numbers (adult food resources) and total Cadaba canopy area (larval food resources). Structural equation modeling (SEM) revealed that floral resources drove the abundance of Colotis butterflies. Excluding browsing wildlife increased the abundances of both Cadaba flowers and Colotis butterflies. However, flower numbers and Colotis spp. abundances were greater in plots with cattle herbivory than in plots that excluded all large herbivores. Our results suggest that wild browsing herbivores can suppress pollinator species whereas well-managed cattle use may benefit important pollinators and the plants that depend on them. This study documents a novel set of ecological interactions that demonstrate how both conservation and livelihood goals can be met in a working landscape with abundant wildlife and livestock.

  1. Pollinator specialization and pollination syndromes of three related North American Silene.

    Science.gov (United States)

    Reynolds, Richard J; Westbrook, M Jody; Rohde, Alexandra S; Cridland, Julie M; Fenster, Charles B; Dudash, Michele R

    2009-08-01

    Community and biogeographic surveys often conclude that plant-pollinator interactions are highly generalized. Thus, a central implication of the pollination syndrome concept, that floral trait evolution occurs primarily via specialized interactions of plants with their pollinators, has been questioned. However, broad surveys may not distinguish whether flower visitors are actual pollen vectors and hence lack power to assess the relationship between syndrome traits and the pollinators responsible for their evolution. Here we address whether the floral traits of three closely related hermaphroditic Silene spp. native to eastern North America (S. caroliniana, S. virginica, and S. stellata) correspond to predicted specialized pollination based on floral differences among the three species and the congruence of these floral features with recognized pollination syndromes. A nocturnal/diurnal pollinator exclusion experiment demonstrated that all three Silene spp. have diurnal pollinators, and only S. stellata has nocturnal pollinators. Multiyear studies of visitation rates demonstrated that large bees, hummingbirds, and nocturnal moths were the most frequent pollinators of S. caroliniana, S. virginica, and S. stellata, respectively. Estimates of pollen grains deposited and removed per visit generally corroborated the visitation rate results for all three species. However, the relatively infrequent diurnal hawkmoth pollinators of S. caroliniana were equally effective and more efficient than the most frequent large bee visitors. Pollinator importance (visitation X deposition) of each of the animal visitors to each species was estimated and demonstrated that in most years large bees and nocturnal moths were the most important pollinators of S. caroliniana and S. stellata, respectively. By quantifying comprehensive aspects of the pollination process we determined that S. virginica and S. stellata were specialized on hummingbirds and nocturnal moths, respectively, and S

  2. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees

    Science.gov (United States)

    Stanley, Dara A.; Garratt, Michael P. D.; Wickens, Jennifer B.; Wickens, Victoria J.; Potts, Simon G.; Raine, Nigel E.

    2015-12-01

    Recent concern over global pollinator declines has led to considerable research on the effects of pesticides on bees. Although pesticides are typically not encountered at lethal levels in the field, there is growing evidence indicating that exposure to field-realistic levels can have sublethal effects on bees, affecting their foraging behaviour, homing ability and reproductive success. Bees are essential for the pollination of a wide variety of crops and the majority of wild flowering plants, but until now research on pesticide effects has been limited to direct effects on bees themselves and not on the pollination services they provide. Here we show the first evidence to our knowledge that pesticide exposure can reduce the pollination services bumblebees deliver to apples, a crop of global economic importance. Bumblebee colonies exposed to a neonicotinoid pesticide provided lower visitation rates to apple trees and collected pollen less often. Most importantly, these pesticide-exposed colonies produced apples containing fewer seeds, demonstrating a reduced delivery of pollination services. Our results also indicate that reduced pollination service delivery is not due to pesticide-induced changes in individual bee behaviour, but most likely due to effects at the colony level. These findings show that pesticide exposure can impair the ability of bees to provide pollination services, with important implications for both the sustained delivery of stable crop yields and the functioning of natural ecosystems.

  3. Pollination success following loss of a frequent pollinator: the role of compensatory visitation by other effective pollinators

    Science.gov (United States)

    Hallett, Allysa C.; Mitchell, Randall J.; Chamberlain, Evan R.

    2017-01-01

    Abstract Pollinator abundance is declining worldwide and may lower the quantity and quality of pollination services to flowering plant populations. Loss of an important pollinator is often assumed to reduce the amount of pollen received by stigmas of a focal species (pollination success), yet this assumption has rarely been tested experimentally. The magnitude of the effect, if any, may depend on the relative efficiency of the remaining pollinators, and on whether the loss of one pollinator leads to changes in visitation patterns by other pollinators. To explore how a change in pollinator composition influences pollination of Asclepias verticillata, we excluded bumble bees from plots in large and small populations of this milkweed species. We then quantified pollinator visitation rates, pollen export and pollen receipt for control plots and for plots where bumble bees were experimentally excluded. We found that exclusion of bumble bees did not reduce pollen receipt by A. verticillata flowers. Visitation by Polistes wasps increased markedly following bumble bee exclusion, both in small populations (186 % increase) and in large populations (400 % increase). Because Polistes wasps were as efficient as bumble bees at pollen transfer, increased wasp visitation offset lost bumble bee pollination services. Thus, loss of a frequent pollinator will not necessarily lead to a decline in pollination success. When pollinator loss is followed by a shift in the composition and abundance of remaining pollinators, pollination success will depend on the net change in the quantity and quality of pollination services. PMID:28798863

  4. The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness

    NARCIS (Netherlands)

    Carvalheiro, L.G.; Biesmeijer, J.C.; Benadi, G.; Fründ, J.; Stang, M.; Bartomeus, I.; Kaiser-Bunbury, C.N.; Baude, M.; Gomes, S.I.F.; Merckx, V.; Baldock, K.C.R.; Bennett, A.T.D.; Boada, R.; Bommarco, R.; Cartar, R.; Chacoff, N.; Dänhardt, J.; Dicks, L.V.; Dormann, C.F.; Ekroos, J.; Henson, K.S.E.; Holzschuh, A.; Junker, R.R.; Lopezaraiza-Mikel, M.; Memmott, J.; Montero-Castaño, A.; Nelson, I.L.; Petanidou, T.; Power, E.F.; Rundlöf, M.; Smith, H.C.; Stout, J.C.; Temitope, K.; Tscharntke, T.; Tscheulin, T.; Vilà, M.; Kunin, W.E.

    2014-01-01

    Co-flowering plant species commonly share flower visitors, and thus have the potential to influence each other's pollination. In this study we analysed 750 quantitative plant-pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species

  5. Reduced pollinator service and elevated pollen limitation at the geographic range limit of an annual plant.

    Science.gov (United States)

    Moeller, David A; Geber, Monica A; Eckhart, Vincent M; Tiffin, Peter

    2012-05-01

    Mutualisms are well known to influence individual fitness and the population dynamics of partner species, but little is known about whether they influence species distributions and the location of geographic range limits. Here, we examine the contribution of plant-pollinator interactions to the geographic range limit of the California endemic plant Clarkia xantiana ssp. xantiana. We show that pollinator availability declined from the center to the margin of the geographic range consistently across four years of study. This decline in pollinator availability was caused to a greater extent by variation in the abundance of generalist rather than specialist bee pollinators. Climate data suggest that patterns of precipitation in the current and previous year drove variation in bee abundance because of its effects on cues for bee emergence in the current year and the abundance of floral resources in the previous year. Experimental floral manipulations showed that marginal populations had greater outcross pollen limitation of reproduction, in parallel with the decline in pollinator abundance. Although plants are self-compatible, we found no evidence that autonomous selfing contributes to reproduction, and thus no evidence that it alleviates outcross pollen limitation in marginal populations. Furthermore, we found no association between the distance to the range edge and selfing rate, as estimated from sequence and microsatellite variation, indicating that the mating system has not evolved in response to the pollination environment at the range periphery. Overall, our results suggest that dependence on pollinators for reproduction may be an important constraint limiting range expansion in this system.

  6. Pollination Requirements of Almond (Prunus dulcis): Combining Laboratory and Field Experiments.

    Science.gov (United States)

    Henselek, Yuki; Eilers, Elisabeth J; Kremen, Claire; Hendrix, Stephen D; Klein, Alexandra-Maria

    2018-03-08

    Almond (Prunus dulcis (Mill.) D. A. Webb; Rosales: Rosaceae) is a cash crop with an estimated global value of over seven billion U.S. dollars annually and commercial varieties are highly dependent on insect pollination. Therefore, the understanding of basic pollination requirements of the main varieties including pollination efficiency of honey bees (Apis mellifera, Linnaeus, Hymenoptera: Apidae) and wild pollinators is essential for almond production. We first conducted two lab experiments to examine the threshold number of pollen grains needed for successful pollination and to determine if varietal identity or diversity promotes fruit set and weight. Further, we examined stigma and ovules of flowers visited by Apis and non-Apis pollinators in the field to study the proportion of almond to non-almond pollen grains deposited, visitation time per flower visit, and tube set. Results indicate that the threshold for successful fertilization is around 60 pollen grains, but pollen can be from any compatible variety as neither pollen varietal identity nor diversity enhanced fruit set or weight. Andrena cerasifolii Cockerell (Hymenoptera: Andrenidae) was a more effective pollinator on a per single visit basis than Apis and syrphid flies. Nevertheless, Apis was more efficient than A. cerasifolii and syrphid flies as they spent less time on a flower during a single visit. Hence, planting with two compatible varieties and managing for both Apis and non-Apis pollinators is likely to be an optimal strategy for farmers to secure high and stable pollination success.

  7. Nectar secretion dynamic links pollinator behavior to consequences for plant reproductive success in the ornithophilous mistletoe Psittacanthus robustus.

    Science.gov (United States)

    Guerra, T J; Galetto, L; Silva, W R

    2014-09-01

    The mistletoe Psittacanthus robustus was studied as a model to link flower phenology and nectar secretion strategy to pollinator behaviour and the reproductive consequences for the plant. The bright-coloured flowers presented diurnal anthesis, opened asynchronously throughout the rainy season and produced copious dilute nectar as the main reward for pollinators. Most nectar was secreted just after flower opening, with little sugar replenishment after experimental removals. During the second day of anthesis in bagged flowers, the flowers quickly reabsorbed the offered nectar. Low values of nectar standing crop recorded in open flowers can be linked with high visitation rates by bird pollinators. Eight hummingbirds and two passerines were observed as potential pollinators. The most frequent flower visitors were the hummingbirds Eupetomena macroura and Colibri serrirostris, which actively defended flowering mistletoes. The spatial separation between anthers, stigma and nectar chamber promotes pollen deposition on flapping wings of hovering hummingbirds that usually probe many flowers per visit. Seed set did not differ between hand-, self- and cross-pollinated flowers, but these treatments set significantly more seeds than flowers naturally exposed to flower visitors. We suggest that the limitation observed in the reproductive success of this plant is not related to pollinator scarcity, but probably to the extreme frequency of visitation by territorial hummingbirds. We conclude that the costs and benefits of plant reproduction depend on the interaction strength between flowers and pollinators, and the assessment of nectar secretion dynamics, pollinator behaviour and plant breeding system allows clarification of the complexity of such associations. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Buzz in Paris: flower production and plant-pollinator interactions in plants from contrasted urban and rural origins.

    Science.gov (United States)

    Desaegher, James; Nadot, Sophie; Dajoz, Isabelle; Colas, Bruno

    2017-12-01

    Urbanisation, associated with habitat fragmentation, affects pollinator communities and insect foraging behaviour. These biotic changes are likely to select for modified traits in insect-pollinated plants from urban populations compared to rural populations. To test this hypothesis, we conducted an experiment involving four plant species commonly found in both urban and rural landscapes of the Île-de-France region (France): Cymbalaria muralis, Geranium robertianum, Geum urbanum and Prunella vulgaris. The four species were grown in four urban and four rural experimental sites in 2015. For each species and each experimental site, plants were grown from seeds collected in five urban and five rural locations. During flowering, we observed flower production and insect-flower interactions during 14 weeks and tested for the effects of experimental site location and plant origin on flower production and on the number of floral visits. The study species had various flower morphology and hence were visited by different floral visitors. The effect of experimental sites and seed origin also varied among study species. We found that (1) insect visits on P. vulgaris were more frequent in rural than in urban sites; (2) for C. muralis, the slope relating the number of pollinator visits to the number of flowers per individual was steeper in urban versus rural sites, suggesting a greater benefit in allocating resources to flower production in urban conditions; (3) as a likely consequence, C. muralis tended to produce more flowers in plants from urban versus rural origin.

  9. Organic farming favours insect-pollinated over non-insect pollinated forbs in meadows and wheat fields.

    Science.gov (United States)

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators.

  10. Organic Farming Favours Insect-Pollinated over Non-Insect Pollinated Forbs in Meadows and Wheat Fields

    Science.gov (United States)

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F.; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators. PMID:23382979

  11. Field margins, foraging distances and their impacts on nesting pollinator success.

    Directory of Open Access Journals (Sweden)

    Sean A Rands

    Full Text Available The areas of wild land around the edges of agricultural fields are a vital resource for many species. These include insect pollinators, to whom field margins provide both nest sites and important resources (especially when adjacent crops are not in flower. Nesting pollinators travel relatively short distances from the nest to forage: most species of bee are known to travel less than two kilometres away. In order to ensure that these pollinators have sufficient areas of wild land within reach of their nests, agricultural landscapes need to be designed to accommodate the limited travelling distances of nesting pollinators. We used a spatially-explicit modelling approach to consider whether increasing the width of wild strips of land within the agricultural landscape will enhance the amount of wild resources available to a nesting pollinator, and if it would impact differently on pollinators with differing foraging strategies. This was done both by creating field structures with a randomised geography, and by using landscape data based upon the British agricultural landscape. These models demonstrate that enhancing field margins should lead to an increase in the availability of forage to pollinators that nest within the landscape. With the exception of species that only forage within a very short range of their nest (less than 125 m, a given amount of field margin manipulation should enhance the proportion of land available to a pollinator for foraging regardless of the distance over which it normally travels to find food. A fixed amount of field edge manipulation should therefore be equally beneficial for both longer-distance nesting foragers such as honeybees, and short-distance foragers such as solitary bees.

  12. Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands

    Science.gov (United States)

    Scheper, Jeroen; Reemer, Menno; van Kats, Ruud; Ozinga, Wim A.; van der Linden, Giel T. J.; Schaminée, Joop H. J.; Siepel, Henk; Kleijn, David

    2014-01-01

    Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of bee decline because accurate assessment of host plant preferences is difficult, particularly for species that have become rare. Here we examine whether population trends of wild bees in The Netherlands can be explained by trends in host plants, and how this relates to other factors such as climate change. We determined host plant preference of bee species using pollen loads on specimens in entomological collections that were collected before the onset of their decline, and used atlas data to quantify population trends of bee species and their host plants. We show that decline of preferred host plant species was one of two main factors associated with bee decline. Bee body size, the other main factor, was negatively related to population trend, which, because larger bee species have larger pollen requirements than smaller species, may also point toward food limitation as a key factor driving wild bee loss. Diet breadth and other potential factors such as length of flight period or climate change sensitivity were not important in explaining twentieth century bee population trends. These results highlight the species-specific nature of wild bee decline and indicate that mitigation strategies will only be effective if they target the specific host plants of declining species. PMID:25422416

  13. Fire promotes pollinator visitation: implications for ameliorating declines of pollination services.

    Directory of Open Access Journals (Sweden)

    Michael E Van Nuland

    Full Text Available Pollinators serve critical roles for the functioning of terrestrial ecosystems, and have an estimated annual value of over $150 billion for global agriculture. Mounting evidence from agricultural systems reveals that pollinators are declining in many regions of the world, and with a lack of information on whether pollinator communities in natural systems are following similar trends, identifying factors which support pollinator visitation and services are important for ameliorating the effects of the current global pollinator crisis. We investigated how fire affects resource structure and how that variation influences floral pollinator communities by comparing burn versus control treatments in a southeastern USA old-field system. We hypothesized and found a positive relationship between fire and plant density of a native forb, Verbesina alternifolia, as well as a significant difference in floral visitation of V. alternifolia between burn and control treatments. V. alternifolia density was 44% greater and floral visitation was 54% greater in burned treatments relative to control sites. When the density of V. alternifolia was experimentally reduced in the burn sites to equivalent densities observed in control sites, floral visitation in burned sites declined to rates found in control sites. Our results indicate that plant density is a proximal mechanism by which an imposed fire regime can indirectly impact floral visitation, suggesting its usefulness as a tool for management of pollination services. Although concerns surround the negative impacts of management, indirect positive effects may provide an important direction to explore for managing future ecological and conservation issues. Studies examining the interaction among resource concentration, plant apparency, and how fire affects the evolutionary consequences of altered patterns of floral visitation are overdue.

  14. Dark Matters: Challenges of Nocturnal Communication Between Plants and Animals in Delivery of Pollination Services.

    Science.gov (United States)

    Borges, Renee M

    2018-03-01

    The night is a special niche characterized by dim light, lower temperatures, and higher humidity compared to the day. Several animals have made the transition from the day into the night and have acquired unique adaptations to cope with the challenges of performing nocturnal activities. Several plant species have opted to bloom at night, possibly as a response to aridity to prevent excessive water loss through evapotranspiration since flowering is often a water-demanding process, or to protect pollen from heat stress. Nocturnal pollinators have visual adaptations to function under dim light conditions but may also trade off vision against olfaction when they are dependent on nectar-rewarding and scented flowers. Nocturnal pollinators may use CO 2 and humidity cues emanating from freshly-opened flowers as indicators of nectar-rich resources. Some endothermic nocturnal insect pollinators are attracted to thermogenic flowers within which they remain to obtain heat as a reward to increase their energy budget. This review focuses on mechanisms that pollinators use to find flowers at night, and the signals that nocturnally blooming flowers may employ to attract pollinators under dim light conditions. It also indicates gaps in our knowledge. While millions of years of evolutionary time have given pollinators and plants solutions to the delivery of pollination services and to the offering of appropriate rewards, this history of successful evolution is being threatened by artificial light at night. Excessive and inappropriate illumination associated with anthropogenic activities has resulted in significant light pollution which serves to undermine life processes governed by dim light.

  15. Variation in pollinator effectiveness in swamp milkweed, Asclepias incarnata (Apocynaceae).

    Science.gov (United States)

    Ivey, Christopher T; Martinez, Pocholo; Wyatt, Robert

    2003-02-01

    The contribution of a pollinator toward plant fitness (i.e., its "effectiveness") can determine its importance for the plant's evolutionary ecology. We compared pollinators in a population of Asclepias incarnata (Apocynaceae) for several components of pollinator effectiveness over two flowering seasons to evaluate their importance to plant reproduction. Insects of the order Hymenoptera predominate in A. incarnata pollination, but there appears to be no specialization for pollination within this order. Pollinators varied significantly in nearly every component of effectiveness that we measured, including pollen load, removal and deposition of pollen, pollination efficiency (deposition/removal), flower-handling time, and potential for geitonogamy (fractional pollen deposition). The visitation rate of pollinators also varied significantly between years and through time within years. Pollination success and percentage fruit-set of unmanipulated plants in the population also varied significantly between years, and pollination success varied among sample times within years. Most components of effectiveness were weakly correlated, suggesting that the contributions of visitor species toward pollination varied among effectiveness components. Mean flower-handling time, however, was strongly correlated with several components, including pollen removal and deposition, pollination efficiency, and fractional pollen deposition. These findings highlight the significance of pollination variability for plant reproduction and suggest that time-dependent foraging behaviors may play an important role in determining pollinator effectiveness.

  16. Efficiency of local Indonesia honey bees (Apis cerana L.) and stingless bee (Trigona iridipennis) on tomato (Lycopersicon esculentum Mill.) pollination.

    Science.gov (United States)

    Putra, Ramadhani Eka; Kinasih, Ida

    2014-01-01

    Tomato (Lycopersicon esculentum Mill.) is considered as one of major agricultural commodity of Indonesia farming. However, monthly production is unstable due to lack of pollination services. Common pollinator agent of tomatoes is bumblebees which is unsuitable for tropical climate of Indonesia and the possibility of alteration of local wild plant interaction with their pollinator. Indonesia is rich with wild bees and some of the species already domesticated for years with prospect as pollinating agent for tomatoes. This research aimed to assess the efficiency of local honey bee (Apis cerana L.) and stingless bee (Trigona iridipennis), as pollinator of tomato. During this research, total visitation rate and total numbers of pollinated flowers by honey bee and stingless bee were compared between them with bagged flowers as control. Total fruit production, average weight and size also measured in order to correlated pollination efficiency with quantity and quality of fruit produced. Result of this research showed that A. cerana has slightly higher rate of visitation (p>0.05) and significantly shorter handling time (p tomato flowers. However, honey bee pollinated tomato flowers more efficient pollinator than stingless bee (80.3 and 70.2% efficiency, respectively; p tomatoes were similar (p>0.05). Based on the results, it is concluded that the use of Apis cerana and Trigona spp., for pollinating tomatoes in tropical climates could be an alternative to the use of non-native Apis mellifera and bumblebees (Bombus spp.). However, more researches are needed to evaluate the cost/benefit on large-scale farming and greenhouse pollination using both bees against other bee species and pollination methods.

  17. Identification of Insect-Plant Pollination Networks for a Midwest Installation: Fort McCoy, WI

    Science.gov (United States)

    2016-04-01

    species are dependent on animal pollinators, including many agricultural plants (Ollerton et al. 2011). The recent declines of polli- nator species...pollinator fauna be- cause these species were absent from the Fort McCoy Integrated Natural Resources Management Plan. For general application of these...Conservation Status Ranks were used to classify species according to their vulnerability to extinction . Only species with Global Ranks of G1 (critically

  18. Effects of inter-row management intensity on wild bee, plant and soil biota diversity in vineyards

    Science.gov (United States)

    Kratschmer, Sophie; Pachinger, Bärbel; Winter, Silvia; Zaller, Johann G.; Buchholz, Jacob; Querner, Pascal; Strauß, Peter; Bauer, Thomas; Stiper, Katrin

    2016-04-01

    Vineyards may provide a range of essential ecosystem services, which interact with a diverse community of above- and belowground organisms. Intensive soil management like frequent tilling has resulted in the degradation of habitat quality with consequences on biodiversity and ecosystem services. This study is part of the European BiodivERsA project "VineDivers - Biodiversity-based ecosystem services in vineyards". We study the effects of different soil management intensities on above- and below-ground biodiversity (plants, insect pollinators, and soil biota), their interactions and the consequences for ecosystem services. We investigated 16 vineyards in Austria assessing the diversity of (1) wild bees using a semi-quantitative transect method, (2) earthworms by hand sorting, (3) Collembola (springtails) via pitfall trapping and soil coring, (4) plants by relevés and (5) litter decomposition (tea bag method). Management intensity differed in tillage frequency from intermediate intensity resulting in temporary vegetation cover to no tillage in permanent vegetation cover systems. First results show opposed relationships between the biodiversity of selected species groups and management intensity. We will discuss possible explanations and evaluate ecological interactions between wild bee, plant and soil biota diversity.

  19. Linking Land Cover Data and Crop Yields for Mapping and Assessment of Pollination Services in Europe

    Directory of Open Access Journals (Sweden)

    Maria Luisa Paracchini

    2013-09-01

    Full Text Available Pollination is a key ecosystem service as many crops but in particular, fruits and vegetables are partially dependent on pollinating insects to produce food for human consumption. Here we assessed how pollination services are delivered at the European scale. We used this assessment to estimate the relative contribution of wild pollinators to crop production. We developed an index of relative pollination potential, which is defined as the relative potential or relative capacity of ecosystems to support crop pollination. The model for relative pollination potential is based on the assumption that different habitats, but in particular forest edges, grasslands rich in flowers and riparian areas, offer suitable sites for wild pollinator insects. Using data of the foraging range of wild bees with short flight distances, we linked relative pollination potential to regional statistics of crop production. At aggregated EU level, the absence of insect pollination would result in a reduction of between 25% and 32% of the total production of crops which are partially dependent on insect pollination, depending on the data source used for the assessment. This production deficit decreases to 2.5% if only the relative pollination potential of a single guild of pollinators is considered. A strength of our approach is the spatially-explicit link between land cover based relative pollination potential and crop yield which enables a general assessment of the benefits that are derived from pollination services in Europe while providing insight where pollination gaps in the landscape occur.

  20. Honey bees are the dominant diurnal pollinator of native milkweed in a large urban park.

    Science.gov (United States)

    MacIvor, James Scott; Roberto, Adriano N; Sodhi, Darwin S; Onuferko, Thomas M; Cadotte, Marc W

    2017-10-01

    In eastern North America, the field milkweed, Asclepias syriaca L. (Asclepiadaceae), is used in planting schemes to promote biodiversity conservation for numerous insects including the endangered monarch butterfly, Danaus plexippus (Linnaeus) (Nymphalidae). Less is known about its pollinators, and especially in urban habitats where it is planted often despite being under increasing pressure from invasive plant species, such as the related milkweed, the dog-strangling vine (DSV), Vincetoxicum rossicum (Kleopow) Barbar. (Asclepiadaceae). During the A. syriaca flowering period in July 2016, we surveyed bees in open habitats along a DSV invasion gradient and inspected 433 individuals of 25 bee species in 12 genera for pollinia: these were affixed to bees that visited A. syriaca for nectar and contain pollen packets that are vectored (e.g., transferred) between flowers. Of all bees sampled, pollinia were found only on the nonindigenous honeybee, Apis mellifera (43% of all bees identified), as well as one individual bumblebee, Bombus impatiens Cresson. Pollinia were recorded from 45.2% of all honeybees collected. We found no relationship between biomass of DSV and biomass of A. syriaca per site. There was a significant positive correlation between A. syriaca biomass and the number of pollinia, and the proportion vectored. No relationship with DSV biomass was detected for the number of pollinia collected by bees but the proportion of vectored pollinia declined with increasing DSV biomass. Although we find no evidence of DSV flowers attracting potential pollinators away from A. syriaca and other flowering plants, the impacts on native plant-pollinator mutualisms relate to its ability to outcompete native plants. As wild bees do not appear to visit DSV flowers, it could be altering the landscape to one which honeybees are more tolerant than native wild bees.

  1. Pollination ecosystem services in South African agricultural systems

    OpenAIRE

    Annalie Melin; Mathieu Rouget; Jeremy J. Midgley; John S. Donaldson

    2014-01-01

    Insect pollinators, both managed and wild, have become a focus of global scientific, political and media attention because of their apparent decline and the perceived impact of this decline on crop production. Crop pollination by insects is an essential ecosystem service that increases the yield and quality of approximately 35% of crops worldwide. Pollinator declines are a consequence of multiple environmental pressures, e.g. habitat transformation and fragmentation, loss of floral resources,...

  2. Evaluation of pollen dispersal and cross pollination using transgenic grapevine plants.

    Science.gov (United States)

    Harst, Margit; Cobanov, Beatrix-Axinja; Hausmann, Ludger; Eibach, Rudolf; Töpfer, Reinhard

    2009-01-01

    Public debate about the possible risk of genetically modified plants often concerns putative effects of pollen dispersal and out-crossing into conventional fields in the neighborhood of transgenic plants. Though Vitis vinifera (grapevine) is generally considered to be self-pollinating, it cannot be excluded that vertical gene transfer might occur. For monitoring pollen flow and out-crossing events, transgenic plants of Vitis vinifera cv. 'Dornfelder' harboring the gus-int gene were planted in the center of a field experiment in Southwest Germany in 1999. The rate of pollen dispersal was determined by pollen traps placed at radial distances of 5-150 m from the pollen-donor plants, at 1.00 and 1.80 m above ground. Transgenic pollen was evaluated by GUS staining, and could clearly be distinguished from pollen originating from non-transgenic grapevine plants. Transgenic pollen was observed up to 150 m from the pollen donors. The rate of out-crossing was determined by sampling seeds of selected grapevines at a distance of 10 m to the pollen source, and of a sector at 20 m distance, respectively, followed by GUS analysis of seedlings. The average cross-pollination rate during the experiment (2002-2004) was 2.7% at a distance of 20 m. The results of this first pilot study present a good base for further assessment under the conditions of normal viticulture practice.

  3. Growing and marketing woody species to support pollinators: An emerging opportunity for forest, conservation, and native plant nurseries in the Northeastern United States

    Science.gov (United States)

    Kas Dumroese; Tara Luna

    2016-01-01

    The decline of insects that pollinate flowers is garnering more attention by land managers, policymakers, and the general public. Nursery managers who grow native trees, shrubs, and woody vines have a promising opportunity to showcase these species, marketing their contributions to pollinator health and other ecosystem services in urban and wild landscapes....

  4. Pollinators' mating rendezvous and the evolution of floral advertisement.

    Science.gov (United States)

    Fishman, Michael A; Hadany, Lilach

    2013-01-07

    Successful cross-fertilization in plant species that rely on animal pollinators depends not just on the number of pollinator visits, but also on these visits' duration. Furthermore, in non-deceptive pollination, a visit's duration depends on the magnitude of the reward provided to the pollinator. Accordingly, plants that rely on biotic pollination have to partition their investment in cross-fertilization assurance between attracting pollinator visits - advertisement, and rewarding visitors to assure that the visit is of productive duration. Here we analyze these processes by a combination of optimality methods and game theoretical modeling. Our results indicate that the optimality in such allocation of resources depends on the types of reward offered to the pollinators. More precisely, we show that plants that offer both food reward and mating rendezvous to pollinators will evolve to allocate a higher proportion of their cross-fertilization assurance budget to advertisement than plants that offer only food reward. That is, our results indicate that pollinators' mating habits may play a role in floral evolution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Pollination deficits in UK apple orchards

    Directory of Open Access Journals (Sweden)

    Michael Paul Douglas Garratt

    2014-02-01

    Full Text Available Apple production in the UK is worth over £100 million per annum and this production is heavily dependent on insect pollination. Despite its importance, it is not clear which insect pollinators carry out the majority of this pollination. Furthermore, it is unknown whether current UK apple production, in terms of both yield and quality, suffers pollination deficits and whether production value could be increased through effective management of pollination services. The present study set out to address some of these unknowns and showed that solitary bee activity is high in orchards and that they could be making a valuable contribution to pollination. Furthermore, fruit set and apple seed number were found to be suffering potential pollination deficits although these were not reflected in apple quality. Deficits could be addressed through orchard management practices to improve the abundance and diversity of wild pollinators. Such practices include provision of additional floral resources and nesting habitats as well as preservation of semi-natural areas. The cost effectiveness of such strategies would need to be understood taking into account the potential gains to the apple industry.

  6. Pollination deficits in UK apple orchards

    Directory of Open Access Journals (Sweden)

    Simon Potts

    2013-10-01

    Full Text Available Apple production in the UK is worth over £100 million per annum and this production is heavily dependent on insect pollination. Despite its importance, it is not clear which insect pollinators carry out the majority of this pollination. Furthermore, it is unknown whether current UK apple production, in terms of both yield and quality, suffers pollination deficits and whether production value could be increased through effective management of pollination services. The present study set out to address some of these unknowns and showed that solitary bee activity is high in orchards and that they could be making a valuable contribution to pollination. Furthermore, fruit set and apple seed number were found to be suffering potential pollination deficits although these were not reflected in apple quality. Deficits could be addressed through orchard management practices to improve the abundance and diversity of wild pollinators. Such practices include provision of additional floral resources and nesting habitats as well as preservation of semi-natural areas. The cost effectiveness of such strategies would need to be understood taking into account the potential gains to the apple industry.

  7. Learning in Insect Pollinators and Herbivores.

    Science.gov (United States)

    Jones, Patricia L; Agrawal, Anurag A

    2017-01-31

    The relationship between plants and insects is influenced by insects' behavioral decisions during foraging and oviposition. In mutualistic pollinators and antagonistic herbivores, past experience (learning) affects such decisions, which ultimately can impact plant fitness. The higher levels of dietary generalism in pollinators than in herbivores may be an explanation for the differences in learning seen between these two groups. Generalist pollinators experience a high level of environmental variation, which we suggest favors associative learning. Larval herbivores employ habituation and sensitization-strategies useful in their less variable environments. Exceptions to these patterns based on habitats, mobility, and life history provide critical tests of current theory. Relevant plant traits should be under selection to be easily learned and remembered in pollinators and difficult to learn in herbivores. Insect learning thereby has the potential to have an important, yet largely unexplored, role in plant-insect coevolution.

  8. Evaluating Pollination Deficits in Pumpkin Production in New York

    OpenAIRE

    Petersen, J. D.; Huseth, A. S.; Nault, B. A.

    2017-01-01

    Potential decreases in crop yield from reductions in bee-mediated pollination services threaten food production demands of a growing population. Many fruit and vegetable growers supplement their fields with bee colonies during crop bloom. The extent to which crop production requires supplementary pollination services beyond those provided by wild bees is not well documented. Pumpkin, Cucurbita pepo L., requires bee-mediated pollination for fruit development. Previous research identified the c...

  9. Change of floral orientation within an inflorescence affects pollinator behavior and pollination efficiency in a bee-pollinated plant, Corydalis sheareri.

    Directory of Open Access Journals (Sweden)

    Hui Wang

    Full Text Available Vertical raceme or spike inflorescences that are bee-pollinated tend to present their flowers horizontally. Horizontal presentation of flowers is hypothesized to enhance pollinator recognition and pollination precision, and it may also ensure greater consistency of pollinator movement on inflorescences. We tested the hypotheses using bee-pollinated Corydalis sheareri which has erect inflorescences consisting of flowers with horizontal orientation. We altered the orientation of individual flowers and prepared three types of inflorescences: (i unmanipulated inflorescences with horizontal-facing flowers, (ii inflorescences with flowers turned upward, and (iii inflorescences with flowers turned downward. We compared number of inflorescences approached and visited, number of successive probes within an inflorescence, the direction percentage of vertical movement on inflorescences, efficiency of pollen removal and seed production per inflorescence. Deviation from horizontal orientation decreased both approaches and visits by leafcutter bees and bumble bees to inflorescences. Changes in floral orientation increased the proportion of downward movements by leafcutter bees and decreased the consistency of pollinator movement on inflorescences. In addition, pollen removal per visit and seed production per inflorescence also declined with changes of floral orientation. In conclusion, floral orientation seems more or less optimal as regards bee behavior and pollen transfer for Corydalis sheareri. A horizontal orientation may be under selection of pollinators and co-adapt with other aspects of the inflorescence and floral traits.

  10. Abundance and Diversity of Wild Bees (Hymenoptera: Apoidea) Found in Lowbush Blueberry Growing Regions of Downeast Maine.

    Science.gov (United States)

    Bushmann, Sara L; Drummond, Francis A

    2015-08-01

    Insect-mediated pollination is critical for lowbush blueberry (Ericaceae: Vaccinium angustifolium Aiton) fruit development. Past research shows a persistent presence of wild bees (Hymenoptera: Apoidea) providing pollination services even when commercial pollinators are present. We undertook the study to 1) provide a description of bee communities found in lowbush blueberry-growing regions, 2) identify field characteristics or farm management practices that influence those communities, 3) identify key wild bee pollinators that provide pollination services for the blueberry crop, and 4) identify non-crop plants found within the cropping system that provide forage for wild bees. During a 4-year period, we collected solitary and eusocial bees in over 40 fields during and after blueberry bloom, determining a management description for each field. We collected 4,474 solitary bees representing 124 species and 1,315 summer bumble bees representing nine species. No bumble bee species were previously unknown in Maine, yet we document seven solitary bee species new for the state. These include species of the genera Nomada, Lasioglossum, Calliopsis, and Augochloropsis. No field characteristic or farm management practice related to bee community structure, except bumble bee species richness was higher in certified organic fields. Pollen analysis determined scopal loads of 67-99% ericaceous pollen carried by five species of Andrena. Our data suggest two native ericaceous plants, Kalmia angustifolia L. and Gaylussacia baccata (Wangenheim), provide important alternative floral resources. We conclude that Maine blueberry croplands are populated with a species-rich bee community that fluctuates in time and space. We suggest growers develop and maintain wild bee forage and nest sites. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Ecological context of the evolution of self-pollination in Clarkia xantiana: population size, plant communities, and reproductive assurance.

    Science.gov (United States)

    Moeller, David A; Geber, Monica A

    2005-04-01

    The repeated evolutionary transition from outcrossing to self-pollination in flowering plants has been suggested to occur because selfing provides reproductive assurance. Reports from biogeographical and ecological surveys indicate that selfing taxa are often associated with stressful and ephemeral environments, situations in which plant abundance is low (e.g., Baker's law) and with novel plant communities, however experimental tests of ecological hypotheses are few. In this study, we examined the ecological context of selection on mating system traits (herkogamy and protandry) in a California annual, Clarkia xantiana, where natural selfing populations differ from outcrossing populations in that they are often of small size or low density and occur mainly outside the range of pollinator-sharing congeners. We constructed artificial populations of plants with broad genetic variation in floral traits and manipulated two ecological factors, plant population size, and the presence versus absence of pollinator-sharing congeners, in the center of the geographic range of outcrossing populations. We found evidence for context-dependent selection on herkogamy and protandry via female fitness in which reduced traits, which promote autonomous selfing, were favored in small populations isolated from congeners whereas selection was comparatively weak in large populations or when congeners were present. In small, isolated populations, the fertility of plants with low herkogamy or protandry was elevated by 66% and 58%, respectively, compared to those with high herkogamy or protandry. The presence of pollinator-sharing congeners augmented bee visitation rates to C. xantiana flowers by 47% for all bees and by 93% for pollen specialists. By facilitating pollinator visitation, congeners mitigated selection on mating system traits in small populations, where outcross mating success is often low (the Allee effect). We also found support for the hypothesis that pollinator availability

  12. Hybridization rates between lettuce (Lactuca sativa) and its wild relative (L. serriola) under field conditions.

    Science.gov (United States)

    D'Andrea, Luigi; Felber, François; Guadagnuolo, Roberto

    2008-01-01

    Hybridization and introgression between crops and wild relatives may have important evolutionary and ecological consequences such as gene swamping or increased invasiveness. In the present study, we investigated hybridization under field conditions between crop lettuce (Lactuca sativa) and its wild relative prickly lettuce (L. serriola), two cross-compatible, predominantly autogamous and insect pollinated species. In 2003 and 2004, we estimated the rates of hybridization between L. sativa and L. serriola in close-to-reality field experiments carried out in two locations of Northern Switzerland. Seeds set by the experimental wild plants were collected and sown (44 352 in 2003 and 252 345 in 2004). Progeny was screened morphologically for detecting natural hybrids. Prior to the experiment, specific RAPD markers were used to confirm that morphological characters were reliable for hybrid identification. Hybridization occurred up to the maximal distance tested (40 m), and hybridization rates varied between 0 to 26%, decreasing with distance. More than 80% of the wild plants produced at least one hybrid (incidence of hybridization, IH) at 0 m and 1 m. It equaled 4 to 5% at 40 m. In sympatric crop-wild populations, cross-pollination between cultivated lettuce and its wild relative has to be seen as the rule rather than the exception for short distances.

  13. Non-bee insects are important contributors to global crop pollination

    NARCIS (Netherlands)

    Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A.; Kleijn, David; Scheper, Jeroen

    2016-01-01

    Wild andmanaged bees arewell documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change.

  14. Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands

    NARCIS (Netherlands)

    Biesmeijer, J.S.; Roberts, S.P.M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; Settele, J.; Kunin, W.E.

    2006-01-01

    Despite widespread concern about declines in pollination services, little is known about the patterns of change in most pollinator assemblages. By studying bee and hoverfly assemblages in Britain and the Netherlands, we found evidence of declines (pre-versus post-1980) in local bee diversity in both

  15. Pollination of Greenhouse Tomatoes by the Mexican bumblebee Bombus ephippiatus (Hymenoptera: Apidae

    Directory of Open Access Journals (Sweden)

    Carlos Hernan Vergara

    2012-04-01

    Full Text Available The Mexican native bumblebee Bombus ephippiatus Say was evaluated as a potential pollinator of greenhouse tomatoes (Solanum lycopersicon L.. The experiments were performed at San Andrés Cholula, Puebla, Mexico, from June to December 2004 in two 1 000 m2 greenhouses planted with tomatoes of the cultivar Mallory (Hazera ®. For the experiments, we used two colonies of Bombus ephippiatus, reared in the laboratory from queens captured in the field. Four treatments were applied to 20 study plants: pollination by bumble bees, manual pollination, pollination by mechanical vibration and no pollination (bagged flowers, no vibration. We measured percentage of flowers visited by bumble bees, number of seeds per fruit, maturing time, sugar content, fruit weight and fruit shape. All available flowers were visited by bumblebees, as measured by the degree of anther cone bruising. The number of seeds per fruit was higher for bumble bee-pollinated plants as compared with plants pollinated mechanically or not pollinated and was not significantly different between hand-pollinated and bumble bee-pollinated plants. Maturation time was significantly longer and sugar content, fresh weight and seed count were significantly higher for bumblebee pollinated flowers than for flowers pollinated manually or with no supplemental pollination, but did not differ with flowers pollinated mechanically.

  16. Collapse of a pollination web in small conservation areas.

    Science.gov (United States)

    Pauw, Anton

    2007-07-01

    A suspected global decline in pollinators has heightened interest in their ecological significance. In a worst-case scenario, the decline of generalist pollinators is predicted to trigger cascades of linked declines among the multiple specialist plant species to which they are linked, but this has not been documented. I studied a portion of a pollination web involving a generalist pollinator, the oil-collecting bee Rediviva peringueyi, and a community of oil-secreting plants. Across 27 established conservation areas located in the Cape Floral Region, I found substantial variation in the bees' occurrence in relation to soil type and the successional stage of the vegetation. Anthropogenic declines were detectable against this background of naturally occurring variation: R. peringueyi was absent from small conservation areas (urban matrix. In the absence of the bee, seed set failed in six specialist plant species that are pollinated only by R. peringueyi but remained high in a pollination generalist, which had replacement pollinators. The findings are consistent with theoretical predictions of the importance of generalist pollinators in maintaining the structure of pollination webs.

  17. Does intraspecific behavioural variation of pollinator species influence pollination? A quantitative study with hummingbirds and a Neotropical shrub.

    Science.gov (United States)

    Maruyama, P K; Justino, D G; Oliveira, P E

    2016-11-01

    Floral visitors differ in their efficacy as pollinators, and the impact of different pollinator species on pollen flow and plant reproduction has been frequently evaluated. In contrast, the impact of intraspecific behavioural changes on their efficacy as pollinators has seldom been quantified. We studied a self-incompatible shrub Palicourea rigida (Rubiaceae) and its hummingbird pollinators, which adjust their behaviour according to floral resource availability. Fluorescence microscopy was used to access pollen tube growth and incompatibility reaction in pistils after a single visit of territorial or intruder hummingbirds in two populations. To characterise the plant populations and possible differences in resource availability between areas we used a three-term quadrat variance method to detect clusters of floral resources. Within-species variation in foraging behaviour, but not species identity, affected pollinator efficacy. Effectively, hummingbirds intruding into territories deposited more compatible pollen grains on P. rigida stigmas than territory holders in both study areas. Additionally, territory holders deposited more incompatible than compatible pollen grains. Our results imply that intraspecific foraging behaviour variation has consequences for pollination success. Quantifying such variation and addressing the implications of intraspecific variability contribute to a better understanding of the dynamics and consequences of plant-pollinator interactions. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Food for honeybees? Pollinators and seed set of Anthyllis barba-jovis L. (Fabaceae in arid coastal areas of the Mediterranean basin

    Directory of Open Access Journals (Sweden)

    Giovanni Benelli

    2017-07-01

    Full Text Available Abundance and diversity of insect pollinators are declining in many ecosystems worldwide. The abundance and diversity of wild and managed bees are related to the availability of continuous floral resources. In particular, in Mediterranean basin countries, the presence of wildflower spots enhances the establishment of social Apoidea, since coastal regions are usually characterized by pollen and nectar shortage in early spring and late summer. Anthyllis barba-jovis produces both nectar and pollen as important food source for bees helping them to overcome early spring period food shortage. We investigated flowering, seed set, and pollinator diversity of A. barba-jovis in arid coastal environments of the Mediterranean basin. Pollinator abundance reached a maximum in early April. Honeybees were the most common pollinators followed by bumblebees and solitary bees. Plants prevented from entomophilous pollination showed inbreeding depression with a strong decrease in seed-set. To the best of our knowledge, this is the first report on pollination ecology of A. barba-jovis.

  19. The importance of plant diversity in maintaining the pollinator bee, Eulaema nigrita (Hymenoptera: Apidae) in sweet passion fruit fields.

    Science.gov (United States)

    da Silva, Cláudia Inês; Bordon, Natali Gomes; da Rocha Filho, Léo Correia; Garófalo, Carlos Alberto

    2012-12-01

    The euglossine bee Eulaema nigrita plays an important role for the pollination of native and economically important plants, such as the sweet passion-fruit Passiflora alata. E. nigrita uniquely collects the nectar from the flowers of P. alata, nevertheless, it needs to visit other plants to collect pollen, nectar and other resources for its survival. There are two methods to identify the species of plants used by bees in their diet: by direct observation of the bees in the flowers, and through identification of pollen grains present in brood cells, feces, or in the bees' body. In order to identify the other plants that E. nigrita visits, we analyzed samples of pollen grains removed from the bee's body in the course of the flowering period of P. alata. Among our results, the flora visited by E. nigrita comprised 40 species from 32 genera and 19 families, some of them used as a pollen source or just nectar. In spite of being a polyletic species, E. nigrita exhibited preference for some plant species with poricidal anthers. P. alata which has high sugar concentration nectar was the main source of nectar for this bee in the studied area. Nonetheless, the pollinic analysis indicated that others nectariferous plant species are necessary to keep the populations of E. nigrita. Studies such as this one are important since they indicate supplementary pollen-nectar sources which must be used for the conservation of the populations of E. nigrita in crops neighbouring areas. In the absence of pollinators, growers are forced to pay for hand pollination, which increases production costs; keeping pollinators in cultivated areas is still more feasible to ensure sweet passion fruit production.

  20. Different foraging preferences of hummingbirds on artificial and natural flowers reveal mechanisms structuring plant-pollinator interactions.

    Science.gov (United States)

    Maglianesi, María A; Böhning-Gaese, Katrin; Schleuning, Matthias

    2015-05-01

    In plant-pollinator networks, the floral morphology of food plants is an important determinant of the interaction niche of pollinators. Studies on foraging preferences of pollinators combining experimental and observational approaches may help to understand the mechanisms behind patterns of interactions and niche partitioning within pollinator communities. In this study, we tested whether morphological floral traits were associated with foraging preferences of hummingbirds for artificial and natural flower types in Costa Rica. We performed field experiments with artificial feeders, differing in length and curvature of flower types, to quantify the hummingbirds' interaction niche under unlimited nectar resources. To quantify the interaction niche under real-world conditions of limited nectar resources, we measured foraging preferences of hummingbirds for a total of 34 plant species. Artificial feeders were visited by Eupherusa nigriventris and Phaethornis guy in the pre-montane forest, and Lampornis calolaemus in the lower montane forest. Under experimental conditions, all three hummingbird species overlapped their interaction niches and showed a preference for the short artificial flower type over the long-straight and the long-curved flower types. Under natural conditions, the two co-occurring hummingbird species preferred to feed on plant species with floral traits corresponding to their bill morphology. The short-billed hummingbird E. nigriventris preferred to feed on short and straight flowers, whereas the long- and curved-billed P. guy preferred long and curved natural flowers. The medium-size billed species L. calolaemus preferred to feed on flowers of medium length and did not show preferences for plant species with specific corolla curvature. Our results show that floral morphological traits constrain access by short-billed hummingbird species to nectar resources. Morphological constraints, therefore, represent one important mechanism structuring trophic

  1. Wild food plants of Remote Oceania

    Directory of Open Access Journals (Sweden)

    Will C. McClatchey

    2012-11-01

    Full Text Available Agricultural societies partly depend upon wild foods. Relationships between an agricultural society and its wild foods can be explored by examining how the society responds through colonization of new lands that have not been previously inhabited. The oldest clear example of this phenomenon took place about 5000 years ago in the tropical Western Pacific at the “boundary” interface between Near and Remote Oceania. An inventory of wild and domesticated food plants used by people living along “the remote side of ” that interface has been prepared from the literature. This was then assessed for the roles of plants at the time of original colonization of Remote Oceania. The majority of species are wild foods, and most of these are used as leafy vegetables and fruits. The wild food plants mostly serve as supplements to domesticated species, although there are a few that can be used as substitutes for traditional staples.

  2. Invasion of a dominant floral resource: effects on the floral community and pollination of native plants.

    Science.gov (United States)

    Goodell, Karen; Parker, Ingrid M

    2017-01-01

    Through competition for pollinators, invasive plants may suppress native flora. Community-level studies provide an integrative assessment of invasion impacts and insights into factors that influence the vulnerability of different native species. We investigated effects of the nonnative herb Lythrum salicaria on pollination of native species in 14 fens of the eastern United States. We compared visitors per flower for 122 native plant species in invaded and uninvaded fens and incorporated a landscape-scale experiment, removing L. salicaria flowers from three of the invaded fens. Total flower densities were more than three times higher in invaded than uninvaded or removal sites when L. salicaria was blooming. Despite an increase in number of visitors with number of flowers per area, visitors per native flower declined with increasing numbers of flowers. Therefore, L. salicaria invasion depressed visitation to native flowers. In removal sites, visitation to native flowers was similar to uninvaded sites, confirming the observational results and also suggesting that invasion had not generated a persistent build-up of visitor populations. To study species-level impacts, we examined effects of invasion on visitors per flower for the 36 plant species flowering in both invaded and uninvaded fens. On average, the effect of invasion represented about a 20% reduction in visits per flower. We measured the influence of plant traits on vulnerability to L. salicaria invasion using meta-analysis. Bilaterally symmetrical flowers experienced stronger impacts on visitation, and similarity in flower color to L. salicaria weakly intensified competition with the invader for visitors. Finally, we assessed the reproductive consequences of competition with the invader in a dominant flowering shrub, Dasiphora fruticosa. Despite the negative effect of invasion on pollinator visitation in this species, pollen limitation of seed production was not stronger in invaded than in uninvaded

  3. The Effect of Altered Soil Moisture on Hybridization Rate in a Crop-Wild System (Raphanus spp..

    Directory of Open Access Journals (Sweden)

    Lesley G Campbell

    Full Text Available Since plant mating choices are flexible and responsive to the environment, rates of spontaneous hybridization may vary across ecological clines. Developing a robust and predictive framework for rates of plant gene flow requires assessing the role of environmental sensitivity on plant reproductive traits, relative abundance, and pollen vectors. Therefore, across a soil moisture gradient, we quantified pollinator movement, life-history trait variation, and unidirectional hybridization rates from crop (Raphanus sativus to wild (Raphanus raphanistrum radish populations. Both radish species were grown together in relatively dry (no rain, relatively wet (double rain, or control soil moisture conditions in Ohio, USA. We measured wild and crop radish life-history, phenology and pollinator visitation patterns. To quantify hybridization rates from crop-to-wild species, we used a simply inherited morphological marker to detect F1 hybrid progeny. Although crop-to-wild hybridization did not respond to watering treatments, the abundance of hybrid offspring was higher in fruits produced late in the period of phenological overlap, when both species had roughly equal numbers of open flowers. Therefore, the timing of fruit production and its relationship to flowering overlap may be more important to hybrid zone formation in Raphanus spp. than soil moisture or pollen vector movements.

  4. Generalist versus specialist pollination systems in 26 Oenothera (Onagraceae

    Directory of Open Access Journals (Sweden)

    Kyra Neipp Krakos

    2014-09-01

    Full Text Available Although generalized and specialized plants are often discussed as alternative states, the biological reality may better be viewed as a continuum. However, estimations of pollinator specificity have been confounded in some studies by the assumption that all floral visitors are pollinators. Failure to account for pollen load can lead to inaccurate conclusions regarding the number of pollinators with which a species actually interacts. The aim of this study was to clarify the distribution of pollination-system specialization within one clade, using a more rigorous assessment of pollen flow. The genus Oenothera has long been used as a model system for studying reproductive biology, and it provides a diversity of pollination systems and a wealth of historical data. Both floral visitation rate and pollen-load analysis of sampled pollinators, combined into a metric of pollen flow, were used to quantify the pollination systems of 26 Oenothera taxa. Metric of pollinator specialization were calculated as functions of both total pollinator taxa, and as pollinator functional groups. We found that for Oenothera, the number of floral visitors highly overestimates the number of pollinators, and is inadequate for determining or predicting pollination system specialization. We found that that pollination systems were distributed on a gradient from generalized to specialized, with more pollinator-specialized plant taxa, especially when estimated using pollinator functional groups. These results are in conflict with previous studies that depict most plant species as generalists, and this finding may be related to how prior studies have estimated specialization.

  5. Pollinator-Driven Speciation in Sexually Deceptive Orchids

    Directory of Open Access Journals (Sweden)

    Shuqing Xu

    2012-01-01

    Full Text Available Pollinator-mediated selection has been suggested to play a major role for the origin and maintenance of the species diversity in orchids. Sexually deceptive orchids are one of the prime examples for rapid, pollinator-mediated plant radiations, with many species showing little genetic differentiation, lack of postzygotic barriers, but strong prezygotic reproductive isolation. These orchids mimic mating signals of female insects and employ male insects as pollinators. This kind of sexual mimicry leads to highly specialised pollination and provides a good system for investigating the process of pollinator-driven speciation. Here, we summarise the knowledge of key processes of speciation in this group of orchids and conduct a meta-analysis on traits that contribute to species differentiation, and thus potentially to speciation. Our study suggests that pollinator shift through changes in floral scent is predominant among closely related species in sexually deceptive orchids. Such shifts can provide a mechanism for pollinator-driven speciation in plants, if the resulting floral isolation is strong. Furthermore, changes in floral scent in these orchids are likely controlled by few genes. Together these factors suggest speciation in sexually deceptive orchids may happen rapidly and even in sympatry, which may explain the remarkable species diversity observed in this plant group.

  6. Pollinator effectiveness varies with experimental shifts in flowering time.

    Science.gov (United States)

    Rafferty, Nicole E; Ives, Anthony R

    2012-04-01

    The earlier flowering times exhibited by many plant species are a conspicuous sign of climate change. Altered phenologies have caused concern that species could suffer population declines if they flower at times when effective pollinators are unavailable. For two perennial wildflowers, Tradescantia ohiensis and Asclepias incarnata, we used an experimental approach to explore how changing phenology affects the taxonomic composition of the pollinator assemblage and the effectiveness of individual pollinator taxa. After finding in the previous year that fruit set varied with flowering time, we manipulated flowering onset in greenhouses, placed plants in the field over the span of five weeks, and measured pollinator effectiveness as the number of seeds produced after a single visit to a flower. The average effectiveness of pollinators and the expected rates of pollination success were lower for plants of both species flowering earlier than for plants flowering at historical times, suggesting there could be reproductive costs to earlier flowering. Whereas for A. incarnata, differences in average seed set among weeks were due primarily to changes in the composition of the pollinator assemblage, the differences for T. ohiensis were driven by the combined effects of compositional changes and increases over time in the effectiveness of some pollinator taxa. Both species face the possibility of temporal mismatch between the availability of the most effective pollinators and the onset of flowering, and changes in the effectiveness of individual pollinator taxa through time may add an unexpected element to the reproductive consequences of such mismatches.

  7. Pollinators, geitonogamy and a model of pollen transfer

    International Nuclear Information System (INIS)

    Di Pasquale, C.

    1995-12-01

    A model of pollination that considers the amount of geitonogamous pollen transfer in different flowers and plants is presented. We assumed in this work self-incompatible plant species and we studied how pollination is affected by different round trips described by pollinator from its nest, taking into account the fraction geitonogamy and the fraction pollen export. A deterministic model and a stochastic model of pollen transfer were developed from which we found that when pollinators describe a uniform sequence (visit the same number of flowers in each plant), individuals receive the maximum outcross pollen or minimum self pollen. That is, from the point of view of fertilization, the optimal number of flowers visited in each plant depends on the number of flowers of the plant, the length of the visit and the number of individuals. (author). 18 refs, 1 fig

  8. Summer Flowering Cover Crops Support Wild Bees in Vineyards.

    Science.gov (United States)

    Wilson, Houston; Wong, Jessica S; Thorp, Robbin W; Miles, Albie F; Daane, Kent M; Altieri, Miguel A

    2018-02-08

    Agricultural expansion and intensification negatively affect pollinator populations and has led to reductions in pollination services across multiple cropping systems. As a result, growers and researchers have utilized the restoration of local and landscape habitat diversity to support pollinators, and wild bees in particular. Although a majority of studies to date have focussed on effects in pollinator-dependent crops such as almond, tomato, sunflower, and watermelon, supporting wild bees in self-pollinated crops, such as grapes, can contribute to broader conservation goals as well as provide other indirect benefits to growers. This study evaluates the influence of summer flowering cover crops and landscape diversity on the abundance and diversity of vineyard bee populations. We showed that diversity and abundance of wild bees were increased on the flowering cover crop, but were unaffected by changes in landscape diversity. These findings indicate that summer flowering cover crops can be used to support wild bees and this could be a useful strategy for grape growers interested in pollinator conservation as part of a broader farmscape sustainability agenda. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Generalización en las interacciones entre plantas y polinizadores Generalizations in the interactions between plants and pollinators

    Directory of Open Access Journals (Sweden)

    JOSÉ M. GÓMEZ

    2002-03-01

    Full Text Available Hasta fechas muy recientes, la mayoría de los estudios teóricos y empíricos sobre la evolución de la relación entre las plantas y sus polinizadores han asumido que estos sistemas están altamente especializados, es decir, cada especie vegetal es visitada por sólo unos cuantos polinizadores relacionados filogenéticamente como fruto de la selección impuesta por ellos. La omnipresencia de especialización se ha derivado de aceptar el principio del polinizador más eficiente, según el cual una planta debe especializarse en el polinizador más eficaz y/o más abundante cuando su disponibilidad es predecible. Muchos estudios han encontrado realmente que los polinizadores ejercen selección fenotípica sobre rasgos reproductivos de las plantas. Sin embargo, igual de evidente es el hecho de que muchas especies vegetales son polinizadas por conjuntos numerosos y taxonómicamente diversos de polinizadores. Estas observaciones sugieren que en realidad los sistemas de polinización son generalistas. La generalización es producida y mantenida por varios factores ecológicos entre los que destacan la variación espacial y la fluctuación temporal de la identidad de los polinizadores más importantes, la similitud en la eficiencia y preferencia por los rasgos florales por parte de polinizadores diferentes, la existencia de factores externos que reducen la capacidad de los polinizadores de afectar al fitness de la planta, y la existencia de selección indirectaA controversy exists about the importance of generalization versus specialization in pollination systems. Whereas the evolutionary and ecological theory speculates that the plant-pollinator systems should be highly specialized, many evolutionary ecologists now acknowledge that generalization is frequent in natural systems. There is still no consensus about which ecological factors can promote this counter-intuitive and paradoxical result. I propose that generalization in plant-pollination

  10. Pollination and seed dispersal of Aquilaria sinensis (Lour. Gilg (Thymelaeaceae: An economic plant species with extremely small populations in China

    Directory of Open Access Journals (Sweden)

    Gao Chen

    2016-10-01

    Full Text Available Pollination and seed dispersal in angiosperms have long been investigated in order to understand the coevolution of plants and animals. However, the signals from flowers and/or seeds to attract pollinators and/or seed dispersers have received comparatively little attention. In this study, the pollination biology and seed dispersal of the vulnerable agarwood plant Aquilaria sinensis (Lour. Gilg, a traditional medicinal plant in China, was studied in its natural distribution range. The reproductive tactics of A. sinensis were studied in detail by employing various tests dealing with fruit set and also seed dispersal. Dynamic headspace extraction followed by GC-MS analysis was also performed in order to reveal the composition of floral scent. The results showed that noctuids and pyralids are the most effective pollinators of pollinator-dependent A. sinensis. The main compounds of the floral scent were (E, E-α-Farnesene (61.9 ± 3.2%, trans-Ocimene (16.6 ± 1.2%, and Benzyl salicylate (4.6 ± 1.1%. The results obtained from seed dispersal experiments indicate that hornets are effective seed dispersers and they may play an important role in long-distance seed dispersal of A. sinensis. Based on our findings, we recommend several protection methods for this threatened agarwood plant in China.

  11. Competition for pollinators and intra-communal spectral dissimilarity of flowers

    NARCIS (Netherlands)

    van der Kooi, C. J.; Pen, I.; Staal, M.; Stavenga, D. G.; Elzenga, J. T. M.

    Competition for pollinators occurs when, in a community of flowering plants, several simultaneously flowering plant species depend on the same pollinator. Competition for pollinators increases interspecific pollen transfer rates, thereby reducing the number of viable offspring. In order to decrease

  12. The importance of plant diversity in maintaining the pollinator bee, Eulaema nigrita (Hymenoptera: Apidae in sweet passion fruit fields

    Directory of Open Access Journals (Sweden)

    Cláudia Inês da Silva

    2012-12-01

    Full Text Available The euglossine bee Eulaema nigrita plays an important role for the pollination of native and economically important plants, such as the sweet passion-fruit Passiflora alata. E. nigrita uniquely collects the nectar from the flowers of P. alata, nevertheless, it needs to visit other plants to collect pollen, nectar and other resources for its survival. There are two methods to identify the species of plants used by bees in their diet: by direct observation of the bees in the flowers, and through identification of pollen grains present in brood cells, feces, or in the bees’ body. In order to identify the other plants that E. nigrita visits, we analyzed samples of pollen grains removed from the bee’s body in the course of the flowering period of P. alata. Among our results, the flora visited by E. nigrita comprised 40 species from 32 genera and 19 families, some of them used as a pollen source or just nectar. In spite of being a polyletic species, E. nigrita exhibited preference for some plant species with poricidal anthers. P. alata which has high sugar concentration nectar was the main source of nectar for this bee in the studied area. Nonetheless, the pollinic analysis indicated that others nectariferous plant species are necessary to keep the populations of E. nigrita. Studies such as this one are important since they indicate supplementary pollen-nectar sources which must be used for the conservation of the populations of E. nigrita in crops neighbouring areas. In the absence of pollinators, growers are forced to pay for hand pollination, which increases production costs; keeping pollinators in cultivated areas is still more feasible to ensure sweet passion fruit production

  13. Ecosystems effects 25 years after Chernobyl: pollinators, fruit set and recruitment.

    Science.gov (United States)

    Møller, Anders Pape; Barnier, Florian; Mousseau, Timothy A

    2012-12-01

    Animals are assumed to play a key role in ecosystem functioning through their effects on seed set, seed consumption, seed dispersal, and maintenance of plant communities. However, there are no studies investigating the consequences of animal scarcity on seed set, seed consumption and seed dispersal at large geographical scales. We exploited the unprecedented scarcity of pollinating bumblebees and butterflies in the vicinity of Chernobyl, Ukraine, linked to the effects of radiation on pollinator abundance, to test for effects of pollinator abundance on the ecosystem. There were considerably fewer pollinating insects in areas with high levels of radiation. Fruit trees and bushes (apple Malus domestica, pear Pyrus communis, rowan Sorbus aucuparia, wild rose Rosa rugosa, twistingwood Viburnum lantana, and European cranberry bush Viburnum opulus) that are all pollinated by insects produced fewer fruit in highly radioactively contaminated areas, partly linked to the local reduction in abundance of pollinators. This was the case even when controlling for the fact that fruit trees were generally smaller in more contaminated areas. Fruit-eating birds like thrushes and warblers that are known seed dispersers were less numerous in areas with lower fruit abundance, even after controlling for the effects of radiation, providing a direct link between radiation, pollinator abundance, fruit abundance and abundance of frugivores. Given that the Chernobyl disaster happened 25 years ago, one would predict reduced local recruitment of fruit trees if fruit set has been persistently depressed during that period; indeed, local recruitment was negatively related to the level of radiation and positively to the local level of fruit set. The patterns at the level of trees were replicated at the level of villages across the study site. This study provides the first large-scale study of the effects of a suppressed pollinator community on ecosystem functioning.

  14. Considering the unintentional consequences of pollinator gardens for urban native plants: is the road to extinction paved with good intentions?

    Science.gov (United States)

    Johnson, Anna L; Fetters, Andrea M; Ashman, Tia-Lynn

    2017-09-01

    Urban centers are important foci for plant biodiversity and yet widespread planting of wildflower gardens in cities to sustain pollinator biodiversity is on the rise, without full consideration of potential ecological consequences. The impact of intentional wildflower plantings on remnant native plant diversity in urban and peri-urban settings has not received attention, although shared pollinators are likely to mediate several types of biotic interactions between human-introduced plants and remnant native ones. Additionally, if wildflower species escape gardens these indirect effects may be compounded with direct ones. We review the potential positive and negative impacts of wildflower gardens on urban native flowering plants, and we reveal substantial gaps in our knowledge. We present a roadmap for research to address whether wildflower gardens, while benefiting pollinators, could also hasten the extinction of native remnant plants in urban settings, or whether they could have other effects that enrich urban biodiversity. Goals of future wildflower mixes should consider the totality of potential interactions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Melittofauna and Other Potential Pollinators in Wetland and Uplands in South Central Nebraska (Insecta: Apoidea).

    Science.gov (United States)

    Park, Cynthia N; Overall, Lisa M; Smith, Loren M; Lagrange, Ted; McMurry, Scott

    2017-03-10

    Our objective was to document potential wild pollinating insects in south central Nebraska. This intensively cultivated region is known as the Rainwater Basin and contains some of the most endangered wetland systems in North America. We used blue vane traps to passively collect insects and insect nets to actively collect on flowering plants from April through October in 2014 and 2015. Habitat types included playa wetlands, adjacent mixed and tallgrass prairies, and agricultural fields. Over 112,000 insects were collected; Hymenoptera represented 78% of the total, and the families Apidae and Halictidae comprised 99% of the total melittofauna. Insects from 13 orders were collected, but Hymenoptera, Diptera, and Coleoptera were the most abundant potential pollinators.

  16. Nectar and pollination drops: how different are they?

    Science.gov (United States)

    Nepi, Massimo; von Aderkas, Patrick; Wagner, Rebecca; Mugnaini, Serena; Coulter, Andrea; Pacini, Ettore

    2009-08-01

    Pollination drops and nectars (floral nectars) are secretions related to plant reproduction. The pollination drop is the landing site for the majority of gymnosperm pollen, whereas nectar of angiosperm flowers represents a common nutritional resource for a large variety of pollinators. Extrafloral nectars also are known from all vascular plants, although among the gymnosperms they are restricted to the Gnetales. Extrafloral nectars are not generally involved in reproduction but serve as 'reward' for ants defending plants against herbivores (indirect defence). Although very different in their task, nectars and pollination drops share some features, e.g. basic chemical composition and eventual consumption by animals. This has led some authors to call these secretions collectively nectar. Modern techniques that permit chemical analysis and protein characterization have very recently added important information about these sugary secretions that appear to be much more than a 'reward' for pollinating (floral nectar) and defending animals (extrafloral nectar) or a landing site for pollen (pollination drop). Nectar and pollination drops contain sugars as the main components, but the total concentration and the relative proportions are different. They also contain amino acids, of which proline is frequently the most abundant. Proteomic studies have revealed the presence of common functional classes of proteins such as invertases and defence-related proteins in nectar (floral and extrafloral) and pollination drops. Invertases allow for dynamic rearrangement of sugar composition following secretion. Defence-related proteins provide protection from invasion by fungi and bacteria. Currently, only few species have been studied in any depth. The chemical composition of the pollination drop must be investigated in a larger number of species if eventual phylogenetic relationships are to be revealed. Much more information can be provided from further proteomic studies of both

  17. Why are the seed cones of conifers so diverse at pollination?

    Science.gov (United States)

    Losada, Juan M; Leslie, Andrew B

    2018-03-08

    Form and function relationships in plant reproductive structures have long fascinated biologists. Although the intricate associations between specific pollinators and reproductive morphology have been widely explored among animal-pollinated plants, the evolutionary processes underlying the diverse morphologies of wind-pollinated plants remain less well understood. Here we study how this diversity may have arisen by focusing on two conifer species in the pine family that have divergent reproductive cone morphologies at pollination. Standard histology methods, artificial wind pollination assays and phylogenetic analyses were used in this study. A detailed study of cone ontogeny in these species reveals that variation in the rate at which their cone scales mature means that pollination occurs at different stages in their development, and thus in association with different specific morphologies. Pollination experiments nevertheless indicate that both species effectively capture pollen. In wind-pollinated plants, morphological diversity may result from simple variation in development among lineages rather than selective pressures for any major differences in function or performance. This work also illustrates the broader importance of developmental context in understanding plant form and function relationships; because plant reproductive structures perform many different functions over their lifetime, subtle differences in development may dramatically alter the specific morphologies that they use to meet these demands.

  18. Pollination decays in biodiversity hotspots.

    Science.gov (United States)

    Vamosi, Jana C; Knight, Tiffany M; Steets, Janette A; Mazer, Susan J; Burd, Martin; Ashman, Tia-Lynn

    2006-01-24

    As pollinators decline globally, competition for their services is expected to intensify, and this antagonism may be most severe where the number of plant species is the greatest. Using meta-analysis and comparative phylogenetic analysis, we provide a global-scale test of whether reproduction becomes more limited by pollen receipt (pollen limitation) as the number of coexisting plant species increases. As predicted, we find a significant positive relationship between pollen limitation and species richness. In addition, this pattern is particularly strong for species that are obligately outcrossing and for trees relative to herbs or shrubs. We suggest that plants occurring in species-rich communities may be more prone to pollen limitation because of interspecific competition for pollinators. As a consequence, plants in biodiversity hotspots may have a higher risk of extinction and/or experience increased selection pressure to specialize on certain pollinators or diversify into different phenological niches. The combination of higher pollen limitation and habitat destruction represents a dual risk to tropical plant species that has not been previously identified.

  19. Natural cross-pollination in roselle, Hibiscus sabdariffa L. (Malvaceae

    Directory of Open Access Journals (Sweden)

    Vaidya K.R.

    2000-01-01

    Full Text Available Two local varieties of roselle (Hibiscus sabdariffa L., Jamaican Green and Jamaican Red, were grown to determine the amount of natural cross-pollination. Two planting arrangements (alternating rows; alternating individuals in a row and two planting dates, a month apart, were used for the outcrossing experiments. Stem pigmentation, red (R- vs. green (rr, was used as a genetic marker in the estimation of outcrossing. Homozygous dominant and recessive genotypes of Jamaican Red and Jamaican Green, respectively, were grown in both of the planting arrangements and dates. Seeds from open-pollinated capsules of randomly selected Jamaican Green plants were planted to score the frequency of cross-pollination. Estimates of natural cross-pollination ranged from 0.20 ± 0.09% to 0.68 ± 0.34%. Roselle outcrosses at a low rate in Jamaica.

  20. Response of wild bees (Hymenoptera: Apoidea: Anthophila) to surrounding land cover in Wisconsin pickling cucumber.

    Science.gov (United States)

    Lowenstein, D M; Huseth, A S; Groves, R L

    2012-06-01

    Cucumber (Cucumis sativus L.) is among the plants highly dependent on insect-mediated pollination, but little is known about its unmanaged pollinators. Both domestic and wild bee populations in central Wisconsin pickling cucumber fields were assessed using a combination of pan trapping and floral observations before and during bloom. Together with land cover analyses extending 2,000 m from field centers, the relationship of land cover components and bee abundance and diversity were examined. Over a 2-yr sample interval distributed among 18 experimental sites, 3,185 wild bees were collected representing >60 species. A positive association was found between both noncrop and herbaceous areas with bee abundance and diversity only during bloom. Response of bee abundance and diversity to land cover was strongest at larger buffers presumably because of the heterogeneous nature of the landscape and connectivity between crop and noncrop areas. These results are consistent with previous research that has found a weak response of wild bees to surrounding vegetation in moderately fragmented areas. A diverse community of wild bees is present within the fields of a commercial cucumber system, and there is evidence of floral visitation by unmanaged bees. This evidence emphasizes the importance of wild pollinators in fragmented landscapes and the need for additional research to investigate the effectiveness of individual species in pollen deposition.

  1. Phenotypic selection on flowering phenology and pollination efficiency traits between Primula populations with different pollinator assemblages

    OpenAIRE

    Wu, Yun; Li, Qing‐Jun

    2017-01-01

    Abstract Floral traits have largely been attributed to phenotypic selection in plant–pollinator interactions. However, the strength of this link has rarely been ascertained with real pollinators. We conducted pollinator observations and estimated selection through female fitness on flowering phenology and floral traits between two Primula secundiflora populations. We quantified pollinator‐mediated selection by subtracting estimates of selection gradients of plants receiving supplemental hand ...

  2. Number of conspecifics and reproduction in the invasive plant Eschscholzia californica (Papaveraceae): is there a pollinator-mediated Allee effect?

    Science.gov (United States)

    Anic, V; Henríquez, C A; Abades, S R; Bustamante, R O

    2015-05-01

    The component Allee effect has been defined as 'a positive relationship between any measure of individual fitness and the number or density of conspecifics'. Larger plant populations or large patches have shown a higher pollinator visitation rate, which may give rise to an Allee effect in reproduction of the plants. We experimentally tested the effect of number of conspecifics on reproduction and pollinator visitation in Eschscholzia californica Cham., an invasive plant in Chile. We then built patches with two, eight and 16 flowering individuals of E. californica (11 replicates per treatment) in an area characterised by dominance of the study species. We found that E. californica exhibits a component Allee effect, as the number of individuals of this species has a positive effect on individual seed set. However, individual fruit production was not affected by the number of plants examined. Pollinator visitation rate was also independent of the number of plants, so this factor would not explain the Allee effect. This rate was positively correlated with the total number of flowers in the patches. We also found that the number of plants did not affect the seed mass or proportion of germinated seeds in the patches. Higher pollen availability in patches with 16 plants and pollination by wind could explain the Allee effect. The component Allee effect identified could lead to a weak demographic Allee effect that might reduce the rate of spread of E. californica. Knowledge of this would be useful for management of this invasive plant in Chile. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Plant-pollinator interactions over 120 years: loss of species, co-occurrence, and function.

    Science.gov (United States)

    Burkle, Laura A; Marlin, John C; Knight, Tiffany M

    2013-03-29

    Using historic data sets, we quantified the degree to which global change over 120 years disrupted plant-pollinator interactions in a temperate forest understory community in Illinois, USA. We found degradation of interaction network structure and function and extirpation of 50% of bee species. Network changes can be attributed to shifts in forb and bee phenologies resulting in temporal mismatches, nonrandom species extinctions, and loss of spatial co-occurrences between extant species in modified landscapes. Quantity and quality of pollination services have declined through time. The historic network showed flexibility in response to disturbance; however, our data suggest that networks will be less resilient to future changes.

  4. Exotic plant infestation is associated with decreased modularity and increased numbers of connectors in mixed-grass prairie pollination networks

    Science.gov (United States)

    Larson, Diane L.; Rabie, Paul A.; Droege, Sam; Larson, Jennifer L.; Haar, Milton

    2016-01-01

    The majority of pollinating insects are generalists whose lifetimes overlap flowering periods of many potentially suitable plant species. Such generality is instrumental in allowing exotic plant species to invade pollination networks. The particulars of how existing networks change in response to an invasive plant over the course of its phenology are not well characterized, but may shed light on the probability of long-term effects on plant-pollinator interactions and the stability of network structure. Here we describe changes in network topology and modular structure of infested and non-infested networks during the flowering season of the generalist non-native flowering plant, Cirsium arvense in mixed-grass prairie at Badlands National Park, South Dakota, USA. Objectives were to compare network-level effects of infestation as they propagate over the season in infested and non-infested (with respect to C. arvense) networks. We characterized plant-pollinator networks on 5 non-infested and 7 infested 1-ha plots during 4 sample periods that collectively covered the length of C. arvense flowering period. Two other abundantly-flowering invasive plants were present during this time: Melilotus officinalis had highly variable floral abundance in both C. arvense-infested and non-infested plots andConvolvulus arvensis, which occurred almost exclusively in infested plots and peaked early in the season. Modularity, including roles of individual species, and network topology were assessed for each sample period as well as in pooled infested and non-infested networks. Differences in modularity and network metrics between infested and non-infested networks were limited to the third and fourth sample periods, during flower senescence of C. arvenseand the other invasive species; generality of pollinators rose concurrently, suggesting rewiring of the network and a lag effect of earlier floral abundance. Modularity was lower and number of connectors higher in infested

  5. Generalised pollination systems for three invasive milkweeds in Australia.

    Science.gov (United States)

    Ward, M; Johnson, S D

    2013-05-01

    Because most plants require pollinator visits for seed production, the ability of an introduced plant species to establish pollinator relationships in a new ecosystem may have a central role in determining its success or failure as an invader. We investigated the pollination ecology of three milkweed species - Asclepias curassavica, Gomphocarpus fruticosus and G. physocarpus - in their invaded range in southeast Queensland, Australia. The complex floral morphology of milkweeds has often been interpreted as a general trend towards specialised pollination requirements. Based on this interpretation, invasion by milkweeds contradicts the expectation than plant species with specialised pollination systems are less likely to become invasive that those with more generalised pollination requirements. However, observations of flower visitors in natural populations of the three study species revealed that their pollination systems are essentially specialised at the taxonomic level of the order, but generalised at the species level. Specifically, pollinators of the two Gomphocarpus species included various species of Hymenoptera (particularly vespid wasps), while pollinators of A. curassavica were primarily Lepidoptera (particularly nymphalid butterflies). Pollinators of all three species are rewarded with copious amounts of highly concentrated nectar. It is likely that successful invasion by these three milkweed species is attributable, at least in part, to their generalised pollinator requirements. The results of this study are discussed in terms of how data from the native range may be useful in predicting pollination success of species in a new environment. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Micro-organisms behind the pollination scenes: microbial imprint on floral nectar sugar variation in a tropical plant community.

    Science.gov (United States)

    Canto, A; Herrera, C M

    2012-11-01

    Variation in the composition of floral nectar reflects intrinsic plant characteristics as well as the action of extrinsic factors. Micro-organisms, particularly yeasts, represent one extrinsic factor that inhabit the nectar of animal-pollinated flowers worldwide. In this study a 'microbial imprint hypothesis' is formulated and tested, in which it is proposed that natural community-wide variation in nectar sugar composition will partly depend on the presence of yeasts in flowers. Occurrence and density of yeasts were studied microscopically in single-flower nectar samples of 22 animal-pollinated species from coastal xeric and sub-humid tropical habitats of the Yucatán Peninsula, Mexico. Nectar sugar concentration and composition were concurrently determined on the same samples using high-performance liquid chromatography (HPLC) methods. Microscopical examination of nectar samples revealed the presence of yeasts in nearly all plant species (21 out of 22 species) and in about half of the samples examined (51·8 % of total, all species combined). Plant species and individuals differed significantly in nectar sugar concentration and composition, and also in the incidence of nectar yeasts. After statistically controlling for differences between plant species and individuals, nectar yeasts still accounted for a significant fraction of community-wide variance in all nectar sugar parameters considered. Significant yeast × species interactions on sugar parameters revealed that plant species differed in the nectar sugar correlates of variation in yeast incidence. The results support the hypothesis that nectar yeasts impose a detectable imprint on community-wide variation in nectar sugar composition and concentration. Since nectar sugar features influence pollinator attraction and plant reproduction, future nectar studies should control for yeast presence and examine the extent to which microbial signatures on nectar characteristics ultimately have some influence on

  7. Evolutionary relationships among pollinators and repeated pollinator sharing in sexually deceptive orchids.

    Science.gov (United States)

    Phillips, R D; Brown, G R; Dixon, K W; Hayes, C; Linde, C C; Peakall, R

    2017-09-01

    The mechanism of pollinator attraction is predicted to strongly influence both plant diversification and the extent of pollinator sharing between species. Sexually deceptive orchids rely on mimicry of species-specific sex pheromones to attract their insect pollinators. Given that sex pheromones tend to be conserved among related species, we predicted that in sexually deceptive orchids, (i) pollinator sharing is rare, (ii) closely related orchids use closely related pollinators and (iii) there is strong bias in the wasp lineages exploited by orchids. We focused on species that are pollinated by sexual deception of thynnine wasps in the distantly related genera Caladenia and Drakaea, including new field observations for 45 species of Caladenia. Specialization was extreme with most orchids using a single pollinator species. Unexpectedly, seven cases of pollinator sharing were found, including two between Caladenia and Drakaea, which exhibit strikingly different floral morphology. Phylogenetic analysis of pollinators using four nuclear sequence loci demonstrated that although orchids within major clades primarily use closely related pollinator species, up to 17% of orchids within these clades are pollinated by a member of a phylogenetically distant wasp genus. Further, compared to the total diversity of thynnine wasps within the study region, orchids show a strong bias towards exploiting certain genera. Although these patterns may arise through conservatism in the chemical classes used in sex pheromones, apparent switches between wasp clades suggest unexpected flexibility in floral semiochemical production. Alternatively, wasp sex pheromones within lineages may exhibit greater chemical diversity than currently appreciated. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  8. Pollinator adaptation and the evolution of floral nectar sugar composition.

    Science.gov (United States)

    Abrahamczyk, S; Kessler, M; Hanley, D; Karger, D N; Müller, M P J; Knauer, A C; Keller, F; Schwerdtfeger, M; Humphreys, A M

    2017-01-01

    A long-standing debate concerns whether nectar sugar composition evolves as an adaptation to pollinator dietary requirements or whether it is 'phylogenetically constrained'. Here, we use a modelling approach to evaluate the hypothesis that nectar sucrose proportion (NSP) is an adaptation to pollinators. We analyse ~ 2100 species of asterids, spanning several plant families and pollinator groups (PGs), and show that the hypothesis of adaptation cannot be rejected: NSP evolves towards two optimal values, high NSP for specialist-pollinated and low NSP for generalist-pollinated plants. However, the inferred adaptive process is weak, suggesting that adaptation to PG only provides a partial explanation for how nectar evolves. Additional factors are therefore needed to fully explain nectar evolution, and we suggest that future studies might incorporate floral shape and size and the abiotic environment into the analytical framework. Further, we show that NSP and PG evolution are correlated - in a manner dictated by pollinator behaviour. This contrasts with the view that a plant necessarily has to adapt its nectar composition to ensure pollination but rather suggests that pollinators adapt their foraging behaviour or dietary requirements to the nectar sugar composition presented by the plants. Finally, we document unexpectedly sucrose-poor nectar in some specialized nectarivorous bird-pollinated plants from the Old World, which might represent an overlooked form of pollinator deception. Thus, our broad study provides several new insights into how nectar evolves and we conclude by discussing why maintaining the conceptual dichotomy between adaptation and constraint might be unhelpful for advancing this field. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  9. Interacting effects of pollination, water and nutrients on fruit tree performance.

    Science.gov (United States)

    Klein, A-M; Hendrix, S D; Clough, Y; Scofield, A; Kremen, C

    2015-01-01

    Pollination is critical to fruit production, but the interactions of pollination with plant resources on a plant's reproductive and vegetative features are largely overlooked. We examined the influences of pollination, irrigation and fertilisation on the performance of almond, Prunus dulcis, in northern California. We used a full-factorial design to test for the effects of pollination limitation on fruit production and foliage variables of whole trees experiencing four resource treatments: (i) normal water and nutrients, (ii) reduced water, (iii) no nutrients, and (iv) reduced water and no nutrients. In each of these combinations, we applied three pollination treatments: hand-cross pollination, open-pollination and pollinator exclusion. Pollination strongly affected yield even under reduced water and no nutrient applications. Hand-cross pollination resulted in over 50% fruit set with small kernels, while open-pollinated flowers showed over 30% fruit set with moderate-sized kernels. Pollinator-excluded flowers had a maximum fruit set of 5%, with big and heavy kernels. Reduced water interacted with the open- and hand-cross pollination treatments, reducing yield more than in the pollinator exclusion treatment. The number of kernels negatively influenced the number of leaves, and reduced water and no nutrient applications interacted with the pollination treatments. Overall, our results indicate that the influences of pollination on fruit tree yield interact with the plant availability of nutrients and water and that excess pollination can reduce fruit quality and the production of leaves for photosynthesis. Such information is critical to understand how pollination influences fruit tree performance. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination.

    Science.gov (United States)

    Kovács-Hostyánszki, Anikó; Espíndola, Anahí; Vanbergen, Adam J; Settele, Josef; Kremen, Claire; Dicks, Lynn V

    2017-05-01

    Worldwide, human appropriation of ecosystems is disrupting plant-pollinator communities and pollination function through habitat conversion and landscape homogenisation. Conversion to agriculture is destroying and degrading semi-natural ecosystems while conventional land-use intensification (e.g. industrial management of large-scale monocultures with high chemical inputs) homogenises landscape structure and quality. Together, these anthropogenic processes reduce the connectivity of populations and erode floral and nesting resources to undermine pollinator abundance and diversity, and ultimately pollination services. Ecological intensification of agriculture represents a strategic alternative to ameliorate these drivers of pollinator decline while supporting sustainable food production, by promoting biodiversity beneficial to agricultural production through management practices such as intercropping, crop rotations, farm-level diversification and reduced agrochemical use. We critically evaluate its potential to address and reverse the land use and management trends currently degrading pollinator communities and potentially causing widespread pollination deficits. We find that many of the practices that constitute ecological intensification can contribute to mitigating the drivers of pollinator decline. Our findings support ecological intensification as a solution to pollinator declines, and we discuss ways to promote it in agricultural policy and practice. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  11. The Effect of Pollination on Cd Phytoextraction From Soil by Maize (Zea mays L.).

    Science.gov (United States)

    Xu, Wending; Lu, Guining; Wang, Rui; Guo, Chuling; Liao, Changjun; Yi, Xiaoyun; Dang, Zhi

    2015-01-01

    A pot experiment was conducted to investigate the effects of pollination on cadmium (Cd) phytoextraction from soil by mature maize plants. The results showed that the unpollinated maize plants accumulated 50% more Cd than that of the pollinated plants, even though the dry weight of the former plants was 15% less than that of the latter plants. The Cd accumulation in root and leaf of the unpollinated maize plant was 0.47 and 0.89 times higher than that of the pollinated plant, respectively. The Cd concentration in the cob was significantly decreased because of pollination. Preventing pollination is a promising approach for enhancing the effectiveness of phytoextraction in Cd-contaminated soils by maize. This study suggested that in low Cd-contaminated soil pollination should be encouraged because accumulation of Cd in maize grains is very little and maize seeds can bring farmers economic benefits, while in high Cd-contaminated soil, inhibition of pollination can be applied to enhance phytoextraction of Cd from soil by maize plant.

  12. Electrostatic Charge on Flying Hummingbirds and Its Potential Role in Pollination.

    Science.gov (United States)

    Badger, Marc; Ortega-Jimenez, Victor Manuel; von Rabenau, Lisa; Smiley, Ashley; Dudley, Robert

    2015-01-01

    Electrostatic phenomena are known to enhance both wind- and insect-mediated pollination, but have not yet been described for nectar-feeding vertebrates. Here we demonstrate that wild Anna's Hummingbirds (Calypte anna) can carry positive charges up to 800 pC while in flight (mean ± s.d.: 66 ± 129 pC). Triboelectric charging obtained by rubbing an isolated hummingbird wing against various plant structures generated charges up to 700 pC. A metal hummingbird model charged to 400 pC induced bending of floral stamens in four plants (Nicotiana, Hemerocallis, Penstemon, and Aloe spp.), and also attracted falling Lycopodium spores at distances of < 2 mm. Electrostatic forces may therefore influence pollen transfer onto nectar-feeding birds.

  13. Diurnal and Nocturnal Pollination of Marginatocereus marginatus (Pachycereeae: Cactaceae) in Central Mexico

    Science.gov (United States)

    DAR, SALEEM; ARIZMENDI, Ma. del CORO; VALIENTE-BANUET, ALFONSO

    2006-01-01

    • Background and Aims Chiropterophillous and ornithophillous characteristics can form part of a single reproductive strategy in plants that have flowers with diurnal and nocturnal anthesis. This broader pollination strategy can ensure seed set when pollinators are scarce or unpredictable. This appears to be true of hummingbirds, which presumably pollinate Marginatocereus marginatus, a columnar cactus with red nocturnal and diurnal flowers growing as part of dense bat-pollinated columnar cacti forests in arid regions of central Mexico. The aim of this study was to study the floral biology of M. marginatus, and evaluate the effectiveness of nocturnal vs. diurnal pollinators and the contribution of each pollinator group to overall plant fitness. • Methods Individual flower buds were marked and followed to evaluate flower phenology and anthesis time. Flowers and nectar production were measured. An exclusion experiment was conducted to measure the relative contribution of nocturnal and diurnal pollinators to seed set. • Key Results Marginatocereus marginatus has red hermaphroditic flowers with nocturnal and diurnal anthesis. The plant cannot produce seeds by selfing and was pollinated during the day by hummingbirds and during the night by bats, demonstrating that both pollinator groups were important for plant reproduction. Strong pollen limitation was found in the absence of one of the pollinator guilds. • Conclusions Marginatocereus marginatus has an open pollination system in which both diurnal and nocturnal pollinators are needed to set seeds. This represents a fail-safe pollination system that can ensure both pollination, in a situation of low abundance of one of the pollinator groups (hummingbirds), and high competition for nocturnal pollinators with other columnar cacti that bloom synchronously with M. marginatus in the Tehuacan Valley, Mexico. PMID:16394025

  14. Hedgerows Have a Barrier Effect and Channel Pollinator Movement in the Agricultural Landscape

    Directory of Open Access Journals (Sweden)

    Klaus Felix

    2015-01-01

    Full Text Available Agricultural intensification and the subsequent fragmentation of semi-natural habitats severely restrict pollinator and pollen movement threatening both pollinator and plant species. Linear landscape elements such as hedgerows are planted for agricultural and conservation purposes to increase the resource availability and habitat connectivity supporting populations of beneficial organisms such as pollinators. However, hedgerows may have unexpected effects on plant and pollinator persistence by not just channeling pollinators and pollen along, but also restricting movement across the strip of habitat. Here, we tested how hedgerows influence pollinator movement and pollen flow. We used fluorescent dye particles as pollen analogues to track pollinator movement between potted cornflowers Centaurea cyanus along and across a hedgerow separating two meadows. The deposition of fluorescent dye was significantly higher along the hedgerow than across the hedgerow and into the meadow, despite comparable pollinator abundances. The differences in pollen transfer suggest that hedgerows can affect pollinator and pollen dispersal by channeling their movement and acting as a permeable barrier. We conclude that hedgerows in agricultural landscapes can increase the connectivity between otherwise isolated plant and pollinator populations (corridor function, but can have additional, and so far unknown barrier effects on pollination services. Functioning as a barrier, linear landscape elements can impede pollinator movement and dispersal, even for highly mobile species such as bees. These results should be considered in future management plans aiming to enhance the persistence of threatened pollinator and plant populations by restoring functional connectivity and to ensure sufficient crop pollination in the agricultural landscape.

  15. Pollination and reproduction of an invasive plant inside and outside its ancestral range

    Science.gov (United States)

    Petanidou, Theodora; Price, Mary V.; Bronstein, Judith L.; Kantsa, Aphrodite; Tscheulin, Thomas; Kariyat, Rupesh; Krigas, Nikos; Mescher, Mark C.; De Moraes, Consuelo M.; Waser, Nickolas M.

    2018-05-01

    Comparing traits of invasive species within and beyond their ancestral range may improve our understanding of processes that promote aggressive spread. Solanum elaeagnifolium (silverleaf nightshade) is a noxious weed in its ancestral range in North America and is invasive on other continents. We compared investment in flowers and ovules, pollination success, and fruit and seed set in populations from Arizona, USA ("AZ") and Greece ("GR"). In both countries, the populations we sampled varied in size and types of present-day disturbance. Stature of plants increased with population size in AZ samples whereas GR plants were uniformly tall. Taller plants produced more flowers, and GR plants produced more flowers for a given stature and allocated more ovules per flower. Similar functional groups of native bees pollinated in AZ and GR populations, but visits to flowers decreased with population size and we observed no visits in the largest GR populations. As a result, plants in large GR populations were pollen-limited, and estimates of fecundity were lower on average in GR populations despite the larger allocation to flowers and ovules. These differences between plants in our AZ and GR populations suggest promising directions for further study. It would be useful to sample S. elaeagnifolium in Mediterranean climates within the ancestral range (e.g., in California, USA), to study asexual spread via rhizomes, and to use common gardens and genetic studies to explore the basis of variation in allocation patterns and of relationships between visitation and fruit set.

  16. How well do we understand landscape effects on pollinators and pollination services?

    Directory of Open Access Journals (Sweden)

    Blandina Felipe Viana

    2012-06-01

    Full Text Available Many studies in the past decade, mostly in temperate countries, have documented the effects of habitat loss and fragmentation on species richness, composition, and abundance and the behaviour of pollinators. Changes in landscape structure are considered to be the primary causes of the limitation of pollination services in agricultural systems. Here, we review evidence of general patterns as well as gaps in knowledge that could be used to support the development of policies for pollinator conservation and the restoration of degraded landscapes. Our results indicate a recent increase in the number of studies on the relationships between pollination processes and landscape patterns, with some key trends already being established. Many authors indicate, for example, that the spatial organization of a landscape has a great influence on the survival and dispersal capacity of many pollinators, as spatial organization affects resource availability and determines the functional connectivity of the landscape. Additionally, the shape, size and spatial arrangement of the patches of each type of natural environment, as well as the occurrence of different types of land use, can create sites with different degrees of connectivity or even barriers to movement between patches, which can deeply modify pollinator flows through the landscape and consequently the success of cross-pollination. However, there are still some gaps, such as in the knowledge of which critical values of habitat loss can lead to drastic increases in pollinator extinction rates, information that is needed to evaluate at what point plant-pollinator interactions may collapse. We also need to concentrate research effort on improving a landscape’s capacity to facilitate pollinator flow (connectivity between crops and nesting/foraging areas.

  17. Minute pollinators: The role of thrips (Thysanoptera) as pollinators of pointleaf manzanita, Arctostaphylos pungens (Ericaceae).

    Science.gov (United States)

    Eliyahu, Dorit; McCall, Andrew C; Lauck, Marina; Trakhtenbrot, Ana; Bronstein, Judith L

    The feeding habits of thrips on plant tissue, and their ability to transmit viral diseases to their host plants, have usually placed these insects in the general category of pests. However, the characteristics that make them economically important, their high abundance and short- and long-distance movement capability, may also make them effective pollinators. We investigated this lesser-known role of thrips in pointleaf manzanita ( Arctostaphylos pungens ), a Southwestern US shrub. We measured the abundance of three species of thrips ( Orothrips kelloggii, Oligothrips oreios , and Frankliniella occidentalis ), examined their pollen-carrying capability, and conducted an exclusion experiment in order to determine whether thrips are able to pollinate this species, and if they do, whether they actually contribute to the reproductive success of the plant. Our data suggest that indeed thrips pollinate and do contribute significantly to reproductive success. Flowers exposed to thrips only produced significantly more fruit than did flowers from which all visitors were excluded. The roles of thrips as antagonists/mutualists are examined in the context of the numerous other floral visitors to the plant.

  18. Land-use change has no detectable effect on reproduction of a disturbance-adapted, hawkmoth-pollinated plant species.

    Science.gov (United States)

    Skogen, Krissa A; Jogesh, Tania; Hilpman, Evan T; Todd, Sadie L; Rhodes, Matthew K; Still, Shannon M; Fant, Jeremie B

    2016-11-01

    Land-use change is cited as a primary driver of global biodiversity loss, with myriad consequences for species, populations, and ecosystems. However, few studies have examined its impact on species interactions, particularly pollination. Furthermore, when the effects of land-use change on pollination have been studied, the focus has largely been on species pollinated by diurnal pollinators, namely, bees and butterflies. Here, we focus on Oenothera harringtonii, a night-flowering, disturbance-adapted species that has experienced a range-wide gradient of land-use change. We tested the hypothesis that the negative impacts of land-use change are mitigated by long-distance pollination. Our study included both temporal (4 yr) and spatial (19 populations range-wide, and 1, 2, and 5 km from the population center) data, providing a comprehensive understanding of the role of land-use change on pollination biology and reproduction. We first confirmed that O. harringtonii is self-incompatible and reliant on pollinators for reproduction. We then showed that hawkmoths (primarily Hyles lineata) are highly reliable and effective pollinators in both space and time. Unlike other studies, we did not detect an effect of population size, increased isolation, or a reduction in suitable habitat in areas with evidence of land-use change on pollination (visitation, pollen removal and deposition). Furthermore, the proportion of suitable habitat and other fragmentation metrics examined were not associated with population size or density in this plant species. We conclude that nocturnal pollination of Oenothera harringtonii via hawkmoths is robust to the negative impacts of land-use change. © 2016 Skogen et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY).

  19. Pollinator-mediated interactions in experimental arrays vary with neighbor identity.

    Science.gov (United States)

    Ha, Melissa K; Ivey, Christopher T

    2017-02-01

    Local ecological conditions influence the impact of species interactions on evolution and community structure. We investigated whether pollinator-mediated interactions between coflowering plants vary with plant density, coflowering neighbor identity, and flowering season. We conducted a field experiment in which flowering time and floral neighborhood were manipulated in a factorial design. Early- and late-flowering Clarkia unguiculata plants were placed into arrays with C. biloba neighbors, noncongeneric neighbors, additional conspecific plants, or no additional plants as a density control. We compared whole-plant pollen limitation of seed set, pollinator behavior, and pollen deposition among treatments. Interactions mediated by shared pollinators depended on the identity of the neighbor and possibly changed through time, although flowering-season comparisons were compromised by low early-season plant survival. Interactions with conspecific neighbors were likely competitive late in the season. Interactions with C. biloba appeared to involve facilitation or neutral interactions. Interactions with noncongeners were more consistently competitive. The community composition of pollinators varied among treatment combinations. Pollinator-mediated interactions involved competition and likely facilitation, depending on coflowering neighbor. Experimental manipulation helped to reveal context-dependent variation in indirect biotic interactions. © 2017 Botanical Society of America.

  20. Pollination

    Science.gov (United States)

    Kühn, Nathalie; Arce-Johnson, Patricio

    2012-01-01

    Berry formation is the process of ovary conversion into a functional fruit, and is characterized by abrupt changes in the content of several phytohormones, associated with pollination and fertilization. Much effort has been made in order to improve our understanding of berry development, particularly from veraison to post-harvest time. However, the period of berry formation has been poorly investigated, despite its importance. Phytohormones are involved in the control of fruit formation; hence it is important to understand the regulation of their content at this stage. Grapevine is an excellent fleshy-fruit plant model since its fruits have particularities that differentiate them from those of commonly studied organisms. For instance, berries are prepared to cope with stress by producing several antioxidants and they are non-climacteric fruits. Also its genome is fully sequenced, which allows to identify genes involved in developmental processes. In grapevine, no link has been established between pollination and phytohormone biosynthesis, until recently. Here we highlight relevant findings regarding pollination effect on gene expression related to phytohormone biosynthesis, and present results showing how quickly this effect is achieved. PMID:22301957

  1. Nectar replenishment maintains the neutral effects of nectar robbing on female reproductive success of Salvia przewalskii (Lamiaceae), a plant pollinated and robbed by bumble bees.

    Science.gov (United States)

    Ye, Zhong-Ming; Jin, Xiao-Fang; Wang, Qing-Feng; Yang, Chun-Feng; Inouye, David W

    2017-04-01

    It has been suggested that the dynamics of nectar replenishment could differ for flowers after being nectar robbed or visited legitimately, but further experimental work is needed to investigate this hypothesis. This study aimed to assess the role of nectar replenishment in mediating the effects of nectar robbing on pollinator behaviour and plant reproduction. Plant-robber-pollinator interactions in an alpine plant, Salvia przewalskii , were studied. It is pollinated by long-tongued Bombus religiosus and short-tongued B. friseanus , but robbed by B. friseanus . Nectar production rates for flowers after they were either robbed or legitimately visited were compared, and three levels of nectar robbing were created to detect the effects of nectar robbing on pollinator behaviour and plant reproduction. Nectar replenishment did not differ between flowers that had been robbed or legitimately visited. Neither fruit set nor seed set was significantly affected by nectar robbing. In addition, nectar robbing did not significantly affect visitation rate, flowers visited within a plant per foraging bout, or flower handling time of the legitimate pollinators. However, a tendency for a decrease in relative abundance of the pollinator B. religiosus with an increase of nectar robbing was found. Nectar robbing did not affect female reproductive success because nectar replenishment ensures that pollinators maintain their visiting activity to nectar-robbed flowers. Nectar replenishment might be a defence mechanism against nectar robbing to enhance reproductive fitness by maintaining attractiveness to pollinators. Further studies are needed to reveal the potential for interference competition among bumble bees foraging as robbers and legitimate visitors, and to investigate variation of nectar robbing in communities with different bumble bee species composition. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For

  2. Linking Land Cover Data and Crop Yields for Mapping and Assessment of Pollination Services in Europe

    OpenAIRE

    Grazia Zulian; Joachim Maes; Maria Luisa Paracchini

    2013-01-01

    Pollination is a key ecosystem service as many crops but in particular, fruits and vegetables are partially dependent on pollinating insects to produce food for human consumption. Here we assessed how pollination services are delivered at the European scale. We used this assessment to estimate the relative contribution of wild pollinators to crop production. We developed an index of relative pollination potential, which is defined as the relative potential or relative capacity of ecosystems t...

  3. Benefit and cost curves for typical pollination mutualisms.

    Science.gov (United States)

    Morris, William F; Vázquez, Diego P; Chacoff, Natacha P

    2010-05-01

    Mutualisms provide benefits to interacting species, but they also involve costs. If costs come to exceed benefits as population density or the frequency of encounters between species increases, the interaction will no longer be mutualistic. Thus curves that represent benefits and costs as functions of interaction frequency are important tools for predicting when a mutualism will tip over into antagonism. Currently, most of what we know about benefit and cost curves in pollination mutualisms comes from highly specialized pollinating seed-consumer mutualisms, such as the yucca moth-yucca interaction. There, benefits to female reproduction saturate as the number of visits to a flower increases (because the amount of pollen needed to fertilize all the flower's ovules is finite), but costs continue to increase (because pollinator offspring consume developing seeds), leading to a peak in seed production at an intermediate number of visits. But for most plant-pollinator mutualisms, costs to the plant are more subtle than consumption of seeds, and how such costs scale with interaction frequency remains largely unknown. Here, we present reasonable benefit and cost curves that are appropriate for typical pollinator-plant interactions, and we show how they can result in a wide diversity of relationships between net benefit (benefit minus cost) and interaction frequency. We then use maximum-likelihood methods to fit net-benefit curves to measures of female reproductive success for three typical pollination mutualisms from two continents, and for each system we chose the most parsimonious model using information-criterion statistics. We discuss the implications of the shape of the net-benefit curve for the ecology and evolution of plant-pollinator mutualisms, as well as the challenges that lie ahead for disentangling the underlying benefit and cost curves for typical pollination mutualisms.

  4. Importance of pollinators in changing landscapes for world crops.

    Science.gov (United States)

    Klein, Alexandra-Maria; Vaissière, Bernard E; Cane, James H; Steffan-Dewenter, Ingolf; Cunningham, Saul A; Kremen, Claire; Tscharntke, Teja

    2007-02-07

    The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale.

  5. A comparison of controlled self-pollination and open pollination results based on maize grain quality

    Directory of Open Access Journals (Sweden)

    Hanna Sulewska

    2014-05-01

    Full Text Available Maize (Zea mays L. grain endosperm is triploid (3n, of which 2n come from the male (transferred by pollen and only 1n from the female plant, thus a major impact of the male form can be expected on grain quality parameters. A good example of this relationship is the phenomenon of xenia. The aim of this study was to determine the effect of pollen on grain quality. The field experiment was conducted in 2011; seeds were harvested from eight cultivars: Bosman, Blask, Tur, Kozak, Bielik, Smok, SMH 220 and Kresowiak, derived from free pollination and controlled self-pollination of maize. Analyses of nutrient contents and starch content in the grain were conducted in the laboratory. In addition, 1000 grain weight and the hectoliter weight of all grain samples were recorded. The results confirmed differences in grain quality of maize hybrids obtained by self-pollination and by open pollination. Grain of maize plants obtained by open-pollination was characterised by higher contents of N-free extract and starch, and lower protein content. Undertaking further studies on this subject may indicate specific recommendations for agricultural practice, such as mixtures of hybrids with good combining abilities, which will contribute to improved grain quality without additional costs.

  6. Relative stability of core groups in pollination networks in a biodiversity hotspot over four years.

    Science.gov (United States)

    Fang, Qiang; Huang, Shuang-Quan

    2012-01-01

    Plants and their pollinators form pollination networks integral to the evolution and persistence of species in communities. Previous studies suggest that pollination network structure remains nested while network composition is highly dynamic. However, little is known about temporal variation in the structure and function of plant-pollinator networks, especially in species-rich communities where the strength of pollinator competition is predicted to be high. Here we quantify temporal variation of pollination networks over four consecutive years in an alpine meadow in the Hengduan Mountains biodiversity hotspot in China. We found that ranked positions and idiosyncratic temperatures of both plants and pollinators were more conservative between consecutive years than in non-consecutive years. Although network compositions exhibited high turnover, generalized core groups--decomposed by a k-core algorithm--were much more stable than peripheral groups. Given the high rate of turnover observed, we suggest that identical plants and pollinators that persist for at least two successive years sustain pollination services at the community level. Our data do not support theoretical predictions of a high proportion of specialized links within species-rich communities. Plants were relatively specialized, exhibiting less variability in pollinator composition at pollinator functional group level than at the species level. Both specialized and generalized plants experienced narrow variation in functional pollinator groups. The dynamic nature of pollination networks in the alpine meadow demonstrates the potential for networks to mitigate the effects of fluctuations in species composition in a high biodiversity area.

  7. The dilemma of being a fragrant flower: the major floral volatile attracts pollinators and florivores in the euglossine-pollinated orchid Dichaea pendula.

    Science.gov (United States)

    Nunes, Carlos E P; Peñaflor, Maria Fernanda G V; Bento, José Maurício S; Salvador, Marcos José; Sazima, Marlies

    2016-12-01

    Volatile organic compounds (VOCs) mediate both mutualistic and antagonistic plant-animal interactions; thus, the attraction of mutualists and antagonists by floral VOCs constitutes an important trade-off in the evolutionary ecology of angiosperms. Here, we evaluate the role of VOCs in mediating communication between the plant and its mutualist and antagonist floral visitors. To assess the evolutionary consequences of VOC-mediated signalling to distinct floral visitors, we studied the reproductive ecology of Dichaea pendula, assessing the effects of florivores on fruit set, the pollination efficiency of pollinators and florivores, the floral scent composition and the attractiveness of the major VOC to pollinators and florivores. The orchid depends entirely on orchid-bees for sexual reproduction, and the major florivores, the weevils, feed on corollas causing self-pollination, triggering abortion of 26.4 % of the flowers. Floral scent was composed of approximately 99 % 2-methoxy-4-vinylphenol, an unusual floral VOC attractive to pollinators and florivores. The low fruit set from natural pollination (5.6 %) compared to hand cross-pollination (45.5 %) and low level of pollinator visitation [0.02 visits (flower hour) -1 ] represent the limitations to pollination. Our research found that 2-methoxy-4-vinylphenol mediates both mutualistic and antagonistic interactions, which could result in contrary evolutionary pressures on novo-emission. The scarcity of pollinators, not florivory, was the major constraint to fruit set. Our results suggest that, rather than anti-florivory adaptations, adaptations to enhance pollinator attraction and cross-pollination might be the primary drivers of the evolution of VOC emission in euglossine-pollinated flowers.

  8. Evaluating the interacting influences of pollination, seed predation, invasive species and isolation on reproductive success in a threatened alpine plant.

    Science.gov (United States)

    Krushelnycky, Paul D

    2014-01-01

    Reproduction in rare plants may be influenced and limited by a complex combination of factors. External threats such as invasive species and landscape characteristics such as isolation may impinge on both pollination and seed predation dynamics, which in turn can strongly affect reproduction. I assessed how patterns in floral visitation, seed predation, invasive ant presence, and plant isolation influenced one another and ultimately affected viable seed production in Haleakalā silverswords (Argyroxiphium sandwicense subsp. macrocephalum) of Hawai'i. Floral visitation was dominated by endemic Hylaeus bees, and patterns of visitation were influenced by floral display size and number of plants clustered together, but not by floral herbivory or nearest flowering neighbor distance. There was also some indication that Argentine ant presence impacted floral visitation, but contradictory evidence and limitations of the study design make this result uncertain. Degree of seed predation was associated only with plant isolation, with the two main herbivores partitioning resources such that one preferentially attacked isolated plants while the other attacked clumped plants; total seed predation was greater in more isolated plants. Net viable seed production was highly variable among individuals (0-55% seed set), and was affected mainly by nearest neighbor distance, apparently owing to low cross-pollination among plants separated by even short distances (>10-20 m). This isolation effect dominated net seed set, with no apparent influence from floral visitation rates, percent seed predation, or invasive ant presence. The measured steep decline in seed set with isolation distance may not be typical of the entire silversword range, and may indicate that pollinators in addition to Hylaeus bees could be important for greater gene flow. Management aimed at maintaining or maximizing silversword reproduction should focus on the spatial context of field populations and outplanting

  9. Bee-Wild about Pollinators!

    Science.gov (United States)

    Johnson, Bonnie; Kil, Jenny; Evans, Elaine; Koomen, Michele Hollingsworth

    2014-01-01

    With their sunny stripes and fuzzy bodies, bees are beloved--but unfortunately, they are in trouble. Bee decline, of both wild bees as well as managed bees like honey bees, has been in the news for the last several years. Habitat loss, diseases, pests, and pesticides have made it difficult for bees to survive in many parts of our world (Walsh…

  10. High temperatures result in smaller nurseries which lower reproduction of pollinators and parasites in a brood site pollination mutualism.

    Science.gov (United States)

    Krishnan, Anusha; Pramanik, Gautam Kumar; Revadi, Santosh V; Venkateswaran, Vignesh; Borges, Renee M

    2014-01-01

    In a nursery pollination mutualism, we asked whether environmental factors affected reproduction of mutualistic pollinators, non-mutualistic parasites and seed production via seasonal changes in plant traits such as inflorescence size and within-tree reproductive phenology. We examined seasonal variation in reproduction in Ficus racemosa community members that utilise enclosed inflorescences called syconia as nurseries. Temperature, relative humidity and rainfall defined four seasons: winter; hot days, cold nights; summer and wet seasons. Syconium volumes were highest in winter and lowest in summer, and affected syconium contents positively across all seasons. Greater transpiration from the nurseries was possibly responsible for smaller syconia in summer. The 3-5°C increase in mean temperatures between the cooler seasons and summer reduced fig wasp reproduction and increased seed production nearly two-fold. Yet, seed and pollinator progeny production were never negatively related in any season confirming the mutualistic fig-pollinator association across seasons. Non-pollinator parasites affected seed production negatively in some seasons, but had a surprisingly positive relationship with pollinators in most seasons. While within-tree reproductive phenology did not vary across seasons, its effect on syconium inhabitants varied with season. In all seasons, within-tree reproductive asynchrony affected parasite reproduction negatively, whereas it had a positive effect on pollinator reproduction in winter and a negative effect in summer. Seasonally variable syconium volumes probably caused the differential effect of within-tree reproductive phenology on pollinator reproduction. Within-tree reproductive asynchrony itself was positively affected by intra-tree variation in syconium contents and volume, creating a unique feedback loop which varied across seasons. Therefore, nursery size affected fig wasp reproduction, seed production and within-tree reproductive phenology

  11. The pollination ecology of an assemblage of grassland asclepiads in South Africa.

    Science.gov (United States)

    Ollerton, Jeff; Johnson, Steven D; Cranmer, Louise; Kellie, Sam

    2003-12-01

    The KwaZulu-Natal region of South Africa hosts a large diversity of asclepiads (Apocynaceae: Asclepiadoideae), many of which are endemic to the area. The asclepiads are of particular interest because of their characteristically highly evolved floral morphology. During 3 months of fieldwork (November 2000 to January 2001) the flower visitors and pollinators to an assemblage of nine asclepiads at an upland grassland site were studied. These observations were augmented by laboratory studies of flower morphology (including scanning electron microscopy) and flower colour (using a spectrometer). Two of the specialized pollination systems that were documented are new to the asclepiads: fruit chafer pollination and pompilid wasp pollination. The latter is almost unique in the angiosperms. Taxa possessing these specific pollination systems cluster together in multidimensional phenotype space, suggesting that there has been convergent evolution in response to similar selection to attract identical pollinators. Pollination niche breadth varied from the very specialized species, with only one pollinator, to the more generalized, with up to ten pollinators. Pollinator sharing by the specialized taxa does not appear to have resulted in niche differentiation in terms of the temporal or spatial dimensions, or with regards to placement of pollinaria. Nestedness analysis of the data set showed that there was predictability and structure to the pattern of plant-pollinator interactions, with generalist insects visiting specialized plants and vice versa. The research has shown that there is still much to be learned about plant-pollinator interactions in areas of high plant diversity such as South Africa.

  12. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992-2009.

    Directory of Open Access Journals (Sweden)

    Nicholas W Calderone

    Full Text Available In the US, the cultivated area (hectares and production (tonnes of crops that require or benefit from insect pollination (directly dependent crops: apples, almonds, blueberries, cucurbits, etc. increased from 1992, the first year in this study, through 1999 and continued near those levels through 2009; aggregate yield (tonnes/hectare remained unchanged. The value of directly dependent crops attributed to all insect pollination (2009 USD decreased from $14.29 billion in 1996, the first year for value data in this study, to $10.69 billion in 2001, but increased thereafter, reaching $15.12 billion by 2009. The values attributed to honey bees and non-Apis pollinators followed similar patterns, reaching $11.68 billion and $3.44 billion, respectively, by 2009. The cultivated area of crops grown from seeds resulting from insect pollination (indirectly dependent crops: legume hays, carrots, onions, etc. was stable from 1992 through 1999, but has since declined. Production of those crops also declined, albeit not as rapidly as the decline in cultivated area; this asymmetry was due to increases in aggregate yield. The value of indirectly dependent crops attributed to insect pollination declined from $15.45 billion in 1996 to $12.00 billion in 2004, but has since trended upward. The value of indirectly dependent crops attributed to honey bees and non-Apis pollinators, exclusive of alfalfa leafcutter bees, has declined since 1996 to $5.39 billion and $1.15 billion, respectively in 2009. The value of alfalfa hay attributed to alfalfa leafcutter bees ranged between $4.99 and $7.04 billion. Trend analysis demonstrates that US producers have a continued and significant need for insect pollinators and that a diminution in managed or wild pollinator populations could seriously threaten the continued production of insect pollinated crops and crops grown from seeds resulting from insect pollination.

  13. A Study of Insect Pollinators Associated with DoD TER-S Flowering Plants, Including Identification of Habitat Types Where They Co-Occur by Military Installation in the Western United States

    Science.gov (United States)

    2010-04-01

    environmental stewardship division chiefs can interact with contractors and partner land managers and biologists with plant and pollinator information in hand...1979. Pollination of Southwestern Opuntias. Plant Systematics and Evolution 133: 15-28. Keywords: Opuntia sp. Agapostemon angelicus...Parrish, J.A.D and F.A. Bazzaz. 1979. Difference in pollination niche relationships in early and late successional plant communities. Ecology 60

  14. Pollination ecology of the New Zealand alpine flora

    OpenAIRE

    Bischoff, Mascha

    2008-01-01

    The interactions between flowers and the insects that pollinate them have fascinated scientists for more than 200 years. The last century saw the establishment of the fundamental concept of pollination syndromes which allows classification of flowers according to the agents that pollinate them demonstrating specialisation and co-evolution of plants and pollinators. This concept has recently been questioned and the contrary, ubiquitous generalisation and chance have been proposed to be the dri...

  15. Focal Plant Observations as a Standardised Method for Pollinator Monitoring: Opportunities and Limitations for Mass Participation Citizen Science.

    Directory of Open Access Journals (Sweden)

    Helen E Roy

    Full Text Available Recently there has been increasing focus on monitoring pollinating insects, due to concerns about their declines, and interest in the role of volunteers in monitoring pollinators, particularly bumblebees, via citizen science.The Big Bumblebee Discovery was a one-year citizen science project run by a partnership of EDF Energy, the British Science Association and the Centre for Ecology & Hydrology which sought to assess the influence of the landscape at multiple scales on the diversity and abundance of bumblebees. Timed counts of bumblebees (Bombus spp.; identified to six colour groups visiting focal plants of lavender (Lavendula spp. were carried out by about 13 000 primary school children (7-11 years old from over 4000 schools across the UK. 3948 reports were received totalling 26 868 bumblebees. We found that while the wider landscape type had no significant effect on reported bumblebee abundance, the local proximity to flowers had a significant effect (fewer bumblebees where other flowers were reported to be >5m away from the focal plant. However, the rate of mis-identifcation, revealed by photographs uploaded by participants and a photo-based quiz, was high.Our citizen science results support recent research on the importance of local flocal resources on pollinator abundance. Timed counts of insects visiting a lure plant is potentially an effective approach for standardised pollinator monitoring, engaging a large number of participants with a simple protocol. However, the relatively high rate of mis-identifications (compared to reports from previous pollinator citizen science projects highlights the importance of investing in resources to train volunteers. Also, to be a scientifically valid method for enquiry, citizen science data needs to be sufficiently high quality, so receiving supporting evidence (such as photographs would allow this to be tested and for records to be verified.

  16. Competitive impacts of an invasive nectar thief on plant-pollinator mutualisms

    Science.gov (United States)

    Hanna, Cause; Foote, David; Kremen, Claire

    2014-01-01

    Plant–pollinator mutualisms are disrupted by a variety of competitive interactions between introduced and native floral visitors. The invasive western yellowjacket wasp, Vespula pensylvanica, is an aggressive nectar thief of the dominant endemic Hawaiian tree species, Metrosideros polymorpha. We conducted a large-scale, multiyear manipulative experiment to investigate the impacts of V. pensylvanica on the structure and behavior of the M. polymorpha pollinator community, including competitive mechanisms related to resource availability. Our results demonstrate that V. pensylvanica, through both superior exploitative and interference competition, influences resource partitioning and displaces native and nonnative M. polymorpha pollinators. Furthermore, the restructuring of the pollinator community due to V. pensylvanica competition and predation results in a significant decrease in the overall pollinator effectiveness and fruit set of M. polymorpha. This research highlights both the competitive mechanisms and contrasting effects of social insect invaders on plant–pollinator mutualisms and the role of competition in pollinator community structure.

  17. Drivers of compartmentalization in a Mediterranean pollination network

    DEFF Research Database (Denmark)

    Gonzalez, Ana M. Martin; Allesina, Stefano; Rodrigo, Anselm

    2012-01-01

    We study compartmentalization in a Mediterranean pollination network using three different analytical approaches: unipartite modularity (UM), bipartite modularity (BM) and the group model (GM). Our objectives are to compare compartments obtained with these three approaches and to explore the role...... of several species attributes related to pollination syndromes, species phenology, abundance and connectivity in structuring compartmentalization. BM could not identify compartments in our network. By contrast, UM revealed four modules composed of plants and pollinators, and GM four groups of plants and five...... of pollinators. Phenology had a major influence on compartmentalization, and compartments (both UM and GM) had distinct phenophases. Compartments were also strongly characterized by species degree (number of connections) and betweenness centrality. These two attributes were highly related to each other...

  18. Pollination ecosystem services in South African agricultural systems

    Directory of Open Access Journals (Sweden)

    Annalie Melin

    2014-11-01

    Full Text Available Insect pollinators, both managed and wild, have become a focus of global scientific, political and media attention because of their apparent decline and the perceived impact of this decline on crop production. Crop pollination by insects is an essential ecosystem service that increases the yield and quality of approximately 35% of crops worldwide. Pollinator declines are a consequence of multiple environmental pressures, e.g. habitat transformation and fragmentation, loss of floral resources, pesticides, pests and diseases, and climate change. Similar environmental pressures are faced in South Africa where there is a high demand for pollination services. In this paper, we synthesise data on the importance of different pollinators as a basis for services to South African crops and on the status of managed honeybees. We also focus on insect pollination services for the Western Cape deciduous fruit industry, which is worth ZAR9800 million per year and is heavily reliant on pollination services from managed honeybees. We discuss landscape and regional level floral resources needed to maintain sufficient numbers of managed honeybee colonies. In summary, the available literature shows a lack of data on diversity and abundance of crop pollinators, and a lack of long-term data to assess declines. We highlight key areas that require research in South Africa and emphasise the critical role of floral resource availability at the landscape and regional scale to sustain pollinators. We conclude that understanding the dynamics of how floral resources are used will help inform how landscapes could be better managed in order to provide long-term sustainable pollination services.

  19. Electrostatic Charge on Flying Hummingbirds and Its Potential Role in Pollination.

    Directory of Open Access Journals (Sweden)

    Marc Badger

    Full Text Available Electrostatic phenomena are known to enhance both wind- and insect-mediated pollination, but have not yet been described for nectar-feeding vertebrates. Here we demonstrate that wild Anna's Hummingbirds (Calypte anna can carry positive charges up to 800 pC while in flight (mean ± s.d.: 66 ± 129 pC. Triboelectric charging obtained by rubbing an isolated hummingbird wing against various plant structures generated charges up to 700 pC. A metal hummingbird model charged to 400 pC induced bending of floral stamens in four plants (Nicotiana, Hemerocallis, Penstemon, and Aloe spp., and also attracted falling Lycopodium spores at distances of < 2 mm. Electrostatic forces may therefore influence pollen transfer onto nectar-feeding birds.

  20. Insect assemblage and the pollination system in cocoa ecosystems

    African Journals Online (AJOL)

    SARAH

    2013-02-27

    Feb 27, 2013 ... Key words: Cocoa, pollinators, insect assemblage, Forcipomyia spp, pollination system. INTRODUCTION ... that the ecological prediction of plant reproductive successes and ..... non-interaction between some resident insects and the cocoa plant might be as a result of evolution of floral structure of the ...

  1. The Manú Gradient as a study system for bird pollination.

    Science.gov (United States)

    Boehm, Mannfred Ma; Scholer, Micah N; Kennedy, Jeremiah Jc; Heavyside, Julian M; Daza, Aniceto; Guevara-Apaza, David; Jankowski, Jill E

    2018-01-01

    This study establishes an altiudinal gradient, spanning from the highland Andes (2400 m) to lowland Amazon, as a productive region for the study of bird pollination in Southeastern Peru. The 'Manú Gradient' has a rich history of ornithological research, the published data and resources from which lay the groundwork for analyses of plant-bird interactions. In this preliminary expedition we documented 44 plants exhibting aspects of the bird pollination syndrome, and made field observations of hummingbird visits at three sites spanning the Manú Gradient: 2800 m (Wayqecha), 1400 m (San Pedro), and 400 m (Pantiacolla). Some of the documented plant taxa are underrepresented in the bird pollination literature and could be promising avenues for future analyses of their pollination biology. The Manú Gradient is currently the focus of a concerted, international effort to describe and study the birds in the region; we propose that this region of Southeastern Peru is a productive and perhaps underestimated system to gain insight into the ecology and evolution of bird pollination. Observations were made on 11, 19, and 14 putatively bird pollinated plant species found at the high-, mid- and low-elevation sites along the gradient, respectively. Hummingbirds visited 18 of these plant species, with some plant species being visited by multiple hummingbird species or the same hummingbird species on differing occasions. Morphometric data is presented for putatively bird-pollinated plants, along with bill measurements from hummingbirds captured at each of three sites. Voucher specimens from this study are deposited in the herbaria of the Universidad Nacional de Agraria de La Molina (MOL), Peru and the University of British Columbia (UBC), Canada. The specimens collected represent a 'snapshot' of the diversity of bird-pollinated flora as observed over 10 day sampling windows (per site) during the breeding season for hummingbirds of Manú .

  2. Point and interval estimation of pollinator importance: a study using pollination data of Silene caroliniana.

    Science.gov (United States)

    Reynolds, Richard J; Fenster, Charles B

    2008-05-01

    Pollinator importance, the product of visitation rate and pollinator effectiveness, is a descriptive parameter of the ecology and evolution of plant-pollinator interactions. Naturally, sources of its variation should be investigated, but the SE of pollinator importance has never been properly reported. Here, a Monte Carlo simulation study and a result from mathematical statistics on the variance of the product of two random variables are used to estimate the mean and confidence limits of pollinator importance for three visitor species of the wildflower, Silene caroliniana. Both methods provided similar estimates of mean pollinator importance and its interval if the sample size of the visitation and effectiveness datasets were comparatively large. These approaches allowed us to determine that bumblebee importance was significantly greater than clearwing hawkmoth, which was significantly greater than beefly. The methods could be used to statistically quantify temporal and spatial variation in pollinator importance of particular visitor species. The approaches may be extended for estimating the variance of more than two random variables. However, unless the distribution function of the resulting statistic is known, the simulation approach is preferable for calculating the parameter's confidence limits.

  3. Negative effects of pesticides on wild bee communities can be buffered by landscape context

    OpenAIRE

    Park, Mia G.; Blitzer, E. J.; Gibbs, Jason; Losey, John E.; Danforth, Bryan N.

    2015-01-01

    Wild bee communities provide underappreciated but critical agricultural pollination services. Given predicted global shortages in pollination services, managing agroecosystems to support thriving wild bee communities is, therefore, central to ensuring sustainable food production. Benefits of natural (including semi-natural) habitat for wild bee abundance and diversity on farms are well documented. By contrast, few studies have examined toxicity of pesticides on wild bees, let alone effects of...

  4. Pollination: Impact, role-players, interactions and study - A South African perspective

    Directory of Open Access Journals (Sweden)

    Annemarie Gous

    2017-09-01

    Full Text Available Plant-pollinator interactions are essential for maintaining both pollinator and plant communities in native and agricultural environments. Animal-instigated pollination can be complex. Plants are usually visited by a number of different animal species, which in turn may visit flowers of several plant species. Therefore, the identification of the pollen carried by flower visitors is an essential first step in pollination biology. The skill and time required to identify pollen based on structure and morphology has been a major stumbling block in this field. Advances in the genetic analysis of DNA, using DNA barcoding, extracted directly from pollen offers an innovative alternative to traditional methods of pollen identification. This technique, which is reviewed in detail, can be used on pollen loads sampled from bees in the field and from specimens in historic collections. Here the importance of pollination, the role-players involved, their management and the evolution of their interactions, behaviour and morphology are reviewed - with a special focus on South African bees. Significance: Pollen metabarcoding will enable the identification of pollen for a multitude of uses, including agriculture, conservation and forensics. Plant–pollinator interaction documentation through pollen identification gives a more certain record of a visitor being a pollinator rather than a flower visitor that could be a nectar gatherer.

  5. Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.)

    International Nuclear Information System (INIS)

    Hladun, Kristen R.; Parker, David R.; Tran, Khoa D.; Trumble, John T.

    2013-01-01

    Selenium (Se) has contaminated areas in the western USA where pollination is critical to the functioning of both agricultural and natural ecosystems, yet we know little about how Se can impact pollinators. In a two-year semi-field study, the weedy plant Raphanus sativus (radish) was exposed to three selenate treatments and two pollination treatments to evaluate the effects on pollinator–plant interactions. Honey bee (Apis mellifera L.) pollinators were observed to readily forage on R. sativus for both pollen and nectar despite high floral Se concentrations. Se treatment increased both seed abortion (14%) and decreased plant biomass (8–9%). Herbivory by birds and aphids was reduced on Se-treated plants, indicating a potential reproductive advantage for the plant. Our study sheds light on how pollutants such as Se can impact the pollination ecology of a plant that accumulates even moderate amounts of Se. - Highlights: ► Radish were exposed to selenate and pollination treatments to examine pollination ecology. ► Honey bees foraged on radish for both pollen and nectar despite high floral Se concentrations. ► Se treatment increased seed abortion and decreased plant biomass. ► Herbivory by birds and aphids was reduced in Se-treated plants. ► Pollutants such as Se can impact the pollination of a plant that accumulates even moderate amounts. - Radish accumulated the pollutant selenium in floral tissues, but this did not deter the pollinator (Apis mellifera) from foraging.

  6. Weak trophic links between a crab-spider and the effective pollinators of a rewardless orchid

    Science.gov (United States)

    Quintero, Carolina; Corley, Juan C.; Aizen, Marcelo A.

    2015-01-01

    Sit and wait predators hunting on flowers are considered to be exploiters of plant-pollinator mutualisms. Several studies have shown that plant-pollinator interactions can be highly susceptible to the impact of a third trophic level, via consumptive (direct) and non-consumptive (indirect) effects that alter pollinator behavior and, ultimately, plant fitness. However, most flowering plants attract a wide array of flower visitors, from which only a subset will be effective pollinators. Hence, a negative effect of an ambush predator on plant fitness should be expected only when: (i) the effective pollinators are part of the predators' diet and/or (ii) the non-consumptive effects of predator presence (e.g. dead prey) alter the behavior of effective pollinators and pollen movement among individual plants. We analyzed the direct and indirect effects of a crab-spider (Misumenops pallidus), on the pollination and reproductive success of Chloraea alpina, a Patagonian rewardless orchid. Our results indicate that most of the flower visitors do not behave as effective pollinators and most effective pollinators were not observed as prey for the crab-spider. In terms of non-consumptive effects, inflorescences with and without spiders and/or dead-prey did not vary the frequency of flower visitors, nor pollinia removal or deposition. Hence, it is not surprising that M. pallidus has a neutral effect on pollinia removal and deposition as well as on fruit and seed set. Similar to other rewardless orchids, the low reproductive success of C. alpina (∼6% fruit set) was associated with the limited number of visits by effective pollinators. Negative top-down effects of a flower-visitor predator on plant pollination may not be anticipated without studying the direct and indirect effects of this predator on the effective pollinators. In pollination systems where effective pollinators visited flowers erratically, such as in deceptive orchids, we expect weak or no effect of predators on

  7. Spatial heterogeneity and the distribution of bromeliad pollinators in the Atlantic Forest

    Science.gov (United States)

    Varassin, Isabela Galarda; Sazima, Marlies

    2012-08-01

    Interactions between plants and their pollinators are influenced by environmental heterogeneity, resulting in small-scale variations in interactions. This may influence pollinator co-existence and plant reproductive success. This study, conducted at the Estação Biológica de Santa Lúcia (EBSL), a remnant of the Atlantic Forest in southeastern Brazil, investigated the effect of small-scale spatial variations on the interactions between bromeliads and their pollinators. Overall, hummingbirds pollinated 19 of 23 bromeliad species, of which 11 were also pollinated by bees and/or butterflies. However, spatial heterogeneity unrelated to the spatial location of plots or bromeliad species abundance influenced the presence of pollinators. Hummingbirds were the most ubiquitous pollinators at the high-elevation transect, with insect participation clearly declining as transect elevation increased. In the redundancy analysis, the presence of the hummingbird species Phaethornis eurynome, Phaethornis squalidus, Ramphodon naevius, and Thalurania glaucopis, and the butterfly species Heliconius erato and Heliconius nattereri in each plot was correlated with environmental factors such as bromeliad and tree abundance, and was also correlated with horizontal diversity. Since plant-pollinator interactions varied within the environmental mosaics at the study site, this small-scale environmental heterogeneity may relax competition among pollinators, and may explain the high diversity of bromeliads and pollinators generally found in the Atlantic Forest.

  8. Hummingbird pollination and the diversification of angiosperms: an old and successful association in Gesneriaceae.

    Science.gov (United States)

    Serrano-Serrano, Martha Liliana; Rolland, Jonathan; Clark, John L; Salamin, Nicolas; Perret, Mathieu

    2017-04-12

    The effects of specific functional groups of pollinators in the diversification of angiosperms are still to be elucidated. We investigated whether the pollination shifts or the specific association with hummingbirds affected the diversification of a highly diverse angiosperm lineage in the Neotropics. We reconstructed a phylogeny of 583 species from the Gesneriaceae family and detected diversification shifts through time, inferred the timing and amount of transitions among pollinator functional groups, and tested the association between hummingbird pollination and speciation and extinction rates. We identified a high frequency of pollinator transitions, including reversals to insect pollination. Diversification rates of the group increased through time since 25 Ma, coinciding with the evolution of hummingbird-adapted flowers and the arrival of hummingbirds in South America. We showed that plants pollinated by hummingbirds have a twofold higher speciation rate compared with plants pollinated by insects, and that transitions among functional groups of pollinators had little impact on the diversification process. We demonstrated that floral specialization on hummingbirds for pollination has triggered rapid diversification in the Gesneriaceae family since the Early Miocene, and that it represents one of the oldest identified plant-hummingbird associations. Biotic drivers of plant diversification in the Neotropics could be more related to this specific type of pollinator (hummingbirds) than to shifts among different functional groups of pollinators. © 2017 The Author(s).

  9. The endangered Iris atropurpurea (Iridaceae) in Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators

    Science.gov (United States)

    Watts, Stella; Sapir, Yuval; Segal, Bosmat; Dafni, Amots

    2013-01-01

    Background and Aims The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented. Methods Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated. Key Results The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal–low deposition pollinators, whereas honey-bees were high removal–low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas. Conclusions Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside

  10. Managed Bumble Bees (Bombus impatiens) (Hymenoptera: Apidae) Caged With Blueberry Bushes at High Density Did Not Increase Fruit Set or Fruit Weight Compared to Open Pollination.

    Science.gov (United States)

    Campbell, J W; O'Brien, J; Irvin, J H; Kimmel, C B; Daniels, J C; Ellis, J D

    2017-04-01

    Highbush blueberry (Vaccinium corymbosum L.) is an important crop grown throughout Florida. Currently, most blueberry growers use honey bees (Apis mellifera L.) to provide pollination services for highbush blueberries even though bumble bees (Bombus spp.) have been shown to be more efficient at pollinating blueberries on a per bee basis. In general, contribution of bumble bees to the pollination of commercial highbush blueberries in Florida is unknown. Herein, we determined if managed bumble bees could contribute to highbush blueberry pollination. There were four treatments in this study: two treatments of caged commercial bumble bee (Bombus impatiens Cresson) colonies (low and high weight hives), a treatment excluding all pollinators, and a final treatment which allowed all pollinators (managed and wild pollinators) in the area have access to the plot. All treatments were located within a highbush blueberry field containing two cultivars of blooming plants, 'Emerald' and 'Millennia', with each cage containing 16 mature blueberry plants. We gathered data on fruit set, berry weight, and number of seeds produced per berry. When pollinators were excluded, fruit set was significantly lower in both cultivars (58%). Berry weight was not significantly different among the treatments, and the number of seeds per berry did not show a clear response. This study emphasizes the importance of bumble bees as an effective pollinator of blueberries and the potential beneficial implications of the addition of bumble bees in commercial blueberry greenhouses or high tunnels. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Pollinator communities in strawberry crops - variation at multiple spatial scales.

    Science.gov (United States)

    Ahrenfeldt, E J; Klatt, B K; Arildsen, J; Trandem, N; Andersson, G K S; Tscharntke, T; Smith, H G; Sigsgaard, L

    2015-08-01

    Predicting potential pollination services of wild bees in crops requires knowledge of their spatial distribution within fields. Field margins can serve as nesting and foraging habitats for wild bees and can be a source of pollinators. Regional differences in pollinator community composition may affect this spill-over of bees. We studied how regional and local differences affect the spatial distribution of wild bee species richness, activity-density and body size in crop fields. We sampled bees both from the field centre and at two different types of semi-natural field margins, grass strips and hedges, in 12 strawberry fields. The fields were distributed over four regions in Northern Europe, representing an almost 1100 km long north-south gradient. Even over this gradient, daytime temperatures during sampling did not differ significantly between regions and did therefore probably not impact bee activity. Bee species richness was higher in field margins compared with field centres independent of field size. However, there was no difference between centre and margin in body-size or activity-density. In contrast, bee activity-density increased towards the southern regions, whereas the mean body size increased towards the north. In conclusion, our study revealed a general pattern across European regions of bee diversity, but not activity-density, declining towards the field interior which suggests that the benefits of functional diversity of pollinators may be difficult to achieve through spill-over effects from margins to crop. We also identified dissimilar regional patterns in bee diversity and activity-density, which should be taken into account in conservation management.

  12. Effects of pollination timing and distance on seed production in a dioecious weed Silene latifolia

    Science.gov (United States)

    Anderson, Jay F.; Duddu, Hema S. N.; Shirtliffe, Steven J.; Benaragama, Dilshan; Syrovy, Lena D.; Stanley, Katherine A.; Haile, Teketel A.

    2015-11-01

    Silene latifolia Poir. (white cockle or white campion) is an important invasive weed in North American agriculture. It exhibits dioecy, therefore, both male and female plants are required in order for seed production to occur. However, dioecious species being invasive is not common because of their limitations in pollination and subsequent seed production. The objective of this study is to determine the effect of pollination timing and distance on seed production of Silene latifolia. A series of experiments including pollination exclusion, timing and pollination distance were conducted in 2009 and 2010 at or around Saskatoon, Saskatchewan. For pollination exclusion, exclosures were built around the natural female plants for exclosure, sham-exclosure, and male and female combined treatments. Pollination timing was studied by applying exclosure, non-exclosure, night-exclosure, and day-exclosure treatments to individual female plants. Female plants were transplanted along a linear interval at six different distances from the pollen source to study the effect of pollination distance. S. latifolia was exclusively insect-pollinated and pollination occurred both day and night; however, in one year, pollination occurred mainly at night. Female plants that were in the range of 0-4 m from a compatible pollen source experienced no limitation to pollination. However, when the distance was increased further up to 128 m, pollination levels and subsequent seed production were declined. Moreover, there were differences in seed production between years suggesting that pollination was affected by the environmental conditions during pollination and the crop that white cockle was grown in. These experiments indicate that seed production in S. latifolia is limited by insect-pollination. Although there was pollination limitation for seed production at greater distances from a pollen source, the high fecundity rate (3000-18000 seeds per plant) resulted in a large seed output. Thus, we

  13. Direct and Indirect Influence of Non-Native Neighbours on Pollination and Fruit Production of a Native Plant.

    Directory of Open Access Journals (Sweden)

    Ana Montero-Castaño

    Full Text Available Entomophilous non-native plants can directly affect the pollination and reproductive success of native plant species and also indirectly, by altering the composition and abundance of floral resources in the invaded community. Separating direct from indirect effects is critical for understanding the mechanisms underlying the impacts of non-native species on recipient communities.Our aims are: (a to explore both the direct effect of the non-native Hedysarum coronarium and its indirect effect, mediated by the alteration of floral diversity, on the pollinator visitation rate and fructification of the native Leopoldia comosa and (b to distinguish whether the effects of the non-native species were due to its floral display or to its vegetative interactions.We conducted field observations within a flower removal experimental setup (i.e. non-native species present, absent and with its inflorescences removed at the neighbourhood scale.Our study illustrates the complexity of mechanisms involved in the impacts of non-native species on native species. Overall, Hedysarum increased pollinator visitation rates to Leopoldia target plants as a result of direct and indirect effects acting in the same direction. Due to its floral display, Hedysarum exerted a direct magnet effect attracting visits to native target plants, especially those made by the honeybee. Indirectly, Hedysarum also increased the visitation rate of native target plants. Due to the competition for resources mediated by its vegetative parts, it decreased floral diversity in the neighbourhoods, which was negatively related to the visitation rate to native target plants. Hedysarum overall also increased the fructification of Leopoldia target plants, even though such an increase was the result of other indirect effects compensating for the observed negative indirect effect mediated by the decrease of floral diversity.

  14. Landscape fragmentation and pollinator movement within agricultural environments: a modelling framework for exploring foraging and movement ecology.

    Science.gov (United States)

    Rands, Sean A

    2014-01-01

    Pollinator decline has been linked to landscape change, through both habitat fragmentation and the loss of habitat suitable for the pollinators to live within. One method for exploring why landscape change should affect pollinator populations is to combine individual-level behavioural ecological techniques with larger-scale landscape ecology. A modelling framework is described that uses spatially-explicit individual-based models to explore the effects of individual behavioural rules within a landscape. The technique described gives a simple method for exploring the effects of the removal of wild corridors, and the creation of wild set-aside fields: interventions that are common to many national agricultural policies. The effects of these manipulations on central-place nesting pollinators are varied, and depend upon the behavioural rules that the pollinators are using to move through the environment. The value of this modelling framework is discussed, and future directions for exploration are identified.

  15. Landscape fragmentation and pollinator movement within agricultural environments: a modelling framework for exploring foraging and movement ecology

    Directory of Open Access Journals (Sweden)

    Sean A. Rands

    2014-02-01

    Full Text Available Pollinator decline has been linked to landscape change, through both habitat fragmentation and the loss of habitat suitable for the pollinators to live within. One method for exploring why landscape change should affect pollinator populations is to combine individual-level behavioural ecological techniques with larger-scale landscape ecology. A modelling framework is described that uses spatially-explicit individual-based models to explore the effects of individual behavioural rules within a landscape. The technique described gives a simple method for exploring the effects of the removal of wild corridors, and the creation of wild set-aside fields: interventions that are common to many national agricultural policies. The effects of these manipulations on central-place nesting pollinators are varied, and depend upon the behavioural rules that the pollinators are using to move through the environment. The value of this modelling framework is discussed, and future directions for exploration are identified.

  16. Breeding system and bumblebee drone pollination of an explosively pollen-releasing plant, Meliosma tenuis (Sabiaceae).

    Science.gov (United States)

    Wong Sato, A A; Kato, M

    2018-05-01

    Explosive pollen release is a mechanism used by some angiosperms that serves to attach pollen to a pollinator's body. It is usually adopted by species with zygomorphic tubular flowers and pollinated by birds and bees. The tree genus Meliosma (Sabiaceae, Proteales) has unique disc-like flowers that are externally actinomorphic, but internally zygomorphic, and release pollen explosively. To elucidate the adaptive significance of explosive pollen release, we observed flowering behaviour, the breeding system and pollinator visits to flowers of the Japanese species Meliosma tenuis in a temperate forest. Flowers bloomed in June and were nectariferous and protandrous. Explosive pollen release was triggered by slight tactile stimuli to anther filaments or staminodes in male-stage flowers. Because pollen cannot come into contact with the pistils enclosed by staminodes, M. tenuis is functionally protandrous. Artificial pollination treatments revealed that M. tenuis is allogamous. The dominant flower visitors were nectar-seeking drones of the bumblebee species Bombus ardens (Apidae). The drones' behaviour, pollen attachment on their bodies and fruit set of visit-restricted flowers suggest that they are the only agent triggering the explosive pollen release mechanism, and are the main pollinator of M. tenuis. The finding that bumblebee workers rarely visit these flowers suggests that the explosive pollen release has another function, namely to discourage pollen-harvesting bumblebee workers. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  17. Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator

    Science.gov (United States)

    The microbiome of the phyllosphere and anthosphere plays an important role in many plant-plant, plant-insect, and plant-microbe interactions. A particularly essential interaction is that of the plant pollinator, which is important for ensuring high crop yields, pollinator health and successful plant...

  18. Some pollinators are more equal than others: Factors influencing pollen loads and seed set capacity of two actively and passively pollinating fig wasps

    Science.gov (United States)

    Kjellberg, Finn; Suleman, Nazia; Raja, Shazia; Tayou, Abelouahad; Hossaert-McKey, Martine; Compton, Stephen G.

    2014-05-01

    The nursery pollination system of fig trees (Ficus) results in the plants providing resources for pollinator fig wasp larvae as part of their male reproductive investment, with selection determining relative investment into pollinating wasps and the pollen they carry. The small size of Ficus pollen suggests that the quantities of pollen transported by individual wasps often limits male reproductive success. We assessed variation in fig wasp pollen loads and its influence on seed production in actively pollinated (Ficus montana) and passively pollinated (Ficus carica) dioecious fig trees.

  19. Explaining the resurgent popularity of the wild: motivations for wild plant gathering in the Biosphere Reserve Grosses Walsertal, Austria.

    Science.gov (United States)

    Schunko, Christoph; Grasser, Susanne; Vogl, Christian R

    2015-06-30

    Wild plant gathering becomes again a popular and fashionable activity in Europe after gathering practices have been increasingly abandoned over the last decades. Recent ethnobotanical research documented a diversity of gathering practices from people of diverse socio-economic and cultural backgrounds who gather in urban and rural areas. Few efforts were though made to study the motivations for gathering wild plants and to understand the resurgent popularity of wild plant gathering. This paper addresses the following research questions: (1) which motivations activate wild plant gatherers? (2) which motivation-types of gatherers exist in the Grosses Walsertal? (3) how do the motivations for gathering relate to the socio-demographic background of gatherers? Field research was conducted in the Grosses Walsertal, Austria in the years 2008 and 2009 in two field research periods. Thirty-six local farmers were first interviewed with semi-structured interviews. The motivations identified in these interviews were then included in a structured questionnaire, which was used to interview 353 residents of the valley. Pupils of local schools participated in the data collection as interviewers. Principal Component Analysis was used to categorize the motivations and to identify motivation-types of wild plant gatherers. Generalized Linear Models were calculated to identify relations between motivations and the socio-demographic background of gatherers. The respondents listed 13 different motivations for gathering wild plants and four motivations for not gathering. These 17 motivations were grouped in five motivation-types of wild plant gatherers, which are in decreasing importance: product quality, fun, tradition, not-gathering, income. Women, older respondents and homegardeners gather wild plants more often for fun; older respondents gather more often for maintaining traditions; non-homegardeners more frequently mention motivations for not gathering. The resurgent popularity of

  20. High temperatures result in smaller nurseries which lower reproduction of pollinators and parasites in a brood site pollination mutualism.

    Directory of Open Access Journals (Sweden)

    Anusha Krishnan

    Full Text Available In a nursery pollination mutualism, we asked whether environmental factors affected reproduction of mutualistic pollinators, non-mutualistic parasites and seed production via seasonal changes in plant traits such as inflorescence size and within-tree reproductive phenology. We examined seasonal variation in reproduction in Ficus racemosa community members that utilise enclosed inflorescences called syconia as nurseries. Temperature, relative humidity and rainfall defined four seasons: winter; hot days, cold nights; summer and wet seasons. Syconium volumes were highest in winter and lowest in summer, and affected syconium contents positively across all seasons. Greater transpiration from the nurseries was possibly responsible for smaller syconia in summer. The 3-5°C increase in mean temperatures between the cooler seasons and summer reduced fig wasp reproduction and increased seed production nearly two-fold. Yet, seed and pollinator progeny production were never negatively related in any season confirming the mutualistic fig-pollinator association across seasons. Non-pollinator parasites affected seed production negatively in some seasons, but had a surprisingly positive relationship with pollinators in most seasons. While within-tree reproductive phenology did not vary across seasons, its effect on syconium inhabitants varied with season. In all seasons, within-tree reproductive asynchrony affected parasite reproduction negatively, whereas it had a positive effect on pollinator reproduction in winter and a negative effect in summer. Seasonally variable syconium volumes probably caused the differential effect of within-tree reproductive phenology on pollinator reproduction. Within-tree reproductive asynchrony itself was positively affected by intra-tree variation in syconium contents and volume, creating a unique feedback loop which varied across seasons. Therefore, nursery size affected fig wasp reproduction, seed production and within

  1. Effects of tidal action on pollination and reproductive allocation in an estuarine emergent wetland plant-Sagittaria graminea (Alismataceae.

    Directory of Open Access Journals (Sweden)

    Yanwen Zhang

    Full Text Available In estuarine wetlands, the daily periodic tidal activity has a profound effect on plant growth and reproduction. We studied the effects of tidal action on pollination and reproductive allocation of Sagittaria graminea. Results showed that the species had very different reproductive allocation in tidal and non-tidal habitats. In the tidal area, seed production was only 9.7% of that in non-tidal habitat, however, plants produced more male flowers and nearly twice the corms compared to those in non-tidal habitat. An experiment showed that the time available for effective pollination determined the pollination rate and pollen deposition in the tidal area. A control experiment suggested that low pollen deposition from low visitation frequency is not the main cause of very low seed sets or seed production in this plant in tidal habitat. The negative effects of tides (water on pollen germination may surpass the influence of low pollen deposition from low visitation frequency. The length of time from pollen deposition to flower being submerged by water affected pollen germination rate on stigmas; more than three hours is necessary to allow pollen germination and complete fertilization to eliminate the risk of pollen grains being washed away by tidal water.

  2. The beta-diversity of species interactions: Untangling the drivers of geographic variation in plant-pollinator diversity and function across scales.

    Science.gov (United States)

    Burkle, Laura A; Myers, Jonathan A; Belote, R Travis

    2016-01-01

    Geographic patterns of biodiversity have long inspired interest in processes that shape the assembly, diversity, and dynamics of communities at different spatial scales. To study mechanisms of community assembly, ecologists often compare spatial variation in community composition (beta-diversity) across environmental and spatial gradients. These same patterns inspired evolutionary biologists to investigate how micro- and macro-evolutionary processes create gradients in biodiversity. Central to these perspectives are species interactions, which contribute to community assembly and geographic variation in evolutionary processes. However, studies of beta-diversity have predominantly focused on single trophic levels, resulting in gaps in our understanding of variation in species-interaction networks (interaction beta-diversity), especially at scales most relevant to evolutionary studies of geographic variation. We outline two challenges and their consequences in scaling-up studies of interaction beta-diversity from local to biogeographic scales using plant-pollinator interactions as a model system in ecology, evolution, and conservation. First, we highlight how variation in regional species pools may contribute to variation in interaction beta-diversity among biogeographic regions with dissimilar evolutionary history. Second, we highlight how pollinator behavior (host-switching) links ecological networks to geographic patterns of plant-pollinator interactions and evolutionary processes. Third, we outline key unanswered questions regarding the role of geographic variation in plant-pollinator interactions for conservation and ecosystem services (pollination) in changing environments. We conclude that the largest advances in the burgeoning field of interaction beta-diversity will come from studies that integrate frameworks in ecology, evolution, and conservation to understand the causes and consequences of interaction beta-diversity across scales. © 2016 Botanical

  3. Ethnobotanical review of wild edible plants of Slovakia

    Directory of Open Access Journals (Sweden)

    Łukasz Łuczaj

    2012-11-01

    Full Text Available This paper is an ethnobotanical review of wild edible plants gathered for consumption from the 19th century to the present day, within the present borders of Slovakia. Twenty-four sources (mainly ethnographic documenting the culinary use of wild plants were analysed. The use of 106 species (over 3% of the Slovak flora has been recorded. Nowadays most of them are no longer used, or used rarely, apart from a few species of wild fruits. The most frequently used plants include the fruits of Rubus idaeus, Fragaria spp., Rubus subgenus Rubus, Vaccinium myrtillus, V. vitis-idaea, Fagus sylvatica, Corylus avellana, Prunus spinosa, Pyrus spp., Malus spp., Crataegus spp. and the leaves of Urtica dioica, Rumex acetosa, Chenopodiaceae species, Cardamine amara, Glechoma spp., Taraxacum spp. and Oxalis acetosella. The most commonly used wild food taxa are nearly identical to those used in Poland, and the same negative association of wild vegetables with famine exists in Slovakia, resulting in their near complete disappearance from the present-day diet.

  4. Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.).

    Science.gov (United States)

    Hladun, Kristen R; Parker, David R; Tran, Khoa D; Trumble, John T

    2013-01-01

    Selenium (Se) has contaminated areas in the western USA where pollination is critical to the functioning of both agricultural and natural ecosystems, yet we know little about how Se can impact pollinators. In a two-year semi-field study, the weedy plant Raphanus sativus (radish) was exposed to three selenate treatments and two pollination treatments to evaluate the effects on pollinator-plant interactions. Honey bee (Apis mellifera L.) pollinators were observed to readily forage on R. sativus for both pollen and nectar despite high floral Se concentrations. Se treatment increased both seed abortion (14%) and decreased plant biomass (8-9%). Herbivory by birds and aphids was reduced on Se-treated plants, indicating a potential reproductive advantage for the plant. Our study sheds light on how pollutants such as Se can impact the pollination ecology of a plant that accumulates even moderate amounts of Se. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The worldwide importance of honey bees as pollinators in natural habitats.

    Science.gov (United States)

    Hung, Keng-Lou James; Kingston, Jennifer M; Albrecht, Matthias; Holway, David A; Kohn, Joshua R

    2018-01-10

    The western honey bee ( Apis mellifera ) is the most frequent floral visitor of crops worldwide, but quantitative knowledge of its role as a pollinator outside of managed habitats is largely lacking. Here we use a global dataset of 80 published plant-pollinator interaction networks as well as pollinator effectiveness measures from 34 plant species to assess the importance of A. mellifera in natural habitats. Apis mellifera is the most frequent floral visitor in natural habitats worldwide, averaging 13% of floral visits across all networks (range 0-85%), with 5% of plant species recorded as being exclusively visited by A. mellifera For 33% of the networks and 49% of plant species, however, A. mellifera visitation was never observed, illustrating that many flowering plant taxa and assemblages remain dependent on non- A. mellifera visitors for pollination. Apis mellifera visitation was higher in warmer, less variable climates and on mainland rather than island sites, but did not differ between its native and introduced ranges. With respect to single-visit pollination effectiveness, A. mellifera did not differ from the average non- A. mellifera floral visitor, though it was generally less effective than the most effective non- A. mellifera visitor. Our results argue for a deeper understanding of how A. mellifera , and potential future changes in its range and abundance, shape the ecology, evolution, and conservation of plants, pollinators, and their interactions in natural habitats. © 2018 The Author(s).

  6. Negative effects of pesticides on wild bee communities can be buffered by landscape context.

    Science.gov (United States)

    Park, Mia G; Blitzer, E J; Gibbs, Jason; Losey, John E; Danforth, Bryan N

    2015-06-22

    Wild bee communities provide underappreciated but critical agricultural pollination services. Given predicted global shortages in pollination services, managing agroecosystems to support thriving wild bee communities is, therefore, central to ensuring sustainable food production. Benefits of natural (including semi-natural) habitat for wild bee abundance and diversity on farms are well documented. By contrast, few studies have examined toxicity of pesticides on wild bees, let alone effects of farm-level pesticide exposure on entire bee communities. Whether beneficial natural areas could mediate effects of harmful pesticides on wild bees is also unknown. Here, we assess the effect of conventional pesticide use on the wild bee community visiting apple (Malus domestica) within a gradient of percentage natural area in the landscape. Wild bee community abundance and species richness decreased linearly with increasing pesticide use in orchards one year after application; however, pesticide effects on wild bees were buffered by increasing proportion of natural habitat in the surrounding landscape. A significant contribution of fungicides to observed pesticide effects suggests deleterious properties of a class of pesticides that was, until recently, considered benign to bees. Our results demonstrate extended benefits of natural areas for wild pollinators and highlight the importance of considering the landscape context when weighing up the costs of pest management on crop pollination services. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Floral features, pollination biology and breeding system of Chloraea membranacea Lindl. (Orchidaceae: Chloraeinae).

    Science.gov (United States)

    Sanguinetti, Agustin; Buzatto, Cristiano Roberto; Pedron, Marcelo; Davies, Kevin L; Ferreira, Pedro Maria de Abreu; Maldonado, Sara; Singer, Rodrigo B

    2012-12-01

    The pollination biology of very few Chloraeinae orchids has been studied to date, and most of these studies have focused on breeding systems and fruiting success. Chloraea membranacea Lindl. is one of the few non-Andean species in this group, and the aim of the present contribution is to elucidate the pollination biology, functional floral morphology and breeding system in native populations of this species from Argentina (Buenos Aires) and Brazil (Rio Grande do Sul State). Floral features were examined using light microscopy, and scanning and transmission electron microscopy. The breeding system was studied by means of controlled pollinations applied to plants, either bagged in the field or cultivated in a glasshouse. Pollination observations were made on natural populations, and pollinator behaviour was recorded by means of photography and video. Both Argentinean and Brazilian plants were very consistent regarding all studied features. Flowers are nectarless but scented and anatomical analysis indicates that the dark, clavate projections on the adaxial labellar surface are osmophores (scent-producing glands). The plants are self-compatible but pollinator-dependent. The fruit-set obtained through cross-pollination and manual self-pollination was almost identical. The main pollinators are male and female Halictidae bees that withdraw the pollinarium when leaving the flower. Remarkably, the bees tend to visit more than one flower per inflorescence, thus promoting self-pollination (geitonogamy). Fruiting success in Brazilian plants reached 60·78 % in 2010 and 46 % in 2011. Some pollinarium-laden female bees were observed transferring pollen from the carried pollinarium to their hind legs. The use of pollen by pollinators is a rare record for Orchidaceae in general. Chloraea membrancea is pollinated by deceit. Together, self-compatibility, pollinarium texture, pollinator abundance and behaviour may account for the observed high fruiting success. It is suggested that

  8. A test of density-dependent pollination within three populations of endangered Pentachaeta lyonii

    Directory of Open Access Journals (Sweden)

    Jocelyn R. Holt

    2014-02-01

    Full Text Available A major concern with endangered plants is that they might attract insufficient numbers of pollinators, produce low numbers of seeds, and decline towards extinction. We examined effects of density as it varied within populations on the pollination of Pentachaeta lyonii, an endangered species that requires pollinators for seed set. Generalist bee-flies and bees were abundant pollinators at three sites for two years. Per-capita visitation rates did not decline at sparse points or for plants placed on the order of 10 m away from other flowering individuals. Seed production was not pollinator-limited within patches, but seed set was low beyond 10 m from neighbours. Considering prior findings, factors such as habitat loss, competition with alien plants, and poor establishment of new populations likely contribute to the rarity of P. lyonii more than pollination failure.

  9. The Effect of Different Pollination Methods on Seed Yield and Germination Features in Stevia rebaudiana Bertoni

    Directory of Open Access Journals (Sweden)

    Yaşar ÖZYİĞİT

    2015-09-01

    Full Text Available Pollination is a prerequisite system for reproductive of many plants and it is more important in self-compatible plants. Since, these plants need other flowers pollen for flower fertilization and seed production. In this study, the effects of different pollination methods (open/cross pollination, self-pollination with hand and control on some features associated with seed production in Stevia rebaudiana were investigated. Stevia which belongs to the Asteraceae family and is used as sweetener has a self-incompatibility problem. In the experiment, ten plants which were planted in a row were covered with net in the field condition and five of them were selfed with hand pollination and remaining 5 plants were left as it is. Furthermore, five uncovered plants were left to cross-pollination by insects. At the end of the experiment, seed yield per plant, 1000 seed weight, black/filled seed rate, number of day to first germination and germination rate were determined in harvested seeds. According to the results, cross-pollination was more superior in respect to all features in Stevia. This status shows that insect population (especially bee must be present in Stevia fields for successful seed production.

  10. The messenger matters: Pollinator functional group influences mating system dynamics.

    Science.gov (United States)

    Weber, Jennifer J

    2017-08-01

    The incredible diversity of plant mating systems has fuelled research in evolutionary biology for over a century. Currently, there is broad concern about the impact of rapidly changing pollinator communities on plant populations. Very few studies, however, examine patterns and mechanisms associated with multiple paternity from cross-pollen loads. Often, foraging pollinators collect a mixed pollen load that may result in the deposition of pollen from different sires to receptive stigmas. Coincident deposition of self- and cross-pollen leads to interesting mating system dynamics and has been investigated in numerous species. But, mixed pollen loads often consist of a diversity of cross-pollen and result in multiple sires of seeds within a fruit. In this issue of Molecular Ecology, Rhodes, Fant, and Skogen () examine how pollinator identity and spatial isolation influence multiple paternity within fruits of a self-incompatible evening primrose. The authors demonstrate that pollen pool diversity varies between two pollinator types, hawkmoths and diurnal solitary bees. Further, progeny from more isolated plants were less likely to have multiple sires regardless of the pollinator type. Moving forward, studies of mating system dynamics should consider the implications of multiple paternity and move beyond the self- and cross-pollination paradigm. Rhodes et al. () demonstrate the importance of understanding the roles that functionally diverse pollinators play in mating system dynamics. © 2017 John Wiley & Sons Ltd.

  11. Breeding system and pollination biology of paeonia delavayi (peaoniaceae), an endangered plant in the southwest of china

    International Nuclear Information System (INIS)

    Zheng, B.; Wang, Y.; Zhou, L

    2014-01-01

    Breeding system and pollination biology of Paeonia delavayi (Peaoniaceae) from Shangri-La, Yunnan Province, southwest of China were studied. Flowering phenologies and flower visitors were observed or collected from 2008 to 2011. The pollen viability, stigma receptivity and pollination efficiency of different visitors were detected and tested. The florescence lasted for 6- 9d in a single flower from mid-May to late June. A high percentage of flower damage promoted early anther dehiscence. Flowers started disseminating pollen at 1-2 d after flowering, and lasted for 5-6 d. Pollen viability could be preserved for more than 10 d at normal temperature. High seed rate from the stigma was observed at 1 d before flowering to 3d after flowering, and the dissemination hysteresis was defined as protogyny. The P/O ratios were 6,124 to 9,713:1, suggesting that the larger quantity of pollen to increased the seed setting rate. Three species of bees, eight species of beetles, seven species of syrphid flies, four species of ants, and three species of butterflies were observed on the flowers. P. delavayi rewarded to the visitors by releasing fragrance, providing pollen and nectar. On the bodies of the visitors under stereomicroscope and scanning electron microscope (SEM), much pollen from the plants of similar flowering period inner community were found which indicated that these incompatible visitors were not species-specific pollinators. The bagging experiments showed that P. delavayi was selfincompatible and no apomixes. Anemophily only played a minor role in the fertilization. A few seeds with poor plumpness can be produced by geitonogamy. Seed setting rate of artificial xenogamy was higher than natural pollination. Artificial control of the visitors' species showed bees being the most important pollinators. Beetles and ants participated in pollination to someextent and were unstable. Syrphid flies and butterflies were very unreliable with low pollination efficiency

  12. Distance from forest edge affects bee pollinators in oilseed rape fields.

    Science.gov (United States)

    Bailey, Samantha; Requier, Fabrice; Nusillard, Benoît; Roberts, Stuart P M; Potts, Simon G; Bouget, Christophe

    2014-02-01

    Wild pollinators have been shown to enhance the pollination of Brassica napus (oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policy-makers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.

  13. Fruit Set and Single Visit Stigma Pollen Deposition by Managed Bumble Bees and Wild Bees in Citrullus lanatus (Cucurbitales: Cucurbitaceae).

    Science.gov (United States)

    Campbell, Joshua W; Daniels, Jaret C; Ellis, James D

    2018-04-02

    Pollinators provide essential services for watermelon, Citrullus lanatus (Thunb.; Cucurbitales: Cucurbitaceae). Managed bumble bees, Bombus impatiens (Cresson; Hymenoptera: Apidae), have been shown to be a useful watermelon pollinator in some areas. However, the exact contribution bumble bees make to watermelon pollination and how their contribution compares to that of other bees is unclear. We used large cages (5.4 × 2.5 × 2.4 m) to confine bumble bee hives to watermelon plants and compared fruit set in those cages to cages containing watermelons but no pollinators, and to open areas of field next to cages (allows all pollinators). We also collected data on single visit pollen deposition onto watermelon stigmas by managed bumble bees, honey bees, and wild bees. Overall, more fruit formed within the open cages than in cages of the other two treatment groups. B. impatiens and Melissodes spp. deposited the most pollen onto watermelon stigmas per visit, but all bee species observed visiting watermelon flowers were capable of depositing ample pollen to watermelon stigmas. Although B. impatiens did deposit large quantities of pollen to stigmas, they were not common within the field (i.e., outside the cages) as they were readily drawn to flowering plants outside of the watermelon field. Overall, bumble bees can successfully pollinate watermelon, but may be useful in greenhouses or high tunnels where watermelon flowers have no competition from other flowering plants that could draw bumble bees away from watermelon.

  14. Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands

    NARCIS (Netherlands)

    Scheper, J.A.; Reemer, M.; Kats, van R.J.M.; Ozinga, W.A.; Linden, van der G.T.J.; Schaminee, J.H.J.; Siepel, H.; Kleijn, D.

    2014-01-01

    Evidence for declining populations of both wild and managed bees has raised concern about a potential global pollination crisis. Strategies to mitigate bee loss generally aim to enhance floral resources. However, we do not really know whether loss of preferred floral resources is the key driver of

  15. Dose-dependent effects of nectar alkaloids in a montane plant-pollinator community

    Science.gov (United States)

    Although secondary metabolites are prevalent in floral nectar, the ecological consequences for pollinators and pollination remain relatively unexplored. While often deterrent to pollinators at high concentrations, secondary metabolite concentrations in nectar tend to be much lower than secondary met...

  16. Ecology and evolution of plant–pollinator interactions

    Science.gov (United States)

    Mitchell, Randall J.; Irwin, Rebecca E.; Flanagan, Rebecca J.; Karron, Jeffrey D.

    2009-01-01

    Background Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. Scope In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant–Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come. PMID:19482881

  17. An ultraviolet floral polymorphism associated with life history drives pollinator discrimination in Mimulus guttatus.

    Science.gov (United States)

    Peterson, Megan L; Miller, Timothy J; Kay, Kathleen M

    2015-03-01

    • Ultraviolet (UV) floral patterns are common in angiosperms and mediate pollinator attraction, efficiency, and constancy. UV patterns may vary within species, yet are cryptic to human observers. Thus, few studies have explicitly described the distribution or ecological significance of intraspecific variation in UV floral patterning. Here, we describe the geographic distribution and pattern of inheritance of a UV polymorphism in the model plant species Mimulus guttatus (Phrymaceae). We then test whether naturally occurring UV phenotypes influence pollinator interactions within M. guttatus.• We document UV patterns in 18 annual and 19 perennial populations and test whether UV pattern is associated with life history. To examine the pattern of inheritance, we conducted crosses within and between UV phenotypes. Finally, we tested whether bee pollinators discriminate among naturally occurring UV phenotypes in two settings: wild bee communities and captive Bombus impatiens.• Within M. guttatus, perennial populations exhibit a small bulls-eye pattern, whereas a bilaterally symmetric runway pattern occurs mainly in annual populations. Inheritance of UV patterning is consistent with a single-locus Mendelian model in which the runway phenotype is dominant. Bee pollinators discriminate against unfamiliar UV patterns in both natural and controlled settings.• We describe a widespread UV polymorphism associated with life history divergence within Mimulus guttatus. UV pattern influences pollinator visitation and should be considered when estimating reproductive barriers between life history ecotypes. This work develops a new system to investigate the ecology and evolution of UV floral patterning in a species with extensive genomic resources. © 2015 Botanical Society of America, Inc.

  18. Diversity of Pollinator Insects in Relation to Seed Set of Mustard (Brassica rapa L.: Cruciferae

    Directory of Open Access Journals (Sweden)

    TRI ATMOWIDI

    2007-12-01

    Full Text Available Pollinators provide key services to both natural and agricultural ecosystems. Agricultural productivity depends, in part, on pollinator populations from adjacent seminatural habitats. Here we analysed the diversity of pollinator insects and its effect to seed set of mustard (Brassica rapa planted in agricultural ecosystem near the Gunung Halimun-Salak National Park, West Java. At least 19 species of insects pollinated the mustard, and three species, i.e. Apis cerana, Ceratina sp., and Apis dorsata showed a high abundance. The higher abundance and species richness of pollinators occurred at 08.30-10.30 am and the diversity was related to the number of flowering plants. Insect pollinations increased the number of pods, seeds per pod, seed weights per plant, and seed germination.

  19. Antibacterial activity of some wild medicinal plants collected from ...

    African Journals Online (AJOL)

    Traditional medicine has a key role in health care worldwide. Obtaining scientific information about the efficacy and safety of the wild plants grown in western Mediterranean coast of Egypt is one of our research goals. In this study, 10 wild plants namely Mesembryanthemum crystallinum, Blackiella aellen, Arthrocnemon ...

  20. A test of phenotypic selection on petal form in the wild carnation, Dianthus inoxianus.

    Science.gov (United States)

    Herrera, J; Balao, F

    2015-11-01

    Floral phenotypes are considered a product of pollinator-mediated selection, which also has the side effect of decreasing floral variation within species. Correlates of flower visibility and function were studied in a carnation species (Dianthus inoxianus), which has crepuscular anthesis and scent-based pollination by the hawkmoth Hyles livornica. We also assessed constancy of flower form in nature and in cultivation and, using fruit set as an estimate of plant relative fitness, tested whether the main pollinator exerted phenotypic selection on floral traits. Petal claw, which is roughly equivalent to the average depth at which an insect's proboscis must be inserted to reach nectar, was remarkably constant among wild plants (coefficient of variation 8%). In contrast, the area of the visible part of the petal, and the intensity of a coloured dot pattern on the petal was very variable (respectively CV = 34% and 102%). Cultivation in a common environment revealed significant variation among genotypes as regards petal area, degree of laciniation and extension of the dot pattern, but not petal claw length, which remained steady. Petal area, shape and colour did not affect relative fitness during the year of study, but plants with intermediate petal claws (i.e. floral tubes) set significantly more fruit. Results are compatible with low response of the main pollinator to variation in visual traits (petal area, laciniation, colour) and high responsiveness to variation in other aspects (tube length). Inconsistent phenotypic selection by pollinators may add to other causes of floral variation in the genus Dianthus, the causes of which are discussed. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Pollination ecology in the 21st Century: Key questions for future research

    Directory of Open Access Journals (Sweden)

    Jane C. Stout

    2011-03-01

    Full Text Available To inspire new ideas in research on pollination ecology, we list the most important unanswered questions in the field. This list was drawn up by contacting 170 scientists from different areas of pollination ecology and asking them to contribute their opinion on the greatest knowledge gaps that need to be addressed. Almost 40% of them took part in our email poll and we received more than 650 questions and comments, which we classified into different categories representing various aspects of pollination research. The original questions were merged and synthesised, and a final vote and ranking led to the resultant list. The categories cover plant sexual reproduction, pollen and stigma biology, abiotic pollination, evolution of animal-mediated pollination, interactions of pollinators and floral antagonists, pollinator behaviour, taxonomy, plant-pollinator assemblages, geographical trends in diversity, drivers of pollinator loss, ecosystem services, management of pollination, and conservation issues such as the implementation of pollinator conservation. We focused on questions that were of a broad scope rather than case-specific; thus, addressing some questions may not be feasible within single research projects but constitute a general guide for future directions. With this compilation we hope to raise awareness of pollination-related topics not only among researchers but also among non-specialists including policy makers, funding agencies and the public at large.

  2. Spatial structure of an individual-based plant–pollinator network

    DEFF Research Database (Denmark)

    Dupont, Yoko Luise; Nielsen, Kristian Trøjelsgaard; Hagen, Melanie

    2014-01-01

    The influence of space on the structure (e.g. modularity) of complex ecological networks remains largely unknown. Here, we sampled an individual-based plant–pollinator network by following the movements and flower visits of marked bumblebee individuals within a population of thistle plants...... for which the identities and spatial locations of stems were mapped in a 50  50 m study plot. The plant–pollinator network was dominated by parasitic male bumblebees and had a significantly modular structure, with four identified modules being clearly separated in space. This indicated that individual....... This demonstrated that individual-based plant–pollinator networks are influenced by both the spatial structure of plant populations and individual-specific plant traits. Additionally, bumblebee individuals with long observation times were important for both the connectivity between and within modules. The latter...

  3. Large Carpenter Bees as Agricultural Pollinators

    Directory of Open Access Journals (Sweden)

    Tamar Keasar

    2010-01-01

    Full Text Available Large carpenter bees (genus Xylocopa are wood-nesting generalist pollinators of broad geographical distribution that exhibit varying levels of sociality. Their foraging is characterized by a wide range of food plants, long season of activity, tolerance of high temperatures, and activity under low illumination levels. These traits make them attractive candidates for agricultural pollination in hot climates, particularly in greenhouses, and of night-blooming crops. Carpenter bees have demonstrated efficient pollination service in passionflower, blueberries, greenhouse tomatoes and greenhouse melons. Current challenges to the commercialization of these attempts lie in the difficulties of mass-rearing Xylocopa, and in the high levels of nectar robbing exhibited by the bees.

  4. Between-year changes in community composition shape species’ roles in an Arctic plant–pollinator network

    DEFF Research Database (Denmark)

    Cirtwill, Alyssa R.; Roslin, Tomas; Rasmussen, Claus

    2018-01-01

    Inter-annual turnover in community composition can affect the richness and functioning of ecological communities. If incoming and outgoing species do not interact with the same partners, ecological functions such as pollination may be disrupted. Here, we explore the extent to which turnover affects...... in species’ roles between networks. Variation in the roles of plants and pollinators tended to increase with the amount of community turnover, although a negative interaction between turnover in the plant and pollinator assemblages complicated this trend for the roles of pollinators. This suggests...... species’ roles – as defined based on their participation in different motifs positions – in a series of temporally replicated plant–pollinator networks from high-Arctic Zackenberg, Greenland. We observed substantial turnover in the plant and pollinator assemblages, combined with significant variation...

  5. Preliminary synthesis of pollination biology in the Cape flora

    CSIR Research Space (South Africa)

    Rebelo, AG

    1987-01-01

    Full Text Available biology are covered. Chapters reviewing plant breeding systems, insect, bird, mammal and wind pollination, and gene flow are introduced by a perspective on the role of the fossil record in pollination biology. A speculative chapter on the constraints...

  6. Macroecology of pollination networks

    DEFF Research Database (Denmark)

    Nielsen, Kristian Trøjelsgaard; Olesen, Jens Mogens

    2013-01-01

    towards the tropics, and that network topology would be affected by current climate. Location Global. Methods Each network was organized as a presence/absence matrix, consisting of P plant species, A pollinator species and their links. From these matrices, network parameters were estimated. Additionally...... with either latitude or elevation. However, network modularity decreased significantly with latitude whereas mean number of links per plant species (Lp) and A/P ratio peaked at mid-latitude. Above 500 m a.s.l., A/P ratio decreased and mean number of links per pollinator species (La) increased with elevation......Aim Interacting communities of species are organized into complex networks, and network analysis is reckoned to be a strong tool for describing their architecture. Many species assemblies show strong macroecological patterns, e.g. increasing species richness with decreasing latitude, but whether...

  7. Tropical Forest Fragmentation Limits Movements, but Not Occurrence of a Generalist Pollinator Species.

    Directory of Open Access Journals (Sweden)

    Noelia L Volpe

    Full Text Available Habitat loss and fragmentation influence species distributions and therefore ecological processes that depend upon them. Pollination may be particularly susceptible to fragmentation, as it depends on frequent pollinator movement. Unfortunately, most pollinators are too small to track efficiently which has precluded testing the hypothesis that habitat fragmentation reduces or eliminates pollen flow by disrupting pollinator movement. We used radio-telemetry to examine space use of the green hermit hummingbird (Phaethornis guy, an important 'hub' pollinator of understory flowering plants across substantial portions of the neotropics and the primary pollinator of a keystone plant which shows reduced pollination success in fragmented landscapes. We found that green hermits strongly avoided crossing large stretches of non-forested matrix and preferred to move along stream corridors. Forest gaps as small as 50 m diminished the odds of movement by 50%. Green hermits occurred almost exclusively inside the forest, with the odds of occurrence being 8 times higher at points with >95% canopy cover compared with points having <5% canopy cover. Nevertheless, surprisingly. the species occurred in fragmented landscapes with low amounts of forest (~30% within a 2 km radius. Our results indicate that although green hermits are present even in landscapes with low amounts of tropical forest, movement within these landscapes ends up strongly constrained by forest gaps. Restricted movement of pollinators may be an underappreciated mechanism for widespread declines in pollination and plant fitness in fragmented landscapes, even when in the presence of appropriate pollinators.

  8. Pollination in the Chilean Mediterranean-type ecosystem: a review of current advances and pending tasks.

    Science.gov (United States)

    Medel, R; González-Browne, C; Fontúrbel, F E

    2018-01-01

    We conducted a systematic review of the scientific literature published on plant-pollinator interactions, from both the plant and pollinator perspective, in the Chilean Mediterranean-type ecosystem (MTE hereafter). Our search identified 69 published papers on 235 native plant species from 62 families. Less than 7.9% of the flowering species inhabiting the Chilean Mediterranean have been studied, and most studies were restricted to only one locality and one reproductive season. The geographic location of the studies differed from a random pattern, showing two well-defined areas where most studies were conducted. Likewise, most studies in the Andes Range were performed above 2000 m a.s.l. The number of species of flower visitor per plant species was low (4.25 ± 0.22), which probably results from the historical and biogeographic isolation of Chile. This literature survey shows that studies relating floral traits with pollinator attraction and plant reproduction are the most frequent topics of research, reaching 37.6% of studies, followed by studies that examine pollination in relation to human impact (16.1%), micro- and macroevolution (14.0%), relationships between pollination and other ecological interactions (10.8%), community and network assessments (11.8%), and effects of abiotic variables on pollination interactions (9.7%). Our review highlights a lack of research on the effects of pollination for anthropogenic land use especially as agricultural practice is one of the most salient features of the Chilean MTE. Future directions to increase our understanding of the role of plant-pollinator relationships for biodiversity maintenance should include: to extend the taxonomic and geographic scope of research, to increase the number of spatial and temporal replicates, to increase the number of studies on pollination networks as they provide estimates of community complexity and putative stability, to develop studies that estimate the importance of pollination for

  9. Experimental evidence that honeybees depress wild insect densities in a flowering crop.

    Science.gov (United States)

    Lindström, Sandra A M; Herbertsson, Lina; Rundlöf, Maj; Bommarco, Riccardo; Smith, Henrik G

    2016-11-30

    While addition of managed honeybees (Apis mellifera) improves pollination of many entomophilous crops, it is unknown if it simultaneously suppresses the densities of wild insects through competition. To investigate this, we added 624 honeybee hives to 23 fields of oilseed rape (Brassica napus L.) over 2 years and made sure that the areas around 21 other fields were free from honeybee hives. We demonstrate that honeybee addition depresses the densities of wild insects (bumblebees, solitary bees, hoverflies, marchflies, other flies, and other flying and flower-visiting insects) even in a massive flower resource such as oilseed rape. The effect was independent of the complexity of the surrounding landscape, but increased with the size of the crop field, which suggests that the effect was caused by spatial displacement of wild insects. Our results have potential implications both for the pollination of crops (if displacement of wild pollinators offsets benefits achieved by adding honeybees) and for conservation of wild insects (if displacement results in negative fitness consequences). © 2016 The Author(s).

  10. Pollination syndromes ignored: importance of non-ornithophilous flowers to Neotropical savanna hummingbirds

    Science.gov (United States)

    Maruyama, Pietro K.; Oliveira, Genilda M.; Ferreira, Carolina; Dalsgaard, Bo; Oliveira, Paulo E.

    2013-11-01

    Generalization prevails in flower-animal interactions, and although animal visitors are not equally effective pollinators, most interactions likely represent an important energy intake for the animal visitor. Hummingbirds are nectar-feeding specialists, and many tropical plants are specialized toward hummingbird-pollination. In spite of this, especially in dry and seasonal tropical habitats, hummingbirds may often rely on non-ornithophilous plants to meet their energy requirements. However, quantitative studies evaluating the relative importance of ornithophilous vs. non-ornithophilous plants for hummingbirds in these areas are scarce. We here studied the availability and use of floral resources by hummingbirds in two different areas of the Cerrado, the seasonal savannas in Central Brazil. Roughly half the hummingbird visited plant species were non-ornithophilous, and these contributed greatly to increase the overall nectar availability. We showed that mean nectar offer, at the transect scale, was the only parameter related to hummingbird visitation frequency, more so than nectar offer at single flowers and at the plant scale, or pollination syndrome. Centrality indices, calculated using hummingbird-plant networks, showed that ornithophilous and non-ornithophilous plants have similar importance for network cohesion. How this foraging behaviour affects reproduction of non-ornithophilous plants remains largely unexplored and is probably case specific, however, we suggest that the additional energy provided by non-ornithophilous plants may facilitate reproduction of truly ornithophilous flowers by attracting and maintaining hummingbirds in the area. This may promote asymmetric hummingbird-plant associations, i.e., pollination depends on floral traits adapted to hummingbird morphology, but hummingbird visitation is determined more by the energetic "reward" than by pollination syndromes.

  11. Caffeine in floral nectar enhances a pollinator's memory of reward.

    Science.gov (United States)

    Wright, G A; Baker, D D; Palmer, M J; Stabler, D; Mustard, J A; Power, E F; Borland, A M; Stevenson, P C

    2013-03-08

    Plant defense compounds occur in floral nectar, but their ecological role is not well understood. We provide evidence that plant compounds pharmacologically alter pollinator behavior by enhancing their memory of reward. Honeybees rewarded with caffeine, which occurs naturally in nectar of Coffea and Citrus species, were three times as likely to remember a learned floral scent as were honeybees rewarded with sucrose alone. Caffeine potentiated responses of mushroom body neurons involved in olfactory learning and memory by acting as an adenosine receptor antagonist. Caffeine concentrations in nectar did not exceed the bees' bitter taste threshold, implying that pollinators impose selection for nectar that is pharmacologically active but not repellent. By using a drug to enhance memories of reward, plants secure pollinator fidelity and improve reproductive success.

  12. Disentangling the role of floral sensory stimuli in pollination networks

    DEFF Research Database (Denmark)

    Kantsa, Aphrodite; Raguso, Robert A.; Dyer, Adrian G.

    2018-01-01

    Despite progress in understanding pollination network structure, the functional roles of floral sensory stimuli (visual, olfactory) have never been addressed comprehensively in a community context, even though such traits are known to mediate plant-pollinator interactions. Here, we use...... a comprehensive dataset of floral traits and a novel dynamic data-pooling methodology to explore the impacts of floral sensory diversity on the structure of a pollination network in a Mediterranean scrubland. Our approach tracks transitions in the network behaviour of each plant species throughout its flowering...... period and, despite dynamism in visitor composition, reveals significant links to floral scent, and/or colour as perceived by pollinators. Having accounted for floral phenology, abundance and phylogeny, the persistent association between floral sensory traits and visitor guilds supports a deeper role...

  13. Explaining the resurgent popularity of the wild: motivations for wild plant gathering in the Biosphere Reserve Grosses Walsertal, Austria

    OpenAIRE

    Schunko, Christoph; Grasser, Susanne; Vogl, Christian R.

    2015-01-01

    Background Wild plant gathering becomes again a popular and fashionable activity in Europe after gathering practices have been increasingly abandoned over the last decades. Recent ethnobotanical research documented a diversity of gathering practices from people of diverse socio-economic and cultural backgrounds who gather in urban and rural areas. Few efforts were though made to study the motivations for gathering wild plants and to understand the resurgent popularity of wild plant gathering....

  14. Pollination biology in a tropical high-altitude grassland in Brazil: Interactions at the community level

    OpenAIRE

    Freitas, L; Sazima, M

    2006-01-01

    Surveys of local assemblages of plants and their pollinators are among the most useful ways to evaluate specialization in pollination and to discuss the patterns of plant-pollinator interactions among ecosystems. The high-altitude grasslands from southeastern Brazil constitute diminutive island-like formations surrounded by montane rainforests. We registered the floral traits of 124 species from the Serra da Bricaina grasslands (about 60% of the animal-pollinated species of this flora), and d...

  15. Pollinator interactions with yellow starthistle (Centaurea solstitialis across urban, agricultural, and natural landscapes.

    Directory of Open Access Journals (Sweden)

    Misha Leong

    Full Text Available Pollinator-plant relationships are found to be particularly vulnerable to land use change. Yet despite extensive research in agricultural and natural systems, less attention has focused on these interactions in neighboring urban areas and its impact on pollination services. We investigated pollinator-plant interactions in a peri-urban landscape on the outskirts of the San Francisco Bay Area, California, where urban, agricultural, and natural land use types interface. We made standardized observations of floral visitation and measured seed set of yellow starthistle (Centaurea solstitialis, a common grassland invasive, to test the hypotheses that increasing urbanization decreases 1 rates of bee visitation, 2 viable seed set, and 3 the efficiency of pollination (relationship between bee visitation and seed set. We unexpectedly found that bee visitation was highest in urban and agricultural land use contexts, but in contrast, seed set rates in these human-altered landscapes were lower than in natural sites. An explanation for the discrepancy between floral visitation and seed set is that higher plant diversity in urban and agricultural areas, as a result of more introduced species, decreases pollinator efficiency. If these patterns are consistent across other plant species, the novel plant communities created in these managed landscapes and the generalist bee species that are favored by human-altered environments will reduce pollination services.

  16. The conservation and restoration of wild bees.

    Science.gov (United States)

    Winfree, Rachael

    2010-05-01

    Bees pollinate most of the world's wild plant species and provide economically valuable pollination services to crops; yet knowledge of bee conservation biology lags far behind other taxa such as vertebrates and plants. There are few long-term data on bee populations, which makes their conservation status difficult to assess. The best-studied groups are the genus Bombus (the bumble bees), and bees in the EU generally; both of these are clearly declining. However, it is not known to what extent these groups represent the approximately 20,000 species of bees globally. As is the case for insects in general, bees are underrepresented in conservation planning and protection efforts. For example, only two bee species are on the global IUCN Red List, and no bee is listed under the U.S. Endangered Species Act, even though many bee species are known to be in steep decline or possibly extinct. At present, bee restoration occurs mainly in agricultural contexts, funded by government programs such as agri-environment schemes (EU) and the Farm Bill (USA). This is a promising approach given that many bee species can use human-disturbed habitats, and bees provide valuable pollination services to crops. However, agricultural restorations only benefit species that persist in agricultural landscapes, and they are more expensive than preserving natural habitat elsewhere. Furthermore, such restorations benefit bees in only about half of studied cases. More research is greatly needed in many areas of bee conservation, including basic population biology, bee restoration in nonagricultural contexts, and the identification of disturbance-sensitive bee species.

  17. Effects of honey bee (Hymenoptera: Apidae) and bumble bee (Hymenoptera: Apidae) presence on cranberry (Ericales: Ericaceae) pollination.

    Science.gov (United States)

    Evans, E C; Spivak, M

    2006-06-01

    Honey bees, Apis mellifera L., are frequently used to pollinate commercial cranberries, Vaccinium macrocarpon Ait., but information is lacking on the relative contribution of honey bees and native bees, the effects of surrounding vegetation on bee visitation, and on optimal timing for honey bee introduction. We begin with a descriptive study of numbers of honey bees, bumble bees, and other bees visiting cranberry blossoms, and their subsequent effect on cranberry yield, on three cranberry properties in 1999. The property surrounded by agricultural land, as opposed to wetlands and woodlands, had fewer numbers of all bee types. In 2000, one property did not introduce honey bee colonies, providing an opportunity to document the effect of lack of honey bees on yield. With no honey bees, plants along the edge of the bed had significantly higher berry weights compared with nonedge plants, suggesting that wild pollinators were only effective along the edge. Comparing the same bed between 1999, with three honey bee colonies per acre, and 2000, with no honey bees, we found a significant reduction in average berry size. In 2000, we compared stigma loading on properties with and without honey bees. Significantly more stigmas received the minimum number of tetrads required for fruit set on the property with honey bees. Significantly more tetrads were deposited during mid-bloom compared with early bloom, indicating that mid-bloom was the best time to have honey bees present. This study emphasizes the importance and effectiveness of honey bees as pollinators of commercial size cranberry plantings.

  18. Medicinal and wild food plants of Marmara Island (Balikesir – Turkey

    Directory of Open Access Journals (Sweden)

    Gizem Bulut

    2016-06-01

    Full Text Available Medicinal and wild food plants have always played an important role in people’s lives especially in rural areas. Similar situation can be said for islands due to the reason of them being isolated from mainland. This paper reports an ethnobotanical investigations performed in 2009 and 2014 to determine medicinal and wild food plants of Marmara Island. A total of 30 individuals were interviewed (19 men, 11 women. Totally, 22 plants are recorded as used as traditional folk medicine for the region, and nine of these are also used as a source of wild food. Furthermore, 18 taxa are wild sources of nutrition for the area. The plants most commonly used in the region as medicinal remedies were Salvia fruticosa, Hypericum perforatum, Ficus carica, and Mentha spicata. Plants are mostly used for the treatment of abdominal pain, the common cold, and haemorrhoids. The species most commonly used for food are: Salvia fruticosa, Arbutus unedo, Rhus coriaria, and Rubus sanctus. This ethnobotanical study conducted in this island will enable the traditional use of wild plants both as food sources and herbal remedies to be passed on to future generations.

  19. Pterandra pyroidea: a case of pollination shift within Neotropical Malpighiaceae

    Science.gov (United States)

    Cappellari, Simone C.; Haleem, Muhammad A.; Marsaioli, Anita J.; Tidon, Rosana; Simpson, Beryl B.

    2011-01-01

    Background and Aims Most Neotropical species of Malpighiaceae produce floral fatty oils in calyx glands to attract pollinating oil-collecting bees, which depend on this resource for reproduction. This specialized type of pollination system tends to be lost in members of the family that occur outside the geographic distribution (e.g. Africa) of Neotropical oil-collecting bees. This study focused on the pollination ecology, chemical ecology and reproductive biology of an oil flower species, Pterandra pyroidea (Malpighiaceae) from the Brazilian Cerrado. Populations of this species consist of plants with oil-secreting (glandular) flowers, plants with non-oil-secreting flowers (eglandular) or a mix of both plant types. This study specifically aims to clarify the role of eglandular morphs in this species. Methods Data on pollinators were recorded by in situ observations. Breeding system experiments were conducted by isolating inflorescences and by enzymatic reactions. Floral resources, pollen and floral oils offered by this species were analysed by staining and a combination of various spectroscopic methods. Key Results Eglandular flowers of P. pyroidea do not act as mimics of their oil-producing conspecifics to attract pollinators. Instead, both oil-producing and oil-free flowers depend on pollen-collecting bees for reproduction, and their main pollinators are bumble-bees. Floral oils produced by glandular flowers are less complex than those described in closely related genera. Conclusions Eglandular flowers represent a shift in the pollination system in which oil is being lost and pollen is becoming the main reward of P. pyroidea flowers. Pollination shifts of this kind have hitherto not been demonstrated empirically within Neotropical Malpighiaceae and this species exhibits an unusual transition from a specialized towards a generalized pollination system in an area considered the hotspot of oil-collecting bee diversity in the Neotropics. Transitions of this type

  20. Projected climate change threatens pollinators and crop production in Brazil.

    Directory of Open Access Journals (Sweden)

    Tereza Cristina Giannini

    Full Text Available Animal pollination can impact food security since many crops depend on pollinators to produce fruits and seeds. However, the effects of projected climate change on crop pollinators and therefore on crop production are still unclear, especially for wild pollinators and aggregate community responses. Using species distributional modeling, we assessed the effects of climate change on the geographic distribution of 95 pollinator species of 13 Brazilian crops, and we estimated their relative impacts on crop production. We described these effects at the municipality level, and we assessed the crops that were grown, the gross production volume of these crops, the total crop production value, and the number of inhabitants. Overall, considering all crop species, we found that the projected climate change will reduce the probability of pollinator occurrence by almost 0.13 by 2050. Our models predict that almost 90% of the municipalities analyzed will face species loss. Decreases in the pollinator occurrence probability varied from 0.08 (persimmon to 0.25 (tomato and will potentially affect 9% (mandarin to 100% (sunflower of the municipalities that produce each crop. Municipalities in central and southern Brazil will potentially face relatively large impacts on crop production due to pollinator loss. In contrast, some municipalities in northern Brazil, particularly in the northwestern Amazon, could potentially benefit from climate change because pollinators of some crops may increase. The decline in the probability of pollinator occurrence is found in a large number of municipalities with the lowest GDP and will also likely affect some places where crop production is high (20% to 90% of the GDP and where the number of inhabitants is also high (more than 6 million people. Our study highlights key municipalities where crops are economically important and where pollinators will potentially face the worst conditions due to climate change. However, pollinators

  1. Yucca aloifolia (Asparagaceae) opts out of an obligate pollination mutualism.

    Science.gov (United States)

    Rentsch, Jeremy D; Leebens-Mack, Jim

    2014-12-01

    • According to Cope's 'law of the unspecialized' highly dependent species interactions are 'evolutionary dead ends,' prone to extinction because reversion to more generalist interactions is thought to be unlikely. Cases of extreme specialization, such as those seen between obligate mutualists, are cast as evolutionarily inescapable, inevitably leading to extinction rather than diversification of participating species. The pollination mutualism between Yucca plants and yucca moths (Tegeticula and Parategeticula) would seem to be locked into such an obligate mutualism. Yucca aloifolia populations, however, can produce large numbers of fruit lacking moth oviposition scars. Here, we investigate the pollination ecology of Y. aloifolia, in search of the non-moth pollination of a Yucca species.• We perform pollinator exclusion studies on Yucca aloifolia and a sympatric yucca species, Y. filamentosa. We then perform postvisit exclusion treatments, an analysis of dissected fruits, and a fluorescent dye transfer experiment.• As expected, Yucca filamentosa plants set fruit only when inflorescences were exposed to crepuscular and nocturnal pollinating yucca moths. In contrast, good fruit set was observed when pollinators were excluded from Y. aloifolia inflorescences from dusk to dawn, and no fruit set was observed when pollinators were excluded during the day. Follow up experiments indicated that European honeybees (Apis mellifera) were passively yet effectively pollinating Y. aloifolia flowers.• These results indicate that even highly specialized mutualisms may not be entirely obligate interactions or evolutionary dead ends. © 2014 Botanical Society of America, Inc.

  2. The use of wild plants as food in pre-industrial Sweden

    Directory of Open Access Journals (Sweden)

    Ingvar Svanberg

    2012-12-01

    Full Text Available This paper is a review of the actual gathering and use of wild edible plants in the 18th and 19th centuries, with a brief concluding discussion on the present day use of wild plants as food within Sweden. The peasants and the nomads in pre-industrial Sweden utilised very few wild plant taxa as food. Many even despised the wild fruits and green plants. Some plants and fruits were earlier mostly eaten fresh on the spot, or gathered for consumption in bread, gruel or soup. Other fruits were dried or preserved in other ways. In times of food shortages the amount of wild plants increased in the diet, but still the peasantry and nomads were often able to use fish and game to provide enough nutrients. With access to cheap sugar in the early 20th century wild fruits (Vaccinium myrtillus L., V. vitis-idaea L., and Rubus chamaemorus L. increased in importance, especially among urban-dwellers and within food industry. In the last few decades fungi have also become part of the urban diet. Fifty years ago working class people gathered only Cantharellus cibarius (Fr. and occasionally Boletus edulis Bull. Nowadays more taxa are utilised within the Swedish households, and especially the easy to pick Cantharellus tubaeformis (Pers. has become very popular recently. Harvesting fruits and mushrooms in the forests is a popular pastime for many urban people, but also a source of income for immigrants and especially foreign seasonal labour. The only traditional green wild food plant that is regularly eaten in contemporary Sweden is Urtica dioica L.

  3. A preliminary synthesis of pollination biology in the Cape flora

    CSIR Research Space (South Africa)

    Rebelo, AG

    1987-01-01

    Full Text Available biology are covered. Chapters reviewing plant breeding systems, insect, bird, mammal and wind pollination, and gene flow are introduced by a perspective on the role of the fossil record in pollination biology. A speculative chapter on the constraints...

  4. Sunflower (Helianthus annuus) pollination in California's Central Valley is limited by native bee nest site location.

    Science.gov (United States)

    Sardiñas, Hillary S; Tom, Kathleen; Ponisio, Lauren Catherine; Rominger, Andrew; Kremen, Claire

    2016-03-01

    The delivery of ecosystem services by mobile organisms depends on the distribution of those organisms, which is, in turn, affected by resources at local and landscape scales. Pollinator-dependent crops rely on mobile animals like bees for crop production, and the spatial relationship between floral resources and nest location for these central-place foragers influences the delivery of pollination services. Current models that map pollination coverage in agricultural regions utilize landscape-level estimates of floral availability and nesting incidence inferred from expert opinion, rather than direct assessments. Foraging distance is often derived from proxies of bee body size, rather than direct measurements of foraging that account for behavioral responses to floral resource type and distribution. The lack of direct measurements of nesting incidence and foraging distances may lead to inaccurate mapping of pollination services. We examined the role of local-scale floral resource presence from hedgerow plantings on nest incidence of ground-nesting bees in field margins and within monoculture, conventionally managed sunflower fields in California's Central Valley. We tracked bee movement into fields using fluorescent powder. We then used these data to simulate the distribution of pollination services within a crop field. Contrary to expert opinion, we found that ground-nesting native bees nested both in fields and edges, though nesting rates declined with distance into field. Further, we detected no effect of field-margin floral enhancements on nesting. We found evidence of an exponential decay rate of bee movement into fields, indicating that foraging predominantly occurred in less than 1% of medium-sized bees' predicted typical foraging range. Although we found native bees nesting within agricultural fields, their restricted foraging movements likely centralize pollination near nest sites. Our data thus predict a heterogeneous distribution of pollination services

  5. Micro-mesh fabric pollination bags for switchgrass

    Science.gov (United States)

    Pollination bags for making controlled crosses between switchgrass plants were made from a polyester micro-mesh fabric with a mesh size of 41 µm which is smaller than the mean reported 43 µm diameter of switchgrass pollen. When used in paired plant crosses between switchgrass plants, the mean amoun...

  6. Pollinator diversity (Hymenoptera and Diptera in semi-natural habitats in Serbia during summer

    Directory of Open Access Journals (Sweden)

    Mudri-Stojnić Sonja

    2012-01-01

    Full Text Available The aim of this study was to assess species diversity and population abundance of the two main orders of pollinating insects, Hymenoptera and Diptera. The survey was conducted in 16 grassland fragments within agro-ecosystems in Vojvodina, as well as in surrounding fields with mass-flowering crops. Pollinators were identified and the Shannon-Wiener Diversity Index was used to measure their diversity. Five families, 7 subfamilies, 26 genera and 63 species of insects were recorded. All four big pollinator groups investigated were recorded; hoverflies were the most abundant with 32% of the total number of individuals, followed by wild bees - 29%, honeybees - 23% and bumblebees with 16%.

  7. A gravity model for the spread of a pollinator-borne plant pathogen.

    Science.gov (United States)

    Ferrari, Matthew J; Bjørnstad, Ottar N; Partain, Jessica L; Antonovics, Janis

    2006-09-01

    Many pathogens of plants are transmitted by arthropod vectors whose movement between individual hosts is influenced by foraging behavior. Insect foraging has been shown to depend on both the quality of hosts and the distances between hosts. Given the spatial distribution of host plants and individual variation in quality, vector foraging patterns may therefore produce predictable variation in exposure to pathogens. We develop a "gravity" model to describe the spatial spread of a vector-borne plant pathogen from underlying models of insect foraging in response to host quality using the pollinator-borne smut fungus Microbotryum violaceum as a case study. We fit the model to spatially explicit time series of M. violaceum transmission in replicate experimental plots of the white campion Silene latifolia. The gravity model provides a better fit than a mean field model or a model with only distance-dependent transmission. The results highlight the importance of active vector foraging in generating spatial patterns of disease incidence and for pathogen-mediated selection for floral traits.

  8. Floral scent and pollinators of the holoparasite Pilostyles thurberi (Apodanthaceae

    Directory of Open Access Journals (Sweden)

    Sedonia D Sipes

    2014-02-01

    Full Text Available Floral scent is likely important to the pollination of parasitic plants, despite that it has not been well-studied. We studied the pollination ecology of the North American stem holoparasite Pilostyles thurberi (Apodanthaceae at two field sites in Texas. To identify effective pollinators, we collected floral visitors to P. thurberi flowers, observed their foraging behavior, and looked for P. thurberi pollen on their bodies. Augochloropsis metallica bees (Halictidae and eumenine potter wasps (Vespidae were pollinators. P. thurberi flowers are visually inconspicuous but produce a strong fruity fragrance. GC/MS analysis of whole floral extracts and dynamic headspace samples revealed the fragrance to be an unusually simple bouquet of raspberry ketone and several eugenols. Comparison of scent profiles to those from uninfected host plants (Dalea formosa allowed putative separation of parasite and host volatiles. This is the first report of the constituents of floral fragrance in Apodanthaceae.

  9. Pollen loads and specificity of native pollinators of lowbush blueberry.

    Science.gov (United States)

    Moisan-Deserres, J; Girard, M; Chagnon, M; Fournier, V

    2014-06-01

    The reproduction of lowbush blueberry (Vaccinium angustifolium Aiton) is closely tied to insect pollination, owing to self-incompatibility. Many species are known to have greater pollination efficiency than the introduced Apis mellifera L., commonly used for commercial purposes. In this study, we measured the pollen loads of several antophilous insect species, mostly Apoidea and Syrphidae, present in four lowbush blueberry fields in Lac-St-Jean, Québec. To measure pollen loads and species specificity toward V. angustifolium, we net-collected 627 specimens of pollinators, retrieved their pollen loads, identified pollen taxa, and counted pollen grains. We found that the sizes of pollen loads were highly variable among species, ranging from a few hundred to more than 118,000 pollen grains per individual. Bombus and Andrena species in particular carried large amounts of Vaccinium pollen and thus may have greater pollination efficiency. Also, two species (Andrena bradleyi Viereck and Andrena carolina Viereck) showed nearly monolectic behavior toward lowbush blueberry. Finally, we identified alternative forage plants visited by native pollinators, notably species of Acer, Rubus, Ilex mucronata, Ledum groenlandicum, and Taraxacum. Protecting these flowering plants should be part of management practices to maintain healthy pollinator communities in a lowbush blueberry agroecosystem.

  10. Comparative Proteomics Analyses of Pollination Response in Endangered Orchid Species Dendrobium Chrysanthum

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-11-01

    Full Text Available Pollination is a crucial stage in plant reproductive process. The self-compatibility (SC and self-incompatibility (SI mechanisms determined the plant genetic diversity and species survival. D. chrysanthum is a highly valued ornamental and traditional herbal orchid in Asia but has been declared endangered. The sexual reproduction in D. chrysanthum relies on the compatibility of pollination. To provide a better understanding of the mechanism of pollination, the differentially expressed proteins (DEP between the self-pollination (SP and cross-pollination (CP pistil of D. chrysanthum were investigated using proteomic approaches—two-dimensional electrophoresis (2-DE coupled with tandem mass spectrometry technique. A total of 54 DEP spots were identified in the two-dimensional electrophoresis (2-DE maps between the SP and CP. Gene ontology analysis revealed an array of proteins belonging to following different functional categories: metabolic process (8.94%, response to stimulus (5.69%, biosynthetic process (4.07%, protein folding (3.25% and transport (3.25%. Identification of these DEPs at the early response stage of pollination will hopefully provide new insights in the mechanism of pollination response and help for the conservation of the orchid species.

  11. Floral contrivances and specialised pollination mechanism strongly influence mixed mating in Wrightia tomentosa (Apocynaceae).

    Science.gov (United States)

    Barman, C; Singh, V K; Das, S; Tandon, R

    2018-05-01

    Reproductive success of a plant species is largely influenced by the outcome of mating pattern in a population. It is believed that a significantly larger proportion of animal-pollinated plants have evolved a mixed-mating strategy, the extent of which may vary among species. It is thus pertinent to investigate the key contributors to mating success, especially to identify the reproductive constraints in depauperate populations of threatened plant species. We examined the contribution of floral architecture, pollination mechanism and breeding system on the extent of outcrossing rate in a near-threatened tree species, Wrightia tomentosa. The breeding system was ascertained from controlled pollination experiments. In order to determine outcrossing rate, 60 open-pollinated progeny were analysed using an AFLP markers. Although the trees are self-compatible, herkogamy and compartmentalisation of pollen and nectar in different chambers of the floral tube effectively prevent spontaneous autogamy. Pollination is achieved through specialised interaction with moths. Differential foraging behaviour of settling moths and hawkmoths leads to different proportions of geitonogamous and xenogamous pollen on the stigma. However, most open-pollinated progeny were the result of xenogamy (outcrossing rate, tm = 0.68). The study shows that floral contrivances and pollination system have a strong influence on mating pattern. The differential foraging behaviour of the pollinators causes deposition of a mixture of self- and cross-pollen to produce a mixed brood. Inbreeding depression and geitonogamy appear to play a significant role in sustaining mixed mating in this species. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  12. Separating selection by diurnal and nocturnal pollinators on floral display and spur length in Gymnadenia conopsea.

    Science.gov (United States)

    Sletvold, Nina; Trunschke, Judith; Wimmergren, Carolina; Agren, Jon

    2012-08-01

    Most plants attract multiple flower visitors that may vary widely in their effectiveness as pollinators. Floral evolution is expected to reflect interactions with the most important pollinators, but few studies have quantified the contribution of different pollinators to current selection on floral traits. To compare selection mediated by diurnal and nocturnal pollinators on floral display and spur length in the rewarding orchid Gymnadenia conopsea, we manipulated the environment by conducting supplemental hand-pollinations and selective pollinator exclusions in two populations in central Norway. In both populations, the exclusion of diurnal pollinators significantly reduced seed production compared to open pollination, whereas the exclusion of nocturnal pollinators did not. There was significant selection on traits expected to influence pollinator attraction and pollination efficiency in both the diurnal and nocturnal pollination treatment. The relative strength of selection among plants exposed to diurnal and nocturnal visitors varied among traits and populations, but the direction of selection was consistent. The results suggest that diurnal pollinators are more important than nocturnal pollinators for seed production in the study populations, but that both categories contribute to selection on floral morphology. The study illustrates how experimental manipulations can link specific categories of pollinators to observed selection on floral traits, and thus improve our understanding of how species interactions shape patterns of selection.

  13. Microorganisms transported by ants induce changes in floral nectar composition of an ant-pollinated plant.

    Science.gov (United States)

    de Vega, Clara; Herrera, Carlos M

    2013-04-01

    Interactions between plants and ants abound in nature and have significant consequences for ecosystem functioning. Recently, it has been suggested that nectar-foraging ants transport microorganisms to flowers; more specifically, they transport yeasts, which can potentially consume sugars and alter nectar composition. Therefore, ants could indirectly change nectar sugar profile, an important floral feature involved in the plant-pollinator mutualism. But this novel role for ants has never been tested. We here investigate the effects of nectarivorous ants and their associated yeasts on the floral nectar sugar composition of an ant-pollinated plant. Differences in the nectar sugar composition of ant-excluded and ant-visited flowers were examined in 278 samples by using high-performance liquid-chromatography. The importance of the genetic identity and density of ant-transported basidiomycetous and ascomycetous yeasts on the variation of nectar traits was also evaluated. Ant visitation had significant effects on nectar sugar composition. The nectar of ant-visited flowers contained significantly more fructose, more glucose, and less sucrose than the nectar of ant-excluded flowers, but these effects were context dependent. Nectar changes were correlated with the density of yeast cells in nectar. The magnitude of the effects of ant-transported ascomycetes was much higher than that of basiodiomycetes. Ants and their associated yeasts induce changes in nectar sugar traits, reducing the chemical control of the plant over this important floral trait. The potential relevance of this new role for ants as indirect nectar modifiers is a rich topic for future research into the ecology of ant-flower interactions.

  14. Effects of open- and self-pollination treatments on genetic estimations in maize diallel experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kahriman, F.; Egesel, C.O.; Zorlu, E.

    2015-07-01

    This study investigated the effects of open- and self-pollination treatments on genetic estimations and kernel biochemical content in a maize diallel experiment. A 7×7 complete reciprocal diallel set (7 parents and 42 hybrids) was used as plant material. Measured traits were: kernel weight per plant, protein content, oil content and carbohydrate content. General combining ability (GCA), specific combining ability (SCA), maternal effects (MAT), non-maternal effects (NMAT) and heterosis values were compared in open- and self-pollination treatments for measured traits. Results showed that the pollination treatments had a significant effect on all investigated traits. Parental lines and hybrid combinations gave different responses. Parents had relatively higher protein and oil content in self-pollination but hybrids had lower values in self-pollination compared with open-pollination. A considerable number of genotypes showed significant differences for genetic estimations (GCA, SCA, MAT, NMAT) and heterosis between open- and self-pollination treatments. Overall, findings suggest that evaluation of kernel quality traits should be made on selfed ear samples; however, evaluation for yield should be carried out on open-pollinated samples. (Author)

  15. Drought, pollen and nectar availability, and pollination success.

    Science.gov (United States)

    Waser, Nickolas M; Price, Mary V

    2016-06-01

    Pollination success of animal-pollinated flowers depends on rate of pollinator visits and on pollen deposition per visit, both of which should vary with the pollen and nectar "neighborhoods" of a plant, i.e., with pollen and nectar availability in nearby plants. One determinant of these neighborhoods is per-flower production of pollen and nectar, which is likely to respond to environmental influences. In this study, we explored environmental effects on pollen and nectar production and on pollination success in order to follow up a surprising result from a previous study: flowers of Ipomopsis aggregata received less pollen in years of high visitation by their hummingbird pollinators. A new analysis of the earlier data indicated that high bird visitation corresponded to drought years. We hypothesized that drought might contribute to the enigmatic prior result if it decreases both nectar and pollen production: in dry years, low nectar availability could cause hummingbirds to visit flowers at a higher rate, and low pollen availability could cause them to deposit less pollen per visit. A greenhouse experiment demonstrated that drought does reduce both pollen and nectar production by I. aggregata flowers. This result was corroborated across 6 yr of variable precipitation and soil moisture in four unmanipulated field populations. In addition, experimental removal of pollen from flowers reduced the pollen received by nearby flowers. We conclude that there is much to learn about how abiotic and biotic environmental drivers jointly affect pollen and nectar production and availability, and how this contributes to pollen and nectar neighborhoods and thus influences pollination success.

  16. Rain forest provides pollinating beetles for atemoya crops.

    Science.gov (United States)

    Blanche, Rosalind; Cunningham, Saul A

    2005-08-01

    Small beetles, usually species of Nitidulidae, are the natural pollinators of atemoya (Annona squamosa L. x A. cherimola Mill. hybrids; custard apple) flowers but commercial atemoya growers often need to carry out labor-intensive hand pollination to produce enough high-quality fruit. Because Australian rain forest has plant species in the same family as atemoya (Annonaceae) and because many rain forest plants are beetle pollinated, we set out to discover whether tropical rain forest in far north Queensland harbors beetles that could provide this ecosystem service for atemoya crops. Orchards were chosen along a gradient of increasing distance from tropical rain forest (0.1-24 km). We sampled 100 flowers from each of nine atemoya orchards and determined the identity and abundance of insects within each flower. To assess the amount of pollination due to insects, we bagged six flowers per tree and left another six flowers per tree accessible to insects on 10 trees at an orchard near rain forest. Results indicated that atemoya orchards pollinators that are likely to originate in tropical rain forest. These native beetles occurred reliably enough in crops near rain forest to have a positive effect on the quantity of fruit produced but their contribution was not great enough to satisfy commercial production needs. Management changes, aimed at increasing native beetle abundance in crops, are required before these beetles could eliminate the need for growers to hand pollinate atemoya flowers. Appreciation of the value of this resource is necessary if we are to develop landscapes that both conserve native biodiversity and support agricultural production.

  17. Bees substitute birds in pollination of ornitogamous climber Campsis radicans (L. Seem. in Poland

    Directory of Open Access Journals (Sweden)

    Iwona Kołodziejska-Degórska

    2011-01-01

    Full Text Available Campsis radicans is an attractive climber with typical ornitogamous flowers, native to North America. In natural conditions this out-crossed plant is pollinated mostly by hummingbirds. In Poland, where C. radicans is cultivated as ornamental, it rarely sets seeds. The questions addressed in the present study were: (1 What animals pollinate its flowers in Poland?, and (2 What is the reason for infrequent fruit set? Field studies conducted in five localities in Poland showed that the principal pollinator is Apis mellifera, and the lack of seeds is usually caused by pollinator limitation or absence of genetically different pollen donor plants.

  18. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops.

    Science.gov (United States)

    Wu, Yongzhong; Fox, Tim W; Trimnell, Mary R; Wang, Lijuan; Xu, Rui-Ji; Cigan, A Mark; Huffman, Gary A; Garnaat, Carl W; Hershey, Howard; Albertsen, Marc C

    2016-03-01

    We have developed a novel hybridization platform that utilizes nuclear male sterility to produce hybrids in maize and other cross-pollinating crops. A key component of this platform is a process termed Seed Production Technology (SPT). This process incorporates a transgenic SPT maintainer line capable of propagating nontransgenic nuclear male-sterile lines for use as female parents in hybrid production. The maize SPT maintainer line is a homozygous recessive male sterile transformed with a SPT construct containing (i) a complementary wild-type male fertility gene to restore fertility, (ii) an α-amylase gene to disrupt pollination and (iii) a seed colour marker gene. The sporophytic wild-type allele complements the recessive mutation, enabling the development of pollen grains, all of which carry the recessive allele but with only half carrying the SPT transgenes. Pollen grains with the SPT transgenes exhibit starch depletion resulting from expression of α-amylase and are unable to germinate. Pollen grains that do not carry the SPT transgenes are nontransgenic and are able to fertilize homozygous mutant plants, resulting in nontransgenic male-sterile progeny for use as female parents. Because transgenic SPT maintainer seeds express a red fluorescent protein, they can be detected and efficiently separated from seeds that do not contain the SPT transgenes by mechanical colour sorting. The SPT process has the potential to replace current approaches to pollen control in commercial maize hybrid seed production. It also has important applications for other cross-pollinating crops where it can unlock the potential for greater hybrid productivity through expanding the parental germplasm pool. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Correlations between environmental factors and wild bee behavior on alfalfa (Medicago sativa) in northwestern China.

    Science.gov (United States)

    Wang, Xiaojuan; Liu, Hongping; Li, Xiaoxia; Song, Yu; Chen, Li; Jin, Liang

    2009-10-01

    To discover the effect of environmental factors on pollinator visitation to flowering Medicago sativa, several field experiments were designed to examine the diurnal movement patterns of wild bee species in the Hexi Corridor of northwestern China. Our study results showed that Megachile abluta, M. spissula, and Xylocopa valga showed unimodal diurnal foraging behavior, whereas Andrena parvula and Anthophora melanognatha showed bimodal diurnal foraging behavior. Correlation analysis indicated that diurnal foraging activities of pollinators were significantly correlated with environmental factors. Correlations of foraging activities versus environmental factors for M. abluta, M. spissula, and X. valga best fit a linear model, whereas those of A. parvula and A. melanognatha best fit a parallel quadratic model. Results of this study indicated that solitary wild bees such as M. abluta, M. spissula, X. valga, A. parvula, and A. melanognatha are potential alfalfa pollinators in the Hexi Corridor. An understanding of the environmental factors that affect the behaviors of different wild bees foraging in alfalfa are basic to the utilization of solitary wild bees in a practical way for increased, or more consistent, pollination of alfalfa for seed production.

  20. Sensitivity of commercial pumpkin yield to potential decline among different groups of pollinating bees.

    Science.gov (United States)

    Pfister, Sonja C; Eckerter, Philipp W; Schirmel, Jens; Cresswell, James E; Entling, Martin H

    2017-05-01

    The yield of animal-pollinated crops is threatened by bee declines, but its precise sensitivity is poorly known. We therefore determined the yield dependence of Hokkaido pumpkin in Germany on insect pollination by quantifying: (i) the relationship between pollen receipt and fruit set and (ii) the cumulative pollen deposition of each pollinator group. We found that approximately 2500 pollen grains per flower were needed to maximize fruit set. At the measured rates of flower visitation, we estimated that bumblebees (21 visits/flower lifetime, 864 grains/visit) or honeybees (123 visits, 260 grains) could individually achieve maximum crop yield, whereas halictid bees are ineffective (11 visits, 16 grains). The pollinator fauna was capable of delivering 20 times the necessary amount of pollen. We therefore estimate that pumpkin yield was not pollination-limited in our study region and that it is currently fairly resilient to single declines of honeybees or wild bumblebees.

  1. High species richness of native pollinators in Brazilian tomato crops

    Directory of Open Access Journals (Sweden)

    C. M. Silva-Neto

    Full Text Available Abstract Pollinators provide an essential service to natural ecosystems and agriculture. In tomatoes flowers, anthers are poricidal, pollen may drop from their pore when flowers are shaken by the wind. However, bees that vibrate these anthers increase pollen load on the stigma and in fruit production. The present study aimed to identify the pollinator richness of tomato flowers and investigate their morphological and functional traits related to the plant-pollinator interaction in plantations of Central Brazil. The time of anthesis, flower duration, and the number and viability of pollen grains and ovules were recorded. Floral visitors were observed and collected. Flower buds opened around 6h30 and closed around 18h00. They reopened on the following day at the same time in the morning, lasting on average 48 hours. The highest pollen availability occurred during the first hours of anthesis. Afterwards, the number of pollen grains declined, especially between 10h00 to 12h00, which is consistent with the pollinator visitation pattern. Forty bee species were found in the tomato fields, 30 of which were considered pollinators. We found that during the flowering period, plants offered an enormous amount of pollen to their visitors. These may explain the high richness and amount of bees that visit the tomato flowers in the study areas. The period of pollen availability and depletion throughout the day overlapped with the bees foraging period, suggesting that bees are highly effective in removing pollen grains from anthers. Many of these grains probably land on the stigma of the same flower, leading to self-pollination and subsequent fruit development. Native bees (Exomalopsis spp. are effective pollinators of tomato flowers and are likely to contribute to increasing crop productivity. On the other hand, here tomato flowers offer large amounts of pollen resource to a high richness and amount of bees, showing a strong plant-pollinator interaction in the

  2. High species richness of native pollinators in Brazilian tomato crops.

    Science.gov (United States)

    Silva-Neto, C M; Bergamini, L L; Elias, M A S; Moreira, G L; Morais, J M; Bergamini, B A R; Franceschinelli, E V

    2017-01-01

    Pollinators provide an essential service to natural ecosystems and agriculture. In tomatoes flowers, anthers are poricidal, pollen may drop from their pore when flowers are shaken by the wind. However, bees that vibrate these anthers increase pollen load on the stigma and in fruit production. The present study aimed to identify the pollinator richness of tomato flowers and investigate their morphological and functional traits related to the plant-pollinator interaction in plantations of Central Brazil. The time of anthesis, flower duration, and the number and viability of pollen grains and ovules were recorded. Floral visitors were observed and collected. Flower buds opened around 6h30 and closed around 18h00. They reopened on the following day at the same time in the morning, lasting on average 48 hours. The highest pollen availability occurred during the first hours of anthesis. Afterwards, the number of pollen grains declined, especially between 10h00 to 12h00, which is consistent with the pollinator visitation pattern. Forty bee species were found in the tomato fields, 30 of which were considered pollinators. We found that during the flowering period, plants offered an enormous amount of pollen to their visitors. These may explain the high richness and amount of bees that visit the tomato flowers in the study areas. The period of pollen availability and depletion throughout the day overlapped with the bees foraging period, suggesting that bees are highly effective in removing pollen grains from anthers. Many of these grains probably land on the stigma of the same flower, leading to self-pollination and subsequent fruit development. Native bees (Exomalopsis spp.) are effective pollinators of tomato flowers and are likely to contribute to increasing crop productivity. On the other hand, here tomato flowers offer large amounts of pollen resource to a high richness and amount of bees, showing a strong plant-pollinator interaction in the study agroecosystem.

  3. Flotation preferentially selects saccate pollen during conifer pollination.

    Science.gov (United States)

    Leslie, Andrew B

    2010-10-01

    • Among many species of living conifers the presence of pollen with air bladders (saccate pollen) is strongly associated with downward-facing ovules and the production of pollination drops. This combination of features enables saccate pollen grains captured in the pollination drop to float upwards into the ovule. Despite the importance of this mechanism in understanding reproduction in living conifers and in extinct seed plants with similar morphologies, experiments designed to test its effectiveness have yielded equivocal results. • In vitro and in vivo pollination experiments using saccate and nonsaccate pollen were performed using modeled ovules and two Pinus species during their natural pollination period. • Buoyant saccate pollen readily floated through aqueous droplets, separating these grains from nonbuoyant pollen and spores. Ovules that received saccate pollen, nonsaccate pollen or a mixture of both all showed larger amounts and higher proportions of saccate pollen inside ovules after drop secretion. • These results demonstrate that flotation is an effective mechanism of pollen capture and transport in gymnosperms, and suggest that the prevalence of saccate grains and downward-facing ovules in the evolutionary history of seed plants is a result of the widespread use of this mechanism.

  4. Inbreeding in Mimulus guttatus reduces visitation by bumble bee pollinators.

    Directory of Open Access Journals (Sweden)

    David E Carr

    Full Text Available Inbreeding in plants typically reduces individual fitness but may also alter ecological interactions. This study examined the effect of inbreeding in the mixed-mating annual Mimulus guttatus on visitation by pollinators (Bombus impatiens in greenhouse experiments. Previous studies of M. guttatus have shown that inbreeding reduced corolla size, flower number, and pollen quantity and quality. Using controlled crosses, we produced inbred and outbred families from three different M. guttatus populations. We recorded the plant genotypes that bees visited and the number of flowers probed per visit. In our first experiment, bees were 31% more likely to visit outbred plants than those selfed for one generation and 43% more likely to visit outbred plants than those selfed for two generations. Inbreeding had only a small effect on the number of flowers probed once bees arrived at a genotype. These differences were explained partially by differences in mean floral display and mean flower size, but even when these variables were controlled statistically, the effect of inbreeding remained large and significant. In a second experiment we quantified pollen viability from inbred and self plants. Bees were 37-54% more likely to visit outbred plants, depending on the population, even when controlling for floral display size. Pollen viability proved to be as important as floral display in predicting pollinator visitation in one population, but the overall explanatory power of a multiple regression model was weak. Our data suggested that bees use cues in addition to display size, flower size, and pollen reward quality in their discrimination of inbred plants. Discrimination against inbred plants could have effects on plant fitness and thereby reinforce selection for outcrossing. Inbreeding in plant populations could also reduce resource quality for pollinators, potentially resulting in negative effects on pollinator populations.

  5. Re-establishing pollinator habitat on mined lands using the forestry reclamation approach

    Science.gov (United States)

    Tammy Horn; Patrick Angel; Carl Zipper; Michael Ulyshen; Michael French; Jim Burger; Mary Beth. Adams

    2017-01-01

    Pollinators are animals that play an essential role in the reproduction of many plants by transferring genetic material, in the form of pollen, from male to female flower parts. Because pollinator communities are under threat both in the US and worldwide, there is great interest in incorporating the needs of pollinators into habitat restoration plans. Forests provide...

  6. Edible Wild Plants from Neighborhood to Wilderness: A Catalyst for Experiential Education.

    Science.gov (United States)

    Kallas, John

    Wild foods are ubiquitous motivational tools for teaching botany, environmental education, cultural foodways, and survival. Edible wild plants are wild plants endowed with one or more parts that can be used for food if gathered at the appropriate stage of growth and properly prepared. The components of this definition are discussed with…

  7. Pollinator guild organization and its consequences for reproduction in three synchronopatric species of Tibouchina (Melastomataceae

    Directory of Open Access Journals (Sweden)

    Ana Maria Franco

    2011-09-01

    Full Text Available Pollinator guild organization and its consequences for reproduction in three synchronopatric species of Tibouchina (Melastomataceae. In co-flowering plant species, pollinator sharing can result in interspecific pollen transfer and fecundity reduction. Competition will be relaxed whenever there is a large amount of initial pollen supply or if each plant species occupies different habitat patches. Reproduction in Tibouchina cerastifolia (Naudin Cogn., T. clinopodifolia (DC. Cogn. and T. gracilis (Bonpl. Cogn. was studied in an area of Atlantic rainforest to examine whether synchronopatry induces time partitioning among pollinator species. Eleven bee species comprised the pollinator guild. Among pollinators, there were overlaps in bee species composition and in flower visitation time. Direct competition for pollen in Tibouchina Aubl. at the study site seems to lead to different activity periods among the bee species, in which Bombus pauloensis Friese,1913 was most active earlier, while the other species were active later in the day. Bombus pauloensis, the largest bee species recorded on Tibouchina flowers, was the most important and efficient pollinator. This species harvested pollen before the other species and had the shortest handling time. The plants reproduced sexually by selfing or outcrossing, and hybridization was not avoided by incompatibility reactions at the style. The avoidance of direct competition for pollen and no pollinator partitioning among the synchronopatric species of Tibouchina may reflect a facilitative interaction among these pioneer plants.

  8. Floral scent composition predicts bee pollination system in five butterfly bush (Buddleja, Scrophulariaceae) species.

    OpenAIRE

    Gong, W-C; Chen, G; Vereecken, Nicolas; Dunn, B L; Ma, Y-P; Sun, W-B

    2014-01-01

    Traditionally, plant-pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino-Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species ex...

  9. Pollinators shift to nectar robbers when florivory occurs, with effects on reproductive success in Iris bulleyana (Iridaceae).

    Science.gov (United States)

    Ye, Z-M; Jin, X-F; Wang, Q-F; Yang, C-F; Inouye, D W

    2017-09-01

    Studies have indicated that florivory and nectar robbing may reduce reproductive success of host plants. However, whether and how these effects might interact when plants are simultaneously attacked by both florivores and nectar robbers still needs further investigation. We used Iris bulleyana to detect the interactions among florivory, nectar robbing and pollination, and moreover, their effects on plant reproductive success. Field investigations and hand-pollination treatments were conducted on two experimental plots from a natural population, in which Experimental plot was protected from florivores and Control plot was not manipulated. The flower calyx was bitten by sawflies to consume the nectary, and three bumblebee species were pollinators. In addition, the short-tongued pollinator, Bombus friseanus, was the only robber when there was a hole made by a sawfly. The bumblebee had significantly shortened flower handling time when robbing, as compared to legitimate visits. Pollinator visitation and seed production decreased significantly in damaged flowers. However, seed production per flower after supplementary hand-pollination did not differ significantly between damaged and undamaged flowers. Compared to the Experimental plot, bumblebees visited fewer flowers per plant in a foraging bout in the Control plot. The flowers damaged by florivory allowed B. friseanus to shift to a nectar robber. Florivory and nectar robbing collectively decreased plant reproductive success by consuming nectar resources, which may reduce attractiveness to pollinators of the damaged flowers. However, the changes in pollinator behaviour might be beneficial to the plant by reducing the risk of geitonogamous mating. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Demonstration of pollinator-mediated competition between two native Impatiens species, Impatiens noli-tangere and I. textori (Balsaminaceae)

    OpenAIRE

    Tokuda, Nanako; Hattori, Mitsuru; Abe, Kota; Shinohara, Yoshinori; Nagano, Yusuke; Itino, Takao

    2015-01-01

    Plant?plant interspecific competition via pollinators occurs when the flowering seasons of two or more plant species overlap and the pollinator fauna is shared. Negative sexual interactions between species (reproductive interference) through improper heterospecific pollen transfer have recently been reported between native and invasive species demonstrating pollination-driven competition. We focused on two native Impatiens species (I.?noli-tangere and I.?textori) found in Japan and examined w...

  11. Cophylogenetic signal is detectable in pollination interactions across ecological scales.

    Science.gov (United States)

    Hutchinson, Matthew C; Cagua, Edgar Fernando; Stouffer, Daniel B

    2017-10-01

    That evolutionary history can influence the way that species interact is a basic tenet of evolutionary ecology. However, when the role of evolution in determining ecological interactions is investigated, focus typically centers on just one side of the interaction. A cophylogenetic signal, the congruence of evolutionary history across both sides of an ecological interaction, extends these previous explorations and provides a more complete picture of how evolutionary patterns influence the way species interact. To date, cophylogenetic signal has most typically been studied in interactions that occur between fine taxonomic clades that show high intimacy. In this study, we took an alternative approach and made an exhaustive assessment of cophylogeny in pollination interactions. To do so, we assessed the strength of cophylogenetic signal at four distinct scales of pollination interaction: (1) across plant-pollinator associations globally, (2) in local pollination communities, (3) within the modular structure of those communities, and (4) in individual modules. We did so using a globally distributed dataset comprised of 54 pollination networks, over 4000 species, and over 12,000 interactions. Within these data, we detected cophylogenetic signal at all four scales. Cophylogenetic signal was found at the level of plant-pollinator interactions on a global scale and in the majority of pollination communities. At the scale defined by the modular structure within those communities, however, we observed a much weaker cophylogenetic signal. Cophylogenetic signal was detectable in a significant proportion of individual modules and most typically when within-module phylogenetic diversity was low. In sum, the detection of cophylogenetic signal in pollination interactions across scales provides a new dimension to the story of how past evolution shapes extant pollinator-angiosperm interactions. © 2017 by the Ecological Society of America.

  12. Non-bee insects are important contributors to global crop pollination.

    Science.gov (United States)

    Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A; Garratt, Michael P D; Howlett, Brad G; Winfree, Rachael; Cunningham, Saul A; Mayfield, Margaret M; Arthur, Anthony D; Andersson, Georg K S; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G; Chacoff, Natacha P; Entling, Martin H; Foully, Benjamin; Freitas, Breno M; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R; Gross, Caroline L; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q; Lindström, Sandra A M; Mandelik, Yael; Monteiro, Victor M; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E; Pereira, Natália de O; Pisanty, Gideon; Potts, Simon G; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G; Stanley, Dara A; Stout, Jane C; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H; Viana, Blandina F; Woyciechowski, Michal

    2016-01-05

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.

  13. Floral function: effects of traits on pollinators, male and female pollination success, and female fitness across three species of milkweeds (Asclepias).

    Science.gov (United States)

    La Rosa, Raffica J; Conner, Jeffrey K

    2017-01-01

    Central questions in plant reproductive ecology are whether the functions of floral traits in hermaphrodites create conflict between sexes that could slow evolution, and whether individual floral traits function in pollinator attraction, efficiency, or both. We studied how floral traits affect pollinator visitation and efficiency, and how they affect male and female function and female fitness within and across three Asclepias species that differ in floral morphology. Using separate multiple regressions, we regressed pollen removal, deposition, and fruit number onto six floral traits. We also used path analyses integrating these variables with pollinator visitation data for two of the species to further explore floral function and its effects on fruit production. Most traits affected male pollination success only, and these effects often differed between species. The exception was increased slit length, which increased pollinia insertion in two of the species. There were no interspecific differences in the effects of the traits on female pollination success. All traits except horn reach affected pollination efficiency in at least one species, and horn reach and two hood dimensions were the only traits to affect pollinator attraction, but in just one species. Traits tended to function in only one sex, and more traits affected function through pollinator efficiency than through attraction. There was no significant link between female pollination success and female fitness in any of the three species; this pattern is consistent with fruit production not being limited by pollen deposition. © 2017 Botanical Society of America.

  14. Distinct effects of pollinator dependence and self-incompatibility on pollen limitation in South African biodiversity hotspots.

    Science.gov (United States)

    Rodger, James G; Ellis, Allan G

    2016-06-01

    Global synthesis indicates that limitation of plant fecundity by pollen receipt (pollen limitation) is positively related to regional plant diversity and is higher for self-incompatible than self-compatible species. While self-incompatible species are always dependent on pollinating agents, self-compatible species may be pollinator-dependent or autofertile. This should cause variation in pollen limitation among self-compatible species, with lower pollen limitation in autofertile species because they do not depend on pollinators. We hypothesized that the intensity of pollen limitation in self-incompatible compared with pollinator-dependent self-compatible species should depend on whether pollen limitation is determined more by quantity than quality of pollen received. We compared pollen limitation between these three groups using a dataset of 70 biotically pollinated species from biodiverse regions of South Africa. Comparison with a global dataset indicated that pollen limitation in the South African biodiversity hotspots was generally comparable to other regions, despite expectations of higher pollen limitation based on the global plant diversity-pollen limitation relationship. Pollen limitation was lowest for autofertile species, as expected. It was also higher for pollinator-dependent self-compatible species than self-incompatible species, consistent with increased pollen-quality limitation in the former group due to negative consequences of pollinator-mediated self-pollination. However, there was a higher frequency of plants with zygomorphic flowers, which were also more pollen-limited, among pollinator-dependent self-compatible species. Thus, we could not attribute this difference in pollen limitation exclusively to a difference in pollen quality. Nevertheless, our results indicate that comparative studies should control for both pollinator dependence and self-incompatiblity when evaluating effects of other factors on pollen limitation. © 2016 The Author(s).

  15. western honey bee management for crop pollination abstract résumé

    African Journals Online (AJOL)

    ACSS

    2018-02-09

    Feb 9, 2018 ... of Western honey bee for pollination services is reported mainly in developed countries. Because ... plants, or accumulating in nectar and pollen that affect ..... Ecology and Evolution .... Pollinator interactions in the Neotropics.

  16. Indirect effects of mutualism: ant-treehopper associations deter pollinators and reduce reproduction in a tropical shrub.

    Science.gov (United States)

    Ibarra-Isassi, Javier; Oliveira, Paulo S

    2018-03-01

    Animal-pollinated plants can be susceptible to changes in pollinator availability. Honeydew-producing treehoppers frequently occur on inflorescences, potentially enhancing ant-mediated negative effects on pollination services. However, the effect of ant-attended, honeydew-producing insects on plant reproduction remains uncertain. We recorded the abundance of treehoppers and ants on Byrsonima intermedia (Malpighiaceae), and monitored floral visitors in a Brazilian cerrado savanna. We manipulated the presence of ants and ant-treehopper associations on inflorescences to assess their effect on pollination and fruit formation. We used dried ants pinned to inflorescences to evaluate the effect of ant presence and ant identity on potential pollinators. Results show that the presence of treehoppers increases ant abundance on flowers and disrupts pollination by oil-collecting bees, decreasing the frequency and duration of floral visits and reducing fruit and seed set. Treehopper herbivory has no direct effect on fruit or seed production, which are independent of treehopper density. Pinned ants promote avoidance by floral visitors, reducing the number of visits. Ant identity mediates visitation decisions, with Ectatomma brunneum causing greater avoidance by floral visitors than Camponotus rufipes. Field videos show that pollinating bees are harassed by ants near flowers, prompting avoidance behavior by the bees. This is the first demonstration of indirect effects by honeydew-gathering ants, via disrupted pollination, on plant reproduction in tropical cerrado savanna. Our results highlight the importance of studying other interactions near flowers, in addition to just observing pollinators, for a proper understanding of plant reproduction.

  17. Create a pollinator garden at your nursery: An emphasis on monarch butterflies

    Science.gov (United States)

    Thomas D. Landis; R. Kasten Dumroese; Matthew E. Horning

    2014-01-01

    We realize that this type of article is a departure for FNN readers but feel that it is important for forest, conservation, and native plant nurseries to be good environmental stewards. In addition, establishing a pollinator garden at your nursery can be good for business, too. Demonstrating the role and beauty of native plants and their pollinators, particulary in a...

  18. Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review.

    Science.gov (United States)

    MacGregor, Callum J; Pocock, Michael J O; Fox, Richard; Evans, Darren M

    2015-06-01

    1. Moths (Lepidoptera) are the major nocturnal pollinators of flowers. However, their importance and contribution to the provision of pollination ecosystem services may have been under-appreciated. Evidence was identified that moths are important pollinators of a diverse range of plant species in diverse ecosystems across the world. 2. Moth populations are known to be undergoing significant declines in several European countries. Among the potential drivers of this decline is increasing light pollution. The known and possible effects of artificial night lighting upon moths were reviewed, and suggest how artificial night lighting might in turn affect the provision of pollination by moths. The need for studies of the effects of artificial night lighting upon whole communities of moths was highlighted. 3. An ecological network approach is one valuable method to consider the effects of artificial night lighting upon the provision of pollination by moths, as it provides useful insights into ecosystem functioning and stability, and may help elucidate the indirect effects of artificial light upon communities of moths and the plants they pollinate. 4. It was concluded that nocturnal pollination is an ecosystem process that may potentially be disrupted by increasing light pollution, although the nature of this disruption remains to be tested.

  19. Production of haploid plant of 'Banpeiyu' pummelo [Citrus maxima (Burm.) Merr.] by pollination with soft X-ray-irradiated pollen

    International Nuclear Information System (INIS)

    Yahata, Masaki; Yasuda, Kiichi; Kunitake, Hisato; Nagasawa, Kohji; Harusaki, Seiichi; Komatsu, Haruki

    2010-01-01

    To induce haploid plants in Citrus maxima (Burm.) Merr. 'Banpeiyu', we evaluated the effect of pollination with soft X-ray-irradiated pollen on fruit set and seed development, and carried out ovule culture. When 'Banpeiyu' pummelo pistils were pollinated with X-ray-irradiated pollen of 'Fukuhara' sweet orange [C. sinensis (L.) Osbeck], the exposure doses affected the fruit set. The number of seeds per fruit was also affected by the exposure dose, and tended to decrease as the dose increased; however, all developed seeds obtained from these crosses were diploid. In the ovule culture of 'Banpeiyu' pummelo, six embryoids shown haploidy were obtained in all treatments. One haploid plantlet with 9 chromosomes was regenerated from an embryoid in a culture of ovules established 40 days after pollination with 400 Gray (Gy)-irradiated pollen of 'Tosa-buntan' pummelo (C. maxima). This haploid was suggested to be derived from 'Banpeiyu' pummelo by random amplified polymorphic DNA (RAPD) and cleaved amplified polymorphic sequence (CAPS) analysis. (author)

  20. Pollination and yield responses of cowpea (Vigna unguiculata L ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... Key words: Apis mellifera adansonii, Vigna unguiculata, bee plant, foraging, pollination, increased yield. INTRODUCTION. There are ... several techniques such as fire-prone, crop rotations, ..... Inventory of melliferous plants.

  1. Sensitivity of commercial pumpkin yield to potential decline among different groups of pollinating bees

    Science.gov (United States)

    Eckerter, Philipp W.; Schirmel, Jens; Cresswell, James E.; Entling, Martin H.

    2017-01-01

    The yield of animal-pollinated crops is threatened by bee declines, but its precise sensitivity is poorly known. We therefore determined the yield dependence of Hokkaido pumpkin in Germany on insect pollination by quantifying: (i) the relationship between pollen receipt and fruit set and (ii) the cumulative pollen deposition of each pollinator group. We found that approximately 2500 pollen grains per flower were needed to maximize fruit set. At the measured rates of flower visitation, we estimated that bumblebees (21 visits/flower lifetime, 864 grains/visit) or honeybees (123 visits, 260 grains) could individually achieve maximum crop yield, whereas halictid bees are ineffective (11 visits, 16 grains). The pollinator fauna was capable of delivering 20 times the necessary amount of pollen. We therefore estimate that pumpkin yield was not pollination-limited in our study region and that it is currently fairly resilient to single declines of honeybees or wild bumblebees. PMID:28573019

  2. Reproductive biology of Cyrtopodium polyphyllum (Orchidaceae): a Cyrtopodiinae pollinated by deceit.

    Science.gov (United States)

    Pansarin, L M; Pansarin, E R; Sazima, M

    2008-09-01

    The genus Cyrtopodium comprises about 42 species distributed from southern Florida to northern Argentina. Cyrtopodium polyphyllum occurs on rocks or in sandy soils, in restinga vegetation along the Brazilian coast. It flowers during the wet season and its inflorescences produce a high number of resupinate yellow flowers. Cyrtopodium polyphyllum offers no rewards to its pollinators, but mimics the yellow, reward-producing flowers of nearby growing Stigmaphyllon arenicola (oil) and Crotalaria vitellina (nectar) individuals. Several species of bee visit flowers of C. polyphyllum, but only two species of Centris (Centris tarsata and Centris labrosa) act as pollinators. Visits to flowers of C. polyphyllum were scarce and, as a consequence, low-fruit set was recorded under natural conditions. Such low-fruit production contrasts with the number of fruits each plant bears after manual pollination, suggesting deficient pollen transfer among plants. C. polyphyllum is self-compatible and has a high-fruit set in both manual self- and cross-pollinated flowers. Furthermore, fruits (2%) are formed by self-pollination assisted by rain. This facultative self-pollination mechanism is an important strategy to provide reproductive assurance to C. polyphyllum as rainfall restricts the foraging activity of its pollinating bees. Fruits derived from treatments and under natural conditions had a similar high rate of potentially viable seed. Moreover, these seeds had a low polyembryony rate, which did not exceed 5%. C. polyphyllum acts by deceit involving optical signals and exploits other yellow-flowered species within its habitat by attracting their pollinators. The low capsule production under natural conditions was expected, but its reproductive success is assured through self-pollination by rain and high seed viability.

  3. Plant Fitness Assessment for Wild Relatives of Insect Resistant Bt-Crops

    Directory of Open Access Journals (Sweden)

    D. K. Letourneau

    2012-01-01

    Full Text Available When field tests of transgenic plants are precluded by practical containment concerns, manipulative experiments can detect potential consequences of crop-wild gene flow. Using topical sprays of bacterial Bacillus thuringiensis larvicide (Bt and larval additions, we measured fitness effects of reduced herbivory on Brassica rapa (wild mustard and Raphanus sativus (wild radish. These species represent different life histories among the potential recipients of Bt transgenes from Bt cole crops in the US and Asia, for which rare spontaneous crosses are expected under high exposure. Protected wild radish and wild mustard seedlings had approximately half the herbivore damage of exposed plants and 55% lower seedling mortality, resulting in 27% greater reproductive success, 14-day longer life-spans, and 118% more seeds, on average. Seed addition experiments in microcosms and in situ indicated that wild radish was more likely to spread than wild mustard in coastal grasslands.

  4. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value☆

    Science.gov (United States)

    Garratt, M.P.D.; Breeze, T.D.; Jenner, N.; Polce, C.; Biesmeijer, J.C.; Potts, S.G.

    2014-01-01

    Insect pollination is important for food production globally and apples are one of the major fruit crops which are reliant on this ecosystem service. It is fundamentally important that the full range of benefits of insect pollination to crop production are understood, if the costs of interventions aiming to enhance pollination are to be compared against the costs of the interventions themselves. Most previous studies have simply assessed the benefits of pollination to crop yield and ignored quality benefits and how these translate through to economic values. In the present study we examine the influence of insect pollination services on farmgate output of two important UK apple varieties; Gala and Cox. Using field experiments, we quantify the influence of insect pollination on yield and importantly quality and whether either may be limited by sub-optimal insect pollination. Using an expanded bioeconomic model we value insect pollination to UK apple production and establish the potential for improvement through pollination service management. We show that insects are essential in the production of both varieties of apple in the UK and contribute a total of £36.7 million per annum, over £6 million more than the value calculated using more conventional dependence ratio methods. Insect pollination not only affects the quantity of production but can also have marked impacts on the quality of apples, influencing size, shape and effecting their classification for market. These effects are variety specific however. Due to the influence of pollination on both yield and quality in Gala, there is potential for insect pollination services to improve UK output by up to £5.7 million per annum. Our research shows that continued pollinator decline could have serious financial implications for the apple industry but there is considerable scope through management of wild pollinators or using managed pollinator augmentation, to improve the quality of production. Furthermore, we

  5. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value.

    Science.gov (United States)

    Garratt, M P D; Breeze, T D; Jenner, N; Polce, C; Biesmeijer, J C; Potts, S G

    2014-02-01

    Insect pollination is important for food production globally and apples are one of the major fruit crops which are reliant on this ecosystem service. It is fundamentally important that the full range of benefits of insect pollination to crop production are understood, if the costs of interventions aiming to enhance pollination are to be compared against the costs of the interventions themselves. Most previous studies have simply assessed the benefits of pollination to crop yield and ignored quality benefits and how these translate through to economic values. In the present study we examine the influence of insect pollination services on farmgate output of two important UK apple varieties; Gala and Cox. Using field experiments, we quantify the influence of insect pollination on yield and importantly quality and whether either may be limited by sub-optimal insect pollination. Using an expanded bioeconomic model we value insect pollination to UK apple production and establish the potential for improvement through pollination service management. We show that insects are essential in the production of both varieties of apple in the UK and contribute a total of £36.7 million per annum, over £6 million more than the value calculated using more conventional dependence ratio methods. Insect pollination not only affects the quantity of production but can also have marked impacts on the quality of apples, influencing size, shape and effecting their classification for market. These effects are variety specific however. Due to the influence of pollination on both yield and quality in Gala, there is potential for insect pollination services to improve UK output by up to £5.7 million per annum. Our research shows that continued pollinator decline could have serious financial implications for the apple industry but there is considerable scope through management of wild pollinators or using managed pollinator augmentation, to improve the quality of production. Furthermore, we

  6. The biochemistry and genetics of floral scent production as part of the petunia pollination syndrome

    NARCIS (Netherlands)

    Shaipulah, N.F.M.

    2018-01-01

    Floral scent plays a major role in flower discrimination by pollinators in the Petunia genus. By providing specific signals to pollinators, floral scent can significantly contribute to the plant pollination efficiency and reproductive success. Fragrant petunias mostly emit volatile benzenoids and

  7. Ecological-economic modelling of interactions between wild and commercial bees and pesticide use

    OpenAIRE

    Kleczkowski, Adam; Ellis, Ciaran; Goulson, Dave; Hanley, Nick

    2015-01-01

    The decline in extent of wild pollinators in recent years has been partly associated with changing farm practices and in particular with increasing pesticide use. In this paper we combine ecological modelling with economic analysis of a single farm output under the as- sumption that both pollination and pest control are essential inputs. We show that the drive to increase farm output can lead to a local decline in the wild bee population. Commercial bees are often considered an alternative to...

  8. Tropical forest fragmentation affects floral visitors but not the structure of individual-based palm-pollinator networks.

    Science.gov (United States)

    Dáttilo, Wesley; Aguirre, Armando; Quesada, Mauricio; Dirzo, Rodolfo

    2015-01-01

    Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests.

  9. Tropical forest fragmentation affects floral visitors but not the structure of individual-based palm-pollinator networks.

    Directory of Open Access Journals (Sweden)

    Wesley Dáttilo

    Full Text Available Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae and its floral visitors (including both effective and non-effective pollinators at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i Does fragment size affect the structure of individual-based plant-pollinator networks? (ii Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in

  10. Drought and increased CO2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation.

    Science.gov (United States)

    Glenny, William R; Runyon, Justin B; Burkle, Laura A

    2018-03-25

    Climate change can alter species interactions essential for maintaining biodiversity and ecosystem function, such as pollination. Understanding the interactive effects of multiple abiotic conditions on floral traits and pollinator visitation are important to anticipate the implications of climate change on pollinator services. Floral visual and olfactory traits were measured from individuals of four forb species subjected to drought or normal water availability, and elevated or ambient concentrations of CO 2 in a factorial design. Pollinator visitation rates and community composition were observed in single-species and multi-species forb assemblages. Drought decreased floral visual traits and pollinator visitation rates but increased volatile organic compound (VOC) emissions, whereas elevated CO 2 positively affected floral visual traits, VOC emissions and pollinator visitation rates. There was little evidence of interactive effects of drought and CO 2 on floral traits and pollinator visitation. Interestingly, the effects of climate treatments on pollinator visitation depended on whether plants were in single- or multi-species assemblages. Components of climate change altered floral traits and pollinator visitation, but effects were modulated by plant community context. Investigating the response of floral traits, including VOCs, and context-dependency of pollinator attraction provides additional insights and may aid in understanding the overall effects of climate change on plant-pollinator interactions. © No claim to US Government works New Phytologist Trust © 2018 New Phytologist Trust.

  11. The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence.

    Science.gov (United States)

    Hadley, Adam S; Betts, Matthew G

    2012-08-01

    Animal-mediated pollination is essential for both ecosystem services and conservation of global biodiversity, but a growing body of work reveals that it is negatively affected by anthropogenic disturbance. Landscape-scale disturbance results in two often inter-related processes: (1) habitat loss, (2) disruptions of habitat configuration (i.e. fragmentation). Understanding the relative effects of such processes is critical in designing effective management strategies to limit pollination and pollinator decline. We reviewed existing published work from 1989 to 2009 and found that only six of 303 studies considering the influence of landscape context on pollination separated the effects of habitat loss from fragmentation. We provide a synthesis of the current landscape, behavioural, and pollination ecology literature in order to present preliminary multiple working hypotheses explaining how these two landscape processes might independently influence pollination dynamics. Landscape disturbance primarily influences three components of pollination interactions: pollinator density, movement, and plant demography. We argue that effects of habitat loss on each of these components are likely to differ substantially from the effects of fragmentation, which is likely to be more complex and may influence each pollination component in contrasting ways. The interdependency between plants and animals inherent to pollination systems also has the possibility to drive cumulative effects of fragmentation, initiating negative feedback loops between animals and the plants they pollinate. Alternatively, due to their asymmetrical structure, pollination networks may be relatively robust to fragmentation. Despite the potential importance of independent effects of habitat fragmentation, its effects on pollination remain largely untested. We postulate that variation across studies in the effects of 'fragmentation' owes much to artifacts of the sampling regimes adopted, particularly (1

  12. Pollination and reproduction of a self-incompatible forest herb in hedgerow corridors and forest patches.

    Science.gov (United States)

    Schmucki, Reto; de Blois, Sylvie

    2009-07-01

    Habitat-corridors are assumed to counteract the negative impacts of habitat loss and fragmentation, but their efficiency in doing so depends on the maintenance of ecological processes in corridor conditions. For plants dispersing in linear habitats, one of these critical processes is the maintenance of adequate pollen transfer to insure seed production within the corridor. This study focuses on a common, self-incompatible forest herb, Trillium grandiflorum, to assess plant-pollinator interactions and the influence of spatial processes on plant reproduction in hedgerow corridors compared to forests. First, using pollen supplementation experiments over 2 years, we quantified the extent of pollen limitation in both habitats, testing the prediction of greater limitation in small hedgerow populations than in forests. While pollen limitation of fruit and seed set was common, its magnitude did not differ between habitats. Variations among sites, however, suggested an influence of landscape context on pollination services. Second, we examined the effect of isolation on plant reproduction by monitoring fruit and seed production, as well as pollinator activity and assemblage, in small flower arrays transplanted in hedgerows at increasing distances from forest and from each other. We detected no difference in the proportion of flowers setting fruit or in pollinator activity with isolation, but we observed some differences in pollinator assemblages. Seed set, on the other hand, declined significantly with increasing isolation in the second year of the study, but not in the first year, suggesting altered pollen transfer with distance. Overall, plants in hedgerow corridors and forests benefited from similar pollination services. In this system, plant-pollinator interactions and reproduction seem to be influenced more by variations in resource distribution over years and landscapes than by local habitat conditions.

  13. Contrasting Pollination Efficiency and Effectiveness among Flower Visitors of Malva Sylvestris, Borago Officinalis and Onobrychis Viciifolia

    OpenAIRE

    Gorenflo, Anna; Diekötter, Tim; van Kleunen, Mark; Wolters, Volkmar; Jauker, Frank

    2017-01-01

    Biotic pollination is an important factor for ecosystem functioning and provides a substantial ecosystem service to human food security. Not all flower visitors are pollinators, however, and pollinators differ in their pollination performances. In this study, we determined the efficiencies of flower visitors to the plant species Malva sylvestris, Borago officinalis and Onobrychis viciifolia by analysing stigmatic pollen deposition. We further calculated pollinator effectiveness by scaling up ...

  14. Consumers' Attitudes towards Edible Wild Plants: A Case Study of Noto Peninsula, Ishikawa Prefecture, Japan

    Directory of Open Access Journals (Sweden)

    Bixia Chen

    2012-01-01

    Full Text Available This study explored the rural revitalizing strategy in FAO's Globally Important Agricultural Heritage System (GIAHS site in Noto Peninsula, Ishikawa Prefecture of Japan, using a case study of edible wild plants. This study assessed the current and possible future utilization of edible wild plants as one important NTFP by clarifying the attitudes of consumers and exploring the challenges of harvesting edible wild plants. Traditional ecological knowledge associated with edible wild plants and the related attitudes of consumers towards wild plants was documented. A questionnaire survey found that a majority of the respondents held positive attitude towards edible wild plants as being healthy, safe food, part of traditional dietary culture. Increasing demand of edible wild plants from urban residents aroused conflicts with local residents’ interest given that around 86% of the forested hills are private in Noto Region. Non timber forest products (NTFP extraction can be seen as a tool for creating socioeconomic relationships that are dependent on healthy, biodiverse ecosystems. It was suggested that Japanese Agricultural Cooperatives (JA and Forestry Cooperatives (FCA could be involved with GIAHS process. As important traditional dietary and ecological system, edible wild plants should be a part of GIAHS project for rural revitalization.

  15. The Influence of Climatic Seasonality on the Diversity of Different Tropical Pollinator Groups

    Science.gov (United States)

    Abrahamczyk, Stefan; Kluge, Jürgen; Gareca, Yuvinka; Reichle, Steffen; Kessler, Michael

    2011-01-01

    Tropical South America is rich in different groups of pollinators, but the biotic and abiotic factors determining the geographical distribution of their species richness are poorly understood. We analyzed the species richness of three groups of pollinators (bees and wasps, butterflies, hummingbirds) in six tropical forests in the Bolivian lowlands along a gradient of climatic seasonality and precipitation ranging from 410 mm to 6250 mm. At each site, we sampled the three pollinator groups and their food plants twice for 16 days in both the dry and rainy seasons. The richness of the pollinator groups was related to climatic factors by linear regressions. Differences in species numbers between pollinator groups were analyzed by Wilcoxon tests for matched pairs and the proportion in species numbers between pollinator groups by correlation analyses. Species richness of hummingbirds was most closely correlated to the continuous availability of food, that of bees and wasps to the number of food plant species and flowers, and that of butterflies to air temperature. Only the species number of butterflies differed significantly between seasons. We were not able to find shifts in the proportion of species numbers of the different groups of pollinators along the study gradient. Thus, we conclude that the diversity of pollinator guilds is determined by group-specific factors and that the constant proportions in species numbers of the different pollinator groups constitute a general pattern. PMID:22073268

  16. The influence of climatic seasonality on the diversity of different tropical pollinator groups.

    Directory of Open Access Journals (Sweden)

    Stefan Abrahamczyk

    Full Text Available Tropical South America is rich in different groups of pollinators, but the biotic and abiotic factors determining the geographical distribution of their species richness are poorly understood. We analyzed the species richness of three groups of pollinators (bees and wasps, butterflies, hummingbirds in six tropical forests in the Bolivian lowlands along a gradient of climatic seasonality and precipitation ranging from 410 mm to 6250 mm. At each site, we sampled the three pollinator groups and their food plants twice for 16 days in both the dry and rainy seasons. The richness of the pollinator groups was related to climatic factors by linear regressions. Differences in species numbers between pollinator groups were analyzed by Wilcoxon tests for matched pairs and the proportion in species numbers between pollinator groups by correlation analyses. Species richness of hummingbirds was most closely correlated to the continuous availability of food, that of bees and wasps to the number of food plant species and flowers, and that of butterflies to air temperature. Only the species number of butterflies differed significantly between seasons. We were not able to find shifts in the proportion of species numbers of the different groups of pollinators along the study gradient. Thus, we conclude that the diversity of pollinator guilds is determined by group-specific factors and that the constant proportions in species numbers of the different pollinator groups constitute a general pattern.

  17. Apple Pollination: Demand Depends on Variety and Supply Depends on Pollinator Identity.

    Directory of Open Access Journals (Sweden)

    M P D Garratt

    Full Text Available Insect pollination underpins apple production but the extent to which different pollinator guilds supply this service, particularly across different apple varieties, is unknown. Such information is essential if appropriate orchard management practices are to be targeted and proportional to the potential benefits pollinator species may provide. Here we use a novel combination of pollinator effectiveness assays (floral visit effectiveness, orchard field surveys (flower visitation rate and pollinator dependence manipulations (pollinator exclusion experiments to quantify the supply of pollination services provided by four different pollinator guilds to the production of four commercial varieties of apple. We show that not all pollinators are equally effective at pollinating apples, with hoverflies being less effective than solitary bees and bumblebees, and the relative abundance of different pollinator guilds visiting apple flowers of different varieties varies significantly. Based on this, the taxa specific economic benefits to UK apple production have been established. The contribution of insect pollinators to the economic output in all varieties was estimated to be £92.1M across the UK, with contributions varying widely across taxa: solitary bees (£51.4M, honeybees (£21.4M, bumblebees (£18.6M and hoverflies (£0.7M. This research highlights the differences in the economic benefits of four insect pollinator guilds to four major apple varieties in the UK. This information is essential to underpin appropriate investment in pollination services management and provides a model that can be used in other entomolophilous crops to improve our understanding of crop pollination ecology.

  18. Oil collecting bees and Byrsonima cydoniifolia A. Juss. (Malpighiaceae interactions: the prevalence of long-distance cross pollination driving reproductive success

    Directory of Open Access Journals (Sweden)

    MORGANA S. SAZAN

    2014-03-01

    Full Text Available Oil-collecting bees are the natural pollinators of oil-flower plants, but little is known about the pollination process and the effectiveness of their pollination service to the reproductive success of their host plants. In species of Byrsonima the reproductive system have been described as auto-compatible or self-incompatible. We studied the reproductive system of Byrsonima cydoniifolia, the fructification by means of short, medium and long-distance cross pollinations, the morphology and floral biology and the pollination interactions with species of oil-collecting bees. By means of controlled pollinations we found self-incompatibility caused by abortion of most self-pollinated flowers and demonstrated that the prevailing cross pollination ensuring the reproductive success of B. cydoniifolia is the long-distance cross pollination and Centridini bees; Epicharis nigrita, particularly, are the pollinators promoting the gene flow between genetically distinct populations.

  19. Pollination and breeding system of Canna paniculata(Cannaceae in a montane Atlantic Rainforest: asymmetric dependence on a hermit hummingbird

    Directory of Open Access Journals (Sweden)

    Pietro Kiyoshi Maruyama

    2015-03-01

    Full Text Available We studied the pollination biology of Canna paniculata (Cannaceae, a plant species common in the Atlantic Rainforest of southeastern Brazil. The species presents specialized ornithophilous flowers, which in our study area are solely pollinated by the hermit hummingbird Phaethornis eurynome. Although C. paniculata is capable of bearing fruit after self-pollination, it requires pollinators for reproduction. We discuss the importance of hermit hummingbirds for the reproduction of specialized ornithophilous plants such as C. paniculata, including their asymmetric dependence on hermit hummingbirds - core pollinators in Neotropical forest ecosystems.

  20. Influence of Pollination Technique on Greenhouse Tomato Production

    Directory of Open Access Journals (Sweden)

    I.K. Nazer

    2003-01-01

    Full Text Available An experiment was carried out to study the effects of four pollination techniques; Bumblebees (Bombus terrerstris L., plant growth bioregulator (PGB (Parachlorophenoxy acetic acid, hand vibration, and control (natural pollination on tomato (Lycopersicon esculentum Mill production in greenhouses. Bumblebees showed no problem in visiting flowers at a temperature range of 17-42°C during the day and 2-14°C at night. Bumblebee pollinated plants produced a yield per plant which was significantly higher than plants treated with PGB, vibration and the control, respectively. Fruit set of tomato flowers over 10 clusters was 99.1, 96.7, 76.7, and 65.7% for bumblebee treatment, PGB application, vibration and the control, respectively. In the bumblebee pollinated flowers, the quality of fruits was superior. The fruits were hard, with more seeds, and had a high specific gravity and better appearance. The average fruit weight was 100.3, 80.5, 84.1, and 70.6 g for the bumblebee, PGB, vibration and the control, respectively. The PGB treatment produced bigger sized but puffy fruits (108.4 ml. While fruit size in the vibration treatment was the highest (126.8 ml, followed by the bumblebee and the control which were 99.3 and 98.5 ml, respectively. Fruit specific gravity in the bumblebee treatment was significantly higher than other treatments, with no significant differences between the PGB and the vibration treatments. The least dense fruits were in the control treatment. Regarding the firmness of fruits, the bumblebee treatment gave the hardest fruits, while the PGB and the vibration treatments were intermediate and the control was the least. Average seed number per fruit was 177.0, 86.5, 61.8, and 89.8 for bumblebee, vibration, PGB and the control, respectively.

  1. The modularity of pollination networks

    DEFF Research Database (Denmark)

    Olesen, Jens Mogens; Bascompte, J.; Dupont, Yoko

    2007-01-01

    In natural communities, species and their interactions are often organized as nonrandom networks, showing distinct and repeated complex patterns. A prevalent, but poorly explored pattern is ecological modularity, with weakly interlinked subsets of species (modules), which, however, internally...... consist of strongly connected species. The importance of modularity has been discussed for a long time, but no consensus on its prevalence in ecological networks has yet been reached. Progress is hampered by inadequate methods and a lack of large datasets. We analyzed 51 pollination networks including...... almost 10,000 species and 20,000 links and tested for modularity by using a recently developed simulated annealing algorithm. All networks with >150 plant and pollinator species were modular, whereas networks with

  2. Effects of nectar robbing on male and female reproductive success of a pollinator-dependent plant.

    Science.gov (United States)

    Rojas-Nossa, Sandra V; Sánchez, José María; Navarro, Luis

    2016-02-01

    Nectar robbers affect host fitness in different ways and by different magnitudes, both directly and indirectly, and potentially constitute an important part of pollination interactions. The aim of this study was to assess the effect of nectar robbing on several variables that characterize the reproductive success of Lonicera etrusca, a pollinator-dependent plant with long, tubular flowers that produce abundant nectar. Using fluorescent powder dye as a proxy for pollen, the distance of pollen dispersal was compared for robbed and non-robbed flowers. Artificial nectar robbing treatments were applied to test its effects on four additional measures of reproductive success, namely the quantity of pollen exported, fruit set, seed/ovule ratio and seed weight. Nectar robbing was not found to have any significant negative consequences on female and male components of reproductive success as determined through the five variables that were measured. Although L. etrusca exhibits high levels of nectar robbing and nectar robbers are common floral visitors, no evidence was found of detrimental changes in the components of reproductive success. A combination of morphological and ecological mechanisms is proposed to explain how plants may compensate for the energetic loss caused by the nectar robbers. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Minute pollinators: The role of thrips (Thysanoptera) as pollinators of pointleaf manzanita, Arctostaphylos pungens (Ericaceae)

    OpenAIRE

    Eliyahu, Dorit; McCall, Andrew C.; Lauck, Marina; Trakhtenbrot, Ana; Bronstein, Judith L.

    2015-01-01

    The feeding habits of thrips on plant tissue, and their ability to transmit viral diseases to their host plants, have usually placed these insects in the general category of pests. However, the characteristics that make them economically important, their high abundance and short- and long-distance movement capability, may also make them effective pollinators. We investigated this lesser-known role of thrips in pointleaf manzanita (Arctostaphylos pungens), a Southwestern US shrub. We measured ...

  4. Spatial variation in pollinator-mediated selection on phenology, floral display and spur length in the orchid Gymnadenia conopsea.

    Science.gov (United States)

    Chapurlat, Elodie; Ågren, Jon; Sletvold, Nina

    2015-12-01

    Spatial variation in plant-pollinator interactions may cause variation in pollinator-mediated selection on floral traits, but to establish this link conclusively experimental studies are needed. We quantified pollinator-mediated selection on flowering phenology and morphology in four populations of the fragrant orchid Gymnadenia conopsea, and compared selection mediated by diurnal and nocturnal pollinators in two of the populations. Variation in pollinator-mediated selection explained most of the among-population variation in the strength of directional and correlational selection. Pollinators mediated correlational selection on pairs of display traits, and on one display trait and spur length, a trait affecting pollination efficiency. Only nocturnal pollinators selected for longer spurs, and mediated stronger selection on the number of flowers compared with diurnal pollinators in one population. The two types of pollinators caused correlational selection on different pairs of traits and selected for different combinations of spur length and number of flowers. The results demonstrate that spatial variation in interactions with pollinators may result in differences in directional and correlational selection on floral traits in a plant with a semi-generalized pollination system, and suggest that differences in the relative importance of diurnal and nocturnal pollinators can cause variation in selection. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Foraging dynamics and pollination efficiency of Apis mellifera and Xylocopa olivacea on Luffa aegyptiaca Mill (Cucurbitaceae) in southern Ghana

    OpenAIRE

    Mensah, Ben

    2011-01-01

    As a result of different levels of pollination efficiency of pollinators, knowledge on appropriate pollinators of a plant has become important, especially in the management and conservation of both the pollinators and the plants. In this study, the pollination efficiency of Apis mellifera and Xylocopa olivacea, important pollinators of Luffa aegyptiaca, were assessed in the southern coastal part of Ghana from June 2009 to September 2010. Pollination efficiency of A. mellifera and X. olivacea ...

  6. Wild vascular plants gathered for consumption in the Polish countryside: a review.

    Science.gov (United States)

    Łuczaj, Łukasz; Szymański, Wojciech M

    2007-04-15

    This paper is an ethnobotanical review of wild edible plants gathered for consumption from the end of the 18th century to the present day, within the present borders of Poland. 42 ethnographic and botanical sources documenting the culinary use of wild plants were analyzed. The use of 112 species (3.7% of the flora) has been recorded. Only half of them have been used since the 1960s. Three species: Cirsium rivulare, Euphorbia peplus and Scirpus sylvaticus have never before been reported as edible by ethnobotanical literature. The list of wild edible plants which are still commonly gathered includes only two green vegetables (Rumex acetosa leaves for soups and Oxalis acetosella as children's snack), 15 folk species of fruits and seeds (Crataegus spp., Corylus avellana, Fagus sylvatica, Fragaria vesca, Malus domestica, Prunus spinosa, Pyrus spp., Rosa canina, Rubus idaeus, Rubus sect. Rubus, Sambucus nigra, Vaccinium myrtillus, V. oxycoccos, V. uliginosum, V. vitis-idaea) and four taxa used for seasoning or as preservatives (Armoracia rusticana root and leaves, Carum carvi seeds, Juniperus communis pseudo-fruits and Quercus spp. leaves). The use of other species is either forgotten or very rare. In the past, several species were used for food in times of scarcity, most commonly Chenopodium album, Urtica dioica, U. urens, Elymus repens, Oxalis acetosella and Cirsium spp., but now the use of wild plants is mainly restricted to raw consumption or making juices, jams, wines and other preserves. The history of the gradual disappearance of the original barszcz, Heracleum sphondylium soup, from Polish cuisine has been researched in detail and two, previously unpublished, instances of its use in the 20th century have been found in the Carpathians. An increase in the culinary use of some wild plants due to media publications can be observed. Poland can be characterized as a country where the traditions of culinary use of wild plants became impoverished very early, compared to

  7. A question of data quality-Testing pollination syndromes in Balsaminaceae.

    Directory of Open Access Journals (Sweden)

    Stefan Abrahamczyk

    Full Text Available Pollination syndromes and their predictive power regarding actual plant-animal interactions have been controversially discussed in the past. We investigate pollination syndromes in Balsaminaceae, utilizing quantitative respectively categorical data sets of flower morphometry, signal and reward traits for 86 species to test for the effect of different types of data on the test patterns retrieved. Cluster Analyses of the floral traits are used in combination with independent pollinator observations. Based on quantitative data we retrieve seven clusters, six of them corresponding to plausible pollination syndromes and one additional, well-supported cluster comprising highly divergent floral architectures. This latter cluster represents a non-syndrome of flowers not segregated by the specific data set here used. Conversely, using categorical data we obtained only a rudimentary resolution of pollination syndromes, in line with several earlier studies. The results underscore that the use of functional, exactly quanitified trait data has the power to retrieve pollination syndromes circumscribed by the specific data used. Data quality can, however, not be replaced by sheer data volume. With this caveat, it is possible to identify pollination syndromes from large datasets and to reliably extrapolate them for taxa for which direct observations are unavailable.

  8. How Pollination Ecology research can help answer important questions

    Directory of Open Access Journals (Sweden)

    Carvalheiro, Luisa G.

    2011-06-01

    Full Text Available Pollination Ecology is a dynamic field of scientific research constantly adopting novel methods and making progress in understanding the interactions between plants and their pollinators. A recent paper listed the main scientific questions in this field focussing on the ecological and biological system itself. Here, we follow up on that paper and present some ideas on how to broaden our perspective and explore the role that pollination research can play in answering both ecological and societal questions relevant to a range of different stakeholders. We hope this paper may be useful to researchers aiming at improving both the scientific and societal impact of their research.

  9. Floral characteristics and pollination ecology of Manglietia ventii (Magnoliaceae, a plant species with extremely small populations (PSESP endemic to South Yunnan of China

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2017-02-01

    Full Text Available Manglietia ventii is a highly endangered plant species endemic to Yunnan province in China, where there are only five known small populations. Despite abundant flowering there is very low fruit and seed set, and very few seedlings in natural populations, indicating problems with reproduction. The causes of low fecundity in M. ventii are not known, largely because of insufficient knowledge of the species pollination ecology and breeding system. We conducted observations and pollination experiments, and analyzed floral scents to understand the pollinator–plant interactions and the role of floral scent in this relationship, as well as the species breeding system. Like the majority of Magnoliaceae, M. ventii has protogynous and nocturnal flowers that emit a strong fragrance over two consecutive evenings. There is a closing period (the pre-staminate stage during the process of anthesis of a flower, and we characterize the key flowering process as an “open-close-reopen” flowering rhythm with five distinct floral stages observed throughout the floral period of this species: pre-pistillate, pistillate, pre-staminate, staminate, and post-staminate. Flowers are in the pistillate stage during the first night of anthesis and enter the staminate stage the next night. During anthesis, floral scent emission occurs in the pistillate and staminate stages. The effective pollinators were weevils (Sitophilus sp. and beetles (Anomala sp., while the role of Rove beetles (Aleochara sp. and thrips (Thrips sp. in pollination of M. ventii appears to be minor or absent. The major chemical compounds of the floral scents were Limonene, β-Pinene, α-Pinene, 1,8-Cineole, Methyl-2-methylbutyrate, p-Cymene, Methyl-3-methyl-2-butenoate and 2-Methoxy-2-methyl-3-buten, and the relative proportions of these compounds varied between the pistillate and staminate stages. Production of these chemicals coincided with flower visitation by weevils and beetles. The results of

  10. Bee species diversity enhances productivity and stability in a perennial crop.

    Directory of Open Access Journals (Sweden)

    Shelley R Rogers

    Full Text Available Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning--and, therefore, their importance in maintaining and enhancing these services-remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination are stabilized through the differential response of bee taxa to weather (i.e., response diversity. Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services.

  11. Bee species diversity enhances productivity and stability in a perennial crop.

    Science.gov (United States)

    Rogers, Shelley R; Tarpy, David R; Burrack, Hannah J

    2014-01-01

    Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning--and, therefore, their importance in maintaining and enhancing these services-remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services.

  12. Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects.

    Science.gov (United States)

    Baldock, Katherine C R; Goddard, Mark A; Hicks, Damien M; Kunin, William E; Mitschunas, Nadine; Osgathorpe, Lynne M; Potts, Simon G; Robertson, Kirsty M; Scott, Anna V; Stone, Graham N; Vaughan, Ian P; Memmott, Jane

    2015-03-22

    Insect pollinators provide a crucial ecosystem service, but are under threat. Urban areas could be important for pollinators, though their value relative to other habitats is poorly known. We compared pollinator communities using quantified flower-visitation networks in 36 sites (each 1 km(2)) in three landscapes: urban, farmland and nature reserves. Overall, flower-visitor abundance and species richness did not differ significantly between the three landscape types. Bee abundance did not differ between landscapes, but bee species richness was higher in urban areas than farmland. Hoverfly abundance was higher in farmland and nature reserves than urban sites, but species richness did not differ significantly. While urban pollinator assemblages were more homogeneous across space than those in farmland or nature reserves, there was no significant difference in the numbers of rarer species between the three landscapes. Network-level specialization was higher in farmland than urban sites. Relative to other habitats, urban visitors foraged from a greater number of plant species (higher generality) but also visited a lower proportion of available plant species (higher specialization), both possibly driven by higher urban plant richness. Urban areas are growing, and improving their value for pollinators should be part of any national strategy to conserve and restore pollinators.

  13. Investigating the pollination syndrome of the Hawaiian lobeliad genus Clermontia (Campanulaceae) using floral nectar traits.

    Science.gov (United States)

    Pender, Richard J; Morden, Clifford W; Paull, Robert E

    2014-01-01

    Floral nectar sugar compositions have, for several decades, been used to predict a plant species' pollinator guild. Plants possessing a generalist ornithophilous pollination syndrome produce nectar that is dilute (8-12% w/v sugars) with a low sucrose to hexose (glucose and fructose) ratio. The Hawaiian lobeliad genus Clermontia contains 22 endemic species of shrubs and small trees that are believed to have evolved flowers adapted for pollination by now mostly extinct or endangered endemic passerines in the Drepanidinae and Mohoidae. We analyzed the nectar sugar compositions, concentration, and nectar standing crop of 23 taxa to test the assumption that Clermontia taxa have evolved floral traits in response to selection pressures from these avian pollinators. All Clermontia taxa produced nectar with sugar concentrations (mean: 9.2% w/v ± 1.8 SD) comparable to the nectar of other plant species with a generalized bird pollination system. Nectar sugars were overwhelmingly composed of hexoses in all taxa (mean sucrose/hexose ratio: 0.02 ± 0.02). Nectar standing crop volumes varied widely among taxa, ranging from 9.7 µL ± 7.1 to 430.5 µL ± 401.8 (mean volume: 177.8 ± 112.0). Collectively, the nectar traits indicate that Clermontia species possess a generalist passerine pollination syndrome.

  14. Diptera, fly pollination, flower visit, mutualism, ecological interaction, alternative pollinators

    Directory of Open Access Journals (Sweden)

    Barbara Gemmill-Herren

    2014-02-01

    Full Text Available While it is well recognised that pollination is an ecosystem service of vital importance to human well-being through its role in food production, it is still remarkable how little is known, on a crop-by-crop basis, about this role, and the extent and causes of declines in the service. Without better documentation of the specific contribution of pollination to crop yields, there have been mounting - and justified - questions about how relevant pollination may be to agricultural development and food security. In addition, the vast majority of studies of pollination services to crops have been carried out in Europe and North America; and certainly the problems we know to impact pollinators most severely – a high dependence on agricultural chemicals and monocropped landscapes offering little diet diversity to pollinators – are typical features of industrialised, Northern hemisphere agriculture.

  15. Floral temperature and optimal foraging: is heat a feasible floral reward for pollinators?

    Directory of Open Access Journals (Sweden)

    Sean A Rands

    Full Text Available As well as nutritional rewards, some plants also reward ectothermic pollinators with warmth. Bumble bees have some control over their temperature, but have been shown to forage at warmer flowers when given a choice, suggesting that there is some advantage to them of foraging at warm flowers (such as reducing the energy required to raise their body to flight temperature before leaving the flower. We describe a model that considers how a heat reward affects the foraging behaviour in a thermogenic central-place forager (such as a bumble bee. We show that although the pollinator should spend a longer time on individual flowers if they are warm, the increase in total visit time is likely to be small. The pollinator's net rate of energy gain will be increased by landing on warmer flowers. Therefore, if a plant provides a heat reward, it could reduce the amount of nectar it produces, whilst still providing its pollinator with the same net rate of gain. We suggest how heat rewards may link with plant life history strategies.

  16. Floral scent composition predicts bee pollination system in five butterfly bush (Buddleja, Scrophulariaceae) species.

    Science.gov (United States)

    Gong, W-C; Chen, G; Vereecken, N J; Dunn, B L; Ma, Y-P; Sun, W-B

    2015-01-01

    Traditionally, plant-pollinator interactions have been interpreted as pollination syndrome. However, the validity of pollination syndrome has been widely doubted in modern studies of pollination ecology. The pollination ecology of five Asian Buddleja species, B. asiatica, B. crispa, B. forrestii, B. macrostachya and B. myriantha, in the Sino-Himalayan region in Asia, flowering in different local seasons, with scented inflorescences were investigated during 2011 and 2012. These five species exhibited diverse floral traits, with narrow and long corolla tubes and concealed nectar. According to their floral morphology, larger bees and Lepidoptera were expected to be the major pollinators. However, field observations showed that only larger bees (honeybee/bumblebee) were the primary pollinators, ranging from 77.95% to 97.90% of total visits. In this study, floral scents of each species were also analysed using coupled gas chromatography and mass spectrometry (GC-MS). Although the five Buddleja species emitted differentiated floral scent compositions, our results showed that floral scents of the five species are dominated by substances that can serve as attractive signals to bees, including species-specific scent compounds and principal compounds with larger relative amounts. This suggests that floral scent compositions are closely associated with the principal pollinator assemblages in these five species. Therefore, we conclude that floral scent compositions rather than floral morphology traits should be used to interpret plant-pollinator interactions in these Asian Buddleja species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Zooming-in on floral nectar: a first exploration of nectar-associated bacteria in wild plant communities.

    Science.gov (United States)

    Alvarez-Pérez, Sergio; Herrera, Carlos M; de Vega, Clara

    2012-06-01

    Floral nectar of some animal-pollinated plants usually harbours highly adapted yeast communities which can profoundly alter nectar characteristics and, therefore, potentially have significant impacts on plant reproduction through their effects on insect foraging behaviour. Bacteria have also been occasionally observed in floral nectar, but their prevalence, phylogenetic diversity and ecological role within plant-pollinator-yeast systems remains unclear. Here we present the first reported survey of bacteria in floral nectar from a natural plant community. Culturable bacteria occurring in a total of 71 nectar samples collected from 27 South African plant species were isolated and identified by 16S rRNA gene sequencing. Rarefaction-based analyses were used to assess operational taxonomic units (OTUs) richness at the plant community level using nectar drops as sampling units. Our results showed that bacteria are common inhabitants of floral nectar of South African plants (53.5% of samples yielded growth), and their communities are characterized by low species richness (18 OTUs at a 16S rRNA gene sequence dissimilarity cut-off of 3%) and moderate phylogenetic diversity, with most isolates belonging to the Gammaproteobacteria. Furthermore, isolates showed osmotolerance, catalase activity and the ability to grow under microaerobiosis, three traits that might help bacteria to overcome important factors limiting their survival and/or growth in nectar. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  18. Floral traits driving reproductive isolation of two co-flowering taxa that share vertebrate pollinators

    Science.gov (United States)

    Queiroz, Joel A.; Quirino, Zelma G. M.; Machado, Isabel C.

    2015-01-01

    Floral attributes evolve in response to frequent and efficient pollinators, which are potentially important drivers of floral diversification and reproductive isolation. In this context, we asked, how do flowers evolve in a bat–hummingbird pollination system? Hence, we investigated the pollination ecology of two co-flowering Ipomoea taxa (I. marcellia and I. aff. marcellia) pollinated by bats and hummingbirds, and factors favouring reproductive isolation and pollinator sharing in these plants. To identify the most important drivers of reproductive isolation, we compared the flowers of the two Ipomoea taxa in terms of morphometry, anthesis and nectar production. Pollinator services were assessed using frequency of visits, fruit set and the number of seeds per fruit after visits. The studied Ipomoea taxa differed in corolla size and width, beginning and duration of anthesis, and nectar attributes. However, they shared the same diurnal and nocturnal visitors. The hummingbird Heliomaster squamosus was more frequent in I. marcellia (1.90 visits h−1) than in I. aff. marcellia (0.57 visits h−1), whereas glossophagine bats showed similar visit rates in both taxa (I. marcellia: 0.57 visits h−1 and I. aff. marcellia: 0.64 visits h−1). Bat pollination was more efficient in I. aff. marcellia, whereas pollination by hummingbirds was more efficient in I. marcellia. Differences in floral attributes between Ipomoea taxa, especially related to the anthesis period, length of floral parts and floral arrangement in the inflorescence, favour reproductive isolation from congeners through differential pollen placement on pollinators. This bat–hummingbird pollination system seems to be advantageous in the study area, where the availability of pollinators and floral resources changes considerably throughout the year, mainly as a result of rainfall seasonality. This interaction is beneficial for both sides, as it maximizes the number of potential pollen vectors for plants and

  19. Pollination limitation to reproductive success in the Missouri evening primrose, Oenothera macrocarpa (Onagraceae).

    Science.gov (United States)

    Moody-Weis, J M; Heywood, J S

    2001-09-01

    Habitat fragmentation may result in plant populations that are less attractive to pollinators and thus susceptible to reduced reproductive output due to pollination limitation. Pollination limitation was investigated in three Missouri populations of Oenothera macrocarpa, a hawk-moth-pollinated, perennial herb. The populations represented extremes in size and habitat quality. Following supplemental pollination, mean fertilization success (proportion of ovules fertilized) across populations increased from 24.3 to 44.8% and mean seed set (proportion of ovules that matured into seed) increased from 14.7 to 27.9%. These increases were statistically significant in two of the three populations. Failure to achieve 100% fertilization and seed set following supplementation indicates that other factors, in addition to pollination, were limiting to female reproductive success. Fruit set was pollination limited in only one population. Fruits matured with as few as one seed, suggesting that fruit set was not resource limited. The degree of pollination limitation was greatest in the most disturbed population. The population located in the highest-quality habitat was not significantly pollination limited. This suggests that pollination limitation is occurring, at least in part, because of reduced pollinator activity in degraded habitats.

  20. Pollination ecology and the possible impacts of environmental change in the Southwest Australian Biodiversity Hotspot.

    Science.gov (United States)

    Phillips, Ryan D; Hopper, Stephen D; Dixon, Kingsley W

    2010-02-12

    The Southwest Australian Biodiversity Hotspot contains an exceptionally diverse flora on an ancient, low-relief but edaphically diverse landscape. Since European colonization, the primary threat to the flora has been habitat clearance, though climate change is an impending threat. Here, we review (i) the ecology of nectarivores and biotic pollination systems in the region, (ii) the evidence that trends in pollination strategies are a consequence of characteristics of the landscape, and (iii) based on these discussions, provide predictions to be tested on the impacts of environmental change on pollination systems. The flora of southwestern Australia has an exceptionally high level of vertebrate pollination, providing the advantage of highly mobile, generalist pollinators. Nectarivorous invertebrates are primarily generalist foragers, though an increasing number of colletid bees are being recognized as being specialized at the level of plant family or more rarely genus. While generalist pollination strategies dominate among insect-pollinated plants, there are some cases of extreme specialization, most notably the multiple evolutions of sexual deception in the Orchidaceae. Preliminary data suggest that bird pollination confers an advantage of greater pollen movement and may represent a mechanism for minimizing inbreeding in naturally fragmented populations. The effects of future environmental change are predicted to result from a combination of the resilience of pollination guilds and changes in their foraging and dispersal behaviour.

  1. Stimulation of flower nectar replenishment by removal: A survey of eleven animal-pollinated plant species

    Directory of Open Access Journals (Sweden)

    Elaine Y Luo

    2014-02-01

    Full Text Available Understanding the interaction between reward-seeking flower feeding animals and plants requires consideration of the dynamic nature of nectar secretion. Studies on several plants suggest that nectar secretion may increase in response to its removal, but it is not clear whether the phenomenon is widespread. We determined whether 11 species of Colorado mountain wildflowers showed removal-enhanced nectar replenishment (RENR. We measured floral phenology, nectar volumes, rate of replenishment, and compared the cumulative nectar produced following five hourly removals with that accumulated after five hours. Nectar replenishment occurred rapidly, within minutes; statistically significant RENR was observed in 9 of our 11 study species, with the strongest effects in bee-pollinated species. We discuss the implications of RENR in plant species on the measurement of nectar, the adaptive advantage of RENR, and the energetic costs of RENR.

  2. Edible wild plant use in the Faroe Islands and Iceland

    Directory of Open Access Journals (Sweden)

    Ingvar Svanberg

    2012-11-01

    Full Text Available This paper reviews the use of wild edible plants in the Faroe Islands and Iceland from the times of the first settlement of Norse people in the Viking age until today, with a special emphasis on the 18th, 19th and 20th centuries. Animal products have been an important source of nutrients for the islanders of northern Atlantic. Cultivation of cereals on the other hand has played a minor role, and had already been abandoned by late medieval times in Iceland and by the early 20th century on the Faroes. Crops such as potatoes, turnips and other roots were only grown in the small patches of cultivated soil. Wild plants have therefore been of some importance for the Faroese people and the Icelanders; in the last centuries especially for the rural poor and during times of recessions. The native Angelica archangelica L. was gathered in the wild and also cultivated in gardens for centuries. A few species have been part of the regular food staple. Some plants are still gathered and made into food products by small companies, especially in Iceland. In the Faroes, the economic aspect of edible wild plant taxa is mostly of historical interest, although a few products of A. archangelica are sometimes available. Two taxa have been exploited as regular food exclusively in Iceland: Cetraria islandica (L. Arch. and Elymus arenarius L. Icelanders have used C. islandica from the early settlement days and continue to do so today, E. arenarius became obsolete as a food plant a century ago.

  3. Pollination systems and floral traits in cerrado woody species of the Upper Taquari region (central Brazil

    Directory of Open Access Journals (Sweden)

    F. Q. Martins

    Full Text Available Plant species present flowers with varied morphological and functional features, which may be associated to pollination systems, including species pollinated by wind, beetles, moths, bees, small insects, birds, or bats. We calculated the frequencies of the pollination systems among woody species in five cerrado fragments in central-western Brazil and tested whether the pollination systems were indeed related to floral traits. We sampled 2,280 individuals, belonging to 121 species, ninety-nine of which were described in relation to all floral traits. Most species had diurnal anthesis, pale colors, and open flowers. The most frequent groups were those composed by the species pollinated by bees, small insects, and moths. A Principal Component Analysis of the species and floral traits showed that there was a grouping among species with some pollination systems, such as those pollinated mainly by beetles, moths, birds, and bats, for which inferences based on the floral traits are recommended in cerrado sites. For the species pollinated mainly by bees or small insects, inferences based on the floral traits are not recommended, due to the large dispersion of the species scores and overlapping between these two groups, which probably occurred due to the specificity absence in plant-pollinator relationships.

  4. Herbivory as an important selective force in the evolution of floral traits and pollinator shifts

    Science.gov (United States)

    Overson, Rick P.; Raguso, Robert A.; Skogen, Krissa A.

    2017-01-01

    Abstract Floral trait evolution is frequently attributed to pollinator-mediated selection but herbivores can play a key role in shaping plant reproductive biology. Here we examine the role of florivores in driving floral trait evolution and pollinator shifts in a recently radiated clade of flowering plants, Oenothera sect. Calylophus. We compare florivory by a specialist, internal feeder, Mompha, on closely related hawkmoth- and bee-pollinated species and document variation in damage based on floral traits within sites, species and among species. Our results show that flowers with longer floral tubes and decreased floral flare have increased Mompha damage. Bee-pollinated flowers, which have substantially smaller floral tubes, experience on average 13% less Mompha florivory than do hawkmoth-pollinated flowers. The positive association between tube length and Mompha damage is evident even within sites of some species, suggesting that Mompha can drive trait differentiation at microevolutionary scales. Given that there are at least two independent shifts from hawkmoth to bee pollination in this clade, florivore-mediated selection on floral traits may have played an important role in facilitating morphological changes associated with transitions from hawkmoth to bee pollination. PMID:28011456

  5. Geographic variation in resistance to nectar robbing and consequences for pollination.

    Science.gov (United States)

    Adler, Lynn S; Leege, Lissa M; Irwin, Rebecca E

    2016-10-01

    Floral evolution is frequently ascribed to selection by pollinators, but may also be shaped by antagonists. However, remarkably few studies have examined geographic mosaics in resistance to floral antagonists or the consequences for other floral interactions. Gelsemium sempervirens experiences frequent nectar robbing in northern Georgia, but rarely in southern Georgia. We conducted common-garden experiments in both locations using genotypes from each region and measured robbing, pollinator attraction, floral attractive and defensive traits, and plant reproduction. Nectar robbing was more than four times higher in the north vs. south, and pollinator visits did not differ between gardens. Across both gardens, northern genotypes were half as likely to be nectar-robbed but received half as many pollinator visits as southern genotypes, suggesting evolution of resistance to robbing at a cost of reduced pollinator attraction. Plant-level traits, such as height and number of flowers, were more closely associated with resistance to robbing than floral size, shape, or chemistry. Northern genotypes had lower female and estimated male reproduction compared to southern genotypes at both locations, which could be due to costs of resistance to nectar robbing, or costs of adaptations to other biotic or abiotic differences between regions. Our study indicates that geographic variation can play a strong role structuring interactions with floral antagonists and mutualists and provides evidence consistent with the hypothesis that local resistance to nectar robbing imposes costs in terms of decreased pollinator attraction and reproduction. © 2016 Botanical Society of America.

  6. Shift from bird to butterfly pollination in Clivia (Amaryllidaceae).

    Science.gov (United States)

    Kiepiel, Ian; Johnson, Steven D

    2014-01-01

    Pollinator shifts have been implicated as a driver of divergence in angiosperms. We tested the hypothesis that there was a transition from bird- to butterfly pollination in the African genus Clivia (Amaryllidaceae) and investigated how floral traits may have been either modified or retained during this transition. We identified pollinators using field observations, correlations between lepidopteran wing scales and pollen on stigmas, and single-visit and selective exclusion experiments. We also quantified floral rewards and advertising traits. The upright trumpet-shaped flowers of C. miniata were found to be pollinated effectively by swallowtail butterflies during both nectar-feeding and brush visits. These butterflies transfer pollen on their wings, as evidenced by positive correlations between wing scales and pollen loads on stigmas. All other Clivia species have narrow pendulous flowers that are visited by sunbirds. Selective exclusion of birds and large butterflies from flowers of two Clivia species resulted in a significant decline in seed production. From the distribution of pollination systems on available phylogenies, it is apparent that a shift took place from bird- to butterfly pollination in Clivia. This shift was accompanied by the evolution of trumpet-shaped flowers, smaller nectar volume, and emission of scent, while flower color and nectar chemistry do not appear to have been substantially modified. These results are consistent with the idea that pollinator shifts can explain major floral modifications during plant diversification.

  7. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour.

    Science.gov (United States)

    Kaiser-Bunbury, Christopher N; Muff, Stefanie; Memmott, Jane; Müller, Christine B; Caflisch, Amedeo

    2010-04-01

    Species extinctions pose serious threats to the functioning of ecological communities worldwide. We used two qualitative and quantitative pollination networks to simulate extinction patterns following three removal scenarios: random removal and systematic removal of the strongest and weakest interactors. We accounted for pollinator behaviour by including potential links into temporal snapshots (12 consecutive 2-week networks) to reflect mutualists' ability to 'switch' interaction partners (re-wiring). Qualitative data suggested a linear or slower than linear secondary extinction while quantitative data showed sigmoidal decline of plant interaction strength upon removal of the strongest interactor. Temporal snapshots indicated greater stability of re-wired networks over static systems. Tolerance of generalized networks to species extinctions was high in the random removal scenario, with an increase in network stability if species formed new interactions. Anthropogenic disturbance, however, that promote the extinction of the strongest interactors might induce a sudden collapse of pollination networks.

  8. From birds to bees: applying video observation techniques to invertebrate pollinators

    Directory of Open Access Journals (Sweden)

    C J Lortie

    2012-01-01

    Full Text Available Observation is a critical element of behavioural ecology and ethology. Here, we propose a similar set of techniques to enhance the study of the diversity patterns of invertebrate pollinators and associated plant species. In a body of avian research, cameras are set up on nests in blinds to examine chick and parent interactions. This avoids observer bias, minimizes interference, and provides numerous other benefits including timestamps, the capacity to record frequency and duration of activities, and provides a permanent archive of activity for later analyses. Hence, we propose that small video cameras in blinds can also be used to continuously monitor pollinator activity on plants thereby capitalizing on those same benefits. This method was proofed in 2010 in the alpine in BC, Canada on target focal plant species and on open mixed assemblages of plant species. Apple ipod nanos successfully recorded activity for an entire day at a time totalling 450 hours and provided sufficient resolution and field of view to both identify pollinators to recognizable taxonomic units and monitor movement and visitation rates at a scale of view of approximately 50 cm2. This method is not a replacement for pan traps or sweep nets but an opportunity to enhance these datasets with more detailed, finer-resolution data. Importantly, the test of this specific method also indicates that far more hours of observation - using any method - are likely required than most current ecological studies published to accurately estimate pollinator diversity.

  9. Diagnosis of directed pollination services in apple orchards in Brazil

    Directory of Open Access Journals (Sweden)

    Joatan Machado da Rosa

    2018-04-01

    Full Text Available Abstract The pollination services performed by Apis mellifera are essential for the high-quality apple production. The aim of this study was to obtain information about the pollination services used in the municipalities of Vacaria-RS e São Joaquim-SC, the main apple-producing regions in Brazil. Semi-structured interviews were conducted with apple growers and technicians responsible for the orchards during 2013 and 2015. The obtained information was: a cropping systems; b use of pollination services; c number of hives per hectare during flowering; d renting value of hives; e mortality of colonies; f agrochemicals used on flowering; g presence of native bees on flowering. In Vacaria and São Joaquim, respectively, 70% and 68.6% of the apple growers use the integrated apple production as their production model. The directed pollination is used by 100% and 90.0% of respondents respectively, from which, 80% and 47.1% opt for the hive rent. On average, three hives were used per hectare in both regions. The average cost is U$ 17.52 and U$ 17.74 per hive, respectively. During the flowering period, insecticides and fungicides are used by 100% and 97.2% of the apple growers. The highest mean percentage of mortality of colonies during flowering was reported in Vacaria, 11.8%. Native bees are often found in apple flowers. The development of management strategies for the conservation of domestic and wild pollinators is essential.

  10. Ethnobotanical investigation of 'wild' food plants used by rice farmers in Kalasin, Northeast Thailand

    Directory of Open Access Journals (Sweden)

    Cruz-Garcia Gisella S

    2011-11-01

    Full Text Available Abstract Background Wild food plants are a critical component in the subsistence system of rice farmers in Northeast Thailand. One of the important characteristics of wild plant foods among farming households is that the main collection locations are increasingly from anthropogenic ecosystems such as agricultural areas rather than pristine ecosystems. This paper provides selected results from a study of wild food conducted in several villages in Northeast Thailand. A complete botanical inventory of wild food plants from these communities and surrounding areas is provided including their diversity of growth forms, the different anthropogenic locations were these species grow and the multiplicity of uses they have. Methods Data was collected using focus groups and key informant interviews with women locally recognized as knowledgeable about contemporarily gathered plants. Plant species were identified by local taxonomists. Results A total of 87 wild food plants, belonging to 47 families were reported, mainly trees, herbs (terrestrial and aquatic and climbers. Rice fields constitute the most important growth location where 70% of the plants are found, followed by secondary woody areas and home gardens. The majority of species (80% can be found in multiple growth locations, which is partly explained by villagers moving selected species from one place to another and engaging in different degrees of management. Wild food plants have multiple edible parts varying from reproductive structures to vegetative organs. More than two thirds of species are reported as having diverse additional uses and more than half of them are also regarded as medicine. Conclusions This study shows the remarkable importance of anthropogenic areas in providing wild food plants. This is reflected in the great diversity of species found, contributing to the food and nutritional security of rice farmers in Northeast Thailand.

  11. Eating from the wild: diversity of wild edible plants used by Tibetans in Shangri-la region, Yunnan, China.

    Science.gov (United States)

    Ju, Yan; Zhuo, Jingxian; Liu, Bo; Long, Chunlin

    2013-04-19

    Locally harvested wild edible plants (WEPs) provide food as well as cash income for indigenous people and are of great importance in ensuring global food security. Some also play a significant role in maintaining the productivity and stability of traditional agro-ecosystems. Shangri-la region of Yunnan Province, SW China, is regarded as a biodiversity hotspot. People living there have accumulated traditional knowledge about plants. However, with economic development, WEPs are threatened and the associated traditional knowledge is in danger of being lost. Therefore, ethnobotanical surveys were conducted throughout this area to investigate and document the wild edible plants traditionally used by local Tibetan people. Twenty-nine villages were selected to carry out the field investigations. Information was collected using direct observation, semi-structured interviews, individual discussions, key informant interviews, focus group discussions, questionnaires and participatory rural appraisal (PRA). Information about 168 wild edible plant species in 116 genera of 62 families was recorded and specimens were collected. Most species were edible greens (80 species) or fruits (78). These WEPs are sources for local people, especially those living in remote rural areas, to obtain mineral elements and vitamins. More than half of the species (70%) have multiple use(s) besides food value. Some are crop wild relatives that could be used for crop improvement. Several also have potential values for further commercial exploitation. However, the utilization of WEPs and related knowledge are eroding rapidly, especially in the areas with convenient transportation and booming tourism. Wild food plants species are abundant and diverse in Shangri-la region. They provide food and nutrients to local people and could also be a source of cash income. However, both WEPs and their associated indigenous knowledge are facing various threats. Thus, conservation and sustainable utilization of these

  12. Ethnobotany of wild plants used for starting fermented beverages in Shui communities of southwest China.

    Science.gov (United States)

    Hong, Liya; Zhuo, Jingxian; Lei, Qiyi; Zhou, Jiangju; Ahmed, Selena; Wang, Chaoying; Long, Yuxiao; Li, Feifei; Long, Chunlin

    2015-05-28

    Shui communities of southwest China have an extensive history of using wild plants as starters (Xiaoqu) to prepare fermented beverages that serve important roles in interpersonal relationships and cultural events. While the practice of using wild plants as starters for the preparation of fermented beverages was once prevalent throughout China, this tradition has seen a decline nationally since the 1930s. The traditional technique of preparing fermented beverages from wild plant starters remains well preserved in the Shui communities in southwest China and provides insight on local human-environment interactions and conservation of plant biodiversity for cultural purposes. The present study sought to examine the ethnobotany of wild plants used as starters for the preparation of fermented beverages including an inventory of plants used as a starter in liquor fermentation and associated knowledge and practices. Field surveys were carried out that consisted of semi-structured surveys and plant species inventories. One hundred forty-nine informants in twenty Shui villages were interviewed between July 2012 and October 2014 to document knowledge associated with wild plants used as a liquor fermentation starter. The inventories involved plant voucher specimens and taxonomic identification of plant collections. A total of 103 species in 57 botanical families of wild plants were inventoried and documented that are traditionally used as starters for preparing fermented beverages by Shui communities. The majority of the species (93.2%) have multiple uses in addition to being used as a starter with medicinal purposes being the most prevalent. Shui women are the major harvesters and users of wild plants used as starters for preparing fermented beverages and transfer knowledge orally from mother to daughter. Findings from this study can serve as a basis for future investigation on fermented beverages and foods and associated knowledge and cultural practices. However, with rapid

  13. Differential pollinator effectiveness and importance in a milkweed (Asclepias, Apocynaceae) hybrid zone.

    Science.gov (United States)

    Stoepler, Teresa M; Edge, Andrea; Steel, Anna; O'Quinn, Robin L; Fishbein, Mark

    2012-03-01

    Exceptions to the ideal of complete reproductive isolation between species are commonly encountered in diverse plant, animal, and fungal groups, but often the causative ecological processes are poorly understood. In flowering plants, the outcome of hybridization depends in part on the effectiveness of pollinators in interspecific pollen transport. In the Asclepias exaltata and A. syriaca (Apocynaceae) hybrid zone in Shenandoah National Park, Virginia, extensive introgression has been documented. The objectives of this study were to (1) determine the extent of pollinator overlap among A. exaltata, A. syriaca, and their hybrids and (2) identify the insect taxa responsible for hybridization and introgression. We observed focal plants of parental species and hybrids to measure visitation rate, visit duration, and per-visit pollinia removal and deposition, and we calculated pollinator effectiveness and importance. Visitation rates varied significantly between the 2 yr of the study. Overall, Apis mellifera, Bombus sp., and Epargyreus clarus were the most important pollinators. However, Bombus sp. was the only visitor that was observed to both remove and insert pollinia for both parent species as well as hybrids. We conclude that Bombus may be a key agent of hybridization and introgression in these sympatric milkweed populations, and hybrids are neither preferred nor selected against by pollinators. Thus, we have identified a potential mechanism for how hybrids act as bridges to gene flow between A. exaltata and A. syriaca. These results provide insights into the breakdown of prezygotic isolating mechanisms.

  14. Wild vascular plants gathered for consumption in the Polish countryside: a review

    Directory of Open Access Journals (Sweden)

    Szymański Wojciech M

    2007-04-01

    Full Text Available Abstract Background This paper is an ethnobotanical review of wild edible plants gathered for consumption from the end of the 18th century to the present day, within the present borders of Poland. Methods 42 ethnographic and botanical sources documenting the culinary use of wild plants were analyzed. Results The use of 112 species (3.7% of the flora has been recorded. Only half of them have been used since the 1960s. Three species: Cirsium rivulare, Euphorbia peplus and Scirpus sylvaticus have never before been reported as edible by ethnobotanical literature. The list of wild edible plants which are still commonly gathered includes only two green vegetables (Rumex acetosa leaves for soups and Oxalis acetosella as children's snack, 15 folk species of fruits and seeds (Crataegus spp., Corylus avellana, Fagus sylvatica, Fragaria vesca, Malus domestica, Prunus spinosa, Pyrus spp., Rosa canina, Rubus idaeus, Rubus sect. Rubus, Sambucus nigra, Vaccinium myrtillus, V. oxycoccos, V. uliginosum, V. vitis-idaea and four taxa used for seasoning or as preservatives (Armoracia rusticana root and leaves, Carum carvi seeds, Juniperus communis pseudo-fruits and Quercus spp. leaves. The use of other species is either forgotten or very rare. In the past, several species were used for food in times of scarcity, most commonly Chenopodium album, Urtica dioica, U. urens, Elymus repens, Oxalis acetosella and Cirsium spp., but now the use of wild plants is mainly restricted to raw consumption or making juices, jams, wines and other preserves. The history of the gradual disappearance of the original barszcz, Heracleum sphondylium soup, from Polish cuisine has been researched in detail and two, previously unpublished, instances of its use in the 20th century have been found in the Carpathians. An increase in the culinary use of some wild plants due to media publications can be observed. Conclusion Poland can be characterized as a country where the traditions of culinary

  15. Exploring the relationships between landscape complexity, wild bee species richness and reproduction, and pollination services along a complexity gradient in the Netherlands

    NARCIS (Netherlands)

    Bukovinszki, Tibor; Verheijen, Joke; Zwerver, S.; Klop, Esther; Biesmeijer, Jacobus C.; Wäckers, Felix L.; Prins, Herbert H.T.; Kleijn, David

    2017-01-01

    Pollinator communities exhibit variable responses to changing landscape composition. A general expectation is that a decreasing cover of semi-natural habitats negatively affects pollinator reproduction, population size and pollination services, but few studies have investigated the simultaneous

  16. Functional morphology and wasp pollination of two South American asclepiads (Asclepiadoideae-Apocynaceae).

    Science.gov (United States)

    Wiemer, A P; Sérsic, A N; Marino, S; Simões, A O; Cocucci, A A

    2012-01-01

    BACKGROUND AND AIMS The extreme complexity of asclepiad flowers (Asclepiadoideae-Apocynaceae) has generated particular interest in the pollination biology of this group of plants especially in the mechanisms involved in the pollination processes. This study compares two South American species, Morrenia odorata and Morrenia brachystephana, with respect to morphology and anatomy of flower structures, dynamic aspects of the pollination mechanism, diversity of visitors and effectiveness of pollinators. Floral structure was studied with fresh and fixed flowers following classical techniques. The pollination mechanism was studied by visiting fresh flowers in the laboratory with artificial pollinator body parts created with an eyelash. Morphometric and nectar measurements were also taken. Pollen transfer efficiency in the flowers was calculated by recording the frequency of removed and inserted pollinia. Visitor activity was recorded in the field, and floral visitors were captured for subsequent analysis of pollen loads. Finally, pollinator effectiveness was calculated with an index. The detailed structure of the flowers revealed a complex system of guide rails and chambers precisely arranged in order to achieve effective pollinaria transport. Morrenia odorata is functionally specialized for wasp pollination, and M. brachystephana for wasp and bee pollination. Pollinators transport chains of pollinaria adhered to their mouthparts. Morrenia odorata and M. brachystephana present differences in the morphology and size of their corona, gynostegium and pollinaria, which explain the differences in details of the functioning of the general pollination mechanism. Pollination is performed by different groups of highly effective pollinators. Morrenia species are specialized for pollination mainly by several species of wasps, a specialized pollination which has been poorly studied. In particular, pompilid wasps are reported as important pollinators in other regions outside South

  17. A horizon scan of future threats and opportunities for pollinators and pollination

    Directory of Open Access Journals (Sweden)

    Mark J.F. Brown

    2016-08-01

    Full Text Available Background. Pollinators, which provide the agriculturally and ecologically essential service of pollination, are under threat at a global scale. Habitat loss and homogenisation, pesticides, parasites and pathogens, invasive species, and climate change have been identified as past and current threats to pollinators. Actions to mitigate these threats, e.g., agri-environment schemes and pesticide-use moratoriums, exist, but have largely been applied post-hoc. However, future sustainability of pollinators and the service they provide requires anticipation of potential threats and opportunities before they occur, enabling timely implementation of policy and practice to prevent, rather than mitigate, further pollinator declines. Methods.Using a horizon scanning approach we identified issues that are likely to impact pollinators, either positively or negatively, over the coming three decades. Results.Our analysis highlights six high priority, and nine secondary issues. High priorities are: (1 corporate control of global agriculture, (2 novel systemic pesticides, (3 novel RNA viruses, (4 the development of new managed pollinators, (5 more frequent heatwaves and drought under climate change, and (6 the potential positive impact of reduced chemical use on pollinators in non-agricultural settings. Discussion. While current pollinator management approaches are largely driven by mitigating past impacts, we present opportunities for pre-emptive practice, legislation, and policy to sustainably manage pollinators for future generations.

  18. Coping with third parties in a nursery pollination mutualism: Hadena bicruris avoids oviposition on pathogen-infected, less rewarding Silene latifolia

    NARCIS (Netherlands)

    Biere, A.; Honders, S.C.

    2006-01-01

    In nursery pollination systems, pollinator offspring usually feed on pollinated fruits or seeds. Costs and benefits of the interaction for plant and pollinator, and hence its local outcome (antagonismmutualism), can be affected by the presence of 'third-party' species. Infection of Silene latifolia

  19. Density-dependent effects of ants on selection for bumble bee pollination in Polemonium viscosum.

    Science.gov (United States)

    Galen, Candace; Geib, Jennifer C

    2007-05-01

    Mutualisms are commonly exploited by cheater species that usurp rewards without providing reciprocal benefits. Yet most studies of selection between mutualist partners ignore interactions with third species and consequently overlook the impact of cheaters on evolution in the mutualism. Here, we explicitly investigate how the abundance of nectar-thieving ants (cheaters) influences selection in a pollination mutualism between bumble bees and the alpine skypilot, Polemonium viscosum. As suggested in past work with this species, bumble bees accounted for most of the seed production (78% +/- 6% [mean +/- SE]) in our high tundra study population and, in the absence of ants, exerted strong selection for large flowers. We tested for indirect effects of ant abundance on seed set through bumble bee pollination services (pollen delivery and pollen export) and a direct effect through flower damage. Ants reduced seed set per flower by 20% via flower damage. As ant density increased within experimental patches, the rate of flower damage rose, but pollen delivery and export did not vary significantly, showing that indirect effects of increased cheater abundance on pollinator service are negligible in this system. To address how ants affect selection for plant participation in the pollination mutualism we tested the impact of ant abundance on selection for bumble bee-mediated pollination. Results show that the impact of ants on fitness (seed set) accruing under bumble bee pollination is density dependent in P. viscosum. Selection for bumble bee pollination declined with increasing ant abundance in experimental patches, as predicted if cheaters constrain fitness returns of mutualist partner services. We also examined how ant abundance influences selection on flower size, a key component of plant investment in bumble bee pollination. We predicted that direct effects of ants would constrain bumble bee selection for large flowers. However, selection on flower size was significantly

  20. Pollinator-mediated selection in a specialized hummingbird-Heliconia system in the Eastern Caribbean.

    Science.gov (United States)

    Temeles, E J; Rah, Y J; Andicoechea, J; Byanova, K L; Giller, G S J; Stolk, S B; Kress, W J

    2013-02-01

    Phenotypic matches between plants and their pollinators often are interpreted as examples of reciprocal selection and adaptation. For the two co-occurring plant species, Heliconia bihai and H. caribaea in the Eastern Caribbean, we evaluated for five populations over 2 years the strength and direction of natural selection on corolla length and number of bracts per inflorescence. These plant traits correspond closely to the bill lengths and body masses of their primary pollinators, female or male purple-throated carib hummingbirds (Eulampis jugularis). In H. bihai, directional selection for longer corollas was always significant with the exception of one population in 1 year, whereas selection on bract numbers was rare and found only in one population in 1 year. In contrast, significant directional selection for more bracts per inflorescence occurred in all three populations of the yellow morph and in two populations of the red morph of H. caribaea, whereas significant directional selection on corolla length occurred in only one population of the red morph and one population of the yellow morph. Selection for longer corollas in H. bihai may result from better mechanical fit, and hence pollination, by the long bills of female E. jugularis, their sole pollinator. In contrast, competition between males of E. jugularis for territories may drive selection for more bracts in H. caribaea. Competitive exclusion of female E. jugularis by territorial males also implicates pollinator competition as a possible ecological mechanism for trait diversification in these plants. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  1. Identifying pollination service hotspots and coldspots using citizen science data from the Great Sunflower Project

    Science.gov (United States)

    LeBuhn, G.; Schmucki, R.

    2016-12-01

    Identifying the spatial patterns of pollinator visitation rates is key to identifying the drivers of differences in pollination service and the areas where pollinator conservation will provide the highest return on investment. However, gathering pollinator abundance data at the appropriate regional and national scales is untenable. As a surrogate, habitat models have been developed to identify areas of pollinator losses but these models have been developed using expert opinion based on foraging and nesting requirements. Thousands of citizen scientists across the United States participating in The Great Sunflower Project (www.GreatSunflower.org) contribute timed counts of pollinator visits to a focal sunflower variety planted in local gardens and green spaces. While these data provide a more direct measure of pollination service to a standardized plant and include a measure of effort, the data are complicated. Each location is sampled at different dates, times and frequencies as well as different points across the local flight season. To overcome this complication, we have used a generalized additive model to generate regional flight curves to calibrate each individual data point and to attain better estimates of pollination service at each site. Using these flight season corrected data, we identify hotspots and cold spots in pollinator service across the United States, evaluate the drivers shaping the spatial patterns and observe how these data align with the results obtained from predictive models that are based on expert knowledge on foraging and nesting habitats.

  2. The Perfect Match: Simultaneous Strawberry Pollination and Bio-Sampling of the Plant Pathogenic Bacterium Erwinia pyrifoliae by Honey Bees Apis mellifera

    NARCIS (Netherlands)

    Steen, van der Sjef; Bergsma-Vlami, M.; Wenneker, M.

    2018-01-01

    In this study we show that honey bee colonies placed in a greenhouse for pollination of strawberry can simultaneously be used to indicate the presence of the plant pathogenic bacterium Erwinia pyrifoliae. This was demonstrated by using two methods of qualitative sacrificial and non-sacrificial bio

  3. Impact of honeybee (Apis mellifera L. density on wild bee foraging behaviour

    Directory of Open Access Journals (Sweden)

    Goras Georgios

    2016-06-01

    Full Text Available Honey bees are globally regarded as important crop pollinators and are also valued for their honey production. They have been introduced on an almost worldwide scale. During recent years, however, several studies argue their possible competition with unmanaged pollinators. Here we examine the possible effects of honey bees on the foraging behaviour of wild bees on Cistus creticus flowers in Northern Greece. We gradually introduced one, five, and eight honey-bee hives per site, each containing ca. 20,000 workers. The visitation frequency and visit duration of wild bees before and after the beehive introductions were measured by flower observation. While the visitation frequencies of wild bees were unaffected, the average time wild bees spent on C. creticus increased with the introduction of the honey-bee hives. Although competition between honey bees and wild bees is often expected, we did not find any clear evidence for significant effects even in honey-bee densities much higher than the European-wide average of 3.1 colonies/km2.

  4. Radiation of pollination systems in the Iridaceae of sub-Saharan Africa.

    Science.gov (United States)

    Goldblatt, Peter; Manning, John C

    2006-03-01

    Seventeen distinct pollination systems are known for genera of sub-Saharan African Iridaceae and recurrent shifts in pollination system have evolved in those with ten or more species. Pollination by long-tongued anthophorine bees foraging for nectar and coincidentally acquiring pollen on some part of their bodies is the inferred ancestral pollination strategy for most genera of the large subfamilies Iridoideae and Crocoideae and may be ancestral for the latter. Derived strategies include pollination by long-proboscid flies, large butterflies, night-flying hovering and settling moths, hopliine beetles and sunbirds. Bee pollination is diverse, with active pollen collection by female bees occurring in several genera, vibratile systems in a few and non-volatile oil as a reward in one species. Long-proboscid fly pollination, which is apparently restricted to southern Africa, includes four separate syndromes using different sets of flies and plant species in different parts of the subcontinent. Small numbers of species use bibionid flies, short-proboscid flies or wasps for their pollination; only about 2 % of species use multiple pollinators and can be described as generalists. Using pollination observations for 375 species and based on repeated patterns of floral attractants and rewards, we infer pollination mechanisms for an additional 610 species. Matching pollination system to phylogeny or what is known about species relationships based on shared derived features, we infer repeated shifts in pollination system in some genera, as frequently as one shift for every five or six species of southern African Babiana or Gladiolus. Specialized systems using pollinators of one pollination group, or even a single pollinator species are the rule in the family. Shifts in pollination system are more frequent in genera of Crocoideae that have bilaterally symmetric flowers and a perianth tube, features that promote adaptive radiation by facilitating precise shifts in pollen

  5. POLLINATOR-MEDIATED COMPETITION, REPRODUCTIVE CHARACTER DISPLACEMENT, AND THE EVOLUTION OF SELFING IN ARENARIA UNIFLORA (CARYOPHYLLACEAE).

    Science.gov (United States)

    Fishman, Lila; Wyatt, Robert

    1999-12-01

    Ecological factors that reduce the effectiveness of cross-pollination are likely to play a role in the frequent evolution of routine self-fertilization in flowering plants. However, we lack empirical evidence linking the reproductive assurance value of selfing in poor pollination environments to evolutionary shifts in mating system. Here, we investigated the adaptive significance of prior selfing in the polymorphic annual plant Arenaria uniflora (Caryophyllaceae), in which selfer populations occur only in areas of range overlap with congener A. glabra. To examine the hypothesis that secondary contact between the two species contributed to the evolution and maintenance of selfing, we used field competition experiments and controlled hand-pollinations to measure the female fitness consequences of pollinator-mediated interspecific interactions. Uniformly high fruit set by selfers in the naturally pollinated field arrays confirmed the reproductive assurance value of selfing, whereas substantial reductions in outcrosser fruit set (15%) and total seed production (20-35%) in the presence of A. glabra demonstrated that pollinator-mediated interactions can provide strong selection for self-pollination. Heterospecific pollen transfer, rather than competition for pollinator service, appears to be the primary mechanism of pollinator-mediated competition in Arenaria. Premating barriers to hybridization between outcrossers and A. glabra are extremely weak. The production of a few inviable hybrid seeds after heterospecific pollination and intermediate seed set after mixed pollinations indicates that A. glabra pollen can usurp A. uniflora ovules. Thus, any visit to A. uniflora by shared pollinators carries a potential female fitness cost. Moreover, patterns of fruit set and seed set in the competition arrays relative to controls were consistent with the receipt of mixed pollen loads, rather than a lack of pollinator visits. Competition through pollen transfer favors preemptive

  6. Pollination efficiency of Apis mellifera Linnaeus, 1758 (Hymenoptera, Apidae) on the monoecious plants Jatropha mollissima (Pohl) Baill. and Jatropha mutabilis (Pohl) Baill. (Euphorbiaceae) in a semi-arid Caatinga area, northeastern Brazil.

    Science.gov (United States)

    Neves, E L; Viana, B F

    2011-02-01

    Previous studies have shown the superior competitive ability of honeybees compared with native bees in the exploitation of floral resources and nesting sites besides their low efficiency in pollinating native plant species. However, there is little evidence of the effect of this invading species on autochthonous plant populations in natural environments. Thus experiments were performed to test the pollination efficiency of honeybees in two species of Jatropha (Euphorbiaceae), J. mollissima (Pohl) Baill. and J. mutabilis (Pohl) Baill., after a single flower visitation. Samplings were carried out between March and April 2006 in a hyperxerophilous shrub-arboreal Caatinga at Estação Biológica de Canudos, Bahia (9º 56´ 34" S, 38º 59´ 17" W), the property of Fundação Biodiversitas. Apis mellifera was efficient at pollinating J. mollissima (100%) and J. mutabilis (85%). This high efficiency may be explained by 1) the simple floral characteristics of both plant species, which facilitate access to the sexual organs of the plant; and 2) the body size of A. mellifera that fits the flower's dimensions.

  7. Effect of habitat disturbance on pollination biology of the columnar cactus Stenocereus quevedonis at landscape-level in central Mexico.

    Science.gov (United States)

    Rodríguez-Oseguera, A G; Casas, A; Herrerías-Diego, Y; Pérez-Negrón, E

    2013-05-01

    Stenocereus quevedonis ('pitire') is a columnar cactus endemic to central Mexico, grown for its edible fruit. Phenology, pollination biology and behaviour of flower visitors of this species were compared in six conserved and disturbed sites, hypothesising that: (i) pitire pollination is self-incompatible, requiring animal vectors; (ii) higher incidence of radiation on plants in cleared forest may lead to a higher number of flowers per pitire plant and longer blooming season, and disturbing and differential spatial availability of flower resources may determine differential attraction of pollinators to conserved and disturbed areas; (iii) if pitire pollination system is specialised, reproductive success would decrease with pollinator scarcity, or other species may substitute for main pollinators. In all sites, pitire reproduction started in January, flowering peak occurring in April, anthesis duration was 15 h and predominantly nocturnal (9 h), pollen was released at 23:00 h, nectar was produced throughout anthesis, and breeding system was self-incompatible. Flower production per plant was similar in disturbed and conserved sites, but flower availability was higher (because of higher tree density) and longer in disturbed sites. Pollination is nocturnal, the most frequent legitimate pollinator being the bat Leptonycteris yerbabuenae; diurnal pollination is rare but possible, carried out by bee species. Fruit and seed set in control and nocturnal pollination treatments at disturbed sites were higher than in conserved sites. Frequency of L. yerbabuenae visits was similar among site types, but more visits of complementary nocturnal and diurnal pollinators were recorded in disturbed sites, which could explain differences in reproductive success. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. [Comparative study on alkaloids of tissue-culture seedling and wild plant of Dendrobium huoshanense ].

    Science.gov (United States)

    Chen, Nai-dong; Gao, Feng; Lin, Xin; Jin, Hui

    2014-06-01

    To compare the composition and content of alkaloid of Dendrobium huoshanense tissue-culture seedling and wild plant. A comparative evaluation on the quality was carried out by HPLC and TLC methods including the composition and the content of alkaloids. Remarkable variation existed in the two kinds of Dendrobium huoshanense. For the tissue-culture plant, only two alkaloids were checked out by both HPLC and TLC while four alkaloids were observed in the wild plant. The alkaloid content of tissue-culture seedling and wild plant was(0. 29 ± 0. 11)%o and(0. 43 ± 0. 15) %o,respectively. Distinguished difference is observed in both composition and content of alkaloids from the annual shoots of different provenances of Dendrobium huoshanense. It suggested that the quality of tissue-culture seedling of Dendrobium huoshanense might be inconsistent with the wild plant. Furthermore, the established alkaloids-knock-out HPLC method would provide a new research tool on quality control of Chinese medicinal materials which contain unknown alkaloids.

  9. Contrasting Foraging Patterns: Testing Resource-Concentration and Dilution Effects with Pollinators and Seed Predators

    Directory of Open Access Journals (Sweden)

    Alexandria Wenninger

    2016-06-01

    Full Text Available Resource concentration effects occur when high resource density patches attract and support more foragers than low density patches. In contrast, resource dilution effects can occur if high density patches support fewer consumers. In this study, we examined the foraging rates of pollinators and seed predators on two perennial plant species (Rudbeckia triloba and Verbena stricta as functions of resource density. Specifically, we examined whether resource-dense patches (densities of flower and seeds on individual plants resulted in greater visitation and seed removal rates, respectively. We also examined whether foraging rates were context-dependent by conducting the study in two sites that varied in resource densities. For pollinators, we found negative relationships between the density of flowers per plant and visitation rates, suggesting dilution effects. For seed predators, we found positive relationships consistent with concentration effects. Saturation effects and differences in foraging behaviors might explain the opposite relationships; most of the seed predators were ants (recruitment-based foragers, and pollinators were mostly solitary foragers. We also found that foraging rates were site-dependent, possibly due to site-level differences in resource abundance and consumer densities. These results suggest that these two plant species may benefit from producing as many flowers as possible, given high levels of pollination and low seed predation.

  10. Wild food plant use in 21st century Europe: the disappearance of old traditions and the search for new cuisines involving wild edibles

    Directory of Open Access Journals (Sweden)

    Łukasz Łuczaj

    2012-11-01

    Full Text Available The aim of this review is to present an overview of changes in the contemporary use of wild food plants in Europe, mainly using the examples of our home countries: Poland, Italy, Spain, Estonia and Sweden. We set the scene referring to the nutrition of 19th century peasants, involving many famine and emergency foods. Later we discuss such issues as children's wild snacks, the association between the decline of plant knowledge and the disappearance of plant use, the effects of over-exploitation, the decrease of the availability of plants due to ecosystem changes, land access rights for foragers and intoxication dangers. We also describe the 20th and 21st century vogues in wild plant use, particularly their shift into the domain of haute-cuisine.

  11. Human-Induced Disturbance Alters Pollinator Communities in Tropical Mountain Forests

    Directory of Open Access Journals (Sweden)

    Matthias Schleuning

    2012-12-01

    Full Text Available Mountain forest ecosystems in the Andes are threatened by deforestation. Increasing fire frequencies lead to fire-degraded habitats that are often characterized by a persistent fern-dominated vegetation. Little is known about the consequences of these drastic changes in habitat conditions for pollinator communities. In a rapid diversity assessment, we collected individuals of two major groups of insect pollinators (bees and butterflies/moths with pan traps and compared pollinator diversities in a spatial block design between forest interior, forest edge and adjacent fire-degraded habitats at eight sites in the Bolivian Andes. We found that bee species richness and abundance were significantly higher in fire-degraded habitats than in forest habitats, whereas species richness and abundance of butterflies/moths increased towards the forests interior. Species turnover between forest and fire-degraded habitats was very high for both pollinator groups and was reflected by an increase in the body size of bee species and a decrease in the body size of butterfly/moth species in fire-degraded habitats. We conclude that deforestation by frequent fires has profound impacts on the diversity and composition of pollinator communities. Our tentative findings suggest shifts towards bee-dominated pollinator communities in fire-degraded habitats that may have important feedbacks on the regenerating communities of insect-pollinated plant species.

  12. Nutrient enrichment is associated with altered nectar and pollen chemical composition in Succisa pratensis Moench and increased larval mortality of its pollinator Bombus terrestris L.

    Directory of Open Access Journals (Sweden)

    Tobias Ceulemans

    Full Text Available Pollinators are declining worldwide and possible underlying causes include disease, invasive pest species and large scale land use changes resulting in habitat loss and degradation. One particular cause of habitat degradation is the increased inflow of nutrients due to anthropogenic combustion processes and large scale application of agricultural fertilizers. This nutrient pollution has been shown to affect pollinators through the loss of nectar and pollen-providing plant species. However, it may also affect pollinators through altering the nectar and pollen chemical composition of plant species, hence influencing pollinator food quality. Here, we experimentally investigated the effect of nutrient enrichment on amino acid and sugar composition of nectar and pollen in the grassland plant Sucissa pratensis, and the subsequent colony size and larval mortality of the pollinating bumblebee Bombus terrestris. We found less of the essential amino acids glycine and arginine in the pollen of fertilized plants, and more arginine, ornithine and threonine in the pollen of control plants. Nectar glucose and pollen fructose levels were lower in fertilized plants as compared to control plants. Furthermore, bumblebee colonies visiting fertilized plants showed more dead larvae than colonies visiting control plants. Our results suggest that the fitness of bumblebees can be negatively affected by changes in their food quality following nutrient pollution. If similar patterns hold for other plant and pollinator species, this may have far reaching implications for the maintenance of pollination ecosystem services, as nutrient pollution continues to rise worldwide.

  13. Nutrient enrichment is associated with altered nectar and pollen chemical composition in Succisa pratensis Moench and increased larval mortality of its pollinator Bombus terrestris L.

    Science.gov (United States)

    Ceulemans, Tobias; Hulsmans, Eva; Vanden Ende, Wim; Honnay, Olivier

    2017-01-01

    Pollinators are declining worldwide and possible underlying causes include disease, invasive pest species and large scale land use changes resulting in habitat loss and degradation. One particular cause of habitat degradation is the increased inflow of nutrients due to anthropogenic combustion processes and large scale application of agricultural fertilizers. This nutrient pollution has been shown to affect pollinators through the loss of nectar and pollen-providing plant species. However, it may also affect pollinators through altering the nectar and pollen chemical composition of plant species, hence influencing pollinator food quality. Here, we experimentally investigated the effect of nutrient enrichment on amino acid and sugar composition of nectar and pollen in the grassland plant Sucissa pratensis, and the subsequent colony size and larval mortality of the pollinating bumblebee Bombus terrestris. We found less of the essential amino acids glycine and arginine in the pollen of fertilized plants, and more arginine, ornithine and threonine in the pollen of control plants. Nectar glucose and pollen fructose levels were lower in fertilized plants as compared to control plants. Furthermore, bumblebee colonies visiting fertilized plants showed more dead larvae than colonies visiting control plants. Our results suggest that the fitness of bumblebees can be negatively affected by changes in their food quality following nutrient pollution. If similar patterns hold for other plant and pollinator species, this may have far reaching implications for the maintenance of pollination ecosystem services, as nutrient pollution continues to rise worldwide.

  14. Importance of bee pollination for cotton production in conventional and organic farms in Brazil

    Directory of Open Access Journals (Sweden)

    Viviane C. Pires

    2014-08-01

    Full Text Available This study aimed to evaluate the importance of wild bee and feral honeybee visits for cotton production on conventional and organic farms. Experiments were conducted in Brazil, on a conventional cotton farm in Mato Grosso state in the Amazon biome and on an organic farm in Paraíba state in the Caatinga biome. On the conventional farm, bee assemblage and cotton production were measured near to and far from natural vegetation. Bee richness, fibre fraction, seed number and yield (Kg/ha were higher by 57.14, 1.95, 17.77 and 18.44% respectively in plots near natural vegetation, but bee abundance did not vary with distance to natural vegetation. On the organic farm, because the cropping area is surrounded by natural vegetation, pollination deficit was evaluated using an exclusion experiment where cotton production of flowers bagged to prevent bee visitation (spontaneous self-pollination was compared to production of flowers open to bee visitation (open pollination. Open pollinated flowers had higher average boll weight, fibre weight and seed number. Although cotton is not directly dependent on bee pollination, bees increased cotton production on the organic farm by more than 12% for fibre weight and over 17% for seed number. Our data confirm the importance of maintaining communities of pollinators on cotton farms, especially for organic production.

  15. Pollinator-mediated selection on nectary depth in Urophysa (Ranunculaceae

    Directory of Open Access Journals (Sweden)

    Li Sun

    2016-04-01

    Full Text Available Pollinator-mediated selection has been considered to be one of major factors that shapes the evolution of flowers by matching flowers to their pollinators on traits associated with attraction of pollinators or mechanical fit. The match between nectary depth, which means the length of the tubular structure formed in many plant species to hide the nectary and store nectar, and the mouthparts length of its major nectar-foraging pollinators has been repeatedly demonstrated as an example, because this trait have shown a positive relationship with pollen removal and deposition in experimental manipulations in many synpetalous plants and orchid family. However, it remains unclear how pollinator-mediated selection affects the evolution of nectary depth in choripetalous and actinomorphic flowers, such as most flowers in Ranunculaceae. Here we investigated floral characteristics and pollinators in Urophysa rockii Ulbr. and U. henryi (Oliv. Ulbr., as they are quite the same in habitat, anthesis and morphological characteristics except for nectary depth. Both of these species have flat white sepals and yellow petals each has a spatial structure at the base that contains nectar, but the nectary depth of U. rockii is deeper than that of U. henryi, for the former petals are shortly spurred about 3-4mm in length while the latter are saccate. Meanwhile, the flowers of both species are most frequently visited by Apis cerana, the Chinese honey bee, and one or two species of hover fly, Syrphidae, but only A. cerana was able to forage nectar in U. rockii while all visitors can forage nectar in U. henryi. A. cerana always lands on the center of a flower and projects its proboscis into each petal when its thorax touches anthers and stigmas. The difference between two species is that U. rockii was visited by A. cerana with a higher frequency, longer visiting time per flower and more activities on flowers than U. henryi. Besides, the petal width and its nectary depth of

  16. Pollination ecology of the invasive tree tobacco Nicotiana glauca: comparisons across native and non-native ranges

    Directory of Open Access Journals (Sweden)

    Jeff Ollerton

    2012-10-01

    Full Text Available Interactions with pollinators are thought to play a significant role in determining whether plant species become invasive, and ecologically generalised species are predicted to be more likely to invade than more specialised species. Using published and unpublished data we assessed the floral biology and pollination ecology of the South American native Nicotiana glauca (Solanaceae which has become a significant invasive of semi-arid parts of the world. In regions where specialised bird pollinators are available, for example hummingbirds in California and sunbirds in South Africa and Israel, N. glauca interacts with these local pollinators and sets seed by both out-crossing and selfing. In areas where there are no such birds, such as the Canary Islands and Greece, abundant viable seed is set by selfing, facilitated by the shorter stigma-anther distance compared to plants in native populations. Surprisingly, in these areas without pollinating birds, the considerable nectar resources are only rarely exploited by other flower visitors such as bees or butterflies, either legitimately or by nectar robbing. We conclude that Nicotiana glauca is a successful invasive species outside of its native range, despite its functionally specialised hummingbird pollination system, because it has evolved to become more frequently self pollinating in areas where it is introduced. Its invasion success is not predictable from what is known of its interactions with pollinators in its home range.

  17. Reproductive biology and pollination of the carnivorous Genlisea violacea (Lentibulariaceae).

    Science.gov (United States)

    Aranguren, Y; Płachno, B J; Stpiczyńska, M; Miranda, V F O

    2018-05-01

    Genlisea violacea is a Brazilian endemic carnivorous plant species distributed in the cerrado biome, mainly in humid environments, on sandy and oligotrophic soil or wet rocks. Studies on reproductive biology or pollination in the Lentibulariaceae are notably scarce; regarding the genus Genlisea, the current study is the first to show systematic and standardised research on reproductive biology from field studies to describe the foraging of visiting insects and determine the effective pollinators of Genlisea. We studied two populations of G. violacea through the observation of flower visitors for 4 months of the rainy and dry seasons. Stigmatic receptivity, pollen viability, and breeding system were evaluated together with histochemistry and morphological analyses of flowers. The flowers showed stigmatic receptivity of 100% in open buds and mature flowers, reducing to 80% for senescent flowers. Nearly 80% of pollen grains are viable, decreasing to 40-45% after 48 h. Nectar is produced by glandular trichomes inside the spur. Two bee species are effective pollinators: one of the genus Lasioglossum (subgenus Dialictus: Halictidae) and the other of the genus Ceratina (subgenus Ceratinula: family Apidae). Moreover, bee-like flies of the Syrphidae family may also be additional pollinators. Genlisea violacea is an allogamous and self-compatible species. The differences in flower-visiting fauna for both populations can be attributed to factors such as climate, anthropogenic effect, seasonal factors related to insects and plants, as well as the morphological variation of flowers in both populations. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  18. Ethnobotanical investigation of 'wild' food plants used by rice farmers in Kalasin, Northeast Thailand

    NARCIS (Netherlands)

    Cruz Garcia, G.S.; Price, L.L.

    2011-01-01

    Background Wild food plants are a critical component in the subsistence system of rice farmers in Northeast Thailand. One of the important characteristics of wild plant foods among farming households is that the main collection locations are increasingly from anthropogenic ecosystems such as

  19. Nectar bacteria, but not yeast, weaken a plant–pollinator mutualism

    Science.gov (United States)

    Vannette, Rachel L.; Gauthier, Marie-Pierre L.; Fukami, Tadashi

    2013-01-01

    Mutualistic interactions are often subject to exploitation by species that are not directly involved in the mutualism. Understanding which organisms act as such ‘third-party’ species and how they do so is a major challenge in the current study of mutualistic interactions. Here, we show that even species that appear ecologically similar can have contrasting effects as third-party species. We experimentally compared the effects of nectar-inhabiting bacteria and yeasts on the strength of a mutualism between a hummingbird-pollinated shrub, Mimulus aurantiacus, and its pollinators. We found that the common bacterium Gluconobacter sp., but not the common yeast Metschnikowia reukaufii, reduced pollination success, seed set and nectar consumption by pollinators, thereby weakening the plant–pollinator mutualism. We also found that the bacteria reduced nectar pH and total sugar concentration more greatly than the yeasts did and that the bacteria decreased glucose concentration and increased fructose concentration whereas the yeasts affected neither. These distinct changes to nectar chemistry may underlie the microbes' contrasting effects on the mutualism. Our results suggest that it is necessary to understand the determinants of microbial species composition in nectar and their differential modification of floral rewards to explain the mutual benefits that plants and pollinators gain from each other. PMID:23222453

  20. Herbivore-Induced DNA Demethylation Changes Floral Signalling and Attractiveness to Pollinators in Brassica rapa.

    Directory of Open Access Journals (Sweden)

    Roman T Kellenberger

    Full Text Available Plants have to fine-tune their signals to optimise the trade-off between herbivore deterrence and pollinator attraction. An important mechanism in mediating plant-insect interactions is the regulation of gene expression via DNA methylation. However, the effect of herbivore-induced DNA methylation changes on pollinator-relevant plant signalling has not been systematically investigated. Here, we assessed the impact of foliar herbivory on DNA methylation and floral traits in the model crop plant Brassica rapa. Methylation-sensitive amplified fragment length polymorphism (MSAP analysis showed that leaf damage by the caterpillar Pieris brassicae was associated with genome-wide methylation changes in both leaves and flowers of B. rapa as well as a downturn in flower number, morphology and scent. A comparison to plants with jasmonic acid-induced defence showed similar demethylation patterns in leaves, but both the floral methylome and phenotype differed significantly from P. brassicae infested plants. Standardised genome-wide demethylation with 5-azacytidine in five different B. rapa full-sib groups further resulted in a genotype-specific downturn of floral morphology and scent, which significantly reduced the attractiveness of the plants to the pollinator bee Bombus terrestris. These results suggest that DNA methylation plays an important role in adjusting plant signalling in response to changing insect communities.

  1. Elemental analysis of vegetables on the market. Comparison with wild plants

    International Nuclear Information System (INIS)

    Itoh, J.; Saitoh, Y.; Futatsugawa, S.; Sera, K.

    2006-01-01

    We have measured concentration of multi elements in vegetables on the market and a wild plant gathered around Nishina Memorial Cyclotron Center in Iwate prefecture by means of PIXE. Elemental concentration in vegetables cultivated by spraying mineral-rich waters was also analyzed. As a result, it is found that the mineral-supplying vegetables abundantly contain essential elements for body such as K, Ca, Fe, Cu and Zn in comparison with ordinary ones. With regard to a wild plant, concentration of essential elements such as Ca, Cu and Zn shows no clear difference in comparison with that in commercially available one of the same kind, while that of toxic elements such as Cr and Pb is relatively higher. Moreover, it is suggested that the wild plant has a certain property of concentrating a specific element depending on its growing period. The relation between elemental concentration in the plants and that in their growing environment, such as water and soil, was also examined. It is also suggested that elemental concentration in vegetables reflects elemental constituent not only of the soil but also of the sprayed water as well as of the fertilizer. (author)

  2. Wild food plants and wild edible fungi of Heihe valley (Qinling Mountains, Shaanxi, central China: herbophilia and indifference to fruits and mushrooms

    Directory of Open Access Journals (Sweden)

    Yongxiang Kang

    2012-12-01

    Full Text Available The aim of the study was to investigate knowledge and use of wild food plants and fungi in Han (i.e. Chinese nationality villages in central China, including famine plants used in the respondents' childhood. A valley adjacent to the extremely species-rich temperate forest vegetation of the Taibai Nature Reserve was chosen. Eighty-two people from 5 villages took part in the study. Altogether, 159 wild food plant species and 13 fungi folk taxa were mentioned by informants. The mean number of freelisted wild foods was very high (24.8; median – 21.5. An average respondent listed many species of wild vegetables (mean – 17, me- dian – 14.5, a few wild fruits (mean – 5.9 and median – 6 and very few fungi (mean – 1.9, median – 1, which they had eaten. Over 50% of respondents mentioned gathering the young shoots or leaves of Celastrus orbiculatus, Staphylea bumalda and S. holocapra, Caryopteris divaricata, Helwingia japonica, Pteridium aquilinum, Pimpinella sp., Amaranthus spp., Matteucia struthiopteris, Allium spp., Cardamine macrophylla and Chenopodium album. Only one species of fruits (Schisandra sphenanthera and none of the mushrooms were mentioned by over half of the respondents. Although very diverse, it can be noted that the use of wild vegetables has decreased compared to the