WorldWideScience

Sample records for wigner rotation matrices

  1. Maple procedures for the coupling of angular momenta. IX. Wigner D-functions and rotation matrices

    Science.gov (United States)

    Pagaran, J.; Fritzsche, S.; Gaigalas, G.

    2006-04-01

    The Wigner D-functions, Dpqj(α,β,γ), are known for their frequent use in quantum mechanics. Defined as the matrix elements of the rotation operator Rˆ(α,β,γ) in R and parametrized in terms of the three Euler angles α, β, and γ, these functions arise not only in the transformation of tensor components under the rotation of the coordinates, but also as the eigenfunctions of the spherical top. In practice, however, the use of the Wigner D-functions is not always that simple, in particular, if expressions in terms of these and other functions from the theory of angular momentum need to be simplified before some computations can be carried out in detail. To facilitate the manipulation of such Racah expressions, here we present an extension to the RACAH program [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51] in which the properties and the algebraic rules of the Wigner D-functions and reduced rotation matrices are implemented. Care has been taken to combine the standard knowledge about the rotation matrices with the previously implemented rules for the Clebsch-Gordan coefficients, Wigner n-j symbols, and the spherical harmonics. Moreover, the application of the program has been illustrated below by means of three examples. Program summaryTitle of program:RACAH Catalogue identifier:ADFv_9_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFv_9_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Catalogue identifier of previous version: ADFW, ADHW, title RACAH Journal reference of previous version(s): S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51; S. Fritzsche, S. Varga, D. Geschke, B. Fricke, Comput. Phys. Comm. 111 (1998) 167; S. Fritzsche, T. Inghoff, M. Tomaselli, Comput. Phys. Comm. 153 (2003) 424. Does the new version supersede the previous one: Yes, in addition to the spherical harmonics and recoupling coefficients, the program now supports also the occurrence of the Wigner rotation matrices in the algebraic

  2. Uniform analytic approximation of Wigner rotation matrices

    Science.gov (United States)

    Hoffmann, Scott E.

    2018-02-01

    We derive the leading asymptotic approximation, for low angle θ, of the Wigner rotation matrix elements, dm1m2 j(θ ) , uniform in j, m1, and m2. The result is in terms of a Bessel function of integer order. We numerically investigate the error for a variety of cases and find that the approximation can be useful over a significant range of angles. This approximation has application in the partial wave analysis of wavepacket scattering.

  3. On the Wigner law in dilute random matrices

    Science.gov (United States)

    Khorunzhy, A.; Rodgers, G. J.

    1998-12-01

    We consider ensembles of N × N symmetric matrices whose entries are weakly dependent random variables. We show that random dilution can change the limiting eigenvalue distribution of such matrices. We prove that under general and natural conditions the normalised eigenvalue counting function coincides with the semicircle (Wigner) distribution in the limit N → ∞. This can be explained by the observation that dilution (or more generally, random modulation) eliminates the weak dependence (or correlations) between random matrix entries. It also supports our earlier conjecture that the Wigner distribution is stable to random dilution and modulation.

  4. Generalised Wigner surmise for (2 X 2) random matrices

    International Nuclear Information System (INIS)

    Chau Huu-Tai, P.; Van Isacker, P.; Smirnova, N.A.

    2001-01-01

    We present new analytical results concerning the spectral distributions for (2 x 2) random real symmetric matrices which generalize the Wigner surmise. The study of the statistical properties of spectra of realistic many-body Hamiltonians requires consideration of a random matrix ensemble whose elements are not independent or whose distribution is not invariant under orthogonal transformation of a chosen basis. In this letter we have concentrated on the properties of (2 x 2) real symmetric matrices whose elements are independent Gaussian variables with zero means but do not belong to the GOE. We have derived the distribution of eigenvalues for such a matrix, the nearest-neighbour spacing distribution which generalizes the Wigner surmise and we have calculated some important moments. (authors)

  5. Wigner formula of rotation matrices and quantum walks

    International Nuclear Information System (INIS)

    Miyazaki, Takahiro; Katori, Makoto; Konno, Norio

    2007-01-01

    Quantization of a random-walk model is performed by giving a qudit (a multicomponent wave function) to a walker at site and by introducing a quantum coin, which is a matrix representation of a unitary transformation. In quantum walks, the qudit of the walker is mixed according to the quantum coin at each time step, when the walker hops to other sites. As special cases of the quantum walks driven by high-dimensional quantum coins generally studied by Brun, Carteret, and Ambainis, we study the models obtained by choosing rotation as the unitary transformation, whose matrix representations determine quantum coins. We show that Wigner's (2j+1)-dimensional unitary representations of rotations with half-integers j's are useful to analyze the probability laws of quantum walks. For any value of half-integer j, convergence of all moments of walker's pseudovelocity in the long-time limit is proved. It is generally shown for the present models that, if (2j+1) is even, the probability measure of limit distribution is given by a superposition of (2j+1)/2 terms of scaled Konno's density functions, and if (2j+1) is odd, it is a superposition of j terms of scaled Konno's density functions and a Dirac's delta function at the origin. For the two-, three-, and four-component models, the probability densities of limit distributions are explicitly calculated and their dependence on the parameters of quantum coins and on the initial qudit of walker is completely determined. Comparison with computer simulation results is also shown

  6. Fluctuations of Wigner-type random matrices associated with symmetric spaces of class DIII and CI

    Science.gov (United States)

    Stolz, Michael

    2018-02-01

    Wigner-type randomizations of the tangent spaces of classical symmetric spaces can be thought of as ordinary Wigner matrices on which additional symmetries have been imposed. In particular, they fall within the scope of a framework, due to Schenker and Schulz-Baldes, for the study of fluctuations of Wigner matrices with additional dependencies among their entries. In this contribution, we complement the results of these authors by explicit calculations of the asymptotic covariances for symmetry classes DIII and CI and thus obtain explicit CLTs for these classes. On the technical level, the present work is an exercise in controlling the cumulative effect of systematically occurring sign factors in an involved sum of products by setting up a suitable combinatorial model for the summands. This aspect may be of independent interest. Research supported by Deutsche Forschungsgemeinschaft (DFG) via SFB 878.

  7. Evidence of Wigner rotation phenomena in the beam splitting experiment at the LCLS

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2016-07-01

    A result from particle tracking states that, after a microbunched electron beam is kicked, its trajectory changes while the orientation of the microbunching wavefront remains as before. Experiments at the LCLS showed that radiation in the kicked direction is produced practically without suppression. This could be explained if the orientation of the microbunching wavefront is readjusted along the kicked direction. In previous papers we showed that when the evolution of the electron beam modulation is treated according to relativistic kinematics, the orientation of the microbunching wavefront in the ultrarelativistic asymptotic is always perpendicular to the electron beam velocity. There we refrained from using advanced theoretical concepts to explain or analyze the wavefront rotation. For example, we only hinted to the relation of this phenomenon with the concept of Wigner rotation. This more abstract view of wavefront rotation underlines its elementary nature. The Wigner rotation is known as a fundamental effect in elementary particle physics. The composition of non collinear boosts does not result in a simple boost but, rather, in a Lorentz transformation involving a boost and a rotation, the Wigner rotation. Here we show that during the LCLS experiments, a Wigner rotation was actually directly recorded for the first time with a ultrarelativistic, macroscopic object: an ultrarelativistic electron bunch in an XFEL modulated at nm-scale of the size of about 10 microns. Here we point out the role of Wigner rotation in the analysis and interpretation of experiments with ultrarelativistic, microbunched electron beams in FELs. After the beam splitting experiment at the LCLS it became clear that, in the ultrarelativistic asymptotic, the projection of the microbunching wave vector onto the beam velocity is a Lorentz invariant, similar to the helicity in particle physics.

  8. Evidence of Wigner rotation phenomena in the beam splitting experiment at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-07-15

    A result from particle tracking states that, after a microbunched electron beam is kicked, its trajectory changes while the orientation of the microbunching wavefront remains as before. Experiments at the LCLS showed that radiation in the kicked direction is produced practically without suppression. This could be explained if the orientation of the microbunching wavefront is readjusted along the kicked direction. In previous papers we showed that when the evolution of the electron beam modulation is treated according to relativistic kinematics, the orientation of the microbunching wavefront in the ultrarelativistic asymptotic is always perpendicular to the electron beam velocity. There we refrained from using advanced theoretical concepts to explain or analyze the wavefront rotation. For example, we only hinted to the relation of this phenomenon with the concept of Wigner rotation. This more abstract view of wavefront rotation underlines its elementary nature. The Wigner rotation is known as a fundamental effect in elementary particle physics. The composition of non collinear boosts does not result in a simple boost but, rather, in a Lorentz transformation involving a boost and a rotation, the Wigner rotation. Here we show that during the LCLS experiments, a Wigner rotation was actually directly recorded for the first time with a ultrarelativistic, macroscopic object: an ultrarelativistic electron bunch in an XFEL modulated at nm-scale of the size of about 10 microns. Here we point out the role of Wigner rotation in the analysis and interpretation of experiments with ultrarelativistic, microbunched electron beams in FELs. After the beam splitting experiment at the LCLS it became clear that, in the ultrarelativistic asymptotic, the projection of the microbunching wave vector onto the beam velocity is a Lorentz invariant, similar to the helicity in particle physics.

  9. Calculation of spherical harmonics and Wigner d functions by FFT. Applications to fast rotational matching in molecular replacement and implementation into AMoRe.

    Science.gov (United States)

    Trapani, Stefano; Navaza, Jorge

    2006-07-01

    The FFT calculation of spherical harmonics, Wigner D matrices and rotation function has been extended to all angular variables in the AMoRe molecular replacement software. The resulting code avoids singularity issues arising from recursive formulas, performs faster and produces results with at least the same accuracy as the original code. The new code aims at permitting accurate and more rapid computations at high angular resolution of the rotation function of large particles. Test calculations on the icosahedral IBDV VP2 subviral particle showed that the new code performs on the average 1.5 times faster than the original code.

  10. Computational efficiency improvement with Wigner rotation technique in studying atoms in intense few-cycle circularly polarized pulses

    International Nuclear Information System (INIS)

    Yuan, Minghu; Feng, Liqiang; Lü, Rui; Chu, Tianshu

    2014-01-01

    We show that by introducing Wigner rotation technique into the solution of time-dependent Schrödinger equation in length gauge, computational efficiency can be greatly improved in describing atoms in intense few-cycle circularly polarized laser pulses. The methodology with Wigner rotation technique underlying our openMP parallel computational code for circularly polarized laser pulses is described. Results of test calculations to investigate the scaling property of the computational code with the number of the electronic angular basis function l as well as the strong field phenomena are presented and discussed for the hydrogen atom

  11. Generalized Reduction Formula for Discrete Wigner Functions of Multiqubit Systems

    Science.gov (United States)

    Srinivasan, K.; Raghavan, G.

    2018-03-01

    Density matrices and Discrete Wigner Functions are equally valid representations of multiqubit quantum states. For density matrices, the partial trace operation is used to obtain the quantum state of subsystems, but an analogous prescription is not available for discrete Wigner Functions. Further, the discrete Wigner function corresponding to a density matrix is not unique but depends on the choice of the quantum net used for its reconstruction. In the present work, we derive a reduction formula for discrete Wigner functions of a general multiqubit state which works for arbitrary quantum nets. These results would be useful for the analysis and classification of entangled states and the study of decoherence purely in a discrete phase space setting and also in applications to quantum computing.

  12. One-electron densities of freely rotating Wigner molecules

    Science.gov (United States)

    Cioslowski, Jerzy

    2017-12-01

    A formalism enabling computation of the one-particle density of a freely rotating assembly of identical particles that vibrate about their equilibrium positions with amplitudes much smaller than their average distances is presented. It produces densities as finite sums of products of angular and radial functions, the length of the expansion being determined by the interplay between the point-group and permutational symmetries of the system in question. Obtaining from a convolution of the rotational and bosonic components of the parent wavefunction, the angular functions are state-dependent. On the other hand, the radial functions are Gaussians with maxima located at the equilibrium lengths of the position vectors of individual particles and exponents depending on the scalar products of these vectors and the eigenvectors of the corresponding Hessian as well as the respective eigenvalues. Although the new formalism is particularly useful for studies of the Wigner molecules formed by electrons subject to weak confining potentials, it is readily adaptable to species (such as ´balliums’ and Coulomb crystals) composed of identical particles with arbitrary spin statistics and permutational symmetry. Several examples of applications of the present approach to the harmonium atoms within the strong-correlation regime are given.

  13. Transformation of covariant quark Wigner operator to noncovariant one

    International Nuclear Information System (INIS)

    Selikhov, A.V.

    1989-01-01

    The gauge in which covariant and noncovariant quark Wigner operators coincide has been found. In this gauge the representations of vector potential via field strength tensor is valid. The system of equations for the coefficients of covariant Wigner operator expansion in the basis γ-matrices algebra is obtained. 12 refs.; 3 figs

  14. Directional Wigner-Ville distribution and its application for rotating-machinery condition monitoring

    International Nuclear Information System (INIS)

    Kim, Dong Wan; Ha, Jae HOng; Shin, Hae Gon; Lee, Yoon Hee; Kim, Young Baik

    1996-01-01

    Vibration analysis is one of the most powerful tools available for the detection and isolation of incipient faults in mechanical systems. The methods of vibration analysis in use today and under continuous study are broad band vibration monitoring, time domain analysis, and frequency domain analysis. In recent years, great interest has been generated concerning the use of time-frequency representation and its application for a machinery diagnostics and condition monitoring system. The objective of the research described in this paper was to develop a new diagnostic tool for the rotating machinery. This paper introduces a new time-frequency representation, Directional Wigner-Ville Distribution, which analyses the time-frequency structure of the rotating machinery vibration

  15. Pure state condition for the semi-classical Wigner function

    International Nuclear Information System (INIS)

    Ozorio de Almeida, A.M.

    1982-01-01

    The Wigner function W(p,q) is a symmetrized Fourier transform of the density matrix e(q 1 ,q 2 ), representing quantum-mechanical states or their statistical mixture in phase space. Identification of these two alternatives in the case of density matrices depends on the projection identity e 2 = e; its Wigner correspondence is the pure state condition. This criterion is applied to the Wigner functions botained from standard semiclassical wave functions, determining as pure states those whose classical invariant tori satisfy the generalized Bohr-Sommerfeld conditions. Superpositions of eigenstates are then examined and it is found that the Wigner function corresponding to Gaussian random wave functions are smoothed out in the manner of mixedstate Wigner functions. Attention is also given to the pure-state condition in the case where an angular coordinate is used. (orig.)

  16. Symmetry, Wigner functions and particle reactions

    International Nuclear Information System (INIS)

    Chavlejshvili, M.P.

    1994-01-01

    We consider the great principle of physics - symmetry - and some ideas, connected with it, suggested by a great physicist Eugene Wigner. We will discuss the concept of symmetry and spin, study the problem of separation of kinematics and dynamics in particle reactions. Using Wigner rotation functions (reflecting symmetry properties) in helicity amplitude decomposition and crossing-symmetry between helicity amplitudes (which contains the same Wigner functions) we get convenient general formalism for description of reactions between particles with any masses and spins. We also consider some applications of the formalism. 17 refs., 1 tab

  17. Rotating Wigner molecules and spin-related behaviors in quantum rings

    International Nuclear Information System (INIS)

    Yang Ning; Zhu Jialin; Dai Zhensheng

    2008-01-01

    The trial wavefunctions for few-electron quantum rings are presented to describe the spin-dependent rotating Wigner molecule states. The wavefunctions are constructed from the single-particle orbits which contain two variational parameters to describe the shape and size dependence of electron localization in the ring-like confinement. They can explicitly show the size dependence of single-particle orbital occupation to give an understanding of the spin rules of ground states without magnetic fields. They can also correctly describe the spin and angular momentum transitions in magnetic fields. By examining the von Neumann entropy, it is demonstrated that the wavefunctions can illustrate the entanglement between electrons in quantum rings, including the AB oscillations as well as the spin and size dependence of the entropy. Such trial wavefunctions will be useful in investigating spin-related quantum behaviors of a few electrons in quantum rings

  18. Comment on ‘Wigner function for a particle in an infinite lattice’

    International Nuclear Information System (INIS)

    Bizarro, João P S

    2013-01-01

    It is pointed out that in a recent paper (2012 New J. Phys. 14 103009) in which a Wigner function for a particle in an infinite lattice (a system described by an unbounded discrete coordinate and its conjugate angle-like momentum) has been introduced, no reference is made to previous, pioneering work on discrete Wigner distributions (more precisely, on the rotational Wigner function for a system described by a rotation angle and its unbounded discrete-conjugate angular momentum). Not only has the problem addressed in essence been solved for a long time (the discrete coordinate and angle-like conjugate momentum are the perfect dual of the rotation angle and discrete-conjugate angular momentum), but the solution advanced only in some distorted manner obeys two of the fundamental properties of a Wigner distribution (that, when integrated over one period of the momentum variable, it should yield the correct marginal distribution on the discrete position variable, and that it should be invariant with respect to translation). (comment)

  19. Reactive scattering with row-orthonormal hyperspherical coordinates. 4. Four-dimensional-space Wigner rotation function for pentaatomic systems.

    Science.gov (United States)

    Kuppermann, Aron

    2011-05-14

    The row-orthonormal hyperspherical coordinate (ROHC) approach to calculating state-to-state reaction cross sections and bound state levels of N-atom systems requires the use of angular momentum tensors and Wigner rotation functions in a space of dimension N - 1. The properties of those tensors and functions are discussed for arbitrary N and determined for N = 5 in terms of the 6 Euler angles involved in 4-dimensional space.

  20. Geometrical approach to the discrete Wigner function in prime power dimensions

    International Nuclear Information System (INIS)

    Klimov, A B; Munoz, C; Romero, J L

    2006-01-01

    We analyse the Wigner function in prime power dimensions constructed on the basis of the discrete rotation and displacement operators labelled with elements of the underlying finite field. We separately discuss the case of odd and even characteristics and analyse the algebraic origin of the non-uniqueness of the representation of the Wigner function. Explicit expressions for the Wigner kernel are given in both cases

  1. Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform.

    Science.gov (United States)

    Mendlovic, D; Ozaktas, H M; Lohmann, A W

    1994-09-10

    Two definitions of a fractional Fourier transform have been proposed previously. One is based on the propagation of a wave field through a graded-index medium, and the other is based on rotating a function's Wigner distribution. It is shown that both definitions are equivalent. An important result of this equivalency is that the Wigner distribution of a wave field rotates as the wave field propagates through a quadratic graded-index medium. The relation with ray-optics phase space is discussed.

  2. Phase-space path-integral calculation of the Wigner function

    International Nuclear Information System (INIS)

    Samson, J H

    2003-01-01

    The Wigner function W(q, p) is formulated as a phase-space path integral, whereby its sign oscillations can be seen to follow from interference between the geometrical phases of the paths. The approach has similarities to the path-centroid method in the configuration-space path integral. Paths can be classified by the midpoint of their ends; short paths where the midpoint is close to (q, p) and which lie in regions of low energy (low P function of the Hamiltonian) will dominate, and the enclosed area will determine the sign of the Wigner function. As a demonstration, the method is applied to a sequence of density matrices interpolating between a Poissonian number distribution and a number state, each member of which can be represented exactly by a discretized path integral with a finite number of vertices. Saddle-point evaluation of these integrals recovers (up to a constant factor) the WKB approximation to the Wigner function of a number state

  3. Wigner functions and density matrices in curved spaces as computational tools

    International Nuclear Information System (INIS)

    Habib, S.; Kandrup, H.E.

    1989-01-01

    This paper contrasts two alternative approaches to statistical quantum field theory in curved spacetimes, namely (1) a canonical Hamiltonian approach, in which the basic object is a density matrix ρ characterizing the noncovariant, but globally defined, modes of the field; and (2) a Wigner function approach, in which the basic object is a Wigner function f defined quasilocally from the Hadamard, or correlation, function G 1 (x 1 , x 2 ). The key object is to isolate on the conceptual biases underlying each of these approaches and then to assess their utility and limitations in effecting concerete calculations. The following questions are therefore addressed and largely answered. What sort of spacetimes (e.g., de Sitter or Friedmann-Robertson-Walker) are comparatively eas to consider? What sorts of objects (e.g., average fields or renormalized stress energies) are easy to compute approximately? What, if anything, can be computed exactly? What approximations are intrinsic to each approach or convenient as computational tools? What sorts of ''field entropies'' are natural to define? copyright 1989 Academic Press, Inc

  4. Adaption of optical Fresnel transform to optical Wigner transform

    International Nuclear Information System (INIS)

    Lv Cuihong; Fan Hongyi

    2010-01-01

    Enlightened by the algorithmic isomorphism between the rotation of the Wigner distribution function (WDF) and the αth fractional Fourier transform, we show that the optical Fresnel transform performed on the input through an ABCD system makes the output naturally adapting to the associated Wigner transform, i.e. there exists algorithmic isomorphism between ABCD transformation of the WDF and the optical Fresnel transform. We prove this adaption in the context of operator language. Both the single-mode and the two-mode Fresnel operators as the image of classical Fresnel transform are introduced in our discussions, while the two-mode Wigner operator in the entangled state representation is introduced for fitting the two-mode Fresnel operator.

  5. Spectral properties of embedded Gaussian unitary ensemble of random matrices with Wigner's SU(4) symmetry

    International Nuclear Information System (INIS)

    Vyas, Manan; Kota, V.K.B.

    2010-01-01

    For m fermions in Ω number of single particle orbitals, each fourfold degenerate, we introduce and analyze in detail embedded Gaussian unitary ensemble of random matrices generated by random two-body interactions that are SU(4) scalar [EGUE(2)-SU(4)]. Here the SU(4) algebra corresponds to the Wigner's supermultiplet SU(4) symmetry in nuclei. Embedding algebra for the EGUE(2)-SU(4) ensemble is U(4Ω) contains U(Ω) x SU(4). Exploiting the Wigner-Racah algebra of the embedding algebra, analytical expression for the ensemble average of the product of any two m particle Hamiltonian matrix elements is derived. Using this, formulas for a special class of U(Ω) irreducible representations (irreps) {4 r , p}, p = 0, 1, 2, 3 are derived for the ensemble averaged spectral variances and also for the covariances in energy centroids and spectral variances. On the other hand, simplifying the tabulations of Hecht for SU(Ω) Racah coefficients, numerical calculations are carried out for general U(Ω) irreps. Spectral variances clearly show, by applying Jacquod and Stone prescription, that the EGUE(2)-SU(4) ensemble generates ground state structure just as the quadratic Casimir invariant (C 2 ) of SU(4). This is further corroborated by the calculation of the expectation values of C 2 [SU(4)] and the four periodicity in the ground state energies. Secondly, it is found that the covariances in energy centroids and spectral variances increase in magnitude considerably as we go from EGUE(2) for spinless fermions to EGUE(2) for fermions with spin to EGUE(2)-SU(4) implying that the differences in ensemble and spectral averages grow with increasing symmetry. Also for EGUE(2)-SU(4) there are, unlike for GUE, non-zero cross-correlations in energy centroids and spectral variances defined over spaces with different particle numbers and/or U(Ω) [equivalently SU(4)] irreps. In the dilute limit defined by Ω → ∞, r >> 1 and r/Ω → 0, for the {4 r , p} irreps, we have derived analytical

  6. Nonlinear stationary solutions of the Wigner and Wigner-Poisson equations

    International Nuclear Information System (INIS)

    Haas, F.; Shukla, P. K.

    2008-01-01

    Exact nonlinear stationary solutions of the one-dimensional Wigner and Wigner-Poisson equations in the terms of the Wigner functions that depend not only on the energy but also on position are presented. In this way, the Bernstein-Greene-Kruskal modes of the classical plasma are adapted for the quantum formalism in the phase space. The solutions are constructed for the case of a quartic oscillator potential, as well as for the self-consistent Wigner-Poisson case. Conditions for well-behaved physically meaningful equilibrium Wigner functions are discussed.

  7. Nonlinear stationary solutions of the Wigner and Wigner-Poisson equations

    OpenAIRE

    Haas, F.; Shukla, P. K.

    2008-01-01

    Exact nonlinear stationary solutions of the one-dimensional Wigner and Wigner-Poisson equations in the terms of the Wigner functions that depend not only on the energy but also on position are presented. In this way, the Bernstein-Greene-Kruskal modes of the classical plasma are adapted for the quantum formalism in the phase space. The solutions are constructed for the case of a quartic oscillator potential, as well as for the self-consistent Wigner-Poisson case. Conditions for well-behaved p...

  8. Moments of the Wigner delay times

    International Nuclear Information System (INIS)

    Berkolaiko, Gregory; Kuipers, Jack

    2010-01-01

    The Wigner time delay is a measure of the time spent by a particle inside the scattering region of an open system. For chaotic systems, the statistics of the individual delay times (whose average is the Wigner time delay) are thought to be well described by random matrix theory. Here we present a semiclassical derivation showing the validity of random matrix results. In order to simplify the semiclassical treatment, we express the moments of the delay times in terms of correlation functions of scattering matrices at different energies. In the semiclassical approximation, the elements of the scattering matrix are given in terms of the classical scattering trajectories, requiring one to study correlations between sets of such trajectories. We describe the structure of correlated sets of trajectories and formulate the rules for their evaluation to the leading order in inverse channel number. This allows us to derive a polynomial equation satisfied by the generating function of the moments. Along with showing the agreement of our semiclassical results with the moments predicted by random matrix theory, we infer that the scattering matrix is unitary to all orders in the semiclassical approximation.

  9. Stokes vector and its relationship to Discrete Wigner Functions of multiqubit states

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, K., E-mail: sriniphysics@gmail.com; Raghavan, G.

    2016-07-29

    A Stokes vectors and Discrete Wigner Functions (DWF) provide two alternate ways of representing the state of multiqubit systems. A general relationship between the Stokes vector and the DWF is derived for arbitrary n-qubit states for all possible choices of quantum nets. The Stokes vector and the DWF are shown to be related through a Hadamard Matrix. Using these results, a relationship between the Stokes vector of a spin-flipped state and the DWF is derived. Finally, we also present a method to express the Minkowskian squared norm of the Stokes vector, corresponding to n-concurrence in terms of the DWF. - Highlights: • Relationship between Stokes vector (SV) and discrete Wigner function (DWF) for arbitrary multiqubit states is presented. • It is shown that SV and DWF are related to one another through Hadamard matrices. • We show that the Hadamard matrices depend on the choice of the quantum net. • Relationship between SV of the spin flipped state and the DWF is derived. • Expression to compute n-concurrence of the pure n-qubit systems purely in terms of DWF is given.

  10. Stokes vector and its relationship to Discrete Wigner Functions of multiqubit states

    International Nuclear Information System (INIS)

    Srinivasan, K.; Raghavan, G.

    2016-01-01

    A Stokes vectors and Discrete Wigner Functions (DWF) provide two alternate ways of representing the state of multiqubit systems. A general relationship between the Stokes vector and the DWF is derived for arbitrary n-qubit states for all possible choices of quantum nets. The Stokes vector and the DWF are shown to be related through a Hadamard Matrix. Using these results, a relationship between the Stokes vector of a spin-flipped state and the DWF is derived. Finally, we also present a method to express the Minkowskian squared norm of the Stokes vector, corresponding to n-concurrence in terms of the DWF. - Highlights: • Relationship between Stokes vector (SV) and discrete Wigner function (DWF) for arbitrary multiqubit states is presented. • It is shown that SV and DWF are related to one another through Hadamard matrices. • We show that the Hadamard matrices depend on the choice of the quantum net. • Relationship between SV of the spin flipped state and the DWF is derived. • Expression to compute n-concurrence of the pure n-qubit systems purely in terms of DWF is given.

  11. A Wigner quasi-distribution function for charged particles in classical electromagnetic fields

    International Nuclear Information System (INIS)

    Levanda, M.; Fleurov, V.

    2001-01-01

    A gauge-invariant Wigner quasi-distribution function for charged particles in classical electromagnetic fields is derived in a rigorous way. Its relation to the axial gauge is discussed, as well as the relation between the kinetic and canonical momenta in the Wigner representation. Gauge-invariant quantum analogs of Hamilton-Jacobi and Boltzmann kinetic equations are formulated for arbitrary classical electromagnetic fields in terms of the 'slashed' derivatives and momenta, introduced for this purpose. The kinetic meaning of these slashed quantities is discussed. We introduce gauge-invariant conditional moments and use them to derive a kinetic momentum continuity equation. This equation provides us with a hydrodynamic representation for quantum transport processes and a definition of the 'collision force'. The hydrodynamic equation is applied for the rotation part of the electron motion. The theory is illustrated by its application in three examples: Wigner quasi-distribution function and equations for an electron in a magnetic field and harmonic potential; Wigner quasi-distribution function for a charged particle in periodic systems using the kq representation; two Wigner quasi-distribution functions for heavy-mass polaron in an electric field

  12. Lattice Wigner equation

    Science.gov (United States)

    Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2018-01-01

    We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.

  13. Wigner expansions for partition functions of nonrelativistic and relativistic oscillator systems

    Science.gov (United States)

    Zylka, Christian; Vojta, Guenter

    1993-01-01

    The equilibrium quantum statistics of various anharmonic oscillator systems including relativistic systems is considered within the Wigner phase space formalism. For this purpose the Wigner series expansion for the partition function is generalized to include relativistic corrections. The new series for partition functions and all thermodynamic potentials yield quantum corrections in terms of powers of h(sup 2) and relativistic corrections given by Kelvin functions (modified Hankel functions) K(sub nu)(mc(sup 2)/kT). As applications, the symmetric Toda oscillator, isotonic and singular anharmonic oscillators, and hindered rotators, i.e. oscillators with cosine potential, are addressed.

  14. Entropy and wigner functions

    Science.gov (United States)

    Manfredi; Feix

    2000-10-01

    The properties of an alternative definition of quantum entropy, based on Wigner functions, are discussed. Such a definition emerges naturally from the Wigner representation of quantum mechanics, and can easily quantify the amount of entanglement of a quantum state. It is shown that smoothing of the Wigner function induces an increase in entropy. This fact is used to derive some simple rules to construct positive-definite probability distributions which are also admissible Wigner functions.

  15. Entropy and Wigner Functions

    OpenAIRE

    Manfredi, G.; Feix, M. R.

    2002-01-01

    The properties of an alternative definition of quantum entropy, based on Wigner functions, are discussed. Such definition emerges naturally from the Wigner representation of quantum mechanics, and can easily quantify the amount of entanglement of a quantum state. It is shown that smoothing of the Wigner function induces an increase in entropy. This fact is used to derive some simple rules to construct positive definite probability distributions which are also admissible Wigner functions

  16. Torus as phase space: Weyl quantization, dequantization, and Wigner formalism

    Energy Technology Data Exchange (ETDEWEB)

    Ligabò, Marilena, E-mail: marilena.ligabo@uniba.it [Dipartimento di Matematica, Università di Bari, I-70125 Bari (Italy)

    2016-08-15

    The Weyl quantization of classical observables on the torus (as phase space) without regularity assumptions is explicitly computed. The equivalence class of symbols yielding the same Weyl operator is characterized. The Heisenberg equation for the dynamics of general quantum observables is written through the Moyal brackets on the torus and the support of the Wigner transform is characterized. Finally, a dequantization procedure is introduced that applies, for instance, to the Pauli matrices. As a result we obtain the corresponding classical symbols.

  17. On the density of eigenvalues of a random matrix; Concernant la densite des racines caracteristiques d'une matrice stochastique

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, M. L. [Institute of Fundamental Research Bombay (India); Gaudin, M. [Commissariat a l' energie atomique et aux energies alternatives - CEA, Centre d' Etudes Nucleaires de Saclay, Gif-sur-Yvette (France)

    1960-07-01

    An exact expression for the density of eigenvalues of a random- matrix is derived. When the order of the matrix becomes infinite, it can be seen very directly that it goes over to Wigner's 'semi-circle law'. Reprint of a paper published in 'Nuclear Physics' 18, 1960, p. 420-427 [French] On deduit une expression precise pour la densite des racines caracteristiques d'une matrice stochastique. Quand l'ordre de la matrice devient infini, on peut voir facilement qu'elle obeit a la loi dite 'semi-circulaire' de Wigner. Reproduction d'un article publie dans 'Nuclear Physics' 18, 1960, p. 420-427.

  18. Wigner Functions on a Lattice

    OpenAIRE

    Takami, A.; Hashimoto, T.; Horibe, M.; Hayashi, A.

    2000-01-01

    The Wigner functions on the one dimensional lattice are studied. Contrary to the previous claim in literature, Wigner functions exist on the lattice with any number of sites, whether it is even or odd. There are infinitely many solutions satisfying the conditions which reasonable Wigner functions should respect. After presenting a heuristic method to obtain Wigner functions, we give the general form of the solutions. Quantum mechanical expectation values in terms of Wigner functions are also ...

  19. Wigner distribution in optics

    NARCIS (Netherlands)

    Bastiaans, M.J.; Testorf, M.; Hennelly, B.; Ojeda-Castañeda, J.

    2009-01-01

    In 1932 Wigner introduced a distribution function in mechanics that permitted a description of mechanical phenomena in a phase space. Such a Wigner distribution was introduced in optics by Dolin and Walther in the sixties, to relate partial coherence to radiometry. A few years later, the Wigner

  20. Rotational damping motion in nuclei

    International Nuclear Information System (INIS)

    Egido, J.L.; Faessler, A.

    1991-01-01

    The recently proposed model to explain the mechanism of the rotational motion damping in nuclei is exactly solved. When compared with the earlier approximative solution, we find significative differences in the low excitation energy limit (i.e. Γ μ 0 ). For the strength functions we find distributions going from the Wigner semicircle through gaussians to Breit-Wigner shapes. (orig.)

  1. A study of complex scaling transformation using the Wigner representation of wavefunctions.

    Science.gov (United States)

    Kaprálová-Ždánská, Petra Ruth

    2011-05-28

    The complex scaling operator exp(-θ ̂x̂p/ℏ), being a foundation of the complex scaling method for resonances, is studied in the Wigner phase-space representation. It is shown that the complex scaling operator behaves similarly to the squeezing operator, rotating and amplifying Wigner quasi-probability distributions of the respective wavefunctions. It is disclosed that the distorting effect of the complex scaling transformation is correlated with increased numerical errors of computed resonance energies and widths. The behavior of the numerical error is demonstrated for a computation of CO(2+) vibronic resonances. © 2011 American Institute of Physics

  2. Spin-orbit-enhanced Wigner localization in quantum dots

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Malet, F.; Cremon, J. C.

    2011-01-01

    We investigate quantum dots with Rashba spin-orbit coupling in the strongly-correlated regime. We show that the presence of the Rashba interaction enhances the Wigner localization in these systems, making it achievable for higher densities than those at which it is observed in Rashba-free quantum...... dots. Recurring shapes in the pair distribution functions of the yrast spectrum, which might be associated with rotational and vibrational modes, are also reported....

  3. Intrinsic character of Stokes matrices

    Science.gov (United States)

    Gagnon, Jean-François; Rousseau, Christiane

    2017-02-01

    Two germs of linear analytic differential systems x k + 1Y‧ = A (x) Y with a non-resonant irregular singularity are analytically equivalent if and only if they have the same eigenvalues and equivalent collections of Stokes matrices. The Stokes matrices are the transition matrices between sectors on which the system is analytically equivalent to its formal normal form. Each sector contains exactly one separating ray for each pair of eigenvalues. A rotation in S allows supposing that R+ lies in the intersection of two sectors. Reordering of the coordinates of Y allows ordering the real parts of the eigenvalues, thus yielding triangular Stokes matrices. However, the choice of the rotation in x is not canonical. In this paper we establish how the collection of Stokes matrices depends on this rotation, and hence on a chosen order of the projection of the eigenvalues on a line through the origin.

  4. Exact Wigner surmise type evaluation of the spacing distribution in the bulk of the scaled random matrix ensembles

    International Nuclear Information System (INIS)

    Forrester, P.J.; Witte, N.S.

    2000-01-01

    Random matrix ensembles with orthogonal and unitary symmetry correspond to the cases of real symmetric and Hermitian random matrices respectively. We show that the probability density function for the corresponding spacings between consecutive eigenvalues can be written exactly in the Wigner surmise type form a(s) e-b(s) for a simply related to a Painleve transcendent and b its anti-derivative. A formula consisting of the sum of two such terms is given for the symplectic case (Hermitian matrices with real quaternion elements)

  5. Wigner functions defined with Laplace transform kernels.

    Science.gov (United States)

    Oh, Se Baek; Petruccelli, Jonathan C; Tian, Lei; Barbastathis, George

    2011-10-24

    We propose a new Wigner-type phase-space function using Laplace transform kernels--Laplace kernel Wigner function. Whereas momentum variables are real in the traditional Wigner function, the Laplace kernel Wigner function may have complex momentum variables. Due to the property of the Laplace transform, a broader range of signals can be represented in complex phase-space. We show that the Laplace kernel Wigner function exhibits similar properties in the marginals as the traditional Wigner function. As an example, we use the Laplace kernel Wigner function to analyze evanescent waves supported by surface plasmon polariton. © 2011 Optical Society of America

  6. Wigner distribution functions for complex dynamical systems: the emergence of the Wigner-Boltzmann equation.

    Science.gov (United States)

    Sels, Dries; Brosens, Fons

    2013-10-01

    The equation of motion for the reduced Wigner function of a system coupled to an external quantum system is presented for the specific case when the external quantum system can be modeled as a set of harmonic oscillators. The result is derived from the Wigner function formulation of the Feynman-Vernon influence functional theory. It is shown how the true self-energy for the equation of motion is connected with the influence functional for the path integral. Explicit expressions are derived in terms of the bare Wigner propagator. Finally, we show under which approximations the resulting equation of motion reduces to the Wigner-Boltzmann equation.

  7. Poles of the Zagreb analysis partial-wave T matrices

    Science.gov (United States)

    Batinić, M.; Ceci, S.; Švarc, A.; Zauner, B.

    2010-09-01

    The Zagreb analysis partial-wave T matrices included in the Review of Particle Physics [by the Particle Data Group (PDG)] contain Breit-Wigner parameters only. As the advantages of pole over Breit-Wigner parameters in quantifying scattering matrix resonant states are becoming indisputable, we supplement the original solution with the pole parameters. Because of an already reported numeric error in the S11 analytic continuation [Batinić , Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.57.1004 57, 1004(E) (1997); arXiv:nucl-th/9703023], we declare the old BATINIC 95 solution, presently included by the PDG, invalid. Instead, we offer two new solutions: (A) corrected BATINIC 95 and (B) a new solution with an improved S11 πN elastic input. We endorse solution (B).

  8. Wigner distribution and fractional Fourier transform

    NARCIS (Netherlands)

    Alieva, T.; Bastiaans, M.J.

    2001-01-01

    The connection between the Wigner distribution and the squared modulus of the fractional Fourier transform - which are both well-known time-frequency representations of a signal - is established. In particular the Radon-Wigner transform is used, which relates projections of the Wigner distribution

  9. Wigner tomography of multispin quantum states

    Science.gov (United States)

    Leiner, David; Zeier, Robert; Glaser, Steffen J.

    2017-12-01

    We study the tomography of multispin quantum states in the context of finite-dimensional Wigner representations. An arbitrary operator can be completely characterized and visualized using multiple shapes assembled from linear combinations of spherical harmonics [A. Garon, R. Zeier, and S. J. Glaser, Phys. Rev. A 91, 042122 (2015), 10.1103/PhysRevA.91.042122]. We develop a general methodology to experimentally recover these shapes by measuring expectation values of rotated axial spherical tensor operators and provide an interpretation in terms of fictitious multipole potentials. Our approach is experimentally demonstrated for quantum systems consisting of up to three spins using nuclear magnetic resonance spectroscopy.

  10. Wigner distribution and fractional Fourier transform

    NARCIS (Netherlands)

    Alieva, T.; Bastiaans, M.J.; Boashash, B.

    2003-01-01

    We have described the relationship between the fractional Fourier transform and the Wigner distribution by using the Radon-Wigner transform, which is a set of projections of the Wigner distribution as well as a set of squared moduli of the fractional Fourier transform. We have introduced the concept

  11. The Wigner phase-space description of collision processes

    International Nuclear Information System (INIS)

    Lee, H.W.

    1984-01-01

    The paper concerns the Wigner distribution function in collision theory. Wigner phase-space description of collision processes; some general consideration on Wigner trajectories; and examples of Wigner trajectories; are all discussed. (U.K.)

  12. Rotation-type input-output relationships for Wigner distribution moments in fractional Fourier transform systems

    NARCIS (Netherlands)

    Bastiaans, M.J.; Alieva, T.

    2002-01-01

    It is shown how all global Wigner distribution moments of arbitrary order in the output plane of a (generally anamorphic) two-dimensional fractional Fourier transform system can be expressed in terms of the moments in the input plane. This general input-output relationship is then broken down into a

  13. The Wigner function in the relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K., E-mail: kowalski@uni.lodz.pl; Rembieliński, J.

    2016-12-15

    A detailed study is presented of the relativistic Wigner function for a quantum spinless particle evolving in time according to the Salpeter equation. - Highlights: • We study the Wigner function for a quantum spinless relativistic particle. • We discuss the relativistic Wigner function introduced by Zavialov and Malokostov. • We introduce relativistic Wigner function based on the standard definition. • We find analytic expressions for relativistic Wigner functions.

  14. Engineered stem cell niche matrices for rotator cuff tendon regenerative engineering.

    Directory of Open Access Journals (Sweden)

    M Sean Peach

    Full Text Available Rotator cuff (RC tears represent a large proportion of musculoskeletal injuries attended to at the clinic and thereby make RC repair surgeries one of the most widely performed musculoskeletal procedures. Despite the high incidence rate of RC tears, operative treatments have provided minimal functional gains and suffer from high re-tear rates. The hypocellular nature of tendon tissue poses a limited capacity for regeneration. In recent years, great strides have been made in the area of tendonogenesis and differentiation towards tendon cells due to a greater understanding of the tendon stem cell niche, development of advanced materials, improved scaffold fabrication techniques, and delineation of the phenotype development process. Though in vitro models for tendonogenesis have shown promising results, in vivo models have been less successful. The present work investigates structured matrices mimicking the tendon microenvironment as cell delivery vehicles in a rat RC tear model. RC injuries augmented with a matrix delivering rat mesenchymal stem cells (rMSCs showed enhanced regeneration over suture repair alone or repair with augmentation, at 6 and 12-weeks post-surgery. The local delivery of rMSCs led to increased mechanical properties and improved tissue morphology. We hypothesize that the mesenchymal stem cells function to modulate the local immune and bioactivity environment through autocrine/paracrine and/or cell homing mechanisms. This study provides evidence for improved tendon healing with biomimetic matrices and delivered MSCs with the potential for translation to larger, clinical animal models. The enhanced regenerative healing response with stem cell delivering biomimetic matrices may represent a new treatment paradigm for massive RC tendon tears.

  15. Wigner functions of s waves

    International Nuclear Information System (INIS)

    Dahl, J. P.; Varro, S.; Wolf, A.; Schleich, W. P.

    2007-01-01

    We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius--that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle

  16. Wigner functions of s waves

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Varro, S.; Wolf, A.

    2007-01-01

    We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius-that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables......: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle....

  17. Hierarchical quark mass matrices

    International Nuclear Information System (INIS)

    Rasin, A.

    1998-02-01

    I define a set of conditions that the most general hierarchical Yukawa mass matrices have to satisfy so that the leading rotations in the diagonalization matrix are a pair of (2,3) and (1,2) rotations. In addition to Fritzsch structures, examples of such hierarchical structures include also matrices with (1,3) elements of the same order or even much larger than the (1,2) elements. Such matrices can be obtained in the framework of a flavor theory. To leading order, the values of the angle in the (2,3) plane (s 23 ) and the angle in the (1,2) plane (s 12 ) do not depend on the order in which they are taken when diagonalizing. We find that any of the Cabbibo-Kobayashi-Maskawa matrix parametrizations that consist of at least one (1,2) and one (2,3) rotation may be suitable. In the particular case when the s 13 diagonalization angles are sufficiently small compared to the product s 12 s 23 , two special CKM parametrizations emerge: the R 12 R 23 R 12 parametrization follows with s 23 taken before the s 12 rotation, and vice versa for the R 23 R 12 R 23 parametrization. (author)

  18. Weyl-Wigner correspondence in two space dimensions

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Varro, S.; Wolf, A.

    2007-01-01

    We consider Wigner functions in two space dimensions. In particular, we focus on Wigner functions corresponding to energy eigenstates of a non-relativistic particle moving in two dimensions in the absence of a potential. With the help of the Weyl-Wigner correspondence we first transform...... the eigenvalue equations for energy and angular momentum into phase space. As a result we arrive at partial differential equations in phase space which determine the corresponding Wigner function. We then solve the resulting equations using appropriate coordinates....

  19. The Wigner-Yanase entropy is not subadditive

    DEFF Research Database (Denmark)

    Hansen, Frank

    2007-01-01

    Wigner and Yanase introduced in 1963 the Wigner-Yanase entropy defined as minus the skew information of a state with respect to a conserved observable. They proved that the Wigner-Yanase entropy is a concave function in the state and conjectured that it is subadditive with respect...... to the aggregation of possibly interacting subsystems. While this turned out to be true for the quantum-mechanical entropy, we negate the conjecture for the Wigner-Yanase entropy by providing a counter example....

  20. Methodology of heat transfer and flow resistance measurement for matrices of rotating regenerative heat exchangers

    Directory of Open Access Journals (Sweden)

    Butrymowicz Dariusz

    2016-09-01

    Full Text Available The theoretical basis for the indirect measurement approach of mean heat transfer coefficient for the packed bed based on the modified single blow technique was presented and discussed in the paper. The methodology of this measurement approach dedicated to the matrix of the rotating regenerative gas heater was discussed in detail. The testing stand consisted of a dedicated experimental tunnel with auxiliary equipment and a measurement system are presented. Selected experimental results are presented and discussed for selected types of matrices of regenerative air preheaters for the wide range of Reynolds number of gas. The agreement between the theoretically predicted and measured temperature profiles was demonstrated. The exemplary dimensionless relationships between Colburn heat transfer factor, Darcy flow resistance factor and Reynolds number were presented for the investigated matrices of the regenerative gas heater.

  1. Wigner Functions for Arbitrary Quantum Systems.

    Science.gov (United States)

    Tilma, Todd; Everitt, Mark J; Samson, John H; Munro, William J; Nemoto, Kae

    2016-10-28

    The possibility of constructing a complete, continuous Wigner function for any quantum system has been a subject of investigation for over 50 years. A key system that has served to illustrate the difficulties of this problem has been an ensemble of spins. Here we present a general and consistent framework for constructing Wigner functions exploiting the underlying symmetries in the physical system at hand. The Wigner function can be used to fully describe any quantum system of arbitrary dimension or ensemble size.

  2. Semiclassical propagation: Hilbert space vs. Wigner representation

    Science.gov (United States)

    Gottwald, Fabian; Ivanov, Sergei D.

    2018-03-01

    A unified viewpoint on the van Vleck and Herman-Kluk propagators in Hilbert space and their recently developed counterparts in Wigner representation is presented. Based on this viewpoint, the Wigner Herman-Kluk propagator is conceptually the most general one. Nonetheless, the respective semiclassical expressions for expectation values in terms of the density matrix and the Wigner function are mathematically proven here to coincide. The only remaining difference is a mere technical flexibility of the Wigner version in choosing the Gaussians' width for the underlying coherent states beyond minimal uncertainty. This flexibility is investigated numerically on prototypical potentials and it turns out to provide neither qualitative nor quantitative improvements. Given the aforementioned generality, utilizing the Wigner representation for semiclassical propagation thus leads to the same performance as employing the respective most-developed (Hilbert-space) methods for the density matrix.

  3. Wigner phase-space description of collision processes

    International Nuclear Information System (INIS)

    Lee, H.; Scully, M.O.

    1983-01-01

    This year marks the 50th anniversary of the birth of the celebrated Wigner distribution function. Many advances made in various areas of science during the 50 year period can be attributed to the physical insights that the Wigner distribution function provides when applied to specific problems. In this paper the usefulness of the Wigner distribution function in collision theory is described

  4. Anomalous current from the covariant Wigner function

    Science.gov (United States)

    Prokhorov, George; Teryaev, Oleg

    2018-04-01

    We consider accelerated and rotating media of weakly interacting fermions in local thermodynamic equilibrium on the basis of kinetic approach. Kinetic properties of such media can be described by covariant Wigner function incorporating the relativistic distribution functions of particles with spin. We obtain the formulae for axial current by summation of the terms of all orders of thermal vorticity tensor, chemical potential, both for massive and massless particles. In the massless limit all the terms of fourth and higher orders of vorticity and third order of chemical potential and temperature equal zero. It is shown, that axial current gets a topological component along the 4-acceleration vector. The similarity between different approaches to baryon polarization is established.

  5. Physical properties of the Schur complement of local covariance matrices

    International Nuclear Information System (INIS)

    Haruna, L F; Oliveira, M C de

    2007-01-01

    General properties of global covariance matrices representing bipartite Gaussian states can be decomposed into properties of local covariance matrices and their Schur complements. We demonstrate that given a bipartite Gaussian state ρ 12 described by a 4 x 4 covariance matrix V, the Schur complement of a local covariance submatrix V 1 of it can be interpreted as a new covariance matrix representing a Gaussian operator of party 1 conditioned to local parity measurements on party 2. The connection with a partial parity measurement over a bipartite quantum state and the determination of the reduced Wigner function is given and an operational process of parity measurement is developed. Generalization of this procedure to an n-partite Gaussian state is given, and it is demonstrated that the n - 1 system state conditioned to a partial parity projection is given by a covariance matrix such that its 2 x 2 block elements are Schur complements of special local matrices

  6. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    2001-01-01

    In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong ...... approximations to the Riemannian metric, and that the subsequent corrections are inherent in the least squares estimation.......In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  7. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    1999-01-01

    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belo...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion......In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  8. Phenomenological mass matrices with a democratic warp

    International Nuclear Information System (INIS)

    Kleppe, A.

    2018-01-01

    Taking into account all available data on the mass sector, we obtain unitary rotation matrices that diagonalize the quark matrices by using a specific parametrization of the Cabibbo-Kobayashi-Maskawa mixing matrix. In this way, we find mass matrices for the up- and down-quark sectors of a specific, symmetric form, with traces of a democratic texture.

  9. Fractional-Fourier-domain weighted Wigner distribution

    NARCIS (Netherlands)

    Stankovic, L.; Alieva, T.; Bastiaans, M.J.

    2001-01-01

    A fractional-Fourier-domain realization of the weighted Wigner distribution (or S-method), producing auto-terms close to the ones in the Wigner distribution itself, but with reduced cross-terms, is presented. The computational cost of this fractional-domain realization is the same as the

  10. Wigner function and tomogram of the pair coherent state

    International Nuclear Information System (INIS)

    Meng, Xiang-Guo; Wang, Ji-Suo; Fan, Hong-Yi

    2007-01-01

    Using the entangled state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, the Wigner function of the pair coherent state is derived. The variations of the Wigner function with the parameters α and q in the ρ-γ phase space are discussed. The physical meaning of the Wigner function for the pair coherent state is given by virtue of its marginal distributions. The tomogram of the pair coherent state is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η 1 ,η 2 ,τ 1 ,τ 2 >

  11. Wigner functions for fermions in strong magnetic fields

    Science.gov (United States)

    Sheng, Xin-li; Rischke, Dirk H.; Vasak, David; Wang, Qun

    2018-02-01

    We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium, i.e., at constant temperature T and non-zero fermion-number and chiral-charge chemical potentials μ and μ_5, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.

  12. Wigner method dynamics in the interaction picture

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Dahl, Jens Peder; Henriksen, Niels Engholm

    1994-01-01

    that the dynamics of the interaction picture Wigner function is solved by running a swarm of trajectories in the classical interaction picture introduced previously in the literature. Solving the Wigner method dynamics of collision processes in the interaction picture ensures that the calculated transition......The possibility of introducing an interaction picture in the semiclassical Wigner method is investigated. This is done with an interaction Picture description of the density operator dynamics as starting point. We show that the dynamics of the density operator dynamics as starting point. We show...... probabilities are unambiguous even when the asymptotic potentials are anharmonic. An application of the interaction picture Wigner method to a Morse oscillator interacting with a laser field is presented. The calculated transition probabilities are in good agreement with results obtained by a numerical...

  13. Wigner function for the generalized excited pair coherent state

    International Nuclear Information System (INIS)

    Meng Xiangguo; Wang Jisuo; Liang Baolong; Li Hongqi

    2008-01-01

    This paper introduces the generalized excited pair coherent state (GEPCS). Using the entangled state |η> representation of Wigner operator, it obtains the Wigner function for the GEPCS. In the ρ-γ phase space, the variations of the Wigner function distributions with the parameters q, α, k and l are discussed. The tomogram of the GEPCS is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η 1 , η 2 , τ 1 , τ 2 >. The entangled states |η> and η 1 , η 2 , τ 1 , τ 2 > provide two good representative space for studying the Wigner functions and tomograms of various two-mode correlated quantum states

  14. Hydrogen atom in phase space: the Wigner representation

    International Nuclear Information System (INIS)

    Praxmeyer, Ludmila; Mostowski, Jan; Wodkiewicz, Krzysztof

    2006-01-01

    The hydrogen atom is a fundamental exactly soluble system for which the Wigner function, being a quantum analogue of the joint probability distribution of position and momentum, is unknown. In this paper, we present an effective method of calculating the Wigner function, for all bound states of the nonrelativistic hydrogen atom. The formal similarity between the eigenfunctions of the nonrelativistic hydrogen atom in the momentum representation and the Klein-Gordon propagator has allowed the calculation of the Wigner function for an arbitrary bound state of the hydrogen atom, using a simple atomic integral as a generator. These Wigner functions for some low-lying states are depicted and discussed

  15. Wigner function for the Dirac oscillator in spinor space

    International Nuclear Information System (INIS)

    Ma Kai; Wang Jianhua; Yuan Yi

    2011-01-01

    The Wigner function for the Dirac oscillator in spinor space is studied in this paper. Firstly, since the Dirac equation is described as a matrix equation in phase space, it is necessary to define the Wigner function as a matrix function in spinor space. Secondly, the matrix form of the Wigner function is proven to support the Dirac equation. Thirdly, by solving the Dirac equation, energy levels and the Wigner function for the Dirac oscillator in spinor space are obtained. (authors)

  16. Eugene Wigner and nuclear energy: a reminiscence

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1987-01-01

    Dr. Weinberg reviews Wigner's contributions in each of the fields to which he contributed: designs for fast breeders and thermal breeders and some of the earliest calculations on water moderated cooling systems; Clinton Laboratories, 1946-47, The Materials Testing Reactor (MTR); gas-cooled reactors; the Nautilus; Savannah River Reactors, Project Hope; a chemical plant that would reprocess spent fuel at an affordable cost in a full-fledged breeder; reactor physics and general engineering; microscopic reactor theory; spherical harmonics method; correction to the sphericized cell calculation, the fast effect; macroscopic reactor theory; two-group theory; perturbation theory; control rod theory (statics); kinetics; pile oscillator; shielding; fission products; temperature effects; The Wigner-Wilkins Distribution; solid state physics; the Wigner Disease; neutron diffraction; and general energy policy. Eugene Wigner was one of the early contributors to the debate on the role of nuclear power

  17. Discrete Wigner Function Reconstruction and Compressed Sensing

    OpenAIRE

    Zhang, Jia-Ning; Fang, Lei; Ge, Mo-Lin

    2011-01-01

    A new reconstruction method for Wigner function is reported for quantum tomography based on compressed sensing. By analogy with computed tomography, Wigner functions for some quantum states can be reconstructed with less measurements utilizing this compressed sensing based method.

  18. The Wigner transform and the semi-classical approximations

    International Nuclear Information System (INIS)

    Shlomo, S.

    1985-01-01

    The Wigner transform provides a reformulation of quantum mechanics in terms of classical concepts. Some properties of the Wigner transform of the density matrix which justify its interpretation as the quantum-mechanical analog of the classical phase-space distribution function are presented. Considering some applications, it is demonstrated that the Wigner distribution function serves as a good starting point for semi-classical approximations to properties of the (nuclear) many-body system

  19. Wigner functions on non-standard symplectic vector spaces

    Science.gov (United States)

    Dias, Nuno Costa; Prata, João Nuno

    2018-01-01

    We consider the Weyl quantization on a flat non-standard symplectic vector space. We focus mainly on the properties of the Wigner functions defined therein. In particular we show that the sets of Wigner functions on distinct symplectic spaces are different but have non-empty intersections. This extends previous results to arbitrary dimension and arbitrary (constant) symplectic structure. As a by-product we introduce and prove several concepts and results on non-standard symplectic spaces which generalize those on the standard symplectic space, namely, the symplectic spectrum, Williamson's theorem, and Narcowich-Wigner spectra. We also show how Wigner functions on non-standard symplectic spaces behave under the action of an arbitrary linear coordinate transformation.

  20. Quantum computation and analysis of Wigner and Husimi functions: toward a quantum image treatment.

    Science.gov (United States)

    Terraneo, M; Georgeot, B; Shepelyansky, D L

    2005-06-01

    We study the efficiency of quantum algorithms which aim at obtaining phase-space distribution functions of quantum systems. Wigner and Husimi functions are considered. Different quantum algorithms are envisioned to build these functions, and compared with the classical computation. Different procedures to extract more efficiently information from the final wave function of these algorithms are studied, including coarse-grained measurements, amplitude amplification, and measure of wavelet-transformed wave function. The algorithms are analyzed and numerically tested on a complex quantum system showing different behavior depending on parameters: namely, the kicked rotator. The results for the Wigner function show in particular that the use of the quantum wavelet transform gives a polynomial gain over classical computation. For the Husimi distribution, the gain is much larger than for the Wigner function and is larger with the help of amplitude amplification and wavelet transforms. We discuss the generalization of these results to the simulation of other quantum systems. We also apply the same set of techniques to the analysis of real images. The results show that the use of the quantum wavelet transform allows one to lower dramatically the number of measurements needed, but at the cost of a large loss of information.

  1. Wigner distribution function for an oscillator

    International Nuclear Information System (INIS)

    Davies, R.W.; Davies, K.T.R.

    1975-01-01

    We present two new derivations of the Wigner distribution function for a simple harmonic oscillator Hamiltonian. Both methods are facilitated using a formula which expresses the Wigner function as a simple trace. The first method of derivation utilizes a modification of a theorem due to Messiah. An alternative procedure makes use of the coherent state representation of an oscillator. The Wigner distribution function gives a semiclassical joint probability for finding the system with given coordinates and momenta, and the joint probability is factorable for the special case of an oscillator. An important application of this result occurs in the theory of nuclear fission for calculating the probability distributions for the masses, kinetic energies, and vibrational energies of the fission fragments at infinite separation. (U.S.)

  2. Radon-Wigner transform for optical field analysis

    NARCIS (Netherlands)

    Alieva, T.; Bastiaans, M.J.; Nijhawan, O.P.; Gupta, A.K.; Musla, A.K.; Singh, Kehar

    1998-01-01

    The Radon-Wigner transform, associated with the intensity distribution in the fractional Fourier transform system, is used for the analysis of complex structures of coherent as well as partially coherent optical fields. The application of the Radon-Wigner transform to the analysis of fractal fields

  3. Some properties of the smoothed Wigner function

    International Nuclear Information System (INIS)

    Soto, F.; Claverie, P.

    1981-01-01

    Recently it has been proposed a modification of the Wigner function which consists in smoothing it by convolution with a phase-space gaussian function; this smoothed Wigner function is non-negative if the gaussian parameters Δ and delta satisfy the condition Δdelta > h/2π. We analyze in this paper the predictions of this modified Wigner function for the harmonic oscillator, for anharmonic oscillator and finally for the hydrogen atom. We find agreement with experiment in the linear case, but for strongly nonlinear systems, such as the hydrogen atom, the results obtained are completely wrong. (orig.)

  4. Wigner Function of Density Operator for Negative Binomial Distribution

    International Nuclear Information System (INIS)

    Xu Xinglei; Li Hongqi

    2008-01-01

    By using the technique of integration within an ordered product (IWOP) of operator we derive Wigner function of density operator for negative binomial distribution of radiation field in the mixed state case, then we derive the Wigner function of squeezed number state, which yields negative binomial distribution by virtue of the entangled state representation and the entangled Wigner operator

  5. Rotational image deblurring with sparse matrices

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Nagy, James G.; Tigkos, Konstantinos

    2014-01-01

    We describe iterative deblurring algorithms that can handle blur caused by a rotation along an arbitrary axis (including the common case of pure rotation). Our algorithms use a sparse-matrix representation of the blurring operation, which allows us to easily handle several different boundary...

  6. Universality for 1d Random Band Matrices: Sigma-Model Approximation

    Science.gov (United States)

    Shcherbina, Mariya; Shcherbina, Tatyana

    2018-02-01

    The paper continues the development of the rigorous supersymmetric transfer matrix approach to the random band matrices started in (J Stat Phys 164:1233-1260, 2016; Commun Math Phys 351:1009-1044, 2017). We consider random Hermitian block band matrices consisting of W× W random Gaussian blocks (parametrized by j,k \\in Λ =[1,n]^d\\cap Z^d ) with a fixed entry's variance J_{jk}=δ _{j,k}W^{-1}+β Δ _{j,k}W^{-2} , β >0 in each block. Taking the limit W→ ∞ with fixed n and β , we derive the sigma-model approximation of the second correlation function similar to Efetov's one. Then, considering the limit β , n→ ∞, we prove that in the dimension d=1 the behaviour of the sigma-model approximation in the bulk of the spectrum, as β ≫ n , is determined by the classical Wigner-Dyson statistics.

  7. Wigner Functions and Quark Orbital Angular Momentum

    OpenAIRE

    Mukherjee, Asmita; Nair, Sreeraj; Ojha, Vikash Kumar

    2014-01-01

    Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs). We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.

  8. Diagonalization of quark mass matrices and the Cabibbo-Kobayashi-Maskawa matrix

    International Nuclear Information System (INIS)

    Rasin, A.

    1997-08-01

    I discuss some general aspect of diagonalizing the quark mass matrices and list all possible parametrizations of the Cabibbo-Kobayashi-Maskawa matrix (CKM) in terms of three rotation angles and a phase. I systematically study the relation between the rotations needed to diagonalize the Yukawa matrices and various parametrizations of the CKM. (author). 17 refs, 1 tab

  9. New Interpretation of the Wigner Function

    Science.gov (United States)

    Daboul, Jamil

    1996-01-01

    I define a two-sided or forward-backward propagator for the pseudo-diffusion equation of the 'squeezed' Q function. This propagator leads to squeezing in one of the phase-space variables and anti-squeezing in the other. By noting that the Q function is related to the Wigner function by a special case of the above propagator, I am led to a new interpretation of the Wigner function.

  10. Characteristic and Wigner function for number difference and operational phase

    International Nuclear Information System (INIS)

    Fan Hongyi; Hu Haipeng

    2004-01-01

    We introduce the characteristic function in the sense of number difference-operational phase, and we employ the correlated-amplitude-number-difference state representation to calculate it. It results in the form of the corresponding Wigner function and Wigner operator. The marginal distributions of the generalized Wigner function are briefly discussed

  11. Wigner functions from the two-dimensional wavelet group.

    Science.gov (United States)

    Ali, S T; Krasowska, A E; Murenzi, R

    2000-12-01

    Following a general procedure developed previously [Ann. Henri Poincaré 1, 685 (2000)], here we construct Wigner functions on a phase space related to the similitude group in two dimensions. Since the group space in this case is topologically homeomorphic to the phase space in question, the Wigner functions so constructed may also be considered as being functions on the group space itself. Previously the similitude group was used to construct wavelets for two-dimensional image analysis; we discuss here the connection between the wavelet transform and the Wigner function.

  12. Wigner Functions and Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Mukherjee Asmita

    2015-01-01

    Full Text Available Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs and transverse momentum dependent parton distributions (TMDs. We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.

  13. Wigner particle theory and local quantum physics

    International Nuclear Information System (INIS)

    Fassarella, Lucio; Schroer, Bert

    2002-01-01

    Wigner's irreducible positive energy representations of the Poincare group are often used to give additional justifications for the Lagrangian quantization formalism of standard QFT. Here we study another more recent aspect. We explain in this paper modular concepts by which we are able to construct the local operator algebras for all standard positive energy representations directly without going through field coordinations. In this way the artificial emphasis on Lagrangian field coordinates is avoided from the very beginning. These new concepts allow to treat also those cases of 'exceptional' Wigner representations associated with anyons and the famous Wigner spin tower which have remained inaccessible to Lagrangian quantization. Together with the d=1+1 factorizing models (whose modular construction has been studied previously), they form an interesting family of theories with a rich vacuum-polarization structure (but no on shell real particle creation) to which the modular methods can be applied for their explicit construction. We explain and illustrate the algebraic strategy of this construction. We also comment on possibilities of formulating the Wigner theory in a setting of a noncommutativity. (author)

  14. Semiclassical propagation of Wigner functions.

    Science.gov (United States)

    Dittrich, T; Gómez, E A; Pachón, L A

    2010-06-07

    We present a comprehensive study of semiclassical phase-space propagation in the Wigner representation, emphasizing numerical applications, in particular as an initial-value representation. Two semiclassical approximation schemes are discussed. The propagator of the Wigner function based on van Vleck's approximation replaces the Liouville propagator by a quantum spot with an oscillatory pattern reflecting the interference between pairs of classical trajectories. Employing phase-space path integration instead, caustics in the quantum spot are resolved in terms of Airy functions. We apply both to two benchmark models of nonlinear molecular potentials, the Morse oscillator and the quartic double well, to test them in standard tasks such as computing autocorrelation functions and propagating coherent states. The performance of semiclassical Wigner propagation is very good even in the presence of marked quantum effects, e.g., in coherent tunneling and in propagating Schrodinger cat states, and of classical chaos in four-dimensional phase space. We suggest options for an effective numerical implementation of our method and for integrating it in Monte-Carlo-Metropolis algorithms suitable for high-dimensional systems.

  15. Time evolution of the Wigner function in the entangled-state representation

    International Nuclear Information System (INIS)

    Fan Hongyi

    2002-01-01

    For quantum-mechanical entangled states we introduce the entangled Wigner operator in the entangled-state representation. We derive the time evolution equation of the entangled Wigner operator . The trace product rule for entangled Wigner functions is also obtained

  16. Thermal Wigner Operator in Coherent Thermal State Representation and Its Application

    Institute of Scientific and Technical Information of China (English)

    FAN HongYi

    2002-01-01

    In the coherent thermal state representation we introduce thermal Wigner operator and find that it is"squeezed" under the thermal transformation. The thermal Wigner operator provides us with a new direct and neatapproach for deriving Wigner functions of thermal states.

  17. Scars of the Wigner Function.

    Science.gov (United States)

    Toscano; de Aguiar MA; Ozorio De Almeida AM

    2001-01-01

    We propose a picture of Wigner function scars as a sequence of concentric rings along a two-dimensional surface inside a periodic orbit. This is verified for a two-dimensional plane that contains a classical hyperbolic orbit of a Hamiltonian system with 2 degrees of freedom. The stationary wave functions are the familiar mixture of scarred and random waves, but the spectral average of the Wigner functions in part of the plane is nearly that of a harmonic oscillator and individual states are also remarkably regular. These results are interpreted in terms of the semiclassical picture of chords and centers.

  18. Application of the Wigner distribution function in optics

    NARCIS (Netherlands)

    Bastiaans, M.J.; Mecklenbräuker, W.; Hlawatsch, F.

    1997-01-01

    This contribution presents a review of the Wigner distribution function and of some of its applications to optical problems. The Wigner distribution function describes a signal in space and (spatial) frequency simultaneously and can be considered as the local frequency spectrum of the signal.

  19. Thermal Wigner Operator in Coherent Thermal State Representation and Its Application

    Institute of Scientific and Technical Information of China (English)

    FANHong-Yi

    2002-01-01

    In the coherent thermal state representation we introduce thermal Wigner operator and find that it is “squeezed” under the thermal transformation.The thermal Wigner operator provides us with a new direct and neat approach for deriving Wigner functions of thermal states.

  20. Wigner Function of Thermo-Invariant Coherent State

    International Nuclear Information System (INIS)

    Xue-Fen, Xu; Shi-Qun, Zhu

    2008-01-01

    By using the thermal Winger operator of thermo-field dynamics in the coherent thermal state |ξ) representation and the technique of integration within an ordered product of operators, the Wigner function of the thermo-invariant coherent state |z,ℵ> is derived. The nonclassical properties of state |z,ℵ> is discussed based on the negativity of the Wigner function. (general)

  1. Relativistic Wigner functions

    Directory of Open Access Journals (Sweden)

    Bialynicki-Birula Iwo

    2014-01-01

    Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.

  2. Wigner particle theory and local quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Fassarella, Lucio; Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: fassarel@cbpf.br; schroer@cbpf.br

    2002-01-01

    Wigner's irreducible positive energy representations of the Poincare group are often used to give additional justifications for the Lagrangian quantization formalism of standard QFT. Here we study another more recent aspect. We explain in this paper modular concepts by which we are able to construct the local operator algebras for all standard positive energy representations directly without going through field coordinations. In this way the artificial emphasis on Lagrangian field coordinates is avoided from the very beginning. These new concepts allow to treat also those cases of 'exceptional' Wigner representations associated with anyons and the famous Wigner spin tower which have remained inaccessible to Lagrangian quantization. Together with the d=1+1 factorizing models (whose modular construction has been studied previously), they form an interesting family of theories with a rich vacuum-polarization structure (but no on shell real particle creation) to which the modular methods can be applied for their explicit construction. We explain and illustrate the algebraic strategy of this construction. We also comment on possibilities of formulating the Wigner theory in a setting of a noncommutativity. (author)

  3. Quantum phase space points for Wigner functions in finite-dimensional spaces

    OpenAIRE

    Luis Aina, Alfredo

    2004-01-01

    We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas.

  4. Quantum phase space points for Wigner functions in finite-dimensional spaces

    International Nuclear Information System (INIS)

    Luis, Alfredo

    2004-01-01

    We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas

  5. The Wigner distribution function for the one-dimensional parabose oscillator

    International Nuclear Information System (INIS)

    Jafarov, E; Lievens, S; Jeugt, J Van der

    2008-01-01

    In the beginning of the 1950s, Wigner introduced a fundamental deformation from the canonical quantum mechanical harmonic oscillator, which is nowadays sometimes called a Wigner quantum oscillator or a parabose oscillator. Also, in quantum mechanics the so-called Wigner distribution is considered to be the closest quantum analogue of the classical probability distribution over the phase space. In this paper, we consider which definition for such a distribution function could be used in the case of non-canonical quantum mechanics. We then explicitly compute two different expressions for this distribution function for the case of the parabose oscillator. Both expressions turn out to be multiple sums involving (generalized) Laguerre polynomials. Plots then show that the Wigner distribution function for the ground state of the parabose oscillator is similar in behaviour to the Wigner distribution function of the first excited state of the canonical quantum oscillator

  6. Trace forms for the generalized Wigner functions

    Energy Technology Data Exchange (ETDEWEB)

    D`Ariano, G. M. [Pavia, Univ. (Italy). Dipt. di Fisica ``Alessandro Volta``; Sacchi, M. F. [Evanston, Univ. (United States). Dept. of Electrical and Computer Engineering]|[Evanston, Univ. (United States). Dept. of Physics and Astronomy

    1997-06-01

    They derive simple formulas connecting the generalized Wigner functions for s-ordering with the density matrix, and vice versa. These formulas proved very useful for quantum-mechanical applications, as, for example, for connecting master equations with Fokker-Plank equations, or for evaluating the quantum state from Monte Carlo simulations of Fokker-Plank equations, and finally for studying positivity of the generalized Wigner functions in the complex plane.

  7. Trace forms for the generalized Wigner functions

    International Nuclear Information System (INIS)

    D'Ariano, G. M.; Sacchi, M. F.; Evanston, Univ.

    1997-01-01

    They derive simple formulas connecting the generalized Wigner functions for s-ordering with the density matrix, and vice versa. These formulas proved very useful for quantum-mechanical applications, as, for example, for connecting master equations with Fokker-Plank equations, or for evaluating the quantum state from Monte Carlo simulations of Fokker-Plank equations, and finally for studying positivity of the generalized Wigner functions in the complex plane

  8. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...

  9. Fractional Wigner Crystal in the Helical Luttinger Liquid.

    Science.gov (United States)

    Traverso Ziani, N; Crépin, F; Trauzettel, B

    2015-11-13

    The properties of the strongly interacting edge states of two dimensional topological insulators in the presence of two-particle backscattering are investigated. We find an anomalous behavior of the density-density correlation functions, which show oscillations that are neither of Friedel nor of Wigner type: they, instead, represent a Wigner crystal of fermions of fractional charge e/2, with e the electron charge. By studying the Fermi operator, we demonstrate that the state characterized by such fractional oscillations still bears the signatures of spin-momentum locking. Finally, we compare the spin-spin correlation functions and the density-density correlation functions to argue that the fractional Wigner crystal is characterized by a nontrivial spin texture.

  10. Specification of optical components using Wigner distribution function

    International Nuclear Information System (INIS)

    Xu Jiancheng; Li Haibo; Xu Qiao; Chai Liqun; Fan Changjiang

    2010-01-01

    In order to characterize and specify small-scale local wavefront deformation of optical component, a method based on Wigner distribution function has been proposed, which can describe wavefront deformation in spatial and spatial frequency domain. The relationship between Wigner distribution function and power spectral density is analyzed and thus the specification of small-scale local wavefront deformation is obtained by Wigner distribution function. Simulation and experiment demonstrate the effectiveness of the proposed method. The proposed method can not only identify whether the optical component meets the requirement of inertial confinement fusion (ICF), but also determine t he location where small-scale wavefront deformation is unqualified. Thus it provides an effective guide to the revision of unqualified optical components. (authors)

  11. Hypersymmetric functions and Pochhammers of 2×2 nonautonomous matrices

    Directory of Open Access Journals (Sweden)

    A. F. Antippa

    2004-01-01

    Full Text Available We introduce the hypersymmetric functions of 2×2 nonautonomous matrices and show that they are related, by simple expressions, to the Pochhammers (factorial polynomials of these matrices. The hypersymmetric functions are generalizations of the associated elementary symmetric functions, and for a specific class of 2×2 matrices, having a high degree of symmetry, they reduce to these latter functions. This class of matrices includes rotations, Lorentz boosts, and discrete time generators for the harmonic oscillators. The hypersymmetric functions are defined over four sets of independent indeterminates using a triplet of interrelated binary partitions. We work out the algebra of this triplet of partitions and then make use of the results in order to simplify the expressions for the hypersymmetric functions for a special class of matrices. In addition to their obvious applications in matrix theory, in coupled difference equations, and in the theory of symmetric functions, the results obtained here also have useful applications in problems involving successive rotations, successive Lorentz transformations, discrete harmonic oscillators, and linear two-state systems.

  12. Study of the dynamics of the lower hybrid wave during current drive in tokamaks and of the Weyl-Wigner in quantum mechanics

    International Nuclear Information System (INIS)

    Bizarro, J.P.

    1993-10-01

    A comprehensive and detailed investigation is presented on the dynamics of the lower hybrid wave during current drive in tokamaks in situations where toroidally induced ray stochasticity is important and on the Weyl-Wigner formalism for rotation angle and angular momentum variables in quantum mechanics. It is shown that ray-tracing and Fokker-Planck codes are reliable tools for modelling the physics of lower-hybrid current drive provided a large number of rays is used when stochastic effects are important, and, in particular, that such codes are capable of reproducing the experimentally observed features of the hard X-ray emission. The balance between the wave damping and the stochastic divergence of nearby ray trajectories appears to be of great importance in governing the dynamics of the launched power spectrum and in establishing the characteristics of the deposition patterns. The implications of rotational periodicity and of angular momentum quantization for the Weyl-Wigner formalism are analyzed. Particular attention is paid to discreteness and its consequences: importance of evenness and oddness, use of two difference operators instead of one differential operator. 24 refs

  13. Spectra of sparse random matrices

    International Nuclear Information System (INIS)

    Kuehn, Reimer

    2008-01-01

    We compute the spectral density for ensembles of sparse symmetric random matrices using replica. Our formulation of the replica-symmetric ansatz shares the symmetries of that suggested in a seminal paper by Rodgers and Bray (symmetry with respect to permutation of replica and rotation symmetry in the space of replica), but uses a different representation in terms of superpositions of Gaussians. It gives rise to a pair of integral equations which can be solved by a stochastic population-dynamics algorithm. Remarkably our representation allows us to identify pure-point contributions to the spectral density related to the existence of normalizable eigenstates. Our approach is not restricted to matrices defined on graphs with Poissonian degree distribution. Matrices defined on regular random graphs or on scale-free graphs, are easily handled. We also look at matrices with row constraints such as discrete graph Laplacians. Our approach naturally allows us to unfold the total density of states into contributions coming from vertices of different local coordinations and an example of such an unfolding is presented. Our results are well corroborated by numerical diagonalization studies of large finite random matrices

  14. Time-Frequency Analysis of Signals Generated by Rotating Machines

    Directory of Open Access Journals (Sweden)

    R. Zetik

    1999-06-01

    Full Text Available This contribution is devoted to the higher order time-frequency analyses of signals. Firstly, time-frequency representations of higher order (TFRHO are defined. Then L-Wigner distribution (LWD is given as a special case of TFRHO. Basic properties of LWD are illustrated based on the analysis of mono-component and multi-component synthetic signals and acoustical signals generated by rotating machine. The obtained results confirm usefulness of LWD application for the purpose of rotating machine condition monitoring.

  15. Wigner Ville Distribution in Signal Processing, using Scilab Environment

    Directory of Open Access Journals (Sweden)

    Petru Chioncel

    2011-01-01

    Full Text Available The Wigner Ville distribution offers a visual display of quantitative information about the way a signal’s energy is distributed in both, time and frequency. Through that, this distribution embodies the fundamentally concepts of the Fourier and time-domain analysis. The energy of the signal is distributed so that specific frequencies are localized in time by the group delay time and at specifics instants in time the frequency is given by the instantaneous frequency. The net positive volum of the Wigner distribution is numerically equal to the signal’s total energy. The paper shows the application of the Wigner Ville distribution, in the field of signal processing, using Scilab environment.

  16. Measurement-induced decoherence and Gaussian smoothing of the Wigner distribution function

    International Nuclear Information System (INIS)

    Chun, Yong-Jin; Lee, Hai-Woong

    2003-01-01

    We study the problem of measurement-induced decoherence using the phase-space approach employing the Gaussian-smoothed Wigner distribution function. Our investigation is based on the notion that measurement-induced decoherence is represented by the transition from the Wigner distribution to the Gaussian-smoothed Wigner distribution with the widths of the smoothing function identified as measurement errors. We also compare the smoothed Wigner distribution with the corresponding distribution resulting from the classical analysis. The distributions we computed are the phase-space distributions for simple one-dimensional dynamical systems such as a particle in a square-well potential and a particle moving under the influence of a step potential, and the time-frequency distributions for high-harmonic radiation emitted from an atom irradiated by short, intense laser pulses

  17. Rigorous solution to Bargmann-Wigner equation for integer spin

    CERN Document Server

    Huang Shi Zhong; Wu Ning; Zheng Zhi Peng

    2002-01-01

    A rigorous method is developed to solve the Bargamann-Wigner equation for arbitrary integer spin in coordinate representation in a step by step way. The Bargmann-Wigner equation is first transformed to a form easier to solve, the new equations are then solved rigorously in coordinate representation, and the wave functions in a closed form are thus derived

  18. Nodal Structure of the Electronic Wigner Function

    DEFF Research Database (Denmark)

    Schmider, Hartmut; Dahl, Jens Peder

    1996-01-01

    On the example of several atomic and small molecular systems, the regular behavior of nodal patterns in the electronic one-particle reduced Wigner function is demonstrated. An expression found earlier relates the nodal pattern solely to the dot-product of the position and the momentum vector......, if both arguments are large. An argument analogous to the ``bond-oscillatory principle'' for momentum densities links the nuclear framework in a molecule to an additional oscillatory term in momenta parallel to bonds. It is shown that these are visible in the Wigner function in terms of characteristic...

  19. The Wigner distribution function for the su(2) finite oscillator and Dyck paths

    International Nuclear Information System (INIS)

    Oste, Roy; Jeugt, Joris Van der

    2014-01-01

    Recently, a new definition for a Wigner distribution function for a one-dimensional finite quantum system, in which the position and momentum operators have a finite (multiplicity-free) spectrum, was developed. This distribution function is defined on discrete phase-space (a finite square grid), and can thus be referred to as the Wigner matrix. In the current paper, we compute this Wigner matrix (or rather, the pre-Wigner matrix, which is related to the Wigner matrix by a simple matrix multiplication) for the case of the su(2) finite oscillator. The first expression for the matrix elements involves sums over squares of Krawtchouk polynomials, and follows from standard techniques. We also manage to present a second solution, where the matrix elements are evaluations of Dyck polynomials. These Dyck polynomials are defined in terms of the well-known Dyck paths. This combinatorial expression of the pre-Wigner matrix elements turns out to be particularly simple. (paper)

  20. An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism

    International Nuclear Information System (INIS)

    Sellier, J.M.; Nedjalkov, M.; Dimov, I.

    2015-01-01

    The Wigner formulation of quantum mechanics is a very intuitive approach which allows the comprehension and prediction of quantum mechanical phenomena in terms of quasi-distribution functions. In this review, our aim is to provide a detailed introduction to this theory along with a Monte Carlo method for the simulation of time-dependent quantum systems evolving in a phase-space. This work consists of three main parts. First, we introduce the Wigner formalism, then we discuss in detail the Wigner Monte Carlo method and, finally, we present practical applications. In particular, the Wigner model is first derived from the Schrödinger equation. Then a generalization of the formalism due to Moyal is provided, which allows to recover important mathematical properties of the model. Next, the Wigner equation is further generalized to the case of many-body quantum systems. Finally, a physical interpretation of the negative part of a quasi-distribution function is suggested. In the second part, the Wigner Monte Carlo method, based on the concept of signed (virtual) particles, is introduced in detail for the single-body problem. Two extensions of the Wigner Monte Carlo method to quantum many-body problems are introduced, in the frameworks of time-dependent density functional theory and ab-initio methods. Finally, in the third and last part of this paper, applications to single- and many-body problems are performed in the context of quantum physics and quantum chemistry, specifically focusing on the hydrogen, lithium and boron atoms, the H 2 molecule and a system of two identical Fermions. We conclude this work with a discussion on the still unexplored directions the Wigner Monte Carlo method could take in the next future

  1. The Wigner distribution function applied to optical signals and systems

    NARCIS (Netherlands)

    Bastiaans, M.J.

    1978-01-01

    In this paper the Wigner distribution function has been introduced for optical signals and systems. The Wigner distribution function of an optical signal appears to be in close resemblance to the ray concept in geometrical optics. This resemblance reaches even farther: although derived from Fourier

  2. Wigner functions and tomograms of the photon-depleted even and odd coherent states

    International Nuclear Information System (INIS)

    Wang Jisuo; Meng Xiangguo

    2008-01-01

    Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, this paper derives the Wigner functions for the photon-depleted even and odd coherent states (PDEOCSs). Moreover, in terms of the Wigner functions with respect to the complex parameter α the nonclassical properties of the PDEOCSs are discussed. The results show that the nonclassicality for the state |β, m) o (or |β, m) e ) is more pronounced when m is even (or odd). According to the marginal distributions of the Wigner functions, the physical meaning of the Wigner functions is given. Further, the tomograms of the PDEOCSs are calculated with the aid of newly introduced intermediate coordinate-momentum representation in quantum optics

  3. Existence of the Wigner function with correct marginal distributions along tilted lines on a lattice

    International Nuclear Information System (INIS)

    Horibe, Minoru; Takami, Akiyoshi; Hashimoto, Takaaki; Hayashi, Akihisa

    2002-01-01

    For the Wigner function of a system in N-dimensional Hilbert space, we propose the condition, which ensures that the Wigner function has correct marginal distributions along tilted lines. Under this condition we get the Wigner function without ambiguity if N is odd. If N is even, the Wigner function does not exist

  4. Thermo Wigner operator in thermo field dynamics: its introduction and application

    International Nuclear Information System (INIS)

    Fan Hongyi; Jiang Nianquan

    2008-01-01

    Because in thermo-field dynamics (TFD) the thermo-operator has a neat expression in the thermo-entangled state representation, we need to introduce the thermo-Wigner operator (THWO) in the same representation. We derive the THWO in a direct way, which brings much conveniece to calculating the Wigner functions of thermo states in TFD. We also discuss the condition for existence of a wavefunction corresponding to a given Wigner function in the context of TFD by using the explicit form of the THWO.

  5. Wigner functions for angle and orbital angular momentum. Operators and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kastrup, Hans A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2017-02-15

    Recently a paper on the construction of consistent Wigner functions for cylindrical phase spaces S{sup 1} x R, i.e. for the canonical pair angle and orbital angular momentum, was presented, main properties of those functions derived, discussed and their usefulness illustrated by examples. The present paper is a continuation which compares properties of the new Wigner functions for cylindrical phase spaces with those of the well-known Wigner functions on planar ones in more detail. Furthermore, the mutual (Weyl) correspondence between HIlbert space operators and their phase space functions is discussed. The * product formalism is shown to be completely implementable. In addition basic dynamical laws for Wigner and Moyal functions are derived as generalized Liouville and energy equations. They are very similar to those of the planar case, but also show characteristic differences.

  6. Wigner functions for angle and orbital angular momentum. Operators and dynamics

    International Nuclear Information System (INIS)

    Kastrup, Hans A.

    2017-02-01

    Recently a paper on the construction of consistent Wigner functions for cylindrical phase spaces S"1 x R, i.e. for the canonical pair angle and orbital angular momentum, was presented, main properties of those functions derived, discussed and their usefulness illustrated by examples. The present paper is a continuation which compares properties of the new Wigner functions for cylindrical phase spaces with those of the well-known Wigner functions on planar ones in more detail. Furthermore, the mutual (Weyl) correspondence between HIlbert space operators and their phase space functions is discussed. The * product formalism is shown to be completely implementable. In addition basic dynamical laws for Wigner and Moyal functions are derived as generalized Liouville and energy equations. They are very similar to those of the planar case, but also show characteristic differences.

  7. Measurement of complete and continuous Wigner functions for discrete atomic systems

    Science.gov (United States)

    Tian, Yali; Wang, Zhihui; Zhang, Pengfei; Li, Gang; Li, Jie; Zhang, Tiancai

    2018-01-01

    We measure complete and continuous Wigner functions of a two-level cesium atom in both a nearly pure state and highly mixed states. We apply the method [T. Tilma et al., Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401] of strictly constructing continuous Wigner functions for qubit or spin systems. We find that the Wigner function of all pure states of a qubit has negative regions and the negativity completely vanishes when the purity of an arbitrary mixed state is less than 2/3 . We experimentally demonstrate these findings using a single cesium atom confined in an optical dipole trap, which undergoes a nearly pure dephasing process. Our method can be applied straightforwardly to multi-atom systems for measuring the Wigner function of their collective spin state.

  8. Wigner Function Reconstruction in Levitated Optomechanics

    Science.gov (United States)

    Rashid, Muddassar; Toroš, Marko; Ulbricht, Hendrik

    2017-10-01

    We demonstrate the reconstruction of theWigner function from marginal distributions of the motion of a single trapped particle using homodyne detection. We show that it is possible to generate quantum states of levitated optomechanical systems even under the efect of continuous measurement by the trapping laser light. We describe the opto-mechanical coupling for the case of the particle trapped by a free-space focused laser beam, explicitly for the case without an optical cavity. We use the scheme to reconstruct the Wigner function of experimental data in perfect agreement with the expected Gaussian distribution of a thermal state of motion. This opens a route for quantum state preparation in levitated optomechanics.

  9. Truncated Wigner dynamics and conservation laws

    Science.gov (United States)

    Drummond, Peter D.; Opanchuk, Bogdan

    2017-10-01

    Ultracold Bose gases can be used to experimentally test many-body theory predictions. Here we point out that both exact conservation laws and dynamical invariants exist in the topical case of the one-dimensional Bose gas, and these provide an important validation of methods. We show that the first four quantum conservation laws are exactly conserved in the approximate truncated Wigner approach to many-body quantum dynamics. Center-of-mass position variance is also exactly calculable. This is nearly exact in the truncated Wigner approximation, apart from small terms that vanish as N-3 /2 as N →∞ with fixed momentum cutoff. Examples of this are calculated in experimentally relevant, mesoscopic cases.

  10. Higher-order stochastic differential equations and the positive Wigner function

    Science.gov (United States)

    Drummond, P. D.

    2017-12-01

    General higher-order stochastic processes that correspond to any diffusion-type tensor of higher than second order are obtained. The relationship of multivariate higher-order stochastic differential equations with tensor decomposition theory and tensor rank is explained. Techniques for generating the requisite complex higher-order noise are proved to exist either using polar coordinates and γ distributions, or from products of Gaussian variates. This method is shown to allow the calculation of the dynamics of the Wigner function, after it is extended to a complex phase space. The results are illustrated physically through dynamical calculations of the positive Wigner distribution for three-mode parametric downconversion, widely used in quantum optics. The approach eliminates paradoxes arising from truncation of the higher derivative terms in Wigner function time evolution. Anomalous results of negative populations and vacuum scattering found in truncated Wigner quantum simulations in quantum optics and Bose-Einstein condensate dynamics are shown not to occur with this type of stochastic theory.

  11. Positive Wigner functions render classical simulation of quantum computation efficient.

    Science.gov (United States)

    Mari, A; Eisert, J

    2012-12-07

    We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.

  12. Discrete Wigner Function Derivation of the Aaronson–Gottesman Tableau Algorithm

    Directory of Open Access Journals (Sweden)

    Lucas Kocia

    2017-07-01

    Full Text Available The Gottesman–Knill theorem established that stabilizer states and Clifford operations can be efficiently simulated classically. For qudits with odd dimension three and greater, stabilizer states and Clifford operations have been found to correspond to positive discrete Wigner functions and dynamics. We present a discrete Wigner function-based simulation algorithm for odd-d qudits that has the same time and space complexity as the Aaronson–Gottesman algorithm for qubits. We show that the efficiency of both algorithms is due to harmonic evolution in the symplectic structure of discrete phase space. The differences between the Wigner function algorithm for odd-d and the Aaronson–Gottesman algorithm for qubits are likely due only to the fact that the Weyl–Heisenberg group is not in S U ( d for d = 2 and that qubits exhibit state-independent contextuality. This may provide a guide for extending the discrete Wigner function approach to qubits.

  13. From the Weyl quantization of a particle on the circle to number–phase Wigner functions

    International Nuclear Information System (INIS)

    Przanowski, Maciej; Brzykcy, Przemysław; Tosiek, Jaromir

    2014-01-01

    A generalized Weyl quantization formalism for a particle on the circle is shown to supply an effective method for defining the number–phase Wigner function in quantum optics. A Wigner function for the state ϱ ^ and the kernel K for a particle on the circle is defined and its properties are analysed. Then it is shown how this Wigner function can be easily modified to give the number–phase Wigner function in quantum optics. Some examples of such number–phase Wigner functions are considered

  14. Breit-Wigner approximation for propagators of mixed unstable states

    International Nuclear Information System (INIS)

    Fuchs, Elina

    2016-10-01

    For systems of unstable particles that mix with each other, an approximation of the fully momentum- dependent propagator matrix is presented in terms of a sum of simple Breit-Wigner propagators that are multiplied with finite on-shell wave function normalisation factors. The latter are evaluated at the complex poles of the propagators. The pole structure of general propagator matrices is carefully analysed, and it is demonstrated that in the proposed approximation imaginary parts arising from absorptive parts of loop integrals are properly taken into account. Applying the formalism to the neutral MSSM Higgs sector with complex parameters, very good numerical agreement is found between cross sections based on the full propagators and the corresponding cross sections based on the described approximation. The proposed approach does not only technically simplify the treatment of propagators with non-vanishing off-diagonal contributions, it is shown that it can also facilitate an improved theoretical prediction of the considered observables via a more precise implementation of the total widths of the involved particles. It is also well-suited for the incorporation of interference effects arising from overlapping resonances.

  15. Coherent distributions for the rigid rotator

    Energy Technology Data Exchange (ETDEWEB)

    Grigorescu, Marius [CP 15-645, Bucharest 014700 (Romania)

    2016-06-15

    Coherent solutions of the classical Liouville equation for the rigid rotator are presented as positive phase-space distributions localized on the Lagrangian submanifolds of Hamilton-Jacobi theory. These solutions become Wigner-type quasiprobability distributions by a formal discretization of the left-invariant vector fields from their Fourier transform in angular momentum. The results are consistent with the usual quantization of the anisotropic rotator, but the expected value of the Hamiltonian contains a finite “zero point” energy term. It is shown that during the time when a quasiprobability distribution evolves according to the Liouville equation, the related quantum wave function should satisfy the time-dependent Schrödinger equation.

  16. An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism

    Energy Technology Data Exchange (ETDEWEB)

    Sellier, J.M., E-mail: jeanmichel.sellier@parallel.bas.bg [IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 25A, 1113 Sofia (Bulgaria); Nedjalkov, M. [IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 25A, 1113 Sofia (Bulgaria); Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Wien (Austria); Dimov, I. [IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 25A, 1113 Sofia (Bulgaria)

    2015-05-12

    The Wigner formulation of quantum mechanics is a very intuitive approach which allows the comprehension and prediction of quantum mechanical phenomena in terms of quasi-distribution functions. In this review, our aim is to provide a detailed introduction to this theory along with a Monte Carlo method for the simulation of time-dependent quantum systems evolving in a phase-space. This work consists of three main parts. First, we introduce the Wigner formalism, then we discuss in detail the Wigner Monte Carlo method and, finally, we present practical applications. In particular, the Wigner model is first derived from the Schrödinger equation. Then a generalization of the formalism due to Moyal is provided, which allows to recover important mathematical properties of the model. Next, the Wigner equation is further generalized to the case of many-body quantum systems. Finally, a physical interpretation of the negative part of a quasi-distribution function is suggested. In the second part, the Wigner Monte Carlo method, based on the concept of signed (virtual) particles, is introduced in detail for the single-body problem. Two extensions of the Wigner Monte Carlo method to quantum many-body problems are introduced, in the frameworks of time-dependent density functional theory and ab-initio methods. Finally, in the third and last part of this paper, applications to single- and many-body problems are performed in the context of quantum physics and quantum chemistry, specifically focusing on the hydrogen, lithium and boron atoms, the H{sub 2} molecule and a system of two identical Fermions. We conclude this work with a discussion on the still unexplored directions the Wigner Monte Carlo method could take in the next future.

  17. Wigner function and Schroedinger equation in phase-space representation

    International Nuclear Information System (INIS)

    Chruscinski, Dariusz; Mlodawski, Krzysztof

    2005-01-01

    We discuss a family of quasidistributions (s-ordered Wigner functions of Agarwal and Wolf [Phys. Rev. D 2, 2161 (1970); Phys. Rev. D 2, 2187 (1970); Phys. Rev. D 2, 2206 (1970)]) and its connection to the so-called phase space representation of the Schroedinger equation. It turns out that although Wigner functions satisfy the Schroedinger equation in phase space, they have a completely different interpretation

  18. About the functions of the Wigner distribution for the q-deformed harmonic oscillator model

    International Nuclear Information System (INIS)

    Atakishiev, N.M.; Nagiev, S.M.; Djafarov, E.I.; Imanov, R.M.

    2005-01-01

    Full text : A q-deformed model of the linear harmonic oscillator in the Wigner phase-space is studied. It was derived an explicit expression for the Wigner probability distribution function, as well as the Wigner distribution function of a thermodynamic equilibrium for this model

  19. Accessing the quark orbital angular momentum with Wigner distributions

    Energy Technology Data Exchange (ETDEWEB)

    Lorce, Cedric [IPNO, Universite Paris-Sud, CNRS/IN2P3, 91406 Orsay, France and LPT, Universite Paris-Sud, CNRS, 91406 Orsay (France); Pasquini, Barbara [Dipartimento di Fisica, Universita degli Studi di Pavia, Pavia, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia (Italy)

    2013-04-15

    The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wigner distributions. We discuss the concept of Wigner distributions in the context of quantum field theory and show how they are related to the GPDs and the TMDs. We summarize the different definitions discussed in the literature for the quark OAM and show how they can in principle be extracted from the Wigner distributions.

  20. Accessing the quark orbital angular momentum with Wigner distributions

    International Nuclear Information System (INIS)

    Lorcé, Cédric; Pasquini, Barbara

    2013-01-01

    The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wigner distributions. We discuss the concept of Wigner distributions in the context of quantum field theory and show how they are related to the GPDs and the TMDs. We summarize the different definitions discussed in the literature for the quark OAM and show how they can in principle be extracted from the Wigner distributions.

  1. NATO Advanced Study Institute: Marie Curie Training Course: Applications of Random Matrices in Physics

    CERN Document Server

    Kazakov, Vladimir; Serban, Didina; Wiegmann, Paul; Zabrodin, Anton

    2006-01-01

    Random matrices are widely and successfully used in physics for almost 60-70 years, beginning with the works of Dyson and Wigner. Although it is an old subject, it is constantly developing into new areas of physics and mathematics. It constitutes now a part of the general culture of a theoretical physicist. Mathematical methods inspired by random matrix theory become more powerful, sophisticated and enjoy rapidly growing applications in physics. Recent examples include the calculation of universal correlations in the mesoscopic system, new applications in disordered and quantum chaotic systems, in combinatorial and growth models, as well as the recent breakthrough, due to the matrix models, in two dimensional gravity and string theory and the non-abelian gauge theories. The book consists of the lectures of the leading specialists and covers rather systematically many of these topics. It can be useful to the specialists in various subjects using random matrices, from PhD students to confirmed scientists.

  2. Experimental eavesdropping attack against Ekert's protocol based on Wigner's inequality

    International Nuclear Information System (INIS)

    Bovino, F. A.; Colla, A. M.; Castagnoli, G.; Castelletto, S.; Degiovanni, I. P.; Rastello, M. L.

    2003-01-01

    We experimentally implemented an eavesdropping attack against the Ekert protocol for quantum key distribution based on the Wigner inequality. We demonstrate a serious lack of security of this protocol when the eavesdropper gains total control of the source. In addition we tested a modified Wigner inequality which should guarantee a secure quantum key distribution

  3. Understanding squeezing of quantum states with the Wigner function

    Science.gov (United States)

    Royer, Antoine

    1994-01-01

    The Wigner function is argued to be the only natural phase space function evolving classically under quadratic Hamiltonians with time-dependent bilinear part. This is used to understand graphically how certain quadratic time-dependent Hamiltonians induce squeezing of quantum states. The Wigner representation is also used to generalize Ehrenfest's theorem to the quantum uncertainties. This makes it possible to deduce features of the quantum evolution, such as squeezing, from the classical evolution, whatever the Hamiltonian.

  4. Ordered structures in rotating ultracold Bose gases

    International Nuclear Information System (INIS)

    Barberan, N.; Dagnino, D.; Lewenstein, M.; Osterloh, K.

    2006-01-01

    Two-dimentional systems of trapped samples of few cold bosonic atoms submitted to strong rotation around the perpendicular axis may be realized in optical lattices and microtraps. We investigate theoretically the evolution of ground state structures of such systems as the rotational frequency Ω increases. Various kinds of ordered structures are observed. In some cases, hidden interference patterns exhibit themselves only in the pair correlation function; in some other cases explicit broken-symmetry structures appear that modulate the density. For N<10 atoms, the standard scenario, valid for large sytems is absent, and is only gradually recovered as N increases. On the one hand, the Laughlin state in the strong rotational regime contains ordered structures much more similar to a Wigner molecule than to a fermionic quantum liquid. On the other hand, in the weak rotational regime, the possibility to obtain equilibrium states, whose density reveals an array of vortices, is restricted to the vicinity of some critical values of the rotational frequency Ω

  5. Proof of a conjecture on the supports of Wigner distributions

    NARCIS (Netherlands)

    Janssen, A.J.E.M.

    1998-01-01

    In this note we prove that the Wigner distribution of an f ¿ L2(Rn) cannot be supported by a set of finite measure in R2n unless f = 0. We prove a corresponding statement for cross-ambiguity functions. As a strengthening of the conjecture we show that for an f ¿ L2(Rn) its Wigner distribution has a

  6. Computing thermal Wigner densities with the phase integration method

    International Nuclear Information System (INIS)

    Beutier, J.; Borgis, D.; Vuilleumier, R.; Bonella, S.

    2014-01-01

    We discuss how the Phase Integration Method (PIM), recently developed to compute symmetrized time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011)], can be adapted to sampling/generating the thermal Wigner density, a key ingredient, for example, in many approximate schemes for simulating quantum time dependent properties. PIM combines a path integral representation of the density with a cumulant expansion to represent the Wigner function in a form calculable via existing Monte Carlo algorithms for sampling noisy probability densities. The method is able to capture highly non-classical effects such as correlation among the momenta and coordinates parts of the density, or correlations among the momenta themselves. By using alternatives to cumulants, it can also indicate the presence of negative parts of the Wigner density. Both properties are demonstrated by comparing PIM results to those of reference quantum calculations on a set of model problems

  7. Computing thermal Wigner densities with the phase integration method.

    Science.gov (United States)

    Beutier, J; Borgis, D; Vuilleumier, R; Bonella, S

    2014-08-28

    We discuss how the Phase Integration Method (PIM), recently developed to compute symmetrized time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011)], can be adapted to sampling/generating the thermal Wigner density, a key ingredient, for example, in many approximate schemes for simulating quantum time dependent properties. PIM combines a path integral representation of the density with a cumulant expansion to represent the Wigner function in a form calculable via existing Monte Carlo algorithms for sampling noisy probability densities. The method is able to capture highly non-classical effects such as correlation among the momenta and coordinates parts of the density, or correlations among the momenta themselves. By using alternatives to cumulants, it can also indicate the presence of negative parts of the Wigner density. Both properties are demonstrated by comparing PIM results to those of reference quantum calculations on a set of model problems.

  8. Wigner function and the probability representation of quantum states

    Directory of Open Access Journals (Sweden)

    Man’ko Margarita A.

    2014-01-01

    Full Text Available The relation of theWigner function with the fair probability distribution called tomographic distribution or quantum tomogram associated with the quantum state is reviewed. The connection of the tomographic picture of quantum mechanics with the integral Radon transform of the Wigner quasidistribution is discussed. The Wigner–Moyal equation for the Wigner function is presented in the form of kinetic equation for the tomographic probability distribution both in quantum mechanics and in the classical limit of the Liouville equation. The calculation of moments of physical observables in terms of integrals with the state tomographic probability distributions is constructed having a standard form of averaging in the probability theory. New uncertainty relations for the position and momentum are written in terms of optical tomograms suitable for directexperimental check. Some recent experiments on checking the uncertainty relations including the entropic uncertainty relations are discussed.

  9. Product of Ginibre matrices: Fuss-Catalan and Raney distributions

    Science.gov (United States)

    Penson, Karol A.; Życzkowski, Karol

    2011-06-01

    Squared singular values of a product of s square random Ginibre matrices are asymptotically characterized by probability distributions Ps(x), such that their moments are equal to the Fuss-Catalan numbers of order s. We find a representation of the Fuss-Catalan distributions Ps(x) in terms of a combination of s hypergeometric functions of the type sFs-1. The explicit formula derived here is exact for an arbitrary positive integer s, and for s=1 it reduces to the Marchenko-Pastur distribution. Using similar techniques, involving the Mellin transform and the Meijer G function, we find exact expressions for the Raney probability distributions, the moments of which are given by a two-parameter generalization of the Fuss-Catalan numbers. These distributions can also be considered as a two-parameter generalization of the Wigner semicircle law.

  10. The Kirillov picture for the Wigner particle

    Science.gov (United States)

    Gracia-Bondía, J. M.; Lizzi, F.; Várilly, J. C.; Vitale, P.

    2018-06-01

    We discuss the Kirillov method for massless Wigner particles, usually (mis)named ‘continuous spin’ or ‘infinite spin’ particles. These appear in Wigner’s classification of the unitary representations of the Poincaré group, labelled by elements of the enveloping algebra of the Poincaré Lie algebra. Now, the coadjoint orbit procedure introduced by Kirillov is a prelude to quantization. Here we exhibit for those particles the classical Casimir functions on phase space, in parallel to quantum representation theory. A good set of position coordinates are identified on the coadjoint orbits of the Wigner particles; the stabilizer subgroups and the symplectic structures of these orbits are also described. In memory of E C G Sudarshan.

  11. Double Wigner distribution function of a first-order optical system with a hard-edge aperture.

    Science.gov (United States)

    Pan, Weiqing

    2008-01-01

    The effect of an apertured optical system on Wigner distribution can be expressed as a superposition integral of the input Wigner distribution function and the double Wigner distribution function of the apertured optical system. By introducing a hard aperture function into a finite sum of complex Gaussian functions, the double Wigner distribution functions of a first-order optical system with a hard aperture outside and inside it are derived. As an example of application, the analytical expressions of the Wigner distribution for a Gaussian beam passing through a spatial filtering optical system with an internal hard aperture are obtained. The analytical results are also compared with the numerical integral results, and they show that the analytical results are proper and ascendant.

  12. The truncated Wigner method for Bose-condensed gases: limits of validity and applications

    International Nuclear Information System (INIS)

    Sinatra, Alice; Lobo, Carlos; Castin, Yvan

    2002-01-01

    We study the truncated Wigner method applied to a weakly interacting spinless Bose-condensed gas which is perturbed away from thermal equilibrium by a time-dependent external potential. The principle of the method is to generate an ensemble of classical fields ψ(r) which samples the Wigner quasi-distribution function of the initial thermal equilibrium density operator of the gas, and then to evolve each classical field with the Gross-Pitaevskii equation. In the first part of the paper we improve the sampling technique over our previous work (Sinatra et al 2000 J. Mod. Opt. 47 2629-44) and we test its accuracy against the exactly solvable model of the ideal Bose gas. In the second part of the paper we investigate the conditions of validity of the truncated Wigner method. For short evolution times it is known that the time-dependent Bogoliubov approximation is valid for almost pure condensates. The requirement that the truncated Wigner method reproduces the Bogoliubov prediction leads to the constraint that the number of field modes in the Wigner simulation must be smaller than the number of particles in the gas. For longer evolution times the nonlinear dynamics of the noncondensed modes of the field plays an important role. To demonstrate this we analyse the case of a three-dimensional spatially homogeneous Bose-condensed gas and we test the ability of the truncated Wigner method to correctly reproduce the Beliaev-Landau damping of an excitation of the condensate. We have identified the mechanism which limits the validity of the truncated Wigner method: the initial ensemble of classical fields, driven by the time-dependent Gross-Pitaevskii equation, thermalizes to a classical field distribution at a temperature T class which is larger than the initial temperature T of the quantum gas. When T class significantly exceeds T a spurious damping is observed in the Wigner simulation. This leads to the second validity condition for the truncated Wigner method, T class - T

  13. Strong semiclassical approximation of Wigner functions for the Hartree dynamics

    KAUST Repository

    Athanassoulis, Agissilaos; Paul, Thierry; Pezzotti, Federica; Pulvirenti, Mario

    2011-01-01

    We consider the Wigner equation corresponding to a nonlinear Schrödinger evolution of the Hartree type in the semiclassical limit h → 0. Under appropriate assumptions on the initial data and the interaction potential, we show that the Wigner function is close in L 2 to its weak limit, the solution of the corresponding Vlasov equation. The strong approximation allows the construction of semiclassical operator-valued observables, approximating their quantum counterparts in Hilbert-Schmidt topology. The proof makes use of a pointwise-positivity manipulation, which seems necessary in working with the L 2 norm and the precise form of the nonlinearity. We employ the Husimi function as a pivot between the classical probability density and the Wigner function, which - as it is well known - is not pointwise positive in general.

  14. Symplectic evolution of Wigner functions in Markovian open systems.

    Science.gov (United States)

    Brodier, O; Almeida, A M Ozorio de

    2004-01-01

    The Wigner function is known to evolve classically under the exclusive action of a quadratic Hamiltonian. If the system also interacts with the environment through Lindblad operators that are complex linear functions of position and momentum, then the general evolution is the convolution of a non-Hamiltonian classical propagation of the Wigner function with a phase space Gaussian that broadens in time. We analyze the consequences of this in the three generic cases of elliptic, hyperbolic, and parabolic Hamiltonians. The Wigner function always becomes positive in a definite time, which does not depend on the initial pure state. We observe the influence of classical dynamics and dissipation upon this threshold. We also derive an exact formula for the evolving linear entropy as the average of a narrowing Gaussian taken over a probability distribution that depends only on the initial state. This leads to a long time asymptotic formula for the growth of linear entropy. We finally discuss the possibility of recovering the initial state.

  15. The Wigner distribution function and Hamilton's characteristics of a geometric-optical system

    NARCIS (Netherlands)

    Bastiaans, M.J.

    1979-01-01

    Four system functions have been defined for an optical system; each of these functions describes the system completely in terms of Fourier optics. From the system functions the Wigner distribution function of an optical system has been defined; although derived from Fourier optics, this Wigner

  16. Comparative Study of Entanglement and Wigner Function for Multi-Qubit GHZ-Squeezed State

    Science.gov (United States)

    Siyouri, Fatima-Zahra

    2017-12-01

    In this paper we address the possibility of using the Wigner function to capture the quantum entanglement present in a multi-qubit system. For that purpose, we calculate both the degree of entanglement and the Wigner function for mixed tripartite squeezed states of Greenberger-Horne-Zeilinger (GHZ) type then we compare their behaviors. We show that the role of Wigner function in detecting and quantifying bipartite quantum correlation [Int. J. Mod. Phys. B 30 (2016) 1650187] may be generalized to the multipartite case.

  17. Interpretation of the Wigner transform

    International Nuclear Information System (INIS)

    Casas, M.; Krivine, H.; Martorell, J.

    1990-01-01

    In quantum mechanics it is not possible to define a probability for finding a particle at position r with momentum p. Nevertheless there is a function introduced by Wigner, which retains many significant features of the classical probability distribution. Using simple one dimensional models we try to understand the very involved structure of this function

  18. On the nodal structure of atomic and molecular Wigner functions

    International Nuclear Information System (INIS)

    Dahl, J.P.; Schmider, H.

    1996-01-01

    In previous work on the phase-space representation of quantum mechanics, we have presented detailed pictures of the electronic one-particle reduced Wigner function for atoms and small molecules. In this communication, we focus upon the nodal structure of the function. On the basis of the simplest systems, we present an expression which relates the oscillatory decay of the Wigner function solely to the dot product of the position and momentum vector, if both arguments are large. We then demonstrate the regular behavior of nodal patterns for the larger systems. For the molecular systems, an argument analogous to the open-quotes bond-oscillatory principleclose quotes for momentum densities links the nuclear framework to an additional oscillatory term in momenta parallel to bonds. It is shown that these are visible in the Wigner function in terms of characteristic nodes

  19. A device adaptive inflow boundary condition for Wigner equations of quantum transport

    International Nuclear Information System (INIS)

    Jiang, Haiyan; Lu, Tiao; Cai, Wei

    2014-01-01

    In this paper, an improved inflow boundary condition is proposed for Wigner equations in simulating a resonant tunneling diode (RTD), which takes into consideration the band structure of the device. The original Frensley inflow boundary condition prescribes the Wigner distribution function at the device boundary to be the semi-classical Fermi–Dirac distribution for free electrons in the device contacts without considering the effect of the quantum interaction inside the quantum device. The proposed device adaptive inflow boundary condition includes this effect by assigning the Wigner distribution to the value obtained from the Wigner transform of wave functions inside the device at zero external bias voltage, thus including the dominant effect on the electron distribution in the contacts due to the device internal band energy profile. Numerical results on computing the electron density inside the RTD under various incident waves and non-zero bias conditions show much improvement by the new boundary condition over the traditional Frensley inflow boundary condition

  20. Wigner-like crystallization of Anderson-localized electron systems with low electron densities

    CERN Document Server

    Slutskin, A A; Pepper, M

    2002-01-01

    We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We establish that at sufficiently low electron densities and sufficiently low temperatures the Coulomb electron interaction brings about ordering of the Anderson-localized electrons into a structure that is close to an ideal (Wigner) crystal lattice, provided the dimension of the system is > 1. This Anderson-Wigner glass (AWG) is a new macroscopic electron state that, on the one hand, is beyond the conventional Fermi glass concept, and on the other hand, qualitatively differs from the known 'plain' Wigner glass (inherent in self-localized electron systems) in that the random slight electron displacements from the ideal crystal sites essentially depend on the electron density. With increasing electron density the AWG is found to turn into the plain Wigner glass or Fermi glass, depending on the width of the random spread of the electron levels. It is shown that the res...

  1. Dynamics of the Wigner crystal of composite particles

    Science.gov (United States)

    Shi, Junren; Ji, Wencheng

    2018-03-01

    Conventional wisdom has long held that a composite particle behaves just like an ordinary Newtonian particle. In this paper, we derive the effective dynamics of a type-I Wigner crystal of composite particles directly from its microscopic wave function. It indicates that the composite particles are subjected to a Berry curvature in the momentum space as well as an emergent dissipationless viscosity. While the dissipationless viscosity is the Chern-Simons field counterpart for the Wigner crystal, the Berry curvature is a feature not presented in the conventional composite fermion theory. Hence, contrary to general belief, composite particles follow the more general Sundaram-Niu dynamics instead of the ordinary Newtonian one. We show that the presence of the Berry curvature is an inevitable feature for a dynamics conforming to the dipole picture of composite particles and Kohn's theorem. Based on the dynamics, we determine the dispersions of magnetophonon excitations numerically. We find an emergent magnetoroton mode which signifies the composite-particle nature of the Wigner crystal. It occurs at frequencies much lower than the magnetic cyclotron frequency and has a vanishing oscillator strength in the long-wavelength limit.

  2. The Wigner distribution function for squeezed vacuum superposed state

    International Nuclear Information System (INIS)

    Zayed, E.M.E.; Daoud, A.S.; AL-Laithy, M.A.; Naseem, E.N.

    2005-01-01

    In this paper, we construct the Wigner distribution function for a single-mode squeezed vacuum mixed-state which is a superposition of the squeezed vacuum state. This state is defined as a P-representation for the density operator. The obtained Wigner function depends, beside the phase-space variables, on the mean number of photons occupied by the coherent state of the mode. This mean number relates to the mean free path through a given relation, which enables us to measure this number experimentally by measuring the mean free path

  3. Wigner representation in scattering problems

    International Nuclear Information System (INIS)

    Remler, E.A.

    1975-01-01

    The basic equations of quantum scattering are translated into the Wigner representation. This puts quantum mechanics in the form of a stochastic process in phase space. Instead of complex valued wavefunctions and transition matrices, one now works with real-valued probability distributions and source functions, objects more responsive to physical intuition. Aside from writing out certain necessary basic expressions, the main purpose is to develop and stress the interpretive picture associated with this representation and to derive results used in applications published elsewhere. The quasiclassical guise assumed by the formalism lends itself particularly to approximations of complex multiparticle scattering problems is laid. The foundation for a systematic application of statistical approximations to such problems. The form of the integral equation for scattering as well as its mulitple scattering expansion in this representation are derived. Since this formalism remains unchanged upon taking the classical limit, these results also constitute a general treatment of classical multiparticle collision theory. Quantum corrections to classical propogators are discussed briefly. The basic approximation used in the Monte Carlo method is derived in a fashion that allows for future refinement and includes bound state production. The close connection that must exist between inclusive production of a bound state and of its constituents is brought out in an especially graphic way by this formalism. In particular one can see how comparisons between such cross sections yield direct physical insight into relevant production mechanisms. A simple illustration of scattering by a bound two-body system is treated. Simple expressions for single- and double-scattering contributions to total and differential cross sections, as well as for all necessary shadow corrections thereto, are obtained and compared to previous results of Glauber and Goldberger

  4. Density of the Breit--Wigner functions

    International Nuclear Information System (INIS)

    Perry, W.L.; Luning, C.D.

    1975-01-01

    It is shown, for certain sequences [lambda/sub i/] in the complex plane, that linear combinations of the Breit-Wigner functions [B/sub i/] approximate, in the mean square, any function in L 2 (0,infinity). Implications and numerical use of this result are discussed

  5. The Collected Works of Eugene Paul Wigner the Scientific Papers

    CERN Document Server

    Wigner, Eugene Paul

    1993-01-01

    Eugene Wigner is one of the few giants of 20th-century physics His early work helped to shape quantum mechanics, he laid the foundations of nuclear physics and nuclear engineering, and he contributed significantly to solid-state physics His philosophical and political writings are widely known All his works will be reprinted in Eugene Paul Wigner's Collected Workstogether with descriptive annotations by outstanding scientists The present volume begins with a short biographical sketch followed by Wigner's papers on group theory, an extremely powerful tool he created for theoretical quantum physics They are presented in two parts The first, annotated by B Judd, covers applications to atomic and molecular spectra, term structure, time reversal and spin In the second, G Mackey introduces to the reader the mathematical papers, many of which are outstanding contributions to the theory of unitary representations of groups, including the famous paper on the Lorentz group

  6. A non-negative Wigner-type distribution

    International Nuclear Information System (INIS)

    Cartwright, N.D.

    1976-01-01

    The Wigner function, which is commonly used as a joint distribution for non-commuting observables, is shown to be non-negative in all quantum states when smoothed with a gaussian whose variances are greater than or equal to those of the minimum uncertainty wave packet. (Auth.)

  7. Quantum Statistics of the Toda Oscillator in the Wigner Function Formalism

    Science.gov (United States)

    Vojta, Günter; Vojta, Matthias

    Classical and quantum mechanical Toda systems (Toda molecules, Toda lattices, Toda quantum fields) recently found growing interest as nonlinear systems showing solitons and chaos. In this paper the statistical thermodynamics of a system of quantum mechanical Toda oscillators characterized by a potential energy V(q) = Vo cos h q is treated within the Wigner function formalism (phase space formalism of quantum statistics). The partition function is given as a Wigner- Kirkwood series expansion in terms of powers of h2 (semiclassical expansion). The partition function and all thermodynamic functions are written, with considerable exactness, as simple closed expressions containing only the modified Hankel functions Ko and K1 of the purely imaginary argument i with = Vo/kT.Translated AbstractQuantenstatistik des Toda-Oszillators im Formalismus der Wigner-FunktionKlassische und quantenmechanische Toda-Systeme (Toda-Moleküle, Toda-Gitter, Toda-Quantenfelder) haben als nichtlineare Systeme mit Solitonen und Chaos in jüngster Zeit zunehmend an Interesse gewonnen. Wir untersuchen die statistische Thermodynamik eines Systems quantenmechanischer Toda-Oszillatoren, die durch eine potentielle Energie der Form V(q) = Vo cos h q charakterisiert sind, im Formalismus der Wigner-Funktion (Phasenraum-Formalismus der Quantenstatistik). Die Zustandssumme wird als Wigner-Kirkwood-Reihe nach Potenzen von h2 (semiklassische Entwicklung) dargestellt, und aus ihr werden die thermodynamischen Funktionen berechnet. Sämtliche Funktionen sind durch einfache geschlossene Formeln allein mit den modifizierten Hankel-Funktionen Ko und K1 des rein imaginären Arguments i mit = Vo/kT mit großer Genauigkeit darzustellen.

  8. Discrete Wigner functions and quantum computation

    International Nuclear Information System (INIS)

    Galvao, E.

    2005-01-01

    Full text: Gibbons et al. have recently defined a class of discrete Wigner functions W to represent quantum states in a finite Hilbert space dimension d. I characterize the set C d of states having non-negative W simultaneously in all definitions of W in this class. I then argue that states in this set behave classically in a well-defined computational sense. I show that one-qubit states in C 2 do not provide for universal computation in a recent model proposed by Bravyi and Kitaev [quant-ph/0403025]. More generally, I show that the only pure states in C d are stabilizer states, which have an efficient description using the stabilizer formalism. This result shows that two different notions of 'classical' states coincide: states with non-negative Wigner functions are those which have an efficient description. This suggests that negativity of W may be necessary for exponential speed-up in pure-state quantum computation. (author)

  9. Dynamics of Gaussian Wigner functions derived from a time-dependent variational principle

    Directory of Open Access Journals (Sweden)

    Jens Aage Poulsen

    2017-11-01

    Full Text Available By using a time-dependent variational principle formulated for Wigner phase-space functions, we obtain the optimal time-evolution for two classes of Gaussian Wigner functions, namely those of either thawed real-valued or frozen but complex Gaussians. It is shown that tunneling effects are approximately included in both schemes.

  10. Friedel oscillations from the Wigner-Kirkwood distribution in half infinite matter

    International Nuclear Information System (INIS)

    Durand, M.; Schuck, P.; Vinas, X.

    1985-01-01

    The Wigner-Kirkwood expansion is derived in complete analogy to the low temperature expansion of the Fermi function showing that the Planck's constant and T play analogous roles in both cases. In detail however the Wigner distribution close to a surface is quite different from a Fermi function and we showed for instance that the Planck's constant expansion can account for the surface oscillations of the distribution

  11. Stochastic Nuclear Reaction Theory: Breit-Wigner nuclear noise

    International Nuclear Information System (INIS)

    de Saussure, G.; Perez, R.B.

    1988-01-01

    The purpose of this paper is the application of various statistical tests for the detection of the intermediate structure, which lies immersed in the Breit-Wigner ''noise'' arising from the superposition of many compound nucleus resonances. To this end, neutron capture cross sections are constructed by Monte-Carlo simulations of the compound nucleus, hence providing the ''noise'' component. In a second step intermediate structure is added to the Breit-Wigner noise. The performance of the statistical tests in detecting the intermediate structure is evaluated using mocked-up neutron cross sections as the statistical samples. Afterwards, the statistical tests are applied to actual nuclear cross section data. 10 refs., 1 fig., 2 tabs

  12. Field theoretic perspectives of the Wigner function formulation of the chiral magnetic effect

    Science.gov (United States)

    Wu, Yan; Hou, De-fu; Ren, Hai-cang

    2017-11-01

    We assess the applicability of the Wigner function formulation in its present form to the chiral magnetic effect and note some issues regarding the conservation and the consistency of the electric current in the presence of an inhomogeneous and time-dependent axial chemical potential. The problems are rooted in the ultraviolet divergence of the underlying field theory associated with the axial anomaly and can be fixed with the Pauli-Villars regularization of the Wigner function. The chiral magnetic current with a nonconstant axial chemical potential is calculated with the regularized Wigner function and the phenomenological implications are discussed.

  13. On selection rules in vibrational and rotational molecular spectroscopy

    International Nuclear Information System (INIS)

    Guichardet, A.

    1986-01-01

    The aim of this work is a rigorous proof of the Selection Rules in Molecular Spectroscopy (Vibration and Rotation). To get this we give mathematically rigorous definitions of the (tensor) transition operators, in this case the electric dipole moment; this is done, firstly by considering the molecule as a set of point atomic kernels performing arbitrary motions, secondly by limiting ourselves either to infinitesimal vibration motions, or to arbitrary rotation motions. Then the selection rules follow from an abstract formulation of the Wigner-Eckart theorem. In a last paragraph we discuss the problem of separating vibration and rotation motions; very simple ideas from Differential Geometry, linked with the ''slice theorem'', allow us to define the relative speeds, the solid motions speeds, the Coriolis energies and the moving Eckart frames [fr

  14. Weak values of a quantum observable and the cross-Wigner distribution

    International Nuclear Information System (INIS)

    Gosson, Maurice A. de; Gosson, Serge M. de

    2012-01-01

    We study the weak values of a quantum observable from the point of view of the Wigner formalism. The main actor here is the cross-Wigner transform of two functions, which is in disguise the cross-ambiguity function familiar from radar theory and time-frequency analysis. It allows us to express weak values using a complex probability distribution. We suggest that our approach seems to confirm that the weak value of an observable is, as conjectured by several authors, due to the interference of two wavefunctions, one coming from the past, and the other from the future. -- Highlights: ► Application of the cross-Wigner transform to a redefinition of the weak value of a quantum observable. ► Phase space approach to weak values, associated with a complex probability distribution. ► Opens perspectives for the study of retrodiction.

  15. Comparison of deterministic and stochastic methods for time-dependent Wigner simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Sihong, E-mail: sihong@math.pku.edu.cn [LMAM and School of Mathematical Sciences, Peking University, Beijing 100871 (China); Sellier, Jean Michel, E-mail: jeanmichel.sellier@parallel.bas.bg [IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 25A, 1113 Sofia (Bulgaria)

    2015-11-01

    Recently a Monte Carlo method based on signed particles for time-dependent simulations of the Wigner equation has been proposed. While it has been thoroughly validated against physical benchmarks, no technical study about its numerical accuracy has been performed. To this end, this paper presents the first step towards the construction of firm mathematical foundations for the signed particle Wigner Monte Carlo method. An initial investigation is performed by means of comparisons with a cell average spectral element method, which is a highly accurate deterministic method and utilized to provide reference solutions. Several different numerical tests involving the time-dependent evolution of a quantum wave-packet are performed and discussed in deep details. In particular, this allows us to depict a set of crucial criteria for the signed particle Wigner Monte Carlo method to achieve a satisfactory accuracy.

  16. Tunneling of an energy eigenstate through a parabolic barrier viewed from Wigner phase space

    DEFF Research Database (Denmark)

    Heim, D.M.; Schleich, W.P.; Alsing, P.M.

    2013-01-01

    We analyze the tunneling of a particle through a repulsive potential resulting from an inverted harmonic oscillator in the quantum mechanical phase space described by the Wigner function. In particular, we solve the partial differential equations in phase space determining the Wigner function...... of an energy eigenstate of the inverted oscillator. The reflection or transmission coefficients R or T are then given by the total weight of all classical phase-space trajectories corresponding to energies below, or above the top of the barrier given by the Wigner function....

  17. Wigner distribution, partial coherence, and phase-space optics

    NARCIS (Netherlands)

    Bastiaans, M.J.

    2009-01-01

    The Wigner distribution is presented as a perfect means to treat partially coherent optical signals and their propagation through first-order optical systems from a radiometric and phase-space optical perspective

  18. Inverse m-matrices and ultrametric matrices

    CERN Document Server

    Dellacherie, Claude; San Martin, Jaime

    2014-01-01

    The study of M-matrices, their inverses and discrete potential theory is now a well-established part of linear algebra and the theory of Markov chains. The main focus of this monograph is the so-called inverse M-matrix problem, which asks for a characterization of nonnegative matrices whose inverses are M-matrices. We present an answer in terms of discrete potential theory based on the Choquet-Deny Theorem. A distinguished subclass of inverse M-matrices is ultrametric matrices, which are important in applications such as taxonomy. Ultrametricity is revealed to be a relevant concept in linear algebra and discrete potential theory because of its relation with trees in graph theory and mean expected value matrices in probability theory. Remarkable properties of Hadamard functions and products for the class of inverse M-matrices are developed and probabilistic insights are provided throughout the monograph.

  19. Wigner-like crystallization of Anderson-localized electron systems with low electron densities

    International Nuclear Information System (INIS)

    Slutskin, A.A.; Kovtun, H.A.; Pepper, M.

    2002-01-01

    We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We establish that at sufficiently low electron densities and sufficiently low temperatures the Coulomb electron interaction brings about ordering of the Anderson-localized electrons into a structure that is close to an ideal (Wigner) crystal lattice, provided the dimension of the system is > 1. This Anderson-Wigner glass (AWG) is a new macroscopic electron state that, on the one hand, is beyond the conventional Fermi glass concept, and on the other hand, qualitatively differs from the known 'plain' Wigner glass (inherent in self-localized electron systems) in that the random slight electron displacements from the ideal crystal sites essentially depend on the electron density. With increasing electron density the AWG is found to turn into the plain Wigner glass or Fermi glass, depending on the width of the random spread of the electron levels. It is shown that the residual disorder of the AWG is characterized by a multi-valley ground-state degeneracy akin to that in a spin glass. Some general features of the AWG are discussed, and a new conduction mechanism of a creep type is predicted

  20. Direct measurement of the biphoton Wigner function through two-photon interference

    Science.gov (United States)

    Douce, T.; Eckstein, A.; Walborn, S. P.; Khoury, A. Z.; Ducci, S.; Keller, A.; Coudreau, T.; Milman, P.

    2013-01-01

    The Hong-Ou-Mandel (HOM) experiment was a benchmark in quantum optics, evidencing the non–classical nature of photon pairs, later generalized to quantum systems with either bosonic or fermionic statistics. We show that a simple modification in the well-known and widely used HOM experiment provides the direct measurement of the Wigner function. We apply our results to one of the most reliable quantum systems, consisting of biphotons generated by parametric down conversion. A consequence of our results is that a negative value of the Wigner function is a sufficient condition for non-gaussian entanglement between two photons. In the general case, the Wigner function provides all the required information to infer entanglement using well known necessary and sufficient criteria. The present work offers a new vision of the HOM experiment that further develops its possibilities to realize fundamental tests of quantum mechanics using simple optical set-ups. PMID:24346262

  1. Fabrication of Aligned Carbon Nanotube/Polycaprolactone/Gelatin Nanofibrous Matrices for Schwann Cell Immobilization

    Directory of Open Access Journals (Sweden)

    Shiao-Wen Tsai

    2014-01-01

    Full Text Available In this study, we utilized a mandrel rotating collector consisting of two parallel, electrically conductive pieces of tape to fabricate aligned electrospun polycaprolactone/gelatin (PG and carbon nanotube/polycaprolactone/gelatin (PGC nanofibrous matrices. Furthermore, we examined the biological performance of the PGC nanofibrous and film matrices using an in vitro culture of RT4-D6P2T rat Schwann cells. Using cell adhesion tests, we found that carbon nanotube inhibited Schwann cell attachment on PGC nanofibrous and film matrices. However, the proliferation rates of Schwann cells were higher when they were immobilized on PGC nanofibrous matrices compared to PGC film matrices. Using western blot analysis, we found that NRG1 and P0 protein expression levels were higher for cells immobilized on PGC nanofibrous matrices compared to PG nanofibrous matrices. However, the carbon nanotube inhibited NRG1 and P0 protein expression in cells immobilized on PGC film matrices. Moreover, the NRG1 and P0 protein expression levels were higher for cells immobilized on PGC nanofibrous matrices compared to PGC film matrices. We found that the matrix topography and composition influenced Schwann cell behavior.

  2. Qualities of Wigner function and its applications to one-dimensional infinite potential and one-dimensional harmonic oscillator

    International Nuclear Information System (INIS)

    Xu Hao; Shi Tianjun

    2011-01-01

    In this article,the qualities of Wigner function and the corresponding stationary perturbation theory are introduced and applied to one-dimensional infinite potential well and one-dimensional harmonic oscillator, and then the particular Wigner function of one-dimensional infinite potential well is specified and a special constriction effect in its pure state Wigner function is discovered, to which,simultaneously, a detailed and reasonable explanation is elaborated from the perspective of uncertainty principle. Ultimately, the amendment of Wigner function and energy of one-dimensional infinite potential well and one-dimensional harmonic oscillator under perturbation are calculated according to stationary phase space perturbation theory. (authors)

  3. Commuting periodic operators and the periodic Wigner function

    International Nuclear Information System (INIS)

    Zak, J

    2004-01-01

    Commuting periodic operators (CPO) depending on the coordinate x-hat and the momentum p-hat operators are defined. The CPO are functions of the two basic commuting operators exp(i x-hat 2π/a) and exp(i/h p-hat a), with a being an arbitrary constant. A periodic Wigner function (PWF) w(x, p) is defined and it is shown that it is applicable in a normal expectation value calculation to the CPO, as done in the original Wigner paper. Moreover, this PWF is non-negative everywhere, and it can therefore be interpreted as an actual probability distribution. The PWF w(x, p) is shown to be given as an expectation value of the periodic Dirac delta function in the phase plane. (letter to the editor)

  4. Wigner functions for nonclassical states of a collection of two-level atoms

    Science.gov (United States)

    Agarwal, G. S.; Dowling, Jonathan P.; Schleich, Wolfgang P.

    1993-01-01

    The general theory of atomic angular momentum states is used to derive the Wigner distribution function for atomic angular momentum number states, coherent states, and squeezed states. These Wigner functions W(theta,phi) are represented as a pseudo-probability distribution in spherical coordinates theta and phi on the surface of a sphere of radius the square root of j(j +1) where j is the total angular momentum.

  5. Wigner Distribution Functions as a Tool for Studying Gas Phase Alkali Metal Plus Noble Gas Collisions

    Science.gov (United States)

    2014-03-27

    WIGNER DISTRIBUTION FUNCTIONS AS A TOOL FOR STUDYING GAS PHASE ALKALI METAL PLUS NOBLE GAS COLLISIONS THESIS Keith A. Wyman, Second Lieutenant, USAF...the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENP-14-M-39 WIGNER DISTRIBUTION FUNCTIONS AS A TOOL FOR...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT-ENP-14-M-39 WIGNER DISTRIBUTION FUNCTIONS AS A TOOL FOR STUDYING GAS PHASE ALKALI METAL PLUS

  6. On the probability density interpretation of smoothed Wigner functions

    International Nuclear Information System (INIS)

    De Aguiar, M.A.M.; Ozorio de Almeida, A.M.

    1990-01-01

    It has been conjectured that the averages of the Wigner function over phase space volumes, larger than those of minimum uncertainty, are always positive. This is true for Gaussian averaging, so that the Husimi distribution is positive. However, we provide a specific counterexample for the averaging with a discontinuous hat function. The analysis of the specific system of a one-dimensional particle in a box also elucidates the respective advantages of the Wigner and the Husimi functions for the study of the semiclassical limit. The falsification of the averaging conjecture is shown not to depend on the discontinuities of the hat function, by considering the latter as the limit of a sequence of analytic functions. (author)

  7. Geometrical comparison of two protein structures using Wigner-D functions.

    Science.gov (United States)

    Saberi Fathi, S M; White, Diana T; Tuszynski, Jack A

    2014-10-01

    In this article, we develop a quantitative comparison method for two arbitrary protein structures. This method uses a root-mean-square deviation characterization and employs a series expansion of the protein's shape function in terms of the Wigner-D functions to define a new criterion, which is called a "similarity value." We further demonstrate that the expansion coefficients for the shape function obtained with the help of the Wigner-D functions correspond to structure factors. Our method addresses the common problem of comparing two proteins with different numbers of atoms. We illustrate it with a worked example. © 2014 Wiley Periodicals, Inc.

  8. The universal Racah-Wigner symbol for Uq(osp(1|2))

    International Nuclear Information System (INIS)

    Pawelkiewicz, Michal; Schomerus, Volker; Suchanek, Paulina; Wroclaw Univ.

    2013-10-01

    We propose a new and elegant formula for the Racah-Wigner symbol of self-dual continuous series of representations of U q (osp(1 vertical stroke 2)). It describes the entire fusing matrix for both NS and R sector of N=1 supersymmetric Liouville field theory. In the NS sector, our formula is related to an expression derived in an earlier paper (L. Hadaz, M. Pawelkiewicz, and V. Schomerus, arXiv:1305.4596[hep-th]). Through analytic continuation in the spin variables, our universal expression reproduces known formulas for the Racah-Wigner coefficients of finite dimensional representations.

  9. Study of the Wigner function at the device boundaries in one-dimensional single- and double-barrier structures

    International Nuclear Information System (INIS)

    Savio, Andrea; Poncet, Alain

    2011-01-01

    In this work, we compute the Wigner distribution function on one-dimensional devices from wave functions generated by solving the Schroedinger equation. Our goal is to investigate certain issues that we encountered in implementing Wigner transport equation solvers, such as the large discrepancies observed between the boundary conditions and the solution in the neighborhood of the boundaries. By evaluating the Wigner function without solving the Wigner transport equation, we intend to ensure that the actual boundary conditions are consistent with those commonly applied in literature. We study both single- and double-barrier unbiased structures. We use simple potential profiles, so that we can compute the wave functions analytically for better accuracy. We vary a number of structure geometry, material, meshing, and numerical parameters, among which are the contact length, the barrier height, the number of incident wave functions, and the numerical precision used for the computations, and we observe how the Wigner function at the device boundaries is affected. For the double-barrier structures, we look at the density matrix function and we study a model for the device transmission spectrum which helps explain the lobelike artifacts that we observe on the Wigner function.

  10. Discrete Wigner formalism for qubits and noncontextuality of Clifford gates on qubit stabilizer states

    Science.gov (United States)

    Kocia, Lucas; Love, Peter

    2017-12-01

    We show that qubit stabilizer states can be represented by non-negative quasiprobability distributions associated with a Wigner-Weyl-Moyal formalism where Clifford gates are positive state-independent maps. This is accomplished by generalizing the Wigner-Weyl-Moyal formalism to three generators instead of two—producing an exterior, or Grassmann, algebra—which results in Clifford group gates for qubits that act as a permutation on the finite Weyl phase space points naturally associated with stabilizer states. As a result, a non-negative probability distribution can be associated with each stabilizer state's three-generator Wigner function, and these distributions evolve deterministically to one another under Clifford gates. This corresponds to a hidden variable theory that is noncontextual and local for qubit Clifford gates while Clifford (Pauli) measurements have a context-dependent representation. Equivalently, we show that qubit Clifford gates can be expressed as propagators within the three-generator Wigner-Weyl-Moyal formalism whose semiclassical expansion is truncated at order ℏ0 with a finite number of terms. The T gate, which extends the Clifford gate set to one capable of universal quantum computation, requires a semiclassical expansion of the propagator to order ℏ1. We compare this approach to previous quasiprobability descriptions of qubits that relied on the two-generator Wigner-Weyl-Moyal formalism and find that the two-generator Weyl symbols of stabilizer states result in a description of evolution under Clifford gates that is state-dependent, in contrast to the three-generator formalism. We have thus extended Wigner non-negative quasiprobability distributions from the odd d -dimensional case to d =2 qubits, which describe the noncontextuality of Clifford gates and contextuality of Pauli measurements on qubit stabilizer states.

  11. Comment on "Wigner phase-space distribution function for the hydrogen atom"

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Springborg, Michael

    1999-01-01

    We object to the proposal that the mapping of the three-dimensional hydrogen atom into a four-dimensional harmonic oscillator can be readily used to determine the Wigner phase-space distribution function for the hydrogen atom. [S1050-2947(99)07005-5].......We object to the proposal that the mapping of the three-dimensional hydrogen atom into a four-dimensional harmonic oscillator can be readily used to determine the Wigner phase-space distribution function for the hydrogen atom. [S1050-2947(99)07005-5]....

  12. Equivalence between contextuality and negativity of the Wigner function for qudits

    Science.gov (United States)

    Delfosse, Nicolas; Okay, Cihan; Bermejo-Vega, Juan; Browne, Dan E.; Raussendorf, Robert

    2017-12-01

    Understanding what distinguishes quantum mechanics from classical mechanics is crucial for quantum information processing applications. In this work, we consider two notions of non-classicality for quantum systems, negativity of the Wigner function and contextuality for Pauli measurements. We prove that these two notions are equivalent for multi-qudit systems with odd local dimension. For a single qudit, the equivalence breaks down. We show that there exist single qudit states that admit a non-contextual hidden variable model description and whose Wigner functions are negative.

  13. Entanglement versus negative domains of Wigner functions

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Mack, H.; Wolf, A.

    2006-01-01

    We show that s waves, that is wave functions that only depend on a hyperradius, are entangled if and only if the corresponding Wigner functions exhibit negative domains. We illustrate this feature using a special class of s waves which allows us to perform the calculations analytically. This class...

  14. Wess-Zumino term for the AdS superstring and generalized Inoenue-Wigner contraction

    International Nuclear Information System (INIS)

    Hatsuda, Machiko; Sakaguchi, Makoto

    2003-01-01

    We examine a Wess-Zumino term, written in a form of bilinear in superinvariant currents, for a superstring in anti-de Sitter (AdS) space, and derive a procedure for obtaining the correct flat limit. The standard Inoenue-Wigner contraction does not give the correct flat limit but, rather, gives zero. This erroneous result originates from the fact that the fermionic metric of the super-Poincare group is degenerate. We propose a generalization of the Inoenue-Wigner contraction from which a 'nondegenerate' super-Poincare group is derived from the super-AdS group. For this reason, this contraction gives the correct flat limit of this Wess-Zumino term. We also discuss the M-algebra obtained using this generalized Inoenue-Wigner contraction from osp(1|32). (author)

  15. Application of Wigner-transformations in heavy ion reactions

    International Nuclear Information System (INIS)

    Esbensen, H.

    1981-01-01

    One of the main features of inelastic heavy ion reactions is the excitation of collective surface vibrations. It is discussed a model, based on Wigner transformations and classical dynamics, that gives a semiclassical description of the excitation of surface vibrations due to the Coulomb and nuclear interaction in heavy ion collisions. The treatment consists of three stages, viz. the preparation of classical initial conditions compatible with the quantal ground state of surface vibrations, the dynamical evolution of the system governed by Liouville's equation (i.e. classical mechanics) and finally the interpretation of final results after the interaction in terms of excitation probabilities, elastic and inelastic cross sections etc. The first and the last stage are exact and based on the Wigner transformations while the time evolution described by classical mechanics is an approximation. Application examples are given. (author)

  16. Wigner Function:from Ensemble Average of Density Operator to Its One Matrix Element in Entangled Pure States

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi

    2002-01-01

    We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting fromquantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangledstates are defined in the enlarged Fock space with a fictitious freedom.

  17. Quasi-linear landau kinetic equations for magnetized plasmas: compact propagator formalism, rotation matrices and interaction

    International Nuclear Information System (INIS)

    Misguich, J.H.

    2004-04-01

    As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation

  18. Quasi-linear landau kinetic equations for magnetized plasmas: compact propagator formalism, rotation matrices and interaction

    Energy Technology Data Exchange (ETDEWEB)

    Misguich, J.H

    2004-04-01

    As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation.

  19. Fokker-Planck equation of the reduced Wigner function associated to an Ohmic quantum Langevin dynamics

    Science.gov (United States)

    Colmenares, Pedro J.

    2018-05-01

    This article has to do with the derivation and solution of the Fokker-Planck equation associated to the momentum-integrated Wigner function of a particle subjected to a harmonic external field in contact with an ohmic thermal bath of quantum harmonic oscillators. The strategy employed is a simplified version of the phenomenological approach of Schramm, Jung, and Grabert of interpreting the operators as c numbers to derive the quantum master equation arising from a twofold transformation of the Wigner function of the entire phase space. The statistical properties of the random noise comes from the integral functional theory of Grabert, Schramm, and Ingold. By means of a single Wigner transformation, a simpler equation than that mentioned before is found. The Wigner function reproduces the known results of the classical limit. This allowed us to rewrite the underdamped classical Langevin equation as a first-order stochastic differential equation with time-dependent drift and diffusion terms.

  20. Generalized Wigner functions in curved spaces: A new approach

    International Nuclear Information System (INIS)

    Kandrup, H.E.

    1988-01-01

    It is well known that, given a quantum field in Minkowski space, one can define Wigner functions f/sub W//sup N/(x 1 ,p 1 ,...,x/sub N/,p/sub N/) which (a) are convenient to analyze since, unlike the field itself, they are c-number quantities and (b) can be interpreted in a limited sense as ''quantum distribution functions.'' Recently, Winter and Calzetta, Habib and Hu have shown one way in which these flat-space Wigner functions can be generalized to a curved-space setting, deriving thereby approximate kinetic equations which make sense ''quasilocally'' for ''short-wavelength modes.'' This paper suggests a completely orthogonal approach for defining curved-space Wigner functions which generalizes instead an object such as the Fourier-transformed f/sub W/ 1 (k,p), which is effectively a two-point function viewed in terms of the ''natural'' creation and annihilation operators a/sup dagger/(p-(12k) and a(p+(12k). The approach suggested here lacks the precise phase-space interpretation implicit in the approach of Winter or Calzetta, Habib, and Hu, but it is useful in that (a) it is geared to handle any ''natural'' mode decomposition, so that (b) it can facilitate exact calculations at least in certain limits, such as for a source-free linear field in a static spacetime

  1. Wigner-Kirkwood expansion of the phase-space density for half infinite nuclear matter

    International Nuclear Information System (INIS)

    Durand, M.; Schuck, P.

    1987-01-01

    The phase space distribution of half infinite nuclear matter is expanded in a ℎ-series analogous to the low temperature expansion of the Fermi function. Besides the usual Wigner-Kirkwood expansion, oscillatory terms are derived. In the case of a Woods-Saxon potential, a smallness parameter is defined, which determines the convergence of the series and explains the very rapid convergence of the Wigner-Kirkwood expansion for average (nuclear) binding energies

  2. An elementary aspect of the Weyl-Wigner representation

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2003-01-01

    It is an elementary aspect of the Weyl-Wigner representation of quantum mechanics that the dynamical phase-space function corresponding to the square of a quantum-mechanical operator is, in general, different from the square of the function representing the operator itself. We call attention...

  3. Weak values of a quantum observable and the cross-Wigner distribution.

    Science.gov (United States)

    de Gosson, Maurice A; de Gosson, Serge M

    2012-01-09

    We study the weak values of a quantum observable from the point of view of the Wigner formalism. The main actor here is the cross-Wigner transform of two functions, which is in disguise the cross-ambiguity function familiar from radar theory and time-frequency analysis. It allows us to express weak values using a complex probability distribution. We suggest that our approach seems to confirm that the weak value of an observable is, as conjectured by several authors, due to the interference of two wavefunctions, one coming from the past, and the other from the future.

  4. Wigner measure and semiclassical limits of nonlinear Schrödinger equations

    CERN Document Server

    Zhang, Ping

    2008-01-01

    This book is based on a course entitled "Wigner measures and semiclassical limits of nonlinear Schrödinger equations," which the author taught at the Courant Institute of Mathematical Sciences at New York University in the spring of 2007. The author's main purpose is to apply the theory of semiclassical pseudodifferential operators to the study of various high-frequency limits of equations from quantum mechanics. In particular, the focus of attention is on Wigner measure and recent progress on how to use it as a tool to study various problems arising from semiclassical limits of Schrödinger-ty

  5. Optimal ancilla-free Pauli+V circuits for axial rotations

    International Nuclear Information System (INIS)

    Blass, Andreas; Bocharov, Alex; Gurevich, Yuri

    2015-01-01

    We address the problem of optimal representation of single-qubit rotations in a certain unitary basis consisting of the so-called V gates and Pauli matrices. The V matrices were proposed by Lubotsky, Philips, and Sarnak [Commun. Pure Appl. Math. 40, 401–420 (1987)] as a purely geometric construct in 1987 and recently found applications in quantum computation. They allow for exceptionally simple quantum circuit synthesis algorithms based on quaternionic factorization. We adapt the deterministic-search technique initially proposed by Ross and Selinger to synthesize approximating Pauli+V circuits of optimal depth for single-qubit axial rotations. Our synthesis procedure based on simple SL 2 (ℤ) geometry is almost elementary

  6. Wigner functions for a class of semi-direct product groups

    International Nuclear Information System (INIS)

    Krasowska, Anna E; Ali, S Twareque

    2003-01-01

    Following a general method proposed earlier, we construct here Wigner functions defined on coadjoint orbits of a class of semidirect product groups. The groups in question are such that their unitary duals consist purely of representations from the discrete series and each unitary irreducible representation is associated with a coadjoint orbit. The set of all coadjoint orbits (hence UIRs) is finite and their union is dense in the dual of the Lie algebra. The simple structure of the groups and the orbits enables us to compute the various quantities appearing in the definition of the Wigner function explicitly. A large number of examples, with potential use in image analysis, is worked out

  7. Pinning mode of integer quantum Hall Wigner crystal of skyrmions

    Science.gov (United States)

    Zhu, Han; Sambandamurthy, G.; Chen, Y. P.; Jiang, P.-H.; Engel, L. W.; Tsui, D. C.; Pfeiffer, L. N.; West, K. W.

    2009-03-01

    Just away from integer Landau level (LL) filling factors ν, the dilute quasi-particles/holes at the partially filled LL form an integer-quantum-Hall Wigner crystal, which exhibits microwave pinning mode resonances [1]. Due to electron-electron interaction, it was predicted that the elementary excitation around ν= 1 is not a single spin flip, but a larger-scale spin texture, known as a skyrmion [2]. We have compared the pinning mode resonances [1] of integer quantum Hall Wigner crystals formed in the partly filled LL just away from ν= 1 and ν= 2, in the presence of an in-plane magnetic field. As an in-plane field is applied, the peak frequencies of the resonances near ν= 1 increase, while the peak frequencies below ν= 2 show neligible dependence on in-plane field. We interpret this observation as due to a skyrmion crystal phase around ν= 1 and a single-hole Wigner crystal phase below ν= 2. The in-plane field increases the Zeeman gap and causes shrinking of the skyrmion size toward single spin flips. [1] Yong P. Chen et al., Phys. Rev. Lett. 91, 016801 (2003). [2] S. L. Sondhi et al., Phys. Rev. B 47, 16 419 (1993); L. Brey et al., Phys. Rev. Lett. 75, 2562 (1995).

  8. CKM and PMNS Mixing Matrices from Discrete Subgroups of SU(2

    Directory of Open Access Journals (Sweden)

    Potter F.

    2014-07-01

    Full Text Available One of the greatest challenges in particle physics is to determine the first principles origin of the quark and lepton mixing matrices CKM and PMNS that relate the flavor states to the mass states. This first principles derivation of both the PMNS and CKM matrices utilizes quaternion generators of the three discrete (i.e., finite binary rotational subgroups of SU(2 called [3,3,2], [4,3,2], and [5,3,2] for three lepton families in R 3 and four related discrete binary rotational subgroups [3,3,3], [4,3,3], [3,4,3], and [5,3,3] represented by four quark families in R 4 . The traditional 3 3 CKM matrix is extracted as a submatrix of the 4 4 CKM4 matrix. The predicted fourth family of quarks has not been discovered yet. If these two additional quarks exist, there is the possibility that the Standard Model lagrangian may apply all the way down to the Planck scale.

  9. Equilibration in the time-dependent Hartree-Fock approach probed with the Wigner distribution function

    International Nuclear Information System (INIS)

    Loebl, N.; Maruhn, J. A.; Reinhard, P.-G.

    2011-01-01

    By calculating the Wigner distribution function in the reaction plane, we are able to probe the phase-space behavior in the time-dependent Hartree-Fock scheme during a heavy-ion collision in a consistent framework. Various expectation values of operators are calculated by evaluating the corresponding integrals over the Wigner function. In this approach, it is straightforward to define and analyze quantities even locally. We compare the Wigner distribution function with the smoothed Husimi distribution function. Different reaction scenarios are presented by analyzing central and noncentral 16 O + 16 O and 96 Zr + 132 Sn collisions. Although we observe strong dissipation in the time evolution of global observables, there is no evidence for complete equilibration in the local analysis of the Wigner function. Because the initial phase-space volumes of the fragments barely merge and mean values of the observables are conserved in fusion reactions over thousands of fm/c, we conclude that the time-dependent Hartree-Fock method provides a good description of the early stage of a heavy-ion collision but does not provide a mechanism to change the phase-space structure in a dramatic way necessary to obtain complete equilibration.

  10. Transformation of Real Spherical Harmonics under Rotations

    Science.gov (United States)

    Romanowski, Z.; Krukowski, St.; Jalbout, A. F.

    2008-08-01

    The algorithm rotating the real spherical harmonics is presented. The convenient and ready to use formulae for l = 0, 1, 2, 3 are listed. The rotation in R3 space is determined by the rotation axis and the rotation angle; the Euler angles are not used. The proposed algorithm consists of three steps. (i) Express the real spherical harmonics as the linear combination of canonical polynomials. (ii) Rotate the canonical polynomials. (iii) Express the rotated canonical polynomials as the linear combination of real spherical harmonics. Since the three step procedure can be treated as a superposition of rotations, the searched rotation matrix for real spherical harmonics is a product of three matrices. The explicit formulae of matrix elements are given for l = 0, 1, 2, 3, what corresponds to s, p, d, f atomic orbitals.

  11. Classical Wigner method with an effective quantum force: application to reaction rates.

    Science.gov (United States)

    Poulsen, Jens Aage; Li, Huaqing; Nyman, Gunnar

    2009-07-14

    We construct an effective "quantum force" to be used in the classical molecular dynamics part of the classical Wigner method when determining correlation functions. The quantum force is obtained by estimating the most important short time separation of the Feynman paths that enter into the expression for the correlation function. The evaluation of the force is then as easy as classical potential energy evaluations. The ideas are tested on three reaction rate problems. The resulting transmission coefficients are in much better agreement with accurate results than transmission coefficients from the ordinary classical Wigner method.

  12. Eugene P. Wigner's Visionary Contributions to Generations-I through IV Fission Reactors

    Science.gov (United States)

    Carré, Frank

    2014-09-01

    Among Europe's greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechanics, Solid state physics and other topics that opened new branches of Physics.

  13. Wigner higher-order spectra: definition, properties, computation and application to transient signal analysis

    OpenAIRE

    Rodríguez Fonollosa, Javier; Nikias, Chrysostomos L.

    1993-01-01

    The Wigner higher order moment spectra (WHOS) are defined as extensions of the Wigner-Ville distribution (WD) to higher order moment spectra domains. A general class of time-frequency higher order moment spectra is also defined in terms of arbitrary higher order moments of the signal as generalizations of the Cohen’s general class of time-frequency representations. The properties of the general class of time-frequency higher order moment spectra can be related to the properties...

  14. A Quantum Version of Wigner's Transition State Theory

    NARCIS (Netherlands)

    Schubert, R.; Waalkens, H.; Wiggins, S.

    A quantum version of a recent realization of Wigner's transition state theory in phase space is presented. The theory developed builds on a quantum normal form which locally decouples the quantum dynamics near the transition state to any desired order in (h) over bar. This leads to an explicit

  15. On the hydrogen atom via Wigner-Heisenberg algebra

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima . Unidade Academica de Educacao.

    2008-01-01

    We extend the usual Kustaanheimo-Stiefel 4D → 3D mapping to study and discuss a constrained super-Wigner oscillator in four dimensions. We show that the physical hydrogen atom is the system that emerges in the bosonic sector of the mapped super 3D system. (author)

  16. A generalized Wigner function on the space of irreducible representations of the Weyl-Heisenberg group and its transformation properties

    International Nuclear Information System (INIS)

    Ibort, A; Man'ko, V I; Marmo, G; Simoni, A; Ventriglia, F

    2009-01-01

    A natural extension of the Wigner function to the space of irreducible unitary representations of the Weyl-Heisenberg group is discussed. The action of the automorphisms group of the Weyl-Heisenberg group onto Wigner functions and their generalizations and onto symplectic tomograms is elucidated. Some examples of physical systems are considered to illustrate some aspects of the characterization of the Wigner functions as solutions of differential equations

  17. Manifest rotation symmetric expressions for angular momentum eigenfunctions

    International Nuclear Information System (INIS)

    Eeg, J.O.; Wroldsen, J.

    1983-01-01

    Manifest rotation symmetric expressions for eigenfunctions for spin s, orbital angular momentum l and total angular momentum j = l+s, .... , /l-s/ in terms of (2j+1) x (2s+1) multipole transition matrices (MTM) is given. These matrices, which are irreducible tensor matrices, have an algebra together with ordinary spin matrices for spin s and spin j. Explicit expressions for MTM's and their algebra are given for angular momenta <-3. By means of some examples it is shown that within this formalism angular integrations in central field problems will be simplified considerably. Thus the formalism turns out to be very useful for instance for calculations within the MIT-bag and also within spin-spin interactions in atomic physics. (Auth.)

  18. Coherent mode decomposition using mixed Wigner functions of Hermite-Gaussian beams.

    Science.gov (United States)

    Tanaka, Takashi

    2017-04-15

    A new method of coherent mode decomposition (CMD) is proposed that is based on a Wigner-function representation of Hermite-Gaussian beams. In contrast to the well-known method using the cross spectral density (CSD), it directly determines the mode functions and their weights without solving the eigenvalue problem. This facilitates the CMD of partially coherent light whose Wigner functions (and thus CSDs) are not separable, in which case the conventional CMD requires solving an eigenvalue problem with a large matrix and thus is numerically formidable. An example is shown regarding the CMD of synchrotron radiation, one of the most important applications of the proposed method.

  19. Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States

    Science.gov (United States)

    Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas

    2017-11-01

    Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.

  20. Fast heap transform-based QR-decomposition of real and complex matrices: algorithms and codes

    Science.gov (United States)

    Grigoryan, Artyom M.

    2015-03-01

    In this paper, we describe a new look on the application of Givens rotations to the QR-decomposition problem, which is similar to the method of Householder transformations. We apply the concept of the discrete heap transform, or signal-induced unitary transforms which had been introduced by Grigoryan (2006) and used in signal and image processing. Both cases of real and complex nonsingular matrices are considered and examples of performing QR-decomposition of square matrices are given. The proposed method of QR-decomposition for the complex matrix is novel and differs from the known method of complex Givens rotation and is based on analytical equations for the heap transforms. Many examples illustrated the proposed heap transform method of QR-decomposition are given, algorithms are described in detail, and MATLAB-based codes are included.

  1. Wigner distribution function of circularly truncated light beams

    NARCIS (Netherlands)

    Bastiaans, M.J.; Nijhawan, O.P.; Gupta, A.K.; Musla, A.K.; Singh, Kehar

    1998-01-01

    Truncating a light beam is expressed as a convolution of its Wigner distribution function and the WDF of the truncating aperture. The WDF of a circular aperture is derived and an approximate expression - which is exact in the space and the spatial-frequency origin and whose integral over the spatial

  2. The relationship between the Wigner-Weyl kinetic formalism and the complex geometrical optics method

    OpenAIRE

    Maj, Omar

    2004-01-01

    The relationship between two different asymptotic techniques developed in order to describe the propagation of waves beyond the standard geometrical optics approximation, namely, the Wigner-Weyl kinetic formalism and the complex geometrical optics method, is addressed. More specifically, a solution of the wave kinetic equation, relevant to the Wigner-Weyl formalism, is obtained which yields the same wavefield intensity as the complex geometrical optics method. Such a relationship is also disc...

  3. Optimal ancilla-free Pauli+V circuits for axial rotations

    Energy Technology Data Exchange (ETDEWEB)

    Blass, Andreas [Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1043 (United States); Bocharov, Alex; Gurevich, Yuri [Microsoft Research, Redmond, Washington 98052 (United States)

    2015-12-15

    We address the problem of optimal representation of single-qubit rotations in a certain unitary basis consisting of the so-called V gates and Pauli matrices. The V matrices were proposed by Lubotsky, Philips, and Sarnak [Commun. Pure Appl. Math. 40, 401–420 (1987)] as a purely geometric construct in 1987 and recently found applications in quantum computation. They allow for exceptionally simple quantum circuit synthesis algorithms based on quaternionic factorization. We adapt the deterministic-search technique initially proposed by Ross and Selinger to synthesize approximating Pauli+V circuits of optimal depth for single-qubit axial rotations. Our synthesis procedure based on simple SL{sub 2}(ℤ) geometry is almost elementary.

  4. Numerical methods for characterization of synchrotron radiation based on the Wigner function method

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2014-06-01

    Full Text Available Numerical characterization of synchrotron radiation based on the Wigner function method is explored in order to accurately evaluate the light source performance. A number of numerical methods to compute the Wigner functions for typical synchrotron radiation sources such as bending magnets, undulators and wigglers, are presented, which significantly improve the computation efficiency and reduce the total computation time. As a practical example of the numerical characterization, optimization of betatron functions to maximize the brilliance of undulator radiation is discussed.

  5. Universal correlations and power-law tails in financial covariance matrices

    Science.gov (United States)

    Akemann, G.; Fischmann, J.; Vivo, P.

    2010-07-01

    We investigate whether quantities such as the global spectral density or individual eigenvalues of financial covariance matrices can be best modelled by standard random matrix theory or rather by its generalisations displaying power-law tails. In order to generate individual eigenvalue distributions a chopping procedure is devised, which produces a statistical ensemble of asset-price covariances from a single instance of financial data sets. Local results for the smallest eigenvalue and individual spacings are very stable upon reshuffling the time windows and assets. They are in good agreement with the universal Tracy-Widom distribution and Wigner surmise, respectively. This suggests a strong degree of robustness especially in the low-lying sector of the spectra, most relevant for portfolio selections. Conversely, the global spectral density of a single covariance matrix as well as the average over all unfolded nearest-neighbour spacing distributions deviate from standard Gaussian random matrix predictions. The data are in fair agreement with a recently introduced generalised random matrix model, with correlations showing a power-law decay.

  6. Eigenvalue distributions for a class of covariance matrices with application to Bienenstock-Cooper-Munro neurons under noisy conditions.

    Science.gov (United States)

    Bazzani, Armando; Castellani, Gastone C; Cooper, Leon N

    2010-05-01

    We analyze the effects of noise correlations in the input to, or among, Bienenstock-Cooper-Munro neurons using the Wigner semicircular law to construct random, positive-definite symmetric correlation matrices and compute their eigenvalue distributions. In the finite dimensional case, we compare our analytic results with numerical simulations and show the effects of correlations on the lifetimes of synaptic strengths in various visual environments. These correlations can be due either to correlations in the noise from the input lateral geniculate nucleus neurons, or correlations in the variability of lateral connections in a network of neurons. In particular, we find that for fixed dimensionality, a large noise variance can give rise to long lifetimes of synaptic strengths. This may be of physiological significance.

  7. Vacancies in quantal Wigner crystals near melting

    International Nuclear Information System (INIS)

    Barraza, N.; Colletti, L.; Tosi, M.P.

    1999-04-01

    We estimate the formation energy of lattice vacancies in quantal Wigner crystals of charged particles near their melting point at zero temperature, in terms of the crystalline Lindemann parameter and of the static dielectric function of the fluid phase near freezing. For both 3D and 2D crystals of electrons our results suggest the presence of vacancies in the ground state at the melting density. (author)

  8. A Wigner-based ray-tracing method for imaging simulations

    NARCIS (Netherlands)

    Mout, B.M.; Wick, M.; Bociort, F.; Urbach, H.P.

    2015-01-01

    The Wigner Distribution Function (WDF) forms an alternative representation of the optical field. It can be a valuable tool for understanding and classifying optical systems. Furthermore, it possesses properties that make it suitable for optical simulations: both the intensity and the angular

  9. Magneto-optical Faraday rotation of semiconductor nanoparticles embedded in dielectric matrices.

    Science.gov (United States)

    Savchuk, Andriy I; Stolyarchuk, Ihor D; Makoviy, Vitaliy V; Savchuk, Oleksandr A

    2014-04-01

    Faraday rotation has been studied for CdS, CdTe, and CdS:Mn semiconductor nanoparticles synthesized by colloidal chemistry methods. Additionally these materials were prepared in a form of semiconductor nanoparticles embedded in polyvinyl alcohol films. Transmission electron microscopy and atomic force microscopy analyses served as confirmation of nanocrystallinity and estimation of the average size of the nanoparticles. Spectral dependence of the Faraday rotation for the studied nanocrystals and nanocomposites is correlated with a blueshift of the absorption edge due to the confinement effect in zero-dimensional structures. Faraday rotation spectra and their temperature behavior in Mn-doped nanocrystals demonstrates peculiarities, which are associated with s, p-d exchange interaction between Mn²⁺ ions and band carriers in diluted magnetic semiconductor nanostructures.

  10. Classical effective Hamiltonians, Wigner functions, and the sign problem

    International Nuclear Information System (INIS)

    Samson, J.H.

    1995-01-01

    In the functional-integral technique an auxiliary field, coupled to appropriate operators such as spins, linearizes the interaction term in a quantum many-body system. The partition function is then averaged over this time-dependent stochastic field. Quantum Monte Carlo methods evaluate this integral numerically, but suffer from the sign (or phase) problem: the integrand may not be positive definite (or not real). It is shown that, in certain cases that include the many-band Hubbard model and the Heisenberg model, the sign problem is inevitable on fundamental grounds. Here, Monte Carlo simulations generate a distribution of incompatible operators---a Wigner function---from which expectation values and correlation functions are to be calculated; in general no positive-definite distribution of this form exists. The distribution of time-averaged auxiliary fields is the convolution of this operator distribution with a Gaussian of variance proportional to temperature, and is interpreted as a Boltzmann distribution exp(-βV eff ) in classical configuration space. At high temperatures and large degeneracies this classical effective Hamiltonian V eff tends to the static approximation as a classical limit. In the low-temperature limit the field distribution becomes a Wigner function, the sign problem occurs, and V eff is complex. Interpretations of the distributions, and a criterion for their positivity, are discussed. The theory is illustrated by an exact evaluation of the Wigner function for spin s and the effective classical Hamiltonian for the spin-1/2 van der Waals model. The field distribution can be negative here, more noticeably if the number of spins is odd

  11. Continuous multipartite entangled state in Wigner representation and violation of the Zukowski-Brukner inequality

    International Nuclear Information System (INIS)

    Wu Chunfeng; Chen Jingling; Oh, C.H.; Kwek, L.C.; Xue Kang

    2005-01-01

    We construct an explicit Wigner function for the N-mode squeezed state. Based on a previous observation that the Wigner function describes correlations in the joint measurement of the phase-space displaced parity operator, we investigate the nonlocality of the multipartite entangled state by the violation of the Zukowski-Brukner N-qubit Bell inequality. We find that quantum predictions for such a squeezed state violate these inequalities by an amount that grows with the number N

  12. Ordering of ''ladder'' operators, the Wigner function for number and phase, and the enlarged Hilbert space

    International Nuclear Information System (INIS)

    Luks, A.; Perinova, V.

    1993-01-01

    A suitable ordering of phase exponential operators has been compared with the antinormal ordering of the annihilation and creation operators of a single mode optical field. The extended Wigner function for number and phase in the enlarged Hilbert space has been used for the derivation of the Wigner function for number and phase in the original Hilbert space. (orig.)

  13. Phase pupil functions for focal-depth enhancement derived from a Wigner distribution function.

    Science.gov (United States)

    Zalvidea, D; Sicre, E E

    1998-06-10

    A method for obtaining phase-retardation functions, which give rise to an increase of the image focal depth, is proposed. To this end, the Wigner distribution function corresponding to a specific aperture that has an associated small depth of focus in image space is conveniently sheared in the phase-space domain to generate a new Wigner distribution function. From this new function a more uniform on-axis image irradiance can be accomplished. This approach is illustrated by comparison of the imaging performance of both the derived phase function and a previously reported logarithmic phase distribution.

  14. Wigner Functions for the Bateman System on Noncommutative Phase Space

    Science.gov (United States)

    Heng, Tai-Hua; Lin, Bing-Sheng; Jing, Si-Cong

    2010-09-01

    We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and the corresponding energy spectra.

  15. Wigner Functions for the Bateman System on Noncommutative Phase Space

    International Nuclear Information System (INIS)

    Tai-Hua, Heng; Bing-Sheng, Lin; Si-Cong, Jing

    2010-01-01

    We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and the corresponding energy spectra

  16. Schwinger pair production in space- and time-dependent electric fields: Relating the Wigner formalism to quantum kinetic theory

    International Nuclear Information System (INIS)

    Hebenstreit, F.; Alkofer, R.; Gies, H.

    2010-01-01

    The nonperturbative electron-positron pair production (Schwinger effect) is considered for space- and time-dependent electric fields E-vector(x-vector,t). Based on the Dirac-Heisenberg-Wigner formalism, we derive a system of partial differential equations of infinite order for the 16 irreducible components of the Wigner function. In the limit of spatially homogeneous fields the Vlasov equation of quantum kinetic theory is rediscovered. It is shown that the quantum kinetic formalism can be exactly solved in the case of a constant electric field E(t)=E 0 and the Sauter-type electric field E(t)=E 0 sech 2 (t/τ). These analytic solutions translate into corresponding expressions within the Dirac-Heisenberg-Wigner formalism and allow to discuss the effect of higher derivatives. We observe that spatial field variations typically exert a strong influence on the components of the Wigner function for large momenta or for late times.

  17. Functional Wigner representation of quantum dynamics of Bose-Einstein condensate

    Energy Technology Data Exchange (ETDEWEB)

    Opanchuk, B.; Drummond, P. D. [Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Hawthorn VIC 3122 (Australia)

    2013-04-15

    We develop a method of simulating the full quantum field dynamics of multi-mode multi-component Bose-Einstein condensates in a trap. We use the truncated Wigner representation to obtain a probabilistic theory that can be sampled. This method produces c-number stochastic equations which may be solved using conventional stochastic methods. The technique is valid for large mode occupation numbers. We give a detailed derivation of methods of functional Wigner representation appropriate for quantum fields. Our approach describes spatial evolution of spinor components and properly accounts for nonlinear losses. Such techniques are applicable to calculating the leading quantum corrections, including effects such as quantum squeezing, entanglement, EPR correlations, and interactions with engineered nonlinear reservoirs. By using a consistent expansion in the inverse density, we are able to explain an inconsistency in the nonlinear loss equations found by earlier authors.

  18. ORTHOGONAL REPRESENTATION OF THE PROPER TRANSFORMATION OF A PERSYMMETRIC MATRIX BASED ON ROTATION OPERATORS

    Directory of Open Access Journals (Sweden)

    V. M. Demko

    2018-01-01

    Full Text Available The mathematical substantiation of the algorithm for synthesis of the proper transformation and finding the eigenvalue formulae of a persymmetric matrix of dimension N = 2 k ( k =1, 4 based on orthogonal rotation operators is given. The proposed algorithm made it possible to improve the author's approach to calculating eigenvalues based on numerical examples for the maximal dimension of matrices 64×64, resulting the possibility to obtain analytical relations for calculating the eigenvalues of the persymmetric matrix. It is shown that the proper transformation has a factorized structure in the form of a product of rotation operators, each of which is a direct sum of elementary Givens and Jacobian rotation matrices

  19. Measurement of the Wigner function via atomic beam deflection in the Raman-Nath regime

    Energy Technology Data Exchange (ETDEWEB)

    Khosa, Ashfaq H [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Zubairy, M Suhail [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2006-12-28

    A method for the reconstruction of photon statistics and even the Wigner function of a quantized cavity field state is proposed. The method is based on the measurement of momentum distribution of two-level atoms in the Raman-Nath regime. Both the cases of resonant and off-resonant atom-field interaction are considered. The Wigner function is reconstructed by displacing the photon statistics of the cavity field. This reconstruction method is straightforward and does not need much mathematical manipulation of experimental data.

  20. Sympathetic Wigner-function tomography of a dark trapped ion

    DEFF Research Database (Denmark)

    Mirkhalaf, Safoura; Mølmer, Klaus

    2012-01-01

    A protocol is provided to reconstruct the Wigner function for the motional state of a trapped ion via fluorescence detection on another ion in the same trap. This “sympathetic tomography” of a dark ion without optical transitions suitable for state measurements is based on the mapping of its...

  1. Ray tracing the Wigner distribution function for optical simulations

    NARCIS (Netherlands)

    Mout, B.M.; Wick, Michael; Bociort, F.; Petschulat, Joerg; Urbach, Paul

    2018-01-01

    We study a simulation method that uses the Wigner distribution function to incorporate wave optical effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to calculate point spread functions and show that it is accurate for paraxial systems

  2. Relativistic electron Wigner crystal formation in a cavity for electron acceleration

    CERN Document Server

    Thomas, Johannes; Pukhov, Alexander

    2014-01-01

    It is known that a gas of electrons in a uniform neutralizing background can crystallize and form a lattice if the electron density is less than a critical value. This crystallization may have two- or three-dimensional structure. Since the wake field potential in the highly-nonlinear-broken-wave regime (bubble regime) has the form of a cavity where the background electrons are evacuated from and only the positively charged ions remain, it is suited for crystallization of trapped and accelerated electron bunch. However, in this case, the crystal is moving relativistically and shows new three-dimensional structures that we call relativistic Wigner crystals. We analyze these structures using a relativistic Hamiltonian approach. We also check for stability and phase transitions of the relativistic Wigner crystals.

  3. Mean field limit for bosons with compact kernels interactions by Wigner measures transportation

    International Nuclear Information System (INIS)

    Liard, Quentin; Pawilowski, Boris

    2014-01-01

    We consider a class of many-body Hamiltonians composed of a free (kinetic) part and a multi-particle (potential) interaction with a compactness assumption on the latter part. We investigate the mean field limit of such quantum systems following the Wigner measures approach. We prove in particular the propagation of these measures along the flow of a nonlinear (Hartree) field equation. This enhances and complements some previous results of the same type shown in Z. Ammari and F. Nier and Fröhlich et al. [“Mean field limit for bosons and propagation of Wigner measures,” J. Math. Phys. 50(4), 042107 (2009); Z. Ammari and F. Nier and Fröhlich et al., “Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states,” J. Math. Pures Appl. 95(6), 585–626 (2011); Z. Ammari and F. Nier and Fröhlich et al., “Mean-field- and classical limit of many-body Schrödinger dynamics for bosons,” Commun. Math. Phys. 271(3), 681–697 (2007)

  4. Exact-exchange spin-density functional theory of Wigner localization and phase transitions in quantum rings.

    Science.gov (United States)

    Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg

    2011-08-24

    We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter r(S) is increased, we observe-at a fixed spin magnetic moment-the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing r(S). We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical r(S)(c) at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing r(S) the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid. © 2011 IOP Publishing Ltd

  5. On the path integral representation of the Wigner function and the Barker–Murray ansatz

    International Nuclear Information System (INIS)

    Sels, Dries; Brosens, Fons; Magnus, Wim

    2012-01-01

    The propagator of the Wigner function is constructed from the Wigner–Liouville equation as a phase space path integral over a new effective Lagrangian. In contrast to a paper by Barker and Murray (1983) , we show that the path integral can in general not be written as a linear superposition of classical phase space trajectories over a family of non-local forces. Instead, we adopt a saddle point expansion to show that the semiclassical Wigner function is a linear superposition of classical solutions for a different set of non-local time dependent forces. As shown by a simple example the specific form of the path integral makes the formulation ideal for Monte Carlo simulation. -- Highlights: ► We derive the quantum mechanical propagator of the Wigner function in the path integral representation. ► We show that the Barker–Murray ansatz is incomplete, explain the error and provide an alternative. ► An example of a Monte Carlo simulation of the semiclassical path integral is included.

  6. Wigner functions for evanescent waves.

    Science.gov (United States)

    Petruccelli, Jonathan C; Tian, Lei; Oh, Se Baek; Barbastathis, George

    2012-09-01

    We propose phase space distributions, based on an extension of the Wigner distribution function, to describe fields of any state of coherence that contain evanescent components emitted into a half-space. The evanescent components of the field are described in an optical phase space of spatial position and complex-valued angle. Behavior of these distributions upon propagation is also considered, where the rapid decay of the evanescent components is associated with the exponential decay of the associated phase space distributions. To demonstrate the structure and behavior of these distributions, we consider the fields generated from total internal reflection of a Gaussian Schell-model beam at a planar interface.

  7. Jordan-Wigner fermionization and the theory of low-dimensional quantum spin models

    International Nuclear Information System (INIS)

    Derzhko, O.

    2007-01-01

    The idea of mapping quantum spin lattice model onto fermionic lattice model goes back to Jordan and Wigner (1928) who transformed s = 1/2 operators which commute at different lattice sites into fermionic operators. Later on the Jordan-Wigner transformation was used for mapping one-dimensional s = 1/2 isotropic XY (XX) model onto an exactly solvable tight-binding model of spinless fermions (Lieb, Schultz and Mattis, 1961). Since that times the Jordan-Wigner transformation is known as a powerful tool in the condensed matter theory especially in the theory of low-dimensional quantum spin systems. The aim of these lectures is to review the applications of the Jordan-Wigner fermionization technique for calculating dynamic properties of low-dimensional quantum spin models. The dynamic quantities (such as dynamic structure factors or dynamic susceptibilities) are observable directly or indirectly in various experiments. The frequency and wave-vector dependence of the dynamic quantities yields valuable information about the magnetic structure of materials. Owing to a tremendous recent progress in synthesizing low-dimensional magnetic materials detailed comparisons of theoretical results with direct experimental observation are becoming possible. The lectures are organized as follows. After a brief introduction of the Jordan-Wigner transformation for one-dimensional spin one half systems and some of its extensions for higher dimensions and higher spin values we focus on the dynamic properties of several low-dimensional quantum spin models. We start from a famous s = 1/2 XX chain. As a first step we recall well-known results for dynamics of the z-spin-component fluctuation operator and then turn to dynamics of the dimer and trimer fluctuation operators. The dynamics of the trimer fluctuations involves both the two fermion (one particle and one hole) and the four-fermion (two particles and two holes) excitations. We discuss some properties of the two-fermion and four

  8. Surprisal analysis and probability matrices for rotational energy transfer

    International Nuclear Information System (INIS)

    Levine, R.D.; Bernstein, R.B.; Kahana, P.; Procaccia, I.; Upchurch, E.T.

    1976-01-01

    The information-theoretic approach is applied to the analysis of state-to-state rotational energy transfer cross sections. The rotational surprisal is evaluated in the usual way, in terms of the deviance of the cross sections from their reference (''prior'') values. The surprisal is found to be an essentially linear function of the energy transferred. This behavior accounts for the experimentally observed exponential gap law for the hydrogen halide systems. The data base here analyzed (taken from the literature) is largely computational in origin: quantal calculations for the hydrogenic systems H 2 +H, He, Li + ; HD+He; D 2 +H and for the N 2 +Ar system; and classical trajectory results for H 2 +Li + ; D 2 +Li + and N 2 +Ar. The surprisal analysis not only serves to compact a large body of data but also aids in the interpretation of the results. A single surprisal parameter theta/subR/ suffices to account for the (relative) magnitude of all state-to-state inelastic cross sections at a given energy

  9. Real-time generation of the Wigner distribution of complex functions using phase conjugation in photorefractive materials.

    Science.gov (United States)

    Sun, P C; Fainman, Y

    1990-09-01

    An optical processor for real-time generation of the Wigner distribution of complex amplitude functions is introduced. The phase conjugation of the input signal is accomplished by a highly efficient self-pumped phase conjugator based on a 45 degrees -cut barium titanate photorefractive crystal. Experimental results on the real-time generation of Wigner distribution slices for complex amplitude two-dimensional optical functions are presented and discussed.

  10. Entanglement Potential Versus Negativity of Wigner Function for SUP-Operated Quantum States

    Science.gov (United States)

    Chatterjee, Arpita

    2018-02-01

    We construct a distinct category of nonclassical quantum states by applying a superposition of products (SUP) of field annihilation (\\hat {a}) and creation (\\hat {a}^{\\dagger }) operators of the type (s\\hat {a}\\hat {a}^{\\dagger }+t\\hat {a}^{\\dagger }\\hat {a}), with s2+t2=1, upon thermal and even coherent states. We allow these SUP operated states to undergo a decoherence process and then describe the nonclassical features of the resulted field by using the entanglement potential (EP) and the negativity of the Wigner distribution function. Our analysis reveals that both the measures are reduced in the linear loss process. The partial negativity of the Wigner function disappears when losses exceed 50% but EP exists always.

  11. Discrete Wigner function and quantum-state tomography

    Science.gov (United States)

    Leonhardt, Ulf

    1996-05-01

    The theory of discrete Wigner functions and of discrete quantum-state tomography [U. Leonhardt, Phys. Rev. Lett. 74, 4101 (1995)] is studied in more detail guided by the picture of precession tomography. Odd- and even-dimensional systems (angular momenta and spins, bosons, and fermions) are considered separately. Relations between simple number theory and the quantum mechanics of finite-dimensional systems are pointed out. In particular, the multicomplementarity of the precession states distinguishes prime dimensions from composite ones.

  12. Asymptotics of Wigner 3nj-symbols with small and large angular momenta: an elementary method

    International Nuclear Information System (INIS)

    Bonzom, Valentin; Fleury, Pierre

    2012-01-01

    Yu and Littlejohn recently studied in (2011 Phys. Rev. A 83 052114 (arXiv:1104.1499)) some asymptotics of Wigner symbols with some small and large angular momenta. They found that in this regime the essential information is captured by the geometry of a tetrahedron, and gave new formulae for 9j-, 12j- and 15j-symbols. We present here an alternative derivation which leads to a simpler formula, based on the use of the Ponzano–Regge formula for the relevant tetrahedron. The approach is generalized to Wigner 3nj-symbols with some large and small angular momenta, where more than one tetrahedron are needed, leading to new asymptotics for Wigner 3nj-symbols. As an illustration, we present 15j-symbols with one, two and four small angular momenta, and give an alternative formula to Yu’s recent 15j-symbol with three small spins. (paper)

  13. Wigner functions for noncommutative quantum mechanics: A group representation based construction

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, S. Hasibul Hassan, E-mail: shhchowdhury@gmail.com [Chern Institute of Mathematics, Nankai University, Tianjin 300071 (China); Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8 (Canada); Ali, S. Twareque, E-mail: twareque.ali@concordia.ca [Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8 (Canada)

    2015-12-15

    This paper is devoted to the construction and analysis of the Wigner functions for noncommutative quantum mechanics, their marginal distributions, and star-products, following a technique developed earlier, viz, using the unitary irreducible representations of the group G{sub NC}, which is the three fold central extension of the Abelian group of ℝ{sup 4}. These representations have been exhaustively studied in earlier papers. The group G{sub NC} is identified with the kinematical symmetry group of noncommutative quantum mechanics of a system with two degrees of freedom. The Wigner functions studied here reflect different levels of non-commutativity—both the operators of position and those of momentum not commuting, the position operators not commuting and finally, the case of standard quantum mechanics, obeying the canonical commutation relations only.

  14. Averaging operations on matrices

    Indian Academy of Sciences (India)

    2014-07-03

    Jul 3, 2014 ... Role of Positive Definite Matrices. • Diffusion Tensor Imaging: 3 × 3 pd matrices model water flow at each voxel of brain scan. • Elasticity: 6 × 6 pd matrices model stress tensors. • Machine Learning: n × n pd matrices occur as kernel matrices. Tanvi Jain. Averaging operations on matrices ...

  15. Spectral and entropic characterizations of Wigner functions: applications to model vibrational systems.

    Science.gov (United States)

    Luzanov, A V

    2008-09-07

    The Wigner function for the pure quantum states is used as an integral kernel of the non-Hermitian operator K, to which the standard singular value decomposition (SVD) is applied. It provides a set of the squared singular values treated as probabilities of the individual phase-space processes, the latter being described by eigenfunctions of KK(+) (for coordinate variables) and K(+)K (for momentum variables). Such a SVD representation is employed to obviate the well-known difficulties in the definition of the phase-space entropy measures in terms of the Wigner function that usually allows negative values. In particular, the new measures of nonclassicality are constructed in the form that automatically satisfies additivity for systems composed of noninteracting parts. Furthermore, the emphasis is given on the geometrical interpretation of the full entropy measure as the effective phase-space volume in the Wigner picture of quantum mechanics. The approach is exemplified by considering some generic vibrational systems. Specifically, for eigenstates of the harmonic oscillator and a superposition of coherent states, the singular value spectrum is evaluated analytically. Numerical computations are given for the nonlinear problems (the Morse and double well oscillators, and the Henon-Heiles system). We also discuss the difficulties in implementation of a similar technique for electronic problems.

  16. Jauch-Piron system of imprimitivities for phonons. II. The Wigner function formalism

    Science.gov (United States)

    Banach, Zbigniew; Piekarski, Sławomir

    1993-01-01

    In 1932 Wigner defined and described a quantum mechanical phase space distribution function for a system composed of many identical particles of positive mass. This function has the property that it can be used to calculate a class of quantum mechanical averages in the same manner as the classical phase space distribution function is used to calculate classical averages. Considering the harmonic vibrations of a system of n atoms bound to one another by elastic forces and treating them as a gas of indistinguishable Bose particles, phonons, the primary objective of this paper is to show under which circumstances the Wigner formalism for classical particles can be extended to cover also the phonon case. Since the phonons are either strongly or weakly localizable particles (as described in a companion paper), the program of the present approach consists in applying the Jauch-Piron quantum description of localization in (discrete) space to the phonon system and then in deducing from such a treatment the explicit expression for the phonon analogue of the Wigner distribution function. The characteristic new features of the “phase-space” picture for phonons (as compared with the situation in ordinary theory) are pointed out. The generalization of the method to the case of relativistic particles is straightforward.

  17. Low-frequency electromagnetic field in a Wigner crystal

    OpenAIRE

    Stupka, Anton

    2016-01-01

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  18. Rotations et moments angulaires enmécanique quantique

    Science.gov (United States)

    van de Wiele, J.

    Rotations and angular moments in quantum mechanics As in classical mechanics, rotation in quantum mechanics is a transformation which deals with angular momentum. The difference with classical mechanics comes from the fact that angular momentum is a vector operator and not a usual vector and its components do not commute. As for any transformation in quantum mechanics, to each rotation we can associate an operator which acts in state space. The expression of this operator depends on whether the rotation is passive, that is we do a rotation of the coordinate axes and the physical system is left unchanged, or active, in which case the coordinate axes are unchanged and the rotation is performed on the physical system. In the first part (Chaps. 1 and 2) of this book, details concerning both aspects are given. Following the definition of the geometrical transformation associated with the most general rotation, we give the expression of the rotation operator for specific cases. Transformation laws for scalar fields, vector fields and spinor fields are given as well as transformation laws for scalar operators, vector operators and more generally, for operators of any rank. The second part (Chaps. 3 and 4) deals with angular momentum algebra. We define the coupling coefficients of 2, 3 and 4 angular momenta as well as the recoupling coefficients. The definition of the irreductible tensor operator, which is a generalisation of scalar and vector operators, is given as well as the Wigner-Eckart theorem. The application of this theorem to more complex cases is studied. Comme en mécanique classique, la rotation en mécanique quantique est une transformation qui fait intervenir le moment cinétique. La différence avec la mécanique classique vient du fait que le moment cinétique est un opérateur vectoriel et non pas un vecteur ordinaire, et que ses composantes ne commutent pas deux-à-deux. Comme pour toute transformation en mécanique quantique, à chaque rotation est

  19. Fresnel representation of the Wigner function: an operational approach.

    Science.gov (United States)

    Lougovski, P; Solano, E; Zhang, Z M; Walther, H; Mack, H; Schleich, W P

    2003-07-04

    We present an operational definition of the Wigner function. Our method relies on the Fresnel transform of measured Rabi oscillations and applies to motional states of trapped atoms as well as to field states in cavities. We illustrate this technique using data from recent experiments in ion traps [Phys. Rev. Lett. 76, 1796 (1996)

  20. Time-frequency representation of a highly nonstationary signal via the modified Wigner distribution

    Science.gov (United States)

    Zoladz, T. F.; Jones, J. H.; Jong, J.

    1992-01-01

    A new signal analysis technique called the modified Wigner distribution (MWD) is presented. The new signal processing tool has been very successful in determining time frequency representations of highly non-stationary multicomponent signals in both simulations and trials involving actual Space Shuttle Main Engine (SSME) high frequency data. The MWD departs from the classic Wigner distribution (WD) in that it effectively eliminates the cross coupling among positive frequency components in a multiple component signal. This attribute of the MWD, which prevents the generation of 'phantom' spectral peaks, will undoubtedly increase the utility of the WD for real world signal analysis applications which more often than not involve multicomponent signals.

  1. Q-boson interferometry and generalized Wigner function

    International Nuclear Information System (INIS)

    Zhang, Q.H.; Padula, Sandra S.

    2004-01-01

    Bose-Einstein correlations of two identically charged Q bosons are derived considering these particles to be confined in finite volumes. Boundary effects on single Q-boson spectrum are also studied. We illustrate the effects on the spectrum and on the two-Q-boson correlation function by means of two toy models. We also derive a generalized expression for the Wigner function depending on the deformation parameter Q, which is reduced to its original functional form in the limit of Q→1

  2. Wigner distribution function and its application to first-order optics

    NARCIS (Netherlands)

    Bastiaans, M.J.

    1979-01-01

    The Wigner distribution function of optical signals and systems has been introduced. The concept of such functions is not restricted to deterministic signals, but can be applied to partially coherent light as well. Although derived from Fourier optics, the description of signals and systems by means

  3. Evidence of two-stage melting of Wigner solids

    Science.gov (United States)

    Knighton, Talbot; Wu, Zhe; Huang, Jian; Serafin, Alessandro; Xia, J. S.; Pfeiffer, L. N.; West, K. W.

    2018-02-01

    Ultralow carrier concentrations of two-dimensional holes down to p =1 ×109cm-2 are realized. Remarkable insulating states are found below a critical density of pc=4 ×109cm-2 or rs≈40 . Sensitive dc V-I measurement as a function of temperature and electric field reveals a two-stage phase transition supporting the melting of a Wigner solid as a two-stage first-order transition.

  4. Quantum kinetic field theory in curved spacetime: Covariant Wigner function and Liouville-Vlasov equations

    International Nuclear Information System (INIS)

    Calzetta, E.; Habib, S.; Hu, B.L.

    1988-01-01

    We consider quantum fields in an external potential and show how, by using the Fourier transform on propagators, one can obtain the mass-shell constraint conditions and the Liouville-Vlasov equation for the Wigner distribution function. We then consider the Hadamard function G 1 (x 1 ,x 2 ) of a real, free, scalar field in curved space. We postulate a form for the Fourier transform F/sup (//sup Q//sup )/(X,k) of the propagator with respect to the difference variable x = x 1 -x 2 on a Riemann normal coordinate centered at Q. We show that F/sup (//sup Q//sup )/ is the result of applying a certain Q-dependent operator on a covariant Wigner function F. We derive from the wave equations for G 1 a covariant equation for the distribution function and show its consistency. We seek solutions to the set of Liouville-Vlasov equations for the vacuum and nonvacuum cases up to the third adiabatic order. Finally we apply this method to calculate the Hadamard function in the Einstein universe. We show that the covariant Wigner function can incorporate certain relevant global properties of the background spacetime. Covariant Wigner functions and Liouville-Vlasov equations are also derived for free fermions in curved spacetime. The method presented here can serve as a basis for constructing quantum kinetic theories in curved spacetime or for near-uniform systems under quasiequilibrium conditions. It can also be useful to the development of a transport theory of quantum fields for the investigation of grand unification and post-Planckian quantum processes in the early Universe

  5. State operator, constants of the motion, and Wigner functions: The two-dimensional isotropic harmonic oscillator

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W. P.

    2009-01-01

    For a closed quantum system the state operator must be a function of the Hamiltonian. When the state is degenerate, additional constants of the motion enter the play. But although it is the Weyl transform of the state operator, the Wigner function is not necessarily a function of the Weyl...... transforms of the constants of the motion. We derive conditions for which this is actually the case. The Wigner functions of the energy eigenstates of a two-dimensional isotropic harmonic oscillator serve as an important illustration....

  6. VanderLaan Circulant Type Matrices

    Directory of Open Access Journals (Sweden)

    Hongyan Pan

    2015-01-01

    Full Text Available Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan circulant type matrices are presented, which include VanderLaan circulant, left circulant, and g-circulant matrices. The nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of VanderLaan g-circulant matrix.

  7. Eugene P. Wigner – in the light of unexpected events

    Directory of Open Access Journals (Sweden)

    Koblinger L.

    2014-01-01

    Full Text Available In the first part of the paper, Wigner’s humane attitude is overviewed based on the author’s personal impressions and on selected quotations from Wigner and his contemporaries. The second part briefly summarizes Wigner’s contribution to the development of nuclear science and technology.

  8. The universal Racah-Wigner symbol for U{sub q}(osp(1 vertical stroke 2))

    Energy Technology Data Exchange (ETDEWEB)

    Pawelkiewicz, Michal; Schomerus, Volker [DESY Hamburg (Germany). Theory Group; Suchanek, Paulina [DESY Hamburg (Germany). Theory Group; Wroclaw Univ. (Poland). Inst. for Theoretical Physics

    2013-10-15

    We propose a new and elegant formula for the Racah-Wigner symbol of self-dual continuous series of representations of U{sub q}(osp(1 vertical stroke 2)). It describes the entire fusing matrix for both NS and R sector of N=1 supersymmetric Liouville field theory. In the NS sector, our formula is related to an expression derived in an earlier paper (L. Hadaz, M. Pawelkiewicz, and V. Schomerus, arXiv:1305.4596[hep-th]). Through analytic continuation in the spin variables, our universal expression reproduces known formulas for the Racah-Wigner coefficients of finite dimensional representations.

  9. From GCM energy kernels to Weyl-Wigner Hamiltonians: a particular mapping

    International Nuclear Information System (INIS)

    Galetti, D.

    1984-01-01

    A particular mapping is established which directly connects GCM energy kernels to Weyl-Wigner Hamiltonians, under the assumption of gaussian overlap kernel. As an application of this mapping scheme the collective Hamiltonians for some giant resonances are derived. (Author) [pt

  10. Time-Frequency (Wigner Analysis of Linear and Nonlinear Pulse Propagation in Optical Fibers

    Directory of Open Access Journals (Sweden)

    José Azaña

    2005-06-01

    Full Text Available Time-frequency analysis, and, in particular, Wigner analysis, is applied to the study of picosecond pulse propagation through optical fibers in both the linear and nonlinear regimes. The effects of first- and second-order group velocity dispersion (GVD and self-phase modulation (SPM are first analyzed separately. The phenomena resulting from the interplay between GVD and SPM in fibers (e.g., soliton formation or optical wave breaking are also investigated in detail. Wigner analysis is demonstrated to be an extremely powerful tool for investigating pulse propagation dynamics in nonlinear dispersive systems (e.g., optical fibers, providing a clearer and deeper insight into the physical phenomena that determine the behavior of these systems.

  11. Wigner representation for experiments on quantum cryptography using two-photon polarization entanglement produced in parametric down-conversion

    International Nuclear Information System (INIS)

    Casado, A; Guerra, S; Placido, J

    2008-01-01

    In this paper, the theory of parametric down-conversion in the Wigner representation is applied to Ekert's quantum cryptography protocol. We analyse the relation between two-photon entanglement and (non-secure) quantum key distribution within the Wigner framework in the Heisenberg picture. Experiments using two-qubit polarization entanglement generated in nonlinear crystals are analysed in this formalism, along with the effects of eavesdropping attacks in the case of projective measurements

  12. Impacts of generalized uncertainty principle on black hole thermodynamics and Salecker-Wigner inequalities

    International Nuclear Information System (INIS)

    Tawfik, A.

    2013-01-01

    We investigate the impacts of Generalized Uncertainty Principle (GUP) proposed by some approaches to quantum gravity such as String Theory and Doubly Special Relativity on black hole thermodynamics and Salecker-Wigner inequalities. Utilizing Heisenberg uncertainty principle, the Hawking temperature, Bekenstein entropy, specific heat, emission rate and decay time are calculated. As the evaporation entirely eats up the black hole mass, the specific heat vanishes and the temperature approaches infinity with an infinite radiation rate. It is found that the GUP approach prevents the black hole from the entire evaporation. It implies the existence of remnants at which the specific heat vanishes. The same role is played by the Heisenberg uncertainty principle in constructing the hydrogen atom. We discuss how the linear GUP approach solves the entire-evaporation-problem. Furthermore, the black hole lifetime can be estimated using another approach; the Salecker-Wigner inequalities. Assuming that the quantum position uncertainty is limited to the minimum wavelength of measuring signal, Wigner second inequality can be obtained. If the spread of quantum clock is limited to some minimum value, then the modified black hole lifetime can be deduced. Based on linear GUP approach, the resulting lifetime difference depends on black hole relative mass and the difference between black hole mass with and without GUP is not negligible

  13. Semiclassical approach to giant resonances of rotating nuclei

    International Nuclear Information System (INIS)

    Winter, J.

    1983-01-01

    Quadrupole and isovector dipole resonances of rotating nuclei are investigated in the frame-work of Vlasov equations transformed to a rotating system of reference, which are based on the time-dependent Hartree-method for schematic forces. The parameter free model of the self-consistent vibrating harmonic oscillator potential for the quadrupole mode is extended to a coupling to rotation, which also includes large-amplitude behaviour. A generalization to an exactly solvable two-liquid model describing the isovector mode is established; for rotating nuclei Hilton's explicit result for the eigenfrequencies is obtained. The advantage of using the concept of the classical kinetic momentum in a rotating system also in quantum-mechanical descriptions is demonstrated. It completes the standard transformation of density matrices by a time-odd part realized in a phase-factor and permits a more direct interpretation of rotation effects in terms of the classical forces of inertia. (author)

  14. Semiclassical propagator of the Wigner function.

    Science.gov (United States)

    Dittrich, Thomas; Viviescas, Carlos; Sandoval, Luis

    2006-02-24

    Propagation of the Wigner function is studied on two levels of semiclassical propagation: one based on the Van Vleck propagator, the other on phase-space path integration. Leading quantum corrections to the classical Liouville propagator take the form of a time-dependent quantum spot. Its oscillatory structure depends on whether the underlying classical flow is elliptic or hyperbolic. It can be interpreted as the result of interference of a pair of classical trajectories, indicating how quantum coherences are to be propagated semiclassically in phase space. The phase-space path-integral approach allows for a finer resolution of the quantum spot in terms of Airy functions.

  15. Wigner representation for experiments on quantum cryptography using two-photon polarization entanglement produced in parametric down-conversion

    Energy Technology Data Exchange (ETDEWEB)

    Casado, A [Departamento de Fisica Aplicada III, Escuela Superior de Ingenieros, Universidad de Sevilla, 41092 Sevilla (Spain); Guerra, S [Centro Asociado de la Universidad Nacional de Educacion a Distancia de Las Palmas de Gran Canaria (Spain); Placido, J [Departamento de Fisica, Universidad de Las Palmas de Gran Canaria (Spain)], E-mail: acasado@us.es

    2008-02-28

    In this paper, the theory of parametric down-conversion in the Wigner representation is applied to Ekert's quantum cryptography protocol. We analyse the relation between two-photon entanglement and (non-secure) quantum key distribution within the Wigner framework in the Heisenberg picture. Experiments using two-qubit polarization entanglement generated in nonlinear crystals are analysed in this formalism, along with the effects of eavesdropping attacks in the case of projective measurements.

  16. Description of nuclear collective motion by Wigner function moments

    International Nuclear Information System (INIS)

    Balbutsev, E.B.

    1996-01-01

    The method is presented in which the collective motion is described by the dynamic equations for the nuclear integral characteristics. The 'macroscopic' dynamics is formulated starting from the equations of the microscopic theory. This is done by taking the phase space moments of the Wigner function equation. The theory is applied to the description of collective excitations with multipolarities up to λ=5. (author)

  17. Study of nuclear statics and dynamics using the Wigner transform

    International Nuclear Information System (INIS)

    Shlomo, S.

    1983-01-01

    The Wigner phase-space distribution function, given as the shifted Fourier transform of the density matrix, provides a framework for an exact reformulation of non-relativistic quantum mechanics in terms of classical concepts. The Wigner distribution function (WDF), f(r-vector, p-vector), is considered as a quantum mechanical generalization of the classical phase space distribution function. While basic observables, such as matter density and momentum density, are given by the same integrals over f(r-vector, p-vector) as in classical physics, f(r-vector, p-vector) differs from its classical analog by the fact that it can assume negative values in some regions. However, it is known that the WDF is a useful and convenient tool for the study of the static and the dynamical aspects of many-body quantum systems, and the equation of motion for f(r-vector, p-vector) serves as a starting point for semi-classical approximations. The aim of this talk is to present and discuss some recent results for static and dynamic properties of nuclei obtained by exact evaluation of the WDF

  18. Time-dependent Wigner distribution function employed in coherent Schroedinger cat states: |Ψ(t))=N-1/2(|α)+eiφ|-α))

    International Nuclear Information System (INIS)

    Choi, Jeong Ryeol; Yeon, Kyu Hwang

    2008-01-01

    The Wigner distribution function for the time-dependent quadratic Hamiltonian system in the coherent Schroedinger cat state is investigated. The type of state we consider is a superposition of two coherent states, which are by an angle of π out of phase with each other. The exact Wigner distribution function of the system is evaluated under a particular choice of phase, δ c,q . Our development is employed for two special cases, namely, the Caldirola-Kanai oscillator and the frequency stable damped harmonic oscillator. On the basis of the diverse values of the Wigner distribution function that were plotted, we analyze the nonclassical behavior of the systems.

  19. Wigner functions for the pair angle and orbital angular momentum. Possible applications in quantum information theories

    International Nuclear Information System (INIS)

    Kastrup, H.A.

    2017-01-01

    The framework of Wigner functions for the canonical pair angle and orbital angular momentum, derived and analyzed in 2 recent papers [H. A. Kastrup, Phys. Rev. A 94, 062113(2016) and Phys. Rev. A 95, 052111(2017)], is applied to elementary concepts of quantum information like qubits and 2-qubits, e.g., entangled EPR/Bell states etc. Properties of the associated Wigner functions are discussed and illustrated. The results may be useful for quantum information experiments with orbital angular momenta of light beams or electron beams.

  20. Wigner functions for the pair angle and orbital angular momentum. Possible applications in quantum information theories

    Energy Technology Data Exchange (ETDEWEB)

    Kastrup, H.A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group

    2017-10-17

    The framework of Wigner functions for the canonical pair angle and orbital angular momentum, derived and analyzed in 2 recent papers [H. A. Kastrup, Phys. Rev. A 94, 062113(2016) and Phys. Rev. A 95, 052111(2017)], is applied to elementary concepts of quantum information like qubits and 2-qubits, e.g., entangled EPR/Bell states etc. Properties of the associated Wigner functions are discussed and illustrated. The results may be useful for quantum information experiments with orbital angular momenta of light beams or electron beams.

  1. Quantum mechanics on phase space: The hydrogen atom and its Wigner functions

    Science.gov (United States)

    Campos, P.; Martins, M. G. R.; Fernandes, M. C. B.; Vianna, J. D. M.

    2018-03-01

    Symplectic quantum mechanics (SQM) considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ, to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article the Coulomb potential in three dimensions (3D) is resolved completely by using the phase space Schrödinger equation. The Kustaanheimo-Stiefel(KS) transformation is applied and the Coulomb and harmonic oscillator potentials are connected. In this context we determine the energy levels, the amplitude of probability in phase space and correspondent Wigner quasi-distribution functions of the 3D-hydrogen atom described by Schrödinger equation in phase space.

  2. Magnetic moment, vorticity-spin coupling and parity-odd conductivity of chiral fermions in 4-dimensional Wigner functions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jian-hua [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Wang, Qun, E-mail: qunwang@ustc.edu.cn [Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2015-10-07

    We demonstrate the emergence of the magnetic moment and spin-vorticity coupling of chiral fermions in 4-dimensional Wigner functions. In linear response theory with space–time varying electromagnetic fields, the parity-odd part of the electric conductivity can also be derived which reproduces results of the one-loop and the hard-thermal or hard-dense loop. All these properties show that the 4-dimensional Wigner functions capture comprehensive aspects of physics for chiral fermions in electromagnetic fields.

  3. Dense tissue-like collagen matrices formed in cell-free conditions.

    Science.gov (United States)

    Mosser, Gervaise; Anglo, Anny; Helary, Christophe; Bouligand, Yves; Giraud-Guille, Marie-Madeleine

    2006-01-01

    A new protocol was developed to produce dense organized collagen matrices hierarchically ordered on a large scale. It consists of a two stage process: (1) the organization of a collagen solution and (2) the stabilization of the organizations by a sol-gel transition that leads to the formation of collagen fibrils. This new protocol relies on the continuous injection of an acid-soluble collagen solution into glass microchambers. It leads to extended concentration gradients of collagen, ranging from 5 to 1000 mg/ml. The self-organization of collagen solutions into a wide array of spatial organizations was investigated. The final matrices obtained by this procedure varied in concentration, structure and density. Changes in the liquid state of the samples were followed by polarized light microscopy, and the final stabilized gel states obtained after fibrillogenesis were analyzed by both light and electron microscopy. Typical organizations extended homogeneously by up to three centimetres in one direction and several hundreds of micrometers in other directions. Fibrillogenesis of collagen solutions of high and low concentrations led to fibrils spatially arranged as has been described in bone and derm, respectively. Moreover, a relationship was revealed between the collagen concentration and the aggregation of and rotational angles between lateral fibrils. These results constitute a strong base from which to further develop highly enriched collagen matrices that could lead to substitutes that mimic connective tissues. The matrices thus obtained may also be good candidates for the study of the three-dimensional migration of cells.

  4. Wigner's dynamical transition state theory in phase space : classical and quantum

    NARCIS (Netherlands)

    Waalkens, Holger; Schubert, Roman; Wiggins, Stephen

    We develop Wigner's approach to a dynamical transition state theory in phase space in both the classical and quantum mechanical settings. The key to our development is the construction of a normal form for describing the dynamics in the neighbourhood of a specific type of saddle point that governs

  5. Eugene Wigner – A Gedanken Pioneer of the Second Quantum Revolution

    Directory of Open Access Journals (Sweden)

    Zeilinger Anton

    2014-01-01

    Full Text Available Eugene Wigner pointed out very interesting consequences of quantum physics in elegant gedanken experiments. As a result of technical progress, these gedanken experiments have become real experiments and contribute to the development of novel concepts in quantum information science, often called the second quantum revolution.

  6. Ray tracing the Wigner distribution function for optical simulations

    Science.gov (United States)

    Mout, Marco; Wick, Michael; Bociort, Florian; Petschulat, Joerg; Urbach, Paul

    2018-01-01

    We study a simulation method that uses the Wigner distribution function to incorporate wave optical effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to calculate point spread functions and show that it is accurate for paraxial systems but produces unphysical results in the presence of aberrations. The cause of these anomalies is explained using an analytical model.

  7. Semiclassical analysis of the Wigner 12j symbol with one small angular momentum

    International Nuclear Information System (INIS)

    Yu Liang

    2011-01-01

    We derive an asymptotic formula for the Wigner 12j symbol, in the limit of one small and 11 large angular momenta. There are two kinds of asymptotic formulas for the 12j symbol with one small angular momentum. We present the first kind of formula in this paper. Our derivation relies on the techniques developed in the semiclassical analysis of the Wigner 9j symbol [L. Yu and R. G. Littlejohn, Phys. Rev. A 83, 052114 (2011)], where we used a gauge-invariant form of the multicomponent WKB wave functions to derive asymptotic formulas for the 9j symbol with small and large angular momenta. When applying the same technique to the 12j symbol in this paper, we find that the spinor is diagonalized in the direction of an intermediate angular momentum. In addition, we find that the geometry of the derived asymptotic formula for the 12j symbol is expressed in terms of the vector diagram for a 9j symbol. This illustrates a general geometric connection between asymptotic limits of the various 3nj symbols. This work contributes an asymptotic formula for the 12j symbol to the quantum theory of angular momentum, and serves as a basis for finding asymptotic formulas for the Wigner 15j symbol with two small angular momenta.

  8. Magnetic moment, vorticity-spin coupling and parity-odd conductivity of chiral fermions in 4-dimensional Wigner functions

    Directory of Open Access Journals (Sweden)

    Jian-hua Gao

    2015-10-01

    Full Text Available We demonstrate the emergence of the magnetic moment and spin-vorticity coupling of chiral fermions in 4-dimensional Wigner functions. In linear response theory with space–time varying electromagnetic fields, the parity-odd part of the electric conductivity can also be derived which reproduces results of the one-loop and the hard-thermal or hard-dense loop. All these properties show that the 4-dimensional Wigner functions capture comprehensive aspects of physics for chiral fermions in electromagnetic fields.

  9. Rotational 3D printing of damage-tolerant composites with programmable mechanics.

    Science.gov (United States)

    Raney, Jordan R; Compton, Brett G; Mueller, Jochen; Ober, Thomas J; Shea, Kristina; Lewis, Jennifer A

    2018-02-06

    Natural composites exhibit exceptional mechanical performance that often arises from complex fiber arrangements within continuous matrices. Inspired by these natural systems, we developed a rotational 3D printing method that enables spatially controlled orientation of short fibers in polymer matrices solely by varying the nozzle rotation speed relative to the printing speed. Using this method, we fabricated carbon fiber-epoxy composites composed of volume elements (voxels) with programmably defined fiber arrangements, including adjacent regions with orthogonally and helically oriented fibers that lead to nonuniform strain and failure as well as those with purely helical fiber orientations akin to natural composites that exhibit enhanced damage tolerance. Our approach broadens the design, microstructural complexity, and performance space for fiber-reinforced composites through site-specific optimization of their fiber orientation, strain, failure, and damage tolerance. Copyright © 2018 the Author(s). Published by PNAS.

  10. Fourier-space TEM reconstructions with symmetry adapted functions for all rotational point groups.

    Science.gov (United States)

    Trapani, Stefano; Navaza, Jorge

    2013-05-01

    A general-purpose and simple expression for the coefficients of symmetry adapted functions referred to conveniently oriented symmetry axes is given for all rotational point groups. The expression involves the computation of reduced Wigner-matrix elements corresponding to an angle specific to each group and has the computational advantage of leading to Fourier-space TEM (transmission electron microscopy) reconstruction procedures involving only real valued unknowns. Using this expression, a protocol for ab initio view and center assignment and reconstruction so far used for icosahedral particles has been tested with experimental data in other point groups. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Negative Differential Resistance and Astability of the Wigner Solid

    OpenAIRE

    Csathy, G. A.; Tsui, D. C.; Pfeiffer, L. N.; West, K. W.

    2005-01-01

    We report an unusual breakdown of the magnetically induced Wigner solid in an exceptional two-dimensional electron gas. The current-voltage characteristic is found to be hysteretic in the voltage biased setup and has a region of negative differential resistance in the current biased setup. When the sample is current biased in the region of negative differential resistance, the voltage on and the current through the sample develop spontaneous narrow band oscillations.

  12. Infinite matrices and sequence spaces

    CERN Document Server

    Cooke, Richard G

    2014-01-01

    This clear and correct summation of basic results from a specialized field focuses on the behavior of infinite matrices in general, rather than on properties of special matrices. Three introductory chapters guide students to the manipulation of infinite matrices, covering definitions and preliminary ideas, reciprocals of infinite matrices, and linear equations involving infinite matrices.From the fourth chapter onward, the author treats the application of infinite matrices to the summability of divergent sequences and series from various points of view. Topics include consistency, mutual consi

  13. Complex Wedge-Shaped Matrices: A Generalization of Jacobi Matrices

    Czech Academy of Sciences Publication Activity Database

    Hnětynková, Iveta; Plešinger, M.

    2015-01-01

    Roč. 487, 15 December (2015), s. 203-219 ISSN 0024-3795 R&D Projects: GA ČR GA13-06684S Keywords : eigenvalues * eigenvector * wedge-shaped matrices * generalized Jacobi matrices * band (or block) Krylov subspace methods Subject RIV: BA - General Mathematics Impact factor: 0.965, year: 2015

  14. Regularized tripartite continuous variable EPR-type states with Wigner functions and CHSH violations

    International Nuclear Information System (INIS)

    Jacobsen, Sol H; Jarvis, P D

    2008-01-01

    We consider tripartite entangled states for continuous variable systems of EPR type, which generalize the famous bipartite CV EPR states (eigenvectors of conjugate choices X 1 - X 2 , P 1 + P 2 , of the systems' relative position and total momentum variables). We give the regularized forms of such tripartite EPR states in second-quantized formulation, and derive their Wigner functions. This is directly compared with the established NOPA-like states from quantum optics. Whereas the multipartite entangled states of NOPA type have singular Wigner functions in the limit of large squeezing, r → ∞, or tanh r → 1 - (approaching the EPR states in the bipartite case), our regularized tripartite EPR states show singular behaviour not only in the approach to the EPR-type region (s → 1 in our notation), but also for an additional, auxiliary regime of the regulator (s→√2). While the s → 1 limit pertains to tripartite CV states with singular eigenstates of the relative coordinates and remaining squeezed in the total momentum, the (s→√2) limit yields singular eigenstates of the total momentum, but squeezed in the relative coordinates. Regarded as expectation values of displaced parity measurements, the tripartite Wigner functions provide the ingredients for generalized CHSH inequalities. Violations of the tripartite CHSH bound (B 3 ≤ 2) are established, with B 3 ≅2.09 in the canonical regime (s → 1 + ), as well as B 3 ≅2.32 in the auxiliary regime (s→√2 + )

  15. Wigner function and tomogram of the excited squeezed vacuum state

    International Nuclear Information System (INIS)

    Meng Xiangguo; Wang Jisuo; Fan Hongyi

    2007-01-01

    The excited squeezed light (ESL) can be the outcome of interaction between squeezed light probe and excited atom, which can explore the status and the structure of the atom. We calculate the Wigner function and tomogram of ESL that may be comparable to the experimental measurement of quadrature-amplitude distribution for the light field obtained using balanced homodyne detection. The method of calculation seems new

  16. Wigner function and tomogram of the excited squeezed vacuum state

    Energy Technology Data Exchange (ETDEWEB)

    Meng Xiangguo [Department of Physics, Liaocheng University, Shandong Province 252059 (China); Wang Jisuo [Department of Physics, Liaocheng University, Shandong Province 252059 (China)]. E-mail: jswang@lcu.edu.cn; Fan Hongyi [Department of Physics, Liaocheng University, Shandong Province 252059 (China); CCAST (World Laboratory), P.O. Box 8730, 100080 Beijing (China)

    2007-01-29

    The excited squeezed light (ESL) can be the outcome of interaction between squeezed light probe and excited atom, which can explore the status and the structure of the atom. We calculate the Wigner function and tomogram of ESL that may be comparable to the experimental measurement of quadrature-amplitude distribution for the light field obtained using balanced homodyne detection. The method of calculation seems new.

  17. Wigner's function and other distribution functions in mock phase spaces

    International Nuclear Information System (INIS)

    Balazs, N.L.; Jennings, B.K.

    1983-06-01

    This review deals with the methods of associating functions with quantum mechanical operators in such a manner that these functions should furnish conveniently semiclassical approximations. We present a unified treatment of methods and result which usually appear under the expressions Wigner's functions, Weyl's association, Kirkwood's expansion, Glauber's coherent state representation, etc.; we also construct some new associations. The mathematical paraphernalia are collected in the appendices

  18. Ring-shaped functions and Wigner 6j-symbols

    International Nuclear Information System (INIS)

    Mardoyan, L.G.; Erevanskij Gosudarstvennyj Univ., Erevan

    2006-01-01

    The explicit expression for the ring-shaped matrix connecting the ring-shaped functions relating to different values of the axial parameter is obtained. The connection of this matrix with Wigner 6j-symbols is found out. The motion of quantum particle in the ring-shaped model with the zero priming potential is investigated. The bases of this model, which are factored in spherical cylindrical coordinates, are obtained. The formula generalizing the Rayleigh expansion of a plane wave with respect to spherical waves in the ring-shaped model is deduced [ru

  19. Time Evolution Of The Wigner Function In Discrete Quantum Phase Space For A Soluble Quasi-spin Model

    CERN Document Server

    Galetti, D

    2000-01-01

    Summary: The discrete phase space approach to quantum mechanics of degrees of freedom without classical counterparts is applied to the many-fermions/quasi-spin Lipkin model. The Wigner function is written for some chosen states associated to discrete angle and angular momentum variables, and the time evolution is numerically calculated using the discrete von Neumann-Liouville equation. Direct evidences in the time evolution of the Wigner function are extracted that identify a tunnelling effect. A connection with an $SU(2)$-based semiclassical continuous approach to the Lipkin model is also presented.

  20. The Wigner transition in a magnetic field

    International Nuclear Information System (INIS)

    Kleppmann, W.G.; Elliott, R.J.

    1975-01-01

    The criteria for the stabilization of a condensed Wigner phase are re-examined for a low-density free-electron gas (jellium) in a uniform magnetic field. By a new calculation of the Coulomb energy it is shown that below a critical density the lowest energy state has electrons in cigar-shaped charge distributions arranged on an elongated body-centred tetragonal lattice. The critical densities are computed as functions of magnetic-field strength for free electrons in astrophysical situations and for electrons of low effective mass in semiconductors. In the latter case, the results can be used to give a satisfactory interpretation of experimental results in heavily compensated InSb. (author)

  1. Eigenfunctions of quadratic hamiltonians in Wigner representation

    International Nuclear Information System (INIS)

    Akhundova, Eh.A.; Dodonov, V.V.; Man'ko, V.I.

    1984-01-01

    Exact solutions of the Schroedinger equation in Wigner representation are obtained for an arbitrary non-stationary N-dimensional quadratic Hamiltonian. It is shown that the complete system of the solutions can always be chosen in the form of the products of Laguerre polynomials, the arguments of which are the quadratic integrals of motion of the corresponding classical problem. The generating function is found for the transition probabilities between Fock states which represent a many-dimensional generatization of a well-known Husimi formula for the oscillator of variable frequency. As an example, the motion of a charged particle in an uniform alternate electromagnetic field is considered in detail

  2. Wigner weight functions and Weyl symbols of non-negative definite linear operators

    NARCIS (Netherlands)

    Janssen, A.J.E.M.

    1989-01-01

    In this paper we present several necessary and, for radially symmetric functions, necessary and sufficient conditions for a function of two variables to be a Wigner weight function (Weyl symbol of a non-negative definite linear operator of L2(R)). These necessary conditions are in terms of spread

  3. On reflectionless equi-transmitting matrices

    Directory of Open Access Journals (Sweden)

    Pavel Kurasov

    2014-01-01

    Full Text Available Reflectionless equi-transmitting unitary matrices are studied in connection to matching conditions in quantum graphs. All possible such matrices of size 6 are described explicitly. It is shown that such matrices form 30 six-parameter families intersected along 12 five-parameter families closely connected to conference matrices.

  4. The 2-D Wigner solid transition in a magnetic field: A perspective

    International Nuclear Information System (INIS)

    Platzman, P.M.; Song He; Price, R.

    1992-01-01

    A 2-D electron system in the presence of a perpendicular magnetic field of arbitrary strength is expected to form a Wigner solid in certain regimes of density and filling factor. Some estimates of the phase diagram in these two parameters are presented and a few recent experimental results are reviewed

  5. A test of Wigner's spin-isospin symmetry from double binding energy differences

    International Nuclear Information System (INIS)

    Van Isacker, P.; Warner, D.D.; Brenner, D.S.

    1996-01-01

    The spin-isospin or SU(4) symmetry is investigated. It is shown that the N = Z enhancements of |δV np | are an unavoidable consequence of Wigner's SU(4) symmetry and that the degree of the enhancement provides a sensitive test of the quality of the symmetry itself. (K.A.)

  6. Tertiary instability of zonal flows within the Wigner-Moyal formulation of drift turbulence

    Science.gov (United States)

    Zhu, Hongxuan; Ruiz, D. E.; Dodin, I. Y.

    2017-10-01

    The stability of zonal flows (ZFs) is analyzed within the generalized-Hasegawa-Mima model. The necessary and sufficient condition for a ZF instability, which is also known as the tertiary instability, is identified. The qualitative physics behind the tertiary instability is explained using the recently developed Wigner-Moyal formulation and the corresponding wave kinetic equation (WKE) in the geometrical-optics (GO) limit. By analyzing the drifton phase space trajectories, we find that the corrections proposed in Ref. to the WKE are critical for capturing the spatial scales characteristic for the tertiary instability. That said, we also find that this instability itself cannot be adequately described within a GO formulation in principle. Using the Wigner-Moyal equations, which capture diffraction, we analytically derive the tertiary-instability growth rate and compare it with numerical simulations. The research was sponsored by the U.S. Department of Energy.

  7. A note on the time decay of solutions for the linearized Wigner-Poisson system

    KAUST Repository

    Gamba, Irene; Gualdani, Maria; Sparber, Christof

    2009-01-01

    We consider the one-dimensional Wigner-Poisson system of plasma physics, linearized around a (spatially homogeneous) Lorentzian distribution and prove that the solution of the corresponding linearized problem decays to zero in time. We also give

  8. Fokker-Planck equation associated with the Wigner function of a quantum system with a finite number of states

    International Nuclear Information System (INIS)

    Cohendet, O.

    1989-01-01

    We consider a quantum system with a finite number N of states and we show that a Markov process evolving in an 'extended' discrete phase can be associated with the discrete Wigner function of the system. This Wigner function is built using the Weyl quantization procedure on the group Z N xZ N . Moreover we can use this process to compute the quantum mean values as probabilistic expectations of functions of this process. This probabilistic formulation can be seen as a stochastic mechanics in phase space. (orig.)

  9. Time Evolution of the Wigner Operator as a Quasi-density Operator in Amplitude Dessipative Channel

    Science.gov (United States)

    Yu, Zhisong; Ren, Guihua; Yu, Ziyang; Wei, Chenhuinan; Fan, Hongyi

    2018-06-01

    For developing quantum mechanics theory in phase space, we explore how the Wigner operator {Δ } (α ,α ^{\\ast } )≡ {1}/{π } :e^{-2(α ^{\\ast } -α ^{\\dag })(α -α )}:, when viewed as a quasi-density operator correponding to the Wigner quasiprobability distribution, evolves in a damping channel. with the damping constant κ. We derive that it evolves into 1/T + 1:\\exp 2/T + 1[-(α^{\\ast} e^{-κ t}-a^{\\dag} )(α e^{-κ t}-a)]: where T ≡ 1 - e - 2 κ t . This in turn helps to directly obtain the final state ρ( t) out of the dessipative channel from the initial classical function corresponding to initial ρ(0). Throught the work, the method of integration within ordered product (IWOP) of operators is employed.

  10. On the measurement of Wigner distribution moments in the fractional Fourier transform domain

    NARCIS (Netherlands)

    Bastiaans, M.J.; Alieva, T.

    2002-01-01

    It is shown how all global Wigner distribution moments of arbitrary order can be measured as intensity moments in the output plane of an appropriate number of fractional Fourier transform systems (generally anamorphic ones). The minimum number of (anamorphic) fractional power spectra that are needed

  11. Salecker-Wigner-Peres clock and average tunneling times

    International Nuclear Information System (INIS)

    Lunardi, Jose T.; Manzoni, Luiz A.; Nystrom, Andrew T.

    2011-01-01

    The quantum clock of Salecker-Wigner-Peres is used, by performing a post-selection of the final state, to obtain average transmission and reflection times associated to the scattering of localized wave packets by static potentials in one dimension. The behavior of these average times is studied for a Gaussian wave packet, centered around a tunneling wave number, incident on a rectangular barrier and, in particular, on a double delta barrier potential. The regime of opaque barriers is investigated and the results show that the average transmission time does not saturate, showing no evidence of the Hartman effect (or its generalized version).

  12. Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium.

    Science.gov (United States)

    Yura, H T; Thrane, L; Andersen, P E

    2000-12-01

    Within the paraxial approximation, a closed-form solution for the Wigner phase-space distribution function is derived for diffuse reflection and small-angle scattering in a random medium. This solution is based on the extended Huygens-Fresnel principle for the optical field, which is widely used in studies of wave propagation through random media. The results are general in that they apply to both an arbitrary small-angle volume scattering function, and arbitrary (real) ABCD optical systems. Furthermore, they are valid in both the single- and multiple-scattering regimes. Some general features of the Wigner phase-space distribution function are discussed, and analytic results are obtained for various types of scattering functions in the asymptotic limit s > 1, where s is the optical depth. In particular, explicit results are presented for optical coherence tomography (OCT) systems. On this basis, a novel way of creating OCT images based on measurements of the momentum width of the Wigner phase-space distribution is suggested, and the advantage over conventional OCT images is discussed. Because all previous published studies regarding the Wigner function are carried out in the transmission geometry, it is important to note that the extended Huygens-Fresnel principle and the ABCD matrix formalism may be used successfully to describe this geometry (within the paraxial approximation). Therefore for completeness we present in an appendix the general closed-form solution for the Wigner phase-space distribution function in ABCD paraxial optical systems for direct propagation through random media, and in a second appendix absorption effects are included.

  13. Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon.

    Science.gov (United States)

    McConnell, Robert; Zhang, Hao; Hu, Jiazhong; Ćuk, Senka; Vuletić, Vladan

    2015-03-26

    Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized, but these states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. Non-Gaussian entangled states have been produced in small ensembles of ions, and very recently in large atomic ensembles. Here we generate entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function--an important hallmark of non-classicality--and verify an entanglement depth (the minimum number of mutually entangled atoms) of 2,910 ± 190 out of 3,100 atoms. Attaining such a negative Wigner function and the mutual entanglement of virtually all atoms is unprecedented for an ensemble containing more than a few particles. Although the achieved purity of the state is slightly below the threshold for entanglement-induced metrological gain, further technical improvement should allow the generation of states that surpass this threshold, and of more complex Schrödinger cat states for quantum metrology and information processing. More generally, our results demonstrate the power of heralded methods for entanglement generation, and illustrate how the information contained in a single photon can drastically alter the quantum state of a large system.

  14. Symmetries and rotational line intensities in diatomic molecules

    International Nuclear Information System (INIS)

    Veseth, L.

    1986-02-01

    The general theory of angular momenta and the full rotation group is used to reconsider the theory of the intensity factors of rotational lines in the spectra of diatomic molecules (Hoenl-London factors). It is shown that the use of the rotational symmetry (rotation matrices) leads to compact derivations of the symmetry properties of the molecular wave functions, as well as the matrix elements of the transitions operator. The present work is restricted to spin-allowed electric dipole transitions, and the general sum rule characteristic of this type of transitions is rederived by use of the general angular momentum theory. A main purpose of the present work has been to provide a unified theoretical basis for exact numerical computations of Hoenl-London factors for all types of spin-allowed electric dipole transitions in diatomic molecules. The computed Hoenl-London factors are then in the next step intended to be the basis for construction of synthetic molecular band spectra, with particular applications to upper atmosperic emissions (aurora)

  15. Semigroup evolution in the Wigner-Weisskopf pole approximation with Markovian spectral coupling

    International Nuclear Information System (INIS)

    Shikerman, F.; Peer, A.; Horwitz, L. P.

    2011-01-01

    We establish the relation between the Wigner-Weisskopf theory for the description of an unstable system and the theory of coupling to an environment. According to the Wigner-Weisskopf general approach, even within the pole approximation, the evolution of a total system subspace is not an exact semigroup for multichannel decay unless the projectors into eigenstates of the reduced evolution generator W(z) are orthogonal. With multichannel decay, the projectors must be evaluated at different pole locations z α ≠z β , and since the orthogonality relation does not generally hold at different values of z, the semigroup evolution is a poor approximation for the multichannel decay, even for very weak coupling. Nevertheless, if the theory is generalized to take into account interactions with an environment, one can ensure orthogonality of the W(z) projectors regardless of the number of poles. Such a possibility occurs when W(z), and hence its eigenvectors, is independent of z, which corresponds to the Markovian limit of the coupling to the continuum spectrum.

  16. Semigroup evolution in the Wigner-Weisskopf pole approximation with Markovian spectral coupling

    Energy Technology Data Exchange (ETDEWEB)

    Shikerman, F.; Peer, A. [Physics department and BINA center for nano-technology, Bar Ilan University, Ramat Gan 52900 (Israel); Horwitz, L. P. [Physics department and BINA center for nano-technology, Bar Ilan University, Ramat Gan 52900 (Israel); School of Physics, Tel-Aviv University, Ramat-Aviv 69978 (Israel); Department of Physics, Ariel University Center of Samaria, Ariel 40700 (Israel)

    2011-07-15

    We establish the relation between the Wigner-Weisskopf theory for the description of an unstable system and the theory of coupling to an environment. According to the Wigner-Weisskopf general approach, even within the pole approximation, the evolution of a total system subspace is not an exact semigroup for multichannel decay unless the projectors into eigenstates of the reduced evolution generator W(z) are orthogonal. With multichannel decay, the projectors must be evaluated at different pole locations z{sub {alpha}}{ne}z{sub {beta}}, and since the orthogonality relation does not generally hold at different values of z, the semigroup evolution is a poor approximation for the multichannel decay, even for very weak coupling. Nevertheless, if the theory is generalized to take into account interactions with an environment, one can ensure orthogonality of the W(z) projectors regardless of the number of poles. Such a possibility occurs when W(z), and hence its eigenvectors, is independent of z, which corresponds to the Markovian limit of the coupling to the continuum spectrum.

  17. Technical assessment of the significance of Wigner energy for disposal of graphite wastes from the Windscale Piles

    International Nuclear Information System (INIS)

    Guppy, R.M.; Wisbey, S.J.; McCarthy, J.

    2001-01-01

    Plans to dismantle the core of the Windscale Pile 1 reactor, and to package the waste for interim storage and eventual disposal, are well advanced. UK Nirex Limited, currently responsible for identifying and developing a site primarily for disposal of the wide range of intermediate level wastes, is addressing the suitability of the waste from Windscale Pile 1, for transport to, and disposal at, a deep waste repository. To support the decommissioning of Windscale Pile 1, information on the condition of the graphite has been sought. Despite the fire in 1957, recent sampling of regions of the core has shown that much of the graphite still contains significant residual Wigner energy. Unless it can be shown that Wigner energy will not be released at a significant rate during operations such as waste packaging or handling of the package, or after disposal, future safety cases may be undermined. A model for the release of Wigner energy has been developed, which describes the stored energy as a set of defects with different activation energies. Initial values of stored energy are attributed to each member of the set, and the energy is released using first order decay processes. By appropriate selection of the range of activation energies and stored energies attributable to each population of defects, experimentally determined releases of stored energy as a function of temperature can be reproduced by the model. Within the disposal environment, the packages will be subject to modest heating from external sources, including the host rocks, radioactive decay, corrosion processes and heat from curing of backfill materials in the disposal vaults. The Wigner energy release model has been used in combination with finite element thermal modelling to assess the temperature evolution of stacks of waste packages located within hypothetical disposal vaults. It has also been used to assess the response of individual waste packages exposed to fires. This paper provides a summary of the

  18. Computing Wigner distributions and time correlation functions using the quantum thermal bath method: application to proton transfer spectroscopy.

    Science.gov (United States)

    Basire, Marie; Borgis, Daniel; Vuilleumier, Rodolphe

    2013-08-14

    Langevin dynamics coupled to a quantum thermal bath (QTB) allows for the inclusion of vibrational quantum effects in molecular dynamics simulations at virtually no additional computer cost. We investigate here the ability of the QTB method to reproduce the quantum Wigner distribution of a variety of model potentials, designed to assess the performances and limits of the method. We further compute the infrared spectrum of a multidimensional model of proton transfer in the gas phase and in solution, using classical trajectories sampled initially from the Wigner distribution. It is shown that for this type of system involving large anharmonicities and strong nonlinear coupling to the environment, the quantum thermal bath is able to sample the Wigner distribution satisfactorily and to account for both zero point energy and tunneling effects. It leads to quantum time correlation functions having the correct short-time behavior, and the correct associated spectral frequencies, but that are slightly too overdamped. This is attributed to the classical propagation approximation rather than the generation of the quantized initial conditions themselves.

  19. Fungible Correlation Matrices: A Method for Generating Nonsingular, Singular, and Improper Correlation Matrices for Monte Carlo Research.

    Science.gov (United States)

    Waller, Niels G

    2016-01-01

    For a fixed set of standardized regression coefficients and a fixed coefficient of determination (R-squared), an infinite number of predictor correlation matrices will satisfy the implied quadratic form. I call such matrices fungible correlation matrices. In this article, I describe an algorithm for generating positive definite (PD), positive semidefinite (PSD), or indefinite (ID) fungible correlation matrices that have a random or fixed smallest eigenvalue. The underlying equations of this algorithm are reviewed from both algebraic and geometric perspectives. Two simulation studies illustrate that fungible correlation matrices can be profitably used in Monte Carlo research. The first study uses PD fungible correlation matrices to compare penalized regression algorithms. The second study uses ID fungible correlation matrices to compare matrix-smoothing algorithms. R code for generating fungible correlation matrices is presented in the supplemental materials.

  20. A note on the time decay of solutions for the linearized Wigner-Poisson system

    KAUST Repository

    Gamba, Irene

    2009-01-01

    We consider the one-dimensional Wigner-Poisson system of plasma physics, linearized around a (spatially homogeneous) Lorentzian distribution and prove that the solution of the corresponding linearized problem decays to zero in time. We also give an explicit algebraic decay rate.

  1. CERN and the Wigner Research Centre for Physics inaugurate CERN data centre’s extension in Budapest, Hungary

    CERN Multimedia

    Wigner Research Centre for Physics, Hungary

    2013-01-01

    On 13 June 2013 CERN and the Wigner Research Centre for Physics inaugurated the Hungarian data centre in Budapest, marking the completion of the facility hosting the extension for CERN computing resources. About 500 servers, 20,000 computing cores, and 5.5 Petabytes of storage are already operational at the site. The dedicated and redundant 100 Gbit/s circuits connecting the two sites are functional since February 2013 and are among the first transnational links at this distance. The capacity at Wigner will be remotely managed from CERN, substantially extending the capabilities of the Worldwide LHC Computing Grid (WLCG) Tier-0 activities and bolstering CERN’s infrastructure business continuity.

  2. A test of Wigner's spin-isospin symmetry from double binding energy differences

    International Nuclear Information System (INIS)

    Van Isacker, P.; Warner, D.D.; Brenner, D.S.

    1995-01-01

    It is shown that the anomalously large double binding energy differences for even-even N = Z nuclei are a consequence of Wigner's SU(4) symmetry. These, and similar quantities for odd-mass and odd-odd nuclei, provide a simple and distinct signature of this symmetry in N ≅ Z nuclei. (authors). 16 refs., 2 figs., 1 tab

  3. Application of the Wigner-Function Formulation to Mesoscopic Systems in Presence of Electron-Phonon Interaction

    National Research Council Canada - National Science Library

    Jacoboni, C

    1997-01-01

    A theoretical and computational analysis of the quantum dynamics of charge carriers in presence of electron-phonon interaction based on the Wigner function is here applied to the study of transport in mesoscopic systems...

  4. Two-Q-boson interferometry and generalization of the Wigner function

    Energy Technology Data Exchange (ETDEWEB)

    Padula, Sandra S. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)]. E-mail: padula@ift.unesp.br; Zhang, Q.H. [McGill Univ., Montreal (Canada). Physics Dept.

    2004-07-01

    Bose-Einstein correlations of two identically charged Q-bosons are derived considering those particles to be confined in finite volumes. Boundary effects on single Q-boson spectrum are also studied. We illustrate these effects by two examples: a toy model (one-dimensional box) and a confining sphere. We also confined a generalized expression for the Wigner function depending on the deformation parameter Q, which is reduced to its original functional form in the limit Q {yields} 1. (author)

  5. Two-Q-boson interferometry and generalization of the Wigner function

    International Nuclear Information System (INIS)

    Padula, Sandra S.; Zhang, Q.H.

    2004-01-01

    Bose-Einstein correlations of two identically charged Q-bosons are derived considering those particles to be confined in finite volumes. Boundary effects on single Q-boson spectrum are also studied. We illustrate these effects by two examples: a toy model (one-dimensional box) and a confining sphere. We also derive a generalized expression for the Wigner function depending on the deformation parameter Q, which is reduced to its original functional form in the limit Q → 1

  6. Two-Q-boson interferometry and generalization of the Wigner function

    International Nuclear Information System (INIS)

    Padula, Sandra S.; Zhang, Q.H.

    2004-01-01

    Bose-Einstein correlations of two identically charged Q-bosons are derived considering those particles to be confined in finite volumes. Boundary effects on single Q-boson spectrum are also studied. We illustrate these effects by two examples: a toy model (one-dimensional box) and a confining sphere. We also confined a generalized expression for the Wigner function depending on the deformation parameter Q, which is reduced to its original functional form in the limit Q → 1. (author)

  7. Wigner distribution function and entropy of the damped harmonic oscillator within the theory of the open quantum systems

    Science.gov (United States)

    Isar, Aurelian

    1995-01-01

    The harmonic oscillator with dissipation is studied within the framework of the Lindblad theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck equation, obtained from the master equation for the density operator, is solved for the Wigner distribution function, subject to either the Gaussian type or the delta-function type of initial conditions. The obtained Wigner functions are two-dimensional Gaussians with different widths. Then a closed expression for the density operator is extracted. The entropy of the system is subsequently calculated and its temporal behavior shows that this quantity relaxes to its equilibrium value.

  8. Double stochastic matrices in quantum mechanics

    International Nuclear Information System (INIS)

    Louck, J.D.

    1997-01-01

    The general set of doubly stochastic matrices of order n corresponding to ordinary nonrelativistic quantum mechanical transition probability matrices is given. Lande's discussion of the nonquantal origin of such matrices is noted. Several concrete examples are presented for elementary and composite angular momentum systems with the focus on the unitary symmetry associated with such systems in the spirit of the recent work of Bohr and Ulfbeck. Birkhoff's theorem on doubly stochastic matrices of order n is reformulated in a geometrical language suitable for application to the subset of quantum mechanical doubly stochastic matrices. Specifically, it is shown that the set of points on the unit sphere in cartesian n'-space is subjective with the set of doubly stochastic matrices of order n. The question is raised, but not answered, as to what is the subset of points of this unit sphere that correspond to the quantum mechanical transition probability matrices, and what is the symmetry group of this subset of matrices

  9. Linear ray and wave optics in phase space bridging ray and wave optics via the Wigner phase-space picture

    CERN Document Server

    Torre, Amalia

    2005-01-01

    Ray, wave and quantum concepts are central to diverse and seemingly incompatible models of light. Each model particularizes a specific ''manifestation'' of light, and then corresponds to adequate physical assumptions and formal approximations, whose domains of applicability are well-established. Accordingly each model comprises its own set of geometric and dynamic postulates with the pertinent mathematical means.At a basic level, the book is a complete introduction to the Wigner optics, which bridges between ray and wave optics, offering the optical phase space as the ambience and the Wigner f

  10. Two updating methods for dissipative models with non symmetric matrices

    International Nuclear Information System (INIS)

    Billet, L.; Moine, P.; Aubry, D.

    1997-01-01

    In this paper the feasibility of the extension of two updating methods to rotating machinery models is considered, the particularity of rotating machinery models is to use non-symmetric stiffness and damping matrices. It is shown that the two methods described here, the inverse Eigen-sensitivity method and the error in constitutive relation method can be adapted to such models given some modification.As far as inverse sensitivity method is concerned, an error function based on the difference between right hand calculated and measured Eigen mode shapes and calculated and measured Eigen values is used. Concerning the error in constitutive relation method, the equation which defines the error has to be modified due to the non definite positiveness of the stiffness matrix. The advantage of this modification is that, in some cases, it is possible to focus the updating process on some specific model parameters. Both methods were validated on a simple test model consisting in a two-bearing and disc rotor system. (author)

  11. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    Science.gov (United States)

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen

    2013-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588

  12. Modal Analysis in Periodic, Time-Varying Systems with emphasis to the Coupling between Flexible Rotating Beams and Non-Rotating Flexible Structures

    DEFF Research Database (Denmark)

    Saracho, C. M.; Santos, Ilmar

    2003-01-01

    The analysis of dynamical response of a system built by a non-rotating structure coupled to flexible rotating beams is the purpose of this work. The effect of rotational speed upon the beam natural frequencies is well-known, so that an increase in the angular speeds leads to an increase in beam...... natural frequencies, the so-called centrifugal stiffening. The equations of motion of such a global system present matrices with time-depending coefficients, which vary periodically with the angular rotor speed, and introduce parametric vibrations into the system response. The principles of modal analysis...... for time-invariant linear systems are expanded to investigate time-varying systems. Concepts as eigenvalues and eigenvectors, which in this special case are also time-varying, are used to analyse the dynamical response of global system. The time-varying frequencies and modes are also illustrated....

  13. Matrices and linear transformations

    CERN Document Server

    Cullen, Charles G

    1990-01-01

    ""Comprehensive . . . an excellent introduction to the subject."" - Electronic Engineer's Design Magazine.This introductory textbook, aimed at sophomore- and junior-level undergraduates in mathematics, engineering, and the physical sciences, offers a smooth, in-depth treatment of linear algebra and matrix theory. The major objects of study are matrices over an arbitrary field. Contents include Matrices and Linear Systems; Vector Spaces; Determinants; Linear Transformations; Similarity: Part I and Part II; Polynomials and Polynomial Matrices; Matrix Analysis; and Numerical Methods. The first

  14. On Wigner's problem, computability theory, and the definition of life

    International Nuclear Information System (INIS)

    Swain, J.

    1998-01-01

    In 1961, Eugene Wigner presented a clever argument that in a world which is adequately described by quantum mechanics, self-reproducing systems in general, and perhaps life in particular, would be incredibly improbable. The problem and some attempts at its solution are examined, and a new solution is presented based on computability theory. In particular, it is shown that computability theory provides limits on what can be known about a system in addition to those which arise from quantum mechanics. (author)

  15. A 2D Wigner Distribution-based multisize windows technique for image fusion

    Czech Academy of Sciences Publication Activity Database

    Redondo, R.; Fischer, S.; Šroubek, Filip; Cristóbal, G.

    2008-01-01

    Roč. 19, č. 1 (2008), s. 12-19 ISSN 1047-3203 R&D Projects: GA ČR GA102/04/0155; GA ČR GA202/05/0242 Grant - others:CSIC(CZ) 2004CZ0009 Institutional research plan: CEZ:AV0Z10750506 Keywords : Wigner distribution * image fusion * multifocus Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.342, year: 2008

  16. Lambda-matrices and vibrating systems

    CERN Document Server

    Lancaster, Peter; Stark, M; Kahane, J P

    1966-01-01

    Lambda-Matrices and Vibrating Systems presents aspects and solutions to problems concerned with linear vibrating systems with a finite degrees of freedom and the theory of matrices. The book discusses some parts of the theory of matrices that will account for the solutions of the problems. The text starts with an outline of matrix theory, and some theorems are proved. The Jordan canonical form is also applied to understand the structure of square matrices. Classical theorems are discussed further by applying the Jordan canonical form, the Rayleigh quotient, and simple matrix pencils with late

  17. Manin matrices and Talalaev's formula

    International Nuclear Information System (INIS)

    Chervov, A; Falqui, G

    2008-01-01

    In this paper we study properties of Lax and transfer matrices associated with quantum integrable systems. Our point of view stems from the fact that their elements satisfy special commutation properties, considered by Yu I Manin some 20 years ago at the beginning of quantum group theory. These are the commutation properties of matrix elements of linear homomorphisms between polynomial rings; more explicitly these read: (1) elements of the same column commute; (2) commutators of the cross terms are equal: [M ij , M kl ] [M kj , M il ] (e.g. [M 11 , M 22 ] = [M 21 , M 12 ]). The main aim of this paper is twofold: on the one hand we observe and prove that such matrices (which we call Manin matrices in short) behave almost as well as matrices with commutative elements. Namely, the theorems of linear algebra (e.g., a natural definition of the determinant, the Cayley-Hamilton theorem, the Newton identities and so on and so forth) have a straightforward counterpart in the case of Manin matrices. On the other hand, we remark that such matrices are somewhat ubiquitous in the theory of quantum integrability. For instance, Manin matrices (and their q-analogs) include matrices satisfying the Yang-Baxter relation 'RTT=TTR' and the so-called Cartier-Foata matrices. Also, they enter Talalaev's remarkable formulae: det(∂ z -L gaudin (z)), det(1-e -∂z T Yangian (z)) for the 'quantum spectral curve', and appear in the separation of variables problem and Capelli identities. We show that theorems of linear algebra, after being established for such matrices, have various applications to quantum integrable systems and Lie algebras, e.g. in the construction of new generators in Z(U crit (gl-hat n )) (and, in general, in the construction of quantum conservation laws), in the Knizhnik-Zamolodchikov equation, and in the problem of Wick ordering. We propose, in the appendix, a construction of quantum separated variables for the XXX-Heisenberg system

  18. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-01-01

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  19. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-12-05

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  20. Number-Phase Wigner Representation and Entropic Uncertainty Relations for Binomial and Negative Binomial States

    International Nuclear Information System (INIS)

    Amitabh, J.; Vaccaro, J.A.; Hill, K.E.

    1998-01-01

    We study the recently defined number-phase Wigner function S NP (n,θ) for a single-mode field considered to be in binomial and negative binomial states. These states interpolate between Fock and coherent states and coherent and quasi thermal states, respectively, and thus provide a set of states with properties ranging from uncertain phase and sharp photon number to sharp phase and uncertain photon number. The distribution function S NP (n,θ) gives a graphical representation of the complimentary nature of the number and phase properties of these states. We highlight important differences between Wigner's quasi probability function, which is associated with the position and momentum observables, and S NP (n,θ), which is associated directly with the photon number and phase observables. We also discuss the number-phase entropic uncertainty relation for the binomial and negative binomial states and we show that negative binomial states give a lower phase entropy than states which minimize the phase variance

  1. MERSENNE AND HADAMARD MATRICES CALCULATION BY SCARPIS METHOD

    Directory of Open Access Journals (Sweden)

    N. A. Balonin

    2014-05-01

    Full Text Available Purpose. The paper deals with the problem of basic generalizations of Hadamard matrices associated with maximum determinant matrices or not optimal by determinant matrices with orthogonal columns (weighing matrices, Mersenne and Euler matrices, ets.; calculation methods for the quasi-orthogonal local maximum determinant Mersenne matrices are not studied enough sufficiently. The goal of this paper is to develop the theory of Mersenne and Hadamard matrices on the base of generalized Scarpis method research. Methods. Extreme solutions are found in general by minimization of maximum for absolute values of the elements of studied matrices followed by their subsequent classification according to the quantity of levels and their values depending on orders. Less universal but more effective methods are based on structural invariants of quasi-orthogonal matrices (Silvester, Paley, Scarpis methods, ets.. Results. Generalizations of Hadamard and Belevitch matrices as a family of quasi-orthogonal matrices of odd orders are observed; they include, in particular, two-level Mersenne matrices. Definitions of section and layer on the set of generalized matrices are proposed. Calculation algorithms for matrices of adjacent layers and sections by matrices of lower orders are described. Approximation examples of the Belevitch matrix structures up to 22-nd critical order by Mersenne matrix of the third order are given. New formulation of the modified Scarpis method to approximate Hadamard matrices of high orders by lower order Mersenne matrices is proposed. Williamson method is described by example of one modular level matrices approximation by matrices with a small number of levels. Practical relevance. The efficiency of developing direction for the band-pass filters creation is justified. Algorithms for Mersenne matrices design by Scarpis method are used in developing software of the research program complex. Mersenne filters are based on the suboptimal by

  2. Excitonic Wigner crystal and high T sub c ferromagnetism in RB sub 6

    CERN Document Server

    Kasuya, T

    2000-01-01

    The mechanisms for the high T sub c ferromagnetism in La-doped divalent hexaborides DB sub 6 are studied in detail comparing with similar family materials, in particular with YbB sub 6 , EuB sub 6 and Ce monopnictides. It is shown that in DB sub 6 the light-electron-heavy-hole paired excitonic states form the Wigner crystal, or Wigner glass in actual materials, in which the conventional intersite electron exchange interactions similar to that in Ni dominate the pair singlet formation due to the intra pair mixing causing a ferromagnetic spin glass-like ordering of electron spins. In the La-doped system La sub x D sub 1 sub - sub x B sub 6 , the population of molecular La impurity states with giant moments increases as x approaches the optimal value x sub 0 approx 0.005 for high T sub c providing vacant states for the roton-like fluctuations, which cause the high T sub c at the boundary of the delocalization of electron carriers. Therefore, the critical La concentration for delocalization coincides with the opt...

  3. Wigner time-delay distribution in chaotic cavities and freezing transition.

    Science.gov (United States)

    Texier, Christophe; Majumdar, Satya N

    2013-06-21

    Using the joint distribution for proper time delays of a chaotic cavity derived by Brouwer, Frahm, and Beenakker [Phys. Rev. Lett. 78, 4737 (1997)], we obtain, in the limit of the large number of channels N, the large deviation function for the distribution of the Wigner time delay (the sum of proper times) by a Coulomb gas method. We show that the existence of a power law tail originates from narrow resonance contributions, related to a (second order) freezing transition in the Coulomb gas.

  4. Atomic probe Wigner tomography of a nanomechanical system

    International Nuclear Information System (INIS)

    Singh, Swati; Meystre, Pierre

    2010-01-01

    We propose a scheme to measure the quantum state of a nanomechanical oscillator cooled near its ground state of vibrational motion. This is an extension of the nonlinear atomic homodyning technique scheme first developed to measure the intracavity field in a micromaser. It involves the use of a detector atom that is simultaneously coupled to the resonator via a magnetic interaction and to (classical) optical fields via a Raman transition. We show that the probability for the atom to be found in the ground state is a direct measure of the Wigner characteristic function of the nanomechanical oscillator. We also investigate the back-action effect of this destructive measurement on the state of the resonator.

  5. Inoenue-Wigner contraction and D = 2 + 1 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Concha, P.K.; Rodriguez, E.K. [Universidad Adolfo Ibanez, Departamento de Ciencias, Facultad de Artes Liberales, Vina del Mar (Chile); Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Fierro, O. [Universidad Catolica de la Santisima Concepcion, Departamento de Matematica y Fisica Aplicadas, Concepcion (Chile)

    2017-01-15

    We present a generalization of the standard Inoenue-Wigner contraction by rescaling not only the generators of a Lie superalgebra but also the arbitrary constants appearing in the components of the invariant tensor. The procedure presented here allows one to obtain explicitly the Chern-Simons supergravity action of a contracted superalgebra. In particular we show that the Poincare limit can be performed to a D = 2 + 1 (p,q) AdS Chern-Simons supergravity in presence of the exotic form. We also construct a new three-dimensional (2,0) Maxwell Chern-Simons supergravity theory as a particular limit of (2,0) AdS-Lorentz supergravity theory. The generalization for N = p + q gravitinos is also considered. (orig.)

  6. Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube

    DEFF Research Database (Denmark)

    Pecker, S.; Kuemmeth, Ferdinand; Secchi, A.

    2013-01-01

    Two electrons on a string form a simple model system where Coulomb interactions are expected to play an interesting role. In the presence of strong interactions, these electrons are predicted to form a Wigner molecule, separating to the ends of the string. This spatial structure is believed to be...

  7. Hierarchical matrices algorithms and analysis

    CERN Document Server

    Hackbusch, Wolfgang

    2015-01-01

    This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...

  8. W∞ and the Racah-Wigner algebra

    International Nuclear Information System (INIS)

    Pope, C.N.; Shen, X.; Romans, L.J.

    1990-01-01

    We examine the structure of a recently constructed W ∞ algebra, an extension of the Virasoro algebra that describes an infinite number of fields with all conformal spins 2,3..., with central terms for all spins. By examining its underlying SL(2,R) structure, we are able to exhibit its relation to the algebas of SL(2,R) tensor operators. Based upon this relationship, we generalise W ∞ to a one-parameter family of inequivalent Lie algebras W ∞ (μ), which for general μ requires the introduction of formally negative spins. Furthermore, we display a realisation of the W ∞ (μ) commutation relations in terms of an underlying associative product, which we denote with a lone star. This product structure shares many formal features with the Racah-Wigner algebra in angular-momentum theory. We also discuss the relation between W ∞ and the symplectic algebra on a cone, which can be viewed as a co-adjoint orbit of SL(2,R). (orig.)

  9. Spectral statistics in semiclassical random-matrix ensembles

    International Nuclear Information System (INIS)

    Feingold, M.; Leitner, D.M.; Wilkinson, M.

    1991-01-01

    A novel random-matrix ensemble is introduced which mimics the global structure inherent in the Hamiltonian matrices of autonomous, ergodic systems. Changes in its parameters induce a transition between a Poisson and a Wigner distribution for the level spacings, P(s). The intermediate distributions are uniquely determined by a single scaling variable. Semiclassical constraints force the ensemble to be in a regime with Wigner P(s) for systems with more than two freedoms

  10. Special matrices of mathematical physics stochastic, circulant and Bell matrices

    CERN Document Server

    Aldrovandi, R

    2001-01-01

    This book expounds three special kinds of matrices that are of physical interest, centering on physical examples. Stochastic matrices describe dynamical systems of many different types, involving (or not) phenomena like transience, dissipation, ergodicity, nonequilibrium, and hypersensitivity to initial conditions. The main characteristic is growth by agglomeration, as in glass formation. Circulants are the building blocks of elementary Fourier analysis and provide a natural gateway to quantum mechanics and noncommutative geometry. Bell polynomials offer closed expressions for many formulas co

  11. Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    Marcos Moshinsky

    2008-07-01

    Full Text Available For classical canonical transformations, one can, using the Wigner transformation, pass from their representation in Hilbert space to a kernel in phase space. In this paper it will be discussed how the time-dependence of the uncertainties of the corresponding time-dependent quantum problems can be incorporated into this formalism.

  12. The use of Wigner transformation for the description of the classical aspects of the quantum systems

    International Nuclear Information System (INIS)

    Baran, V.

    1990-01-01

    The mutual relation between the classical phase space and the Hilbert space of operators are explicitly written down.In particular, the Wigner transformation maps the Hilbert space onto the classical space of functions defined on two dimensional manifold. (Author)

  13. Frequency filtering decompositions for unsymmetric matrices and matrices with strongly varying coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, C.

    1996-12-31

    In 1992, Wittum introduced the frequency filtering decompositions (FFD), which yield a fast method for the iterative solution of large systems of linear equations. Based on this method, the tangential frequency filtering decompositions (TFFD) have been developed. The TFFD allow the robust and efficient treatment of matrices with strongly varying coefficients. The existence and the convergence of the TFFD can be shown for symmetric and positive definite matrices. For a large class of matrices, it is possible to prove that the convergence rate of the TFFD and of the FFD is independent of the number of unknowns. For both methods, schemes for the construction of frequency filtering decompositions for unsymmetric matrices have been developed. Since, in contrast to Wittums`s FFD, the TFFD needs only one test vector, an adaptive test vector can be used. The TFFD with respect to the adaptive test vector can be combined with other iterative methods, e.g. multi-grid methods, in order to improve the robustness of these methods. The frequency filtering decompositions have been successfully applied to the problem of the decontamination of a heterogeneous porous medium by flushing.

  14. Possibility to Probe Negative Values of a Wigner Function in Scattering of a Coherent Superposition of Electronic Wave Packets by Atoms.

    Science.gov (United States)

    Karlovets, Dmitry V; Serbo, Valeriy G

    2017-10-27

    Within a plane-wave approximation in scattering, an incoming wave packet's Wigner function stays positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement. With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely quantum regime where the latter effects become only moderately attenuated. Here we show how to probe negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets with a nonvanishing impact parameter between them (a Schrödinger's cat state) by atomic targets. For hydrogen in the ground 1s state, a small parameter of the problem, a ratio a/σ_{⊥} of the Bohr radius a to the beam width σ_{⊥}, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons, which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the not-everywhere-positive Wigner functions and the probing of such quantum effects can open new perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.

  15. A different approach to obtain Mayer’s extension to stationary single particle Wigner distribution

    International Nuclear Information System (INIS)

    Bose, Anirban; Janaki, M. S.

    2012-01-01

    It is shown that the stationary collisionless single-particle Wigner equation in one dimension containing quantum corrections at the lowest order is satisfied by a distribution function that is similar in form to the Maxwellian distribution with an effective mass and a generalized potential. The distribution is used to study quantum corrections to electron hole solutions.

  16. Introduction to matrices and vectors

    CERN Document Server

    Schwartz, Jacob T

    2001-01-01

    In this concise undergraduate text, the first three chapters present the basics of matrices - in later chapters the author shows how to use vectors and matrices to solve systems of linear equations. 1961 edition.

  17. A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes.

    Science.gov (United States)

    Dorda, Antonius; Schürrer, Ferdinand

    2015-03-01

    We present a novel numerical scheme for the deterministic solution of the Wigner transport equation, especially suited to deal with situations in which strong quantum effects are present. The unique feature of the algorithm is the expansion of the Wigner function in local basis functions, similar to finite element or finite volume methods. This procedure yields a discretization of the pseudo-differential operator that conserves the particle density on arbitrarily chosen grids. The high flexibility in refining the grid spacing together with the weighted essentially non-oscillatory (WENO) scheme for the advection term allows for an accurate and well-resolved simulation of the phase space dynamics. A resonant tunneling diode is considered as test case and a detailed convergence study is given by comparing the results to a non-equilibrium Green's functions calculation. The impact of the considered domain size and of the grid spacing is analyzed. The obtained convergence of the results towards a quasi-exact agreement of the steady state Wigner and Green's functions computations demonstrates the accuracy of the scheme, as well as the high flexibility to adjust to different physical situations.

  18. Pathological rate matrices: from primates to pathogens

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Continuous-time Markov models allow flexible, parametrically succinct descriptions of sequence divergence. Non-reversible forms of these models are more biologically realistic but are challenging to develop. The instantaneous rate matrices defined for these models are typically transformed into substitution probability matrices using a matrix exponentiation algorithm that employs eigendecomposition, but this algorithm has characteristic vulnerabilities that lead to significant errors when a rate matrix possesses certain 'pathological' properties. Here we tested whether pathological rate matrices exist in nature, and consider the suitability of different algorithms to their computation. Results We used concatenated protein coding gene alignments from microbial genomes, primate genomes and independent intron alignments from primate genomes. The Taylor series expansion and eigendecomposition matrix exponentiation algorithms were compared to the less widely employed, but more robust, Padé with scaling and squaring algorithm for nucleotide, dinucleotide, codon and trinucleotide rate matrices. Pathological dinucleotide and trinucleotide matrices were evident in the microbial data set, affecting the eigendecomposition and Taylor algorithms respectively. Even using a conservative estimate of matrix error (occurrence of an invalid probability, both Taylor and eigendecomposition algorithms exhibited substantial error rates: ~100% of all exonic trinucleotide matrices were pathological to the Taylor algorithm while ~10% of codon positions 1 and 2 dinucleotide matrices and intronic trinucleotide matrices, and ~30% of codon matrices were pathological to eigendecomposition. The majority of Taylor algorithm errors derived from occurrence of multiple unobserved states. A small number of negative probabilities were detected from the Pad�� algorithm on trinucleotide matrices that were attributable to machine precision. Although the Pad

  19. The modified Bargmann-Wigner formalism for bosons of spin 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Dvoeglazov, Valeri V [Universidad de Zacatecas, Apartado Postal 636, Suc. UAZ, Zacatecas 98062, Zac (Mexico)

    2007-11-15

    On the basis of our recent modifications of the Dirac formalism we generalize the Bargmann-Wigner formalism for higher spins to be compatible with other formalisms for bosons. Relations with dual electrodynamics, with the Ogievetskii-Polubarinov notoph and the Weinberg 2(2J+1) theory are found. Next, we introduce the dual analogues of the Riemann tensor and derive corresponding dynamical equations in the Minkowski space. Relations with the Marques-Spehler chiral gravity theory are discussed.

  20. Using geometric algebra to understand pattern rotations in multiple mirror optical systems

    International Nuclear Information System (INIS)

    Hanlon, J.; Ziock, H.

    1997-01-01

    Geometric Algebra (GA) is a new formulation of Clifford Algebra that includes vector analysis without notation changes. Most applications of Ga have been in theoretical physics, but GA is also a very good analysis tool for engineering. As an example, the authors use GA to study pattern rotation in optical systems with multiple mirror reflections. The common ways to analyze pattern rotations are to use rotation matrices or optical ray trace codes, but these are often inconvenient. The authors use GA to develop a simple expression for pattern rotation that is useful for designing or tolerancing pattern rotations in a multiple mirror optical system by inspection. Pattern rotation is used in many optical engineering systems, but it is not normally covered in optical system engineering texts. Pattern rotation is important in optical systems such as: (1) the 192 beam National ignition Facility (NIF), which uses square laser beams in close packed arrays to cut costs; (2) visual optical systems, which use pattern rotation to present the image to the observer in the appropriate orientation, and (3) the UR90 unstable ring resonator, which uses pattern rotation to fill a rectangular laser gain region and provide a filled-in laser output beam

  1. On the distribution functions in the quantum mechanics and Wigner functions

    International Nuclear Information System (INIS)

    Kuz'menkov, L.S.; Maksimov, S.G.

    2002-01-01

    The problem on the distribution functions, leading to the similar local values of the particles number, pulse and energy, as in the quantum mechanics, is formulated and solved. The method is based on the quantum-mechanical determination of the probability density. The derived distribution function coincides with the Wigner function only for the spatial-homogeneous systems. The Bogolyubov equations chain, the Liouville equation for the distribution quantum functions by any number of particles in the system, the general expression for the tensor of the dielectric permittivity of the plasma electron component are obtained [ru

  2. A generalized Wigner function for quantum systems with the SU(2) dynamical symmetry group

    International Nuclear Information System (INIS)

    Klimov, A B; Romero, J L

    2008-01-01

    We introduce a Wigner-like quasidistribution function to describe quantum systems with the SU(2) dynamic symmetry group. This function is defined in a three-dimensional group manifold and can be used to represent the states defined in several SU(2) invariant subspaces. The explicit differential Moyal-like form of the star product is found and analyzed in the semiclassical limit

  3. Neutron bombardment of single wall carbon nanohorn (SWCNH). DSC determination of the stored Wigner-Szilard energy

    International Nuclear Information System (INIS)

    Franco Cataldo; Susana Iglesias-Groth; Yaser Hafez; Giancarlo Angelini

    2014-01-01

    Single wall carbon nanohorn (SWCNH) were neutron-bombarded to a dose of 3.28 × 10 16 n/cm 2 . The Wigner or stored energy was determined by a differential scanning calorimeter and was found 5.49 J/g, 50 times higher than the Wigner energy measured on graphite flakes treated at the same neutron dose. The activation energy for the thermal annealing of the accumulated radiation damage in SWCNH was determined in the range 6.3-6.6 eV against a typical activation energy for the annealing of the radiation-damaged graphite which is in the range of 1.4-1.5 eV. Furthermore the stored energy in neutron-damaged SWCNH is released at 400-430 deg C while the main peak in the neutron-damaged graphite occurs at 200-220 deg C. The radiation damaged SWCNH were examined with FT-IR spectroscopy showing the formation of acetylenic and aliphatic moieties suggesting the aromatic C=C breakdown caused by the neutron bombardment. (author)

  4. Analytic Reflected Lightcurves for Exoplanets

    Science.gov (United States)

    Haggard, Hal M.; Cowan, Nicolas B.

    2018-04-01

    The disk-integrated reflected brightness of an exoplanet changes as a function of time due to orbital and rotational motion coupled with an inhomogeneous albedo map. We have previously derived analytic reflected lightcurves for spherical harmonic albedo maps in the special case of a synchronously-rotating planet on an edge-on orbit (Cowan, Fuentes & Haggard 2013). In this letter, we present analytic reflected lightcurves for the general case of a planet on an inclined orbit, with arbitrary spin period and non-zero obliquity. We do so for two different albedo basis maps: bright points (δ-maps), and spherical harmonics (Y_l^m-maps). In particular, we use Wigner D-matrices to express an harmonic lightcurve for an arbitrary viewing geometry as a non-linear combination of harmonic lightcurves for the simpler edge-on, synchronously rotating geometry. These solutions will enable future exploration of the degeneracies and information content of reflected lightcurves, as well as fast calculation of lightcurves for mapping exoplanets based on time-resolved photometry. To these ends we make available Exoplanet Analytic Reflected Lightcurves (EARL), a simple open-source code that allows rapid computation of reflected lightcurves.

  5. Chemiluminescence in cryogenic matrices

    Science.gov (United States)

    Lotnik, S. V.; Kazakov, Valeri P.

    1989-04-01

    The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.

  6. The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays

    Energy Technology Data Exchange (ETDEWEB)

    Gadella, M. [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş. [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2017-04-15

    We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.

  7. Wigner-Eisenbud-Smith photoionization time delay due to autoioinization resonances

    Science.gov (United States)

    Deshmukh, P. C.; Kumar, A.; Varma, H. R.; Banerjee, S.; Manson, Steven T.; Dolmatov, V. K.; Kheifets, A. S.

    2018-03-01

    An empirical ansatz for the complex photoionization amplitude and Wigner-Eisenbud-Smith time delay in the vicinity of a Fano autoionization resonance are proposed to evaluate and interpret the time delay in the resonant region. The utility of this expression is evaluated in comparison with accurate numerical calculations employing the ab initio relativistic random phase approximation and relativistic multichannel quantum defect theory. The indisputably good qualitative agreement (and semiquantitative agreement) between corresponding results of the proposed model and results produced by the ab initio theories proves the usability of the model. In addition, the phenomenology of the time delay in the vicinity of multichannel autoionizing resonances is detailed.

  8. Skew-adjacency matrices of graphs

    NARCIS (Netherlands)

    Cavers, M.; Cioaba, S.M.; Fallat, S.; Gregory, D.A.; Haemers, W.H.; Kirkland, S.J.; McDonald, J.J.; Tsatsomeros, M.

    2012-01-01

    The spectra of the skew-adjacency matrices of a graph are considered as a possible way to distinguish adjacency cospectral graphs. This leads to the following topics: graphs whose skew-adjacency matrices are all cospectral; relations between the matchings polynomial of a graph and the characteristic

  9. The invariant theory of matrices

    CERN Document Server

    Concini, Corrado De

    2017-01-01

    This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of m\\times m matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case...

  10. Exact Inverse Matrices of Fermat and Mersenne Circulant Matrix

    Directory of Open Access Journals (Sweden)

    Yanpeng Zheng

    2015-01-01

    Full Text Available The well known circulant matrices are applied to solve networked systems. In this paper, circulant and left circulant matrices with the Fermat and Mersenne numbers are considered. The nonsingularity of these special matrices is discussed. Meanwhile, the exact determinants and inverse matrices of these special matrices are presented.

  11. Optical sectioning for optical scanning holography using phase-space filtering with Wigner distribution functions.

    Science.gov (United States)

    Kim, Hwi; Min, Sung-Wook; Lee, Byoungho; Poon, Ting-Chung

    2008-07-01

    We propose a novel optical sectioning method for optical scanning holography, which is performed in phase space by using Wigner distribution functions together with the fractional Fourier transform. The principle of phase-space optical sectioning for one-dimensional signals, such as slit objects, and two-dimensional signals, such as rectangular objects, is first discussed. Computer simulation results are then presented to substantiate the proposed idea.

  12. Applications of Wigner transformations in heavy-ion reactions

    International Nuclear Information System (INIS)

    Esbensen, H.

    1981-01-01

    We discuss a model, based on Wigner transformations and classical dynamics, that gives a semiclassical description of the excitation of surface vibrations due to the Coulomb and nuclear interaction in heavy-ion collisions. The treatment will consist of three stages, viz. the preparation of classical initial conditions compatible with the quantal ground state of surface vibrations, the dynamical evolution of the system governed by Liouville's equation (i.e. classical mechanics) and finally the interpretation, of final results after the interaction in terms of excitation probabilities, elastic and inelastic cross-sections, etc. The first and the last stage are exact and based on the Wigher transformations, while the time evolution described by classical mechanics is an approximation. We shall later return to the question of the applicability of this approximation and give some illustrative examples. (orig./HSI)

  13. Enhancing Understanding of Transformation Matrices

    Science.gov (United States)

    Dick, Jonathan; Childrey, Maria

    2012-01-01

    With the Common Core State Standards' emphasis on transformations, teachers need a variety of approaches to increase student understanding. Teaching matrix transformations by focusing on row vectors gives students tools to create matrices to perform transformations. This empowerment opens many doors: Students are able to create the matrices for…

  14. The one-parameter subgroup of rotations generated by spin transformations in three-dimensional real space

    International Nuclear Information System (INIS)

    Gazoya, E.D.K.; Prempeh, E.; Banini, G.K.

    2015-01-01

    The relationship between the spin transformations of the special linear group of order 2, SL (2, C) and the aggregate SO(3) of the three-dimensional pure rotations when considered as a group in itself (and not as a subgroup of the Lorentz group), is investigated. It is shown, by the spinor map X - → AXA ct which is all action of SL(2. C) on the space of Hermitian matrices, that the one- parameter subgroup of rotations generated are precisely those of angles which are multiples 2π. (au)

  15. Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasi-classical approach to the full electronic density matrix

    International Nuclear Information System (INIS)

    Miller, William H.; Cotton, Stephen J.

    2016-01-01

    It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory—e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states—and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.

  16. Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasi-classical approach to the full electronic density matrix.

    Science.gov (United States)

    Miller, William H; Cotton, Stephen J

    2016-08-28

    It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory-e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states-and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.

  17. Communication: Wigner functions in action-angle variables, Bohr-Sommerfeld quantization, the Heisenberg correspondence principle, and a symmetrical quasi-classical approach to the full electronic density matrix

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William H., E-mail: millerwh@berkeley.edu; Cotton, Stephen J., E-mail: StephenJCotton47@gmail.com [Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-08-28

    It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory—e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states—and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.

  18. A program for calculating load coefficient matrices utilizing the force summation method, L218 (LOADS). Volume 1: Engineering and usage

    Science.gov (United States)

    Miller, R. D.; Anderson, L. R.

    1979-01-01

    The LOADS program L218, a digital computer program that calculates dynamic load coefficient matrices utilizing the force summation method, is described. The load equations are derived for a flight vehicle in straight and level flight and excited by gusts and/or control motions. In addition, sensor equations are calculated for use with an active control system. The load coefficient matrices are calculated for the following types of loads: translational and rotational accelerations, velocities, and displacements; panel aerodynamic forces; net panel forces; shears and moments. Program usage and a brief description of the analysis used are presented. A description of the design and structure of the program to aid those who will maintain and/or modify the program in the future is included.

  19. On some aspects of the semiclassical approach to giant resonances of rotating nuclei

    International Nuclear Information System (INIS)

    Winter, J.

    1985-01-01

    Quadrupole and isovector dipole resonances of rotating nuclei are investigated in the frame-work of Vlasov equations transformed to a rotating system of reference, which are based on the time-dependent Hartree-method for schematic forces. The parameter free model of the self-consistent vibrating harmonic oscillator potential for the quadrupole mode is extended to a coupling to rotation, which also includes large amplitude behaviour. A generalization to an exactly solvable two-liquid model describing the isovector mode is established; for rotating nuclei Hilton's explicit result for the eigenfrequencies is obtained. - The advantage of using the concept of the classical kinetic momentum in a rotating system also in quantum-mechanical descriptions is demonstrated. It completes the standard transformation of density matrices by a time-odd part realized in a phase-factor and permits a more direct interpretation of rotation effects in terms of the classical forces of inertia. - In its generalization from constant angular velocity to constant angular momentum, our model is used to demonstrate that cranking calculations of rotating giant resonances should be corrected for an oscillation of the cranking parameter to assure angular-momentum conservation. (orig.)

  20. Group inverses of M-matrices and their applications

    CERN Document Server

    Kirkland, Stephen J

    2013-01-01

    Group inverses for singular M-matrices are useful tools not only in matrix analysis, but also in the analysis of stochastic processes, graph theory, electrical networks, and demographic models. Group Inverses of M-Matrices and Their Applications highlights the importance and utility of the group inverses of M-matrices in several application areas. After introducing sample problems associated with Leslie matrices and stochastic matrices, the authors develop the basic algebraic and spectral properties of the group inverse of a general matrix. They then derive formulas for derivatives of matrix f

  1. Near-threshold infrared photodetachment of Al-: A determination of the electron affinity of aluminum and the range of validity of the Wigner law

    International Nuclear Information System (INIS)

    Calabrese, D.; Covington, A.M.; Thompson, J.S.; Marawar, R.W.; Farley, J.W.

    1996-01-01

    The relative photodetachment cross section of Al - has been measured in the wavelength range 2420 endash 2820 nm (0.440 endash 0.512 eV), using a coaxial ion-laser beams apparatus, in which a 2.98-keV Al - beam is merged with a beam from an F-center laser. The cross-section data near the 3 P 0,1,2 → 2 P 1/2,3/2 photodetachment threshold have been fitted to the Wigner threshold law and to the zero-core-contribution theory of photodetachment. The electron affinity of aluminum was determined to be 0.44094(+0.00066/-0.00048) eV, after correcting the experimental threshold for unresolved fine structure in the ground states of Al - and Al. The new measurement is in agreement with the best previous measurement (0.441±0.010 eV) and is 20 times more precise. The Wigner law agrees with experiment within a few percent for photon energies within 3% of threshold. A proposed leading correction to the Wigner law is discussed. copyright 1996 The American Physical Society

  2. Homogenisation of a Wigner-Seitz cell in two group diffusion theory

    International Nuclear Information System (INIS)

    Allen, F.R.

    1968-02-01

    Two group diffusion theory is used to develop a theory for the homogenisation of a Wigner-Seitz cell, neglecting azimuthal flux components of higher order than dipoles. An iterative method of solution is suggested for linkage with reactor calculations. The limiting theory for no cell leakage leads to cell edge flux normalisation of cell parameters, the current design method for SGHW reactor design calculations. Numerical solutions are presented for a cell-plus-environment model with monopoles only. The results demonstrate the exact theory in comparison with the approximate recipes of normalisation to cell edge, moderator average, or cell average flux levels. (author)

  3. Characterization of tomographically faithful states in terms of their Wigner function

    International Nuclear Information System (INIS)

    D'Ariano, G M; Sacchi, M F

    2005-01-01

    A bipartite quantum state is tomographically faithful when it can be used as an input of a quantum operation acting on one of the two quantum systems, such that the joint output state carries complete information about the operation itself. Tomographically faithful states are a necessary ingredient for the tomography of quantum operations and for complete quantum calibration of measuring apparatuses. In this paper we provide a complete classification of such states for continuous variables in terms of the Wigner function of the state. For two-mode Gaussian states faithfulness simply resorts to correlation between the modes

  4. Wigner distribution function of Hermite-cosine-Gaussian beams through an apertured optical system.

    Science.gov (United States)

    Sun, Dong; Zhao, Daomu

    2005-08-01

    By introducing the hard-aperture function into a finite sum of complex Gaussian functions, the approximate analytical expressions of the Wigner distribution function for Hermite-cosine-Gaussian beams passing through an apertured paraxial ABCD optical system are obtained. The analytical results are compared with the numerically integrated ones, and the absolute errors are also given. It is shown that the analytical results are proper and that the calculation speed for them is much faster than for the numerical results.

  5. Inference for High-dimensional Differential Correlation Matrices.

    Science.gov (United States)

    Cai, T Tony; Zhang, Anru

    2016-01-01

    Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed.

  6. Wigner's function and other distribution functions in mock phase space

    International Nuclear Information System (INIS)

    Balazs, N.L.

    1984-01-01

    This review deals with the methods of associating functions with quantum mechanical operators in such a manner that these functions should furnish conveniently semiclassical approximations. We present a unified treatment of methods and results which usually appear under expressions such as Wigner's function. Weyl's association, Kirkwood's expansion, Glauber's coherent state representation, etc.; we also construct some new associations. Section 1 gives the motivation by discussing the Thomas-Fermi theory of an atom with this end in view. Section 2 introduce new operators which resemble Dirac delta functions with operator arguments, the operators being the momenta and coordinates. Reasons are given as to why this should be useful. Next we introduce the notion of an operator basis, and discuss the possibility and usefulness of writing an operator as a linear combination of the basis operators. The coefficients in the linear combination are c-numbers and the c-numbers are associated with the operator (in that particularly basis). The delta function type operators introduced before can be used as a basis for the dynamical operators, and the c-numbers obtained in this manner turn out to be the c-number functions used by Wigner, Weyl, Krikwood, Glauber, etc. New bases and associations can now be invented at will. One such new basis is presented and discussed. The reason and motivations for choosing different bases is then explained. The copious and seemingly random mathematical relations between these functions are then nothing else but the relations between the expansion coefficients engendered by the relations between bases. These are shown and discussed in this light. A brief discussion is then given to possible transformation of the p, q labels. Section 3 gives examples of how the semiclassical expansions are generated for these functions and exhibits their equivalence. The mathematical paraphernalia are collected in the appendices. (orig.)

  7. Diagonalization of the mass matrices

    International Nuclear Information System (INIS)

    Rhee, S.S.

    1984-01-01

    It is possible to make 20 types of 3x3 mass matrices which are hermitian. We have obtained unitary matrices which could diagonalize each mass matrix. Since the three elements of mass matrix can be expressed in terms of the three eigenvalues, msub(i), we can also express the unitary matrix in terms of msub(i). (Author)

  8. The Nuclear Scissors Mode by Two Approaches (Wigner Function Moments Versus RPA)

    CERN Document Server

    Balbutsev, E B

    2004-01-01

    Two complementary methods to describe the collective motion, RPA and Wigner Function Moments (WFM) method, are compared on an example of a simple model - harmonic oscillator with quadrupole-quadrupole residual interaction. It is shown that they give identical formulae for eigenfrequencies and transition probabilities of all collective excitations of the model including the scissors mode, which is a subject of our especial attention. The normalization factor of the "synthetic" scissors state and its overlap with physical states are calculated analytically. The orthogonality of the spurious state to all physical states is proved rigorously.

  9. Four-Component Scattering Power Decomposition Algorithm with Rotation of Covariance Matrix Using ALOS-PALSAR Polarimetric Data

    Directory of Open Access Journals (Sweden)

    Yasuhiro Nakamura

    2012-07-01

    Full Text Available The present study introduces the four-component scattering power decomposition (4-CSPD algorithm with rotation of covariance matrix, and presents an experimental proof of the equivalence between the 4-CSPD algorithms based on rotation of covariance matrix and coherency matrix. From a theoretical point of view, the 4-CSPD algorithms with rotation of the two matrices are identical. Although it seems obvious, no experimental evidence has yet been presented. In this paper, using polarimetric synthetic aperture radar (POLSAR data acquired by Phased Array L-band SAR (PALSAR on board of Advanced Land Observing Satellite (ALOS, an experimental proof is presented to show that both algorithms indeed produce identical results.

  10. The construction of factorized S-matrices

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.

    1981-01-01

    We study the relationships between factorized S-matrices given as representations of the Zamolodchikov algebra and exactly solvable models constructed using the Baxter method. Several new examples of symmetric and non-symmetric factorized S-matrices are proposed. (orig.)

  11. Discrete space structure of the sl(1 vertical bar 3) Wigner quantum oscillator

    International Nuclear Information System (INIS)

    King, R.C.; Palev, T.D.; Stoilova, N.I.; Jeugt, J. van der

    2002-09-01

    The properties of a noncanonical 3D Wigner quantum oscillator, whose position and momentum operators generate the Lie superalgebra sl(1 vertical bar 3), are further investigated. Within each state space W(p), p=1,2,..., the energy E q , q=0,1,2,3, takes no more than 4 different values. If the oscillator is in a stationary state ψ q is an element of W(p) then measurements of the non-commuting Cartesian coordinates of the particle are such that their allowed values are consistent with it being found at a finite number of sites, called 'nests'. These lie on a sphere centered on the origin of fixed, finite radius p q . The nests themselves are at the vertices of a rectangular parallelepiped. In the typical cases (p>2) the number of nests is 8 for q=0 and 3, and varies from 8 to 24, depending on the state, for q=1 and 2. The number of nests is less in the atypical cases (p=1,2), but it is never less than two. In certain states in W(2) (resp. in W(1)) the oscillator is 'polarized' so that all the nests lie on a plane (resp. on a line). The particle cannot be localized in any one of the available nests alone since the coordinates do not commute. The probabilities of measuring particular values of the coordinates are discussed. The mean trajectories and the standard deviations of the coordinates and momenta are computed, and conclusions are drawn about uncertainty relations. The rotational invariance of the system is also discussed. (author)

  12. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures.

    Science.gov (United States)

    Széchenyi, Gábor; Vigh, Máté; Kormányos, Andor; Cserti, József

    2016-09-21

    To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model.

  13. Matrices in Engineering Problems

    CERN Document Server

    Tobias, Marvin

    2011-01-01

    This book is intended as an undergraduate text introducing matrix methods as they relate to engineering problems. It begins with the fundamentals of mathematics of matrices and determinants. Matrix inversion is discussed, with an introduction of the well known reduction methods. Equation sets are viewed as vector transformations, and the conditions of their solvability are explored. Orthogonal matrices are introduced with examples showing application to many problems requiring three dimensional thinking. The angular velocity matrix is shown to emerge from the differentiation of the 3-D orthogo

  14. About SIC POVMs and discrete Wigner distributions

    International Nuclear Information System (INIS)

    Colin, Samuel; Corbett, John; Durt, Thomas; Gross, David

    2005-01-01

    A set of d 2 vectors in a Hilbert space of dimension d is called equiangular if each pair of vectors encloses the same angle. The projection operators onto these vectors define a POVM which is distinguished by its high degree of symmetry. Measures of this kind are called symmetric informationally complete, or SIC POVMs for short, and could be applied for quantum state tomography. Despite its simple geometrical description, the problem of constructing SIC POVMs or even proving their existence seems to be very hard. It is our purpose to introduce two applications of discrete Wigner functions to the analysis of the problem at hand. First, we will present a method for identifying symmetries of SIC POVMs under Clifford operations. This constitutes an alternative approach to a structure described before by Zauner and Appleby. Further, a simple and geometrically motivated construction for an SIC POVM in dimensions two and three is given (which, unfortunately, allows no generalization). Even though no new structures are found, we hope that the re-formulation of the problem may prove useful for future inquiries

  15. The role of scalar product and Wigner distribution in optical and quantum mechanical measurements

    International Nuclear Information System (INIS)

    Wodkiewicz, K.

    1984-01-01

    In this paper we present a unified approach to the phase-space description of optical and quantum measurements. We find that from the operational point of view the notion of a time dependent spectrum of light and a joint measurement of position and momentum in quantum mechanics can be formulated in one common approach in which the scalar product, the Wigner function and the phase-space proximity are closely related to a realistic measuring process

  16. Wigner-Kirkwood expansion of the quasi-elastic nuclear responses and application to spin-isospin responses

    International Nuclear Information System (INIS)

    Chanfray, G.

    1988-01-01

    We derive a semi-classical Wigner-Kirkwood expansion (Planck constant expansion) of the linear response functions. We find that the semi-classical results compare very well to the quantum mechanical calculations. We apply our formalism to the spin-isospin responses and show that surface-peaked Planck constant 2 corrections considerably decrease the ratio longitudinal/transverse as obtained through the Los Alamos (longitudinal momentum) experiment

  17. A Brief Historical Introduction to Matrices and Their Applications

    Science.gov (United States)

    Debnath, L.

    2014-01-01

    This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…

  18. Hypercyclic Abelian Semigroups of Matrices on Cn

    International Nuclear Information System (INIS)

    Ayadi, Adlene; Marzougui, Habib

    2010-07-01

    We give a complete characterization of existence of dense orbit for any abelian semigroup of matrices on C n . For finitely generated semigroups, this characterization is explicit and is used to determine the minimal number of matrices in normal form over C which forms a hypercyclic abelian semigroup on C n . In particular, we show that no abelian semigroup generated by n matrices on C n can be hypercyclic. (author)

  19. Generalized Perron--Frobenius Theorem for Nonsquare Matrices

    OpenAIRE

    Avin, Chen; Borokhovich, Michael; Haddad, Yoram; Kantor, Erez; Lotker, Zvi; Parter, Merav; Peleg, David

    2013-01-01

    The celebrated Perron--Frobenius (PF) theorem is stated for irreducible nonnegative square matrices, and provides a simple characterization of their eigenvectors and eigenvalues. The importance of this theorem stems from the fact that eigenvalue problems on such matrices arise in many fields of science and engineering, including dynamical systems theory, economics, statistics and optimization. However, many real-life scenarios give rise to nonsquare matrices. A natural question is whether the...

  20. Formal matrices

    CERN Document Server

    Krylov, Piotr

    2017-01-01

    This monograph is a comprehensive account of formal matrices, examining homological properties of modules over formal matrix rings and summarising the interplay between Morita contexts and K theory. While various special types of formal matrix rings have been studied for a long time from several points of view and appear in various textbooks, for instance to examine equivalences of module categories and to illustrate rings with one-sided non-symmetric properties, this particular class of rings has, so far, not been treated systematically. Exploring formal matrix rings of order 2 and introducing the notion of the determinant of a formal matrix over a commutative ring, this monograph further covers the Grothendieck and Whitehead groups of rings. Graduate students and researchers interested in ring theory, module theory and operator algebras will find this book particularly valuable. Containing numerous examples, Formal Matrices is a largely self-contained and accessible introduction to the topic, assuming a sol...

  1. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.

    Science.gov (United States)

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.

  2. Rotation associated with product of two Lorentz transformations

    International Nuclear Information System (INIS)

    Van Wyk, C.B.

    1984-01-01

    In the usual presentation of the Lorentz transformation there is an almost complete absence of the use of products of these transformations. One of the reasons for this appears to be the large amount of calculation involved when multi-plying the 4X4 matrices of the vector representation of the Lorentz transformation. In the article this problem is partly cleared up by using the coordinate free two-component spinor representation of rotations and Lorentz transformations. It is also shown that the theory derived in the article can be applied to Thomas precission in a very simple and direct way

  3. The Collected Works of Eugene Paul Wigner Historical, Philosophical, and Socio-Political Papers

    CERN Document Server

    Wigner, Eugene Paul

    2001-01-01

    Not only was EP Wigner one of the most active creators of 20th century physics, he was also always interested in expressing his opinion in philosophical, political or sociological matters This volume of his collected works covers a wide selection of his essays about science and society, about himself and his colleagues Annotated by J Mehra, this volume will become an important source of reference for historians of science, and it will be pleasant reading for every physicist interested in forming ideas in modern physics

  4. THE ALGORITHM AND PROGRAM OF M-MATRICES SEARCH AND STUDY

    Directory of Open Access Journals (Sweden)

    Y. N. Balonin

    2013-05-01

    Full Text Available The algorithm and software for search and study of orthogonal bases matrices – minimax matrices (M-matrix are considered. The algorithm scheme is shown, comments on calculation blocks are given, and interface of the MMatrix software system developed with participation of the authors is explained. The results of the universal algorithm work are presented as Hadamard matrices, Belevitch matrices (C-matrices, conference matrices and matrices of even and odd orders complementary and closely related to those ones by their properties, in particular, the matrix of the 22-th order for which there is no C-matrix. Examples of portraits for alternative matrices of the 255-th and the 257-th orders are given corresponding to the sequences of Mersenne and Fermat numbers. A new way to get Hadamard matrices is explained, different from the previously known procedures based on iterative processes and calculations of Lagrange symbols, with theoretical and practical meaning.

  5. The modified Gauss diagonalization of polynomial matrices

    International Nuclear Information System (INIS)

    Saeed, K.

    1982-10-01

    The Gauss algorithm for diagonalization of constant matrices is modified for application to polynomial matrices. Due to this modification the diagonal elements become pure polynomials rather than rational functions. (author)

  6. Quantum Hilbert matrices and orthogonal polynomials

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Berg, Christian

    2009-01-01

    Using the notion of quantum integers associated with a complex number q≠0 , we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little q -Jacobi polynomials when |q|<1 , and for the special value they are closely related to Hankel matrice...

  7. Discrete canonical transforms that are Hadamard matrices

    International Nuclear Information System (INIS)

    Healy, John J; Wolf, Kurt Bernardo

    2011-01-01

    The group Sp(2,R) of symplectic linear canonical transformations has an integral kernel which has quadratic and linear phases, and which is realized by the geometric paraxial optical model. The discrete counterpart of this model is a finite Hamiltonian system that acts on N-point signals through N x N matrices whose elements also have a constant absolute value, although they do not form a representation of that group. Those matrices that are also unitary are Hadamard matrices. We investigate the manifolds of these N x N matrices under the Sp(2,R) equivalence imposed by the model, and find them to be on two-sided cosets. By means of an algorithm we determine representatives that lead to collections of mutually unbiased bases.

  8. Abel-grassmann's groupoids of modulo matrices

    International Nuclear Information System (INIS)

    Javaid, Q.; Awan, M.D.; Naqvi, S.H.A.

    2016-01-01

    The binary operation of usual addition is associative in all matrices over R. However, a binary operation of addition in matrices over Z/sub n/ of a nonassociative structures of AG-groupoids and AG-groups are defined and investigated here. It is shown that both these structures exist for every integer n >≥ 3. Various properties of these structures are explored like: (i) Every AG-groupoid of matrices over Z/sub n/ is transitively commutative AG-groupoid and is a cancellative AG-groupoid if n is prime. (ii) Every AG-groupoid of matrices over Z/sub n/ of Type-II is a T/sup 3/-AG-groupoid. (iii) An AG-groupoid of matrices over Z/sub n/ ; G /sub nAG/(t,u), is an AG-band, if t+u=1(mod n). (author)

  9. Free probability and random matrices

    CERN Document Server

    Mingo, James A

    2017-01-01

    This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.

  10. Quantum matrices in two dimensions

    International Nuclear Information System (INIS)

    Ewen, H.; Ogievetsky, O.; Wess, J.

    1991-01-01

    Quantum matrices in two-dimensions, admitting left and right quantum spaces, are classified: they fall into two families, the 2-parametric family GL p,q (2) and a 1-parametric family GL α J (2). Phenomena previously found for GL p,q (2) hold in this general situation: (a) powers of quantum matrices are again quantum and (b) entries of the logarithm of a two-dimensional quantum matrix form a Lie algebra. (orig.)

  11. Transfer matrix approach for the Kerr and Faraday rotation in layered nanostructures

    International Nuclear Information System (INIS)

    Széchenyi, Gábor; Vigh, Máté; Cserti, József; Kormányos, Andor

    2016-01-01

    To study the optical rotation of the polarization of light incident on multilayer systems consisting of atomically thin conductors and dielectric multilayers we present a general method based on transfer matrices. The transfer matrix of the atomically thin conducting layer is obtained using the Maxwell equations. We derive expressions for the Kerr (Faraday) rotation angle and for the ellipticity of the reflected (transmitted) light as a function of the incident angle and polarization of the light. The method is demonstrated by calculating the Kerr (Faraday) angle for bilayer graphene in the quantum anomalous Hall state placed on the top of dielectric multilayers. The optical conductivity of the bilayer graphene is calculated in the framework of a four-band model. (paper)

  12. Salecker-Wigner-Peres clock, Feynman paths, and a tunneling time that should not exist

    Science.gov (United States)

    Sokolovski, D.

    2017-08-01

    The Salecker-Wigner-Peres (SWP) clock is often used to determine the duration a quantum particle is supposed to spend in a specified region of space Ω . By construction, the result is a real positive number, and the method seems to avoid the difficulty of introducing complex time parameters, which arises in the Feynman paths approach. However, it tells little about the particle's motion. We investigate this matter further, and show that the SWP clock, like any other Larmor clock, correlates the rotation of its angular momentum with the durations τ , which the Feynman paths spend in Ω , thereby destroying interference between different durations. An inaccurate weakly coupled clock leaves the interference almost intact, and the need to resolve the resulting "which way?" problem is one of the main difficulties at the center of the "tunnelling time" controversy. In the absence of a probability distribution for the values of τ , the SWP results are expressed in terms of moduli of the "complex times," given by the weighted sums of the corresponding probability amplitudes. It is shown that overinterpretation of these results, by treating the SWP times as physical time intervals, leads to paradoxes and should be avoided. We also analyze various settings of the SWP clock, different calibration procedures, and the relation between the SWP results and the quantum dwell time. The cases of stationary tunneling and tunnel ionization are considered in some detail. Although our detailed analysis addresses only one particular definition of the duration of a tunneling process, it also points towards the impossibility of uniting various time parameters, which may occur in quantum theory, within the concept of a single tunnelling time.

  13. Synchronous correlation matrices and Connes’ embedding conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Dykema, Kenneth J., E-mail: kdykema@math.tamu.edu [Department of Mathematics, Texas A& M University, College Station, Texas 77843-3368 (United States); Paulsen, Vern, E-mail: vern@math.uh.edu [Department of Mathematics, University of Houston, Houston, Texas 77204 (United States)

    2016-01-15

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.

  14. Realm of Matrices

    Indian Academy of Sciences (India)

    IAS Admin

    harmonic analysis and complex analysis, in ... gebra describes not only the study of linear transforma- tions and .... special case of the Jordan canonical form of matrices. ..... Richard Bronson, Schaum's Outline Series Theory And Problems Of.

  15. Virial expansion for almost diagonal random matrices

    Science.gov (United States)

    Yevtushenko, Oleg; Kravtsov, Vladimir E.

    2003-08-01

    Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\

  16. Transient Dynamic Response of Delaminated Composite Rotating Shallow Shells Subjected to Impact

    Directory of Open Access Journals (Sweden)

    Amit Karmakar

    2006-01-01

    Full Text Available In this paper a transient dynamic finite element analysis is presented to study the response of delaminated composite pretwisted rotating shallow shells subjected to low velocity normal impact. Lagrange's equation of motion is used to derive the dynamic equilibrium equation and moderate rotational speeds are considered wherein the Coriolis effect is negligible. An eight noded isoparametric plate bending element is employed in the finite element formulation incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. To satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front a multipoint constraint algorithm is incorporated which leads to unsymmetric stiffness matrices. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark's time integration algorithm. Parametric studies are performed in respect of location of delamination, angle of twist and rotational speed for centrally impacted graphite-epoxy composite cylindrical shells.

  17. Rotational and fine structure of open-shell molecules in nearly degenerate electronic states

    Science.gov (United States)

    Liu, Jinjun

    2018-03-01

    An effective Hamiltonian without symmetry restriction has been developed to model the rotational and fine structure of two nearly degenerate electronic states of an open-shell molecule. In addition to the rotational Hamiltonian for an asymmetric top, this spectroscopic model includes the energy separation between the two states due to difference potential and zero-point energy difference, as well as the spin-orbit (SO), Coriolis, and electron spin-molecular rotation (SR) interactions. Hamiltonian matrices are computed using orbitally and fully symmetrized case (a) and case (b) basis sets. Intensity formulae and selection rules for rotational transitions between a pair of nearly degenerate states and a nondegenerate state have also been derived using all four basis sets. It is demonstrated using real examples of free radicals that the fine structure of a single electronic state can be simulated with either a SR tensor or a combination of SO and Coriolis constants. The related molecular constants can be determined precisely only when all interacting levels are simulated simultaneously. The present study suggests that analysis of rotational and fine structure can provide quantitative insights into vibronic interactions and related effects.

  18. Wigner Transport Simulation of Resonant Tunneling Diodes with Auxiliary Quantum Wells

    Science.gov (United States)

    Lee, Joon-Ho; Shin, Mincheol; Byun, Seok-Joo; Kim, Wangki

    2018-03-01

    Resonant-tunneling diodes (RTDs) with auxiliary quantum wells ( e.g., emitter prewell, subwell, and collector postwell) are studied using a Wigner transport equation (WTE) discretized by a thirdorder upwind differential scheme. A flat-band potential profile is used for the WTE simulation. Our calculations revealed functions of the auxiliary wells as follows: The prewell increases the current density ( J) and the peak voltage ( V p ) while decreasing the peak-to-valley current ratio (PVCR), and the postwell decreases J while increasing the PVCR. The subwell affects J and PVCR, but its main effect is to decrease V p . When multiple auxiliary wells are used, each auxiliary well contributes independently to the transport without producing side effects.

  19. Chequered surfaces and complex matrices

    International Nuclear Information System (INIS)

    Morris, T.R.; Southampton Univ.

    1991-01-01

    We investigate a large-N matrix model involving general complex matrices. It can be reinterpreted as a model of two hermitian matrices with specific couplings, and as a model of positive definite hermitian matrices. Large-N perturbation theory generates dynamical triangulations in which the triangles can be chequered (i.e. coloured so that neighbours are opposite colours). On a sphere there is a simple relation between such triangulations and those generated by the single hermitian matrix model. For the torus (and a quartic potential) we solve the counting problem for the number of triangulations that cannot be quechered. The critical physics of chequered triangulations is the same as that of the hermitian matrix model. We show this explicitly by solving non-perturbatively pure two-dimensional ''chequered'' gravity. The interpretative framework given here applies to a number of other generalisations of the hermitian matrix model. (orig.)

  20. The Wigner distribution function in modal characterisation

    CSIR Research Space (South Africa)

    Mredlana, Prince

    2016-07-01

    Full Text Available function in modal characterisation P. MREDLANA1, D. NAIDOO1, C MAFUSIRE2, T. KRUGER2, A. DUDLEY1,3, A. FORBES1,3 1CSIR National Laser Centre, PO BOX 395, Pretoria 0001, South Africa. 2Department of Physics, Faculty of Natural and Agricultural..., the Wigner distribution of 𝑓 𝑥 is an integral of the correlation function 𝑓 𝑥 + 1 2 𝑥′ 𝑓 ∗ 𝑥 + 1 2 𝑥′ represented as: 𝑊𝑓 𝑥, 𝑒 = 𝑓 𝑥 + 1 2 𝑥′ 𝑓 ∗ 𝑥 + 1 2 𝑥′ 𝑒−𝑖𝑒𝑥′𝑑ð...

  1. Intrinsic Density Matrices of the Nuclear Shell Model

    International Nuclear Information System (INIS)

    Deveikis, A.; Kamuntavichius, G.

    1996-01-01

    A new method for calculation of shell model intrinsic density matrices, defined as two-particle density matrices integrated over the centre-of-mass position vector of two last particles and complemented with isospin variables, has been developed. The intrinsic density matrices obtained are completely antisymmetric, translation-invariant, and do not employ a group-theoretical classification of antisymmetric states. They are used for exact realistic density matrix expansion within the framework of the reduced Hamiltonian method. The procedures based on precise arithmetic for calculation of the intrinsic density matrices that involve no numerical diagonalization or orthogonalization have been developed and implemented in the computer code. (author). 11 refs., 2 tabs

  2. Aharonov-Bohm oscillations with fractional period in a multichannel Wigner crystal ring

    International Nuclear Information System (INIS)

    Krive, I.V.; Krokhin, A.A.

    1997-01-01

    We study the persistent current in a quasi 1D ring with strongly correlated electrons forming a multichannel Wigner crystal (WC). The influence of the Coulomb interaction manifests itself only in the presence of external scatterers that pin the WC. Two regimes of weak and strong pinning are considered. For strong pinning we predict the Aharonov-Bohm oscillations with fractional period. Fractionalization is due to the interchannel coupling in the process of quantum tunneling of the WC. The fractional period depends on the filling of the channels and may serve as an indicator of non-Fermi-liquid behaviour of interacting electrons in quasi 1D rings. (author). 20 refs

  3. Random matrices and random difference equations

    International Nuclear Information System (INIS)

    Uppuluri, V.R.R.

    1975-01-01

    Mathematical models leading to products of random matrices and random difference equations are discussed. A one-compartment model with random behavior is introduced, and it is shown how the average concentration in the discrete time model converges to the exponential function. This is of relevance to understanding how radioactivity gets trapped in bone structure in blood--bone systems. The ideas are then generalized to two-compartment models and mammillary systems, where products of random matrices appear in a natural way. The appearance of products of random matrices in applications in demography and control theory is considered. Then random sequences motivated from the following problems are studied: constant pulsing and random decay models, random pulsing and constant decay models, and random pulsing and random decay models

  4. Quantum Entanglement and Reduced Density Matrices

    Science.gov (United States)

    Purwanto, Agus; Sukamto, Heru; Yuwana, Lila

    2018-05-01

    We investigate entanglement and separability criteria of multipartite (n-partite) state by examining ranks of its reduced density matrices. Firstly, we construct the general formula to determine the criterion. A rank of origin density matrix always equals one, meanwhile ranks of reduced matrices have various ranks. Next, separability and entanglement criterion of multipartite is determined by calculating ranks of reduced density matrices. In this article we diversify multipartite state criteria into completely entangled state, completely separable state, and compound state, i.e. sub-entangled state and sub-entangledseparable state. Furthermore, we also shorten the calculation proposed by the previous research to determine separability of multipartite state and expand the methods to be able to differ multipartite state based on criteria above.

  5. Malware analysis using visualized image matrices.

    Science.gov (United States)

    Han, KyoungSoo; Kang, BooJoong; Im, Eul Gyu

    2014-01-01

    This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.

  6. Malware Analysis Using Visualized Image Matrices

    Directory of Open Access Journals (Sweden)

    KyoungSoo Han

    2014-01-01

    Full Text Available This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.

  7. Production and characterization of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices

    Energy Technology Data Exchange (ETDEWEB)

    Zepon, Karine Modolon [CIMJECT, Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); TECFARMA, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil); Petronilho, Fabricia [FICEXP, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil); Soldi, Valdir [POLIMAT, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Salmoria, Gean Vitor [CIMJECT, Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Kanis, Luiz Alberto, E-mail: luiz.kanis@unisul.br [TECFARMA, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil)

    2014-11-01

    The production and evaluation of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices are reported herein. The matrices were melt extruded under nine different conditions, altering the temperature and the screw speed values. The surface morphology of the matrices was examined by scanning electron microscopy. The micrographs revealed the presence of non-melted silver sulfadiazine microparticles in the matrices extruded at lower temperature and screw speed values. The thermal properties were evaluated and the results for both the biopolymer and the drug indicated no thermal degradation during the melt extrusion process. The differential scanning analysis of the extrudate matrices showed a shift to lower temperatures for the silver sulfadiazine melting point compared with the non-extruded drug. The starch/cellulose acetate matrices containing silver sulfadiazine demonstrated significant inhibition of the growth of Pseudomonas aeruginosa and Staphylococcus aureus. In vivo inflammatory response tests showed that the extrudate matrices, with or without silver sulfadiazine, did not trigger chronic inflammatory processes. - Highlights: • Melt extruded bio-based matrices containing silver sulfadiazine was produced. • The silver sulfadiazine is stable during melt-extrusion. • The extrudate matrices shown bacterial growth inhibition. • The matrices obtained have potential to development wound healing membranes.

  8. Polynomial sequences generated by infinite Hessenberg matrices

    Directory of Open Access Journals (Sweden)

    Verde-Star Luis

    2017-01-01

    Full Text Available We show that an infinite lower Hessenberg matrix generates polynomial sequences that correspond to the rows of infinite lower triangular invertible matrices. Orthogonal polynomial sequences are obtained when the Hessenberg matrix is tridiagonal. We study properties of the polynomial sequences and their corresponding matrices which are related to recurrence relations, companion matrices, matrix similarity, construction algorithms, and generating functions. When the Hessenberg matrix is also Toeplitz the polynomial sequences turn out to be of interpolatory type and we obtain additional results. For example, we show that every nonderogative finite square matrix is similar to a unique Toeplitz-Hessenberg matrix.

  9. Wigner-Smith delay times and the non-Hermitian Hamiltonian for the HOCl molecule

    International Nuclear Information System (INIS)

    Barr, A.M.; Reichl, L.E.

    2013-01-01

    We construct the scattering matrix for a two-dimensional model of a Cl atom scattering from an OH dimer. We show that the scattering matrix can be written in terms of a non-Hermitian Hamiltonian whose complex energy eigenvalues can be used to compute Wigner-Smith delay times for the Cl-OH scattering process. We compute the delay times for a range of energies, and show that the scattering states with the longest delay times are strongly influenced by unstable periodic orbits in the classical dynamics. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Exact and quasi-classical density matrix and Wigner functions for a particle in the box and half space

    Science.gov (United States)

    Akhundova, E. A.; Dodonov, V. V.; Manko, V. I.

    1993-01-01

    The exact expressions for density matrix and Wigner functions of quantum systems are known only in special cases. Corresponding Hamiltonians are quadratic forms of Euclidean coordinates and momenta. In this paper we consider the problem of one-dimensional free particle movement in the bounded region 0 is less than x is less than a (including the case a = infinity).

  11. S-matrices and integrability

    International Nuclear Information System (INIS)

    Bombardelli, Diego

    2016-01-01

    In these notes we review the S-matrix theory in (1+1)-dimensional integrable models, focusing mainly on the relativistic case. Once the main definitions and physical properties are introduced, we discuss the factorization of scattering processes due to integrability. We then focus on the analytic properties of the two-particle scattering amplitude and illustrate the derivation of the S-matrices for all the possible bound states using the so-called bootstrap principle. General algebraic structures underlying the S-matrix theory and its relation with the form factors axioms are briefly mentioned. Finally, we discuss the S-matrices of sine-Gordon and SU (2), SU (3) chiral Gross–Neveu models. (topical review)

  12. Matrices Aléatoires Tri-diagonales et Par Blocs.

    OpenAIRE

    MEKKI, Slimane

    2014-01-01

    Dans ce mémoire l'étude porte sur la densité de matrice aléatoire, les densités des valeurs propres d'une matrice pour les trois ensembles G.O.E, G.U.E, G.S.E. Après nous avons explicité les formules des densités de valeurs propres des matrices tri-diagonales dans les cas HERMITE et LAGUERRE Des simulations sur les constantes de normalisations pour les densités des matrices aléatoires ou des valeurs propres sont présentées.

  13. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.

    Science.gov (United States)

    Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2012-06-01

    Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Accelerating Matrix-Vector Multiplication on Hierarchical Matrices Using Graphical Processing Units

    KAUST Repository

    Boukaram, W.

    2015-03-25

    Large dense matrices arise from the discretization of many physical phenomena in computational sciences. In statistics very large dense covariance matrices are used for describing random fields and processes. One can, for instance, describe distribution of dust particles in the atmosphere, concentration of mineral resources in the earth\\'s crust or uncertain permeability coefficient in reservoir modeling. When the problem size grows, storing and computing with the full dense matrix becomes prohibitively expensive both in terms of computational complexity and physical memory requirements. Fortunately, these matrices can often be approximated by a class of data sparse matrices called hierarchical matrices (H-matrices) where various sub-blocks of the matrix are approximated by low rank matrices. These matrices can be stored in memory that grows linearly with the problem size. In addition, arithmetic operations on these H-matrices, such as matrix-vector multiplication, can be completed in almost linear time. Originally the H-matrix technique was developed for the approximation of stiffness matrices coming from partial differential and integral equations. Parallelizing these arithmetic operations on the GPU has been the focus of this work and we will present work done on the matrix vector operation on the GPU using the KSPARSE library.

  15. The Antitriangular Factorization of Saddle Point Matrices

    KAUST Repository

    Pestana, J.

    2014-01-01

    Mastronardi and Van Dooren [SIAM J. Matrix Anal. Appl., 34 (2013), pp. 173-196] recently introduced the block antitriangular ("Batman") decomposition for symmetric indefinite matrices. Here we show the simplification of this factorization for saddle point matrices and demonstrate how it represents the common nullspace method. We show that rank-1 updates to the saddle point matrix can be easily incorporated into the factorization and give bounds on the eigenvalues of matrices important in saddle point theory. We show the relation of this factorization to constraint preconditioning and how it transforms but preserves the structure of block diagonal and block triangular preconditioners. © 2014 Society for Industrial and Applied Mathematics.

  16. Charged Fermions Tunneling from a Rotating Charged Black Hole in 5-Dimensional Gauged Supergravity

    International Nuclear Information System (INIS)

    Li Huiling; Lin Rong; Wang Chuanyin

    2010-01-01

    Recent research shows that Hawking radiation from black hole horizon can be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framework, choosing a set of appropriate matrices γ μ is an important technique for fermions tunneling method. In this paper, motivated by Kerner and Man's fermions tunneling method of 4 dimension black holes, we further improve the analysis to investigate Hawking tunneling radiation from a rotating charged black hole in 5-dimensional gauged supergravity by constructing a set of appropriate matrices γ μ for general covariant Dirac equation. Finally, the expected Hawking temperature of the black hole is correctly recovered, which takes the same form as that obtained by other methods. This method is universal, and can also be directly extend to the other different-type 5-dimensional charged black holes.

  17. Graphs and matrices

    CERN Document Server

    Bapat, Ravindra B

    2014-01-01

    This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reo...

  18. Bayesian Nonparametric Clustering for Positive Definite Matrices.

    Science.gov (United States)

    Cherian, Anoop; Morellas, Vassilios; Papanikolopoulos, Nikolaos

    2016-05-01

    Symmetric Positive Definite (SPD) matrices emerge as data descriptors in several applications of computer vision such as object tracking, texture recognition, and diffusion tensor imaging. Clustering these data matrices forms an integral part of these applications, for which soft-clustering algorithms (K-Means, expectation maximization, etc.) are generally used. As is well-known, these algorithms need the number of clusters to be specified, which is difficult when the dataset scales. To address this issue, we resort to the classical nonparametric Bayesian framework by modeling the data as a mixture model using the Dirichlet process (DP) prior. Since these matrices do not conform to the Euclidean geometry, rather belongs to a curved Riemannian manifold,existing DP models cannot be directly applied. Thus, in this paper, we propose a novel DP mixture model framework for SPD matrices. Using the log-determinant divergence as the underlying dissimilarity measure to compare these matrices, and further using the connection between this measure and the Wishart distribution, we derive a novel DPM model based on the Wishart-Inverse-Wishart conjugate pair. We apply this model to several applications in computer vision. Our experiments demonstrate that our model is scalable to the dataset size and at the same time achieves superior accuracy compared to several state-of-the-art parametric and nonparametric clustering algorithms.

  19. On Skew Circulant Type Matrices Involving Any Continuous Fibonacci Numbers

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    inverse matrices of them by constructing the transformation matrices. Furthermore, the maximum column sum matrix norm, the spectral norm, the Euclidean (or Frobenius norm, and the maximum row sum matrix norm and bounds for the spread of these matrices are given, respectively.

  20. Immanant Conversion on Symmetric Matrices

    Directory of Open Access Journals (Sweden)

    Purificação Coelho M.

    2014-01-01

    Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.

  1. The introduction of hydrogen bond and hydrophobicity effects into the rotational isomeric states model for conformational analysis of unfolded peptides

    Science.gov (United States)

    Engin, Ozge; Sayar, Mehmet; Erman, Burak

    2009-03-01

    Relative contributions of local and non-local interactions to the unfolded conformations of peptides are examined by using the rotational isomeric states model which is a Markov model based on pairwise interactions of torsion angles. The isomeric states of a residue are well described by the Ramachandran map of backbone torsion angles. The statistical weight matrices for the states are determined by molecular dynamics simulations applied to monopeptides and dipeptides. Conformational properties of tripeptides formed from combinations of alanine, valine, tyrosine and tryptophan are investigated based on the Markov model. Comparison with molecular dynamics simulation results on these tripeptides identifies the sequence-distant long-range interactions that are missing in the Markov model. These are essentially the hydrogen bond and hydrophobic interactions that are obtained between the first and the third residue of a tripeptide. A systematic correction is proposed for incorporating these long-range interactions into the rotational isomeric states model. Preliminary results suggest that the Markov assumption can be improved significantly by renormalizing the statistical weight matrices to include the effects of the long-range correlations.

  2. The introduction of hydrogen bond and hydrophobicity effects into the rotational isomeric states model for conformational analysis of unfolded peptides

    International Nuclear Information System (INIS)

    Engin, Ozge; Sayar, Mehmet; Erman, Burak

    2009-01-01

    Relative contributions of local and non-local interactions to the unfolded conformations of peptides are examined by using the rotational isomeric states model which is a Markov model based on pairwise interactions of torsion angles. The isomeric states of a residue are well described by the Ramachandran map of backbone torsion angles. The statistical weight matrices for the states are determined by molecular dynamics simulations applied to monopeptides and dipeptides. Conformational properties of tripeptides formed from combinations of alanine, valine, tyrosine and tryptophan are investigated based on the Markov model. Comparison with molecular dynamics simulation results on these tripeptides identifies the sequence-distant long-range interactions that are missing in the Markov model. These are essentially the hydrogen bond and hydrophobic interactions that are obtained between the first and the third residue of a tripeptide. A systematic correction is proposed for incorporating these long-range interactions into the rotational isomeric states model. Preliminary results suggest that the Markov assumption can be improved significantly by renormalizing the statistical weight matrices to include the effects of the long-range correlations

  3. The 'golden' matrices and a new kind of cryptography

    International Nuclear Information System (INIS)

    Stakhov, A.P.

    2007-01-01

    We consider a new class of square matrices called the 'golden' matrices. They are a generalization of the classical Fibonacci Q-matrix for continuous domain. The 'golden' matrices can be used for creation of a new kind of cryptography called the 'golden' cryptography. The method is very fast and simple for technical realization and can be used for cryptographic protection of digital signals (telecommunication and measurement systems)

  4. Advanced incomplete factorization algorithms for Stiltijes matrices

    Energy Technology Data Exchange (ETDEWEB)

    Il`in, V.P. [Siberian Division RAS, Novosibirsk (Russian Federation)

    1996-12-31

    The modern numerical methods for solving the linear algebraic systems Au = f with high order sparse matrices A, which arise in grid approximations of multidimensional boundary value problems, are based mainly on accelerated iterative processes with easily invertible preconditioning matrices presented in the form of approximate (incomplete) factorization of the original matrix A. We consider some recent algorithmic approaches, theoretical foundations, experimental data and open questions for incomplete factorization of Stiltijes matrices which are {open_quotes}the best{close_quotes} ones in the sense that they have the most advanced results. Special attention is given to solving the elliptic differential equations with strongly variable coefficients, singular perturbated diffusion-convection and parabolic equations.

  5. Quality parameters analysis of optical imaging systems with enhanced focal depth using the Wigner distribution function

    Science.gov (United States)

    Zalvidea; Colautti; Sicre

    2000-05-01

    An analysis of the Strehl ratio and the optical transfer function as imaging quality parameters of optical elements with enhanced focal length is carried out by employing the Wigner distribution function. To this end, we use four different pupil functions: a full circular aperture, a hyper-Gaussian aperture, a quartic phase plate, and a logarithmic phase mask. A comparison is performed between the quality parameters and test images formed by these pupil functions at different defocus distances.

  6. On the Eigenvalues and Eigenvectors of Block Triangular Preconditioned Block Matrices

    KAUST Repository

    Pestana, Jennifer

    2014-01-01

    Block lower triangular matrices and block upper triangular matrices are popular preconditioners for 2×2 block matrices. In this note we show that a block lower triangular preconditioner gives the same spectrum as a block upper triangular preconditioner and that the eigenvectors of the two preconditioned matrices are related. © 2014 Society for Industrial and Applied Mathematics.

  7. On Investigating GMRES Convergence using Unitary Matrices

    Czech Academy of Sciences Publication Activity Database

    Duintjer Tebbens, Jurjen; Meurant, G.; Sadok, H.; Strakoš, Z.

    2014-01-01

    Roč. 450, 1 June (2014), s. 83-107 ISSN 0024-3795 Grant - others:GA AV ČR(CZ) M100301201; GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : GMRES convergence * unitary matrices * unitary spectra * normal matrices * Krylov residual subspace * Schur parameters Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014

  8. The isotropic local Wigner-Seitz model: An accurate theoretical model for the quasi-free electron energy in fluids

    Science.gov (United States)

    Evans, Cherice; Findley, Gary L.

    The quasi-free electron energy V0 (ρ) is important in understanding electron transport through a fluid, as well as for modeling electron attachment reactions in fluids. Our group has developed an isotropic local Wigner-Seitz model that allows one to successfully calculate the quasi-free electron energy for a variety of atomic and molecular fluids from low density to the density of the triple point liquid with only a single adjustable parameter. This model, when coupled with the quasi-free electron energy data and the thermodynamic data for the fluids, also can yield optimized intermolecular potential parameters and the zero kinetic energy electron scattering length. In this poster, we give a review of the isotropic local Wigner-Seitz model in comparison to previous theoretical models for the quasi-free electron energy. All measurements were performed at the University of Wisconsin Synchrotron Radiation Center. This work was supported by a Grants from the National Science Foundation (NSF CHE-0956719), the Petroleum Research Fund (45728-B6 and 5-24880), the Louisiana Board of Regents Support Fund (LEQSF(2006-09)-RD-A33), and the Professional Staff Congress City University of New York.

  9. "G.P.S Matrices" programme: A method to improve the mastery level of social science students in matrices operations

    Science.gov (United States)

    Lee, Ken Voon

    2013-04-01

    The purpose of this action research was to increase the mastery level of Form Five Social Science students in Tawau II National Secondary School in the operations of addition, subtraction and multiplication of matrices in Mathematics. A total of 30 students were involved. Preliminary findings through the analysis of pre-test results and questionnaire had identified the main problem faced in which the students felt confused with the application of principles of the operations of matrices when performing these operations. Therefore, an action research was conducted using an intervention programme called "G.P.S Matrices" to overcome the problem. This programme was divided into three phases. 'Gift of Matrices' phase aimed at forming matrix teaching aids. The second and third phases were 'Positioning the Elements of Matrices' and 'Strenghtening the Concept of Matrices'. These two phases were aimed at increasing the level of understanding and memory of the students towards the principles of matrix operations. Besides, this third phase was also aimed at creating an interesting learning environment. A comparison between the results of pre-test and post-test had shown a remarkable improvement in students' performances after implementing the programme. In addition, the analysis of interview findings also indicated a positive feedback on the changes in students' attitude, particularly in the aspect of students' understanding level. Moreover, the level of students' memory also increased following the use of the concrete matrix teaching aids created in phase one. Besides, teachers felt encouraging when conducive learning environment was created through students' presentation activity held in third phase. Furthermore, students were voluntarily involved in these student-centred activities. In conclusion, this research findings showed an increase in the mastery level of students in these three matrix operations and thus the objective of the research had been achieved.

  10. Quantum entanglement and special relativity

    International Nuclear Information System (INIS)

    Nishikawa, Yoshihisa

    2008-01-01

    Quantum entanglement was suggested by Einstein to indicate that quantum mechanics was incomplete. However, against Einstein's expectation, the phenomenon due to quantum entanglement has been verified by experiments. Recently, in quantum information theory, it has been also treated as a resource for quantum teleportation and so on. In around 2000, it is recognized that quantum correlations between two particles of one pair state in an entangled spin-state are affected by the non-trivial effect due to the successive Lorentz transformation. This relativistic effect is called the Wigner rotation. The Wigner rotation has to been taken into account when we observe spin-correlation of moving particles in a different coordinate frame. In this paper, first, we explain quantum entanglement and its modification due to the Wigner rotation. After that, we introduce an extended model instead of one pair state model. In the extended model, quantum entanglement state is prepared as a superposition state of various pair states. We have computed the von Neumann entropy and the Shannon entropy to see the global behavior of variation for the spin correlation due to the relativistic effect. We also discuss distinguishability between the two particles of the pair. (author)

  11. Prometeo I. A program for averaging thermal constants over a Wigner-Wilkins flux spectrum on the Univac UCT of J.E.N.; Prometo I. Progrma para promediar las constantes termicas con el espectro Wigner-Wikins en la Univac UCT de la J.E.N.

    Energy Technology Data Exchange (ETDEWEB)

    Corella, M R; Iglesias, T

    1964-07-01

    The Prometeo I program for the Univac UCT of J.E.N., determines the spectrum of thermal neutrons in equilibrium with a hydrogen-moderated homogeneous mixture from the Wigner-Wilkins differential equation, and averages various, cross sections over the spectrum. The present cross section libraries, available for the Prometeo I , are tabulated. (Author) 4 refs.

  12. Formation of Schrödinger-cat states in the Morse potential: Wigner function picture.

    Science.gov (United States)

    Foldi, Peter; Czirjak, Attila; Molnar, Balazs; Benedict, Mihaly

    2002-04-22

    We investigate the time evolution of Morse coherent states in the potential of the NO molecule. We present animated wave functions and Wigner functions of the system exhibiting spontaneous formation of Schrödinger-cat states at certain stages of the time evolution. These nonclassical states are coherent superpositions of two localized states corresponding to two di.erent positions of the center of mass. We analyze the degree of nonclassicality as the function of the expectation value of the position in the initial state. Our numerical calculations are based on a novel, essentially algebraic treatment of the Morse potential.

  13. A benchmark study of the Signed-particle Monte Carlo algorithm for the Wigner equation

    Directory of Open Access Journals (Sweden)

    Muscato Orazio

    2017-12-01

    Full Text Available The Wigner equation represents a promising model for the simulation of electronic nanodevices, which allows the comprehension and prediction of quantum mechanical phenomena in terms of quasi-distribution functions. During these years, a Monte Carlo technique for the solution of this kinetic equation has been developed, based on the generation and annihilation of signed particles. This technique can be deeply understood in terms of the theory of pure jump processes with a general state space, producing a class of stochastic algorithms. One of these algorithms has been validated successfully by numerical experiments on a benchmark test case.

  14. Different Rols of Modified Organoclay in Deformation Mechanism Control of Polymeric Matrices

    Directory of Open Access Journals (Sweden)

    Babak Akbari

    2014-04-01

    Full Text Available The effect of organically modified clay on the structure and deformation mechanism of polymeric matrices was investigated. For this purpose, the role of organoclay in deformation control of polymeric matrices, with different deformation mechanisms, has been studied methodically in order to determine a relationship between the structure and deformation mechanisms. In this respect polypropylene and polystyrene composites systems were designed using montmorillonite through melt intercalation technique using a twin, co-rotating extruder with starve feeding system. Also an epoxy was employed to design a nanocomposite system prepared by in-situ polymerization technique. The structure and deformation mechanism of nanocomposites were investigated using appropriate techniques. X-Ray diffraction and transmission electron microscopy were used to explore the structure of various systems while, the reflection and transmission optical microscopy were used in order to study their corresponding deformation mechanisms. The bulk polymer was also studied for its deformation mechanism by reflection optical microscopy and the notch tip of the samples were examined by transmission optical microscopy. The results of experiments showed that organoclays acted as initiator sites for shear yielding mechanism as the dominant deformation mechanism in epoxies. It may be noted that, these particles may act as initiator sites for crazing, the dominant deformation mechanism of polystyrene, and alter the mechanism from local to massive. In polypropylene systems, which may exhibit both shear yielding and crazing organoclays can facilitate or postpone both mechanisms in different conditions, related to PP morphology and other conditions.

  15. CONVERGENCE OF POWERS OF CONTROLLABLE INTUITIONISTIC FUZZY MATRICES

    OpenAIRE

    Riyaz Ahmad Padder; P. Murugadas

    2016-01-01

    Convergences of powers of controllable intuitionistic fuzzy matrices have been stud¬ied. It is shown that they oscillate with period equal to 2, in general. Some equalities and sequences of inequalities about powers of controllable intuitionistic fuzzy matrices have been obtained.

  16. Rotated Walsh-Hadamard Spreading with Robust Channel Estimation for a Coded MC-CDMA System

    Directory of Open Access Journals (Sweden)

    Raulefs Ronald

    2004-01-01

    Full Text Available We investigate rotated Walsh-Hadamard spreading matrices for a broadband MC-CDMA system with robust channel estimation in the synchronous downlink. The similarities between rotated spreading and signal space diversity are outlined. In a multiuser MC-CDMA system, possible performance improvements are based on the chosen detector, the channel code, and its Hamming distance. By applying rotated spreading in comparison to a standard Walsh-Hadamard spreading code, a higher throughput can be achieved. As combining the channel code and the spreading code forms a concatenated code, the overall minimum Hamming distance of the concatenated code increases. This asymptotically results in an improvement of the bit error rate for high signal-to-noise ratio. Higher convolutional channel code rates are mostly generated by puncturing good low-rate channel codes. The overall Hamming distance decreases significantly for the punctured channel codes. Higher channel code rates are favorable for MC-CDMA, as MC-CDMA utilizes diversity more efficiently compared to pure OFDMA. The application of rotated spreading in an MC-CDMA system allows exploiting diversity even further. We demonstrate that the rotated spreading gain is still present for a robust pilot-aided channel estimator. In a well-designed system, rotated spreading extends the performance by using a maximum likelihood detector with robust channel estimation at the receiver by about 1 dB.

  17. SU(4)

    Indian Academy of Sciences (India)

    Abstract. We introduce in this paper embedded Gaussian unitary ensemble of random matrices, for m fermions in Ω number of single particle orbits, generated by random two- body interactions that are SU(4) scalar, called EGUE(2)-SU(4). Here the SU(4) algebra corresponds to Wigner's supermultiplet SU(4) symmetry in ...

  18. Loop diagrams without γ matrices

    International Nuclear Information System (INIS)

    McKeon, D.G.C.; Rebhan, A.

    1993-01-01

    By using a quantum-mechanical path integral to compute matrix elements of the form left-angle x|exp(-iHt)|y right-angle, radiative corrections in quantum-field theory can be evaluated without encountering loop-momentum integrals. In this paper we demonstrate how Dirac γ matrices that occur in the proper-time ''Hamiltonian'' H lead to the introduction of a quantum-mechanical path integral corresponding to a superparticle analogous to one proposed recently by Fradkin and Gitman. Direct evaluation of this path integral circumvents many of the usual algebraic manipulations of γ matrices in the computation of quantum-field-theoretical Green's functions involving fermions

  19. Classification en référence à une matrice stochastique

    OpenAIRE

    Verdun , Stéphane; Cariou , Véronique; Qannari , El Mostafa

    2009-01-01

    International audience; Etant donné un tableau de données X portant sur un ensemble de n objets, et une matrice stochastique S qui peut être assimilée à une matrice de transition d'une chaîne de Markov, nous proposons une méthode de partitionnement consistant à appliquer la matrice S sur X de manière itérative jusqu'à convergence. Les classes formant la partition sont déterminées à partir des états stationnaires de la matrice stochastique. Cette matrice stochastique peut être issue d'une matr...

  20. Relationship between the Wigner function and the probability density function in quantum phase space representation

    International Nuclear Information System (INIS)

    Li Qianshu; Lue Liqiang; Wei Gongmin

    2004-01-01

    This paper discusses the relationship between the Wigner function, along with other related quasiprobability distribution functions, and the probability density distribution function constructed from the wave function of the Schroedinger equation in quantum phase space, as formulated by Torres-Vega and Frederick (TF). At the same time, a general approach in solving the wave function of the Schroedinger equation of TF quantum phase space theory is proposed. The relationship of the wave functions between the TF quantum phase space representation and the coordinate or momentum representation is thus revealed

  1. Rotation of quantum impurities in the presence of a many-body environment

    Science.gov (United States)

    Lemeshko, Mikhail; Schmidt, Richard

    2015-05-01

    Pioneered by the seminal works of Wigner and Racah, the quantum theory of angular momentum evolved into a powerful machinery, commonly used to classify the states of isolated quantum systems and perturbations to their structure due to electromagnetic or crystalline fields. In ``realistic'' experiments, however, quantum systems are almost inevitably coupled to a many-particle environment and a field of elementary excitations associated with it, which is capable of fundamentally altering the physics of the system. We present the first systematic treatment of quantum rotation coupled to a many-particle environment. By using a series of canonical transformations on a generic microscopic Hamiltonian, we single out the conserved quantities of the problem. Using a variational ansatz accounting for an infinite number of many-body excitations, we characterize the spectrum of angular momentum eigenstates and identify the regions of instability, accompanied by emission of angular Cerenkov radiation. The developed technique can be applied to a wide range of systems described by the angular momentum algebra, from Rydberg atoms immersed into BEC's, to cold molecules solvated in helium droplets, to ultracold molecular ions.

  2. Capture Matrices Handbook

    Science.gov (United States)

    2014-04-01

    materials, the affinity ligand would need identification , as well as chemistries that graft the affinity ligand onto the surface of magnetic...ACTIVE CAPTURE MATRICES FOR THE DETECTION/ IDENTIFICATION OF PHARMACEUTICALS...6 As shown in Figure 2.3-1a, the spectra exhibit similar baselines and the spectral peaks lineup . Under these circumstances, the spectral

  3. Binary Positive Semidefinite Matrices and Associated Integer Polytopes

    DEFF Research Database (Denmark)

    Letchford, Adam N.; Sørensen, Michael Malmros

    2012-01-01

    We consider the positive semidefinite (psd) matrices with binary entries, along with the corresponding integer polytopes. We begin by establishing some basic properties of these matrices and polytopes. Then, we show that several families of integer polytopes in the literature-the cut, boolean qua...

  4. Progress in Application of Generalized Wigner Distribution to Growth and Other Problems

    Science.gov (United States)

    Einstein, T. L.; Morales-Cifuentes, Josue; Pimpinelli, Alberto; Gonzalez, Diego Luis

    We recap the use of the (single-parameter) Generalized Wigner Distribution (GWD) to analyze capture-zone distributions associated with submonolayer epitaxial growth. We discuss recent applications to physical systems, as well as key simulations. We pay particular attention to how this method compares with other methods to assess the critical nucleus size characterizing growth. The following talk discusses a particular case when special insight is needed to reconcile the various methods. We discuss improvements that can be achieved by going to a 2-parameter fragmentation approach. At a much larger scale we have applied this approach to various distributions in socio-political phenomena (areas of secondary administrative units [e.g., counties] and distributions of subway stations). Work at UMD supported by NSF CHE 13-05892.

  5. On the dilute gas two particle density matrices of p--H2 and He4

    International Nuclear Information System (INIS)

    Weres, O.

    1976-01-01

    In the preceding paper we demonstrated that the reduced two- particle density matrix of simple quantum liquids could profitably be re-expressed in terms of a Taylor expansion of its logarithm about the diagonal. In the present publication we examine the Taylor coefficients which arise when the dilute gas two particle density matrix is expanded in this way. In particular, we evaluate the leading coefficients of p-H 2 and He 4 exactly and extend the Wigner--Kirkwood approximation to provided approximate expressions for them. We demonstrate how these approximate expressions may be applied to yield results superior to those yielded by the ordinary Wigner--Kirkwood approximation. In an appendix we demonstrate how the Block equation for the dilute gas two particle density matrix may be reduced to an equivalent closed set of equations for the leading Taylor coefficients

  6. Chain of matrices, loop equations and topological recursion

    CERN Document Server

    Orantin, Nicolas

    2009-01-01

    Random matrices are used in fields as different as the study of multi-orthogonal polynomials or the enumeration of discrete surfaces. Both of them are based on the study of a matrix integral. However, this term can be confusing since the definition of a matrix integral in these two applications is not the same. These two definitions, perturbative and non-perturbative, are discussed in this chapter as well as their relation. The so-called loop equations satisfied by integrals over random matrices coupled in chain is discussed as well as their recursive solution in the perturbative case when the matrices are Hermitean.

  7. Theoretical Properties for Neural Networks with Weight Matrices of Low Displacement Rank

    OpenAIRE

    Zhao, Liang; Liao, Siyu; Wang, Yanzhi; Li, Zhe; Tang, Jian; Pan, Victor; Yuan, Bo

    2017-01-01

    Recently low displacement rank (LDR) matrices, or so-called structured matrices, have been proposed to compress large-scale neural networks. Empirical results have shown that neural networks with weight matrices of LDR matrices, referred as LDR neural networks, can achieve significant reduction in space and computational complexity while retaining high accuracy. We formally study LDR matrices in deep learning. First, we prove the universal approximation property of LDR neural networks with a ...

  8. The Modern Origin of Matrices and Their Applications

    Science.gov (United States)

    Debnath, L.

    2014-01-01

    This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…

  9. Flux Jacobian Matrices For Equilibrium Real Gases

    Science.gov (United States)

    Vinokur, Marcel

    1990-01-01

    Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.

  10. Data depth and rank-based tests for covariance and spectral density matrices

    KAUST Repository

    Chau, Joris

    2017-06-26

    In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.

  11. Data depth and rank-based tests for covariance and spectral density matrices

    KAUST Repository

    Chau, Joris; Ombao, Hernando; Sachs, Rainer von

    2017-01-01

    In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.

  12. Almost commuting self-adjoint matrices: The real and self-dual cases

    Science.gov (United States)

    Loring, Terry A.; Sørensen, Adam P. W.

    2016-08-01

    We show that a pair of almost commuting self-adjoint, symmetric matrices is close to a pair of commuting self-adjoint, symmetric matrices (in a uniform way). Moreover, we prove that the same holds with self-dual in place of symmetric and also for paths of self-adjoint matrices. Since a symmetric, self-adjoint matrix is real, we get a real version of Huaxin Lin’s famous theorem on almost commuting matrices. Similarly, the self-dual case gives a version for matrices over the quaternions. To prove these results, we develop a theory of semiprojectivity for real C*-algebras and also examine various definitions of low-rank for real C*-algebras.

  13. Rovibrational states of Wigner molecules in spherically symmetric confining potentials

    Energy Technology Data Exchange (ETDEWEB)

    Cioslowski, Jerzy [Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland and Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, D-01187 Dresden (Germany)

    2016-08-07

    The strong-localization limit of three-dimensional Wigner molecules, in which repulsively interacting particles are confined by a weak spherically symmetric potential, is investigated. An explicit prescription for computation of rovibrational wavefunctions and energies that are asymptotically exact at this limit is presented. The prescription is valid for systems with arbitrary angularly-independent interparticle and confining potentials, including those involving Coulombic and screened (i.e., Yukawa/Debye) interactions. The necessary derivations are greatly simplified by explicit constructions of the Eckart frame and the parity-adapted primitive wavefunctions. The performance of the new formalism is illustrated with the three- and four-electron harmonium atoms at their strong-correlation limits. In particular, the involvement of vibrational modes with the E symmetry is readily pinpointed as the origin of the “anomalous” weak-confinement behavior of the {sup 1}S{sub +} state of the four-electron species that is absent in its {sup 1}D{sub +} companion of the strong-confinement regime.

  14. Forecasting Covariance Matrices: A Mixed Frequency Approach

    DEFF Research Database (Denmark)

    Halbleib, Roxana; Voev, Valeri

    This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows for flexi......This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows...... for flexible dependence patterns for volatilities and correlations, and can be applied to covariance matrices of large dimensions. The separate modeling of volatility and correlation forecasts considerably reduces the estimation and measurement error implied by the joint estimation and modeling of covariance...

  15. Propositional matrices as alternative representation of truth values ...

    African Journals Online (AJOL)

    The paper considered the subject of representation of truth values in symbolic logic. An alternative representation was given based on the rows and columns properties of matrices, with the operations involving the logical connectives subjected to the laws of algebra of propositions. Matrices of various propositions detailing ...

  16. Time evolution of the coarse-graining-smoothed Wigner operator in an amplitude dissipative channel: from a pure state to a mixed state

    International Nuclear Information System (INIS)

    He, Rui; Fan, Hong-yi

    2014-01-01

    Based on the solution to the master equation of the density operator describing the amplitude dissipative channel, we derive the time evolution law of the coarse-graining-smoothed Wigner operator in this channel, which demonstrates how an initial pure state evolves into a mixed state, exhibiting decoherence

  17. Wishart and anti-Wishart random matrices

    International Nuclear Information System (INIS)

    Janik, Romuald A; Nowak, Maciej A

    2003-01-01

    We provide a compact exact representation for the distribution of the matrix elements of the Wishart-type random matrices A † A, for any finite number of rows and columns of A, without any large N approximations. In particular, we treat the case when the Wishart-type random matrix contains redundant, non-random information, which is a new result. This representation is of interest for a procedure for reconstructing the redundant information hidden in Wishart matrices, with potential applications to numerous models based on biological, social and artificial intelligence networks

  18. Information geometry of density matrices and state estimation

    International Nuclear Information System (INIS)

    Brody, Dorje C

    2011-01-01

    Given a pure state vector |x) and a density matrix ρ-hat, the function p(x|ρ-hat)= defines a probability density on the space of pure states parameterised by density matrices. The associated Fisher-Rao information measure is used to define a unitary invariant Riemannian metric on the space of density matrices. An alternative derivation of the metric, based on square-root density matrices and trace norms, is provided. This is applied to the problem of quantum-state estimation. In the simplest case of unitary parameter estimation, new higher-order corrections to the uncertainty relations, applicable to general mixed states, are derived. (fast track communication)

  19. Ionic and Wigner Glasses, Superionic Conductors, and Spinodal Electrostatic Gels: Dynamically Arrested Phases of the Primitive Model

    International Nuclear Information System (INIS)

    Sanchez-Diaz, L. E.; Juarez-Maldonado, R.; Vizcarra-Rendon, A.

    2009-01-01

    Based on the recently proposed self-consistent generalized Langevin equation theory of dynamic arrest, in this letter we show that the ergodic-nonergodic phase diagram of a classical mixture of charged hard spheres (the so-called 'primitive model' of ionic solutions and molten salts) includes arrested phases corresponding to nonconducting ionic glasses, partially arrested states that represent solid electrolytes (or 'superionic' conductors), low-density colloidal Wigner glasses, and low-density electrostatic gels associated with arrested spinodal decomposition.

  20. Supercritical fluid extraction behaviour of polymer matrices

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2007-01-01

    Organic compounds present in polymeric matrices such as neoprene, surgical gloves and PVC were co-extracted during the removal of uranium using supercritical fluid extraction (SFE) technique. Hence SFE studies of these matrices were carried out to establish the extracted species using HPLC, IR and mass spectrometry techniques. The initial study indicated that uranium present in the extract could be purified from the co-extracted organic species. (author)

  1. Experimental evidence for a Mott-Wigner glass phase of magnetite above the Verwey temperature

    International Nuclear Information System (INIS)

    Boekema, C.; Lichti, R.L.; Chan, K.C.B.; Brabers, V.A.M.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.

    1986-01-01

    New muon-spin-relaxation (μSR) results on magnetite are reported and discussed in light of earlier Moessbauer, neutron, and μSR results. Modification of the μSR anomaly (observed at 247 K in zero field), when an external magnetic field is applied, provides evidence that the anomaly results from cross relaxation between the muon Larmor precession and the electron-correlation process in the B sublattice. The combined results strongly indicate that phonon-assisted electron hopping is the principal conduction mechanism above the Verwey transition temperature (T/sub V/). Together with theoretical evidence, these data support Mott's suggestion that above T/sub V/ magnetite is in the Wigner-glass state

  2. Creation, Storage, and On-Demand Release of Optical Quantum States with a Negative Wigner Function

    Directory of Open Access Journals (Sweden)

    Jun-ichi Yoshikawa

    2013-12-01

    Full Text Available Highly nonclassical quantum states of light, characterized by Wigner functions with negative values, have been all-optically created so far only in a heralded fashion. In this case, the desired output emerges rarely and randomly from a quantum-state generator. An important example is the heralded production of high-purity single-photon states, typically based on some nonlinear optical interaction. In contrast, on-demand single-photon sources are also reported, exploiting the quantized level structure of matter systems. These sources, however, lead to highly impure output states, composed mostly of vacuum. While such impure states may still exhibit certain single-photon-like features such as antibunching, they are not nonclassical enough for advanced quantum-information processing. On the other hand, the intrinsic randomness of pure, heralded states can be circumvented by first storing and then releasing them on demand. Here, we propose such a controlled release, and we experimentally demonstrate it for heralded single photons. We employ two optical cavities, where the photons are both created and stored inside one cavity and finally released through a dynamical tuning of the other cavity. We demonstrate storage times of up to 300 ns while keeping the single-photon purity around 50% after storage. Our experiment is the first demonstration of a negative Wigner function at the output of an on-demand photon source or a quantum memory. In principle, our storage system is compatible with all kinds of nonclassical states, including those known to be essential for many advanced quantum-information protocols.

  3. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  4. Meet and Join Matrices in the Poset of Exponential Divisors

    Indian Academy of Sciences (India)

    ... exponential divisor ( G C E D ) and the least common exponential multiple ( L C E M ) do not always exist. In this paper we embed this poset in a lattice. As an application we study the G C E D and L C E M matrices, analogues of G C D and L C M matrices, which are both special cases of meet and join matrices on lattices.

  5. Wigner's little group as a gauge generator in linearized gravity theories

    International Nuclear Information System (INIS)

    Scaria, Tomy; Chakraborty, Biswajit

    2002-01-01

    We show that the translational subgroup of Wigner's little group for massless particles in 3 + 1 dimensions generates gauge transformation in linearized Einstein gravity. Similarly, a suitable representation of the one-dimensional translational group T(1) is shown to generate gauge transformation in the linearized Einstein-Chern-Simons theory in 2 + 1 dimensions. These representations are derived systematically from appropriate representations of translational groups which generate gauge transformations in gauge theories living in spacetime of one higher dimension by the technique of dimensional descent. The unified picture thus obtained is compared with a similar picture available for vector gauge theories in 3 + 1 and 2 + 1 dimensions. Finally, the polarization tensor of the Einstein-Pauli-Fierz theory in 2 + 1 dimensions is shown to split into the polarization tensors of a pair of Einstein-Chern-Simons theories with opposite helicities suggesting a doublet structure for the Einstein-Pauli-Fierz theory

  6. Scale magnetic effect in quantum electrodynamics and the Wigner-Weyl formalism

    Science.gov (United States)

    Chernodub, M. N.; Zubkov, M. A.

    2017-09-01

    The scale magnetic effect (SME) is the generation of electric current due to a conformal anomaly in an external magnetic field in curved spacetime. The effect appears in a vacuum with electrically charged massless particles. Similarly to the Hall effect, the direction of the induced anomalous current is perpendicular to the direction of the external magnetic field B and to the gradient of the conformal factor τ , while the strength of the current is proportional to the beta function of the theory. In massive electrodynamics the SME remains valid, but the value of the induced current differs from the current generated in the system of massless fermions. In the present paper we use the Wigner-Weyl formalism to demonstrate that in accordance with the decoupling property of heavy fermions the corresponding anomalous conductivity vanishes in the large-mass limit with m2≫|e B | and m ≫|∇τ | .

  7. The Fractional Fourier Transform and Its Application to Energy Localization Problems

    Directory of Open Access Journals (Sweden)

    ter Morsche Hennie G

    2003-01-01

    Full Text Available Applying the fractional Fourier transform (FRFT and the Wigner distribution on a signal in a cascade fashion is equivalent to a rotation of the time and frequency parameters of the Wigner distribution. We presented in ter Morsche and Oonincx, 2002, an integral representation formula that yields affine transformations on the spatial and frequency parameters of the -dimensional Wigner distribution if it is applied on a signal with the Wigner distribution as for the FRFT. In this paper, we show how this representation formula can be used to solve certain energy localization problems in phase space. Examples of such problems are given by means of some classical results. Although the results on localization problems are classical, the application of generalized Fourier transform enlarges the class of problems that can be solved with traditional techniques.

  8. Joint Estimation of Multiple Precision Matrices with Common Structures.

    Science.gov (United States)

    Lee, Wonyul; Liu, Yufeng

    Estimation of inverse covariance matrices, known as precision matrices, is important in various areas of statistical analysis. In this article, we consider estimation of multiple precision matrices sharing some common structures. In this setting, estimating each precision matrix separately can be suboptimal as it ignores potential common structures. This article proposes a new approach to parameterize each precision matrix as a sum of common and unique components and estimate multiple precision matrices in a constrained l 1 minimization framework. We establish both estimation and selection consistency of the proposed estimator in the high dimensional setting. The proposed estimator achieves a faster convergence rate for the common structure in certain cases. Our numerical examples demonstrate that our new estimator can perform better than several existing methods in terms of the entropy loss and Frobenius loss. An application to a glioblastoma cancer data set reveals some interesting gene networks across multiple cancer subtypes.

  9. Implementation of the CCGM approximation for surface diffraction using Wigner R-matrix theory

    International Nuclear Information System (INIS)

    Lauderdale, J.G.; McCurdy, C.W.

    1983-01-01

    The CCGM approximation for surface scattering proposed by Cabrera, Celli, Goodman, and Manson [Surf. Sci. 19, 67 (1970)] is implemented for realistic surface interaction potentials using Wigner R-matrix theory. The resulting procedure is highly efficient computationally and is in no way limited to hard wall or purely repulsive potentials. Comparison is made with the results of close-coupling calculations of other workers which include the same diffraction channels in order to fairly evaluate the CCGM approximation which is an approximation to the coupled channels Lippman--Schwinger equation for the T matrix. The shapes of selective adsorption features, whether maxima or minima, in the scattered intensity are well represented in this approach for cases in which the surface corrugation is not too strong

  10. Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices

    Science.gov (United States)

    Böttcher, A.; Bogoya, J. M.; Grudsky, S. M.; Maximenko, E. A.

    2017-11-01

    Analysis of the asymptotic behaviour of the spectral characteristics of Toeplitz matrices as the dimension of the matrix tends to infinity has a history of over 100 years. For instance, quite a number of versions of Szegő's theorem on the asymptotic behaviour of eigenvalues and of the so-called strong Szegő theorem on the asymptotic behaviour of the determinants of Toeplitz matrices are known. Starting in the 1950s, the asymptotics of the maximum and minimum eigenvalues were actively investigated. However, investigation of the individual asymptotics of all the eigenvalues and eigenvectors of Toeplitz matrices started only quite recently: the first papers on this subject were published in 2009-2010. A survey of this new field is presented here. Bibliography: 55 titles.

  11. Representation of the quantum Fourier transform on multilevel basic elements by a sequence of selective rotation operators

    Science.gov (United States)

    Ermilov, A. S.; Zobov, V. E.

    2007-12-01

    To experimentally realize quantum computations on d-level basic elements (qudits) at d > 2, it is necessary to develop schemes for the technical realization of elementary logical operators. We have found sequences of selective rotation operators that represent the operators of the quantum Fourier transform (Walsh-Hadamard matrices) for d = 3-10. For the prime numbers 3, 5, and 7, the well-known method of linear algebra is applied, whereas, for the factorable numbers 6, 9, and 10, the representation of virtual spins is used (which we previously applied for d = 4, 8). Selective rotations can be realized, for example, by means of pulses of an RF magnetic field for systems of quadrupole nuclei or laser pulses for atoms and ions in traps.

  12. On the norms of r-circulant matrices with generalized Fibonacci numbers

    Directory of Open Access Journals (Sweden)

    Amara Chandoul

    2017-01-01

    Full Text Available In this paper, we obtain a generalization of [6, 8]. Firstly, we consider the so-called r-circulant matrices with generalized Fibonacci numbers and then found lower and upper bounds for the Euclidean and spectral norms of these matrices. Afterwards, we present some bounds for the spectral norms of Hadamard and Kronecker product of these matrices.

  13. Giant Faraday Rotation through Ultrasmall Fe0 n Clusters in Superparamagnetic FeO-SiO2 Vitreous Films.

    Science.gov (United States)

    Nakatsuka, Yuko; Pollok, Kilian; Wieduwilt, Torsten; Langenhorst, Falko; Schmidt, Markus A; Fujita, Koji; Murai, Shunsuke; Tanaka, Katsuhisa; Wondraczek, Lothar

    2017-04-01

    Magnetooptical (MO) glasses and, in particular, Faraday rotators are becoming key components in lasers and optical information processing, light switching, coding, filtering, and sensing. The common design of such Faraday rotator materials follows a simple path: high Faraday rotation is achieved by maximizing the concentration of paramagnetic ion species in a given matrix material. However, this approach has reached its limits in terms of MO performance; hence, glass-based materials can presently not be used efficiently in thin film MO applications. Here, a novel strategy which overcomes this limitation is demonstrated. Using vitreous films of x FeO·(100 - x )SiO 2 , unusually large Faraday rotation has been obtained, beating the performance of any other glassy material by up to two orders of magnitude. It is shown that this is due to the incorporation of small, ferromagnetic clusters of atomic iron which are generated in line during laser deposition and rapid condensation of the thin film, generating superparamagnetism. The size of these clusters underbids the present record of metallic Fe incorporation and experimental verification in glass matrices.

  14. An algorithmic characterization of P-matricity

    OpenAIRE

    Ben Gharbia , Ibtihel; Gilbert , Jean Charles

    2013-01-01

    International audience; It is shown that a matrix M is a P-matrix if and only if, whatever is the vector q, the Newton-min algorithm does not cycle between two points when it is used to solve the linear complementarity problem 0 ≤ x ⊥ (Mx+q) ≥ 0.; Nous montrons dans cet article qu'une matrice M est une P-matrice si, et seulement si, quel que soit le vecteur q, l'algorithme de Newton-min ne fait pas de cycle de deux points lorsqu'il est utilisé pour résoudre le problème de compl\\émentarité lin...

  15. Orbital angular momentum in phase space

    International Nuclear Information System (INIS)

    Rigas, I.; Sanchez-Soto, L.L.; Klimov, A.B.; Rehacek, J.; Hradil, Z.

    2011-01-01

    Research highlights: → We propose a comprehensive Weyl-Wigner formalism for the canonical pair angle-angular momentum. → We present a simple and useful toolkit for the practitioner. → We derive simple evolution equations in terms of a star product in the semiclassical limit. - Abstract: A comprehensive theory of the Weyl-Wigner formalism for the canonical pair angle-angular momentum is presented. Special attention is paid to the problems linked to rotational periodicity and angular-momentum discreteness.

  16. Prometeo I. A program for averaging thermal constants over a Wigner-Wilkins flux spectrum on the Univac UCT of J.E.N

    International Nuclear Information System (INIS)

    Corella, M. R.; Iglesias, T.

    1964-01-01

    The Prometeo I program for the Univac UCT of J.E.N., determines the spectrum of thermal neutrons in equilibrium with a hydrogen-moderated homogeneous mixture from the Wigner-Wilkins differential equation, and averages various, cross sections over the spectrum. The present cross section libraries, available for the Prometeo I , are tabulated. (Author) 4 refs

  17. Partitioning sparse rectangular matrices for parallel processing

    Energy Technology Data Exchange (ETDEWEB)

    Kolda, T.G.

    1998-05-01

    The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.

  18. Experimental validation of the Wigner distributions theory of phase-contrast imaging

    International Nuclear Information System (INIS)

    Donnelly, Edwin F.; Price, Ronald R.; Pickens, David R.

    2005-01-01

    Recently, a new theory of phase-contrast imaging has been proposed by Wu and Liu [Med. Phys. 31, 2378-2384 (2004)]. This theory, based upon Wigner distributions, provides a much stronger foundation for the evaluation of phase-contrast imaging systems than did the prior theories based upon Fresnel-Kirchhoff diffraction theory. In this paper, we compare results of measurements made in our laboratory of phase contrast for different geometries and tube voltages to the predictions of the Wu and Liu model. In our previous publications, we have used an empirical measurement (the edge enhancement index) to parametrize the degree of phase-contrast effects in an image. While the Wu and Liu model itself does not predict image contrast, it does measure the degree of phase contrast that the system can image for a given spatial frequency. We have found that our previously published experimental results relating phase-contrast effects to geometry and x-ray tube voltage are consistent with the predictions of the Wu and Liu model

  19. Wigner transformation in curved space-time and the curvature correction of the Vlasov equation for semiclassical gravitating systems

    International Nuclear Information System (INIS)

    Winter, J.

    1985-01-01

    A covariant generalization of the Wigner transformation of quantum equations is proposed for gravitating many-particle systems, which modifies the Einstein-Liouville equations for the coupled gravity-matter problem by inclusion of quantum effects of the matter moving in its self-consistent classical gravitational field, in order to extend their realm of validity to higher particle densities. The corrections of the Vlasov equation (Liouville equation in one-particle phase space) are exhibited as combined effects of quantum mechanics and the curvature of space-time arranged in a semiclassical expansion in powers of h 2 , the first-order term of which is explicitly calculated. It is linear in the Riemann tensor and in its gradient; the Riemann tensor occurs in a similar position as the tensor of the Yang-Mills field strength in a corresponding Vlasov equation for systems with local gauge invariance in the purely classical limit. The performance of the Wigner transformation is based on expressing the equation of motion for the two-point function of the Klein-Gordon field, in particular the Beltrami operator, in terms of a midpoint and a distance vector covariantly defined for the two points. This implies the calculation of deviations of the geodesic between these points, the standard concept of which has to be refined to include infinitesimal variations of the second order. A differential equation for the second-order deviation is established

  20. A random matrix approach to the crossover of energy-level statistics from Wigner to Poisson

    International Nuclear Information System (INIS)

    Datta, Nilanjana; Kunz, Herve

    2004-01-01

    We analyze a class of parametrized random matrix models, introduced by Rosenzweig and Porter, which is expected to describe the energy level statistics of quantum systems whose classical dynamics varies from regular to chaotic as a function of a parameter. We compute the generating function for the correlations of energy levels, in the limit of infinite matrix size. The crossover between Poisson and Wigner statistics is measured by a renormalized coupling constant. The model is exactly solved in the sense that, in the limit of infinite matrix size, the energy-level correlation functions and their generating function are given in terms of a finite set of integrals