Nonlinear stationary solutions of the Wigner and Wigner-Poisson equations
International Nuclear Information System (INIS)
Haas, F.; Shukla, P. K.
2008-01-01
Exact nonlinear stationary solutions of the one-dimensional Wigner and Wigner-Poisson equations in the terms of the Wigner functions that depend not only on the energy but also on position are presented. In this way, the Bernstein-Greene-Kruskal modes of the classical plasma are adapted for the quantum formalism in the phase space. The solutions are constructed for the case of a quartic oscillator potential, as well as for the self-consistent Wigner-Poisson case. Conditions for well-behaved physically meaningful equilibrium Wigner functions are discussed.
Takami, A.; Hashimoto, T.; Horibe, M.; Hayashi, A.
2000-01-01
The Wigner functions on the one dimensional lattice are studied. Contrary to the previous claim in literature, Wigner functions exist on the lattice with any number of sites, whether it is even or odd. There are infinitely many solutions satisfying the conditions which reasonable Wigner functions should respect. After presenting a heuristic method to obtain Wigner functions, we give the general form of the solutions. Quantum mechanical expectation values in terms of Wigner functions are also ...
Nonlinear stationary solutions of the Wigner and Wigner-Poisson equations
Haas, F.; Shukla, P. K.
2008-01-01
Exact nonlinear stationary solutions of the one-dimensional Wigner and Wigner-Poisson equations in the terms of the Wigner functions that depend not only on the energy but also on position are presented. In this way, the Bernstein-Greene-Kruskal modes of the classical plasma are adapted for the quantum formalism in the phase space. The solutions are constructed for the case of a quartic oscillator potential, as well as for the self-consistent Wigner-Poisson case. Conditions for well-behaved p...
Wigner functions for fermions in strong magnetic fields
Sheng, Xin-li; Rischke, Dirk H.; Vasak, David; Wang, Qun
2018-02-01
We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium, i.e., at constant temperature T and non-zero fermion-number and chiral-charge chemical potentials μ and μ_5, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.
Manfredi; Feix
2000-10-01
The properties of an alternative definition of quantum entropy, based on Wigner functions, are discussed. Such a definition emerges naturally from the Wigner representation of quantum mechanics, and can easily quantify the amount of entanglement of a quantum state. It is shown that smoothing of the Wigner function induces an increase in entropy. This fact is used to derive some simple rules to construct positive-definite probability distributions which are also admissible Wigner functions.
Manfredi, G.; Feix, M. R.
2002-01-01
The properties of an alternative definition of quantum entropy, based on Wigner functions, are discussed. Such definition emerges naturally from the Wigner representation of quantum mechanics, and can easily quantify the amount of entanglement of a quantum state. It is shown that smoothing of the Wigner function induces an increase in entropy. This fact is used to derive some simple rules to construct positive definite probability distributions which are also admissible Wigner functions
Yura, H T; Thrane, L; Andersen, P E
2000-12-01
Within the paraxial approximation, a closed-form solution for the Wigner phase-space distribution function is derived for diffuse reflection and small-angle scattering in a random medium. This solution is based on the extended Huygens-Fresnel principle for the optical field, which is widely used in studies of wave propagation through random media. The results are general in that they apply to both an arbitrary small-angle volume scattering function, and arbitrary (real) ABCD optical systems. Furthermore, they are valid in both the single- and multiple-scattering regimes. Some general features of the Wigner phase-space distribution function are discussed, and analytic results are obtained for various types of scattering functions in the asymptotic limit s > 1, where s is the optical depth. In particular, explicit results are presented for optical coherence tomography (OCT) systems. On this basis, a novel way of creating OCT images based on measurements of the momentum width of the Wigner phase-space distribution is suggested, and the advantage over conventional OCT images is discussed. Because all previous published studies regarding the Wigner function are carried out in the transmission geometry, it is important to note that the extended Huygens-Fresnel principle and the ABCD matrix formalism may be used successfully to describe this geometry (within the paraxial approximation). Therefore for completeness we present in an appendix the general closed-form solution for the Wigner phase-space distribution function in ABCD paraxial optical systems for direct propagation through random media, and in a second appendix absorption effects are included.
Wigner functions defined with Laplace transform kernels.
Oh, Se Baek; Petruccelli, Jonathan C; Tian, Lei; Barbastathis, George
2011-10-24
We propose a new Wigner-type phase-space function using Laplace transform kernels--Laplace kernel Wigner function. Whereas momentum variables are real in the traditional Wigner function, the Laplace kernel Wigner function may have complex momentum variables. Due to the property of the Laplace transform, a broader range of signals can be represented in complex phase-space. We show that the Laplace kernel Wigner function exhibits similar properties in the marginals as the traditional Wigner function. As an example, we use the Laplace kernel Wigner function to analyze evanescent waves supported by surface plasmon polariton. © 2011 Optical Society of America
International Nuclear Information System (INIS)
Dahl, J. P.; Varro, S.; Wolf, A.; Schleich, W. P.
2007-01-01
We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius--that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle
DEFF Research Database (Denmark)
Dahl, Jens Peder; Varro, S.; Wolf, A.
2007-01-01
We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius-that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables......: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle....
The Wigner function in the relativistic quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Kowalski, K., E-mail: kowalski@uni.lodz.pl; Rembieliński, J.
2016-12-15
A detailed study is presented of the relativistic Wigner function for a quantum spinless particle evolving in time according to the Salpeter equation. - Highlights: • We study the Wigner function for a quantum spinless relativistic particle. • We discuss the relativistic Wigner function introduced by Zavialov and Malokostov. • We introduce relativistic Wigner function based on the standard definition. • We find analytic expressions for relativistic Wigner functions.
Strong semiclassical approximation of Wigner functions for the Hartree dynamics
Athanassoulis, Agissilaos; Paul, Thierry; Pezzotti, Federica; Pulvirenti, Mario
2011-01-01
We consider the Wigner equation corresponding to a nonlinear Schrödinger evolution of the Hartree type in the semiclassical limit h → 0. Under appropriate assumptions on the initial data and the interaction potential, we show that the Wigner function is close in L 2 to its weak limit, the solution of the corresponding Vlasov equation. The strong approximation allows the construction of semiclassical operator-valued observables, approximating their quantum counterparts in Hilbert-Schmidt topology. The proof makes use of a pointwise-positivity manipulation, which seems necessary in working with the L 2 norm and the precise form of the nonlinearity. We employ the Husimi function as a pivot between the classical probability density and the Wigner function, which - as it is well known - is not pointwise positive in general.
Wigner Functions for Arbitrary Quantum Systems.
Tilma, Todd; Everitt, Mark J; Samson, John H; Munro, William J; Nemoto, Kae
2016-10-28
The possibility of constructing a complete, continuous Wigner function for any quantum system has been a subject of investigation for over 50 years. A key system that has served to illustrate the difficulties of this problem has been an ensemble of spins. Here we present a general and consistent framework for constructing Wigner functions exploiting the underlying symmetries in the physical system at hand. The Wigner function can be used to fully describe any quantum system of arbitrary dimension or ensemble size.
Sels, Dries; Brosens, Fons
2013-10-01
The equation of motion for the reduced Wigner function of a system coupled to an external quantum system is presented for the specific case when the external quantum system can be modeled as a set of harmonic oscillators. The result is derived from the Wigner function formulation of the Feynman-Vernon influence functional theory. It is shown how the true self-energy for the equation of motion is connected with the influence functional for the path integral. Explicit expressions are derived in terms of the bare Wigner propagator. Finally, we show under which approximations the resulting equation of motion reduces to the Wigner-Boltzmann equation.
The Wigner distribution function for the su(2) finite oscillator and Dyck paths
International Nuclear Information System (INIS)
Oste, Roy; Jeugt, Joris Van der
2014-01-01
Recently, a new definition for a Wigner distribution function for a one-dimensional finite quantum system, in which the position and momentum operators have a finite (multiplicity-free) spectrum, was developed. This distribution function is defined on discrete phase-space (a finite square grid), and can thus be referred to as the Wigner matrix. In the current paper, we compute this Wigner matrix (or rather, the pre-Wigner matrix, which is related to the Wigner matrix by a simple matrix multiplication) for the case of the su(2) finite oscillator. The first expression for the matrix elements involves sums over squares of Krawtchouk polynomials, and follows from standard techniques. We also manage to present a second solution, where the matrix elements are evaluations of Dyck polynomials. These Dyck polynomials are defined in terms of the well-known Dyck paths. This combinatorial expression of the pre-Wigner matrix elements turns out to be particularly simple. (paper)
Symmetry, Wigner functions and particle reactions
International Nuclear Information System (INIS)
Chavlejshvili, M.P.
1994-01-01
We consider the great principle of physics - symmetry - and some ideas, connected with it, suggested by a great physicist Eugene Wigner. We will discuss the concept of symmetry and spin, study the problem of separation of kinematics and dynamics in particle reactions. Using Wigner rotation functions (reflecting symmetry properties) in helicity amplitude decomposition and crossing-symmetry between helicity amplitudes (which contains the same Wigner functions) we get convenient general formalism for description of reactions between particles with any masses and spins. We also consider some applications of the formalism. 17 refs., 1 tab
New Interpretation of the Wigner Function
Daboul, Jamil
1996-01-01
I define a two-sided or forward-backward propagator for the pseudo-diffusion equation of the 'squeezed' Q function. This propagator leads to squeezing in one of the phase-space variables and anti-squeezing in the other. By noting that the Q function is related to the Wigner function by a special case of the above propagator, I am led to a new interpretation of the Wigner function.
Wigner function for the Dirac oscillator in spinor space
International Nuclear Information System (INIS)
Ma Kai; Wang Jianhua; Yuan Yi
2011-01-01
The Wigner function for the Dirac oscillator in spinor space is studied in this paper. Firstly, since the Dirac equation is described as a matrix equation in phase space, it is necessary to define the Wigner function as a matrix function in spinor space. Secondly, the matrix form of the Wigner function is proven to support the Dirac equation. Thirdly, by solving the Dirac equation, energy levels and the Wigner function for the Dirac oscillator in spinor space are obtained. (authors)
Some properties of the smoothed Wigner function
International Nuclear Information System (INIS)
Soto, F.; Claverie, P.
1981-01-01
Recently it has been proposed a modification of the Wigner function which consists in smoothing it by convolution with a phase-space gaussian function; this smoothed Wigner function is non-negative if the gaussian parameters Δ and delta satisfy the condition Δdelta > h/2π. We analyze in this paper the predictions of this modified Wigner function for the harmonic oscillator, for anharmonic oscillator and finally for the hydrogen atom. We find agreement with experiment in the linear case, but for strongly nonlinear systems, such as the hydrogen atom, the results obtained are completely wrong. (orig.)
Discrete Wigner Function Reconstruction and Compressed Sensing
Zhang, Jia-Ning; Fang, Lei; Ge, Mo-Lin
2011-01-01
A new reconstruction method for Wigner function is reported for quantum tomography based on compressed sensing. By analogy with computed tomography, Wigner functions for some quantum states can be reconstructed with less measurements utilizing this compressed sensing based method.
Wigner distribution function for an oscillator
International Nuclear Information System (INIS)
Davies, R.W.; Davies, K.T.R.
1975-01-01
We present two new derivations of the Wigner distribution function for a simple harmonic oscillator Hamiltonian. Both methods are facilitated using a formula which expresses the Wigner function as a simple trace. The first method of derivation utilizes a modification of a theorem due to Messiah. An alternative procedure makes use of the coherent state representation of an oscillator. The Wigner distribution function gives a semiclassical joint probability for finding the system with given coordinates and momenta, and the joint probability is factorable for the special case of an oscillator. An important application of this result occurs in the theory of nuclear fission for calculating the probability distributions for the masses, kinetic energies, and vibrational energies of the fission fragments at infinite separation. (U.S.)
Toscano; de Aguiar MA; Ozorio De Almeida AM
2001-01-01
We propose a picture of Wigner function scars as a sequence of concentric rings along a two-dimensional surface inside a periodic orbit. This is verified for a two-dimensional plane that contains a classical hyperbolic orbit of a Hamiltonian system with 2 degrees of freedom. The stationary wave functions are the familiar mixture of scarred and random waves, but the spectral average of the Wigner functions in part of the plane is nearly that of a harmonic oscillator and individual states are also remarkably regular. These results are interpreted in terms of the semiclassical picture of chords and centers.
Comment on ‘Wigner function for a particle in an infinite lattice’
International Nuclear Information System (INIS)
Bizarro, João P S
2013-01-01
It is pointed out that in a recent paper (2012 New J. Phys. 14 103009) in which a Wigner function for a particle in an infinite lattice (a system described by an unbounded discrete coordinate and its conjugate angle-like momentum) has been introduced, no reference is made to previous, pioneering work on discrete Wigner distributions (more precisely, on the rotational Wigner function for a system described by a rotation angle and its unbounded discrete-conjugate angular momentum). Not only has the problem addressed in essence been solved for a long time (the discrete coordinate and angle-like conjugate momentum are the perfect dual of the rotation angle and discrete-conjugate angular momentum), but the solution advanced only in some distorted manner obeys two of the fundamental properties of a Wigner distribution (that, when integrated over one period of the momentum variable, it should yield the correct marginal distribution on the discrete position variable, and that it should be invariant with respect to translation). (comment)
Wigner function and tomogram of the pair coherent state
International Nuclear Information System (INIS)
Meng, Xiang-Guo; Wang, Ji-Suo; Fan, Hong-Yi
2007-01-01
Using the entangled state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, the Wigner function of the pair coherent state is derived. The variations of the Wigner function with the parameters α and q in the ρ-γ phase space are discussed. The physical meaning of the Wigner function for the pair coherent state is given by virtue of its marginal distributions. The tomogram of the pair coherent state is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η 1 ,η 2 ,τ 1 ,τ 2 >
Pure state condition for the semi-classical Wigner function
International Nuclear Information System (INIS)
Ozorio de Almeida, A.M.
1982-01-01
The Wigner function W(p,q) is a symmetrized Fourier transform of the density matrix e(q 1 ,q 2 ), representing quantum-mechanical states or their statistical mixture in phase space. Identification of these two alternatives in the case of density matrices depends on the projection identity e 2 = e; its Wigner correspondence is the pure state condition. This criterion is applied to the Wigner functions botained from standard semiclassical wave functions, determining as pure states those whose classical invariant tori satisfy the generalized Bohr-Sommerfeld conditions. Superpositions of eigenstates are then examined and it is found that the Wigner function corresponding to Gaussian random wave functions are smoothed out in the manner of mixedstate Wigner functions. Attention is also given to the pure-state condition in the case where an angular coordinate is used. (orig.)
International Nuclear Information System (INIS)
Ibort, A; Man'ko, V I; Marmo, G; Simoni, A; Ventriglia, F
2009-01-01
A natural extension of the Wigner function to the space of irreducible unitary representations of the Weyl-Heisenberg group is discussed. The action of the automorphisms group of the Weyl-Heisenberg group onto Wigner functions and their generalizations and onto symplectic tomograms is elucidated. Some examples of physical systems are considered to illustrate some aspects of the characterization of the Wigner functions as solutions of differential equations
Wigner functions on non-standard symplectic vector spaces
Dias, Nuno Costa; Prata, João Nuno
2018-01-01
We consider the Weyl quantization on a flat non-standard symplectic vector space. We focus mainly on the properties of the Wigner functions defined therein. In particular we show that the sets of Wigner functions on distinct symplectic spaces are different but have non-empty intersections. This extends previous results to arbitrary dimension and arbitrary (constant) symplectic structure. As a by-product we introduce and prove several concepts and results on non-standard symplectic spaces which generalize those on the standard symplectic space, namely, the symplectic spectrum, Williamson's theorem, and Narcowich-Wigner spectra. We also show how Wigner functions on non-standard symplectic spaces behave under the action of an arbitrary linear coordinate transformation.
Wigner function for the generalized excited pair coherent state
International Nuclear Information System (INIS)
Meng Xiangguo; Wang Jisuo; Liang Baolong; Li Hongqi
2008-01-01
This paper introduces the generalized excited pair coherent state (GEPCS). Using the entangled state |η> representation of Wigner operator, it obtains the Wigner function for the GEPCS. In the ρ-γ phase space, the variations of the Wigner function distributions with the parameters q, α, k and l are discussed. The tomogram of the GEPCS is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η 1 , η 2 , τ 1 , τ 2 >. The entangled states |η> and η 1 , η 2 , τ 1 , τ 2 > provide two good representative space for studying the Wigner functions and tomograms of various two-mode correlated quantum states
Wigner functions from the two-dimensional wavelet group.
Ali, S T; Krasowska, A E; Murenzi, R
2000-12-01
Following a general procedure developed previously [Ann. Henri Poincaré 1, 685 (2000)], here we construct Wigner functions on a phase space related to the similitude group in two dimensions. Since the group space in this case is topologically homeomorphic to the phase space in question, the Wigner functions so constructed may also be considered as being functions on the group space itself. Previously the similitude group was used to construct wavelets for two-dimensional image analysis; we discuss here the connection between the wavelet transform and the Wigner function.
Semiclassical propagation of Wigner functions.
Dittrich, T; Gómez, E A; Pachón, L A
2010-06-07
We present a comprehensive study of semiclassical phase-space propagation in the Wigner representation, emphasizing numerical applications, in particular as an initial-value representation. Two semiclassical approximation schemes are discussed. The propagator of the Wigner function based on van Vleck's approximation replaces the Liouville propagator by a quantum spot with an oscillatory pattern reflecting the interference between pairs of classical trajectories. Employing phase-space path integration instead, caustics in the quantum spot are resolved in terms of Airy functions. We apply both to two benchmark models of nonlinear molecular potentials, the Morse oscillator and the quartic double well, to test them in standard tasks such as computing autocorrelation functions and propagating coherent states. The performance of semiclassical Wigner propagation is very good even in the presence of marked quantum effects, e.g., in coherent tunneling and in propagating Schrodinger cat states, and of classical chaos in four-dimensional phase space. We suggest options for an effective numerical implementation of our method and for integrating it in Monte-Carlo-Metropolis algorithms suitable for high-dimensional systems.
Directory of Open Access Journals (Sweden)
Bialynicki-Birula Iwo
2014-01-01
Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.
International Nuclear Information System (INIS)
Savio, Andrea; Poncet, Alain
2011-01-01
In this work, we compute the Wigner distribution function on one-dimensional devices from wave functions generated by solving the Schroedinger equation. Our goal is to investigate certain issues that we encountered in implementing Wigner transport equation solvers, such as the large discrepancies observed between the boundary conditions and the solution in the neighborhood of the boundaries. By evaluating the Wigner function without solving the Wigner transport equation, we intend to ensure that the actual boundary conditions are consistent with those commonly applied in literature. We study both single- and double-barrier unbiased structures. We use simple potential profiles, so that we can compute the wave functions analytically for better accuracy. We vary a number of structure geometry, material, meshing, and numerical parameters, among which are the contact length, the barrier height, the number of incident wave functions, and the numerical precision used for the computations, and we observe how the Wigner function at the device boundaries is affected. For the double-barrier structures, we look at the density matrix function and we study a model for the device transmission spectrum which helps explain the lobelike artifacts that we observe on the Wigner function.
Wigner Function of Density Operator for Negative Binomial Distribution
International Nuclear Information System (INIS)
Xu Xinglei; Li Hongqi
2008-01-01
By using the technique of integration within an ordered product (IWOP) of operator we derive Wigner function of density operator for negative binomial distribution of radiation field in the mixed state case, then we derive the Wigner function of squeezed number state, which yields negative binomial distribution by virtue of the entangled state representation and the entangled Wigner operator
Characteristic and Wigner function for number difference and operational phase
International Nuclear Information System (INIS)
Fan Hongyi; Hu Haipeng
2004-01-01
We introduce the characteristic function in the sense of number difference-operational phase, and we employ the correlated-amplitude-number-difference state representation to calculate it. It results in the form of the corresponding Wigner function and Wigner operator. The marginal distributions of the generalized Wigner function are briefly discussed
Wigner Function of Thermo-Invariant Coherent State
International Nuclear Information System (INIS)
Xue-Fen, Xu; Shi-Qun, Zhu
2008-01-01
By using the thermal Winger operator of thermo-field dynamics in the coherent thermal state |ξ) representation and the technique of integration within an ordered product of operators, the Wigner function of the thermo-invariant coherent state |z,ℵ> is derived. The nonclassical properties of state |z,ℵ> is discussed based on the negativity of the Wigner function. (general)
Colmenares, Pedro J.
2018-05-01
This article has to do with the derivation and solution of the Fokker-Planck equation associated to the momentum-integrated Wigner function of a particle subjected to a harmonic external field in contact with an ohmic thermal bath of quantum harmonic oscillators. The strategy employed is a simplified version of the phenomenological approach of Schramm, Jung, and Grabert of interpreting the operators as c numbers to derive the quantum master equation arising from a twofold transformation of the Wigner function of the entire phase space. The statistical properties of the random noise comes from the integral functional theory of Grabert, Schramm, and Ingold. By means of a single Wigner transformation, a simpler equation than that mentioned before is found. The Wigner function reproduces the known results of the classical limit. This allowed us to rewrite the underdamped classical Langevin equation as a first-order stochastic differential equation with time-dependent drift and diffusion terms.
Application of the Wigner distribution function in optics
Bastiaans, M.J.; Mecklenbräuker, W.; Hlawatsch, F.
1997-01-01
This contribution presents a review of the Wigner distribution function and of some of its applications to optical problems. The Wigner distribution function describes a signal in space and (spatial) frequency simultaneously and can be considered as the local frequency spectrum of the signal.
Trace forms for the generalized Wigner functions
Energy Technology Data Exchange (ETDEWEB)
D`Ariano, G. M. [Pavia, Univ. (Italy). Dipt. di Fisica ``Alessandro Volta``; Sacchi, M. F. [Evanston, Univ. (United States). Dept. of Electrical and Computer Engineering]|[Evanston, Univ. (United States). Dept. of Physics and Astronomy
1997-06-01
They derive simple formulas connecting the generalized Wigner functions for s-ordering with the density matrix, and vice versa. These formulas proved very useful for quantum-mechanical applications, as, for example, for connecting master equations with Fokker-Plank equations, or for evaluating the quantum state from Monte Carlo simulations of Fokker-Plank equations, and finally for studying positivity of the generalized Wigner functions in the complex plane.
Trace forms for the generalized Wigner functions
International Nuclear Information System (INIS)
D'Ariano, G. M.; Sacchi, M. F.; Evanston, Univ.
1997-01-01
They derive simple formulas connecting the generalized Wigner functions for s-ordering with the density matrix, and vice versa. These formulas proved very useful for quantum-mechanical applications, as, for example, for connecting master equations with Fokker-Plank equations, or for evaluating the quantum state from Monte Carlo simulations of Fokker-Plank equations, and finally for studying positivity of the generalized Wigner functions in the complex plane
Rigorous solution to Bargmann-Wigner equation for integer spin
Huang Shi Zhong; Wu Ning; Zheng Zhi Peng
2002-01-01
A rigorous method is developed to solve the Bargamann-Wigner equation for arbitrary integer spin in coordinate representation in a step by step way. The Bargmann-Wigner equation is first transformed to a form easier to solve, the new equations are then solved rigorously in coordinate representation, and the wave functions in a closed form are thus derived
Specification of optical components using Wigner distribution function
International Nuclear Information System (INIS)
Xu Jiancheng; Li Haibo; Xu Qiao; Chai Liqun; Fan Changjiang
2010-01-01
In order to characterize and specify small-scale local wavefront deformation of optical component, a method based on Wigner distribution function has been proposed, which can describe wavefront deformation in spatial and spatial frequency domain. The relationship between Wigner distribution function and power spectral density is analyzed and thus the specification of small-scale local wavefront deformation is obtained by Wigner distribution function. Simulation and experiment demonstrate the effectiveness of the proposed method. The proposed method can not only identify whether the optical component meets the requirement of inertial confinement fusion (ICF), but also determine t he location where small-scale wavefront deformation is unqualified. Thus it provides an effective guide to the revision of unqualified optical components. (authors)
The Wigner distribution function for the one-dimensional parabose oscillator
International Nuclear Information System (INIS)
Jafarov, E; Lievens, S; Jeugt, J Van der
2008-01-01
In the beginning of the 1950s, Wigner introduced a fundamental deformation from the canonical quantum mechanical harmonic oscillator, which is nowadays sometimes called a Wigner quantum oscillator or a parabose oscillator. Also, in quantum mechanics the so-called Wigner distribution is considered to be the closest quantum analogue of the classical probability distribution over the phase space. In this paper, we consider which definition for such a distribution function could be used in the case of non-canonical quantum mechanics. We then explicitly compute two different expressions for this distribution function for the case of the parabose oscillator. Both expressions turn out to be multiple sums involving (generalized) Laguerre polynomials. Plots then show that the Wigner distribution function for the ground state of the parabose oscillator is similar in behaviour to the Wigner distribution function of the first excited state of the canonical quantum oscillator
Generalized Reduction Formula for Discrete Wigner Functions of Multiqubit Systems
Srinivasan, K.; Raghavan, G.
2018-03-01
Density matrices and Discrete Wigner Functions are equally valid representations of multiqubit quantum states. For density matrices, the partial trace operation is used to obtain the quantum state of subsystems, but an analogous prescription is not available for discrete Wigner Functions. Further, the discrete Wigner function corresponding to a density matrix is not unique but depends on the choice of the quantum net used for its reconstruction. In the present work, we derive a reduction formula for discrete Wigner functions of a general multiqubit state which works for arbitrary quantum nets. These results would be useful for the analysis and classification of entangled states and the study of decoherence purely in a discrete phase space setting and also in applications to quantum computing.
Quantum phase space points for Wigner functions in finite-dimensional spaces
Luis Aina, Alfredo
2004-01-01
We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas.
Quantum phase space points for Wigner functions in finite-dimensional spaces
International Nuclear Information System (INIS)
Luis, Alfredo
2004-01-01
We introduce quantum states associated with single phase space points in the Wigner formalism for finite-dimensional spaces. We consider both continuous and discrete Wigner functions. This analysis provides a procedure for a direct practical observation of the Wigner functions for states and transformations without inversion formulas
On the path integral representation of the Wigner function and the Barker–Murray ansatz
International Nuclear Information System (INIS)
Sels, Dries; Brosens, Fons; Magnus, Wim
2012-01-01
The propagator of the Wigner function is constructed from the Wigner–Liouville equation as a phase space path integral over a new effective Lagrangian. In contrast to a paper by Barker and Murray (1983) , we show that the path integral can in general not be written as a linear superposition of classical phase space trajectories over a family of non-local forces. Instead, we adopt a saddle point expansion to show that the semiclassical Wigner function is a linear superposition of classical solutions for a different set of non-local time dependent forces. As shown by a simple example the specific form of the path integral makes the formulation ideal for Monte Carlo simulation. -- Highlights: ► We derive the quantum mechanical propagator of the Wigner function in the path integral representation. ► We show that the Barker–Murray ansatz is incomplete, explain the error and provide an alternative. ► An example of a Monte Carlo simulation of the semiclassical path integral is included.
Nodal Structure of the Electronic Wigner Function
DEFF Research Database (Denmark)
Schmider, Hartmut; Dahl, Jens Peder
1996-01-01
On the example of several atomic and small molecular systems, the regular behavior of nodal patterns in the electronic one-particle reduced Wigner function is demonstrated. An expression found earlier relates the nodal pattern solely to the dot-product of the position and the momentum vector......, if both arguments are large. An argument analogous to the ``bond-oscillatory principle'' for momentum densities links the nuclear framework in a molecule to an additional oscillatory term in momenta parallel to bonds. It is shown that these are visible in the Wigner function in terms of characteristic...
Wigner Function Reconstruction in Levitated Optomechanics
Rashid, Muddassar; Toroš, Marko; Ulbricht, Hendrik
2017-10-01
We demonstrate the reconstruction of theWigner function from marginal distributions of the motion of a single trapped particle using homodyne detection. We show that it is possible to generate quantum states of levitated optomechanical systems even under the efect of continuous measurement by the trapping laser light. We describe the opto-mechanical coupling for the case of the particle trapped by a free-space focused laser beam, explicitly for the case without an optical cavity. We use the scheme to reconstruct the Wigner function of experimental data in perfect agreement with the expected Gaussian distribution of a thermal state of motion. This opens a route for quantum state preparation in levitated optomechanics.
Wigner functions for angle and orbital angular momentum. Operators and dynamics
Energy Technology Data Exchange (ETDEWEB)
Kastrup, Hans A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie
2017-02-15
Recently a paper on the construction of consistent Wigner functions for cylindrical phase spaces S{sup 1} x R, i.e. for the canonical pair angle and orbital angular momentum, was presented, main properties of those functions derived, discussed and their usefulness illustrated by examples. The present paper is a continuation which compares properties of the new Wigner functions for cylindrical phase spaces with those of the well-known Wigner functions on planar ones in more detail. Furthermore, the mutual (Weyl) correspondence between HIlbert space operators and their phase space functions is discussed. The * product formalism is shown to be completely implementable. In addition basic dynamical laws for Wigner and Moyal functions are derived as generalized Liouville and energy equations. They are very similar to those of the planar case, but also show characteristic differences.
Wigner functions for angle and orbital angular momentum. Operators and dynamics
International Nuclear Information System (INIS)
Kastrup, Hans A.
2017-02-01
Recently a paper on the construction of consistent Wigner functions for cylindrical phase spaces S"1 x R, i.e. for the canonical pair angle and orbital angular momentum, was presented, main properties of those functions derived, discussed and their usefulness illustrated by examples. The present paper is a continuation which compares properties of the new Wigner functions for cylindrical phase spaces with those of the well-known Wigner functions on planar ones in more detail. Furthermore, the mutual (Weyl) correspondence between HIlbert space operators and their phase space functions is discussed. The * product formalism is shown to be completely implementable. In addition basic dynamical laws for Wigner and Moyal functions are derived as generalized Liouville and energy equations. They are very similar to those of the planar case, but also show characteristic differences.
Time evolution of the Wigner function in the entangled-state representation
International Nuclear Information System (INIS)
Fan Hongyi
2002-01-01
For quantum-mechanical entangled states we introduce the entangled Wigner operator in the entangled-state representation. We derive the time evolution equation of the entangled Wigner operator . The trace product rule for entangled Wigner functions is also obtained
The Wigner distribution function applied to optical signals and systems
Bastiaans, M.J.
1978-01-01
In this paper the Wigner distribution function has been introduced for optical signals and systems. The Wigner distribution function of an optical signal appears to be in close resemblance to the ray concept in geometrical optics. This resemblance reaches even farther: although derived from Fourier
Geometrical approach to the discrete Wigner function in prime power dimensions
International Nuclear Information System (INIS)
Klimov, A B; Munoz, C; Romero, J L
2006-01-01
We analyse the Wigner function in prime power dimensions constructed on the basis of the discrete rotation and displacement operators labelled with elements of the underlying finite field. We separately discuss the case of odd and even characteristics and analyse the algebraic origin of the non-uniqueness of the representation of the Wigner function. Explicit expressions for the Wigner kernel are given in both cases
Positive Wigner functions render classical simulation of quantum computation efficient.
Mari, A; Eisert, J
2012-12-07
We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.
Discrete Wigner Function Derivation of the Aaronson–Gottesman Tableau Algorithm
Directory of Open Access Journals (Sweden)
Lucas Kocia
2017-07-01
Full Text Available The Gottesman–Knill theorem established that stabilizer states and Clifford operations can be efficiently simulated classically. For qudits with odd dimension three and greater, stabilizer states and Clifford operations have been found to correspond to positive discrete Wigner functions and dynamics. We present a discrete Wigner function-based simulation algorithm for odd-d qudits that has the same time and space complexity as the Aaronson–Gottesman algorithm for qubits. We show that the efficiency of both algorithms is due to harmonic evolution in the symplectic structure of discrete phase space. The differences between the Wigner function algorithm for odd-d and the Aaronson–Gottesman algorithm for qubits are likely due only to the fact that the Weyl–Heisenberg group is not in S U ( d for d = 2 and that qubits exhibit state-independent contextuality. This may provide a guide for extending the discrete Wigner function approach to qubits.
Density of the Breit--Wigner functions
International Nuclear Information System (INIS)
Perry, W.L.; Luning, C.D.
1975-01-01
It is shown, for certain sequences [lambda/sub i/] in the complex plane, that linear combinations of the Breit-Wigner functions [B/sub i/] approximate, in the mean square, any function in L 2 (0,infinity). Implications and numerical use of this result are discussed
Measurement of complete and continuous Wigner functions for discrete atomic systems
Tian, Yali; Wang, Zhihui; Zhang, Pengfei; Li, Gang; Li, Jie; Zhang, Tiancai
2018-01-01
We measure complete and continuous Wigner functions of a two-level cesium atom in both a nearly pure state and highly mixed states. We apply the method [T. Tilma et al., Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401] of strictly constructing continuous Wigner functions for qubit or spin systems. We find that the Wigner function of all pure states of a qubit has negative regions and the negativity completely vanishes when the purity of an arbitrary mixed state is less than 2/3 . We experimentally demonstrate these findings using a single cesium atom confined in an optical dipole trap, which undergoes a nearly pure dephasing process. Our method can be applied straightforwardly to multi-atom systems for measuring the Wigner function of their collective spin state.
Wigner function and Schroedinger equation in phase-space representation
International Nuclear Information System (INIS)
Chruscinski, Dariusz; Mlodawski, Krzysztof
2005-01-01
We discuss a family of quasidistributions (s-ordered Wigner functions of Agarwal and Wolf [Phys. Rev. D 2, 2161 (1970); Phys. Rev. D 2, 2187 (1970); Phys. Rev. D 2, 2206 (1970)]) and its connection to the so-called phase space representation of the Schroedinger equation. It turns out that although Wigner functions satisfy the Schroedinger equation in phase space, they have a completely different interpretation
International Nuclear Information System (INIS)
Calzetta, E.; Habib, S.; Hu, B.L.
1988-01-01
We consider quantum fields in an external potential and show how, by using the Fourier transform on propagators, one can obtain the mass-shell constraint conditions and the Liouville-Vlasov equation for the Wigner distribution function. We then consider the Hadamard function G 1 (x 1 ,x 2 ) of a real, free, scalar field in curved space. We postulate a form for the Fourier transform F/sup (//sup Q//sup )/(X,k) of the propagator with respect to the difference variable x = x 1 -x 2 on a Riemann normal coordinate centered at Q. We show that F/sup (//sup Q//sup )/ is the result of applying a certain Q-dependent operator on a covariant Wigner function F. We derive from the wave equations for G 1 a covariant equation for the distribution function and show its consistency. We seek solutions to the set of Liouville-Vlasov equations for the vacuum and nonvacuum cases up to the third adiabatic order. Finally we apply this method to calculate the Hadamard function in the Einstein universe. We show that the covariant Wigner function can incorporate certain relevant global properties of the background spacetime. Covariant Wigner functions and Liouville-Vlasov equations are also derived for free fermions in curved spacetime. The method presented here can serve as a basis for constructing quantum kinetic theories in curved spacetime or for near-uniform systems under quasiequilibrium conditions. It can also be useful to the development of a transport theory of quantum fields for the investigation of grand unification and post-Planckian quantum processes in the early Universe
Existence of the Wigner function with correct marginal distributions along tilted lines on a lattice
International Nuclear Information System (INIS)
Horibe, Minoru; Takami, Akiyoshi; Hashimoto, Takaaki; Hayashi, Akihisa
2002-01-01
For the Wigner function of a system in N-dimensional Hilbert space, we propose the condition, which ensures that the Wigner function has correct marginal distributions along tilted lines. Under this condition we get the Wigner function without ambiguity if N is odd. If N is even, the Wigner function does not exist
Wigner functions and tomograms of the photon-depleted even and odd coherent states
International Nuclear Information System (INIS)
Wang Jisuo; Meng Xiangguo
2008-01-01
Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, this paper derives the Wigner functions for the photon-depleted even and odd coherent states (PDEOCSs). Moreover, in terms of the Wigner functions with respect to the complex parameter α the nonclassical properties of the PDEOCSs are discussed. The results show that the nonclassicality for the state |β, m) o (or |β, m) e ) is more pronounced when m is even (or odd). According to the marginal distributions of the Wigner functions, the physical meaning of the Wigner functions is given. Further, the tomograms of the PDEOCSs are calculated with the aid of newly introduced intermediate coordinate-momentum representation in quantum optics
From the Weyl quantization of a particle on the circle to number–phase Wigner functions
International Nuclear Information System (INIS)
Przanowski, Maciej; Brzykcy, Przemysław; Tosiek, Jaromir
2014-01-01
A generalized Weyl quantization formalism for a particle on the circle is shown to supply an effective method for defining the number–phase Wigner function in quantum optics. A Wigner function for the state ϱ ^ and the kernel K for a particle on the circle is defined and its properties are analysed. Then it is shown how this Wigner function can be easily modified to give the number–phase Wigner function in quantum optics. Some examples of such number–phase Wigner functions are considered
Understanding squeezing of quantum states with the Wigner function
Royer, Antoine
1994-01-01
The Wigner function is argued to be the only natural phase space function evolving classically under quadratic Hamiltonians with time-dependent bilinear part. This is used to understand graphically how certain quadratic time-dependent Hamiltonians induce squeezing of quantum states. The Wigner representation is also used to generalize Ehrenfest's theorem to the quantum uncertainties. This makes it possible to deduce features of the quantum evolution, such as squeezing, from the classical evolution, whatever the Hamiltonian.
Symplectic evolution of Wigner functions in Markovian open systems.
Brodier, O; Almeida, A M Ozorio de
2004-01-01
The Wigner function is known to evolve classically under the exclusive action of a quadratic Hamiltonian. If the system also interacts with the environment through Lindblad operators that are complex linear functions of position and momentum, then the general evolution is the convolution of a non-Hamiltonian classical propagation of the Wigner function with a phase space Gaussian that broadens in time. We analyze the consequences of this in the three generic cases of elliptic, hyperbolic, and parabolic Hamiltonians. The Wigner function always becomes positive in a definite time, which does not depend on the initial pure state. We observe the influence of classical dynamics and dissipation upon this threshold. We also derive an exact formula for the evolving linear entropy as the average of a narrowing Gaussian taken over a probability distribution that depends only on the initial state. This leads to a long time asymptotic formula for the growth of linear entropy. We finally discuss the possibility of recovering the initial state.
Phase-space path-integral calculation of the Wigner function
International Nuclear Information System (INIS)
Samson, J H
2003-01-01
The Wigner function W(q, p) is formulated as a phase-space path integral, whereby its sign oscillations can be seen to follow from interference between the geometrical phases of the paths. The approach has similarities to the path-centroid method in the configuration-space path integral. Paths can be classified by the midpoint of their ends; short paths where the midpoint is close to (q, p) and which lie in regions of low energy (low P function of the Hamiltonian) will dominate, and the enclosed area will determine the sign of the Wigner function. As a demonstration, the method is applied to a sequence of density matrices interpolating between a Poissonian number distribution and a number state, each member of which can be represented exactly by a discretized path integral with a finite number of vertices. Saddle-point evaluation of these integrals recovers (up to a constant factor) the WKB approximation to the Wigner function of a number state
The Wigner distribution function and Hamilton's characteristics of a geometric-optical system
Bastiaans, M.J.
1979-01-01
Four system functions have been defined for an optical system; each of these functions describes the system completely in terms of Fourier optics. From the system functions the Wigner distribution function of an optical system has been defined; although derived from Fourier optics, this Wigner
Measurement-induced decoherence and Gaussian smoothing of the Wigner distribution function
International Nuclear Information System (INIS)
Chun, Yong-Jin; Lee, Hai-Woong
2003-01-01
We study the problem of measurement-induced decoherence using the phase-space approach employing the Gaussian-smoothed Wigner distribution function. Our investigation is based on the notion that measurement-induced decoherence is represented by the transition from the Wigner distribution to the Gaussian-smoothed Wigner distribution with the widths of the smoothing function identified as measurement errors. We also compare the smoothed Wigner distribution with the corresponding distribution resulting from the classical analysis. The distributions we computed are the phase-space distributions for simple one-dimensional dynamical systems such as a particle in a square-well potential and a particle moving under the influence of a step potential, and the time-frequency distributions for high-harmonic radiation emitted from an atom irradiated by short, intense laser pulses
Phase pupil functions for focal-depth enhancement derived from a Wigner distribution function.
Zalvidea, D; Sicre, E E
1998-06-10
A method for obtaining phase-retardation functions, which give rise to an increase of the image focal depth, is proposed. To this end, the Wigner distribution function corresponding to a specific aperture that has an associated small depth of focus in image space is conveniently sheared in the phase-space domain to generate a new Wigner distribution function. From this new function a more uniform on-axis image irradiance can be accomplished. This approach is illustrated by comparison of the imaging performance of both the derived phase function and a previously reported logarithmic phase distribution.
On the nodal structure of atomic and molecular Wigner functions
International Nuclear Information System (INIS)
Dahl, J.P.; Schmider, H.
1996-01-01
In previous work on the phase-space representation of quantum mechanics, we have presented detailed pictures of the electronic one-particle reduced Wigner function for atoms and small molecules. In this communication, we focus upon the nodal structure of the function. On the basis of the simplest systems, we present an expression which relates the oscillatory decay of the Wigner function solely to the dot product of the position and momentum vector, if both arguments are large. We then demonstrate the regular behavior of nodal patterns for the larger systems. For the molecular systems, an argument analogous to the open-quotes bond-oscillatory principleclose quotes for momentum densities links the nuclear framework to an additional oscillatory term in momenta parallel to bonds. It is shown that these are visible in the Wigner function in terms of characteristic nodes
About the functions of the Wigner distribution for the q-deformed harmonic oscillator model
International Nuclear Information System (INIS)
Atakishiev, N.M.; Nagiev, S.M.; Djafarov, E.I.; Imanov, R.M.
2005-01-01
Full text : A q-deformed model of the linear harmonic oscillator in the Wigner phase-space is studied. It was derived an explicit expression for the Wigner probability distribution function, as well as the Wigner distribution function of a thermodynamic equilibrium for this model
Higher-order stochastic differential equations and the positive Wigner function
Drummond, P. D.
2017-12-01
General higher-order stochastic processes that correspond to any diffusion-type tensor of higher than second order are obtained. The relationship of multivariate higher-order stochastic differential equations with tensor decomposition theory and tensor rank is explained. Techniques for generating the requisite complex higher-order noise are proved to exist either using polar coordinates and γ distributions, or from products of Gaussian variates. This method is shown to allow the calculation of the dynamics of the Wigner function, after it is extended to a complex phase space. The results are illustrated physically through dynamical calculations of the positive Wigner distribution for three-mode parametric downconversion, widely used in quantum optics. The approach eliminates paradoxes arising from truncation of the higher derivative terms in Wigner function time evolution. Anomalous results of negative populations and vacuum scattering found in truncated Wigner quantum simulations in quantum optics and Bose-Einstein condensate dynamics are shown not to occur with this type of stochastic theory.
Arnold, Thorsten; Siegmund, Marc; Pankratov, Oleg
2011-08-24
We apply exact-exchange spin-density functional theory in the Krieger-Li-Iafrate approximation to interacting electrons in quantum rings of different widths. The rings are threaded by a magnetic flux that induces a persistent current. A weak space and spin symmetry breaking potential is introduced to allow for localized solutions. As the electron-electron interaction strength described by the dimensionless parameter r(S) is increased, we observe-at a fixed spin magnetic moment-the subsequent transition of both spin sub-systems from the Fermi liquid to the Wigner crystal state. A dramatic signature of Wigner crystallization is that the persistent current drops sharply with increasing r(S). We observe simultaneously the emergence of pronounced oscillations in the spin-resolved densities and in the electron localization functions indicating a spatial electron localization showing ferrimagnetic order after both spin sub-systems have undergone the Wigner crystallization. The critical r(S)(c) at the transition point is substantially smaller than in a fully spin-polarized system and decreases further with decreasing ring width. Relaxing the constraint of a fixed spin magnetic moment, we find that on increasing r(S) the stable phase changes from an unpolarized Fermi liquid to an antiferromagnetic Wigner crystal and finally to a fully polarized Fermi liquid. © 2011 IOP Publishing Ltd
On the probability density interpretation of smoothed Wigner functions
International Nuclear Information System (INIS)
De Aguiar, M.A.M.; Ozorio de Almeida, A.M.
1990-01-01
It has been conjectured that the averages of the Wigner function over phase space volumes, larger than those of minimum uncertainty, are always positive. This is true for Gaussian averaging, so that the Husimi distribution is positive. However, we provide a specific counterexample for the averaging with a discontinuous hat function. The analysis of the specific system of a one-dimensional particle in a box also elucidates the respective advantages of the Wigner and the Husimi functions for the study of the semiclassical limit. The falsification of the averaging conjecture is shown not to depend on the discontinuities of the hat function, by considering the latter as the limit of a sequence of analytic functions. (author)
Discrete Wigner functions and quantum computation
International Nuclear Information System (INIS)
Galvao, E.
2005-01-01
Full text: Gibbons et al. have recently defined a class of discrete Wigner functions W to represent quantum states in a finite Hilbert space dimension d. I characterize the set C d of states having non-negative W simultaneously in all definitions of W in this class. I then argue that states in this set behave classically in a well-defined computational sense. I show that one-qubit states in C 2 do not provide for universal computation in a recent model proposed by Bravyi and Kitaev [quant-ph/0403025]. More generally, I show that the only pure states in C d are stabilizer states, which have an efficient description using the stabilizer formalism. This result shows that two different notions of 'classical' states coincide: states with non-negative Wigner functions are those which have an efficient description. This suggests that negativity of W may be necessary for exponential speed-up in pure-state quantum computation. (author)
Entanglement versus negative domains of Wigner functions
DEFF Research Database (Denmark)
Dahl, Jens Peder; Mack, H.; Wolf, A.
2006-01-01
We show that s waves, that is wave functions that only depend on a hyperradius, are entangled if and only if the corresponding Wigner functions exhibit negative domains. We illustrate this feature using a special class of s waves which allows us to perform the calculations analytically. This class...
A Wigner quasi-distribution function for charged particles in classical electromagnetic fields
International Nuclear Information System (INIS)
Levanda, M.; Fleurov, V.
2001-01-01
A gauge-invariant Wigner quasi-distribution function for charged particles in classical electromagnetic fields is derived in a rigorous way. Its relation to the axial gauge is discussed, as well as the relation between the kinetic and canonical momenta in the Wigner representation. Gauge-invariant quantum analogs of Hamilton-Jacobi and Boltzmann kinetic equations are formulated for arbitrary classical electromagnetic fields in terms of the 'slashed' derivatives and momenta, introduced for this purpose. The kinetic meaning of these slashed quantities is discussed. We introduce gauge-invariant conditional moments and use them to derive a kinetic momentum continuity equation. This equation provides us with a hydrodynamic representation for quantum transport processes and a definition of the 'collision force'. The hydrodynamic equation is applied for the rotation part of the electron motion. The theory is illustrated by its application in three examples: Wigner quasi-distribution function and equations for an electron in a magnetic field and harmonic potential; Wigner quasi-distribution function for a charged particle in periodic systems using the kq representation; two Wigner quasi-distribution functions for heavy-mass polaron in an electric field
The Wigner distribution function for squeezed vacuum superposed state
International Nuclear Information System (INIS)
Zayed, E.M.E.; Daoud, A.S.; AL-Laithy, M.A.; Naseem, E.N.
2005-01-01
In this paper, we construct the Wigner distribution function for a single-mode squeezed vacuum mixed-state which is a superposition of the squeezed vacuum state. This state is defined as a P-representation for the density operator. The obtained Wigner function depends, beside the phase-space variables, on the mean number of photons occupied by the coherent state of the mode. This mean number relates to the mean free path through a given relation, which enables us to measure this number experimentally by measuring the mean free path
Double Wigner distribution function of a first-order optical system with a hard-edge aperture.
Pan, Weiqing
2008-01-01
The effect of an apertured optical system on Wigner distribution can be expressed as a superposition integral of the input Wigner distribution function and the double Wigner distribution function of the apertured optical system. By introducing a hard aperture function into a finite sum of complex Gaussian functions, the double Wigner distribution functions of a first-order optical system with a hard aperture outside and inside it are derived. As an example of application, the analytical expressions of the Wigner distribution for a Gaussian beam passing through a spatial filtering optical system with an internal hard aperture are obtained. The analytical results are also compared with the numerical integral results, and they show that the analytical results are proper and ascendant.
Wigner function and the probability representation of quantum states
Directory of Open Access Journals (Sweden)
Man’ko Margarita A.
2014-01-01
Full Text Available The relation of theWigner function with the fair probability distribution called tomographic distribution or quantum tomogram associated with the quantum state is reviewed. The connection of the tomographic picture of quantum mechanics with the integral Radon transform of the Wigner quasidistribution is discussed. The Wigner–Moyal equation for the Wigner function is presented in the form of kinetic equation for the tomographic probability distribution both in quantum mechanics and in the classical limit of the Liouville equation. The calculation of moments of physical observables in terms of integrals with the state tomographic probability distributions is constructed having a standard form of averaging in the probability theory. New uncertainty relations for the position and momentum are written in terms of optical tomograms suitable for directexperimental check. Some recent experiments on checking the uncertainty relations including the entropic uncertainty relations are discussed.
Comparative Study of Entanglement and Wigner Function for Multi-Qubit GHZ-Squeezed State
Siyouri, Fatima-Zahra
2017-12-01
In this paper we address the possibility of using the Wigner function to capture the quantum entanglement present in a multi-qubit system. For that purpose, we calculate both the degree of entanglement and the Wigner function for mixed tripartite squeezed states of Greenberger-Horne-Zeilinger (GHZ) type then we compare their behaviors. We show that the role of Wigner function in detecting and quantifying bipartite quantum correlation [Int. J. Mod. Phys. B 30 (2016) 1650187] may be generalized to the multipartite case.
Commuting periodic operators and the periodic Wigner function
International Nuclear Information System (INIS)
Zak, J
2004-01-01
Commuting periodic operators (CPO) depending on the coordinate x-hat and the momentum p-hat operators are defined. The CPO are functions of the two basic commuting operators exp(i x-hat 2π/a) and exp(i/h p-hat a), with a being an arbitrary constant. A periodic Wigner function (PWF) w(x, p) is defined and it is shown that it is applicable in a normal expectation value calculation to the CPO, as done in the original Wigner paper. Moreover, this PWF is non-negative everywhere, and it can therefore be interpreted as an actual probability distribution. The PWF w(x, p) is shown to be given as an expectation value of the periodic Dirac delta function in the phase plane. (letter to the editor)
Geometrical comparison of two protein structures using Wigner-D functions.
Saberi Fathi, S M; White, Diana T; Tuszynski, Jack A
2014-10-01
In this article, we develop a quantitative comparison method for two arbitrary protein structures. This method uses a root-mean-square deviation characterization and employs a series expansion of the protein's shape function in terms of the Wigner-D functions to define a new criterion, which is called a "similarity value." We further demonstrate that the expansion coefficients for the shape function obtained with the help of the Wigner-D functions correspond to structure factors. Our method addresses the common problem of comparing two proteins with different numbers of atoms. We illustrate it with a worked example. © 2014 Wiley Periodicals, Inc.
Quantum Statistics of the Toda Oscillator in the Wigner Function Formalism
Vojta, Günter; Vojta, Matthias
Classical and quantum mechanical Toda systems (Toda molecules, Toda lattices, Toda quantum fields) recently found growing interest as nonlinear systems showing solitons and chaos. In this paper the statistical thermodynamics of a system of quantum mechanical Toda oscillators characterized by a potential energy V(q) = Vo cos h q is treated within the Wigner function formalism (phase space formalism of quantum statistics). The partition function is given as a Wigner- Kirkwood series expansion in terms of powers of h2 (semiclassical expansion). The partition function and all thermodynamic functions are written, with considerable exactness, as simple closed expressions containing only the modified Hankel functions Ko and K1 of the purely imaginary argument i with = Vo/kT.Translated AbstractQuantenstatistik des Toda-Oszillators im Formalismus der Wigner-FunktionKlassische und quantenmechanische Toda-Systeme (Toda-Moleküle, Toda-Gitter, Toda-Quantenfelder) haben als nichtlineare Systeme mit Solitonen und Chaos in jüngster Zeit zunehmend an Interesse gewonnen. Wir untersuchen die statistische Thermodynamik eines Systems quantenmechanischer Toda-Oszillatoren, die durch eine potentielle Energie der Form V(q) = Vo cos h q charakterisiert sind, im Formalismus der Wigner-Funktion (Phasenraum-Formalismus der Quantenstatistik). Die Zustandssumme wird als Wigner-Kirkwood-Reihe nach Potenzen von h2 (semiklassische Entwicklung) dargestellt, und aus ihr werden die thermodynamischen Funktionen berechnet. Sämtliche Funktionen sind durch einfache geschlossene Formeln allein mit den modifizierten Hankel-Funktionen Ko und K1 des rein imaginären Arguments i mit = Vo/kT mit großer Genauigkeit darzustellen.
Dynamics of Gaussian Wigner functions derived from a time-dependent variational principle
Directory of Open Access Journals (Sweden)
Jens Aage Poulsen
2017-11-01
Full Text Available By using a time-dependent variational principle formulated for Wigner phase-space functions, we obtain the optimal time-evolution for two classes of Gaussian Wigner functions, namely those of either thawed real-valued or frozen but complex Gaussians. It is shown that tunneling effects are approximately included in both schemes.
Field theoretic perspectives of the Wigner function formulation of the chiral magnetic effect
Wu, Yan; Hou, De-fu; Ren, Hai-cang
2017-11-01
We assess the applicability of the Wigner function formulation in its present form to the chiral magnetic effect and note some issues regarding the conservation and the consistency of the electric current in the presence of an inhomogeneous and time-dependent axial chemical potential. The problems are rooted in the ultraviolet divergence of the underlying field theory associated with the axial anomaly and can be fixed with the Pauli-Villars regularization of the Wigner function. The chiral magnetic current with a nonconstant axial chemical potential is calculated with the regularized Wigner function and the phenomenological implications are discussed.
Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.
2018-01-01
We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.
Generalized Wigner functions in curved spaces: A new approach
International Nuclear Information System (INIS)
Kandrup, H.E.
1988-01-01
It is well known that, given a quantum field in Minkowski space, one can define Wigner functions f/sub W//sup N/(x 1 ,p 1 ,...,x/sub N/,p/sub N/) which (a) are convenient to analyze since, unlike the field itself, they are c-number quantities and (b) can be interpreted in a limited sense as ''quantum distribution functions.'' Recently, Winter and Calzetta, Habib and Hu have shown one way in which these flat-space Wigner functions can be generalized to a curved-space setting, deriving thereby approximate kinetic equations which make sense ''quasilocally'' for ''short-wavelength modes.'' This paper suggests a completely orthogonal approach for defining curved-space Wigner functions which generalizes instead an object such as the Fourier-transformed f/sub W/ 1 (k,p), which is effectively a two-point function viewed in terms of the ''natural'' creation and annihilation operators a/sup dagger/(p-(12k) and a(p+(12k). The approach suggested here lacks the precise phase-space interpretation implicit in the approach of Winter or Calzetta, Habib, and Hu, but it is useful in that (a) it is geared to handle any ''natural'' mode decomposition, so that (b) it can facilitate exact calculations at least in certain limits, such as for a source-free linear field in a static spacetime
Wigner's function and other distribution functions in mock phase spaces
International Nuclear Information System (INIS)
Balazs, N.L.; Jennings, B.K.
1983-06-01
This review deals with the methods of associating functions with quantum mechanical operators in such a manner that these functions should furnish conveniently semiclassical approximations. We present a unified treatment of methods and result which usually appear under the expressions Wigner's functions, Weyl's association, Kirkwood's expansion, Glauber's coherent state representation, etc.; we also construct some new associations. The mathematical paraphernalia are collected in the appendices
Direct measurement of the biphoton Wigner function through two-photon interference
Douce, T.; Eckstein, A.; Walborn, S. P.; Khoury, A. Z.; Ducci, S.; Keller, A.; Coudreau, T.; Milman, P.
2013-01-01
The Hong-Ou-Mandel (HOM) experiment was a benchmark in quantum optics, evidencing the non–classical nature of photon pairs, later generalized to quantum systems with either bosonic or fermionic statistics. We show that a simple modification in the well-known and widely used HOM experiment provides the direct measurement of the Wigner function. We apply our results to one of the most reliable quantum systems, consisting of biphotons generated by parametric down conversion. A consequence of our results is that a negative value of the Wigner function is a sufficient condition for non-gaussian entanglement between two photons. In the general case, the Wigner function provides all the required information to infer entanglement using well known necessary and sufficient criteria. The present work offers a new vision of the HOM experiment that further develops its possibilities to realize fundamental tests of quantum mechanics using simple optical set-ups. PMID:24346262
Wigner expansions for partition functions of nonrelativistic and relativistic oscillator systems
Zylka, Christian; Vojta, Guenter
1993-01-01
The equilibrium quantum statistics of various anharmonic oscillator systems including relativistic systems is considered within the Wigner phase space formalism. For this purpose the Wigner series expansion for the partition function is generalized to include relativistic corrections. The new series for partition functions and all thermodynamic potentials yield quantum corrections in terms of powers of h(sup 2) and relativistic corrections given by Kelvin functions (modified Hankel functions) K(sub nu)(mc(sup 2)/kT). As applications, the symmetric Toda oscillator, isotonic and singular anharmonic oscillators, and hindered rotators, i.e. oscillators with cosine potential, are addressed.
Bastiaans, M.J.; Testorf, M.; Hennelly, B.; Ojeda-Castañeda, J.
2009-01-01
In 1932 Wigner introduced a distribution function in mechanics that permitted a description of mechanical phenomena in a phase space. Such a Wigner distribution was introduced in optics by Dolin and Walther in the sixties, to relate partial coherence to radiometry. A few years later, the Wigner
Wigner functions for nonclassical states of a collection of two-level atoms
Agarwal, G. S.; Dowling, Jonathan P.; Schleich, Wolfgang P.
1993-01-01
The general theory of atomic angular momentum states is used to derive the Wigner distribution function for atomic angular momentum number states, coherent states, and squeezed states. These Wigner functions W(theta,phi) are represented as a pseudo-probability distribution in spherical coordinates theta and phi on the surface of a sphere of radius the square root of j(j +1) where j is the total angular momentum.
Comment on "Wigner phase-space distribution function for the hydrogen atom"
DEFF Research Database (Denmark)
Dahl, Jens Peder; Springborg, Michael
1999-01-01
We object to the proposal that the mapping of the three-dimensional hydrogen atom into a four-dimensional harmonic oscillator can be readily used to determine the Wigner phase-space distribution function for the hydrogen atom. [S1050-2947(99)07005-5].......We object to the proposal that the mapping of the three-dimensional hydrogen atom into a four-dimensional harmonic oscillator can be readily used to determine the Wigner phase-space distribution function for the hydrogen atom. [S1050-2947(99)07005-5]....
Equivalence between contextuality and negativity of the Wigner function for qudits
Delfosse, Nicolas; Okay, Cihan; Bermejo-Vega, Juan; Browne, Dan E.; Raussendorf, Robert
2017-12-01
Understanding what distinguishes quantum mechanics from classical mechanics is crucial for quantum information processing applications. In this work, we consider two notions of non-classicality for quantum systems, negativity of the Wigner function and contextuality for Pauli measurements. We prove that these two notions are equivalent for multi-qudit systems with odd local dimension. For a single qudit, the equivalence breaks down. We show that there exist single qudit states that admit a non-contextual hidden variable model description and whose Wigner functions are negative.
Classical effective Hamiltonians, Wigner functions, and the sign problem
International Nuclear Information System (INIS)
Samson, J.H.
1995-01-01
In the functional-integral technique an auxiliary field, coupled to appropriate operators such as spins, linearizes the interaction term in a quantum many-body system. The partition function is then averaged over this time-dependent stochastic field. Quantum Monte Carlo methods evaluate this integral numerically, but suffer from the sign (or phase) problem: the integrand may not be positive definite (or not real). It is shown that, in certain cases that include the many-band Hubbard model and the Heisenberg model, the sign problem is inevitable on fundamental grounds. Here, Monte Carlo simulations generate a distribution of incompatible operators---a Wigner function---from which expectation values and correlation functions are to be calculated; in general no positive-definite distribution of this form exists. The distribution of time-averaged auxiliary fields is the convolution of this operator distribution with a Gaussian of variance proportional to temperature, and is interpreted as a Boltzmann distribution exp(-βV eff ) in classical configuration space. At high temperatures and large degeneracies this classical effective Hamiltonian V eff tends to the static approximation as a classical limit. In the low-temperature limit the field distribution becomes a Wigner function, the sign problem occurs, and V eff is complex. Interpretations of the distributions, and a criterion for their positivity, are discussed. The theory is illustrated by an exact evaluation of the Wigner function for spin s and the effective classical Hamiltonian for the spin-1/2 van der Waals model. The field distribution can be negative here, more noticeably if the number of spins is odd
Q-boson interferometry and generalized Wigner function
International Nuclear Information System (INIS)
Zhang, Q.H.; Padula, Sandra S.
2004-01-01
Bose-Einstein correlations of two identically charged Q bosons are derived considering these particles to be confined in finite volumes. Boundary effects on single Q-boson spectrum are also studied. We illustrate the effects on the spectrum and on the two-Q-boson correlation function by means of two toy models. We also derive a generalized expression for the Wigner function depending on the deformation parameter Q, which is reduced to its original functional form in the limit of Q→1
International Nuclear Information System (INIS)
Xu Hao; Shi Tianjun
2011-01-01
In this article,the qualities of Wigner function and the corresponding stationary perturbation theory are introduced and applied to one-dimensional infinite potential well and one-dimensional harmonic oscillator, and then the particular Wigner function of one-dimensional infinite potential well is specified and a special constriction effect in its pure state Wigner function is discovered, to which,simultaneously, a detailed and reasonable explanation is elaborated from the perspective of uncertainty principle. Ultimately, the amendment of Wigner function and energy of one-dimensional infinite potential well and one-dimensional harmonic oscillator under perturbation are calculated according to stationary phase space perturbation theory. (authors)
2014-03-27
WIGNER DISTRIBUTION FUNCTIONS AS A TOOL FOR STUDYING GAS PHASE ALKALI METAL PLUS NOBLE GAS COLLISIONS THESIS Keith A. Wyman, Second Lieutenant, USAF...the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENP-14-M-39 WIGNER DISTRIBUTION FUNCTIONS AS A TOOL FOR...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT-ENP-14-M-39 WIGNER DISTRIBUTION FUNCTIONS AS A TOOL FOR STUDYING GAS PHASE ALKALI METAL PLUS
A note on the time decay of solutions for the linearized Wigner-Poisson system
Gamba, Irene; Gualdani, Maria; Sparber, Christof
2009-01-01
We consider the one-dimensional Wigner-Poisson system of plasma physics, linearized around a (spatially homogeneous) Lorentzian distribution and prove that the solution of the corresponding linearized problem decays to zero in time. We also give
Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States
Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas
2017-11-01
Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.
Coherent mode decomposition using mixed Wigner functions of Hermite-Gaussian beams.
Tanaka, Takashi
2017-04-15
A new method of coherent mode decomposition (CMD) is proposed that is based on a Wigner-function representation of Hermite-Gaussian beams. In contrast to the well-known method using the cross spectral density (CSD), it directly determines the mode functions and their weights without solving the eigenvalue problem. This facilitates the CMD of partially coherent light whose Wigner functions (and thus CSDs) are not separable, in which case the conventional CMD requires solving an eigenvalue problem with a large matrix and thus is numerically formidable. An example is shown regarding the CMD of synchrotron radiation, one of the most important applications of the proposed method.
Ray tracing the Wigner distribution function for optical simulations
Mout, B.M.; Wick, Michael; Bociort, F.; Petschulat, Joerg; Urbach, Paul
2018-01-01
We study a simulation method that uses the Wigner distribution function to incorporate wave optical effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to calculate point spread functions and show that it is accurate for paraxial systems
Wigner Functions for the Bateman System on Noncommutative Phase Space
Heng, Tai-Hua; Lin, Bing-Sheng; Jing, Si-Cong
2010-09-01
We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and the corresponding energy spectra.
Wigner Functions for the Bateman System on Noncommutative Phase Space
International Nuclear Information System (INIS)
Tai-Hua, Heng; Bing-Sheng, Lin; Si-Cong, Jing
2010-01-01
We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and the corresponding energy spectra
Wigner functions for a class of semi-direct product groups
International Nuclear Information System (INIS)
Krasowska, Anna E; Ali, S Twareque
2003-01-01
Following a general method proposed earlier, we construct here Wigner functions defined on coadjoint orbits of a class of semidirect product groups. The groups in question are such that their unitary duals consist purely of representations from the discrete series and each unitary irreducible representation is associated with a coadjoint orbit. The set of all coadjoint orbits (hence UIRs) is finite and their union is dense in the dual of the Lie algebra. The simple structure of the groups and the orbits enables us to compute the various quantities appearing in the definition of the Wigner function explicitly. A large number of examples, with potential use in image analysis, is worked out
A note on the time decay of solutions for the linearized Wigner-Poisson system
Gamba, Irene
2009-01-01
We consider the one-dimensional Wigner-Poisson system of plasma physics, linearized around a (spatially homogeneous) Lorentzian distribution and prove that the solution of the corresponding linearized problem decays to zero in time. We also give an explicit algebraic decay rate.
International Nuclear Information System (INIS)
Loebl, N.; Maruhn, J. A.; Reinhard, P.-G.
2011-01-01
By calculating the Wigner distribution function in the reaction plane, we are able to probe the phase-space behavior in the time-dependent Hartree-Fock scheme during a heavy-ion collision in a consistent framework. Various expectation values of operators are calculated by evaluating the corresponding integrals over the Wigner function. In this approach, it is straightforward to define and analyze quantities even locally. We compare the Wigner distribution function with the smoothed Husimi distribution function. Different reaction scenarios are presented by analyzing central and noncentral 16 O + 16 O and 96 Zr + 132 Sn collisions. Although we observe strong dissipation in the time evolution of global observables, there is no evidence for complete equilibration in the local analysis of the Wigner function. Because the initial phase-space volumes of the fragments barely merge and mean values of the observables are conserved in fusion reactions over thousands of fm/c, we conclude that the time-dependent Hartree-Fock method provides a good description of the early stage of a heavy-ion collision but does not provide a mechanism to change the phase-space structure in a dramatic way necessary to obtain complete equilibration.
Numerical methods for characterization of synchrotron radiation based on the Wigner function method
Directory of Open Access Journals (Sweden)
Takashi Tanaka
2014-06-01
Full Text Available Numerical characterization of synchrotron radiation based on the Wigner function method is explored in order to accurately evaluate the light source performance. A number of numerical methods to compute the Wigner functions for typical synchrotron radiation sources such as bending magnets, undulators and wigglers, are presented, which significantly improve the computation efficiency and reduce the total computation time. As a practical example of the numerical characterization, optimization of betatron functions to maximize the brilliance of undulator radiation is discussed.
Wigner distribution function of circularly truncated light beams
Bastiaans, M.J.; Nijhawan, O.P.; Gupta, A.K.; Musla, A.K.; Singh, Kehar
1998-01-01
Truncating a light beam is expressed as a convolution of its Wigner distribution function and the WDF of the truncating aperture. The WDF of a circular aperture is derived and an approximate expression - which is exact in the space and the spatial-frequency origin and whose integral over the spatial
Wigner Functions and Quark Orbital Angular Momentum
Mukherjee, Asmita; Nair, Sreeraj; Ojha, Vikash Kumar
2014-01-01
Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs). We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.
Weyl-Wigner correspondence in two space dimensions
DEFF Research Database (Denmark)
Dahl, Jens Peder; Varro, S.; Wolf, A.
2007-01-01
We consider Wigner functions in two space dimensions. In particular, we focus on Wigner functions corresponding to energy eigenstates of a non-relativistic particle moving in two dimensions in the absence of a potential. With the help of the Weyl-Wigner correspondence we first transform...... the eigenvalue equations for energy and angular momentum into phase space. As a result we arrive at partial differential equations in phase space which determine the corresponding Wigner function. We then solve the resulting equations using appropriate coordinates....
Semiclassical propagator of the Wigner function.
Dittrich, Thomas; Viviescas, Carlos; Sandoval, Luis
2006-02-24
Propagation of the Wigner function is studied on two levels of semiclassical propagation: one based on the Van Vleck propagator, the other on phase-space path integration. Leading quantum corrections to the classical Liouville propagator take the form of a time-dependent quantum spot. Its oscillatory structure depends on whether the underlying classical flow is elliptic or hyperbolic. It can be interpreted as the result of interference of a pair of classical trajectories, indicating how quantum coherences are to be propagated semiclassically in phase space. The phase-space path-integral approach allows for a finer resolution of the quantum spot in terms of Airy functions.
Graded-index fibers, Wigner-distribution functions, and the fractional Fourier transform.
Mendlovic, D; Ozaktas, H M; Lohmann, A W
1994-09-10
Two definitions of a fractional Fourier transform have been proposed previously. One is based on the propagation of a wave field through a graded-index medium, and the other is based on rotating a function's Wigner distribution. It is shown that both definitions are equivalent. An important result of this equivalency is that the Wigner distribution of a wave field rotates as the wave field propagates through a quadratic graded-index medium. The relation with ray-optics phase space is discussed.
Wigner Functions and Quark Orbital Angular Momentum
Directory of Open Access Journals (Sweden)
Mukherjee Asmita
2015-01-01
Full Text Available Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs and transverse momentum dependent parton distributions (TMDs. We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.
Wigner distribution function and its application to first-order optics
Bastiaans, M.J.
1979-01-01
The Wigner distribution function of optical signals and systems has been introduced. The concept of such functions is not restricted to deterministic signals, but can be applied to partially coherent light as well. Although derived from Fourier optics, the description of signals and systems by means
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi
2002-01-01
We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting fromquantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangledstates are defined in the enlarged Fock space with a fictitious freedom.
Wigner functions for evanescent waves.
Petruccelli, Jonathan C; Tian, Lei; Oh, Se Baek; Barbastathis, George
2012-09-01
We propose phase space distributions, based on an extension of the Wigner distribution function, to describe fields of any state of coherence that contain evanescent components emitted into a half-space. The evanescent components of the field are described in an optical phase space of spatial position and complex-valued angle. Behavior of these distributions upon propagation is also considered, where the rapid decay of the evanescent components is associated with the exponential decay of the associated phase space distributions. To demonstrate the structure and behavior of these distributions, we consider the fields generated from total internal reflection of a Gaussian Schell-model beam at a planar interface.
Wigner phase-space description of collision processes
International Nuclear Information System (INIS)
Lee, H.; Scully, M.O.
1983-01-01
This year marks the 50th anniversary of the birth of the celebrated Wigner distribution function. Many advances made in various areas of science during the 50 year period can be attributed to the physical insights that the Wigner distribution function provides when applied to specific problems. In this paper the usefulness of the Wigner distribution function in collision theory is described
The Wigner phase-space description of collision processes
International Nuclear Information System (INIS)
Lee, H.W.
1984-01-01
The paper concerns the Wigner distribution function in collision theory. Wigner phase-space description of collision processes; some general consideration on Wigner trajectories; and examples of Wigner trajectories; are all discussed. (U.K.)
On the distribution functions in the quantum mechanics and Wigner functions
International Nuclear Information System (INIS)
Kuz'menkov, L.S.; Maksimov, S.G.
2002-01-01
The problem on the distribution functions, leading to the similar local values of the particles number, pulse and energy, as in the quantum mechanics, is formulated and solved. The method is based on the quantum-mechanical determination of the probability density. The derived distribution function coincides with the Wigner function only for the spatial-homogeneous systems. The Bogolyubov equations chain, the Liouville equation for the distribution quantum functions by any number of particles in the system, the general expression for the tensor of the dielectric permittivity of the plasma electron component are obtained [ru
Sympathetic Wigner-function tomography of a dark trapped ion
DEFF Research Database (Denmark)
Mirkhalaf, Safoura; Mølmer, Klaus
2012-01-01
A protocol is provided to reconstruct the Wigner function for the motional state of a trapped ion via fluorescence detection on another ion in the same trap. This “sympathetic tomography” of a dark ion without optical transitions suitable for state measurements is based on the mapping of its...
Basire, Marie; Borgis, Daniel; Vuilleumier, Rodolphe
2013-08-14
Langevin dynamics coupled to a quantum thermal bath (QTB) allows for the inclusion of vibrational quantum effects in molecular dynamics simulations at virtually no additional computer cost. We investigate here the ability of the QTB method to reproduce the quantum Wigner distribution of a variety of model potentials, designed to assess the performances and limits of the method. We further compute the infrared spectrum of a multidimensional model of proton transfer in the gas phase and in solution, using classical trajectories sampled initially from the Wigner distribution. It is shown that for this type of system involving large anharmonicities and strong nonlinear coupling to the environment, the quantum thermal bath is able to sample the Wigner distribution satisfactorily and to account for both zero point energy and tunneling effects. It leads to quantum time correlation functions having the correct short-time behavior, and the correct associated spectral frequencies, but that are slightly too overdamped. This is attributed to the classical propagation approximation rather than the generation of the quantized initial conditions themselves.
Discrete Wigner function and quantum-state tomography
Leonhardt, Ulf
1996-05-01
The theory of discrete Wigner functions and of discrete quantum-state tomography [U. Leonhardt, Phys. Rev. Lett. 74, 4101 (1995)] is studied in more detail guided by the picture of precession tomography. Odd- and even-dimensional systems (angular momenta and spins, bosons, and fermions) are considered separately. Relations between simple number theory and the quantum mechanics of finite-dimensional systems are pointed out. In particular, the multicomplementarity of the precession states distinguishes prime dimensions from composite ones.
Jauch-Piron system of imprimitivities for phonons. II. The Wigner function formalism
Banach, Zbigniew; Piekarski, Sławomir
1993-01-01
In 1932 Wigner defined and described a quantum mechanical phase space distribution function for a system composed of many identical particles of positive mass. This function has the property that it can be used to calculate a class of quantum mechanical averages in the same manner as the classical phase space distribution function is used to calculate classical averages. Considering the harmonic vibrations of a system of n atoms bound to one another by elastic forces and treating them as a gas of indistinguishable Bose particles, phonons, the primary objective of this paper is to show under which circumstances the Wigner formalism for classical particles can be extended to cover also the phonon case. Since the phonons are either strongly or weakly localizable particles (as described in a companion paper), the program of the present approach consists in applying the Jauch-Piron quantum description of localization in (discrete) space to the phonon system and then in deducing from such a treatment the explicit expression for the phonon analogue of the Wigner distribution function. The characteristic new features of the “phase-space” picture for phonons (as compared with the situation in ordinary theory) are pointed out. The generalization of the method to the case of relativistic particles is straightforward.
Wigner's function and other distribution functions in mock phase space
International Nuclear Information System (INIS)
Balazs, N.L.
1984-01-01
This review deals with the methods of associating functions with quantum mechanical operators in such a manner that these functions should furnish conveniently semiclassical approximations. We present a unified treatment of methods and results which usually appear under expressions such as Wigner's function. Weyl's association, Kirkwood's expansion, Glauber's coherent state representation, etc.; we also construct some new associations. Section 1 gives the motivation by discussing the Thomas-Fermi theory of an atom with this end in view. Section 2 introduce new operators which resemble Dirac delta functions with operator arguments, the operators being the momenta and coordinates. Reasons are given as to why this should be useful. Next we introduce the notion of an operator basis, and discuss the possibility and usefulness of writing an operator as a linear combination of the basis operators. The coefficients in the linear combination are c-numbers and the c-numbers are associated with the operator (in that particularly basis). The delta function type operators introduced before can be used as a basis for the dynamical operators, and the c-numbers obtained in this manner turn out to be the c-number functions used by Wigner, Weyl, Krikwood, Glauber, etc. New bases and associations can now be invented at will. One such new basis is presented and discussed. The reason and motivations for choosing different bases is then explained. The copious and seemingly random mathematical relations between these functions are then nothing else but the relations between the expansion coefficients engendered by the relations between bases. These are shown and discussed in this light. A brief discussion is then given to possible transformation of the p, q labels. Section 3 gives examples of how the semiclassical expansions are generated for these functions and exhibits their equivalence. The mathematical paraphernalia are collected in the appendices. (orig.)
Ray tracing the Wigner distribution function for optical simulations
Mout, Marco; Wick, Michael; Bociort, Florian; Petschulat, Joerg; Urbach, Paul
2018-01-01
We study a simulation method that uses the Wigner distribution function to incorporate wave optical effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to calculate point spread functions and show that it is accurate for paraxial systems but produces unphysical results in the presence of aberrations. The cause of these anomalies is explained using an analytical model.
DEFF Research Database (Denmark)
Dahl, Jens Peder; Schleich, W. P.
2009-01-01
For a closed quantum system the state operator must be a function of the Hamiltonian. When the state is degenerate, additional constants of the motion enter the play. But although it is the Weyl transform of the state operator, the Wigner function is not necessarily a function of the Weyl...... transforms of the constants of the motion. We derive conditions for which this is actually the case. The Wigner functions of the energy eigenstates of a two-dimensional isotropic harmonic oscillator serve as an important illustration....
International Nuclear Information System (INIS)
Luks, A.; Perinova, V.
1993-01-01
A suitable ordering of phase exponential operators has been compared with the antinormal ordering of the annihilation and creation operators of a single mode optical field. The extended Wigner function for number and phase in the enlarged Hilbert space has been used for the derivation of the Wigner function for number and phase in the original Hilbert space. (orig.)
Measurement of the Wigner function via atomic beam deflection in the Raman-Nath regime
Energy Technology Data Exchange (ETDEWEB)
Khosa, Ashfaq H [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Zubairy, M Suhail [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)
2006-12-28
A method for the reconstruction of photon statistics and even the Wigner function of a quantized cavity field state is proposed. The method is based on the measurement of momentum distribution of two-level atoms in the Raman-Nath regime. Both the cases of resonant and off-resonant atom-field interaction are considered. The Wigner function is reconstructed by displacing the photon statistics of the cavity field. This reconstruction method is straightforward and does not need much mathematical manipulation of experimental data.
Fresnel representation of the Wigner function: an operational approach.
Lougovski, P; Solano, E; Zhang, Z M; Walther, H; Mack, H; Schleich, W P
2003-07-04
We present an operational definition of the Wigner function. Our method relies on the Fresnel transform of measured Rabi oscillations and applies to motional states of trapped atoms as well as to field states in cavities. We illustrate this technique using data from recent experiments in ion traps [Phys. Rev. Lett. 76, 1796 (1996)
Wigner functions for noncommutative quantum mechanics: A group representation based construction
Energy Technology Data Exchange (ETDEWEB)
Chowdhury, S. Hasibul Hassan, E-mail: shhchowdhury@gmail.com [Chern Institute of Mathematics, Nankai University, Tianjin 300071 (China); Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8 (Canada); Ali, S. Twareque, E-mail: twareque.ali@concordia.ca [Department of Mathematics and Statistics, Concordia University, Montréal, Québec H3G 1M8 (Canada)
2015-12-15
This paper is devoted to the construction and analysis of the Wigner functions for noncommutative quantum mechanics, their marginal distributions, and star-products, following a technique developed earlier, viz, using the unitary irreducible representations of the group G{sub NC}, which is the three fold central extension of the Abelian group of ℝ{sup 4}. These representations have been exhaustively studied in earlier papers. The group G{sub NC} is identified with the kinematical symmetry group of noncommutative quantum mechanics of a system with two degrees of freedom. The Wigner functions studied here reflect different levels of non-commutativity—both the operators of position and those of momentum not commuting, the position operators not commuting and finally, the case of standard quantum mechanics, obeying the canonical commutation relations only.
Hydrogen atom in phase space: the Wigner representation
International Nuclear Information System (INIS)
Praxmeyer, Ludmila; Mostowski, Jan; Wodkiewicz, Krzysztof
2006-01-01
The hydrogen atom is a fundamental exactly soluble system for which the Wigner function, being a quantum analogue of the joint probability distribution of position and momentum, is unknown. In this paper, we present an effective method of calculating the Wigner function, for all bound states of the nonrelativistic hydrogen atom. The formal similarity between the eigenfunctions of the nonrelativistic hydrogen atom in the momentum representation and the Klein-Gordon propagator has allowed the calculation of the Wigner function for an arbitrary bound state of the hydrogen atom, using a simple atomic integral as a generator. These Wigner functions for some low-lying states are depicted and discussed
Entanglement Potential Versus Negativity of Wigner Function for SUP-Operated Quantum States
Chatterjee, Arpita
2018-02-01
We construct a distinct category of nonclassical quantum states by applying a superposition of products (SUP) of field annihilation (\\hat {a}) and creation (\\hat {a}^{\\dagger }) operators of the type (s\\hat {a}\\hat {a}^{\\dagger }+t\\hat {a}^{\\dagger }\\hat {a}), with s2+t2=1, upon thermal and even coherent states. We allow these SUP operated states to undergo a decoherence process and then describe the nonclassical features of the resulted field by using the entanglement potential (EP) and the negativity of the Wigner distribution function. Our analysis reveals that both the measures are reduced in the linear loss process. The partial negativity of the Wigner function disappears when losses exceed 50% but EP exists always.
Sun, P C; Fainman, Y
1990-09-01
An optical processor for real-time generation of the Wigner distribution of complex amplitude functions is introduced. The phase conjugation of the input signal is accomplished by a highly efficient self-pumped phase conjugator based on a 45 degrees -cut barium titanate photorefractive crystal. Experimental results on the real-time generation of Wigner distribution slices for complex amplitude two-dimensional optical functions are presented and discussed.
Wigner weight functions and Weyl symbols of non-negative definite linear operators
Janssen, A.J.E.M.
1989-01-01
In this paper we present several necessary and, for radially symmetric functions, necessary and sufficient conditions for a function of two variables to be a Wigner weight function (Weyl symbol of a non-negative definite linear operator of L2(R)). These necessary conditions are in terms of spread
Quantum computation and analysis of Wigner and Husimi functions: toward a quantum image treatment.
Terraneo, M; Georgeot, B; Shepelyansky, D L
2005-06-01
We study the efficiency of quantum algorithms which aim at obtaining phase-space distribution functions of quantum systems. Wigner and Husimi functions are considered. Different quantum algorithms are envisioned to build these functions, and compared with the classical computation. Different procedures to extract more efficiently information from the final wave function of these algorithms are studied, including coarse-grained measurements, amplitude amplification, and measure of wavelet-transformed wave function. The algorithms are analyzed and numerically tested on a complex quantum system showing different behavior depending on parameters: namely, the kicked rotator. The results for the Wigner function show in particular that the use of the quantum wavelet transform gives a polynomial gain over classical computation. For the Husimi distribution, the gain is much larger than for the Wigner function and is larger with the help of amplitude amplification and wavelet transforms. We discuss the generalization of these results to the simulation of other quantum systems. We also apply the same set of techniques to the analysis of real images. The results show that the use of the quantum wavelet transform allows one to lower dramatically the number of measurements needed, but at the cost of a large loss of information.
Quantum mechanics on phase space: The hydrogen atom and its Wigner functions
Campos, P.; Martins, M. G. R.; Fernandes, M. C. B.; Vianna, J. D. M.
2018-03-01
Symplectic quantum mechanics (SQM) considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ, to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article the Coulomb potential in three dimensions (3D) is resolved completely by using the phase space Schrödinger equation. The Kustaanheimo-Stiefel(KS) transformation is applied and the Coulomb and harmonic oscillator potentials are connected. In this context we determine the energy levels, the amplitude of probability in phase space and correspondent Wigner quasi-distribution functions of the 3D-hydrogen atom described by Schrödinger equation in phase space.
Anomalous current from the covariant Wigner function
Prokhorov, George; Teryaev, Oleg
2018-04-01
We consider accelerated and rotating media of weakly interacting fermions in local thermodynamic equilibrium on the basis of kinetic approach. Kinetic properties of such media can be described by covariant Wigner function incorporating the relativistic distribution functions of particles with spin. We obtain the formulae for axial current by summation of the terms of all orders of thermal vorticity tensor, chemical potential, both for massive and massless particles. In the massless limit all the terms of fourth and higher orders of vorticity and third order of chemical potential and temperature equal zero. It is shown, that axial current gets a topological component along the 4-acceleration vector. The similarity between different approaches to baryon polarization is established.
Description of nuclear collective motion by Wigner function moments
International Nuclear Information System (INIS)
Balbutsev, E.B.
1996-01-01
The method is presented in which the collective motion is described by the dynamic equations for the nuclear integral characteristics. The 'macroscopic' dynamics is formulated starting from the equations of the microscopic theory. This is done by taking the phase space moments of the Wigner function equation. The theory is applied to the description of collective excitations with multipolarities up to λ=5. (author)
The Wigner-Yanase entropy is not subadditive
DEFF Research Database (Denmark)
Hansen, Frank
2007-01-01
Wigner and Yanase introduced in 1963 the Wigner-Yanase entropy defined as minus the skew information of a state with respect to a conserved observable. They proved that the Wigner-Yanase entropy is a concave function in the state and conjectured that it is subadditive with respect...... to the aggregation of possibly interacting subsystems. While this turned out to be true for the quantum-mechanical entropy, we negate the conjecture for the Wigner-Yanase entropy by providing a counter example....
The Wigner transform and the semi-classical approximations
International Nuclear Information System (INIS)
Shlomo, S.
1985-01-01
The Wigner transform provides a reformulation of quantum mechanics in terms of classical concepts. Some properties of the Wigner transform of the density matrix which justify its interpretation as the quantum-mechanical analog of the classical phase-space distribution function are presented. Considering some applications, it is demonstrated that the Wigner distribution function serves as a good starting point for semi-classical approximations to properties of the (nuclear) many-body system
Luzanov, A V
2008-09-07
The Wigner function for the pure quantum states is used as an integral kernel of the non-Hermitian operator K, to which the standard singular value decomposition (SVD) is applied. It provides a set of the squared singular values treated as probabilities of the individual phase-space processes, the latter being described by eigenfunctions of KK(+) (for coordinate variables) and K(+)K (for momentum variables). Such a SVD representation is employed to obviate the well-known difficulties in the definition of the phase-space entropy measures in terms of the Wigner function that usually allows negative values. In particular, the new measures of nonclassicality are constructed in the form that automatically satisfies additivity for systems composed of noninteracting parts. Furthermore, the emphasis is given on the geometrical interpretation of the full entropy measure as the effective phase-space volume in the Wigner picture of quantum mechanics. The approach is exemplified by considering some generic vibrational systems. Specifically, for eigenstates of the harmonic oscillator and a superposition of coherent states, the singular value spectrum is evaluated analytically. Numerical computations are given for the nonlinear problems (the Morse and double well oscillators, and the Henon-Heiles system). We also discuss the difficulties in implementation of a similar technique for electronic problems.
Functional Wigner representation of quantum dynamics of Bose-Einstein condensate
Energy Technology Data Exchange (ETDEWEB)
Opanchuk, B.; Drummond, P. D. [Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Hawthorn VIC 3122 (Australia)
2013-04-15
We develop a method of simulating the full quantum field dynamics of multi-mode multi-component Bose-Einstein condensates in a trap. We use the truncated Wigner representation to obtain a probabilistic theory that can be sampled. This method produces c-number stochastic equations which may be solved using conventional stochastic methods. The technique is valid for large mode occupation numbers. We give a detailed derivation of methods of functional Wigner representation appropriate for quantum fields. Our approach describes spatial evolution of spinor components and properly accounts for nonlinear losses. Such techniques are applicable to calculating the leading quantum corrections, including effects such as quantum squeezing, entanglement, EPR correlations, and interactions with engineered nonlinear reservoirs. By using a consistent expansion in the inverse density, we are able to explain an inconsistency in the nonlinear loss equations found by earlier authors.
Wigner functions and density matrices in curved spaces as computational tools
International Nuclear Information System (INIS)
Habib, S.; Kandrup, H.E.
1989-01-01
This paper contrasts two alternative approaches to statistical quantum field theory in curved spacetimes, namely (1) a canonical Hamiltonian approach, in which the basic object is a density matrix ρ characterizing the noncovariant, but globally defined, modes of the field; and (2) a Wigner function approach, in which the basic object is a Wigner function f defined quasilocally from the Hadamard, or correlation, function G 1 (x 1 , x 2 ). The key object is to isolate on the conceptual biases underlying each of these approaches and then to assess their utility and limitations in effecting concerete calculations. The following questions are therefore addressed and largely answered. What sort of spacetimes (e.g., de Sitter or Friedmann-Robertson-Walker) are comparatively eas to consider? What sorts of objects (e.g., average fields or renormalized stress energies) are easy to compute approximately? What, if anything, can be computed exactly? What approximations are intrinsic to each approach or convenient as computational tools? What sorts of ''field entropies'' are natural to define? copyright 1989 Academic Press, Inc
Maple procedures for the coupling of angular momenta. IX. Wigner D-functions and rotation matrices
Pagaran, J.; Fritzsche, S.; Gaigalas, G.
2006-04-01
The Wigner D-functions, Dpqj(α,β,γ), are known for their frequent use in quantum mechanics. Defined as the matrix elements of the rotation operator Rˆ(α,β,γ) in R and parametrized in terms of the three Euler angles α, β, and γ, these functions arise not only in the transformation of tensor components under the rotation of the coordinates, but also as the eigenfunctions of the spherical top. In practice, however, the use of the Wigner D-functions is not always that simple, in particular, if expressions in terms of these and other functions from the theory of angular momentum need to be simplified before some computations can be carried out in detail. To facilitate the manipulation of such Racah expressions, here we present an extension to the RACAH program [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51] in which the properties and the algebraic rules of the Wigner D-functions and reduced rotation matrices are implemented. Care has been taken to combine the standard knowledge about the rotation matrices with the previously implemented rules for the Clebsch-Gordan coefficients, Wigner n-j symbols, and the spherical harmonics. Moreover, the application of the program has been illustrated below by means of three examples. Program summaryTitle of program:RACAH Catalogue identifier:ADFv_9_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADFv_9_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Catalogue identifier of previous version: ADFW, ADHW, title RACAH Journal reference of previous version(s): S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51; S. Fritzsche, S. Varga, D. Geschke, B. Fricke, Comput. Phys. Comm. 111 (1998) 167; S. Fritzsche, T. Inghoff, M. Tomaselli, Comput. Phys. Comm. 153 (2003) 424. Does the new version supersede the previous one: Yes, in addition to the spherical harmonics and recoupling coefficients, the program now supports also the occurrence of the Wigner rotation matrices in the algebraic
Two-Q-boson interferometry and generalization of the Wigner function
Energy Technology Data Exchange (ETDEWEB)
Padula, Sandra S. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil)]. E-mail: padula@ift.unesp.br; Zhang, Q.H. [McGill Univ., Montreal (Canada). Physics Dept.
2004-07-01
Bose-Einstein correlations of two identically charged Q-bosons are derived considering those particles to be confined in finite volumes. Boundary effects on single Q-boson spectrum are also studied. We illustrate these effects by two examples: a toy model (one-dimensional box) and a confining sphere. We also confined a generalized expression for the Wigner function depending on the deformation parameter Q, which is reduced to its original functional form in the limit Q {yields} 1. (author)
Two-Q-boson interferometry and generalization of the Wigner function
International Nuclear Information System (INIS)
Padula, Sandra S.; Zhang, Q.H.
2004-01-01
Bose-Einstein correlations of two identically charged Q-bosons are derived considering those particles to be confined in finite volumes. Boundary effects on single Q-boson spectrum are also studied. We illustrate these effects by two examples: a toy model (one-dimensional box) and a confining sphere. We also derive a generalized expression for the Wigner function depending on the deformation parameter Q, which is reduced to its original functional form in the limit Q → 1
Two-Q-boson interferometry and generalization of the Wigner function
International Nuclear Information System (INIS)
Padula, Sandra S.; Zhang, Q.H.
2004-01-01
Bose-Einstein correlations of two identically charged Q-bosons are derived considering those particles to be confined in finite volumes. Boundary effects on single Q-boson spectrum are also studied. We illustrate these effects by two examples: a toy model (one-dimensional box) and a confining sphere. We also confined a generalized expression for the Wigner function depending on the deformation parameter Q, which is reduced to its original functional form in the limit Q → 1. (author)
International Nuclear Information System (INIS)
Kastrup, H.A.
2017-01-01
The framework of Wigner functions for the canonical pair angle and orbital angular momentum, derived and analyzed in 2 recent papers [H. A. Kastrup, Phys. Rev. A 94, 062113(2016) and Phys. Rev. A 95, 052111(2017)], is applied to elementary concepts of quantum information like qubits and 2-qubits, e.g., entangled EPR/Bell states etc. Properties of the associated Wigner functions are discussed and illustrated. The results may be useful for quantum information experiments with orbital angular momenta of light beams or electron beams.
Energy Technology Data Exchange (ETDEWEB)
Kastrup, H.A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group
2017-10-17
The framework of Wigner functions for the canonical pair angle and orbital angular momentum, derived and analyzed in 2 recent papers [H. A. Kastrup, Phys. Rev. A 94, 062113(2016) and Phys. Rev. A 95, 052111(2017)], is applied to elementary concepts of quantum information like qubits and 2-qubits, e.g., entangled EPR/Bell states etc. Properties of the associated Wigner functions are discussed and illustrated. The results may be useful for quantum information experiments with orbital angular momenta of light beams or electron beams.
Ring-shaped functions and Wigner 6j-symbols
International Nuclear Information System (INIS)
Mardoyan, L.G.; Erevanskij Gosudarstvennyj Univ., Erevan
2006-01-01
The explicit expression for the ring-shaped matrix connecting the ring-shaped functions relating to different values of the axial parameter is obtained. The connection of this matrix with Wigner 6j-symbols is found out. The motion of quantum particle in the ring-shaped model with the zero priming potential is investigated. The bases of this model, which are factored in spherical cylindrical coordinates, are obtained. The formula generalizing the Rayleigh expansion of a plane wave with respect to spherical waves in the ring-shaped model is deduced [ru
Energy Technology Data Exchange (ETDEWEB)
Gao, Jian-hua [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Wang, Qun, E-mail: qunwang@ustc.edu.cn [Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)
2015-10-07
We demonstrate the emergence of the magnetic moment and spin-vorticity coupling of chiral fermions in 4-dimensional Wigner functions. In linear response theory with space–time varying electromagnetic fields, the parity-odd part of the electric conductivity can also be derived which reproduces results of the one-loop and the hard-thermal or hard-dense loop. All these properties show that the 4-dimensional Wigner functions capture comprehensive aspects of physics for chiral fermions in electromagnetic fields.
International Nuclear Information System (INIS)
Choi, Jeong Ryeol; Yeon, Kyu Hwang
2008-01-01
The Wigner distribution function for the time-dependent quadratic Hamiltonian system in the coherent Schroedinger cat state is investigated. The type of state we consider is a superposition of two coherent states, which are by an angle of π out of phase with each other. The exact Wigner distribution function of the system is evaluated under a particular choice of phase, δ c,q . Our development is employed for two special cases, namely, the Caldirola-Kanai oscillator and the frequency stable damped harmonic oscillator. On the basis of the diverse values of the Wigner distribution function that were plotted, we analyze the nonclassical behavior of the systems.
Wigner function and tomogram of the excited squeezed vacuum state
International Nuclear Information System (INIS)
Meng Xiangguo; Wang Jisuo; Fan Hongyi
2007-01-01
The excited squeezed light (ESL) can be the outcome of interaction between squeezed light probe and excited atom, which can explore the status and the structure of the atom. We calculate the Wigner function and tomogram of ESL that may be comparable to the experimental measurement of quadrature-amplitude distribution for the light field obtained using balanced homodyne detection. The method of calculation seems new
Wigner function and tomogram of the excited squeezed vacuum state
Energy Technology Data Exchange (ETDEWEB)
Meng Xiangguo [Department of Physics, Liaocheng University, Shandong Province 252059 (China); Wang Jisuo [Department of Physics, Liaocheng University, Shandong Province 252059 (China)]. E-mail: jswang@lcu.edu.cn; Fan Hongyi [Department of Physics, Liaocheng University, Shandong Province 252059 (China); CCAST (World Laboratory), P.O. Box 8730, 100080 Beijing (China)
2007-01-29
The excited squeezed light (ESL) can be the outcome of interaction between squeezed light probe and excited atom, which can explore the status and the structure of the atom. We calculate the Wigner function and tomogram of ESL that may be comparable to the experimental measurement of quadrature-amplitude distribution for the light field obtained using balanced homodyne detection. The method of calculation seems new.
International Nuclear Information System (INIS)
Li Qianshu; Lue Liqiang; Wei Gongmin
2004-01-01
This paper discusses the relationship between the Wigner function, along with other related quasiprobability distribution functions, and the probability density distribution function constructed from the wave function of the Schroedinger equation in quantum phase space, as formulated by Torres-Vega and Frederick (TF). At the same time, a general approach in solving the wave function of the Schroedinger equation of TF quantum phase space theory is proposed. The relationship of the wave functions between the TF quantum phase space representation and the coordinate or momentum representation is thus revealed
International Nuclear Information System (INIS)
Hebenstreit, F.; Alkofer, R.; Gies, H.
2010-01-01
The nonperturbative electron-positron pair production (Schwinger effect) is considered for space- and time-dependent electric fields E-vector(x-vector,t). Based on the Dirac-Heisenberg-Wigner formalism, we derive a system of partial differential equations of infinite order for the 16 irreducible components of the Wigner function. In the limit of spatially homogeneous fields the Vlasov equation of quantum kinetic theory is rediscovered. It is shown that the quantum kinetic formalism can be exactly solved in the case of a constant electric field E(t)=E 0 and the Sauter-type electric field E(t)=E 0 sech 2 (t/τ). These analytic solutions translate into corresponding expressions within the Dirac-Heisenberg-Wigner formalism and allow to discuss the effect of higher derivatives. We observe that spatial field variations typically exert a strong influence on the components of the Wigner function for large momenta or for late times.
Directory of Open Access Journals (Sweden)
Jian-hua Gao
2015-10-01
Full Text Available We demonstrate the emergence of the magnetic moment and spin-vorticity coupling of chiral fermions in 4-dimensional Wigner functions. In linear response theory with space–time varying electromagnetic fields, the parity-odd part of the electric conductivity can also be derived which reproduces results of the one-loop and the hard-thermal or hard-dense loop. All these properties show that the 4-dimensional Wigner functions capture comprehensive aspects of physics for chiral fermions in electromagnetic fields.
Eigenfunctions of quadratic hamiltonians in Wigner representation
International Nuclear Information System (INIS)
Akhundova, Eh.A.; Dodonov, V.V.; Man'ko, V.I.
1984-01-01
Exact solutions of the Schroedinger equation in Wigner representation are obtained for an arbitrary non-stationary N-dimensional quadratic Hamiltonian. It is shown that the complete system of the solutions can always be chosen in the form of the products of Laguerre polynomials, the arguments of which are the quadratic integrals of motion of the corresponding classical problem. The generating function is found for the transition probabilities between Fock states which represent a many-dimensional generatization of a well-known Husimi formula for the oscillator of variable frequency. As an example, the motion of a charged particle in an uniform alternate electromagnetic field is considered in detail
Regularized tripartite continuous variable EPR-type states with Wigner functions and CHSH violations
International Nuclear Information System (INIS)
Jacobsen, Sol H; Jarvis, P D
2008-01-01
We consider tripartite entangled states for continuous variable systems of EPR type, which generalize the famous bipartite CV EPR states (eigenvectors of conjugate choices X 1 - X 2 , P 1 + P 2 , of the systems' relative position and total momentum variables). We give the regularized forms of such tripartite EPR states in second-quantized formulation, and derive their Wigner functions. This is directly compared with the established NOPA-like states from quantum optics. Whereas the multipartite entangled states of NOPA type have singular Wigner functions in the limit of large squeezing, r → ∞, or tanh r → 1 - (approaching the EPR states in the bipartite case), our regularized tripartite EPR states show singular behaviour not only in the approach to the EPR-type region (s → 1 in our notation), but also for an additional, auxiliary regime of the regulator (s→√2). While the s → 1 limit pertains to tripartite CV states with singular eigenstates of the relative coordinates and remaining squeezed in the total momentum, the (s→√2) limit yields singular eigenstates of the total momentum, but squeezed in the relative coordinates. Regarded as expectation values of displaced parity measurements, the tripartite Wigner functions provide the ingredients for generalized CHSH inequalities. Violations of the tripartite CHSH bound (B 3 ≤ 2) are established, with B 3 ≅2.09 in the canonical regime (s → 1 + ), as well as B 3 ≅2.32 in the auxiliary regime (s→√2 + )
Semiclassical propagation: Hilbert space vs. Wigner representation
Gottwald, Fabian; Ivanov, Sergei D.
2018-03-01
A unified viewpoint on the van Vleck and Herman-Kluk propagators in Hilbert space and their recently developed counterparts in Wigner representation is presented. Based on this viewpoint, the Wigner Herman-Kluk propagator is conceptually the most general one. Nonetheless, the respective semiclassical expressions for expectation values in terms of the density matrix and the Wigner function are mathematically proven here to coincide. The only remaining difference is a mere technical flexibility of the Wigner version in choosing the Gaussians' width for the underlying coherent states beyond minimal uncertainty. This flexibility is investigated numerically on prototypical potentials and it turns out to provide neither qualitative nor quantitative improvements. Given the aforementioned generality, utilizing the Wigner representation for semiclassical propagation thus leads to the same performance as employing the respective most-developed (Hilbert-space) methods for the density matrix.
Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon.
McConnell, Robert; Zhang, Hao; Hu, Jiazhong; Ćuk, Senka; Vuletić, Vladan
2015-03-26
Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized, but these states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. Non-Gaussian entangled states have been produced in small ensembles of ions, and very recently in large atomic ensembles. Here we generate entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function--an important hallmark of non-classicality--and verify an entanglement depth (the minimum number of mutually entangled atoms) of 2,910 ± 190 out of 3,100 atoms. Attaining such a negative Wigner function and the mutual entanglement of virtually all atoms is unprecedented for an ensemble containing more than a few particles. Although the achieved purity of the state is slightly below the threshold for entanglement-induced metrological gain, further technical improvement should allow the generation of states that surpass this threshold, and of more complex Schrödinger cat states for quantum metrology and information processing. More generally, our results demonstrate the power of heralded methods for entanglement generation, and illustrate how the information contained in a single photon can drastically alter the quantum state of a large system.
Fractional Wigner Crystal in the Helical Luttinger Liquid.
Traverso Ziani, N; Crépin, F; Trauzettel, B
2015-11-13
The properties of the strongly interacting edge states of two dimensional topological insulators in the presence of two-particle backscattering are investigated. We find an anomalous behavior of the density-density correlation functions, which show oscillations that are neither of Friedel nor of Wigner type: they, instead, represent a Wigner crystal of fermions of fractional charge e/2, with e the electron charge. By studying the Fermi operator, we demonstrate that the state characterized by such fractional oscillations still bears the signatures of spin-momentum locking. Finally, we compare the spin-spin correlation functions and the density-density correlation functions to argue that the fractional Wigner crystal is characterized by a nontrivial spin texture.
International Nuclear Information System (INIS)
Cohendet, O.
1989-01-01
We consider a quantum system with a finite number N of states and we show that a Markov process evolving in an 'extended' discrete phase can be associated with the discrete Wigner function of the system. This Wigner function is built using the Weyl quantization procedure on the group Z N xZ N . Moreover we can use this process to compute the quantum mean values as probabilistic expectations of functions of this process. This probabilistic formulation can be seen as a stochastic mechanics in phase space. (orig.)
Time Evolution Of The Wigner Function In Discrete Quantum Phase Space For A Soluble Quasi-spin Model
Galetti, D
2000-01-01
Summary: The discrete phase space approach to quantum mechanics of degrees of freedom without classical counterparts is applied to the many-fermions/quasi-spin Lipkin model. The Wigner function is written for some chosen states associated to discrete angle and angular momentum variables, and the time evolution is numerically calculated using the discrete von Neumann-Liouville equation. Direct evidences in the time evolution of the Wigner function are extracted that identify a tunnelling effect. A connection with an $SU(2)$-based semiclassical continuous approach to the Lipkin model is also presented.
Thermal Wigner Operator in Coherent Thermal State Representation and Its Application
Institute of Scientific and Technical Information of China (English)
FAN HongYi
2002-01-01
In the coherent thermal state representation we introduce thermal Wigner operator and find that it is"squeezed" under the thermal transformation. The thermal Wigner operator provides us with a new direct and neatapproach for deriving Wigner functions of thermal states.
Isar, Aurelian
1995-01-01
The harmonic oscillator with dissipation is studied within the framework of the Lindblad theory for open quantum systems. By using the Wang-Uhlenbeck method, the Fokker-Planck equation, obtained from the master equation for the density operator, is solved for the Wigner distribution function, subject to either the Gaussian type or the delta-function type of initial conditions. The obtained Wigner functions are two-dimensional Gaussians with different widths. Then a closed expression for the density operator is extracted. The entropy of the system is subsequently calculated and its temporal behavior shows that this quantity relaxes to its equilibrium value.
Thermal Wigner Operator in Coherent Thermal State Representation and Its Application
Institute of Scientific and Technical Information of China (English)
FANHong－Yi
2002-01-01
In the coherent thermal state representation we introduce thermal Wigner operator and find that it is “squeezed” under the thermal transformation.The thermal Wigner operator provides us with a new direct and neat approach for deriving Wigner functions of thermal states.
Wigner method dynamics in the interaction picture
DEFF Research Database (Denmark)
Møller, Klaus Braagaard; Dahl, Jens Peder; Henriksen, Niels Engholm
1994-01-01
that the dynamics of the interaction picture Wigner function is solved by running a swarm of trajectories in the classical interaction picture introduced previously in the literature. Solving the Wigner method dynamics of collision processes in the interaction picture ensures that the calculated transition......The possibility of introducing an interaction picture in the semiclassical Wigner method is investigated. This is done with an interaction Picture description of the density operator dynamics as starting point. We show that the dynamics of the density operator dynamics as starting point. We show...... probabilities are unambiguous even when the asymptotic potentials are anharmonic. An application of the interaction picture Wigner method to a Morse oscillator interacting with a laser field is presented. The calculated transition probabilities are in good agreement with results obtained by a numerical...
National Research Council Canada - National Science Library
Jacoboni, C
1997-01-01
A theoretical and computational analysis of the quantum dynamics of charge carriers in presence of electron-phonon interaction based on the Wigner function is here applied to the study of transport in mesoscopic systems...
Wigner distribution function of Hermite-cosine-Gaussian beams through an apertured optical system.
Sun, Dong; Zhao, Daomu
2005-08-01
By introducing the hard-aperture function into a finite sum of complex Gaussian functions, the approximate analytical expressions of the Wigner distribution function for Hermite-cosine-Gaussian beams passing through an apertured paraxial ABCD optical system are obtained. The analytical results are compared with the numerically integrated ones, and the absolute errors are also given. It is shown that the analytical results are proper and that the calculation speed for them is much faster than for the numerical results.
Stokes vector and its relationship to Discrete Wigner Functions of multiqubit states
Energy Technology Data Exchange (ETDEWEB)
Srinivasan, K., E-mail: sriniphysics@gmail.com; Raghavan, G.
2016-07-29
A Stokes vectors and Discrete Wigner Functions (DWF) provide two alternate ways of representing the state of multiqubit systems. A general relationship between the Stokes vector and the DWF is derived for arbitrary n-qubit states for all possible choices of quantum nets. The Stokes vector and the DWF are shown to be related through a Hadamard Matrix. Using these results, a relationship between the Stokes vector of a spin-flipped state and the DWF is derived. Finally, we also present a method to express the Minkowskian squared norm of the Stokes vector, corresponding to n-concurrence in terms of the DWF. - Highlights: • Relationship between Stokes vector (SV) and discrete Wigner function (DWF) for arbitrary multiqubit states is presented. • It is shown that SV and DWF are related to one another through Hadamard matrices. • We show that the Hadamard matrices depend on the choice of the quantum net. • Relationship between SV of the spin flipped state and the DWF is derived. • Expression to compute n-concurrence of the pure n-qubit systems purely in terms of DWF is given.
Stokes vector and its relationship to Discrete Wigner Functions of multiqubit states
International Nuclear Information System (INIS)
Srinivasan, K.; Raghavan, G.
2016-01-01
A Stokes vectors and Discrete Wigner Functions (DWF) provide two alternate ways of representing the state of multiqubit systems. A general relationship between the Stokes vector and the DWF is derived for arbitrary n-qubit states for all possible choices of quantum nets. The Stokes vector and the DWF are shown to be related through a Hadamard Matrix. Using these results, a relationship between the Stokes vector of a spin-flipped state and the DWF is derived. Finally, we also present a method to express the Minkowskian squared norm of the Stokes vector, corresponding to n-concurrence in terms of the DWF. - Highlights: • Relationship between Stokes vector (SV) and discrete Wigner function (DWF) for arbitrary multiqubit states is presented. • It is shown that SV and DWF are related to one another through Hadamard matrices. • We show that the Hadamard matrices depend on the choice of the quantum net. • Relationship between SV of the spin flipped state and the DWF is derived. • Expression to compute n-concurrence of the pure n-qubit systems purely in terms of DWF is given.
A generalized Wigner function for quantum systems with the SU(2) dynamical symmetry group
International Nuclear Information System (INIS)
Klimov, A B; Romero, J L
2008-01-01
We introduce a Wigner-like quasidistribution function to describe quantum systems with the SU(2) dynamic symmetry group. This function is defined in a three-dimensional group manifold and can be used to represent the states defined in several SU(2) invariant subspaces. The explicit differential Moyal-like form of the star product is found and analyzed in the semiclassical limit
Thermo Wigner operator in thermo field dynamics: its introduction and application
International Nuclear Information System (INIS)
Fan Hongyi; Jiang Nianquan
2008-01-01
Because in thermo-field dynamics (TFD) the thermo-operator has a neat expression in the thermo-entangled state representation, we need to introduce the thermo-Wigner operator (THWO) in the same representation. We derive the THWO in a direct way, which brings much conveniece to calculating the Wigner functions of thermo states in TFD. We also discuss the condition for existence of a wavefunction corresponding to a given Wigner function in the context of TFD by using the explicit form of the THWO.
A different approach to obtain Mayer’s extension to stationary single particle Wigner distribution
International Nuclear Information System (INIS)
Bose, Anirban; Janaki, M. S.
2012-01-01
It is shown that the stationary collisionless single-particle Wigner equation in one dimension containing quantum corrections at the lowest order is satisfied by a distribution function that is similar in form to the Maxwellian distribution with an effective mass and a generalized potential. The distribution is used to study quantum corrections to electron hole solutions.
A mathematical solution for the parameters of three interfering resonances
Han, X.; Shen, C. P.
2018-04-01
The multiple-solution problem in determining the parameters of three interfering resonances from a fit to an experimentally measured distribution is considered from a mathematical viewpoint. It is shown that there are four numerical solutions for a fit with three coherent Breit-Wigner functions. Although explicit analytical formulae cannot be derived in this case, we provide some constraint equations between the four solutions. For the cases of nonrelativistic and relativistic Breit-Wigner forms of amplitude functions, a numerical method is provided to derive the other solutions from that already obtained, based on the obtained constraint equations. In real experimental measurements with more complicated amplitude forms similar to Breit-Wigner functions, the same method can be deduced and performed to get numerical solutions. The good agreement between the solutions found using this mathematical method and those directly from the fit verifies the correctness of the constraint equations and mathematical methodology used. Supported by National Natural Science Foundation of China (NSFC) (11575017, 11761141009), the Ministry of Science and Technology of China (2015CB856701) and the CAS Center for Excellence in Particle Physics (CCEPP)
International Nuclear Information System (INIS)
Yuan, Minghu; Feng, Liqiang; Lü, Rui; Chu, Tianshu
2014-01-01
We show that by introducing Wigner rotation technique into the solution of time-dependent Schrödinger equation in length gauge, computational efficiency can be greatly improved in describing atoms in intense few-cycle circularly polarized laser pulses. The methodology with Wigner rotation technique underlying our openMP parallel computational code for circularly polarized laser pulses is described. Results of test calculations to investigate the scaling property of the computational code with the number of the electronic angular basis function l as well as the strong field phenomena are presented and discussed for the hydrogen atom
The Wigner distribution function in modal characterisation
CSIR Research Space (South Africa)
Mredlana, Prince
2016-07-01
Full Text Available function in modal characterisation P. MREDLANA1, D. NAIDOO1, C MAFUSIRE2, T. KRUGER2, A. DUDLEY1,3, A. FORBES1,3 1CSIR National Laser Centre, PO BOX 395, Pretoria 0001, South Africa. 2Department of Physics, Faculty of Natural and Agricultural..., the Wigner distribution of ð ð¥ is an integral of the correlation function ð ð¥ + 1 2 ð¥â² ð â ð¥ + 1 2 ð¥â² represented as: ðð ð¥, ð = ð ð¥ + 1 2 ð¥â² ð â ð¥ + 1 2 ð¥â² ðâððð¥â²ðð...
An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism
International Nuclear Information System (INIS)
Sellier, J.M.; Nedjalkov, M.; Dimov, I.
2015-01-01
The Wigner formulation of quantum mechanics is a very intuitive approach which allows the comprehension and prediction of quantum mechanical phenomena in terms of quasi-distribution functions. In this review, our aim is to provide a detailed introduction to this theory along with a Monte Carlo method for the simulation of time-dependent quantum systems evolving in a phase-space. This work consists of three main parts. First, we introduce the Wigner formalism, then we discuss in detail the Wigner Monte Carlo method and, finally, we present practical applications. In particular, the Wigner model is first derived from the Schrödinger equation. Then a generalization of the formalism due to Moyal is provided, which allows to recover important mathematical properties of the model. Next, the Wigner equation is further generalized to the case of many-body quantum systems. Finally, a physical interpretation of the negative part of a quasi-distribution function is suggested. In the second part, the Wigner Monte Carlo method, based on the concept of signed (virtual) particles, is introduced in detail for the single-body problem. Two extensions of the Wigner Monte Carlo method to quantum many-body problems are introduced, in the frameworks of time-dependent density functional theory and ab-initio methods. Finally, in the third and last part of this paper, applications to single- and many-body problems are performed in the context of quantum physics and quantum chemistry, specifically focusing on the hydrogen, lithium and boron atoms, the H 2 molecule and a system of two identical Fermions. We conclude this work with a discussion on the still unexplored directions the Wigner Monte Carlo method could take in the next future
Interpretation of the Wigner transform
International Nuclear Information System (INIS)
Casas, M.; Krivine, H.; Martorell, J.
1990-01-01
In quantum mechanics it is not possible to define a probability for finding a particle at position r with momentum p. Nevertheless there is a function introduced by Wigner, which retains many significant features of the classical probability distribution. Using simple one dimensional models we try to understand the very involved structure of this function
International Nuclear Information System (INIS)
Bund, G W; Tijero, M C
2004-01-01
The mapping of the Wigner distribution function (WDF) for a given bound state onto a semiclassical distribution function (SDF) satisfying the Liouville equation introduced previously by us is applied to the ground state of the Morse oscillator. The purpose of the present work is to obtain values of the potential parameters represented by the number of levels in the case of the Morse oscillator, for which the SDF becomes a faithful approximation of the corresponding WDF. We find that for a Morse oscillator with one level only, the agreement between the WDF and the mapped SDF is very poor but for a Morse oscillator of ten levels it becomes satisfactory. We also discuss the limit ℎ → 0 for fixed potential parameters
An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism
Energy Technology Data Exchange (ETDEWEB)
Sellier, J.M., E-mail: jeanmichel.sellier@parallel.bas.bg [IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 25A, 1113 Sofia (Bulgaria); Nedjalkov, M. [IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 25A, 1113 Sofia (Bulgaria); Institute for Microelectronics, TU Wien, Gußhausstraße 27-29/E360, 1040 Wien (Austria); Dimov, I. [IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 25A, 1113 Sofia (Bulgaria)
2015-05-12
The Wigner formulation of quantum mechanics is a very intuitive approach which allows the comprehension and prediction of quantum mechanical phenomena in terms of quasi-distribution functions. In this review, our aim is to provide a detailed introduction to this theory along with a Monte Carlo method for the simulation of time-dependent quantum systems evolving in a phase-space. This work consists of three main parts. First, we introduce the Wigner formalism, then we discuss in detail the Wigner Monte Carlo method and, finally, we present practical applications. In particular, the Wigner model is first derived from the Schrödinger equation. Then a generalization of the formalism due to Moyal is provided, which allows to recover important mathematical properties of the model. Next, the Wigner equation is further generalized to the case of many-body quantum systems. Finally, a physical interpretation of the negative part of a quasi-distribution function is suggested. In the second part, the Wigner Monte Carlo method, based on the concept of signed (virtual) particles, is introduced in detail for the single-body problem. Two extensions of the Wigner Monte Carlo method to quantum many-body problems are introduced, in the frameworks of time-dependent density functional theory and ab-initio methods. Finally, in the third and last part of this paper, applications to single- and many-body problems are performed in the context of quantum physics and quantum chemistry, specifically focusing on the hydrogen, lithium and boron atoms, the H{sub 2} molecule and a system of two identical Fermions. We conclude this work with a discussion on the still unexplored directions the Wigner Monte Carlo method could take in the next future.
Karlovets, Dmitry V; Serbo, Valeriy G
2017-10-27
Within a plane-wave approximation in scattering, an incoming wave packet's Wigner function stays positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement. With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely quantum regime where the latter effects become only moderately attenuated. Here we show how to probe negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets with a nonvanishing impact parameter between them (a Schrödinger's cat state) by atomic targets. For hydrogen in the ground 1s state, a small parameter of the problem, a ratio a/σ_{⊥} of the Bohr radius a to the beam width σ_{⊥}, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons, which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the not-everywhere-positive Wigner functions and the probing of such quantum effects can open new perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.
Friedel oscillations from the Wigner-Kirkwood distribution in half infinite matter
International Nuclear Information System (INIS)
Durand, M.; Schuck, P.; Vinas, X.
1985-01-01
The Wigner-Kirkwood expansion is derived in complete analogy to the low temperature expansion of the Fermi function showing that the Planck's constant and T play analogous roles in both cases. In detail however the Wigner distribution close to a surface is quite different from a Fermi function and we showed for instance that the Planck's constant expansion can account for the surface oscillations of the distribution
Tunneling of an energy eigenstate through a parabolic barrier viewed from Wigner phase space
DEFF Research Database (Denmark)
Heim, D.M.; Schleich, W.P.; Alsing, P.M.
2013-01-01
We analyze the tunneling of a particle through a repulsive potential resulting from an inverted harmonic oscillator in the quantum mechanical phase space described by the Wigner function. In particular, we solve the partial differential equations in phase space determining the Wigner function...... of an energy eigenstate of the inverted oscillator. The reflection or transmission coefficients R or T are then given by the total weight of all classical phase-space trajectories corresponding to energies below, or above the top of the barrier given by the Wigner function....
Characterization of tomographically faithful states in terms of their Wigner function
International Nuclear Information System (INIS)
D'Ariano, G M; Sacchi, M F
2005-01-01
A bipartite quantum state is tomographically faithful when it can be used as an input of a quantum operation acting on one of the two quantum systems, such that the joint output state carries complete information about the operation itself. Tomographically faithful states are a necessary ingredient for the tomography of quantum operations and for complete quantum calibration of measuring apparatuses. In this paper we provide a complete classification of such states for continuous variables in terms of the Wigner function of the state. For two-mode Gaussian states faithfulness simply resorts to correlation between the modes
Zalvidea; Colautti; Sicre
2000-05-01
An analysis of the Strehl ratio and the optical transfer function as imaging quality parameters of optical elements with enhanced focal length is carried out by employing the Wigner distribution function. To this end, we use four different pupil functions: a full circular aperture, a hyper-Gaussian aperture, a quartic phase plate, and a logarithmic phase mask. A comparison is performed between the quality parameters and test images formed by these pupil functions at different defocus distances.
Kim, Hwi; Min, Sung-Wook; Lee, Byoungho; Poon, Ting-Chung
2008-07-01
We propose a novel optical sectioning method for optical scanning holography, which is performed in phase space by using Wigner distribution functions together with the fractional Fourier transform. The principle of phase-space optical sectioning for one-dimensional signals, such as slit objects, and two-dimensional signals, such as rectangular objects, is first discussed. Computer simulation results are then presented to substantiate the proposed idea.
Computing thermal Wigner densities with the phase integration method
International Nuclear Information System (INIS)
Beutier, J.; Borgis, D.; Vuilleumier, R.; Bonella, S.
2014-01-01
We discuss how the Phase Integration Method (PIM), recently developed to compute symmetrized time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011)], can be adapted to sampling/generating the thermal Wigner density, a key ingredient, for example, in many approximate schemes for simulating quantum time dependent properties. PIM combines a path integral representation of the density with a cumulant expansion to represent the Wigner function in a form calculable via existing Monte Carlo algorithms for sampling noisy probability densities. The method is able to capture highly non-classical effects such as correlation among the momenta and coordinates parts of the density, or correlations among the momenta themselves. By using alternatives to cumulants, it can also indicate the presence of negative parts of the Wigner density. Both properties are demonstrated by comparing PIM results to those of reference quantum calculations on a set of model problems
Computing thermal Wigner densities with the phase integration method.
Beutier, J; Borgis, D; Vuilleumier, R; Bonella, S
2014-08-28
We discuss how the Phase Integration Method (PIM), recently developed to compute symmetrized time correlation functions [M. Monteferrante, S. Bonella, and G. Ciccotti, Mol. Phys. 109, 3015 (2011)], can be adapted to sampling/generating the thermal Wigner density, a key ingredient, for example, in many approximate schemes for simulating quantum time dependent properties. PIM combines a path integral representation of the density with a cumulant expansion to represent the Wigner function in a form calculable via existing Monte Carlo algorithms for sampling noisy probability densities. The method is able to capture highly non-classical effects such as correlation among the momenta and coordinates parts of the density, or correlations among the momenta themselves. By using alternatives to cumulants, it can also indicate the presence of negative parts of the Wigner density. Both properties are demonstrated by comparing PIM results to those of reference quantum calculations on a set of model problems.
Dorda, Antonius; Schürrer, Ferdinand
2015-03-01
We present a novel numerical scheme for the deterministic solution of the Wigner transport equation, especially suited to deal with situations in which strong quantum effects are present. The unique feature of the algorithm is the expansion of the Wigner function in local basis functions, similar to finite element or finite volume methods. This procedure yields a discretization of the pseudo-differential operator that conserves the particle density on arbitrarily chosen grids. The high flexibility in refining the grid spacing together with the weighted essentially non-oscillatory (WENO) scheme for the advection term allows for an accurate and well-resolved simulation of the phase space dynamics. A resonant tunneling diode is considered as test case and a detailed convergence study is given by comparing the results to a non-equilibrium Green's functions calculation. The impact of the considered domain size and of the grid spacing is analyzed. The obtained convergence of the results towards a quasi-exact agreement of the steady state Wigner and Green's functions computations demonstrates the accuracy of the scheme, as well as the high flexibility to adjust to different physical situations.
Wigner distribution and fractional Fourier transform
Alieva, T.; Bastiaans, M.J.
2001-01-01
The connection between the Wigner distribution and the squared modulus of the fractional Fourier transform - which are both well-known time-frequency representations of a signal - is established. In particular the Radon-Wigner transform is used, which relates projections of the Wigner distribution
Adaption of optical Fresnel transform to optical Wigner transform
International Nuclear Information System (INIS)
Lv Cuihong; Fan Hongyi
2010-01-01
Enlightened by the algorithmic isomorphism between the rotation of the Wigner distribution function (WDF) and the αth fractional Fourier transform, we show that the optical Fresnel transform performed on the input through an ABCD system makes the output naturally adapting to the associated Wigner transform, i.e. there exists algorithmic isomorphism between ABCD transformation of the WDF and the optical Fresnel transform. We prove this adaption in the context of operator language. Both the single-mode and the two-mode Fresnel operators as the image of classical Fresnel transform are introduced in our discussions, while the two-mode Wigner operator in the entangled state representation is introduced for fitting the two-mode Fresnel operator.
Formation of Schrödinger-cat states in the Morse potential: Wigner function picture.
Foldi, Peter; Czirjak, Attila; Molnar, Balazs; Benedict, Mihaly
2002-04-22
We investigate the time evolution of Morse coherent states in the potential of the NO molecule. We present animated wave functions and Wigner functions of the system exhibiting spontaneous formation of Schrödinger-cat states at certain stages of the time evolution. These nonclassical states are coherent superpositions of two localized states corresponding to two di.erent positions of the center of mass. We analyze the degree of nonclassicality as the function of the expectation value of the position in the initial state. Our numerical calculations are based on a novel, essentially algebraic treatment of the Morse potential.
The Nuclear Scissors Mode by Two Approaches (Wigner Function Moments Versus RPA)
Balbutsev, E B
2004-01-01
Two complementary methods to describe the collective motion, RPA and Wigner Function Moments (WFM) method, are compared on an example of a simple model - harmonic oscillator with quadrupole-quadrupole residual interaction. It is shown that they give identical formulae for eigenfrequencies and transition probabilities of all collective excitations of the model including the scissors mode, which is a subject of our especial attention. The normalization factor of the "synthetic" scissors state and its overlap with physical states are calculated analytically. The orthogonality of the spurious state to all physical states is proved rigorously.
Proof of a conjecture on the supports of Wigner distributions
Janssen, A.J.E.M.
1998-01-01
In this note we prove that the Wigner distribution of an f ¿ L2(Rn) cannot be supported by a set of finite measure in R2n unless f = 0. We prove a corresponding statement for cross-ambiguity functions. As a strengthening of the conjecture we show that for an f ¿ L2(Rn) its Wigner distribution has a
Wigner distribution and fractional Fourier transform
Alieva, T.; Bastiaans, M.J.; Boashash, B.
2003-01-01
We have described the relationship between the fractional Fourier transform and the Wigner distribution by using the Radon-Wigner transform, which is a set of projections of the Wigner distribution as well as a set of squared moduli of the fractional Fourier transform. We have introduced the concept
A device adaptive inflow boundary condition for Wigner equations of quantum transport
International Nuclear Information System (INIS)
Jiang, Haiyan; Lu, Tiao; Cai, Wei
2014-01-01
In this paper, an improved inflow boundary condition is proposed for Wigner equations in simulating a resonant tunneling diode (RTD), which takes into consideration the band structure of the device. The original Frensley inflow boundary condition prescribes the Wigner distribution function at the device boundary to be the semi-classical Fermi–Dirac distribution for free electrons in the device contacts without considering the effect of the quantum interaction inside the quantum device. The proposed device adaptive inflow boundary condition includes this effect by assigning the Wigner distribution to the value obtained from the Wigner transform of wave functions inside the device at zero external bias voltage, thus including the dominant effect on the electron distribution in the contacts due to the device internal band energy profile. Numerical results on computing the electron density inside the RTD under various incident waves and non-zero bias conditions show much improvement by the new boundary condition over the traditional Frensley inflow boundary condition
Comparison of deterministic and stochastic methods for time-dependent Wigner simulations
Energy Technology Data Exchange (ETDEWEB)
Shao, Sihong, E-mail: sihong@math.pku.edu.cn [LMAM and School of Mathematical Sciences, Peking University, Beijing 100871 (China); Sellier, Jean Michel, E-mail: jeanmichel.sellier@parallel.bas.bg [IICT, Bulgarian Academy of Sciences, Acad. G. Bonchev str. 25A, 1113 Sofia (Bulgaria)
2015-11-01
Recently a Monte Carlo method based on signed particles for time-dependent simulations of the Wigner equation has been proposed. While it has been thoroughly validated against physical benchmarks, no technical study about its numerical accuracy has been performed. To this end, this paper presents the first step towards the construction of firm mathematical foundations for the signed particle Wigner Monte Carlo method. An initial investigation is performed by means of comparisons with a cell average spectral element method, which is a highly accurate deterministic method and utilized to provide reference solutions. Several different numerical tests involving the time-dependent evolution of a quantum wave-packet are performed and discussed in deep details. In particular, this allows us to depict a set of crucial criteria for the signed particle Wigner Monte Carlo method to achieve a satisfactory accuracy.
International Nuclear Information System (INIS)
Miller, William H.; Cotton, Stephen J.
2016-01-01
It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory—e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states—and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.
Miller, William H; Cotton, Stephen J
2016-08-28
It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory-e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states-and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.
Energy Technology Data Exchange (ETDEWEB)
Miller, William H., E-mail: millerwh@berkeley.edu; Cotton, Stephen J., E-mail: StephenJCotton47@gmail.com [Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2016-08-28
It is pointed out that the classical phase space distribution in action-angle (a-a) variables obtained from a Wigner function depends on how the calculation is carried out: if one computes the standard Wigner function in Cartesian variables (p, x), and then replaces p and x by their expressions in terms of a-a variables, one obtains a different result than if the Wigner function is computed directly in terms of the a-a variables. Furthermore, the latter procedure gives a result more consistent with classical and semiclassical theory—e.g., by incorporating the Bohr-Sommerfeld quantization condition (quantum states defined by integer values of the action variable) as well as the Heisenberg correspondence principle for matrix elements of an operator between such states—and has also been shown to be more accurate when applied to electronically non-adiabatic applications as implemented within the recently developed symmetrical quasi-classical (SQC) Meyer-Miller (MM) approach. Moreover, use of the Wigner function (obtained directly) in a-a variables shows how our standard SQC/MM approach can be used to obtain off-diagonal elements of the electronic density matrix by processing in a different way the same set of trajectories already used (in the SQC/MM methodology) to obtain the diagonal elements.
A non-negative Wigner-type distribution
International Nuclear Information System (INIS)
Cartwright, N.D.
1976-01-01
The Wigner function, which is commonly used as a joint distribution for non-commuting observables, is shown to be non-negative in all quantum states when smoothed with a gaussian whose variances are greater than or equal to those of the minimum uncertainty wave packet. (Auth.)
The relationship between the Wigner-Weyl kinetic formalism and the complex geometrical optics method
Maj, Omar
2004-01-01
The relationship between two different asymptotic techniques developed in order to describe the propagation of waves beyond the standard geometrical optics approximation, namely, the Wigner-Weyl kinetic formalism and the complex geometrical optics method, is addressed. More specifically, a solution of the wave kinetic equation, relevant to the Wigner-Weyl formalism, is obtained which yields the same wavefield intensity as the complex geometrical optics method. Such a relationship is also disc...
An elementary aspect of the Weyl-Wigner representation
DEFF Research Database (Denmark)
Dahl, Jens Peder; Schleich, W.P.
2003-01-01
It is an elementary aspect of the Weyl-Wigner representation of quantum mechanics that the dynamical phase-space function corresponding to the square of a quantum-mechanical operator is, in general, different from the square of the function representing the operator itself. We call attention...
Kuppermann, Aron
2011-05-14
The row-orthonormal hyperspherical coordinate (ROHC) approach to calculating state-to-state reaction cross sections and bound state levels of N-atom systems requires the use of angular momentum tensors and Wigner rotation functions in a space of dimension N - 1. The properties of those tensors and functions are discussed for arbitrary N and determined for N = 5 in terms of the 6 Euler angles involved in 4-dimensional space.
Weak values of a quantum observable and the cross-Wigner distribution
International Nuclear Information System (INIS)
Gosson, Maurice A. de; Gosson, Serge M. de
2012-01-01
We study the weak values of a quantum observable from the point of view of the Wigner formalism. The main actor here is the cross-Wigner transform of two functions, which is in disguise the cross-ambiguity function familiar from radar theory and time-frequency analysis. It allows us to express weak values using a complex probability distribution. We suggest that our approach seems to confirm that the weak value of an observable is, as conjectured by several authors, due to the interference of two wavefunctions, one coming from the past, and the other from the future. -- Highlights: ► Application of the cross-Wigner transform to a redefinition of the weak value of a quantum observable. ► Phase space approach to weak values, associated with a complex probability distribution. ► Opens perspectives for the study of retrodiction.
On the Wigner law in dilute random matrices
Khorunzhy, A.; Rodgers, G. J.
1998-12-01
We consider ensembles of N × N symmetric matrices whose entries are weakly dependent random variables. We show that random dilution can change the limiting eigenvalue distribution of such matrices. We prove that under general and natural conditions the normalised eigenvalue counting function coincides with the semicircle (Wigner) distribution in the limit N → ∞. This can be explained by the observation that dilution (or more generally, random modulation) eliminates the weak dependence (or correlations) between random matrix entries. It also supports our earlier conjecture that the Wigner distribution is stable to random dilution and modulation.
The Kirillov picture for the Wigner particle
Gracia-Bondía, J. M.; Lizzi, F.; Várilly, J. C.; Vitale, P.
2018-06-01
We discuss the Kirillov method for massless Wigner particles, usually (mis)named ‘continuous spin’ or ‘infinite spin’ particles. These appear in Wigner’s classification of the unitary representations of the Poincaré group, labelled by elements of the enveloping algebra of the Poincaré Lie algebra. Now, the coadjoint orbit procedure introduced by Kirillov is a prelude to quantization. Here we exhibit for those particles the classical Casimir functions on phase space, in parallel to quantum representation theory. A good set of position coordinates are identified on the coadjoint orbits of the Wigner particles; the stabilizer subgroups and the symplectic structures of these orbits are also described. In memory of E C G Sudarshan.
Weak values of a quantum observable and the cross-Wigner distribution.
de Gosson, Maurice A; de Gosson, Serge M
2012-01-09
We study the weak values of a quantum observable from the point of view of the Wigner formalism. The main actor here is the cross-Wigner transform of two functions, which is in disguise the cross-ambiguity function familiar from radar theory and time-frequency analysis. It allows us to express weak values using a complex probability distribution. We suggest that our approach seems to confirm that the weak value of an observable is, as conjectured by several authors, due to the interference of two wavefunctions, one coming from the past, and the other from the future.
Classical Wigner method with an effective quantum force: application to reaction rates.
Poulsen, Jens Aage; Li, Huaqing; Nyman, Gunnar
2009-07-14
We construct an effective "quantum force" to be used in the classical molecular dynamics part of the classical Wigner method when determining correlation functions. The quantum force is obtained by estimating the most important short time separation of the Feynman paths that enter into the expression for the correlation function. The evaluation of the force is then as easy as classical potential energy evaluations. The ideas are tested on three reaction rate problems. The resulting transmission coefficients are in much better agreement with accurate results than transmission coefficients from the ordinary classical Wigner method.
Akhundova, E. A.; Dodonov, V. V.; Manko, V. I.
1993-01-01
The exact expressions for density matrix and Wigner functions of quantum systems are known only in special cases. Corresponding Hamiltonians are quadratic forms of Euclidean coordinates and momenta. In this paper we consider the problem of one-dimensional free particle movement in the bounded region 0 is less than x is less than a (including the case a = infinity).
Fractional-Fourier-domain weighted Wigner distribution
Stankovic, L.; Alieva, T.; Bastiaans, M.J.
2001-01-01
A fractional-Fourier-domain realization of the weighted Wigner distribution (or S-method), producing auto-terms close to the ones in the Wigner distribution itself, but with reduced cross-terms, is presented. The computational cost of this fractional-domain realization is the same as the
Moments of the Wigner delay times
International Nuclear Information System (INIS)
Berkolaiko, Gregory; Kuipers, Jack
2010-01-01
The Wigner time delay is a measure of the time spent by a particle inside the scattering region of an open system. For chaotic systems, the statistics of the individual delay times (whose average is the Wigner time delay) are thought to be well described by random matrix theory. Here we present a semiclassical derivation showing the validity of random matrix results. In order to simplify the semiclassical treatment, we express the moments of the delay times in terms of correlation functions of scattering matrices at different energies. In the semiclassical approximation, the elements of the scattering matrix are given in terms of the classical scattering trajectories, requiring one to study correlations between sets of such trajectories. We describe the structure of correlated sets of trajectories and formulate the rules for their evaluation to the leading order in inverse channel number. This allows us to derive a polynomial equation satisfied by the generating function of the moments. Along with showing the agreement of our semiclassical results with the moments predicted by random matrix theory, we infer that the scattering matrix is unitary to all orders in the semiclassical approximation.
International Nuclear Information System (INIS)
Wu Chunfeng; Chen Jingling; Oh, C.H.; Kwek, L.C.; Xue Kang
2005-01-01
We construct an explicit Wigner function for the N-mode squeezed state. Based on a previous observation that the Wigner function describes correlations in the joint measurement of the phase-space displaced parity operator, we investigate the nonlocality of the multipartite entangled state by the violation of the Zukowski-Brukner N-qubit Bell inequality. We find that quantum predictions for such a squeezed state violate these inequalities by an amount that grows with the number N
On Wigner's problem, computability theory, and the definition of life
International Nuclear Information System (INIS)
Swain, J.
1998-01-01
In 1961, Eugene Wigner presented a clever argument that in a world which is adequately described by quantum mechanics, self-reproducing systems in general, and perhaps life in particular, would be incredibly improbable. The problem and some attempts at its solution are examined, and a new solution is presented based on computability theory. In particular, it is shown that computability theory provides limits on what can be known about a system in addition to those which arise from quantum mechanics. (author)
Dynamics of the Wigner crystal of composite particles
Shi, Junren; Ji, Wencheng
2018-03-01
Conventional wisdom has long held that a composite particle behaves just like an ordinary Newtonian particle. In this paper, we derive the effective dynamics of a type-I Wigner crystal of composite particles directly from its microscopic wave function. It indicates that the composite particles are subjected to a Berry curvature in the momentum space as well as an emergent dissipationless viscosity. While the dissipationless viscosity is the Chern-Simons field counterpart for the Wigner crystal, the Berry curvature is a feature not presented in the conventional composite fermion theory. Hence, contrary to general belief, composite particles follow the more general Sundaram-Niu dynamics instead of the ordinary Newtonian one. We show that the presence of the Berry curvature is an inevitable feature for a dynamics conforming to the dipole picture of composite particles and Kohn's theorem. Based on the dynamics, we determine the dispersions of magnetophonon excitations numerically. We find an emergent magnetoroton mode which signifies the composite-particle nature of the Wigner crystal. It occurs at frequencies much lower than the magnetic cyclotron frequency and has a vanishing oscillator strength in the long-wavelength limit.
Wigner-Kirkwood expansion of the phase-space density for half infinite nuclear matter
International Nuclear Information System (INIS)
Durand, M.; Schuck, P.
1987-01-01
The phase space distribution of half infinite nuclear matter is expanded in a ℎ-series analogous to the low temperature expansion of the Fermi function. Besides the usual Wigner-Kirkwood expansion, oscillatory terms are derived. In the case of a Woods-Saxon potential, a smallness parameter is defined, which determines the convergence of the series and explains the very rapid convergence of the Wigner-Kirkwood expansion for average (nuclear) binding energies
Eugene Wigner and nuclear energy: a reminiscence
International Nuclear Information System (INIS)
Weinberg, A.M.
1987-01-01
Dr. Weinberg reviews Wigner's contributions in each of the fields to which he contributed: designs for fast breeders and thermal breeders and some of the earliest calculations on water moderated cooling systems; Clinton Laboratories, 1946-47, The Materials Testing Reactor (MTR); gas-cooled reactors; the Nautilus; Savannah River Reactors, Project Hope; a chemical plant that would reprocess spent fuel at an affordable cost in a full-fledged breeder; reactor physics and general engineering; microscopic reactor theory; spherical harmonics method; correction to the sphericized cell calculation, the fast effect; macroscopic reactor theory; two-group theory; perturbation theory; control rod theory (statics); kinetics; pile oscillator; shielding; fission products; temperature effects; The Wigner-Wilkins Distribution; solid state physics; the Wigner Disease; neutron diffraction; and general energy policy. Eugene Wigner was one of the early contributors to the debate on the role of nuclear power
A Wigner-based ray-tracing method for imaging simulations
Mout, B.M.; Wick, M.; Bociort, F.; Urbach, H.P.
2015-01-01
The Wigner Distribution Function (WDF) forms an alternative representation of the optical field. It can be a valuable tool for understanding and classifying optical systems. Furthermore, it possesses properties that make it suitable for optical simulations: both the intensity and the angular
A benchmark study of the Signed-particle Monte Carlo algorithm for the Wigner equation
Directory of Open Access Journals (Sweden)
Muscato Orazio
2017-12-01
Full Text Available The Wigner equation represents a promising model for the simulation of electronic nanodevices, which allows the comprehension and prediction of quantum mechanical phenomena in terms of quasi-distribution functions. During these years, a Monte Carlo technique for the solution of this kinetic equation has been developed, based on the generation and annihilation of signed particles. This technique can be deeply understood in terms of the theory of pure jump processes with a general state space, producing a class of stochastic algorithms. One of these algorithms has been validated successfully by numerical experiments on a benchmark test case.
Creation, Storage, and On-Demand Release of Optical Quantum States with a Negative Wigner Function
Directory of Open Access Journals (Sweden)
Jun-ichi Yoshikawa
2013-12-01
Full Text Available Highly nonclassical quantum states of light, characterized by Wigner functions with negative values, have been all-optically created so far only in a heralded fashion. In this case, the desired output emerges rarely and randomly from a quantum-state generator. An important example is the heralded production of high-purity single-photon states, typically based on some nonlinear optical interaction. In contrast, on-demand single-photon sources are also reported, exploiting the quantized level structure of matter systems. These sources, however, lead to highly impure output states, composed mostly of vacuum. While such impure states may still exhibit certain single-photon-like features such as antibunching, they are not nonclassical enough for advanced quantum-information processing. On the other hand, the intrinsic randomness of pure, heralded states can be circumvented by first storing and then releasing them on demand. Here, we propose such a controlled release, and we experimentally demonstrate it for heralded single photons. We employ two optical cavities, where the photons are both created and stored inside one cavity and finally released through a dynamical tuning of the other cavity. We demonstrate storage times of up to 300 ns while keeping the single-photon purity around 50% after storage. Our experiment is the first demonstration of a negative Wigner function at the output of an on-demand photon source or a quantum memory. In principle, our storage system is compatible with all kinds of nonclassical states, including those known to be essential for many advanced quantum-information protocols.
Radon-Wigner transform for optical field analysis
Alieva, T.; Bastiaans, M.J.; Nijhawan, O.P.; Gupta, A.K.; Musla, A.K.; Singh, Kehar
1998-01-01
The Radon-Wigner transform, associated with the intensity distribution in the fractional Fourier transform system, is used for the analysis of complex structures of coherent as well as partially coherent optical fields. The application of the Radon-Wigner transform to the analysis of fractal fields
Vacancies in quantal Wigner crystals near melting
International Nuclear Information System (INIS)
Barraza, N.; Colletti, L.; Tosi, M.P.
1999-04-01
We estimate the formation energy of lattice vacancies in quantal Wigner crystals of charged particles near their melting point at zero temperature, in terms of the crystalline Lindemann parameter and of the static dielectric function of the fluid phase near freezing. For both 3D and 2D crystals of electrons our results suggest the presence of vacancies in the ground state at the melting density. (author)
The truncated Wigner method for Bose-condensed gases: limits of validity and applications
International Nuclear Information System (INIS)
Sinatra, Alice; Lobo, Carlos; Castin, Yvan
2002-01-01
We study the truncated Wigner method applied to a weakly interacting spinless Bose-condensed gas which is perturbed away from thermal equilibrium by a time-dependent external potential. The principle of the method is to generate an ensemble of classical fields ψ(r) which samples the Wigner quasi-distribution function of the initial thermal equilibrium density operator of the gas, and then to evolve each classical field with the Gross-Pitaevskii equation. In the first part of the paper we improve the sampling technique over our previous work (Sinatra et al 2000 J. Mod. Opt. 47 2629-44) and we test its accuracy against the exactly solvable model of the ideal Bose gas. In the second part of the paper we investigate the conditions of validity of the truncated Wigner method. For short evolution times it is known that the time-dependent Bogoliubov approximation is valid for almost pure condensates. The requirement that the truncated Wigner method reproduces the Bogoliubov prediction leads to the constraint that the number of field modes in the Wigner simulation must be smaller than the number of particles in the gas. For longer evolution times the nonlinear dynamics of the noncondensed modes of the field plays an important role. To demonstrate this we analyse the case of a three-dimensional spatially homogeneous Bose-condensed gas and we test the ability of the truncated Wigner method to correctly reproduce the Beliaev-Landau damping of an excitation of the condensate. We have identified the mechanism which limits the validity of the truncated Wigner method: the initial ensemble of classical fields, driven by the time-dependent Gross-Pitaevskii equation, thermalizes to a classical field distribution at a temperature T class which is larger than the initial temperature T of the quantum gas. When T class significantly exceeds T a spurious damping is observed in the Wigner simulation. This leads to the second validity condition for the truncated Wigner method, T class - T
Wigner particle theory and local quantum physics
International Nuclear Information System (INIS)
Fassarella, Lucio; Schroer, Bert
2002-01-01
Wigner's irreducible positive energy representations of the Poincare group are often used to give additional justifications for the Lagrangian quantization formalism of standard QFT. Here we study another more recent aspect. We explain in this paper modular concepts by which we are able to construct the local operator algebras for all standard positive energy representations directly without going through field coordinations. In this way the artificial emphasis on Lagrangian field coordinates is avoided from the very beginning. These new concepts allow to treat also those cases of 'exceptional' Wigner representations associated with anyons and the famous Wigner spin tower which have remained inaccessible to Lagrangian quantization. Together with the d=1+1 factorizing models (whose modular construction has been studied previously), they form an interesting family of theories with a rich vacuum-polarization structure (but no on shell real particle creation) to which the modular methods can be applied for their explicit construction. We explain and illustrate the algebraic strategy of this construction. We also comment on possibilities of formulating the Wigner theory in a setting of a noncommutativity. (author)
Study of nuclear statics and dynamics using the Wigner transform
International Nuclear Information System (INIS)
Shlomo, S.
1983-01-01
The Wigner phase-space distribution function, given as the shifted Fourier transform of the density matrix, provides a framework for an exact reformulation of non-relativistic quantum mechanics in terms of classical concepts. The Wigner distribution function (WDF), f(r-vector, p-vector), is considered as a quantum mechanical generalization of the classical phase space distribution function. While basic observables, such as matter density and momentum density, are given by the same integrals over f(r-vector, p-vector) as in classical physics, f(r-vector, p-vector) differs from its classical analog by the fact that it can assume negative values in some regions. However, it is known that the WDF is a useful and convenient tool for the study of the static and the dynamical aspects of many-body quantum systems, and the equation of motion for f(r-vector, p-vector) serves as a starting point for semi-classical approximations. The aim of this talk is to present and discuss some recent results for static and dynamic properties of nuclei obtained by exact evaluation of the WDF
Petruccelli, Jonathan C; Alonso, Miguel A
2007-09-01
We examine the angle-impact Wigner function (AIW) as a computational tool for the propagation of nonparaxial quasi-monochromatic light of any degree of coherence past a planar boundary between two homogeneous media. The AIWs of the reflected and transmitted fields in two dimensions are shown to be given by a simple ray-optical transformation of the incident AIW plus a series of corrections in the form of differential operators. The radiometric and leading six correction terms are studied for Gaussian Schell-model fields of varying transverse width, transverse coherence, and angle of incidence.
Wigner particle theory and local quantum physics
Energy Technology Data Exchange (ETDEWEB)
Fassarella, Lucio; Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: fassarel@cbpf.br; schroer@cbpf.br
2002-01-01
Wigner's irreducible positive energy representations of the Poincare group are often used to give additional justifications for the Lagrangian quantization formalism of standard QFT. Here we study another more recent aspect. We explain in this paper modular concepts by which we are able to construct the local operator algebras for all standard positive energy representations directly without going through field coordinations. In this way the artificial emphasis on Lagrangian field coordinates is avoided from the very beginning. These new concepts allow to treat also those cases of 'exceptional' Wigner representations associated with anyons and the famous Wigner spin tower which have remained inaccessible to Lagrangian quantization. Together with the d=1+1 factorizing models (whose modular construction has been studied previously), they form an interesting family of theories with a rich vacuum-polarization structure (but no on shell real particle creation) to which the modular methods can be applied for their explicit construction. We explain and illustrate the algebraic strategy of this construction. We also comment on possibilities of formulating the Wigner theory in a setting of a noncommutativity. (author)
Uniform analytic approximation of Wigner rotation matrices
Hoffmann, Scott E.
2018-02-01
We derive the leading asymptotic approximation, for low angle θ, of the Wigner rotation matrix elements, dm1m2 j(θ ) , uniform in j, m1, and m2. The result is in terms of a Bessel function of integer order. We numerically investigate the error for a variety of cases and find that the approximation can be useful over a significant range of angles. This approximation has application in the partial wave analysis of wavepacket scattering.
Homogenisation of a Wigner-Seitz cell in two group diffusion theory
International Nuclear Information System (INIS)
Allen, F.R.
1968-02-01
Two group diffusion theory is used to develop a theory for the homogenisation of a Wigner-Seitz cell, neglecting azimuthal flux components of higher order than dipoles. An iterative method of solution is suggested for linkage with reactor calculations. The limiting theory for no cell leakage leads to cell edge flux normalisation of cell parameters, the current design method for SGHW reactor design calculations. Numerical solutions are presented for a cell-plus-environment model with monopoles only. The results demonstrate the exact theory in comparison with the approximate recipes of normalisation to cell edge, moderator average, or cell average flux levels. (author)
Kocia, Lucas; Love, Peter
2017-12-01
We show that qubit stabilizer states can be represented by non-negative quasiprobability distributions associated with a Wigner-Weyl-Moyal formalism where Clifford gates are positive state-independent maps. This is accomplished by generalizing the Wigner-Weyl-Moyal formalism to three generators instead of two—producing an exterior, or Grassmann, algebra—which results in Clifford group gates for qubits that act as a permutation on the finite Weyl phase space points naturally associated with stabilizer states. As a result, a non-negative probability distribution can be associated with each stabilizer state's three-generator Wigner function, and these distributions evolve deterministically to one another under Clifford gates. This corresponds to a hidden variable theory that is noncontextual and local for qubit Clifford gates while Clifford (Pauli) measurements have a context-dependent representation. Equivalently, we show that qubit Clifford gates can be expressed as propagators within the three-generator Wigner-Weyl-Moyal formalism whose semiclassical expansion is truncated at order ℏ0 with a finite number of terms. The T gate, which extends the Clifford gate set to one capable of universal quantum computation, requires a semiclassical expansion of the propagator to order ℏ1. We compare this approach to previous quasiprobability descriptions of qubits that relied on the two-generator Wigner-Weyl-Moyal formalism and find that the two-generator Weyl symbols of stabilizer states result in a description of evolution under Clifford gates that is state-dependent, in contrast to the three-generator formalism. We have thus extended Wigner non-negative quasiprobability distributions from the odd d -dimensional case to d =2 qubits, which describe the noncontextuality of Clifford gates and contextuality of Pauli measurements on qubit stabilizer states.
Evidence of two-stage melting of Wigner solids
Knighton, Talbot; Wu, Zhe; Huang, Jian; Serafin, Alessandro; Xia, J. S.; Pfeiffer, L. N.; West, K. W.
2018-02-01
Ultralow carrier concentrations of two-dimensional holes down to p =1 ×109cm-2 are realized. Remarkable insulating states are found below a critical density of pc=4 ×109cm-2 or rs≈40 . Sensitive dc V-I measurement as a function of temperature and electric field reveals a two-stage phase transition supporting the melting of a Wigner solid as a two-stage first-order transition.
Spin-orbit-enhanced Wigner localization in quantum dots
DEFF Research Database (Denmark)
Cavalli, Andrea; Malet, F.; Cremon, J. C.
2011-01-01
We investigate quantum dots with Rashba spin-orbit coupling in the strongly-correlated regime. We show that the presence of the Rashba interaction enhances the Wigner localization in these systems, making it achievable for higher densities than those at which it is observed in Rashba-free quantum...... dots. Recurring shapes in the pair distribution functions of the yrast spectrum, which might be associated with rotational and vibrational modes, are also reported....
Wigner's Symmetry Representation Theorem
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...
Directory of Open Access Journals (Sweden)
Marcos Moshinsky
2008-07-01
Full Text Available For classical canonical transformations, one can, using the Wigner transformation, pass from their representation in Hilbert space to a kernel in phase space. In this paper it will be discussed how the time-dependence of the uncertainties of the corresponding time-dependent quantum problems can be incorporated into this formalism.
Transformation of covariant quark Wigner operator to noncovariant one
International Nuclear Information System (INIS)
Selikhov, A.V.
1989-01-01
The gauge in which covariant and noncovariant quark Wigner operators coincide has been found. In this gauge the representations of vector potential via field strength tensor is valid. The system of equations for the coefficients of covariant Wigner operator expansion in the basis γ-matrices algebra is obtained. 12 refs.; 3 figs
Wigner Ville Distribution in Signal Processing, using Scilab Environment
Directory of Open Access Journals (Sweden)
Petru Chioncel
2011-01-01
Full Text Available The Wigner Ville distribution offers a visual display of quantitative information about the way a signal’s energy is distributed in both, time and frequency. Through that, this distribution embodies the fundamentally concepts of the Fourier and time-domain analysis. The energy of the signal is distributed so that specific frequencies are localized in time by the group delay time and at specifics instants in time the frequency is given by the instantaneous frequency. The net positive volum of the Wigner distribution is numerically equal to the signal’s total energy. The paper shows the application of the Wigner Ville distribution, in the field of signal processing, using Scilab environment.
Truncated Wigner dynamics and conservation laws
Drummond, Peter D.; Opanchuk, Bogdan
2017-10-01
Ultracold Bose gases can be used to experimentally test many-body theory predictions. Here we point out that both exact conservation laws and dynamical invariants exist in the topical case of the one-dimensional Bose gas, and these provide an important validation of methods. We show that the first four quantum conservation laws are exactly conserved in the approximate truncated Wigner approach to many-body quantum dynamics. Center-of-mass position variance is also exactly calculable. This is nearly exact in the truncated Wigner approximation, apart from small terms that vanish as N-3 /2 as N →∞ with fixed momentum cutoff. Examples of this are calculated in experimentally relevant, mesoscopic cases.
International Nuclear Information System (INIS)
Dechoum, K.; Hahn, M. D.; Khoury, A. Z.; Vallejos, R. O.
2010-01-01
We derive the steady-state solution of the Fokker-Planck equation that describes the dynamics of the nondegenerate optical parametric oscillator in the truncated Wigner representation of the density operator. We assume that the pump mode is strongly damped, which permits its adiabatic elimination. When the elimination is correctly executed, the resulting stochastic equations contain multiplicative noise terms and do not admit a potential solution. However, we develop a heuristic scheme leading to a satisfactory steady-state solution. This provides a clear view of the intracavity two-mode entangled state valid in all operating regimes of the optical parametric oscillator. A non-Gaussian distribution is obtained for the above threshold solution.
International Nuclear Information System (INIS)
Amitabh, J.; Vaccaro, J.A.; Hill, K.E.
1998-01-01
We study the recently defined number-phase Wigner function S NP (n,θ) for a single-mode field considered to be in binomial and negative binomial states. These states interpolate between Fock and coherent states and coherent and quasi thermal states, respectively, and thus provide a set of states with properties ranging from uncertain phase and sharp photon number to sharp phase and uncertain photon number. The distribution function S NP (n,θ) gives a graphical representation of the complimentary nature of the number and phase properties of these states. We highlight important differences between Wigner's quasi probability function, which is associated with the position and momentum observables, and S NP (n,θ), which is associated directly with the photon number and phase observables. We also discuss the number-phase entropic uncertainty relation for the binomial and negative binomial states and we show that negative binomial states give a lower phase entropy than states which minimize the phase variance
An Exact Solution of The Neutron Slowing Down Equation
Energy Technology Data Exchange (ETDEWEB)
Stefanovic, D [Boris Kidric Vinca Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)
1970-07-01
The slowing down equation for an infinite homogeneous monoatomic medium is solved exactly. The cross sections depend on neutron energy. The solution is given in analytical form within each of the lethargy intervals. This analytical form is the sum of probabilities which are given by the Green functions. The calculated collision density is compared with the one obtained by Bednarz and also with an approximate Wigner formula for the case of a resonance not wider than one collision interval. For the special case of hydrogen, the present solution reduces to Bethe's solution. (author)
Accessing the quark orbital angular momentum with Wigner distributions
Energy Technology Data Exchange (ETDEWEB)
Lorce, Cedric [IPNO, Universite Paris-Sud, CNRS/IN2P3, 91406 Orsay, France and LPT, Universite Paris-Sud, CNRS, 91406 Orsay (France); Pasquini, Barbara [Dipartimento di Fisica, Universita degli Studi di Pavia, Pavia, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia (Italy)
2013-04-15
The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wigner distributions. We discuss the concept of Wigner distributions in the context of quantum field theory and show how they are related to the GPDs and the TMDs. We summarize the different definitions discussed in the literature for the quark OAM and show how they can in principle be extracted from the Wigner distributions.
Accessing the quark orbital angular momentum with Wigner distributions
International Nuclear Information System (INIS)
Lorcé, Cédric; Pasquini, Barbara
2013-01-01
The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wigner distributions. We discuss the concept of Wigner distributions in the context of quantum field theory and show how they are related to the GPDs and the TMDs. We summarize the different definitions discussed in the literature for the quark OAM and show how they can in principle be extracted from the Wigner distributions.
Experimental eavesdropping attack against Ekert's protocol based on Wigner's inequality
International Nuclear Information System (INIS)
Bovino, F. A.; Colla, A. M.; Castagnoli, G.; Castelletto, S.; Degiovanni, I. P.; Rastello, M. L.
2003-01-01
We experimentally implemented an eavesdropping attack against the Ekert protocol for quantum key distribution based on the Wigner inequality. We demonstrate a serious lack of security of this protocol when the eavesdropper gains total control of the source. In addition we tested a modified Wigner inequality which should guarantee a secure quantum key distribution
The Wigner transition in a magnetic field
International Nuclear Information System (INIS)
Kleppmann, W.G.; Elliott, R.J.
1975-01-01
The criteria for the stabilization of a condensed Wigner phase are re-examined for a low-density free-electron gas (jellium) in a uniform magnetic field. By a new calculation of the Coulomb energy it is shown that below a critical density the lowest energy state has electrons in cigar-shaped charge distributions arranged on an elongated body-centred tetragonal lattice. The critical densities are computed as functions of magnetic-field strength for free electrons in astrophysical situations and for electrons of low effective mass in semiconductors. In the latter case, the results can be used to give a satisfactory interpretation of experimental results in heavily compensated InSb. (author)
Trapani, Stefano; Navaza, Jorge
2006-07-01
The FFT calculation of spherical harmonics, Wigner D matrices and rotation function has been extended to all angular variables in the AMoRe molecular replacement software. The resulting code avoids singularity issues arising from recursive formulas, performs faster and produces results with at least the same accuracy as the original code. The new code aims at permitting accurate and more rapid computations at high angular resolution of the rotation function of large particles. Test calculations on the icosahedral IBDV VP2 subviral particle showed that the new code performs on the average 1.5 times faster than the original code.
International Nuclear Information System (INIS)
Trovato, M.; Reggiani, L.
2011-01-01
By introducing a quantum entropy functional of the reduced density matrix, the principle of quantum maximum entropy is asserted as fundamental principle of quantum statistical mechanics. Accordingly, we develop a comprehensive theoretical formalism to construct rigorously a closed quantum hydrodynamic transport within a Wigner function approach. The theoretical formalism is formulated in both thermodynamic equilibrium and nonequilibrium conditions, and the quantum contributions are obtained by only assuming that the Lagrange multipliers can be expanded in powers of (ℎ/2π) 2 . In particular, by using an arbitrary number of moments, we prove that (1) on a macroscopic scale all nonlocal effects, compatible with the uncertainty principle, are imputable to high-order spatial derivatives, both of the numerical density n and of the effective temperature T; (2) the results available from the literature in the framework of both a quantum Boltzmann gas and a degenerate quantum Fermi gas are recovered as a particular case; (3) the statistics for the quantum Fermi and Bose gases at different levels of degeneracy are explicitly incorporated; (4) a set of relevant applications admitting exact analytical equations are explicitly given and discussed; (5) the quantum maximum entropy principle keeps full validity in the classical limit, when (ℎ/2π)→0.
The use of Wigner transformation for the description of the classical aspects of the quantum systems
International Nuclear Information System (INIS)
Baran, V.
1990-01-01
The mutual relation between the classical phase space and the Hilbert space of operators are explicitly written down.In particular, the Wigner transformation maps the Hilbert space onto the classical space of functions defined on two dimensional manifold. (Author)
Wigner-like crystallization of Anderson-localized electron systems with low electron densities
Slutskin, A A; Pepper, M
2002-01-01
We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We establish that at sufficiently low electron densities and sufficiently low temperatures the Coulomb electron interaction brings about ordering of the Anderson-localized electrons into a structure that is close to an ideal (Wigner) crystal lattice, provided the dimension of the system is > 1. This Anderson-Wigner glass (AWG) is a new macroscopic electron state that, on the one hand, is beyond the conventional Fermi glass concept, and on the other hand, qualitatively differs from the known 'plain' Wigner glass (inherent in self-localized electron systems) in that the random slight electron displacements from the ideal crystal sites essentially depend on the electron density. With increasing electron density the AWG is found to turn into the plain Wigner glass or Fermi glass, depending on the width of the random spread of the electron levels. It is shown that the res...
Time Evolution of the Wigner Operator as a Quasi-density Operator in Amplitude Dessipative Channel
Yu, Zhisong; Ren, Guihua; Yu, Ziyang; Wei, Chenhuinan; Fan, Hongyi
2018-06-01
For developing quantum mechanics theory in phase space, we explore how the Wigner operator {Δ } (α ,α ^{\\ast } )≡ {1}/{π } :e^{-2(α ^{\\ast } -α ^{\\dag })(α -α )}:, when viewed as a quasi-density operator correponding to the Wigner quasiprobability distribution, evolves in a damping channel. with the damping constant κ. We derive that it evolves into 1/T + 1:\\exp 2/T + 1[-(α^{\\ast} e^{-κ t}-a^{\\dag} )(α e^{-κ t}-a)]: where T ≡ 1 - e - 2 κ t . This in turn helps to directly obtain the final state ρ( t) out of the dessipative channel from the initial classical function corresponding to initial ρ(0). Throught the work, the method of integration within ordered product (IWOP) of operators is employed.
Wigner Research Centre for Physics, Hungary
2013-01-01
On 13 June 2013 CERN and the Wigner Research Centre for Physics inaugurated the Hungarian data centre in Budapest, marking the completion of the facility hosting the extension for CERN computing resources. About 500 servers, 20,000 computing cores, and 5.5 Petabytes of storage are already operational at the site. The dedicated and redundant 100 Gbit/s circuits connecting the two sites are functional since February 2013 and are among the first transnational links at this distance. The capacity at Wigner will be remotely managed from CERN, substantially extending the capabilities of the Worldwide LHC Computing Grid (WLCG) Tier-0 activities and bolstering CERN’s infrastructure business continuity.
The Collected Works of Eugene Paul Wigner the Scientific Papers
Wigner, Eugene Paul
1993-01-01
Eugene Wigner is one of the few giants of 20th-century physics His early work helped to shape quantum mechanics, he laid the foundations of nuclear physics and nuclear engineering, and he contributed significantly to solid-state physics His philosophical and political writings are widely known All his works will be reprinted in Eugene Paul Wigner's Collected Workstogether with descriptive annotations by outstanding scientists The present volume begins with a short biographical sketch followed by Wigner's papers on group theory, an extremely powerful tool he created for theoretical quantum physics They are presented in two parts The first, annotated by B Judd, covers applications to atomic and molecular spectra, term structure, time reversal and spin In the second, G Mackey introduces to the reader the mathematical papers, many of which are outstanding contributions to the theory of unitary representations of groups, including the famous paper on the Lorentz group
Semiclassical analysis of the Wigner 12j symbol with one small angular momentum
International Nuclear Information System (INIS)
Yu Liang
2011-01-01
We derive an asymptotic formula for the Wigner 12j symbol, in the limit of one small and 11 large angular momenta. There are two kinds of asymptotic formulas for the 12j symbol with one small angular momentum. We present the first kind of formula in this paper. Our derivation relies on the techniques developed in the semiclassical analysis of the Wigner 9j symbol [L. Yu and R. G. Littlejohn, Phys. Rev. A 83, 052114 (2011)], where we used a gauge-invariant form of the multicomponent WKB wave functions to derive asymptotic formulas for the 9j symbol with small and large angular momenta. When applying the same technique to the 12j symbol in this paper, we find that the spinor is diagonalized in the direction of an intermediate angular momentum. In addition, we find that the geometry of the derived asymptotic formula for the 12j symbol is expressed in terms of the vector diagram for a 9j symbol. This illustrates a general geometric connection between asymptotic limits of the various 3nj symbols. This work contributes an asymptotic formula for the 12j symbol to the quantum theory of angular momentum, and serves as a basis for finding asymptotic formulas for the Wigner 15j symbol with two small angular momenta.
Wigner time-delay distribution in chaotic cavities and freezing transition.
Texier, Christophe; Majumdar, Satya N
2013-06-21
Using the joint distribution for proper time delays of a chaotic cavity derived by Brouwer, Frahm, and Beenakker [Phys. Rev. Lett. 78, 4737 (1997)], we obtain, in the limit of the large number of channels N, the large deviation function for the distribution of the Wigner time delay (the sum of proper times) by a Coulomb gas method. We show that the existence of a power law tail originates from narrow resonance contributions, related to a (second order) freezing transition in the Coulomb gas.
Stochastic Nuclear Reaction Theory: Breit-Wigner nuclear noise
International Nuclear Information System (INIS)
de Saussure, G.; Perez, R.B.
1988-01-01
The purpose of this paper is the application of various statistical tests for the detection of the intermediate structure, which lies immersed in the Breit-Wigner ''noise'' arising from the superposition of many compound nucleus resonances. To this end, neutron capture cross sections are constructed by Monte-Carlo simulations of the compound nucleus, hence providing the ''noise'' component. In a second step intermediate structure is added to the Breit-Wigner noise. The performance of the statistical tests in detecting the intermediate structure is evaluated using mocked-up neutron cross sections as the statistical samples. Afterwards, the statistical tests are applied to actual nuclear cross section data. 10 refs., 1 fig., 2 tabs
International Nuclear Information System (INIS)
He, Rui; Fan, Hong-yi
2014-01-01
Based on the solution to the master equation of the density operator describing the amplitude dissipative channel, we derive the time evolution law of the coarse-graining-smoothed Wigner operator in this channel, which demonstrates how an initial pure state evolves into a mixed state, exhibiting decoherence
Dao-ming, Lu
2018-05-01
The negativity of Wigner function (WF) is one of the important symbols of non-classical properties of light field. Therefore, it is of great significance to study the evolution of WF in dissipative process. The evolution formula of WF in laser process under the action of linear resonance force is given by virtue of thermo entangled state representation and the technique of integration within an ordered product of operator. As its application, the evolution of WF of thermal field and that of single-photon-added coherent state are discussed. The results show that the WF of thermal field maintains its original character. On the other hand, the negative region size and the depth of negativity of WF of single- photon-added coherent state decrease until it vanishes with dissipation. This shows that the non-classical property of single-photon-added coherent state is weakened, until it disappears with dissipation time increasing.
Wigner distribution, partial coherence, and phase-space optics
Bastiaans, M.J.
2009-01-01
The Wigner distribution is presented as a perfect means to treat partially coherent optical signals and their propagation through first-order optical systems from a radiometric and phase-space optical perspective
Wigner-like crystallization of Anderson-localized electron systems with low electron densities
International Nuclear Information System (INIS)
Slutskin, A.A.; Kovtun, H.A.; Pepper, M.
2002-01-01
We consider an electron system under conditions of strong Anderson localization, taking into account interelectron long-range Coulomb repulsion. We establish that at sufficiently low electron densities and sufficiently low temperatures the Coulomb electron interaction brings about ordering of the Anderson-localized electrons into a structure that is close to an ideal (Wigner) crystal lattice, provided the dimension of the system is > 1. This Anderson-Wigner glass (AWG) is a new macroscopic electron state that, on the one hand, is beyond the conventional Fermi glass concept, and on the other hand, qualitatively differs from the known 'plain' Wigner glass (inherent in self-localized electron systems) in that the random slight electron displacements from the ideal crystal sites essentially depend on the electron density. With increasing electron density the AWG is found to turn into the plain Wigner glass or Fermi glass, depending on the width of the random spread of the electron levels. It is shown that the residual disorder of the AWG is characterized by a multi-valley ground-state degeneracy akin to that in a spin glass. Some general features of the AWG are discussed, and a new conduction mechanism of a creep type is predicted
Atomic probe Wigner tomography of a nanomechanical system
International Nuclear Information System (INIS)
Singh, Swati; Meystre, Pierre
2010-01-01
We propose a scheme to measure the quantum state of a nanomechanical oscillator cooled near its ground state of vibrational motion. This is an extension of the nonlinear atomic homodyning technique scheme first developed to measure the intracavity field in a micromaser. It involves the use of a detector atom that is simultaneously coupled to the resonator via a magnetic interaction and to (classical) optical fields via a Raman transition. We show that the probability for the atom to be found in the ground state is a direct measure of the Wigner characteristic function of the nanomechanical oscillator. We also investigate the back-action effect of this destructive measurement on the state of the resonator.
Exact solution of equations for proton localization in neutron star matter
Kubis, Sebastian; Wójcik, Włodzimierz
2015-11-01
The rigorous treatment of proton localization phenomenon in asymmetric nuclear matter is presented. The solution of proton wave function and neutron background distribution is found by the use of the extended Thomas-Fermi approach. The minimum of energy is obtained in the Wigner-Seitz approximation of a spherically symmetric cell. The analysis of four different nuclear models suggests that the proton localization is likely to take place in the interior of a neutron star.
The universal Racah-Wigner symbol for Uq(osp(1|2))
International Nuclear Information System (INIS)
Pawelkiewicz, Michal; Schomerus, Volker; Suchanek, Paulina; Wroclaw Univ.
2013-10-01
We propose a new and elegant formula for the Racah-Wigner symbol of self-dual continuous series of representations of U q (osp(1 vertical stroke 2)). It describes the entire fusing matrix for both NS and R sector of N=1 supersymmetric Liouville field theory. In the NS sector, our formula is related to an expression derived in an earlier paper (L. Hadaz, M. Pawelkiewicz, and V. Schomerus, arXiv:1305.4596[hep-th]). Through analytic continuation in the spin variables, our universal expression reproduces known formulas for the Racah-Wigner coefficients of finite dimensional representations.
Wess-Zumino term for the AdS superstring and generalized Inoenue-Wigner contraction
International Nuclear Information System (INIS)
Hatsuda, Machiko; Sakaguchi, Makoto
2003-01-01
We examine a Wess-Zumino term, written in a form of bilinear in superinvariant currents, for a superstring in anti-de Sitter (AdS) space, and derive a procedure for obtaining the correct flat limit. The standard Inoenue-Wigner contraction does not give the correct flat limit but, rather, gives zero. This erroneous result originates from the fact that the fermionic metric of the super-Poincare group is degenerate. We propose a generalization of the Inoenue-Wigner contraction from which a 'nondegenerate' super-Poincare group is derived from the super-AdS group. For this reason, this contraction gives the correct flat limit of this Wess-Zumino term. We also discuss the M-algebra obtained using this generalized Inoenue-Wigner contraction from osp(1|32). (author)
International Nuclear Information System (INIS)
Sanchez-Diaz, L. E.; Juarez-Maldonado, R.; Vizcarra-Rendon, A.
2009-01-01
Based on the recently proposed self-consistent generalized Langevin equation theory of dynamic arrest, in this letter we show that the ergodic-nonergodic phase diagram of a classical mixture of charged hard spheres (the so-called 'primitive model' of ionic solutions and molten salts) includes arrested phases corresponding to nonconducting ionic glasses, partially arrested states that represent solid electrolytes (or 'superionic' conductors), low-density colloidal Wigner glasses, and low-density electrostatic gels associated with arrested spinodal decomposition.
Application of Wigner-transformations in heavy ion reactions
International Nuclear Information System (INIS)
Esbensen, H.
1981-01-01
One of the main features of inelastic heavy ion reactions is the excitation of collective surface vibrations. It is discussed a model, based on Wigner transformations and classical dynamics, that gives a semiclassical description of the excitation of surface vibrations due to the Coulomb and nuclear interaction in heavy ion collisions. The treatment consists of three stages, viz. the preparation of classical initial conditions compatible with the quantal ground state of surface vibrations, the dynamical evolution of the system governed by Liouville's equation (i.e. classical mechanics) and finally the interpretation of final results after the interaction in terms of excitation probabilities, elastic and inelastic cross sections etc. The first and the last stage are exact and based on the Wigner transformations while the time evolution described by classical mechanics is an approximation. Application examples are given. (author)
Generalised Wigner surmise for (2 X 2) random matrices
International Nuclear Information System (INIS)
Chau Huu-Tai, P.; Van Isacker, P.; Smirnova, N.A.
2001-01-01
We present new analytical results concerning the spectral distributions for (2 x 2) random real symmetric matrices which generalize the Wigner surmise. The study of the statistical properties of spectra of realistic many-body Hamiltonians requires consideration of a random matrix ensemble whose elements are not independent or whose distribution is not invariant under orthogonal transformation of a chosen basis. In this letter we have concentrated on the properties of (2 x 2) real symmetric matrices whose elements are independent Gaussian variables with zero means but do not belong to the GOE. We have derived the distribution of eigenvalues for such a matrix, the nearest-neighbour spacing distribution which generalizes the Wigner surmise and we have calculated some important moments. (authors)
DEFF Research Database (Denmark)
Eynard, B.; Kristjansen, C.
1996-01-01
in the coupling constant space and for any n. The solution was parametrized in terms of an auxiliary function. Here we determine the auxiliary function explicitly as a combination of 0-functions, thereby completing the solution of the model. Using our solution we investigate, for the simplest version of the model......, hitherto unexplored regions of the parameter space. For example we determine in a closed form the eigenvalue density without any assumption of being close to or at a critical point. This gives a generalization of the Wigner semi-circle law to n ≠ 0. We also study the model for |n| > 2. Both for n
International Nuclear Information System (INIS)
Chanfray, G.
1988-01-01
We derive a semi-classical Wigner-Kirkwood expansion (Planck constant expansion) of the linear response functions. We find that the semi-classical results compare very well to the quantum mechanical calculations. We apply our formalism to the spin-isospin responses and show that surface-peaked Planck constant 2 corrections considerably decrease the ratio longitudinal/transverse as obtained through the Los Alamos (longitudinal momentum) experiment
Wigner measure and semiclassical limits of nonlinear Schrödinger equations
Zhang, Ping
2008-01-01
This book is based on a course entitled "Wigner measures and semiclassical limits of nonlinear Schrödinger equations," which the author taught at the Courant Institute of Mathematical Sciences at New York University in the spring of 2007. The author's main purpose is to apply the theory of semiclassical pseudodifferential operators to the study of various high-frequency limits of equations from quantum mechanics. In particular, the focus of attention is on Wigner measure and recent progress on how to use it as a tool to study various problems arising from semiclassical limits of Schrödinger-ty
The role of scalar product and Wigner distribution in optical and quantum mechanical measurements
International Nuclear Information System (INIS)
Wodkiewicz, K.
1984-01-01
In this paper we present a unified approach to the phase-space description of optical and quantum measurements. We find that from the operational point of view the notion of a time dependent spectrum of light and a joint measurement of position and momentum in quantum mechanics can be formulated in one common approach in which the scalar product, the Wigner function and the phase-space proximity are closely related to a realistic measuring process
Pinning mode of integer quantum Hall Wigner crystal of skyrmions
Zhu, Han; Sambandamurthy, G.; Chen, Y. P.; Jiang, P.-H.; Engel, L. W.; Tsui, D. C.; Pfeiffer, L. N.; West, K. W.
2009-03-01
Just away from integer Landau level (LL) filling factors ν, the dilute quasi-particles/holes at the partially filled LL form an integer-quantum-Hall Wigner crystal, which exhibits microwave pinning mode resonances [1]. Due to electron-electron interaction, it was predicted that the elementary excitation around ν= 1 is not a single spin flip, but a larger-scale spin texture, known as a skyrmion [2]. We have compared the pinning mode resonances [1] of integer quantum Hall Wigner crystals formed in the partly filled LL just away from ν= 1 and ν= 2, in the presence of an in-plane magnetic field. As an in-plane field is applied, the peak frequencies of the resonances near ν= 1 increase, while the peak frequencies below ν= 2 show neligible dependence on in-plane field. We interpret this observation as due to a skyrmion crystal phase around ν= 1 and a single-hole Wigner crystal phase below ν= 2. The in-plane field increases the Zeeman gap and causes shrinking of the skyrmion size toward single spin flips. [1] Yong P. Chen et al., Phys. Rev. Lett. 91, 016801 (2003). [2] S. L. Sondhi et al., Phys. Rev. B 47, 16 419 (1993); L. Brey et al., Phys. Rev. Lett. 75, 2562 (1995).
A random matrix approach to the crossover of energy-level statistics from Wigner to Poisson
International Nuclear Information System (INIS)
Datta, Nilanjana; Kunz, Herve
2004-01-01
We analyze a class of parametrized random matrix models, introduced by Rosenzweig and Porter, which is expected to describe the energy level statistics of quantum systems whose classical dynamics varies from regular to chaotic as a function of a parameter. We compute the generating function for the correlations of energy levels, in the limit of infinite matrix size. The crossover between Poisson and Wigner statistics is measured by a renormalized coupling constant. The model is exactly solved in the sense that, in the limit of infinite matrix size, the energy-level correlation functions and their generating function are given in terms of a finite set of integrals
Eugene P. Wigner's Visionary Contributions to Generations-I through IV Fission Reactors
Carré, Frank
2014-09-01
Among Europe's greatest scientists who fled to Britain and America in the 1930s, Eugene P. Wigner made instrumental advances in reactor physics, reactor design and technology, and spent nuclear fuel processing for both purposes of developing atomic weapons during world-war II and nuclear power afterwards. Wigner who had training in chemical engineering and self-education in physics first gained recognition for his remarkable articles and books on applications of Group theory to Quantum mechanics, Solid state physics and other topics that opened new branches of Physics.
Rodríguez Fonollosa, Javier; Nikias, Chrysostomos L.
1993-01-01
The Wigner higher order moment spectra (WHOS) are defined as extensions of the Wigner-Ville distribution (WD) to higher order moment spectra domains. A general class of time-frequency higher order moment spectra is also defined in terms of arbitrary higher order moments of the signal as generalizations of the Cohen’s general class of time-frequency representations. The properties of the general class of time-frequency higher order moment spectra can be related to the properties...
A Quantum Version of Wigner's Transition State Theory
Schubert, R.; Waalkens, H.; Wiggins, S.
A quantum version of a recent realization of Wigner's transition state theory in phase space is presented. The theory developed builds on a quantum normal form which locally decouples the quantum dynamics near the transition state to any desired order in (h) over bar. This leads to an explicit
On the hydrogen atom via Wigner-Heisenberg algebra
International Nuclear Information System (INIS)
Rodrigues, R. de Lima . Unidade Academica de Educacao.
2008-01-01
We extend the usual Kustaanheimo-Stiefel 4D → 3D mapping to study and discuss a constrained super-Wigner oscillator in four dimensions. We show that the physical hydrogen atom is the system that emerges in the bosonic sector of the mapped super 3D system. (author)
Evidence of Wigner rotation phenomena in the beam splitting experiment at the LCLS
International Nuclear Information System (INIS)
Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni
2016-07-01
A result from particle tracking states that, after a microbunched electron beam is kicked, its trajectory changes while the orientation of the microbunching wavefront remains as before. Experiments at the LCLS showed that radiation in the kicked direction is produced practically without suppression. This could be explained if the orientation of the microbunching wavefront is readjusted along the kicked direction. In previous papers we showed that when the evolution of the electron beam modulation is treated according to relativistic kinematics, the orientation of the microbunching wavefront in the ultrarelativistic asymptotic is always perpendicular to the electron beam velocity. There we refrained from using advanced theoretical concepts to explain or analyze the wavefront rotation. For example, we only hinted to the relation of this phenomenon with the concept of Wigner rotation. This more abstract view of wavefront rotation underlines its elementary nature. The Wigner rotation is known as a fundamental effect in elementary particle physics. The composition of non collinear boosts does not result in a simple boost but, rather, in a Lorentz transformation involving a boost and a rotation, the Wigner rotation. Here we show that during the LCLS experiments, a Wigner rotation was actually directly recorded for the first time with a ultrarelativistic, macroscopic object: an ultrarelativistic electron bunch in an XFEL modulated at nm-scale of the size of about 10 microns. Here we point out the role of Wigner rotation in the analysis and interpretation of experiments with ultrarelativistic, microbunched electron beams in FELs. After the beam splitting experiment at the LCLS it became clear that, in the ultrarelativistic asymptotic, the projection of the microbunching wave vector onto the beam velocity is a Lorentz invariant, similar to the helicity in particle physics.
Evidence of Wigner rotation phenomena in the beam splitting experiment at the LCLS
Energy Technology Data Exchange (ETDEWEB)
Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2016-07-15
A result from particle tracking states that, after a microbunched electron beam is kicked, its trajectory changes while the orientation of the microbunching wavefront remains as before. Experiments at the LCLS showed that radiation in the kicked direction is produced practically without suppression. This could be explained if the orientation of the microbunching wavefront is readjusted along the kicked direction. In previous papers we showed that when the evolution of the electron beam modulation is treated according to relativistic kinematics, the orientation of the microbunching wavefront in the ultrarelativistic asymptotic is always perpendicular to the electron beam velocity. There we refrained from using advanced theoretical concepts to explain or analyze the wavefront rotation. For example, we only hinted to the relation of this phenomenon with the concept of Wigner rotation. This more abstract view of wavefront rotation underlines its elementary nature. The Wigner rotation is known as a fundamental effect in elementary particle physics. The composition of non collinear boosts does not result in a simple boost but, rather, in a Lorentz transformation involving a boost and a rotation, the Wigner rotation. Here we show that during the LCLS experiments, a Wigner rotation was actually directly recorded for the first time with a ultrarelativistic, macroscopic object: an ultrarelativistic electron bunch in an XFEL modulated at nm-scale of the size of about 10 microns. Here we point out the role of Wigner rotation in the analysis and interpretation of experiments with ultrarelativistic, microbunched electron beams in FELs. After the beam splitting experiment at the LCLS it became clear that, in the ultrarelativistic asymptotic, the projection of the microbunching wave vector onto the beam velocity is a Lorentz invariant, similar to the helicity in particle physics.
International Nuclear Information System (INIS)
Guppy, R.M.; Wisbey, S.J.; McCarthy, J.
2001-01-01
Plans to dismantle the core of the Windscale Pile 1 reactor, and to package the waste for interim storage and eventual disposal, are well advanced. UK Nirex Limited, currently responsible for identifying and developing a site primarily for disposal of the wide range of intermediate level wastes, is addressing the suitability of the waste from Windscale Pile 1, for transport to, and disposal at, a deep waste repository. To support the decommissioning of Windscale Pile 1, information on the condition of the graphite has been sought. Despite the fire in 1957, recent sampling of regions of the core has shown that much of the graphite still contains significant residual Wigner energy. Unless it can be shown that Wigner energy will not be released at a significant rate during operations such as waste packaging or handling of the package, or after disposal, future safety cases may be undermined. A model for the release of Wigner energy has been developed, which describes the stored energy as a set of defects with different activation energies. Initial values of stored energy are attributed to each member of the set, and the energy is released using first order decay processes. By appropriate selection of the range of activation energies and stored energies attributable to each population of defects, experimentally determined releases of stored energy as a function of temperature can be reproduced by the model. Within the disposal environment, the packages will be subject to modest heating from external sources, including the host rocks, radioactive decay, corrosion processes and heat from curing of backfill materials in the disposal vaults. The Wigner energy release model has been used in combination with finite element thermal modelling to assess the temperature evolution of stacks of waste packages located within hypothetical disposal vaults. It has also been used to assess the response of individual waste packages exposed to fires. This paper provides a summary of the
One-electron densities of freely rotating Wigner molecules
Cioslowski, Jerzy
2017-12-01
A formalism enabling computation of the one-particle density of a freely rotating assembly of identical particles that vibrate about their equilibrium positions with amplitudes much smaller than their average distances is presented. It produces densities as finite sums of products of angular and radial functions, the length of the expansion being determined by the interplay between the point-group and permutational symmetries of the system in question. Obtaining from a convolution of the rotational and bosonic components of the parent wavefunction, the angular functions are state-dependent. On the other hand, the radial functions are Gaussians with maxima located at the equilibrium lengths of the position vectors of individual particles and exponents depending on the scalar products of these vectors and the eigenvectors of the corresponding Hessian as well as the respective eigenvalues. Although the new formalism is particularly useful for studies of the Wigner molecules formed by electrons subject to weak confining potentials, it is readily adaptable to species (such as ´balliums’ and Coulomb crystals) composed of identical particles with arbitrary spin statistics and permutational symmetry. Several examples of applications of the present approach to the harmonium atoms within the strong-correlation regime are given.
A study of complex scaling transformation using the Wigner representation of wavefunctions.
Kaprálová-Ždánská, Petra Ruth
2011-05-28
The complex scaling operator exp(-θ ̂x̂p/ℏ), being a foundation of the complex scaling method for resonances, is studied in the Wigner phase-space representation. It is shown that the complex scaling operator behaves similarly to the squeezing operator, rotating and amplifying Wigner quasi-probability distributions of the respective wavefunctions. It is disclosed that the distorting effect of the complex scaling transformation is correlated with increased numerical errors of computed resonance energies and widths. The behavior of the numerical error is demonstrated for a computation of CO(2+) vibronic resonances. © 2011 American Institute of Physics
Khan, Abu M. A. S.
required to yield any CSR in four dimensions. The representation wavefunction is the Bessel function, as expected, but the scale factor is not the length of the light-cone vector. The amplitude and the scale factor are implicit functions of the parameter y which is a ratio of the internal and external coordinates. We also state under what conditions our solutions become identical to Wigner's solution.
On quantum mechanical phase-space wave functions
DEFF Research Database (Denmark)
Wlodarz, Joachim J.
1994-01-01
An approach to quantum mechanics based on the notion of a phase-space wave function is proposed within the Weyl-Wigner-Moyal representation. It is shown that the Schrodinger equation for the phase-space wave function is equivalent to the quantum Liouville equation for the Wigner distribution...... function. The relationship to the recent results by Torres-Vega and Frederick [J. Chem. Phys. 98, 3103 (1993)] is also discussed....
Quantum distribution function of nonequilibrium system
International Nuclear Information System (INIS)
Sogo, Kiyoshi; Fujimoto, Yasushi.
1990-03-01
A path integral representation is derived for the Wigner distribution function of a nonequilibrium system coupled with heat bath. Under appropriate conditions, the Wigner distribution function approaches an equilibrium distribution, which manifests shifting and broadening of spectral lines due to the interaction with heat bath. It is shown that the equilibrium distribution becomes the quantum canonical distribution in the vanishing coupling constant limit. (author)
The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays
Energy Technology Data Exchange (ETDEWEB)
Gadella, M. [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş. [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)
2017-04-15
We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.
Relativistic electron Wigner crystal formation in a cavity for electron acceleration
Thomas, Johannes; Pukhov, Alexander
2014-01-01
It is known that a gas of electrons in a uniform neutralizing background can crystallize and form a lattice if the electron density is less than a critical value. This crystallization may have two- or three-dimensional structure. Since the wake field potential in the highly-nonlinear-broken-wave regime (bubble regime) has the form of a cavity where the background electrons are evacuated from and only the positively charged ions remain, it is suited for crystallization of trapped and accelerated electron bunch. However, in this case, the crystal is moving relativistically and shows new three-dimensional structures that we call relativistic Wigner crystals. We analyze these structures using a relativistic Hamiltonian approach. We also check for stability and phase transitions of the relativistic Wigner crystals.
Mean field limit for bosons with compact kernels interactions by Wigner measures transportation
International Nuclear Information System (INIS)
Liard, Quentin; Pawilowski, Boris
2014-01-01
We consider a class of many-body Hamiltonians composed of a free (kinetic) part and a multi-particle (potential) interaction with a compactness assumption on the latter part. We investigate the mean field limit of such quantum systems following the Wigner measures approach. We prove in particular the propagation of these measures along the flow of a nonlinear (Hartree) field equation. This enhances and complements some previous results of the same type shown in Z. Ammari and F. Nier and Fröhlich et al. [“Mean field limit for bosons and propagation of Wigner measures,” J. Math. Phys. 50(4), 042107 (2009); Z. Ammari and F. Nier and Fröhlich et al., “Mean field propagation of Wigner measures and BBGKY hierarchies for general bosonic states,” J. Math. Pures Appl. 95(6), 585–626 (2011); Z. Ammari and F. Nier and Fröhlich et al., “Mean-field- and classical limit of many-body Schrödinger dynamics for bosons,” Commun. Math. Phys. 271(3), 681–697 (2007)
Fluctuations of Wigner-type random matrices associated with symmetric spaces of class DIII and CI
Stolz, Michael
2018-02-01
Wigner-type randomizations of the tangent spaces of classical symmetric spaces can be thought of as ordinary Wigner matrices on which additional symmetries have been imposed. In particular, they fall within the scope of a framework, due to Schenker and Schulz-Baldes, for the study of fluctuations of Wigner matrices with additional dependencies among their entries. In this contribution, we complement the results of these authors by explicit calculations of the asymptotic covariances for symmetry classes DIII and CI and thus obtain explicit CLTs for these classes. On the technical level, the present work is an exercise in controlling the cumulative effect of systematically occurring sign factors in an involved sum of products by setting up a suitable combinatorial model for the summands. This aspect may be of independent interest. Research supported by Deutsche Forschungsgemeinschaft (DFG) via SFB 878.
Jordan-Wigner fermionization and the theory of low-dimensional quantum spin models
International Nuclear Information System (INIS)
Derzhko, O.
2007-01-01
The idea of mapping quantum spin lattice model onto fermionic lattice model goes back to Jordan and Wigner (1928) who transformed s = 1/2 operators which commute at different lattice sites into fermionic operators. Later on the Jordan-Wigner transformation was used for mapping one-dimensional s = 1/2 isotropic XY (XX) model onto an exactly solvable tight-binding model of spinless fermions (Lieb, Schultz and Mattis, 1961). Since that times the Jordan-Wigner transformation is known as a powerful tool in the condensed matter theory especially in the theory of low-dimensional quantum spin systems. The aim of these lectures is to review the applications of the Jordan-Wigner fermionization technique for calculating dynamic properties of low-dimensional quantum spin models. The dynamic quantities (such as dynamic structure factors or dynamic susceptibilities) are observable directly or indirectly in various experiments. The frequency and wave-vector dependence of the dynamic quantities yields valuable information about the magnetic structure of materials. Owing to a tremendous recent progress in synthesizing low-dimensional magnetic materials detailed comparisons of theoretical results with direct experimental observation are becoming possible. The lectures are organized as follows. After a brief introduction of the Jordan-Wigner transformation for one-dimensional spin one half systems and some of its extensions for higher dimensions and higher spin values we focus on the dynamic properties of several low-dimensional quantum spin models. We start from a famous s = 1/2 XX chain. As a first step we recall well-known results for dynamics of the z-spin-component fluctuation operator and then turn to dynamics of the dimer and trimer fluctuation operators. The dynamics of the trimer fluctuations involves both the two fermion (one particle and one hole) and the four-fermion (two particles and two holes) excitations. We discuss some properties of the two-fermion and four
Wigner Transport Simulation of Resonant Tunneling Diodes with Auxiliary Quantum Wells
Lee, Joon-Ho; Shin, Mincheol; Byun, Seok-Joo; Kim, Wangki
2018-03-01
Resonant-tunneling diodes (RTDs) with auxiliary quantum wells ( e.g., emitter prewell, subwell, and collector postwell) are studied using a Wigner transport equation (WTE) discretized by a thirdorder upwind differential scheme. A flat-band potential profile is used for the WTE simulation. Our calculations revealed functions of the auxiliary wells as follows: The prewell increases the current density ( J) and the peak voltage ( V p ) while decreasing the peak-to-valley current ratio (PVCR), and the postwell decreases J while increasing the PVCR. The subwell affects J and PVCR, but its main effect is to decrease V p . When multiple auxiliary wells are used, each auxiliary well contributes independently to the transport without producing side effects.
An “Airy gun”: Self-accelerating solutions of the time-dependent Schrödinger equation in vacuum
International Nuclear Information System (INIS)
Mahalov, Alex; Suslov, Sergei K.
2012-01-01
We consider generalizations of the Berry and Balazs nonspreading and accelerating solution of the time-dependent Schrödinger equation in empty space, which has been experimentally demonstrated in paraxial optics. In particular, we show that the original nonspreading wave packet is unstable. An explicit variation of the initial Airy-state evolves into the self-accelerating and self-compressing solution presented here. Quasi-diffraction-free finite energy Airy beams that are more realistic for experimental study are obtained by analytic continuation and their Wigner function is evaluated. Nonlinear generalizations related to second Painlevé transcendents are briefly discussed.
About SIC POVMs and discrete Wigner distributions
International Nuclear Information System (INIS)
Colin, Samuel; Corbett, John; Durt, Thomas; Gross, David
2005-01-01
A set of d 2 vectors in a Hilbert space of dimension d is called equiangular if each pair of vectors encloses the same angle. The projection operators onto these vectors define a POVM which is distinguished by its high degree of symmetry. Measures of this kind are called symmetric informationally complete, or SIC POVMs for short, and could be applied for quantum state tomography. Despite its simple geometrical description, the problem of constructing SIC POVMs or even proving their existence seems to be very hard. It is our purpose to introduce two applications of discrete Wigner functions to the analysis of the problem at hand. First, we will present a method for identifying symmetries of SIC POVMs under Clifford operations. This constitutes an alternative approach to a structure described before by Zauner and Appleby. Further, a simple and geometrically motivated construction for an SIC POVM in dimensions two and three is given (which, unfortunately, allows no generalization). Even though no new structures are found, we hope that the re-formulation of the problem may prove useful for future inquiries
Asymptotics of Wigner 3nj-symbols with small and large angular momenta: an elementary method
International Nuclear Information System (INIS)
Bonzom, Valentin; Fleury, Pierre
2012-01-01
Yu and Littlejohn recently studied in (2011 Phys. Rev. A 83 052114 (arXiv:1104.1499)) some asymptotics of Wigner symbols with some small and large angular momenta. They found that in this regime the essential information is captured by the geometry of a tetrahedron, and gave new formulae for 9j-, 12j- and 15j-symbols. We present here an alternative derivation which leads to a simpler formula, based on the use of the Ponzano–Regge formula for the relevant tetrahedron. The approach is generalized to Wigner 3nj-symbols with some large and small angular momenta, where more than one tetrahedron are needed, leading to new asymptotics for Wigner 3nj-symbols. As an illustration, we present 15j-symbols with one, two and four small angular momenta, and give an alternative formula to Yu’s recent 15j-symbol with three small spins. (paper)
Low-frequency electromagnetic field in a Wigner crystal
Stupka, Anton
2016-01-01
Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.
Evolution of wave function in a dissipative system
Yu, Li-Hua; Sun, Chang-Pu
1994-01-01
For a dissipative system with Ohmic friction, we obtain a simple and exact solution for the wave function of the system plus the bath. It is described by the direct product in two independent Hilbert space. One of them is described by an effective Hamiltonian, the other represents the effect of the bath, i.e., the Brownian motion, thus clarifying the structure of the wave function of the system whose energy is dissipated by its interaction with the bath. No path integral technology is needed in this treatment. The derivation of the Weisskopf-Wigner line width theory follows easily.
Time-frequency representation of a highly nonstationary signal via the modified Wigner distribution
Zoladz, T. F.; Jones, J. H.; Jong, J.
1992-01-01
A new signal analysis technique called the modified Wigner distribution (MWD) is presented. The new signal processing tool has been very successful in determining time frequency representations of highly non-stationary multicomponent signals in both simulations and trials involving actual Space Shuttle Main Engine (SSME) high frequency data. The MWD departs from the classic Wigner distribution (WD) in that it effectively eliminates the cross coupling among positive frequency components in a multiple component signal. This attribute of the MWD, which prevents the generation of 'phantom' spectral peaks, will undoubtedly increase the utility of the WD for real world signal analysis applications which more often than not involve multicomponent signals.
Eugene P. Wigner – in the light of unexpected events
Directory of Open Access Journals (Sweden)
Koblinger L.
2014-01-01
Full Text Available In the first part of the paper, Wigner’s humane attitude is overviewed based on the author’s personal impressions and on selected quotations from Wigner and his contemporaries. The second part briefly summarizes Wigner’s contribution to the development of nuclear science and technology.
The universal Racah-Wigner symbol for U{sub q}(osp(1 vertical stroke 2))
Energy Technology Data Exchange (ETDEWEB)
Pawelkiewicz, Michal; Schomerus, Volker [DESY Hamburg (Germany). Theory Group; Suchanek, Paulina [DESY Hamburg (Germany). Theory Group; Wroclaw Univ. (Poland). Inst. for Theoretical Physics
2013-10-15
We propose a new and elegant formula for the Racah-Wigner symbol of self-dual continuous series of representations of U{sub q}(osp(1 vertical stroke 2)). It describes the entire fusing matrix for both NS and R sector of N=1 supersymmetric Liouville field theory. In the NS sector, our formula is related to an expression derived in an earlier paper (L. Hadaz, M. Pawelkiewicz, and V. Schomerus, arXiv:1305.4596[hep-th]). Through analytic continuation in the spin variables, our universal expression reproduces known formulas for the Racah-Wigner coefficients of finite dimensional representations.
From GCM energy kernels to Weyl-Wigner Hamiltonians: a particular mapping
International Nuclear Information System (INIS)
Galetti, D.
1984-01-01
A particular mapping is established which directly connects GCM energy kernels to Weyl-Wigner Hamiltonians, under the assumption of gaussian overlap kernel. As an application of this mapping scheme the collective Hamiltonians for some giant resonances are derived. (Author) [pt
Time-Frequency (Wigner Analysis of Linear and Nonlinear Pulse Propagation in Optical Fibers
Directory of Open Access Journals (Sweden)
José Azaña
2005-06-01
Full Text Available Time-frequency analysis, and, in particular, Wigner analysis, is applied to the study of picosecond pulse propagation through optical fibers in both the linear and nonlinear regimes. The effects of first- and second-order group velocity dispersion (GVD and self-phase modulation (SPM are first analyzed separately. The phenomena resulting from the interplay between GVD and SPM in fibers (e.g., soliton formation or optical wave breaking are also investigated in detail. Wigner analysis is demonstrated to be an extremely powerful tool for investigating pulse propagation dynamics in nonlinear dispersive systems (e.g., optical fibers, providing a clearer and deeper insight into the physical phenomena that determine the behavior of these systems.
International Nuclear Information System (INIS)
Casado, A; Guerra, S; Placido, J
2008-01-01
In this paper, the theory of parametric down-conversion in the Wigner representation is applied to Ekert's quantum cryptography protocol. We analyse the relation between two-photon entanglement and (non-secure) quantum key distribution within the Wigner framework in the Heisenberg picture. Experiments using two-qubit polarization entanglement generated in nonlinear crystals are analysed in this formalism, along with the effects of eavesdropping attacks in the case of projective measurements
International Nuclear Information System (INIS)
Tawfik, A.
2013-01-01
We investigate the impacts of Generalized Uncertainty Principle (GUP) proposed by some approaches to quantum gravity such as String Theory and Doubly Special Relativity on black hole thermodynamics and Salecker-Wigner inequalities. Utilizing Heisenberg uncertainty principle, the Hawking temperature, Bekenstein entropy, specific heat, emission rate and decay time are calculated. As the evaporation entirely eats up the black hole mass, the specific heat vanishes and the temperature approaches infinity with an infinite radiation rate. It is found that the GUP approach prevents the black hole from the entire evaporation. It implies the existence of remnants at which the specific heat vanishes. The same role is played by the Heisenberg uncertainty principle in constructing the hydrogen atom. We discuss how the linear GUP approach solves the entire-evaporation-problem. Furthermore, the black hole lifetime can be estimated using another approach; the Salecker-Wigner inequalities. Assuming that the quantum position uncertainty is limited to the minimum wavelength of measuring signal, Wigner second inequality can be obtained. If the spread of quantum clock is limited to some minimum value, then the modified black hole lifetime can be deduced. Based on linear GUP approach, the resulting lifetime difference depends on black hole relative mass and the difference between black hole mass with and without GUP is not negligible
Wigner tomography of multispin quantum states
Leiner, David; Zeier, Robert; Glaser, Steffen J.
2017-12-01
We study the tomography of multispin quantum states in the context of finite-dimensional Wigner representations. An arbitrary operator can be completely characterized and visualized using multiple shapes assembled from linear combinations of spherical harmonics [A. Garon, R. Zeier, and S. J. Glaser, Phys. Rev. A 91, 042122 (2015), 10.1103/PhysRevA.91.042122]. We develop a general methodology to experimentally recover these shapes by measuring expectation values of rotated axial spherical tensor operators and provide an interpretation in terms of fictitious multipole potentials. Our approach is experimentally demonstrated for quantum systems consisting of up to three spins using nuclear magnetic resonance spectroscopy.
Energy Technology Data Exchange (ETDEWEB)
Casado, A [Departamento de Fisica Aplicada III, Escuela Superior de Ingenieros, Universidad de Sevilla, 41092 Sevilla (Spain); Guerra, S [Centro Asociado de la Universidad Nacional de Educacion a Distancia de Las Palmas de Gran Canaria (Spain); Placido, J [Departamento de Fisica, Universidad de Las Palmas de Gran Canaria (Spain)], E-mail: acasado@us.es
2008-02-28
In this paper, the theory of parametric down-conversion in the Wigner representation is applied to Ekert's quantum cryptography protocol. We analyse the relation between two-photon entanglement and (non-secure) quantum key distribution within the Wigner framework in the Heisenberg picture. Experiments using two-qubit polarization entanglement generated in nonlinear crystals are analysed in this formalism, along with the effects of eavesdropping attacks in the case of projective measurements.
Schrödinger like equation for wavelets
Directory of Open Access Journals (Sweden)
A. Zúñiga-Segundo
2016-01-01
Full Text Available An explicit phase space representation of the wave function is build based on a wavelet transformation. The wavelet transformation allows us to understand the relationship between s − ordered Wigner function, (or Wigner function when s = 0, and the Torres-Vega-Frederick’s wave functions. This relationship is necessary to find a general solution of the Schrödinger equation in phase-space.
Nonclassicality indicator for the real phase-space distribution functions
International Nuclear Information System (INIS)
Sadeghi, Parvin; Khademi, Siamak; Nasiri, Sadollah
2010-01-01
Benedict et al. and Kenfack et al. advocated nonclassicality indicators based on the measurement of negativity of the Wigner distribution functions. These indicators have some applications in quantum mechanics and quantum optics. In this paper we define a nonclassicality indicator in terms of the interference in phase space, which is applicable to some real distribution functions including those of Wigner. As a special case one may reproduce the previous results using our indicator for the Wigner distribution functions. This indicator is examined for cases of the Schroedinger cat state and the thermal states and the results are compared with those obtained by previous methods. It seems that the physical behavior of nonclassicality indicators originates in the uncertainty principle. This is shown by an onto correspondence between these indicators and the uncertainty principle.
Non-Equilibrium Liouville and Wigner Equations: Moment Methods and Long-Time Approximations
Directory of Open Access Journals (Sweden)
Ramon F. Álvarez-Estrada
2014-03-01
Full Text Available We treat the non-equilibrium evolution of an open one-particle statistical system, subject to a potential and to an external “heat bath” (hb with negligible dissipation. For the classical equilibrium Boltzmann distribution, Wc,eq, a non-equilibrium three-term hierarchy for moments fulfills Hermiticity, which allows one to justify an approximate long-time thermalization. That gives partial dynamical support to Boltzmann’s Wc,eq, out of the set of classical stationary distributions, Wc;st, also investigated here, for which neither Hermiticity nor that thermalization hold, in general. For closed classical many-particle systems without hb (by using Wc,eq, the long-time approximate thermalization for three-term hierarchies is justified and yields an approximate Lyapunov function and an arrow of time. The largest part of the work treats an open quantum one-particle system through the non-equilibrium Wigner function, W. Weq for a repulsive finite square well is reported. W’s (< 0 in various cases are assumed to be quasi-definite functionals regarding their dependences on momentum (q. That yields orthogonal polynomials, HQ,n(q, for Weq (and for stationary Wst, non-equilibrium moments, Wn, of W and hierarchies. For the first excited state of the harmonic oscillator, its stationary Wst is a quasi-definite functional, and the orthogonal polynomials and three-term hierarchy are studied. In general, the non-equilibrium quantum hierarchies (associated with Weq for the Wn’s are not three-term ones. As an illustration, we outline a non-equilibrium four-term hierarchy and its solution in terms of generalized operator continued fractions. Such structures also allow one to formulate long-time approximations, but make it more difficult to justify thermalization. For large thermal and de Broglie wavelengths, the dominant Weq and a non-equilibrium equation for W are reported: the non-equilibrium hierarchy could plausibly be a three-term one and possibly not
Wigner formula of rotation matrices and quantum walks
International Nuclear Information System (INIS)
Miyazaki, Takahiro; Katori, Makoto; Konno, Norio
2007-01-01
Quantization of a random-walk model is performed by giving a qudit (a multicomponent wave function) to a walker at site and by introducing a quantum coin, which is a matrix representation of a unitary transformation. In quantum walks, the qudit of the walker is mixed according to the quantum coin at each time step, when the walker hops to other sites. As special cases of the quantum walks driven by high-dimensional quantum coins generally studied by Brun, Carteret, and Ambainis, we study the models obtained by choosing rotation as the unitary transformation, whose matrix representations determine quantum coins. We show that Wigner's (2j+1)-dimensional unitary representations of rotations with half-integers j's are useful to analyze the probability laws of quantum walks. For any value of half-integer j, convergence of all moments of walker's pseudovelocity in the long-time limit is proved. It is generally shown for the present models that, if (2j+1) is even, the probability measure of limit distribution is given by a superposition of (2j+1)/2 terms of scaled Konno's density functions, and if (2j+1) is odd, it is a superposition of j terms of scaled Konno's density functions and a Dirac's delta function at the origin. For the two-, three-, and four-component models, the probability densities of limit distributions are explicitly calculated and their dependence on the parameters of quantum coins and on the initial qudit of walker is completely determined. Comparison with computer simulation results is also shown
Wigner's dynamical transition state theory in phase space : classical and quantum
Waalkens, Holger; Schubert, Roman; Wiggins, Stephen
We develop Wigner's approach to a dynamical transition state theory in phase space in both the classical and quantum mechanical settings. The key to our development is the construction of a normal form for describing the dynamics in the neighbourhood of a specific type of saddle point that governs
Eugene Wigner – A Gedanken Pioneer of the Second Quantum Revolution
Directory of Open Access Journals (Sweden)
Zeilinger Anton
2014-01-01
Full Text Available Eugene Wigner pointed out very interesting consequences of quantum physics in elegant gedanken experiments. As a result of technical progress, these gedanken experiments have become real experiments and contribute to the development of novel concepts in quantum information science, often called the second quantum revolution.
Negative Differential Resistance and Astability of the Wigner Solid
Csathy, G. A.; Tsui, D. C.; Pfeiffer, L. N.; West, K. W.
2005-01-01
We report an unusual breakdown of the magnetically induced Wigner solid in an exceptional two-dimensional electron gas. The current-voltage characteristic is found to be hysteretic in the voltage biased setup and has a region of negative differential resistance in the current biased setup. When the sample is current biased in the region of negative differential resistance, the voltage on and the current through the sample develop spontaneous narrow band oscillations.
Quantum dynamical time evolutions as stochastic flows on phase space
International Nuclear Information System (INIS)
Combe, P.; Rodriguez, R.; Guerra, F.; Sirigue, M.; Sirigue-Collin, M.
1984-01-01
We are mainly interested in describing the time development of the Wigner functions by means of stochastic processes. In the second section we recall the main properties of the Wigner functions as well as those of their Fourier transform. In the next one we derive the evolution equation of these functions for a class of Hamiltonians and we give a probabilistic expression for the solution of these equations by means of a stochastic flow in phase space which reminds of the classical flows. In the last section we remark that the previously defined flow can be extended to the bounded continuous functions on phase space and that this flow conserves the cone generated by the Wigner functions. (orig./HSI)
International Nuclear Information System (INIS)
Forrester, P.J.; Witte, N.S.
2000-01-01
Random matrix ensembles with orthogonal and unitary symmetry correspond to the cases of real symmetric and Hermitian random matrices respectively. We show that the probability density function for the corresponding spacings between consecutive eigenvalues can be written exactly in the Wigner surmise type form a(s) e-b(s) for a simply related to a Painleve transcendent and b its anti-derivative. A formula consisting of the sum of two such terms is given for the symplectic case (Hermitian matrices with real quaternion elements)
Scale magnetic effect in quantum electrodynamics and the Wigner-Weyl formalism
Chernodub, M. N.; Zubkov, M. A.
2017-09-01
The scale magnetic effect (SME) is the generation of electric current due to a conformal anomaly in an external magnetic field in curved spacetime. The effect appears in a vacuum with electrically charged massless particles. Similarly to the Hall effect, the direction of the induced anomalous current is perpendicular to the direction of the external magnetic field B and to the gradient of the conformal factor τ , while the strength of the current is proportional to the beta function of the theory. In massive electrodynamics the SME remains valid, but the value of the induced current differs from the current generated in the system of massless fermions. In the present paper we use the Wigner-Weyl formalism to demonstrate that in accordance with the decoupling property of heavy fermions the corresponding anomalous conductivity vanishes in the large-mass limit with m2≫|e B | and m ≫|∇τ | .
Special solutions of neutral functional differential equations
Directory of Open Access Journals (Sweden)
Győri István
2001-01-01
Full Text Available For a system of nonlinear neutral functional differential equations we prove the existence of an -parameter family of "special solutions" which characterize the asymptotic behavior of all solutions at infinity. For retarded functional differential equations the special solutions used in this paper were introduced by Ryabov.
The 2-D Wigner solid transition in a magnetic field: A perspective
International Nuclear Information System (INIS)
Platzman, P.M.; Song He; Price, R.
1992-01-01
A 2-D electron system in the presence of a perpendicular magnetic field of arbitrary strength is expected to form a Wigner solid in certain regimes of density and filling factor. Some estimates of the phase diagram in these two parameters are presented and a few recent experimental results are reviewed
A test of Wigner's spin-isospin symmetry from double binding energy differences
International Nuclear Information System (INIS)
Van Isacker, P.; Warner, D.D.; Brenner, D.S.
1996-01-01
The spin-isospin or SU(4) symmetry is investigated. It is shown that the N = Z enhancements of |δV np | are an unavoidable consequence of Wigner's SU(4) symmetry and that the degree of the enhancement provides a sensitive test of the quality of the symmetry itself. (K.A.)
Tertiary instability of zonal flows within the Wigner-Moyal formulation of drift turbulence
Zhu, Hongxuan; Ruiz, D. E.; Dodin, I. Y.
2017-10-01
The stability of zonal flows (ZFs) is analyzed within the generalized-Hasegawa-Mima model. The necessary and sufficient condition for a ZF instability, which is also known as the tertiary instability, is identified. The qualitative physics behind the tertiary instability is explained using the recently developed Wigner-Moyal formulation and the corresponding wave kinetic equation (WKE) in the geometrical-optics (GO) limit. By analyzing the drifton phase space trajectories, we find that the corrections proposed in Ref. to the WKE are critical for capturing the spatial scales characteristic for the tertiary instability. That said, we also find that this instability itself cannot be adequately described within a GO formulation in principle. Using the Wigner-Moyal equations, which capture diffraction, we analytically derive the tertiary-instability growth rate and compare it with numerical simulations. The research was sponsored by the U.S. Department of Energy.
On the measurement of Wigner distribution moments in the fractional Fourier transform domain
Bastiaans, M.J.; Alieva, T.
2002-01-01
It is shown how all global Wigner distribution moments of arbitrary order can be measured as intensity moments in the output plane of an appropriate number of fractional Fourier transform systems (generally anamorphic ones). The minimum number of (anamorphic) fractional power spectra that are needed
Salecker-Wigner-Peres clock and average tunneling times
International Nuclear Information System (INIS)
Lunardi, Jose T.; Manzoni, Luiz A.; Nystrom, Andrew T.
2011-01-01
The quantum clock of Salecker-Wigner-Peres is used, by performing a post-selection of the final state, to obtain average transmission and reflection times associated to the scattering of localized wave packets by static potentials in one dimension. The behavior of these average times is studied for a Gaussian wave packet, centered around a tunneling wave number, incident on a rectangular barrier and, in particular, on a double delta barrier potential. The regime of opaque barriers is investigated and the results show that the average transmission time does not saturate, showing no evidence of the Hartman effect (or its generalized version).
Solute-solvent cavity and bridge functions. I. Varying size of the solute
International Nuclear Information System (INIS)
Vyalov, I.; Chuev, G.; Georgi, N.
2014-01-01
In this work we present the results of the extensive molecular simulations of solute-solvent cavity and bridge functions. The mixtures of Lennard-Jones solvent with Lennard-Jones solute at infinite dilution are considered for different solute-solvent size ratios—up to 4:1. The Percus-Yevick and hypernetted chain closures deviate substantially from simulation results in the investigated temperature and density ranges. We also find that the behavior of the indirect and cavity correlation functions is non-monotonous within the hard-core region, but the latter can be successfully approximated by mean-field theory if the solute-solvent interaction energy is divided into repulsive and attractive contribution, according to Weeks-Chandler-Andersen theory. Furthermore, in spite of the non-monotonous behavior of logarithm of the cavity function and the indirect correlation function, their difference, i.e., the bridge function remains constant within the hard-core region. Such behavior of the bridge and indirect correlation functions at small distances and for small values of indirect correlation function is well known from the Duh-Haymet plots, where the non-unique relationship results in loops of the bridge function vs. indirect correlation function graphs. We show that the same pathological behavior appears also when distance is small and indirect correlation function is large. We further show that the unique functional behavior of the bridge function can be established when bridge is represented as a function of the renormalized, repulsive indirect correlation function
The Wigner representation of classical mechanics, quantization and classical limit
Energy Technology Data Exchange (ETDEWEB)
Bolivar, A.O. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
2001-08-01
Starting from the Liouvillian formulation of classical physics it is possible by means of a Fourier transform to introduce the Wigner representation and to derive an operator structure to classical mechanisms. The importance of this new representation lies on the fact that it turns out to be suitable route to establish a general method of quantization directly from the equations of motion without alluding to the existence of Hamiltonian and Lagrangian functions. Following this approach we quantize only the motion of a Browian particle with non-linear friction in the Markovian approximation - the thermal bath may be quantum or classical -, thus when the bath is classically described we obtain a master equation which reduces to Caldeira-Legget equation for the linear friction case, and when the reservoir is quantum we get an equation reducing to the one found by Caldeira et al. By neglecting the environmental influence we show that the system can be approximately described by equations of motion in terms of wave function, such as the Schrodinger-Langevin equation and equations of the Caldirola-Kanai type. Finally to make the present study self-consistent we evaluate the classical limit of these dynamical equations employing a new classical limiting method h/2{pi} {yields} 0. (author)
The Wigner representation of classical mechanics, quantization and classical limit
International Nuclear Information System (INIS)
Bolivar, A.O.
2001-08-01
Starting from the Liouvillian formulation of classical physics it is possible by means of a Fourier transform to introduce the Wigner representation and to derive an operator structure to classical mechanisms. The importance of this new representation lies on the fact that it turns out to be suitable route to establish a general method of quantization directly from the equations of motion without alluding to the existence of Hamiltonian and Lagrangian functions. Following this approach we quantize only the motion of a Browian particle with non-linear friction in the Markovian approximation - the thermal bath may be quantum or classical -, thus when the bath is classically described we obtain a master equation which reduces to Caldeira-Legget equation for the linear friction case, and when the reservoir is quantum we get an equation reducing to the one found by Caldeira et al. By neglecting the environmental influence we show that the system can be approximately described by equations of motion in terms of wave function, such as the Schrodinger-Langevin equation and equations of the Caldirola-Kanai type. Finally to make the present study self-consistent we evaluate the classical limit of these dynamical equations employing a new classical limiting method h/2π → 0. (author)
Geometrical approach to the distribution of the zeros for the Husimi function
International Nuclear Information System (INIS)
Toscano, Fabricio; Almeida, M. Ozorio de
1999-03-01
We construct a semiclassical expression for the Husimi function of autonomous systems in one degree of freedom, by smoothing with a Gaussian function an expression that captures the essential features of the Wigner function in the semiclassical limit. Our approximation reveals the center and chord structure that the Husimi function inherits from the Wigner function, down to very shallow valleys, where lie the Husimi zeros. This explanation for the distribution of zeros along curves relies on the geometry of the classical torus, rather the complex analytic properties of the WKB method in the Bargmann representation. We evaluate the zeros for several examples. (author)
Semigroup evolution in the Wigner-Weisskopf pole approximation with Markovian spectral coupling
International Nuclear Information System (INIS)
Shikerman, F.; Peer, A.; Horwitz, L. P.
2011-01-01
We establish the relation between the Wigner-Weisskopf theory for the description of an unstable system and the theory of coupling to an environment. According to the Wigner-Weisskopf general approach, even within the pole approximation, the evolution of a total system subspace is not an exact semigroup for multichannel decay unless the projectors into eigenstates of the reduced evolution generator W(z) are orthogonal. With multichannel decay, the projectors must be evaluated at different pole locations z α ≠z β , and since the orthogonality relation does not generally hold at different values of z, the semigroup evolution is a poor approximation for the multichannel decay, even for very weak coupling. Nevertheless, if the theory is generalized to take into account interactions with an environment, one can ensure orthogonality of the W(z) projectors regardless of the number of poles. Such a possibility occurs when W(z), and hence its eigenvectors, is independent of z, which corresponds to the Markovian limit of the coupling to the continuum spectrum.
Semigroup evolution in the Wigner-Weisskopf pole approximation with Markovian spectral coupling
Energy Technology Data Exchange (ETDEWEB)
Shikerman, F.; Peer, A. [Physics department and BINA center for nano-technology, Bar Ilan University, Ramat Gan 52900 (Israel); Horwitz, L. P. [Physics department and BINA center for nano-technology, Bar Ilan University, Ramat Gan 52900 (Israel); School of Physics, Tel-Aviv University, Ramat-Aviv 69978 (Israel); Department of Physics, Ariel University Center of Samaria, Ariel 40700 (Israel)
2011-07-15
We establish the relation between the Wigner-Weisskopf theory for the description of an unstable system and the theory of coupling to an environment. According to the Wigner-Weisskopf general approach, even within the pole approximation, the evolution of a total system subspace is not an exact semigroup for multichannel decay unless the projectors into eigenstates of the reduced evolution generator W(z) are orthogonal. With multichannel decay, the projectors must be evaluated at different pole locations z{sub {alpha}}{ne}z{sub {beta}}, and since the orthogonality relation does not generally hold at different values of z, the semigroup evolution is a poor approximation for the multichannel decay, even for very weak coupling. Nevertheless, if the theory is generalized to take into account interactions with an environment, one can ensure orthogonality of the W(z) projectors regardless of the number of poles. Such a possibility occurs when W(z), and hence its eigenvectors, is independent of z, which corresponds to the Markovian limit of the coupling to the continuum spectrum.
A test of Wigner's spin-isospin symmetry from double binding energy differences
International Nuclear Information System (INIS)
Van Isacker, P.; Warner, D.D.; Brenner, D.S.
1995-01-01
It is shown that the anomalously large double binding energy differences for even-even N = Z nuclei are a consequence of Wigner's SU(4) symmetry. These, and similar quantities for odd-mass and odd-odd nuclei, provide a simple and distinct signature of this symmetry in N ≅ Z nuclei. (authors). 16 refs., 2 figs., 1 tab
Recent Advances in the Korringa-Kohn-Rostoker Green Function Method
Directory of Open Access Journals (Sweden)
Zeller Rudolf
2014-01-01
Full Text Available The Korringa-Kohn-Rostoker (KKR Green function (GF method is a technique for all-electron full-potential density-functional calculations. Similar to the historical Wigner-Seitz cellular method, the KKR-GF method uses a partitioning of space into atomic Wigner-Seitz cells. However, the numerically demanding wave-function matching at the cell boundaries is avoided by use of an integral equation formalism based on the concept of reference Green functions. The advantage of this formalism will be illustrated by the recent progress made for very large systems with thousands of inequivalent atoms and for very accurate calculations of atomic forces and total energies.
Breit-Wigner approximation for propagators of mixed unstable states
International Nuclear Information System (INIS)
Fuchs, Elina
2016-10-01
For systems of unstable particles that mix with each other, an approximation of the fully momentum- dependent propagator matrix is presented in terms of a sum of simple Breit-Wigner propagators that are multiplied with finite on-shell wave function normalisation factors. The latter are evaluated at the complex poles of the propagators. The pole structure of general propagator matrices is carefully analysed, and it is demonstrated that in the proposed approximation imaginary parts arising from absorptive parts of loop integrals are properly taken into account. Applying the formalism to the neutral MSSM Higgs sector with complex parameters, very good numerical agreement is found between cross sections based on the full propagators and the corresponding cross sections based on the described approximation. The proposed approach does not only technically simplify the treatment of propagators with non-vanishing off-diagonal contributions, it is shown that it can also facilitate an improved theoretical prediction of the considered observables via a more precise implementation of the total widths of the involved particles. It is also well-suited for the incorporation of interference effects arising from overlapping resonances.
Green function iterative solution of ground state wave function for Yukawa potential
International Nuclear Information System (INIS)
Zhang Zhao
2003-01-01
The newly developed single trajectory quadrature method is applied to solve central potentials. First, based on the series expansion method an exact analytic solution of the ground state for Hulthen potential and an approximate solution for Yukawa potential are obtained respectively. Second, the newly developed iterative method based on Green function defined by quadratures along the single trajectory is applied to solve Yukawa potential using the Coulomb solution and Hulthen solution as the trial functions respectively. The results show that a more proper choice of the trial function will give a better convergence. To further improve the convergence the iterative method is combined with the variational method to solve the ground state wave function for Yukawa potential, using variational solutions of the Coulomb and Hulthen potentials as the trial functions. The results give much better convergence. Finally, the obtained critical screen coefficient is applied to discuss the dissociate temperature of J/ψ in high temperature QGP
Torre, Amalia
2005-01-01
Ray, wave and quantum concepts are central to diverse and seemingly incompatible models of light. Each model particularizes a specific ''manifestation'' of light, and then corresponds to adequate physical assumptions and formal approximations, whose domains of applicability are well-established. Accordingly each model comprises its own set of geometric and dynamic postulates with the pertinent mathematical means.At a basic level, the book is a complete introduction to the Wigner optics, which bridges between ray and wave optics, offering the optical phase space as the ambience and the Wigner f
Rotational damping motion in nuclei
International Nuclear Information System (INIS)
Egido, J.L.; Faessler, A.
1991-01-01
The recently proposed model to explain the mechanism of the rotational motion damping in nuclei is exactly solved. When compared with the earlier approximative solution, we find significative differences in the low excitation energy limit (i.e. Γ μ 0 ). For the strength functions we find distributions going from the Wigner semicircle through gaussians to Breit-Wigner shapes. (orig.)
Wigner’s phase-space function and atomic structure: II. Ground states for closed-shell atoms
DEFF Research Database (Denmark)
Springborg, Michael; Dahl, Jens Peder
1987-01-01
We present formulas for reduced Wigner phase-space functions for atoms, with an emphasis on the first-order spinless Wigner function. This function can be written as the sum of separate contributions from single orbitals (the natural orbitals). This allows a detailed study of the function. Here we...... display and analyze the function for the closed-shell atoms helium, beryllium, neon, argon, and zinc in the Hartree-Fock approximation. The quantum-mechanical exact results are compared with those obtained with the approximate Thomas-Fermi description of electron densities in phase space....
Wigner representation in scattering problems
International Nuclear Information System (INIS)
Remler, E.A.
1975-01-01
The basic equations of quantum scattering are translated into the Wigner representation. This puts quantum mechanics in the form of a stochastic process in phase space. Instead of complex valued wavefunctions and transition matrices, one now works with real-valued probability distributions and source functions, objects more responsive to physical intuition. Aside from writing out certain necessary basic expressions, the main purpose is to develop and stress the interpretive picture associated with this representation and to derive results used in applications published elsewhere. The quasiclassical guise assumed by the formalism lends itself particularly to approximations of complex multiparticle scattering problems is laid. The foundation for a systematic application of statistical approximations to such problems. The form of the integral equation for scattering as well as its mulitple scattering expansion in this representation are derived. Since this formalism remains unchanged upon taking the classical limit, these results also constitute a general treatment of classical multiparticle collision theory. Quantum corrections to classical propogators are discussed briefly. The basic approximation used in the Monte Carlo method is derived in a fashion that allows for future refinement and includes bound state production. The close connection that must exist between inclusive production of a bound state and of its constituents is brought out in an especially graphic way by this formalism. In particular one can see how comparisons between such cross sections yield direct physical insight into relevant production mechanisms. A simple illustration of scattering by a bound two-body system is treated. Simple expressions for single- and double-scattering contributions to total and differential cross sections, as well as for all necessary shadow corrections thereto, are obtained and compared to previous results of Glauber and Goldberger
Semiclassical scar functions in phase space
International Nuclear Information System (INIS)
Rivas, Alejandro M F
2007-01-01
We develop a semiclassical approximation for the scar function in the Weyl-Wigner representation in the neighborhood of a classically unstable periodic orbit of chaotic two-dimensional systems. The prediction of hyperbolic fringes, asymptotic to the stable and unstable manifolds, is verified computationally for a (linear) cat map, after the theory is adapted to a discrete phase space appropriate to a quantized torus. Characteristic fringe patterns can be distinguished even for quasi-energies where the fixed point is not Bohr-quantized. Also the patterns are highly localized in the neighborhood of the periodic orbit and along its stable and unstable manifolds without any long distance patterns that appear for the case of the spectral Wigner function
Symmetry and history quantum theory: An analog of Wigner close-quote s theorem
International Nuclear Information System (INIS)
Schreckenberg, S.
1996-01-01
The basic ingredients of the open-quote open-quote consistent histories close-quote close-quote approach to quantum theory are a space UP of open-quote open-quote history propositions close-quote close-quote and a space D of open-quote open-quote decoherence functionals.close-quote close-quote In this article we consider such history quantum theories in the case where UP is given by the set of projectors P(V) on some Hilbert space V. We define the notion of a open-quote open-quote physical symmetry of a history quantum theory close-quote close-quote (PSHQT) and specify such objects exhaustively with the aid of an analog of Wigner close-quote s theorem. In order to prove this theorem we investigate the structure of D, define the notion of an open-quote open-quote elementary decoherence functional,close-quote close-quote and show that each decoherence functional can be expanded as a certain combination of these functionals. We call two history quantum theories that are related by a PSHQT open-quote open-quote physically equivalent close-quote close-quote and show explicitly, in the case of history quantum mechanics, how this notion is compatible with one that has appeared previously. copyright 1996 American Institute of Physics
Torus as phase space: Weyl quantization, dequantization, and Wigner formalism
Energy Technology Data Exchange (ETDEWEB)
Ligabò, Marilena, E-mail: marilena.ligabo@uniba.it [Dipartimento di Matematica, Università di Bari, I-70125 Bari (Italy)
2016-08-15
The Weyl quantization of classical observables on the torus (as phase space) without regularity assumptions is explicitly computed. The equivalence class of symbols yielding the same Weyl operator is characterized. The Heisenberg equation for the dynamics of general quantum observables is written through the Moyal brackets on the torus and the support of the Wigner transform is characterized. Finally, a dequantization procedure is introduced that applies, for instance, to the Pauli matrices. As a result we obtain the corresponding classical symbols.
A 2D Wigner Distribution-based multisize windows technique for image fusion
Czech Academy of Sciences Publication Activity Database
Redondo, R.; Fischer, S.; Šroubek, Filip; Cristóbal, G.
2008-01-01
Roč. 19, č. 1 (2008), s. 12-19 ISSN 1047-3203 R&D Projects: GA ČR GA102/04/0155; GA ČR GA202/05/0242 Grant - others:CSIC(CZ) 2004CZ0009 Institutional research plan: CEZ:AV0Z10750506 Keywords : Wigner distribution * image fusion * multifocus Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.342, year: 2008
Time evolution of a Gaussian class of quasi-distribution functions under quadratic Hamiltonian.
Ginzburg, D; Mann, A
2014-03-10
A Lie algebraic method for propagation of the Wigner quasi-distribution function (QDF) under quadratic Hamiltonian was presented by Zoubi and Ben-Aryeh. We show that the same method can be used in order to propagate a rather general class of QDFs, which we call the "Gaussian class." This class contains as special cases the well-known Wigner, Husimi, Glauber, and Kirkwood-Rihaczek QDFs. We present some examples of the calculation of the time evolution of those functions.
Excitonic Wigner crystal and high T sub c ferromagnetism in RB sub 6
Kasuya, T
2000-01-01
The mechanisms for the high T sub c ferromagnetism in La-doped divalent hexaborides DB sub 6 are studied in detail comparing with similar family materials, in particular with YbB sub 6 , EuB sub 6 and Ce monopnictides. It is shown that in DB sub 6 the light-electron-heavy-hole paired excitonic states form the Wigner crystal, or Wigner glass in actual materials, in which the conventional intersite electron exchange interactions similar to that in Ni dominate the pair singlet formation due to the intra pair mixing causing a ferromagnetic spin glass-like ordering of electron spins. In the La-doped system La sub x D sub 1 sub - sub x B sub 6 , the population of molecular La impurity states with giant moments increases as x approaches the optimal value x sub 0 approx 0.005 for high T sub c providing vacant states for the roton-like fluctuations, which cause the high T sub c at the boundary of the delocalization of electron carriers. Therefore, the critical La concentration for delocalization coincides with the opt...
International Nuclear Information System (INIS)
Winter, J.
1985-01-01
A covariant generalization of the Wigner transformation of quantum equations is proposed for gravitating many-particle systems, which modifies the Einstein-Liouville equations for the coupled gravity-matter problem by inclusion of quantum effects of the matter moving in its self-consistent classical gravitational field, in order to extend their realm of validity to higher particle densities. The corrections of the Vlasov equation (Liouville equation in one-particle phase space) are exhibited as combined effects of quantum mechanics and the curvature of space-time arranged in a semiclassical expansion in powers of h 2 , the first-order term of which is explicitly calculated. It is linear in the Riemann tensor and in its gradient; the Riemann tensor occurs in a similar position as the tensor of the Yang-Mills field strength in a corresponding Vlasov equation for systems with local gauge invariance in the purely classical limit. The performance of the Wigner transformation is based on expressing the equation of motion for the two-point function of the Klein-Gordon field, in particular the Beltrami operator, in terms of a midpoint and a distance vector covariantly defined for the two points. This implies the calculation of deviations of the geodesic between these points, the standard concept of which has to be refined to include infinitesimal variations of the second order. A differential equation for the second-order deviation is established
Inoenue-Wigner contraction and D = 2 + 1 supergravity
Energy Technology Data Exchange (ETDEWEB)
Concha, P.K.; Rodriguez, E.K. [Universidad Adolfo Ibanez, Departamento de Ciencias, Facultad de Artes Liberales, Vina del Mar (Chile); Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Fierro, O. [Universidad Catolica de la Santisima Concepcion, Departamento de Matematica y Fisica Aplicadas, Concepcion (Chile)
2017-01-15
We present a generalization of the standard Inoenue-Wigner contraction by rescaling not only the generators of a Lie superalgebra but also the arbitrary constants appearing in the components of the invariant tensor. The procedure presented here allows one to obtain explicitly the Chern-Simons supergravity action of a contracted superalgebra. In particular we show that the Poincare limit can be performed to a D = 2 + 1 (p,q) AdS Chern-Simons supergravity in presence of the exotic form. We also construct a new three-dimensional (2,0) Maxwell Chern-Simons supergravity theory as a particular limit of (2,0) AdS-Lorentz supergravity theory. The generalization for N = p + q gravitinos is also considered. (orig.)
Bastiaans, M.J.; Alieva, T.
2002-01-01
It is shown how all global Wigner distribution moments of arbitrary order in the output plane of a (generally anamorphic) two-dimensional fractional Fourier transform system can be expressed in terms of the moments in the input plane. This general input-output relationship is then broken down into a
Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube
DEFF Research Database (Denmark)
Pecker, S.; Kuemmeth, Ferdinand; Secchi, A.
2013-01-01
Two electrons on a string form a simple model system where Coulomb interactions are expected to play an interesting role. In the presence of strong interactions, these electrons are predicted to form a Wigner molecule, separating to the ends of the string. This spatial structure is believed to be...
W∞ and the Racah-Wigner algebra
International Nuclear Information System (INIS)
Pope, C.N.; Shen, X.; Romans, L.J.
1990-01-01
We examine the structure of a recently constructed W ∞ algebra, an extension of the Virasoro algebra that describes an infinite number of fields with all conformal spins 2,3..., with central terms for all spins. By examining its underlying SL(2,R) structure, we are able to exhibit its relation to the algebas of SL(2,R) tensor operators. Based upon this relationship, we generalise W ∞ to a one-parameter family of inequivalent Lie algebras W ∞ (μ), which for general μ requires the introduction of formally negative spins. Furthermore, we display a realisation of the W ∞ (μ) commutation relations in terms of an underlying associative product, which we denote with a lone star. This product structure shares many formal features with the Racah-Wigner algebra in angular-momentum theory. We also discuss the relation between W ∞ and the symplectic algebra on a cone, which can be viewed as a co-adjoint orbit of SL(2,R). (orig.)
Quantum mechanics with non-negative quantum distribution function
International Nuclear Information System (INIS)
Zorin, A.V.; Sevastianov, L.A.
2010-01-01
Full text: (author)Among numerous approaches to probabilistic interpretation of the conventional quantum mechanics the most close to the N. Bohr idea of the correspondence principle is the D.I. Blokhintzev - Ya.P. Terletsky approach using the quantum distribution function on the coordinate- momentum space. The detailed investigation of this approach has lead to the correspondence rule of V.V. Kuryshkin. Quantum mechanics of Kuryshkin (QMK) embody the program proposed by Yu.M. Shirokov for unifying classical and quantum mechanics in similar mathematical models. QMK develops and enhances Wigner's proposal concerning the calculation of quantum corrections to classical thermodynamic parameters using a phase distribution function. The main result of QMK is the possibility of description by mean of a positively-valued distribution function. This represents an important step towards a completely statistical model of quantum phenomena, compared with the quasi-probabilistic nature of Wigner distribution. Wigner's model does not permit to perform correctly the classical limit in quantum mechanics as well. On the other hand, QMK has a much more complex structure of operators of observables. One of the unsolved problems of QMK is the absence of a priori rules for establishing of auxiliary functions. Nevertheless, while it is impossible to overcome the complex form of operators, we find it quite possible to derive some methods of filing sets of auxiliary functions
Brillouin-Wigner theory of mixed-valence impurities in BCS superconductor: Tc/TcO and ΔC/ΔCO
International Nuclear Information System (INIS)
Li Jun; Gong Changde.
1986-08-01
The (lowest order) Brillouin-Wigner perturbational expansion theory is adopted to describe the mixed-valence impurities in the BCS superconductor. Two substantial quantities characterizing the superconducting state, i.e. the reduced transition temperature T c /T cO and the reduced specific heat jump ΔC/ΔC O are calculated numerically as a function of the impurity concentration x and the energy level difference E f between two 4f configurations. A comparison with the experimental data of the Th 1-x Ce x and Th 1-x U x alloy is also included with a more reasonable fitting than Kaiser's theory. (author)
Non-classicality criteria: Glauber-Sudarshan P function and Mandel ? parameter
Alexanian, Moorad
2018-01-01
We calculate exactly the quantum mechanical, temporal Wigner quasiprobability density for a single-mode, degenerate parametric amplifier for a system in the Gaussian state, viz., a displaced-squeezed thermal state. The Wigner function allows us to calculate the fluctuations in photon number and the quadrature variance. We contrast the difference between the non-classicality criteria, which is independent of the displacement parameter ?, based on the Glauber-Sudarshan quasiprobability distribution ? and the classical/non-classical behaviour of the Mandel ? parameter, which depends strongly on ?. We find a phase transition as a function of ? such that at the critical point ?, ?, as a function of ?, goes from strictly classical, for ?, to a mixed classical/non-classical behaviour, for ?.
Closed-form expressions for time-frequency operations involving Hermite functions
Korevaar, C.W.; Oude Alink, M.S.; de Boer, Pieter-Tjerk; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria
2016-01-01
The product, convolution, correlation, Wigner distribution function (WDF) and ambiguity function (AF) of two Hermite functions of arbitrary order n and m are derived and expressed as a bounded, weighted sum of n+m Hermite functions. It was already known that these mathematical operations performed
Bilinear phase-plane distribution functions and positivity
Janssen, A.J.E.M.
1985-01-01
There is a theorem of Wigner that states that phase-plane distribution functions involving the state bilinearly and having correct marginals must take negative values for certain states. The purpose of this paper is to support the statement that these phase-plane distribution functions are for
The modified Bargmann-Wigner formalism for bosons of spin 1 and 2
Energy Technology Data Exchange (ETDEWEB)
Dvoeglazov, Valeri V [Universidad de Zacatecas, Apartado Postal 636, Suc. UAZ, Zacatecas 98062, Zac (Mexico)
2007-11-15
On the basis of our recent modifications of the Dirac formalism we generalize the Bargmann-Wigner formalism for higher spins to be compatible with other formalisms for bosons. Relations with dual electrodynamics, with the Ogievetskii-Polubarinov notoph and the Weinberg 2(2J+1) theory are found. Next, we introduce the dual analogues of the Riemann tensor and derive corresponding dynamical equations in the Minkowski space. Relations with the Marques-Spehler chiral gravity theory are discussed.
International Nuclear Information System (INIS)
Franco Cataldo; Susana Iglesias-Groth; Yaser Hafez; Giancarlo Angelini
2014-01-01
Single wall carbon nanohorn (SWCNH) were neutron-bombarded to a dose of 3.28 × 10 16 n/cm 2 . The Wigner or stored energy was determined by a differential scanning calorimeter and was found 5.49 J/g, 50 times higher than the Wigner energy measured on graphite flakes treated at the same neutron dose. The activation energy for the thermal annealing of the accumulated radiation damage in SWCNH was determined in the range 6.3-6.6 eV against a typical activation energy for the annealing of the radiation-damaged graphite which is in the range of 1.4-1.5 eV. Furthermore the stored energy in neutron-damaged SWCNH is released at 400-430 deg C while the main peak in the neutron-damaged graphite occurs at 200-220 deg C. The radiation damaged SWCNH were examined with FT-IR spectroscopy showing the formation of acetylenic and aliphatic moieties suggesting the aromatic C=C breakdown caused by the neutron bombardment. (author)
Wigner-Eisenbud-Smith photoionization time delay due to autoioinization resonances
Deshmukh, P. C.; Kumar, A.; Varma, H. R.; Banerjee, S.; Manson, Steven T.; Dolmatov, V. K.; Kheifets, A. S.
2018-03-01
An empirical ansatz for the complex photoionization amplitude and Wigner-Eisenbud-Smith time delay in the vicinity of a Fano autoionization resonance are proposed to evaluate and interpret the time delay in the resonant region. The utility of this expression is evaluated in comparison with accurate numerical calculations employing the ab initio relativistic random phase approximation and relativistic multichannel quantum defect theory. The indisputably good qualitative agreement (and semiquantitative agreement) between corresponding results of the proposed model and results produced by the ab initio theories proves the usability of the model. In addition, the phenomenology of the time delay in the vicinity of multichannel autoionizing resonances is detailed.
Applications of Wigner transformations in heavy-ion reactions
International Nuclear Information System (INIS)
Esbensen, H.
1981-01-01
We discuss a model, based on Wigner transformations and classical dynamics, that gives a semiclassical description of the excitation of surface vibrations due to the Coulomb and nuclear interaction in heavy-ion collisions. The treatment will consist of three stages, viz. the preparation of classical initial conditions compatible with the quantal ground state of surface vibrations, the dynamical evolution of the system governed by Liouville's equation (i.e. classical mechanics) and finally the interpretation, of final results after the interaction in terms of excitation probabilities, elastic and inelastic cross-sections, etc. The first and the last stage are exact and based on the Wigher transformations, while the time evolution described by classical mechanics is an approximation. We shall later return to the question of the applicability of this approximation and give some illustrative examples. (orig./HSI)
q-Gamow states as continuous linear functionals on analytical test functions
Energy Technology Data Exchange (ETDEWEB)
Plastino, A.; Rocca, M.C., E-mail: mariocarlosrocca@gmail.com
2016-04-15
We define here q-Gamow states corresponding to Tsallis' q-statistics. We compute for them their norm, mean energy value and the q-analogue of the Breit–Wigner distribution (a q-Breit–Wigner).
International Nuclear Information System (INIS)
Calabrese, D.; Covington, A.M.; Thompson, J.S.; Marawar, R.W.; Farley, J.W.
1996-01-01
The relative photodetachment cross section of Al - has been measured in the wavelength range 2420 endash 2820 nm (0.440 endash 0.512 eV), using a coaxial ion-laser beams apparatus, in which a 2.98-keV Al - beam is merged with a beam from an F-center laser. The cross-section data near the 3 P 0,1,2 → 2 P 1/2,3/2 photodetachment threshold have been fitted to the Wigner threshold law and to the zero-core-contribution theory of photodetachment. The electron affinity of aluminum was determined to be 0.44094(+0.00066/-0.00048) eV, after correcting the experimental threshold for unresolved fine structure in the ground states of Al - and Al. The new measurement is in agreement with the best previous measurement (0.441±0.010 eV) and is 20 times more precise. The Wigner law agrees with experiment within a few percent for photon energies within 3% of threshold. A proposed leading correction to the Wigner law is discussed. copyright 1996 The American Physical Society
On a correspondence between regular and non-regular operator monotone functions
DEFF Research Database (Denmark)
Gibilisco, P.; Hansen, Frank; Isola, T.
2009-01-01
We prove the existence of a bijection between the regular and the non-regular operator monotone functions satisfying a certain functional equation. As an application we give a new proof of the operator monotonicity of certain functions related to the Wigner-Yanase-Dyson skew information....
Analytic Solutions of Special Functional Equations
Directory of Open Access Journals (Sweden)
Octav Olteanu
2013-07-01
Full Text Available We recall some of our earlier results on the construction of a mapping defined implicitly, without using the implicit function theorem. All these considerations work in the real case, for functions and operators. Then we consider the complex case, proving the analyticity of the function defined implicitly, under certain hypothesis. Some consequences are given. An approximating formula for the analytic form of the solution is also given. Finally, one illustrates the preceding results by an application to a concrete functional and operatorial equation. Some related examples are given.
The quantum state vector in phase space and Gabor's windowed Fourier transform
International Nuclear Information System (INIS)
Bracken, A J; Watson, P
2010-01-01
Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed 'window state vector'. Here aspects of this construction are explored, and a connection is established with Gabor's 'windowed Fourier transform'. The amplitudes that arise for simple quantum states from various choices of windows are presented as illustrations. Generalized Bargmann representations of the state vector appear as special cases, associated with Gaussian windows. For every choice of window, amplitudes lie in a corresponding linear subspace of square-integrable functions on phase space. A generalized Born interpretation of amplitudes is described, with both the Wigner function and a generalized Husimi function appearing as quantities linear in an amplitude and anti-linear in its complex conjugate. Schroedinger's time-dependent and time-independent equations are represented on phase space amplitudes, and their solutions described in simple cases.
Kota, V K B; Chavda, N D; Sahu, R
2006-04-01
Interacting many-particle systems with a mean-field one-body part plus a chaos generating random two-body interaction having strength lambda exhibit Poisson to Gaussian orthogonal ensemble and Breit-Wigner (BW) to Gaussian transitions in level fluctuations and strength functions with transition points marked by lambda = lambda c and lambda = lambda F, respectively; lambda F > lambda c. For these systems a theory for the matrix elements of one-body transition operators is available, as valid in the Gaussian domain, with lambda > lambda F, in terms of orbital occupation numbers, level densities, and an integral involving a bivariate Gaussian in the initial and final energies. Here we show that, using a bivariate-t distribution, the theory extends below from the Gaussian regime to the BW regime up to lambda = lambda c. This is well tested in numerical calculations for 6 spinless fermions in 12 single-particle states.
The Collected Works of Eugene Paul Wigner Historical, Philosophical, and Socio-Political Papers
Wigner, Eugene Paul
2001-01-01
Not only was EP Wigner one of the most active creators of 20th century physics, he was also always interested in expressing his opinion in philosophical, political or sociological matters This volume of his collected works covers a wide selection of his essays about science and society, about himself and his colleagues Annotated by J Mehra, this volume will become an important source of reference for historians of science, and it will be pleasant reading for every physicist interested in forming ideas in modern physics
Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series
Gnoffo, Peter A.
2015-01-01
Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.
Mohamed, Abdel-Baset A.
2017-10-01
An analytical solution of the master equation that describes a superconducting cavity containing two coupled superconducting charge qubits is obtained. Quantum-mechanical correlations based on Wigner-Yanase skew information, as local quantum uncertainty and uncertainty-induced quantum non-locality, are compared to the concurrence under the effects of the phase decoherence. Local quantum uncertainty exhibits sudden changes during its time evolution and revival process. Sudden death and sudden birth occur only for entanglement, depending on the initial state of the two coupled charge qubits, while the correlations of skew information does not vanish. The quantum correlations of skew information are found to be sensitive to the dephasing rate, the photons number in the cavity, the interaction strength between the two qubits, and the qubit distribution angle of the initial state. With a proper initial state, the stationary correlation of the skew information has a non-zero stationary value for a long time interval under the phase decoherence, that it may be useful in quantum information and computation processes.
Semiclassical evolution of dissipative Markovian systems
International Nuclear Information System (INIS)
Ozorio de Almeida, A M; Rios, P de M; Brodier, O
2009-01-01
A semiclassical approximation for an evolving density operator, driven by a 'closed' Hamiltonian operator and 'open' Markovian Lindblad operators, is obtained. The theory is based on the chord function, i.e. the Fourier transform of the Wigner function. It reduces to an exact solution of the Lindblad master equation if the Hamiltonian operator is a quadratic function and the Lindblad operators are linear functions of positions and momenta. Initially, the semiclassical formulae for the case of Hermitian Lindblad operators are reinterpreted in terms of a (real) double phase space, generated by an appropriate classical double Hamiltonian. An extra 'open' term is added to the double Hamiltonian by the non-Hermitian part of the Lindblad operators in the general case of dissipative Markovian evolution. The particular case of generic Hamiltonian operators, but linear dissipative Lindblad operators, is studied in more detail. A Liouville-type equivariance still holds for the corresponding classical evolution in double phase space, but the centre subspace, which supports the Wigner function, is compressed, along with expansion of its conjugate subspace, which supports the chord function. Decoherence narrows the relevant region of double phase space to the neighbourhood of a caustic for both the Wigner function and the chord function. This difficulty is avoided by a propagator in a mixed representation, so that a further 'small-chord' approximation leads to a simple generalization of the quadratic theory for evolving Wigner functions
Peculiarities of the momentum distribution functions of strongly correlated charged fermions
Larkin, A. S.; Filinov, V. S.; Fortov, V. E.
2018-01-01
New numerical version of the Wigner approach to quantum thermodynamics of strongly coupled systems of particles has been developed for extreme conditions, when analytical approximations based on different kinds of perturbation theories cannot be applied. An explicit analytical expression of the Wigner function has been obtained in linear and harmonic approximations. Fermi statistical effects are accounted for by effective pair pseudopotential depending on coordinates, momenta and degeneracy parameter of particles and taking into account Pauli blocking of fermions. A new quantum Monte-Carlo method for calculations of average values of arbitrary quantum operators has been developed. Calculations of the momentum distribution functions and the pair correlation functions of degenerate ideal Fermi gas have been carried out for testing the developed approach. Comparison of the obtained momentum distribution functions of strongly correlated Coulomb systems with the Maxwell-Boltzmann and the Fermi distributions shows the significant influence of interparticle interaction both at small momenta and in high energy quantum ‘tails’.
Special function solutions of the free particle Dirac equation
International Nuclear Information System (INIS)
Strange, P
2012-01-01
The Dirac equation is one of the fundamental equations in physics. Here we present and discuss two novel solutions of the free particle Dirac equation. These solutions have an exact analytical form in terms of Airy or Mathieu functions and exhibit unexpected properties including an enhanced Doppler effect, accelerating wavefronts and solutions with a degree of localization. (paper)
Jacobian elliptic function expansion solutions of nonlinear stochastic equations
International Nuclear Information System (INIS)
Wei Caimin; Xia Zunquan; Tian Naishuo
2005-01-01
Jacobian elliptic function expansion method is extended and applied to construct the exact solutions of the nonlinear Wick-type stochastic partial differential equations (SPDEs) and some new exact solutions are obtained via this method and Hermite transformation
Aharonov-Bohm oscillations with fractional period in a multichannel Wigner crystal ring
International Nuclear Information System (INIS)
Krive, I.V.; Krokhin, A.A.
1997-01-01
We study the persistent current in a quasi 1D ring with strongly correlated electrons forming a multichannel Wigner crystal (WC). The influence of the Coulomb interaction manifests itself only in the presence of external scatterers that pin the WC. Two regimes of weak and strong pinning are considered. For strong pinning we predict the Aharonov-Bohm oscillations with fractional period. Fractionalization is due to the interchannel coupling in the process of quantum tunneling of the WC. The fractional period depends on the filling of the channels and may serve as an indicator of non-Fermi-liquid behaviour of interacting electrons in quasi 1D rings. (author). 20 refs
Renormgroup symmetry for solution functionals
International Nuclear Information System (INIS)
Shirkov, D.V.; Kovalev, V.F.
2004-01-01
The paper contains generalization of the renormgroup algorithm for boundary value problems of mathematical physics and related concept of the renormgroup symmetry, formulated earlier by the authors with reference to models based on differential equations. These algorithm and symmetry are formulated now for models with nonlocal (integral) equations. We discuss in detail and illustrate by examples the applications of the generalized algorithm to models with nonlocal terms which appear as linear functionals of the solution. (author)
Wigner-Smith delay times and the non-Hermitian Hamiltonian for the HOCl molecule
International Nuclear Information System (INIS)
Barr, A.M.; Reichl, L.E.
2013-01-01
We construct the scattering matrix for a two-dimensional model of a Cl atom scattering from an OH dimer. We show that the scattering matrix can be written in terms of a non-Hermitian Hamiltonian whose complex energy eigenvalues can be used to compute Wigner-Smith delay times for the Cl-OH scattering process. We compute the delay times for a range of energies, and show that the scattering states with the longest delay times are strongly influenced by unstable periodic orbits in the classical dynamics. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Rotating Wigner molecules and spin-related behaviors in quantum rings
International Nuclear Information System (INIS)
Yang Ning; Zhu Jialin; Dai Zhensheng
2008-01-01
The trial wavefunctions for few-electron quantum rings are presented to describe the spin-dependent rotating Wigner molecule states. The wavefunctions are constructed from the single-particle orbits which contain two variational parameters to describe the shape and size dependence of electron localization in the ring-like confinement. They can explicitly show the size dependence of single-particle orbital occupation to give an understanding of the spin rules of ground states without magnetic fields. They can also correctly describe the spin and angular momentum transitions in magnetic fields. By examining the von Neumann entropy, it is demonstrated that the wavefunctions can illustrate the entanglement between electrons in quantum rings, including the AB oscillations as well as the spin and size dependence of the entropy. Such trial wavefunctions will be useful in investigating spin-related quantum behaviors of a few electrons in quantum rings
Explicit appropriate basis function method for numerical solution of stiff systems
International Nuclear Information System (INIS)
Chen, Wenzhen; Xiao, Hongguang; Li, Haofeng; Chen, Ling
2015-01-01
Highlights: • An explicit numerical method called the appropriate basis function method is presented. • The method differs from the power series method for obtaining approximate numerical solutions. • Two cases show the method is fit for linear and nonlinear stiff systems. • The method is very simple and effective for most of differential equation systems. - Abstract: In this paper, an explicit numerical method, called the appropriate basis function method, is presented. The explicit appropriate basis function method differs from the power series method because it employs an appropriate basis function such as the exponential function, or periodic function, other than a polynomial, to obtain approximate numerical solutions. The method is successful and effective for the numerical solution of the first order ordinary differential equations. Two examples are presented to show the ability of the method for dealing with linear and nonlinear systems of differential equations
Unifying distribution functions: some lesser known distributions.
Moya-Cessa, J R; Moya-Cessa, H; Berriel-Valdos, L R; Aguilar-Loreto, O; Barberis-Blostein, P
2008-08-01
We show that there is a way to unify distribution functions that describe simultaneously a classical signal in space and (spatial) frequency and position and momentum for a quantum system. Probably the most well known of them is the Wigner distribution function. We show how to unify functions of the Cohen class, Rihaczek's complex energy function, and Husimi and Glauber-Sudarshan distribution functions. We do this by showing how they may be obtained from ordered forms of creation and annihilation operators and by obtaining them in terms of expectation values in different eigenbases.
International Nuclear Information System (INIS)
Kim, Dong Wan; Ha, Jae HOng; Shin, Hae Gon; Lee, Yoon Hee; Kim, Young Baik
1996-01-01
Vibration analysis is one of the most powerful tools available for the detection and isolation of incipient faults in mechanical systems. The methods of vibration analysis in use today and under continuous study are broad band vibration monitoring, time domain analysis, and frequency domain analysis. In recent years, great interest has been generated concerning the use of time-frequency representation and its application for a machinery diagnostics and condition monitoring system. The objective of the research described in this paper was to develop a new diagnostic tool for the rotating machinery. This paper introduces a new time-frequency representation, Directional Wigner-Ville Distribution, which analyses the time-frequency structure of the rotating machinery vibration
On the locus and spread of pseudo-density functions in the time-frequency plane
Janssen, A.J.E.M.
1982-01-01
Various time-frequency pseudo-density functions used in signal analysis are compared with respect to spread. Among the members of Cohen's class of pseudo-density functions satisfying the finite support property as well as Moyal's formula, the Wigner distribution is the most well-behaved one in the
Orr, Lindsay; Hernández de la Peña, Lisandro; Roy, Pierre-Nicholas
2017-06-07
A derivation of quantum statistical mechanics based on the concept of a Feynman path centroid is presented for the case of generalized density operators using the projected density operator formalism of Blinov and Roy [J. Chem. Phys. 115, 7822-7831 (2001)]. The resulting centroid densities, centroid symbols, and centroid correlation functions are formulated and analyzed in the context of the canonical equilibrium picture of Jang and Voth [J. Chem. Phys. 111, 2357-2370 (1999)]. The case where the density operator projects onto a particular energy eigenstate of the system is discussed, and it is shown that one can extract microcanonical dynamical information from double Kubo transformed correlation functions. It is also shown that the proposed projection operator approach can be used to formally connect the centroid and Wigner phase-space distributions in the zero reciprocal temperature β limit. A Centroid Molecular Dynamics (CMD) approximation to the state-projected exact quantum dynamics is proposed and proven to be exact in the harmonic limit. The state projected CMD method is also tested numerically for a quartic oscillator and a double-well potential and found to be more accurate than canonical CMD. In the case of a ground state projection, this method can resolve tunnelling splittings of the double well problem in the higher barrier regime where canonical CMD fails. Finally, the state-projected CMD framework is cast in a path integral form.
Orr, Lindsay; Hernández de la Peña, Lisandro; Roy, Pierre-Nicholas
2017-06-01
A derivation of quantum statistical mechanics based on the concept of a Feynman path centroid is presented for the case of generalized density operators using the projected density operator formalism of Blinov and Roy [J. Chem. Phys. 115, 7822-7831 (2001)]. The resulting centroid densities, centroid symbols, and centroid correlation functions are formulated and analyzed in the context of the canonical equilibrium picture of Jang and Voth [J. Chem. Phys. 111, 2357-2370 (1999)]. The case where the density operator projects onto a particular energy eigenstate of the system is discussed, and it is shown that one can extract microcanonical dynamical information from double Kubo transformed correlation functions. It is also shown that the proposed projection operator approach can be used to formally connect the centroid and Wigner phase-space distributions in the zero reciprocal temperature β limit. A Centroid Molecular Dynamics (CMD) approximation to the state-projected exact quantum dynamics is proposed and proven to be exact in the harmonic limit. The state projected CMD method is also tested numerically for a quartic oscillator and a double-well potential and found to be more accurate than canonical CMD. In the case of a ground state projection, this method can resolve tunnelling splittings of the double well problem in the higher barrier regime where canonical CMD fails. Finally, the state-projected CMD framework is cast in a path integral form.
Existence of global solutions to reaction-diffusion systems via a Lyapunov functional
Directory of Open Access Journals (Sweden)
Said Kouachi
2001-10-01
Full Text Available The purpose of this paper is to construct polynomial functionals (according to solutions of the coupled reaction-diffusion equations which give $L^{p}$-bounds for solutions. When the reaction terms are sufficiently regular, using the well known regularizing effect, we deduce the existence of global solutions. These functionals are obtained independently of work done by Malham and Xin [11].
Directory of Open Access Journals (Sweden)
Yu-E Song
2014-01-01
Full Text Available The Wigner-Ville distribution (WVD based on the linear canonical transform (LCT (WDL not only has the advantages of the LCT but also has the good properties of WVD. In this paper, some new and important properties of the WDL are derived, and the relationships between WDL and some other time-frequency distributions are discussed, such as the ambiguity function based on LCT (LCTAF, the short-time Fourier transform (STFT, and the wavelet transform (WT. The WDLs of some signals are also deduced. A novel definition of the WVD based on the LCT and generalized instantaneous autocorrelation function (GWDL is proposed and its applications in the estimation of parameters for QFM signals are also discussed. The GWDL of the QFM signal generates an impulse and the third-order phase coefficient of QFM signal can be estimated in accordance with the position information of such impulse. The proposed algorithm is fast because it only requires 1-dimensional maximization. Also the new algorithm only has fourth-order nonlinearity thus it has accurate estimation and low signal-to-noise ratio (SNR threshold. The simulation results are provided to support the theoretical results.
Chemical solution deposition of functional oxide thin films
Schneller, Theodor; Kosec, Marija
2014-01-01
Chemical Solution Deposition (CSD) is a highly-flexible and inexpensive technique for the fabrication of functional oxide thin films. Featuring nearly 400 illustrations, this text covers all aspects of the technique.
Evans, Cherice; Findley, Gary L.
The quasi-free electron energy V0 (ρ) is important in understanding electron transport through a fluid, as well as for modeling electron attachment reactions in fluids. Our group has developed an isotropic local Wigner-Seitz model that allows one to successfully calculate the quasi-free electron energy for a variety of atomic and molecular fluids from low density to the density of the triple point liquid with only a single adjustable parameter. This model, when coupled with the quasi-free electron energy data and the thermodynamic data for the fluids, also can yield optimized intermolecular potential parameters and the zero kinetic energy electron scattering length. In this poster, we give a review of the isotropic local Wigner-Seitz model in comparison to previous theoretical models for the quasi-free electron energy. All measurements were performed at the University of Wisconsin Synchrotron Radiation Center. This work was supported by a Grants from the National Science Foundation (NSF CHE-0956719), the Petroleum Research Fund (45728-B6 and 5-24880), the Louisiana Board of Regents Support Fund (LEQSF(2006-09)-RD-A33), and the Professional Staff Congress City University of New York.
Unitary symmetry, combinatorics, and special functions
Energy Technology Data Exchange (ETDEWEB)
Louck, J.D.
1996-12-31
From 1967 to 1994, Larry Biedenham and I collaborated on 35 papers on various aspects of the general unitary group, especially its unitary irreducible representations and Wigner-Clebsch-Gordan coefficients. In our studies to unveil comprehensible structures in this subject, we discovered several nice results in special functions and combinatorics. The more important of these will be presented and their present status reviewed.
Validity of the cumulant method for a pulse nonlinear Kerr oscillator
International Nuclear Information System (INIS)
Grygiel, K.; Leonski, W.; Szlachetka, P.
1998-01-01
We study the dynamics of an anharmonic oscillator driven by a train of pulses. The cumulant expansion and quantum evolution operator approaches are presented and compared. The modifications introduced by quantum mechanics into the dynamics of classical systems which manifest chaos are a problem of great importance. It is known that quantization modifies the dynamics of classical system is usually studied by means of the equation for the Wigner function derived from the quantum Liouville equation. In Wigner's formulation of quantum mechanics we treat a quantum system in a 'classical way' including all their quantum features. And what is more, we can contrast the quantum and classical dynamics within the framework of one formalism. The problem is, that the equations for the Wigner functions are mathematically cumbersome and their analytic solutions for most nonlinear systems are unknown. However, instead of the equation for the Wigner function we can use the set of equations for statistical moments generated by our equation for the Wigner function. It is obvious that in this approach a quantum system is governed by an infinite set of equations. Therefore, for numerical reasons the set of equations for statistical moments has to be truncated at a finite number, which means approximating it. It is known that first cumulant approximation represents the classical dynamics. The second cumulant approximation adds the first quantum corrections to the classical dynamics. In this paper we compare some aspects of the cumulant method and the method used by Leonski and Tanas to study an anharmonic oscillator driven by a train of pulses. The Kerr oscillator model is the same ad that is discussed in an earlier paper albeit without the damping mechanism
Hydrogen sulfide metabolism regulates endothelial solute barrier function
Directory of Open Access Journals (Sweden)
Shuai Yuan
2016-10-01
Full Text Available Hydrogen sulfide (H2S is an important gaseous signaling molecule in the cardiovascular system. In addition to free H2S, H2S can be oxidized to polysulfide which can be biologically active. Since the impact of H2S on endothelial solute barrier function is not known, we sought to determine whether H2S and its various metabolites affect endothelial permeability. In vitro permeability was evaluated using albumin flux and transendothelial electrical resistance. Different H2S donors were used to examine the effects of exogenous H2S. To evaluate the role of endogenous H2S, mouse aortic endothelial cells (MAECs were isolated from wild type mice and mice lacking cystathionine γ-lyase (CSE, a predominant source of H2S in endothelial cells. In vivo permeability was evaluated using the Miles assay. We observed that polysulfide donors induced rapid albumin flux across endothelium. Comparatively, free sulfide donors increased permeability only with higher concentrations and at later time points. Increased solute permeability was associated with disruption of endothelial junction proteins claudin 5 and VE-cadherin, along with enhanced actin stress fiber formation. Importantly, sulfide donors that increase permeability elicited a preferential increase in polysulfide levels within endothelium. Similarly, CSE deficient MAECs showed enhanced solute barrier function along with reduced endogenous bound sulfane sulfur. CSE siRNA knockdown also enhanced endothelial junction structures with increased claudin 5 protein expression. In vivo, CSE genetic deficiency significantly blunted VEGF induced hyperpermeability revealing an important role of the enzyme for barrier function. In summary, endothelial solute permeability is critically regulated via exogenous and endogenous sulfide bioavailability with a prominent role of polysulfides.
Energy Technology Data Exchange (ETDEWEB)
Corella, M R; Iglesias, T
1964-07-01
The Prometeo I program for the Univac UCT of J.E.N., determines the spectrum of thermal neutrons in equilibrium with a hydrogen-moderated homogeneous mixture from the Wigner-Wilkins differential equation, and averages various, cross sections over the spectrum. The present cross section libraries, available for the Prometeo I , are tabulated. (Author) 4 refs.
Diluted-Magenetic Semiconductor (DMS) Tunneling Devices for the Terahertz Regime
2014-12-10
major success being the Wigner function simulation of magnetic field tuning of transient spin-dependent RTD structures, and while GaN barrier devices...The simulations that were performed used Wigner functions , but in all of our studies the Wigner function equations arose from a Weyl transformation...the equations to the Wigner function used in the simulations and well as the drift an diffusion equations used in part of the study we deal with a
Progress in Application of Generalized Wigner Distribution to Growth and Other Problems
Einstein, T. L.; Morales-Cifuentes, Josue; Pimpinelli, Alberto; Gonzalez, Diego Luis
We recap the use of the (single-parameter) Generalized Wigner Distribution (GWD) to analyze capture-zone distributions associated with submonolayer epitaxial growth. We discuss recent applications to physical systems, as well as key simulations. We pay particular attention to how this method compares with other methods to assess the critical nucleus size characterizing growth. The following talk discusses a particular case when special insight is needed to reconcile the various methods. We discuss improvements that can be achieved by going to a 2-parameter fragmentation approach. At a much larger scale we have applied this approach to various distributions in socio-political phenomena (areas of secondary administrative units [e.g., counties] and distributions of subway stations). Work at UMD supported by NSF CHE 13-05892.
Solutions to an advanced functional partial differential equation of the pantograph type.
Zaidi, Ali A; Van Brunt, B; Wake, G C
2015-07-08
A model for cells structured by size undergoing growth and division leads to an initial boundary value problem that involves a first-order linear partial differential equation with a functional term. Here, size can be interpreted as DNA content or mass. It has been observed experimentally and shown analytically that solutions for arbitrary initial cell distributions are asymptotic as time goes to infinity to a certain solution called the steady size distribution. The full solution to the problem for arbitrary initial distributions, however, is elusive owing to the presence of the functional term and the paucity of solution techniques for such problems. In this paper, we derive a solution to the problem for arbitrary initial cell distributions. The method employed exploits the hyperbolic character of the underlying differential operator, and the advanced nature of the functional argument to reduce the problem to a sequence of simple Cauchy problems. The existence of solutions for arbitrary initial distributions is established along with uniqueness. The asymptotic relationship with the steady size distribution is established, and because the solution is known explicitly, higher-order terms in the asymptotics can be readily obtained.
Rovibrational states of Wigner molecules in spherically symmetric confining potentials
Energy Technology Data Exchange (ETDEWEB)
Cioslowski, Jerzy [Institute of Physics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland and Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, D-01187 Dresden (Germany)
2016-08-07
The strong-localization limit of three-dimensional Wigner molecules, in which repulsively interacting particles are confined by a weak spherically symmetric potential, is investigated. An explicit prescription for computation of rovibrational wavefunctions and energies that are asymptotically exact at this limit is presented. The prescription is valid for systems with arbitrary angularly-independent interparticle and confining potentials, including those involving Coulombic and screened (i.e., Yukawa/Debye) interactions. The necessary derivations are greatly simplified by explicit constructions of the Eckart frame and the parity-adapted primitive wavefunctions. The performance of the new formalism is illustrated with the three- and four-electron harmonium atoms at their strong-correlation limits. In particular, the involvement of vibrational modes with the E symmetry is readily pinpointed as the origin of the “anomalous” weak-confinement behavior of the {sup 1}S{sub +} state of the four-electron species that is absent in its {sup 1}D{sub +} companion of the strong-confinement regime.
Energy Technology Data Exchange (ETDEWEB)
de Saussure, G.; Olsen, D. K.; Perez, R. B.
1978-05-01
The FORTRAN-IV code SIOB was developed to least-square fit the shape of neutron transmission curves. Any number of measurements on a common energy scale for different sample thicknesses can be simultaneously fitted. The computed transmission curves can be broadened with either a Gaussian or a rectangular resolution function or both, with the resolution width a function of energy. The total cross section is expressed as a sum of single-level or multilevel Breit--Wigner terms and Doppler broadened by using the fast interpolation routine QUICKW. The number of data points, resonance levels, and variables which can be handled simultaneously is only limited by the overall dimensions of two arrays in the program and by the stability of the matrix inversion. In a test problem seven transmissions each with 3750 data points were simultaneously fitted with 74 resonances and 110 variable parameters. The problem took 47 min of CPU time on an IBM-360/91, for 3 iterations. 3 figures, 2 tables.
Spatial dependence of pair correlations (nuclear scissors)
International Nuclear Information System (INIS)
Bal'butsev, E.B.; Malov, L.A.
2009-01-01
The solution of time-dependent Hartree-Fock-Bogolyubov equations by the Wigner function moments method leads to the appearance of low-lying modes whose description requires accurate knowledge of the anomalous density matrix. It is shown that calculations with the Woods-Saxon potential satisfy this requirement
Removal of patulin from aqueous solutions by propylthiol functionalized SBA-15
Energy Technology Data Exchange (ETDEWEB)
Appell, Michael, E-mail: michael.appell@ars.usda.gov [Bacterial Foodborne Pathogens and Mycology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604 (United States); Jackson, Michael A.; Dombrink-Kurtzman, Mary Ann [Renewable Product Technology Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604 (United States)
2011-03-15
Propylthiol functionalized SBA-15 silica was investigated to detoxify aqueous solutions contaminated with the regulated mycotoxin patulin. Micelle templated silicas with a specific pore size were synthetically modified to possess propylthiol groups, a functional group known to form Michael reaction products with the conjugated double bond system of patulin. BET surface area analysis indicated the propylthiol functionalized SBA-15 possesses channels with the pore size of 5.4 nm and a surface area of 345 m{sup 2} g{sup -1}. Elemental analysis indicates the silicon/sulfur ratio to be 10:1, inferring one propylthiol substituent for every ten silica residues. The propylthiol modified SBA-15 was effective at significantly reducing high levels of patulin from aqueous solutions (pH 7.0) in batch sorption assays at room temperature. The material was less effective at lower pH; however heating low pH solutions and apple juice to 60 deg, C in the presence of propylthiol functionalized SBA-15 significantly reduced the levels of patulin in contaminated samples. Composite molecular models developed by semi-empirical PM3 and empirical force field methods support patulin permeation through the mesoporous channels of propylthiol functionalized SBA-15. Density functional study at the B3LYP/6-31G(d,p) level predicts the proposed patulin adducts formed by reaction with the thiol residues exhibit less electrophilic properties than patulin. It is demonstrated the use of propylthiol functionalized SBA-15 is a viable approach to reduce patulin levels in aqueous solutions, including contaminated apple juice.
Removal of patulin from aqueous solutions by propylthiol functionalized SBA-15
International Nuclear Information System (INIS)
Appell, Michael; Jackson, Michael A.; Dombrink-Kurtzman, Mary Ann
2011-01-01
Propylthiol functionalized SBA-15 silica was investigated to detoxify aqueous solutions contaminated with the regulated mycotoxin patulin. Micelle templated silicas with a specific pore size were synthetically modified to possess propylthiol groups, a functional group known to form Michael reaction products with the conjugated double bond system of patulin. BET surface area analysis indicated the propylthiol functionalized SBA-15 possesses channels with the pore size of 5.4 nm and a surface area of 345 m 2 g -1 . Elemental analysis indicates the silicon/sulfur ratio to be 10:1, inferring one propylthiol substituent for every ten silica residues. The propylthiol modified SBA-15 was effective at significantly reducing high levels of patulin from aqueous solutions (pH 7.0) in batch sorption assays at room temperature. The material was less effective at lower pH; however heating low pH solutions and apple juice to 60 deg, C in the presence of propylthiol functionalized SBA-15 significantly reduced the levels of patulin in contaminated samples. Composite molecular models developed by semi-empirical PM3 and empirical force field methods support patulin permeation through the mesoporous channels of propylthiol functionalized SBA-15. Density functional study at the B3LYP/6-31G(d,p) level predicts the proposed patulin adducts formed by reaction with the thiol residues exhibit less electrophilic properties than patulin. It is demonstrated the use of propylthiol functionalized SBA-15 is a viable approach to reduce patulin levels in aqueous solutions, including contaminated apple juice.
The functional variable method for finding exact solutions of some ...
Indian Academy of Sciences (India)
Abstract. In this paper, we implemented the functional variable method and the modified. Riemann–Liouville derivative for the exact solitary wave solutions and periodic wave solutions of the time-fractional Klein–Gordon equation, and the time-fractional Hirota–Satsuma coupled. KdV system. This method is extremely simple ...
International Nuclear Information System (INIS)
Zhang Liang; Zhang Lifeng; Li Chongyin
2008-01-01
By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions
Experimental evidence for a Mott-Wigner glass phase of magnetite above the Verwey temperature
International Nuclear Information System (INIS)
Boekema, C.; Lichti, R.L.; Chan, K.C.B.; Brabers, V.A.M.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Schillaci, M.E.
1986-01-01
New muon-spin-relaxation (μSR) results on magnetite are reported and discussed in light of earlier Moessbauer, neutron, and μSR results. Modification of the μSR anomaly (observed at 247 K in zero field), when an external magnetic field is applied, provides evidence that the anomaly results from cross relaxation between the muon Larmor precession and the electron-correlation process in the B sublattice. The combined results strongly indicate that phonon-assisted electron hopping is the principal conduction mechanism above the Verwey transition temperature (T/sub V/). Together with theoretical evidence, these data support Mott's suggestion that above T/sub V/ magnetite is in the Wigner-glass state
The relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations
International Nuclear Information System (INIS)
Liu Chunping; Liu Xiaoping
2004-01-01
First, we investigate the solitary wave solutions of the Burgers equation and the KdV equation, which are obtained by using the hyperbolic function method. Then we present a theorem which will not only give us a clear relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations, but also provide us an approach to construct new exact solutions in complex scalar field. Finally, we apply the theorem to the KdV-Burgers equation and obtain its new exact solutions
International Nuclear Information System (INIS)
Liu Qing; Wang Zihua
2010-01-01
According to two dependent rational solutions to a generalized Riccati equation together with the equation itself, a rational-exponent solution to a nonlinear partial differential equation can be constructed. By selecting different parameter values in the rational-exponent solution, many families of combinatorial solutions combined with a rational function such as hyperbolic functions or trigonometric functions, are rapidly derived. This method is applied to the Whitham-Broer-Kaup equation and a series of combinatorial solutions are obtained, showing that this method is a more concise and efficient approach and can uniformly construct many types of combined solutions to nonlinear partial differential equations.
International Nuclear Information System (INIS)
Biedenharn, L.C.; Lohe, M.A.; Louck, J.D.
1975-01-01
The multiplicity problem for tensor operators in U(3) has a unique (canonical) resolution which is utilized to effect the explicit construction of all U(3) Wigner and Racah coefficients. Methods are employed which elucidate the structure of the results; in particular, the significance of the denominator functions entering the structure of these coefficients, and the relation of these denominator functions to the null space of the canonical tensor operators. An interesting feature of the denominator functions is the appearance of new, group theoretical, polynomials exhibiting several remarkable and quite unexpected properties. (U.S.)
Directory of Open Access Journals (Sweden)
Elmira Ashpazzadeh
2018-04-01
Full Text Available A numerical technique based on the Hermite interpolant multiscaling functions is presented for the solution of Convection-diusion equations. The operational matrices of derivative, integration and product are presented for multiscaling functions and are utilized to reduce the solution of linear Convection-diusion equation to the solution of algebraic equations. Because of sparsity of these matrices, this method is computationally very attractive and reduces the CPU time and computer memory. Illustrative examples are included to demonstrate the validity and applicability of the new technique.
Wigner's little group as a gauge generator in linearized gravity theories
International Nuclear Information System (INIS)
Scaria, Tomy; Chakraborty, Biswajit
2002-01-01
We show that the translational subgroup of Wigner's little group for massless particles in 3 + 1 dimensions generates gauge transformation in linearized Einstein gravity. Similarly, a suitable representation of the one-dimensional translational group T(1) is shown to generate gauge transformation in the linearized Einstein-Chern-Simons theory in 2 + 1 dimensions. These representations are derived systematically from appropriate representations of translational groups which generate gauge transformations in gauge theories living in spacetime of one higher dimension by the technique of dimensional descent. The unified picture thus obtained is compared with a similar picture available for vector gauge theories in 3 + 1 and 2 + 1 dimensions. Finally, the polarization tensor of the Einstein-Pauli-Fierz theory in 2 + 1 dimensions is shown to split into the polarization tensors of a pair of Einstein-Chern-Simons theories with opposite helicities suggesting a doublet structure for the Einstein-Pauli-Fierz theory
Implementation of the CCGM approximation for surface diffraction using Wigner R-matrix theory
International Nuclear Information System (INIS)
Lauderdale, J.G.; McCurdy, C.W.
1983-01-01
The CCGM approximation for surface scattering proposed by Cabrera, Celli, Goodman, and Manson [Surf. Sci. 19, 67 (1970)] is implemented for realistic surface interaction potentials using Wigner R-matrix theory. The resulting procedure is highly efficient computationally and is in no way limited to hard wall or purely repulsive potentials. Comparison is made with the results of close-coupling calculations of other workers which include the same diffraction channels in order to fairly evaluate the CCGM approximation which is an approximation to the coupled channels Lippman--Schwinger equation for the T matrix. The shapes of selective adsorption features, whether maxima or minima, in the scattered intensity are well represented in this approach for cases in which the surface corrugation is not too strong
Analysis of fast neutrons elastic moderator through exact solutions involving synthetic-kernels
International Nuclear Information System (INIS)
Moura Neto, C.; Chung, F.L.; Amorim, E.S.
1979-07-01
The computation difficulties in the transport equation solution applied to fast reactors can be reduced by the development of approximate models, assuming that the continuous moderation holds. Two approximations were studied. The first one was based on an expansion in Taylor's series (Fermi, Wigner, Greuling and Goertzel models), and the second involving the utilization of synthetic Kernels (Walti, Turinsky, Becker and Malaviya models). The flux obtained by the exact method is compared with the fluxes from the different models based on synthetic Kernels. It can be verified that the present study is realistic for energies smaller than the threshold for inelastic scattering, as well as in the resonance region. (Author) [pt
Solution of the Doppler broadening function based on the fourier cosine transform
Energy Technology Data Exchange (ETDEWEB)
Goncalves, Alessandro da C [COPPE/UFRJ - Programa de Engenharia Nuclear, Universidade Federal do Rio de Janeiro, P.O. Box 68509, 21941-914 Rio de Janeiro, RJ (Brazil)], E-mail: agoncalves@con.ufrj.br; Martinez, Aquilino S.; Silva, Fernando C. da [COPPE/UFRJ - Programa de Engenharia Nuclear, Universidade Federal do Rio de Janeiro, P.O. Box 68509, 21941-914 Rio de Janeiro, RJ (Brazil)
2008-10-15
This paper provides a new integral representation for the Doppler broadening function {psi}({xi}, x), which is interpreted as being a Fourier cosine transform. This integral form allows the obtaining of an analytical solution in a simple and accurate functional manner as regards the elementary functions. The solution obtained through the new integral representation can be widely used in several applications such as the calculation of self-shielding factors and measurement corrections for the microscopic cross section through the activation technique.
Solution of the Doppler broadening function based on the fourier cosine transform
International Nuclear Information System (INIS)
Goncalves, Alessandro da C; Martinez, Aquilino S.; Silva, Fernando C. da
2008-01-01
This paper provides a new integral representation for the Doppler broadening function ψ(ξ, x), which is interpreted as being a Fourier cosine transform. This integral form allows the obtaining of an analytical solution in a simple and accurate functional manner as regards the elementary functions. The solution obtained through the new integral representation can be widely used in several applications such as the calculation of self-shielding factors and measurement corrections for the microscopic cross section through the activation technique
Open quantum system and the damping of collective modes in deep inelastic collisions
International Nuclear Information System (INIS)
Sandulescu, A.
1985-01-01
In the framework of the Lindblad theory for open quantum systems the following results are obtained: a generalization of the fundamental constraints on quantum mechanical diffusion coefficients which appear in the corresponding master equations, a generalization of pure state condition and generalized Schrodinger type nonlinear equation for an open system. Also, the Schroedinger, Heisenberfg and Weyl-Wigner-Moyal representations of the Lindblad equation are given explicitly. On the basis of these representations, it is shown that various master equations for the damped quantum oscillator used in the literature for the description of the damped collective modes are particular cases of the Lindblad equation and that the majority of these equations are not satisfying the constraints on quantum mechanical diffusion coefficients. The solutions of the differential equations for the variances are put in a new synthetic for, suggested by a direct computation of the variances from the time dependent Weyl operators. The solution of the Lindblad equation in the Weyl-Wigner-Moyal representation is of Gaussian type if the initial form of the Wigner function is taken to be a Gaussian corresponding to a coherent wave furction
On the Dynamics of Bohmian Measures
Markowich, Peter A.
2012-05-08
The present work is devoted to the study of dynamical features of Bohmian measures, recently introduced by the authors. We rigorously prove that for sufficiently smooth wave functions the corresponding Bohmian measure furnishes a distributional solution of a nonlinear Vlasov-type equation. Moreover, we study the associated defect measures appearing in the classical limit. In one space dimension, this yields a new connection between mono-kinetic Wigner and Bohmian measures. In addition, we shall study the dynamics of Bohmian measures associated to so-called semi-classical wave packets. For these type of wave functions, we prove local in-measure convergence of a rescaled sequence of Bohmian trajectories towards the classical Hamiltonian flow on phase space. Finally, we construct an example of wave functions whose limiting Bohmian measure is not mono-kinetic but nevertheless equals the associated Wigner measure. © 2012 Springer-Verlag.
International Nuclear Information System (INIS)
Shang Yadong
2008-01-01
The extended hyperbolic functions method for nonlinear wave equations is presented. Based on this method, we obtain a multiple exact explicit solutions for the nonlinear evolution equations which describe the resonance interaction between the long wave and the short wave. The solutions obtained in this paper include (a) the solitary wave solutions of bell-type for S and L, (b) the solitary wave solutions of kink-type for S and bell-type for L, (c) the solitary wave solutions of a compound of the bell-type and the kink-type for S and L, (d) the singular travelling wave solutions, (e) periodic travelling wave solutions of triangle function types, and solitary wave solutions of rational function types. The variety of structure to the exact solutions of the long-short wave equation is illustrated. The methods presented here can also be used to obtain exact solutions of nonlinear wave equations in n dimensions
Nonlinear differential equations with exact solutions expressed via the Weierstrass function
Kudryashov, NA
2004-01-01
A new problem is studied, that is to find nonlinear differential equations with special solutions expressed via the Weierstrass function. A method is discussed to construct nonlinear ordinary differential equations with exact solutions. The main step of our method is the assumption that nonlinear
DEFF Research Database (Denmark)
Caerts, Chris; Rikos, Evangelos; Syed, Mazheruddin
2017-01-01
This D4.2 document provides the description of the detailed functional architecture of the selected solutions that will be implemented and tested. This is documented by combining a function-based IEC 62559 Use Case description with an SGAM mapping of these functions and the interactions among...... these functions on the Function and Information layer....
Gravity discharge vessel revisited: An explicit Lambert W function solution
Digilov, Rafael M.
2017-07-01
Based on the generalized Poiseuille equation modified by a kinetic energy correction, an explicit solution for the time evolution of a liquid column draining under gravity through an exit capillary tube is derived in terms of the Lambert W function. In contrast to the conventional exponential behavior, as implied by the Poiseuille law, a new analytical solution gives a full account for the volumetric flow rate of a fluid through a capillary of any length and improves the precision of viscosity determination. The theoretical consideration may be of interest to students as an example of how implicit equations in the field of physics can be solved analytically using the Lambert function.
International Nuclear Information System (INIS)
Corella, M. R.; Iglesias, T.
1964-01-01
The Prometeo I program for the Univac UCT of J.E.N., determines the spectrum of thermal neutrons in equilibrium with a hydrogen-moderated homogeneous mixture from the Wigner-Wilkins differential equation, and averages various, cross sections over the spectrum. The present cross section libraries, available for the Prometeo I , are tabulated. (Author) 4 refs
Experimental validation of the Wigner distributions theory of phase-contrast imaging
International Nuclear Information System (INIS)
Donnelly, Edwin F.; Price, Ronald R.; Pickens, David R.
2005-01-01
Recently, a new theory of phase-contrast imaging has been proposed by Wu and Liu [Med. Phys. 31, 2378-2384 (2004)]. This theory, based upon Wigner distributions, provides a much stronger foundation for the evaluation of phase-contrast imaging systems than did the prior theories based upon Fresnel-Kirchhoff diffraction theory. In this paper, we compare results of measurements made in our laboratory of phase contrast for different geometries and tube voltages to the predictions of the Wu and Liu model. In our previous publications, we have used an empirical measurement (the edge enhancement index) to parametrize the degree of phase-contrast effects in an image. While the Wu and Liu model itself does not predict image contrast, it does measure the degree of phase contrast that the system can image for a given spatial frequency. We have found that our previously published experimental results relating phase-contrast effects to geometry and x-ray tube voltage are consistent with the predictions of the Wu and Liu model
Tables of generalized Airy functions for the asymptotic solution of the differential equation
Nosova, L N
1965-01-01
Tables of Generalized Airy Functions for the Asymptotic Solution of the Differential Equations contains tables of the special functions, namely, the generalized Airy functions, and their first derivatives, for real and pure imaginary values. The tables are useful for calculations on toroidal shells, laminae, rode, and for the solution of certain other problems of mathematical physics. The values of the functions were computed on the ""Strela"" highspeed electronic computer.This book will be of great value to mathematicians, researchers, and students.
International Nuclear Information System (INIS)
Bizarro, J.P.
1993-10-01
A comprehensive and detailed investigation is presented on the dynamics of the lower hybrid wave during current drive in tokamaks in situations where toroidally induced ray stochasticity is important and on the Weyl-Wigner formalism for rotation angle and angular momentum variables in quantum mechanics. It is shown that ray-tracing and Fokker-Planck codes are reliable tools for modelling the physics of lower-hybrid current drive provided a large number of rays is used when stochastic effects are important, and, in particular, that such codes are capable of reproducing the experimentally observed features of the hard X-ray emission. The balance between the wave damping and the stochastic divergence of nearby ray trajectories appears to be of great importance in governing the dynamics of the launched power spectrum and in establishing the characteristics of the deposition patterns. The implications of rotational periodicity and of angular momentum quantization for the Weyl-Wigner formalism are analyzed. Particular attention is paid to discreteness and its consequences: importance of evenness and oddness, use of two difference operators instead of one differential operator. 24 refs
Liouville equation of relativistic charged fermion
International Nuclear Information System (INIS)
Wang Renchuan; Zhu Dongpei; Huang Zhuoran; Ko Che-ming
1991-01-01
As a form of density martrix, the Wigner function is the distribution in quantum phase space. It is a 2 X 2 matrix function when one uses it to describe the non-relativistic fermion. While describing the relativistic fermion, it is usually represented by 4 x 4 matrix function. In this paper authors obtain a Wigner function for the relativistic fermion in the form of 2 x 2 matrix, and the Liouville equation satisfied by the Wigner function. this equivalent to the Dirac equation of changed fermion in QED. The equation is also equivalent to the Dirac equation in the Walecka model applied to the intermediate energy nuclear collision while the nucleon is coupled to the vector meson only (or taking mean field approximation for the scalar meson). Authors prove that the 2 x 2 Wigner function completely describes the quantum system just the same as the relativistic fermion wave function. All the information about the observables can be obtained with above Wigner function
Morphology Development in Solution-Processed Functional Organic Blend Films: An In Situ Viewpoint.
Richter, Lee J; DeLongchamp, Dean M; Amassian, Aram
2017-05-10
Solution-processed organic films are a facile route to high-speed, low cost, large-area deposition of electrically functional components (transistors, solar cells, emitters, etc.) that can enable a diversity of emerging technologies, from Industry 4.0, to the Internet of things, to point-of-use heath care and elder care. The extreme sensitivity of the functional performance of organic films to structure and the general nonequilibrium nature of solution drying result in extreme processing-performance correlations. In this Review, we highlight insights into the fundamentals of solution-based film deposition afforded by recent state-of-the-art in situ measurements of functional film drying. Emphasis is placed on multimodal studies that combine surface-sensitive X-ray scattering (GIWAXS or GISAXS) with optical characterization to clearly define the evolution of solute structure (aggregation, crystallinity, and morphology) with film thickness.
Morphology Development in Solution-Processed Functional Organic Blend Films: An In Situ Viewpoint
Richter, Lee J.
2017-04-17
Solution-processed organic films are a facile route to high-speed, low cost, large-area deposition of electrically functional components (transistors, solar cells, emitters, etc.) that can enable a diversity of emerging technologies, from Industry 4.0, to the Internet of things, to point-of-use heath care and elder care. The extreme sensitivity of the functional performance of organic films to structure and the general nonequilibrium nature of solution drying result in extreme processing-performance correlations. In this Review, we highlight insights into the fundamentals of solution-based film deposition afforded by recent state-of-the-art in situ measurements of functional film drying. Emphasis is placed on multimodal studies that combine surface-sensitive X-ray scattering (GIWAXS or GISAXS) with optical characterization to clearly define the evolution of solute structure (aggregation, crystallinity, and morphology) with film thickness.
Hyperbolic white noise functional solutions of Wick-type stochastic compound KdV-Burgers equations
International Nuclear Information System (INIS)
Han Xiu; Xie Yingchao
2009-01-01
Variable coefficient and Wick-type stochastic compound KdV-Burgers equations are investigated. By using white noise analysis, Hermite transform and the hyperbolic function method, we obtain a number of Wick versions of hyperbolic white noise functional solutions and hyperbolic function solutions for Wick-type stochastic and variable coefficient compound KdV-Burgers equations, respectively.
FPSPH DFPSPF, Line Shape Function for Doppler Broadened Resonance Cross-Sections Calculation
International Nuclear Information System (INIS)
Ribon, P.
1982-01-01
1 - Description of problem or function: In the computation of Doppler- broadened resonance cross sections, use is made of the symmetric and anti-symmetric line shape functions. These functions usually denoted as Psi and Phi (Psi and Chi in Anglo-Saxon formalism) are defined in terms of the real and imaginary parts of the error function for complex arguments. They are the product of the convolution of a Gaussian function with the symmetric and anti-symmetric Breit-Wigner functions, respectively. FPSPH and DFPSPH compute these functions. 2 - Method of solution: For (1+x 2 ) > 20 Beta 2 , the calculation is based upon the asymptotic expansion: Psi+(i*Phi) = 1/(1-ix)*(1-t+3t 2 -3.5t 3 +3.5+7t 4 ---), with: t = 1/(2z 2 ); z = (1-ix)/Beta. The half-plane (Beta,x) is split in several parts, and use is made of PADE approximants. For 1 + x 2 2 , the calculation is based upon the relation with the erf function: Psi + i*Phi = SQRT(Pi)/Beta*(e (z 2 ) )*(1-erf(z)) (z = (1-ix)/Beta, and erf(z) being calculated from its analytic expansion: erf(z) = 2/SQRT(Pi)*z*e (-z 2 ) *(1+z 2 /3+z 4 /(3*5) + z 6 /(3*5*7)+---). PADE approximants are used to compute the expansion and e z 2
Directory of Open Access Journals (Sweden)
Yusuf Pandir
2013-01-01
Full Text Available We firstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions, new kinds of transformations are defined to discover the exact approximate solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width wave equations (CEWE, we find new exact solutions of two equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions. We think that these solutions are very important to explain some physical phenomena.
Functional porous composites by blending with solution-processable molecular pores.
Jiang, S; Chen, L; Briggs, M E; Hasell, T; Cooper, A I
2016-05-25
We present a simple method for rendering non-porous materials porous by solution co-processing with organic cage molecules. This method can be used both for small functional molecules and for polymers, thus creating porous composites by molecular blending, rather than the more traditional approach of supporting functional molecules on pre-frabricated porous supports.
Czech Academy of Sciences Publication Activity Database
Pittner, Jiří
2003-01-01
Roč. 118, č. 24 (2003), s. 10876-10889 ISSN 0021-9606 R&D Projects: GA MŠk OC D23.001; GA ČR GA203/99/D009; GA AV ČR IAA4040108 Institutional research plan: CEZ:AV0Z4040901 Keywords : continuous transition * Brillouin-Wigner * Rayleigh-Schrödinger Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.950, year: 2003
On extension of solutions of a simultaneous system of iterative functional equations
Directory of Open Access Journals (Sweden)
Janusz Matkowski
2009-01-01
Full Text Available Some sufficient conditions which allow to extend every local solution of a simultaneous system of equations in a single variable of the form \\[ \\varphi(x = h (x, \\varphi[f_1(x],\\ldots,\\varphi[f_m(x],\\] \\[\\varphi(x = H (x, \\varphi[F_1(x],\\ldots,\\varphi[F_m(x],\\] to a global one are presented. Extensions of solutions of functional equations, both in single and in several variables, play important role (cf. for instance [M. Kuczma, Functional equations in a single variable, Monografie Mat. 46, Polish Scientific Publishers, Warsaw, 1968, M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Encyclopedia of Mathematics and Its Applications v. 32, Cambridge, 1990, J. Matkowski, Iteration groups, commuting functions and simultaneous systems of linear functional equations, Opuscula Math. 28 (2008 4, 531-541].
The Wigner semi-circle law in quantum electro dynamics
International Nuclear Information System (INIS)
Accardi, L.; Nagoya Univ.; Lu, Y.G.; Nagoya Univ.
1996-01-01
In the present paper, the basic ideas of the stochastic limit of quantum theory are applied to quantum electro-dynamics. This naturally leads to the study of a new type of quantum stochastic calculus on a Hilbert module. Our main result is that in the weak coupling limit of a system composed of a free particle (electron, atom,..) interacting, via the minimal coupling, with the quantum electromagnetic field, a new type of quantum noise arises, living on a Hilbert module rather than a Hilbert space. Moreover we prove that the vacuum distribution of the limiting field operator is not Gaussian, as usual, but a nonlinear deformation of the Wigner semi-circle law. A third new object arising from the present theory, is the so-called interacting Fock space. A kind of Fock space in which the n quanta, in the n-particle space, are not independent, but interact. The origin of all these new features is that we do not introduce the dipole approximation, but we keep the exponential response term, coupling the electron to the quantum electromagnetic field. This produces a nonlinear interaction among all the modes of the limit master field (quantum noise) whose explicit expression, that we find, can be considered as a nonlinear generalization of the Fermi golden rule. (orig.)
Exact Travelling Solutions of Discrete sine-Gordon Equation via Extended Tanh-Function Approach
International Nuclear Information System (INIS)
Dai Chaoqing; Zhang Jiefang
2006-01-01
In this paper, we generalize the extended tanh-function approach, which was used to find new exact travelling wave solutions of nonlinear partial differential equations or coupled nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, two series of exact travelling wave solutions of the discrete sine-Gordon equation are obtained by means of the extended tanh-function approach.
Closed form bound-state perturbation theory
Directory of Open Access Journals (Sweden)
Ollie J. Rose
1980-01-01
Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.
Exact solutions for nonlinear evolution equations using Exp-function method
International Nuclear Information System (INIS)
Bekir, Ahmet; Boz, Ahmet
2008-01-01
In this Letter, the Exp-function method is used to construct solitary and soliton solutions of nonlinear evolution equations. The Klein-Gordon, Burger-Fisher and Sharma-Tasso-Olver equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations
Asphahani, Aziz; Siegel, Sidney; Siegel, Edward
2010-03-01
Siegel [[J.Mag.Mag.Mtls.7,312(78); PSS(a)11,45(72); Semis.& Insuls.5(79)] (at: ORNL, ANS, Westin``KL"ouse, PSEG, IAEA, ABB) warning of old/new nuclear-reactors/spent-fuel-casks/refineries/ jet/missile/rocket-engines austenitic/FCC Ni/Fe-based (so MIS- called)``super"alloys(182/82;Hastelloy-X; 600;304/304L-SSs; 690 !!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's- diseas(WD)[J.Appl.Phys.17,857(46)]; Ostwald-ripening; spinodal- decomposition; overageing-embrittlement; thermomechanical- INstability: Mayo[Google: ``If Leaks Could Kill"; at flickr.com search on ``Giant-Magnotoresistance"; find: [SiegelPolitics(79)]; Hoffman[animatedsoftware.com],...what DOE/NRC MISlabels as ``butt-welds" ``stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embrit- tlement caused brittle-fracture cracking from early/ongoing AEC/DOE-n``u''tional-la``v''atories sabotage!!!
SLP - A single level Breit-Wigner cross-section generating programme
International Nuclear Information System (INIS)
Doherty, G.
1965-06-01
Unbroadened cross-sections are calculated from a single level Breit-Wigner approximation which allows for resonance-potential interference but not resonance-resonance interference. Doppler broadening, and instrumental resolution broadening for thin samples, are optionally performed by successive numerical convolutions. An energy point selection and discard system enables the cross-section over a specified energy range to be represented to a required degree of accuracy using the minimum number of energy points. An energy grid prepared by the user can be incorporated in the calculation but the programme will usually be more efficient if only the end points of the energy range of interest are specified by the user and the intermediate energy points left to the programme to organise. The capacity of the programme varies with the energy range and type of resonance (narrow or broad). About fifty resonances may be sufficient to generate an energy grid of 4000 energy points, which is the maximum allowable energy vector. The programme is written in KDF9 EGTRAN (a FORTRAN dialect); output is printed and may be copied on cards, and intermediate results are stored on magnetic disc. (author)
Periodic solutions of first-order functional differential equations in population dynamics
Padhi, Seshadev; Srinivasu, P D N
2014-01-01
This book provides cutting-edge results on the existence of multiple positive periodic solutions of first-order functional differential equations. It demonstrates how the Leggett-Williams fixed-point theorem can be applied to study the existence of two or three positive periodic solutions of functional differential equations with real-world applications, particularly with regard to the Lasota-Wazewska model, the Hematopoiesis model, the Nicholsons Blowflies model, and some models with Allee effects. Many interesting sufficient conditions are given for the dynamics that include nonlinear characteristics exhibited by population models. The last chapter provides results related to the global appeal of solutions to the models considered in the earlier chapters. The techniques used in this book can be easily understood by anyone with a basic knowledge of analysis. This book offers a valuable reference guide for students and researchers in the field of differential equations with applications to biology, ecology, a...
Directory of Open Access Journals (Sweden)
C. Avramescu
2003-07-01
Full Text Available Let $f:\\mathbb{R}\\times \\mathbb{R}^{N}\\rightarrow \\mathbb{R}^{N}$ be a continuous function and let $h:\\mathbb{R}\\rightarrow \\mathbb{R}$ be a continuous and strictly positive function. A sufficient condition such that the equation $\\dot{x}=f\\left( t,x\\right $ admits solutions $x:\\mathbb{R}\\rightarrow \\mathbb{R}^{N}$ satisfying the inequality $\\left| x\\left( t\\right \\right| \\leq k\\cdot h\\left( t\\right ,$ $t\\in \\mathbb{R},$ $k>0$, where $\\left| \\cdot \\right| $ is the euclidean norm in $\\mathbb{R}^{N},$ is given. The proof of this result is based on the use of a special function of Lyapunov type, which is often called guiding function. In the particular case $h\\equiv 1$, one obtains known results regarding the existence of bounded solutions.
Classical Solutions of Path-Dependent PDEs and Functional Forward-Backward Stochastic Systems
Directory of Open Access Journals (Sweden)
Shaolin Ji
2013-01-01
Full Text Available In this paper we study the relationship between functional forward-backward stochastic systems and path-dependent PDEs. In the framework of functional Itô calculus, we introduce a path-dependent PDE and prove that its solution is uniquely determined by a functional forward-backward stochastic system.
International Nuclear Information System (INIS)
Ma Wenxiu; Lee, J.-H.
2009-01-01
A direct approach to exact solutions of nonlinear partial differential equations is proposed, by using rational function transformations. The new method provides a more systematical and convenient handling of the solution process of nonlinear equations, unifying the tanh-function type methods, the homogeneous balance method, the exp-function method, the mapping method, and the F-expansion type methods. Its key point is to search for rational solutions to variable-coefficient ordinary differential equations transformed from given partial differential equations. As an application, the construction problem of exact solutions to the 3+1 dimensional Jimbo-Miwa equation is treated, together with a Baecklund transformation.
On Approximate Solutions of Functional Equations in Vector Lattices
Directory of Open Access Journals (Sweden)
Bogdan Batko
2014-01-01
Full Text Available We provide a method of approximation of approximate solutions of functional equations in the class of functions acting into a Riesz space (algebra. The main aim of the paper is to provide a general theorem that can act as a tool applicable to a possibly wide class of functional equations. The idea is based on the use of the Spectral Representation Theory for Riesz spaces. The main result will be applied to prove the stability of an alternative Cauchy functional equation F(x+y+F(x+F(y≠0⇒F(x+y=F(x+F(y in Riesz spaces, the Cauchy equation with squares F(x+y2=(F(x+F(y2 in f-algebras, and the quadratic functional equation F(x+y+F(x-y=2F(x+2F(y in Riesz spaces.
A parity function for studying the molecular electronic structure
DEFF Research Database (Denmark)
Schmider, Hartmut
1996-01-01
Sections through the molecular Wigner function with zero momentum variable are shown to provide important information about the off-diagonal regions of the spinless one-particle reduced density matrix. Since these regions are characteristic for the bonding situation in molecules, the sections...... are qualitatively even more affected by the presence of chemical bonds than a complementary projection, the reciprocal form factor. In this paper we discuss, on the grounds of a variety of examples, how this rather simple function may aid the understanding of the chemical bond on a one-particle level. (C) 1996...
Jost function description of elastic and few-body resonances
Energy Technology Data Exchange (ETDEWEB)
Macri, P.A. [Instituto de Astronomia y Fisica del Espacio, Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Casilla de Correo 67, Suc. 28, 1428 Buenos Aires (Argentina); Sanchez Plastic, F. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica (CNEA) and Universidad Nacional de Cuyo (UNC), R8402AGP S. C. de Bariloche, Rio Negro (Argentina); Barrachina, R.O. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica (CNEA) and Universidad Nacional de Cuyo (UNC), R8402AGP S. C. de Bariloche, Rio Negro (Argentina)]. E-mail: barra@cab.cnea.gov.ar
2007-03-15
We discuss how the analysis of the zeros of the functions introduced by Jost in 1946, acting individually or collectively, provides a comprehensive framework for describing resonances in single and multichannel collisions. In particular, we propose a generalization of the Wigner threshold law that copes with some deviations recently observed in opening reaction channels. We also pay special attention to the appearance of zeros of the s-wave Jost function in the fourth quadrant of the complex momentum plane, as analysed by Nussenzveig in 1959 but erroneously ruled out in following studies.
Global convergence of periodic solution of neural networks with discontinuous activation functions
International Nuclear Information System (INIS)
Huang Lihong; Guo Zhenyuan
2009-01-01
In this paper, without assuming boundedness and monotonicity of the activation functions, we establish some sufficient conditions ensuring the existence and global asymptotic stability of periodic solution of neural networks with discontinuous activation functions by using the Yoshizawa-like theorem and constructing proper Lyapunov function. The obtained results improve and extend previous works.
On nonnegative solutions of second order linear functional differential equations
Czech Academy of Sciences Publication Activity Database
Lomtatidze, Alexander; Vodstrčil, Petr
2004-01-01
Roč. 32, č. 1 (2004), s. 59-88 ISSN 1512-0015 Institutional research plan: CEZ:AV0Z1019905 Keywords : second order linear functional differential equations * nonnegative solution * two-point boundary value problem Subject RIV: BA - General Mathematics
Breit-Wigner resonances and the quasinormal modes of anti-de Sitter black holes
International Nuclear Information System (INIS)
Berti, Emanuele; Cardoso, Vitor; Pani, Paolo
2009-01-01
We show that the theory of Breit-Wigner resonances can be used as an efficient numerical tool to compute black hole quasinormal modes. For illustration, we focus on the Schwarzschild anti-de Sitter (SAdS) spacetime. The resonance method is better suited to small SAdS black holes than the traditional series expansion method, allowing us to confirm that the damping time scale of small SAdS black holes for scalar and gravitational fields is proportional to r + -2l-2 , where r + is the horizon radius. The proportionality coefficients are in good agreement with analytic calculations. We also examine the eikonal limit of SAdS quasinormal modes, confirming quantitatively Festuccia and Liu's [arXiv:0811.1033] prediction of the existence of very long-lived modes. Our results are particularly relevant for the AdS/CFT correspondence, since long-lived modes presumably dominate the decay time scale of the perturbations.
Directory of Open Access Journals (Sweden)
Rahmatullah
2018-03-01
Full Text Available We have computed new exact traveling wave solutions, including complex solutions of fractional order Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function method. The method is blended with fractional complex transformation and modified Riemann-Liouville fractional order operator. Our obtained solutions are verified by substituting back into their corresponding equations. To the best of our knowledge, no other technique has been reported to cope with the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, fractional order solution curves are shown to be strongly related to each other and most importantly, tend to fixate on their integer order solution curve. Our solutions comprise high frequencies and very small amplitude of the wave responses. Keywords: Exp-function method, New exact traveling wave solutions, Modified Riemann-Liouville derivative, Fractional complex transformation, Fractional order Boussinesq-like equations, Symbolic computation
Special function solutions of a spectral problem for a nonlinear quantum oscillator
International Nuclear Information System (INIS)
Schulze-Halberg, A; Morris, J R
2012-01-01
We construct exact solutions of a spectral problem involving the Schrödinger equation for a nonlinear, one-parameter oscillator potential. In contrast to a previous analysis of the problem (Carinena et al 2007 Ann. Phys. 322 434–59), where solutions were given through a Rodrigues-type formula, our approach leads to closed-form representations of the solutions in terms of special functions, not containing any derivative operators. We show normalizability and orthogonality of our solutions, as well as correct reduction of the problem to the harmonic oscillator model, if the parameter in the potential gets close to zero. (paper)
The eigenvalue problem in phase space.
Cohen, Leon
2018-06-30
We formulate the standard quantum mechanical eigenvalue problem in quantum phase space. The equation obtained involves the c-function that corresponds to the quantum operator. We use the Wigner distribution for the phase space function. We argue that the phase space eigenvalue equation obtained has, in addition to the proper solutions, improper solutions. That is, solutions for which no wave function exists which could generate the distribution. We discuss the conditions for ascertaining whether a position momentum function is a proper phase space distribution. We call these conditions psi-representability conditions, and show that if these conditions are imposed, one extracts the correct phase space eigenfunctions. We also derive the phase space eigenvalue equation for arbitrary phase space distributions functions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Moshinsky atom and density functional theory - A phase space view(1)
DEFF Research Database (Denmark)
Dahl, Jens Peder
2009-01-01
Le probleme de deux particules dans un potentiel d'oscillateur harmonique commun interagissant par le biais de forces d'oscillateur harmonique est discute dans la representation phase-espace de Weyl-Wigner. La fonction de Wigner du systeme est une fonction ordinaire des constantes phase-espace du...
DEFF Research Database (Denmark)
Andersen, Kurt Munk; Sandqvist, Allan
1997-01-01
We investigate the domain of definition and the domain of values for the successor function of a cooperative differential system x'=f(t,x), where the coordinate functions are concave in x for any fixed value of t. Moreover, we give a characterization of a weakly Pareto optimal solution.......We investigate the domain of definition and the domain of values for the successor function of a cooperative differential system x'=f(t,x), where the coordinate functions are concave in x for any fixed value of t. Moreover, we give a characterization of a weakly Pareto optimal solution....
Rusyaman, E.; Parmikanti, K.; Chaerani, D.; Asefan; Irianingsih, I.
2018-03-01
One of the application of fractional ordinary differential equation is related to the viscoelasticity, i.e., a correlation between the viscosity of fluids and the elasticity of solids. If the solution function develops into function with two or more variables, then its differential equation must be changed into fractional partial differential equation. As the preliminary study for two variables viscoelasticity problem, this paper discusses about convergence analysis of function sequence which is the solution of the homogenous fractional partial differential equation. The method used to solve the problem is Homotopy Analysis Method. The results show that if given two real number sequences (αn) and (βn) which converge to α and β respectively, then the solution function sequences of fractional partial differential equation with order (αn, βn) will also converge to the solution function of fractional partial differential equation with order (α, β).
Mild Solutions of Neutral Stochastic Partial Functional Differential Equations
Directory of Open Access Journals (Sweden)
T. E. Govindan
2011-01-01
Full Text Available This paper studies the existence and uniqueness of a mild solution for a neutral stochastic partial functional differential equation using a local Lipschitz condition. When the neutral term is zero and even in the deterministic special case, the result obtained here appears to be new. An example is included to illustrate the theory.
A three-dimensional elasticity solution of functionally graded piezoelectric cylindrical panels
International Nuclear Information System (INIS)
Sedighi, M R; Shakeri, M
2009-01-01
This research presents an exact solution of finitely long, simply supported, orthotropic, functionally graded piezoelectric (FGP), cylindrical shell panels under pressure and electrostatic excitation. The FGP cylindrical panel is first divided into linearly inhomogeneous elements (LIEs). The general solution of governing partial differential equations of the LIEs is obtained by separation of variables. The highly coupled partial differential equations are reduced to ordinary differential equations with variable coefficients by means of appropriate trigonometric expansion of displacements and electric potential in circumferential and axial directions. The resulting governing ordinary differential equations are solved by the Galerkin finite element method. In this procedure the quadratic shape function is used in each element. The present method is applied to several benchmark problems. The coupled electromechanical effect on the structural behavior of functionally graded piezoelectric cylindrical shell panels is evaluated. The influence of the material property gradient index on the variables of electric and mechanical fields is studied. Finally some results are compared with published results
International Nuclear Information System (INIS)
Dodonov, V.V.; Valverde, C.; Souza, L.S.; Baseia, B.
2011-01-01
The exact Wigner function of a parametrically excited quantum oscillator in a phase-sensitive amplifying/attenuating reservoir is found for initial even/odd coherent states. Studying the evolution of negativity of the Wigner function we show the difference between the 'initial positivization time' (IPT), which is inversely proportional to the square of the initial size of the superposition, and the 'final positivization time' (FPT), which does not depend on this size. Both these times can be made arbitrarily long in maximally squeezed high-temperature reservoirs. Besides, we find the conditions when some (small) squeezing can exist even after the Wigner function becomes totally positive. -- Highlights: → We study parametric excitation of a quantum oscillator in phase-sensitive baths. → Exact time-dependent Wigner function for initial even/odd coherent states is found. → The evolution of negativity of Wigner function is compared with the squeezing dynamics. → The difference between initial and final 'classicalization times' is emphasized. → Both these times can be arbitrarily long for rigged reservoirs at infinite temperature.
The General Analytic Solution of a Functional Equation of Addition Type
Braden, H. W.; Buchstaber, V. M.
1995-01-01
The general analytic solution to the functional equation $$ \\phi_1(x+y)= { { \\biggl|\\matrix{\\phi_2(x)&\\phi_2(y)\\cr\\phi_3(x)&\\phi_3(y)\\cr}\\biggr|} \\over { \\biggl|\\matrix{\\phi_4(x)&\\phi_4(y)\\cr\\phi_5(x)&\\phi_5(y)\\cr}\\biggr|} } $$ is characterised. Up to the action of the symmetry group, this is described in terms of Weierstrass elliptic functions. We illustrate our theory by applying it to the classical addition theorems of the Jacobi elliptic functions and the functional equations $$ \\phi_1(x+...
Quantum phase space with a basis of Wannier functions
Fang, Yuan; Wu, Fan; Wu, Biao
2018-02-01
A quantum phase space with Wannier basis is constructed: (i) classical phase space is divided into Planck cells; (ii) a complete set of Wannier functions are constructed with the combination of Kohn’s method and Löwdin method such that each Wannier function is localized at a Planck cell. With these Wannier functions one can map a wave function unitarily onto phase space. Various examples are used to illustrate our method and compare it to Wigner function. The advantage of our method is that it can smooth out the oscillations in wave functions without losing any information and is potentially a better tool in studying quantum-classical correspondence. In addition, we point out that our method can be used for time-frequency analysis of signals.
Soliton solution for nonlinear partial differential equations by cosine-function method
International Nuclear Information System (INIS)
Ali, A.H.A.; Soliman, A.A.; Raslan, K.R.
2007-01-01
In this Letter, we established a traveling wave solution by using Cosine-function algorithm for nonlinear partial differential equations. The method is used to obtain the exact solutions for five different types of nonlinear partial differential equations such as, general equal width wave equation (GEWE), general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKdV), general improved Korteweg-de Vries equation (GIKdV), and Coupled equal width wave equations (CEWE), which are the important soliton equations
OSCILLATION BEHAVIOR OF SOLUTIONS FOR EVEN ORDER NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS
Institute of Scientific and Technical Information of China (English)
T.Candan
2006-01-01
Even order neutral functional differential equations are considered. Sufficient conditions for the oscillation behavior of solutions for this differential equation are presented. The new results are presented and some examples are also given.
TWIN POSITIVE PERIODIC SOLUTIONS OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAY
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In this paper, the author studies a class of nonlinear functional differential equation. By using a fixed point theorem in cones, sufficient conditions are established for the existence of twin positive periodic solutions.
Joint density-functional theory and its application to systems in solution
Petrosyan, Sahak A.
The physics of solvation, the interaction of water with solutes, plays a central role in chemistry and biochemistry, and it is essential for the very existence of life. Despite the central importance of water and the advent of the quantum theory early in the twentieth century, the link between the fundamental laws of physics and the observable properties of water remain poorly understood to this day. The central goal of this thesis is to develop a new formalism and framework to make the study of systems (solutes or surfaces) in contact with liquid water as practical and accurate as standard electronic structure calculations without the need for explicit averaging over large ensembles of configurations of water molecules. The thesis introduces a new form of density functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment. This theory rigorously joins an electron density-functional for the electrons of a solute with a classical density-functional theory for the liquid into a single variational principle for the free energy of the combined system. Using the new form of density-functional theory for the ab initio description of electronic systems in contact with a molecular liquid environment, the thesis then presents the first detailed study of the impact of a solvent on the surface chemistry of Cr2O3, the passivating layer of stainless steel alloys. In comparison to a vacuum, we predict that the presence of water has little impact on the adsorption of chloride ions to the oxygen-terminated surface but has a dramatic effect on the binding of hydrogen to that surface. A key ingredient of a successful joint density functional theory is a good approximate functional for describing the solvent. We explore how the simplest examples of the best known class of approximate forms for the classical density functional fail when applied directly to water. The thesis then presents a computationally efficient density-functional
Thermoelectric properties of periodic quantum structures in the Wigner-Rode formalism
Kommini, Adithya; Aksamija, Zlatan
2018-01-01
Improving the thermoelectric Seebeck coefficient, while simultaneously reducing thermal conductivity, is required in order to boost thermoelectric (TE) figure of merit (ZT). A common approach to improve the Seebeck coefficient is electron filtering where ‘cold’ (low energy) electrons are restricted from participating in transport by an energy barrier (Kim and Lundstrom 2011 J. Appl. Phys. 110 034511, Zide et al 2010 J. Appl. Phys. 108 123702). However, the impact of electron tunneling through thin barriers and resonant states on TE properties has been given less attention, despite the widespread use of quantum wells and superlattices (SLs) in TE applications. In our work, we develop a comprehensive transport model using the Wigner-Rode formalism. We include the full electronic bandstructure and all the relevant scattering mechanisms, allowing us to simulate both energy relaxation and quantum effects from periodic potential barriers. We study the impact of barrier shape on TE performance and find that tall, sharp barriers with small period lengths lead to the largest increase in both Seebeck coefficient and conductivity, thus boosting power factor and TE efficiency. Our findings are robust against additional elastic scattering such as atomic-scale roughness at side-walls of SL nanowires.
Yang, Hee-Man; Choi, Hye Min; Jang, Sung-Chan; Han, Myeong Jin; Seo, Bum-Kyoung; Moon, Jei-Kwon; Lee, Kune-Woo
2015-10-01
Hyperbranched polyglycerol-coated magnetic nanoparticles (SHPG-MNPs) were functionalized with succinate groups to form a draw solute for use in a forward osmosis (FO). After the one-step synthesis of hyperbranched polyglycerol-coated magnetic nanoparticles (HPG-MNPs), the polyglycerol groups on the surfaces of the HPG-MNPs were functionalized with succinic anhydride moieties. The resulting SHPG-MNPs showed no change of size and magnetic property compared with HPG-MNPs and displayed excellent dispersibility in water up to the concentration of 400 g/L. SHPG-MNPs solution showed higher osmotic pressure than that of HPG-MNPs solution due to the presence of surface carboxyl groups in SHPG-MNPs and could draw water from a feed solution across an FO membrane without any reverse draw solute leakage during FO process. Moreover, the water flux remained nearly constant over several SHPG-MNP darw solute regeneration cycles applied to the ultrafiltration (UF) process. The SHPG-MNPs demonstrate strong potential for use as a draw solute in FO processes.
Finite-gap solutions of Abelian Toda chain of genus 4 and 5 in elliptic functions
International Nuclear Information System (INIS)
Smirnov, A.O.
1989-01-01
A reduction theorem is formulated and proved. Smooth real solutions of the Abelian Toda chain of genus 4 and 5 are obtained in elliptic functions. Solutions of genus 2g and 2g + 1 of the discrete Peierls-Froehlich model in the absence of intramolecular deformation are constructed in terms of g-dimensional theta functions
Incorporation of Duffing Oscillator and Wigner-Ville Distribution in Traffic Flow Prediction
Directory of Open Access Journals (Sweden)
Anamarija L. Mrgole
2017-02-01
Full Text Available The main purpose of this study was to investigate the use of various chaotic pattern recognition methods for traffic flow prediction. Traffic flow is a variable, dynamic and complex system, which is non-linear and unpredictable. The emergence of traffic flow congestion in road traffic is estimated when the traffic load on a specific section of the road in a specific time period is close to exceeding the capacity of the road infrastructure. Under certain conditions, it can be seen in concentrating chaotic traffic flow patterns. The literature review of traffic flow theory and its connection with chaotic features implies that this kind of method has great theoretical and practical value. Researched methods of identifying chaos in traffic flow have shown certain restrictions in their techniques but have suggested guidelines for improving the identification of chaotic parameters in traffic flow. The proposed new method of forecasting congestion in traffic flow uses Wigner-Ville frequency distribution. This method enables the display of a chaotic attractor without the use of reconstruction phase space.
Implicit functions and solution mappings a view from variational analysis
Dontchev, Asen L
2014-01-01
The implicit function theorem is one of the most important theorems in analysis and its many variants are basic tools in partial differential equations and numerical analysis. This second edition of Implicit Functions and Solution Mappings presents an updated and more complete picture of the field by including solutions of problems that have been solved since the first edition was published, and places old and new results in a broader perspective. The purpose of this self-contained work is to provide a reference on the topic and to provide a unified collection of a number of results which are currently scattered throughout the literature. Updates to this edition include new sections in almost all chapters, new exercises and examples, updated commentaries to chapters and an enlarged index and references section. From reviews of the first edition: “The book commences with a helpful context-setting preface followed by six chapters. Each chapter starts with a useful preamble and concludes with a careful and ins...
International Nuclear Information System (INIS)
Zhang Jiefang; Dai Chaoqing; Zong Fengde
2007-01-01
In this paper, with the variable separation approach and based on the general reduction theory, we successfully generalize this extended tanh-function method to obtain new types of variable separation solutions for the following Nizhnik-Novikov-Veselov (NNV) equation. Among the solutions, two solutions are new types of variable separation solutions, while the last solution is similar to the solution given by Darboux transformation in Hu et al 2003 Chin. Phys. Lett. 20 1413
The fractional coupled KdV equations: Exact solutions and white noise functional approach
International Nuclear Information System (INIS)
Ghany, Hossam A.; El Bab, A. S. Okb; Zabel, A. M.; Hyder, Abd-Allah
2013-01-01
Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the modified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling wave solutions and white noise functional solutions are obtained, including the generalized exponential, hyperbolic, and trigonometric types. (general)
International Nuclear Information System (INIS)
Xiao, Tiejun
2015-01-01
In this paper, the longitudinal dielectric function ϵ_l(k) of primitive electrolyte solutions is discussed. Starting from a modified mean spherical approximation, an analytical dielectric function in terms of two parameters is established. These two parameters can be related to the first two decay parameters k_1_,_2 of the dielectric response modes of the bulk system, and can be determined using constraints of k_1_,_2 from statistical theories. Furthermore, a combination of this dielectric function and the molecular Debye-Hückel theory[J. Chem. Phys. 135(2011)104104] leads to a self-consistent mean filed description of electrolyte solutions. Our theory reveals a relationship between the microscopic structure parameters of electrolyte solutions and the macroscopic thermodynamic properties, which is applied to concentrated electrolyte solutions.
Institute of Scientific and Technical Information of China (English)
Wan-sheng WANG; Shou-fu LI; Run-sheng YANG
2012-01-01
A series of contractivity and exponential stability results for the solutions to nonlinear neutral functional differential equations (NFDEs) in Banach spaces are obtained,which provide unified theoretical foundation for the contractivity analysis of solutions to nonlinear problems in functional differential equations (FDEs),neutral delay differential equations (NDDEs) and NFDEs of other types which appear in practice.
A phase space approach to wave propagation with dispersion.
Ben-Benjamin, Jonathan S; Cohen, Leon; Loughlin, Patrick J
2015-08-01
A phase space approximation method for linear dispersive wave propagation with arbitrary initial conditions is developed. The results expand on a previous approximation in terms of the Wigner distribution of a single mode. In contrast to this previously considered single-mode case, the approximation presented here is for the full wave and is obtained by a different approach. This solution requires one to obtain (i) the initial modal functions from the given initial wave, and (ii) the initial cross-Wigner distribution between different modal functions. The full wave is the sum of modal functions. The approximation is obtained for general linear wave equations by transforming the equations to phase space, and then solving in the new domain. It is shown that each modal function of the wave satisfies a Schrödinger-type equation where the equivalent "Hamiltonian" operator is the dispersion relation corresponding to the mode and where the wavenumber is replaced by the wavenumber operator. Application to the beam equation is considered to illustrate the approach.
Simple procedure for phase-space measurement and entanglement validation
Rundle, R. P.; Mills, P. W.; Tilma, Todd; Samson, J. H.; Everitt, M. J.
2017-08-01
It has recently been shown that it is possible to represent the complete quantum state of any system as a phase-space quasiprobability distribution (Wigner function) [Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401]. Such functions take the form of expectation values of an observable that has a direct analogy to displaced parity operators. In this work we give a procedure for the measurement of the Wigner function that should be applicable to any quantum system. We have applied our procedure to IBM's Quantum Experience five-qubit quantum processor to demonstrate that we can measure and generate the Wigner functions of two different Bell states as well as the five-qubit Greenberger-Horne-Zeilinger state. Because Wigner functions for spin systems are not unique, we define, compare, and contrast two distinct examples. We show how the use of these Wigner functions leads to an optimal method for quantum state analysis especially in the situation where specific characteristic features are of particular interest (such as for spin Schrödinger cat states). Furthermore we show that this analysis leads to straightforward, and potentially very efficient, entanglement test and state characterization methods.
Existence of solutions to differential inclusions with primal lower nice functions
Directory of Open Access Journals (Sweden)
Nora Fetouci
2016-02-01
Full Text Available We prove the existence of absolutely continuous solutions to the differential inclusion $$ \\dot{x}(t\\in F(x(t+h(t,x(t, $$ where F is an upper semi-continuous set-valued function with compact values such that $F(x(t\\subset \\partial f(x(t$ on [0,T], where f is a primal lower nice function, and h a single valued Caratheodory perturbation.
On a phase space quantum description of the spherical 2-brane
International Nuclear Information System (INIS)
Cordero, R; Turrubiates, F J; Vera, J C
2014-01-01
The quantum properties of the two-dimensional relativistic spherical membrane in phase space are analyzed using the Wigner function. Specifically, the true vacuum and rigid bubble nucleation cases are treated. Inspired by quantum cosmology, the Hartle–Hawking, Linde and Vilenkin boundary conditions are employed to calculate the bubble wave functions and their corresponding Wigner functions. Furthermore, the asymptotic behavior of the wave function using three different methods is explored and the Wigner functions are calculated numerically. Some aspects of the semiclassical properties for each boundary condition and their possible implications for quantum cosmology are discussed. (papers)
Wigner's dynamical transition state theory in phase space: classical and quantum
International Nuclear Information System (INIS)
Waalkens, Holger; Schubert, Roman; Wiggins, Stephen
2008-01-01
We develop Wigner's approach to a dynamical transition state theory in phase space in both the classical and quantum mechanical settings. The key to our development is the construction of a normal form for describing the dynamics in the neighbourhood of a specific type of saddle point that governs the evolution from reactants to products in high dimensional systems. In the classical case this is the standard Poincaré–Birkhoff normal form. In the quantum case we develop a normal form based on the Weyl calculus and an explicit algorithm for computing this quantum normal form. The classical normal form allows us to discover and compute the phase space structures that govern classical reaction dynamics. From this knowledge we are able to provide a direct construction of an energy dependent dividing surface in phase space having the properties that trajectories do not locally 're-cross' the surface and the directional flux across the surface is minimal. Using this, we are able to give a formula for the directional flux through the dividing surface that goes beyond the harmonic approximation. We relate this construction to the flux–flux autocorrelation function which is a standard ingredient in the expression for the reaction rate in the chemistry community. We also give a classical mechanical interpretation of the activated complex as a normally hyperbolic invariant manifold (NHIM), and further describe the structure of the NHIM. The quantum normal form provides us with an efficient algorithm to compute quantum reaction rates and we relate this algorithm to the quantum version of the flux–flux autocorrelation function formalism. The significance of the classical phase space structures for the quantum mechanics of reactions is elucidated by studying the phase space distribution of scattering states. The quantum normal form also provides an efficient way of computing Gamov–Siegert resonances. We relate these resonances to the lifetimes of the quantum activated
Directory of Open Access Journals (Sweden)
V. P. Gribkova
2014-01-01
Full Text Available The paper offers a new method for approximate solution of one type of singular integral equations for elasticity theory which have been studied by other authors. The approximate solution is found in the form of asymptotic polynomial function of a low degree (first approximation based on the Chebyshev second order polynomial. Other authors have obtained a solution (only in separate points using a method of mechanical quadrature and though they used also the Chebyshev polynomial of the second order they applied another system of junctures which were used for the creation of the required formulas.The suggested method allows not only to find an approximate solution for the whole interval in the form of polynomial, but it also makes it possible to obtain a remainder term in the form of infinite expansion where coefficients are linear functional of the given integral equation and basis functions are the Chebyshev polynomial of the second order. Such presentation of the remainder term of the first approximation permits to find a summand of the infinite series, which will serve as a start for fulfilling the given solution accuracy. This number is a degree of the asymptotic polynomial (second approximation, which will give the approximation to the exact solution with the given accuracy. The examined polynomial functions tend asymptotically to the polynomial of the best uniform approximation in the space C, created for the given operator.The paper demonstrates a convergence of the approximate solution to the exact one and provides an error estimation. The proposed algorithm for obtaining of the approximate solution and error estimation is easily realized with the help of computing technique and does not require considerable preliminary preparation during programming.
DEFF Research Database (Denmark)
Kim, Oleksiy S.; Jørgensen, Erik; Meincke, Peter
2004-01-01
An efficient higher-order method of moments (MoM) solution of volume integral equations is presented. The higher-order MoM solution is based on higher-order hierarchical Legendre basis functions and higher-order geometry modeling. An unstructured mesh composed of 8-node trilinear and/or curved 27...... of magnitude in comparison to existing higher-order hierarchical basis functions. Consequently, an iterative solver can be applied even for high expansion orders. Numerical results demonstrate excellent agreement with the analytical Mie series solution for a dielectric sphere as well as with results obtained...
Directory of Open Access Journals (Sweden)
Junhua Wu
2017-01-01
Full Text Available Carbon fibre composites have a promising application future of the vehicle, due to its excellent physical properties. Debonding is a major defect of the material. Analyses of wave packets are critical for identification of the defect on ultrasonic nondestructive evaluation and testing. In order to isolate different components of ultrasonic guided waves (GWs, a signal decomposition algorithm combining Smoothed Pseudo Wigner-Ville distribution and Vold–Kalman filter order tracking is presented. In the algorithm, the time-frequency distribution of GW is first obtained by using Smoothed Pseudo Wigner-Ville distribution. The frequencies of different modes are computed based on summation of the time-frequency coefficients in the frequency direction. On the basis of these frequencies, isolation of different modes is done by Vold–Kalman filter order tracking. The results of the simulation signal and the experimental signal reveal that the presented algorithm succeeds in decomposing the multicomponent signal into monocomponents. Even though components overlap in corresponding Fourier spectrum, they can be isolated by using the presented algorithm. So the frequency resolution of the presented method is promising. Based on this, we can do research about defect identification, calculation of the defect size, and locating the position of the defect.
Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul
2015-01-01
In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems.
Directory of Open Access Journals (Sweden)
Suheel Abdullah Malik
Full Text Available In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE through substitution is converted into a nonlinear ordinary differential equation (NODE. The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM, homotopy perturbation method (HPM, and optimal homotopy asymptotic method (OHAM, show that the suggested scheme is fairly accurate and viable for solving such problems.
Covariant two-particle wave functions for model quasipotential allowing exact solutions
International Nuclear Information System (INIS)
Kapshaj, V.N.; Skachkov, N.B.
1982-01-01
Two formulations of quasipotential equations in the relativistic configurational representation are considered for the wave function of relative motion of a bound state of two relativistic particles. Exact solutions of these equations are found for some model quasipotentials
Covariant two-particle wave functions for model quasipotentials admitting exact solutions
International Nuclear Information System (INIS)
Kapshaj, V.N.; Skachkov, N.B.
1983-01-01
Two formulations of quasipotential equations in the relativistic configurational representation are considered for the wave function of the internal motion of the bound system of two relativistic particles. Exact solutions of these equations are found for some model quasipotentials
Nonclassical states of light with a smooth P function
Damanet, François; Kübler, Jonas; Martin, John; Braun, Daniel
2018-02-01
There is a common understanding in quantum optics that nonclassical states of light are states that do not have a positive semidefinite and sufficiently regular Glauber-Sudarshan P function. Almost all known nonclassical states have P functions that are highly irregular, which makes working with them difficult and direct experimental reconstruction impossible. Here we introduce classes of nonclassical states with regular, non-positive-definite P functions. They are constructed by "puncturing" regular smooth positive P functions with negative Dirac-δ peaks or other sufficiently narrow smooth negative functions. We determine the parameter ranges for which such punctures are possible without losing the positivity of the state, the regimes yielding antibunching of light, and the expressions of the Wigner functions for all investigated punctured states. Finally, we propose some possible experimental realizations of such states.
Blue functions: probability and current density propagators in non-relativistic quantum mechanics
International Nuclear Information System (INIS)
Withers, L P Jr
2011-01-01
Like a Green function to propagate a particle's wavefunction in time, a Blue function is introduced to propagate the particle's probability and current density. Accordingly, the complete Blue function has four components. They are constructed from path integrals involving a quantity like the action that we call the motion. The Blue function acts on the displaced probability density as the kernel of an integral operator. As a result, we find that the Wigner density occurs as an expression for physical propagation. We also show that, in quantum mechanics, the displaced current density is conserved bilocally (in two places at one time), as expressed by a generalized continuity equation. (paper)
Directory of Open Access Journals (Sweden)
Hasibun Naher
2012-01-01
Full Text Available We construct new analytical solutions of the (3+1-dimensional modified KdV-Zakharov-Kuznetsev equation by the Exp-function method. Plentiful exact traveling wave solutions with arbitrary parameters are effectively obtained by the method. The obtained results show that the Exp-function method is effective and straightforward mathematical tool for searching analytical solutions with arbitrary parameters of higher-dimensional nonlinear partial differential equation.
Directory of Open Access Journals (Sweden)
Xiaozhou Feng
2017-01-01
Full Text Available We investigate the property of positive solutions of a predator-prey model with Dinosaur functional response under Dirichlet boundary conditions. Firstly, using the comparison principle and fixed point index theory, the sufficient conditions and necessary conditions on coexistence of positive solutions of a predator-prey model with Dinosaur functional response are established. Secondly, by virtue of bifurcation theory, perturbation theory of eigenvalues, and the fixed point index theory, we establish the bifurcation of positive solutions of the model and obtain the stability and multiplicity of the positive solution under certain conditions. Furthermore, the local uniqueness result is studied when b and d are small enough. Finally, we investigate the multiplicity, uniqueness, and stability of positive solutions when k>0 is sufficiently large.
Matsutani, Shigeki; Sato, Iwao
2017-09-01
In the previous report (Matsutani and Suzuki, 2000 [21]), by proposing the mechanism under which electric conductivity is caused by the activational hopping conduction with the Wigner surmise of the level statistics, the temperature-dependent of electronic conductivity of a highly disordered carbon system was evaluated including apparent metal-insulator transition. Since the system consists of small pieces of graphite, it was assumed that the reason why the level statistics appears is due to the behavior of the quantum chaos in each granular graphite. In this article, we revise the assumption and show another origin of the Wigner surmise, which is more natural for the carbon system based on a recent investigation of graph zeta function in graph theory. Our method can be applied to the statistical treatment of the electronic properties of the randomized molecular system in general.
Lorenzo, C F; Hartley, T T; Malti, R
2013-05-13
A new and simplified method for the solution of linear constant coefficient fractional differential equations of any commensurate order is presented. The solutions are based on the R-function and on specialized Laplace transform pairs derived from the principal fractional meta-trigonometric functions. The new method simplifies the solution of such fractional differential equations and presents the solutions in the form of real functions as opposed to fractional complex exponential functions, and thus is directly applicable to real-world physics.
Pulse processing in optical fibers using the temporal Radon-Wigner transform
Energy Technology Data Exchange (ETDEWEB)
Bulus-Rossini, L A; Costanzo-Caso, P A; Duchowicz, R [Centro de Investigaciones Opticas, CONICET La Plata - CIC, Camino Parque Centenario y 506, C.C. 3 (1897) La Plata (Argentina); Sicre, E E, E-mail: lbulus@ing.unlp.edu.ar [Instituto de Tecnologia, Facultad de Ingenieria y Ciencias Exactas, Universidad Argentina de la Empresa, Lima 717, C1073AAO Buenos Aires (Argentina)
2011-01-01
It is presented the use of the temporal Radon-Wigner transform (RWT), which is the squared modulus of the fractional Fourier transform (FRT) for a varying fractional order p, as a processing tool for pulses with FWHM of ps-tens of ps. For analysis purposes, the complete numerical generation of the RWT with 0 < p < 1 is proposed to select a particular pulse shape related to a determined value of p. To this end, the amplitude and phase of the signal to be processed are obtained using a pulse characterization technique. To synthesize the processed pulse, the selected FRT irradiance is optically produced employing a photonic device that combines phase modulation and dispersive transmission. The practical implementation of this device involves a scaling factor that depends on the modulation and dispersive parameters. It is explored the variation of this factor in order to obtain an enhancement of the particular characteristic sought in the pulse to be synthesized. To illustrate the implementation of the proposed method, numerical simulations of its application to compress signals commonly found in fiber optic transmission systems, are performed. The examples presented consider chirped Gaussian pulses and pulses distorted by group velocity dispersion and self-phase modulation.
McCollom, Brittany A; Collis, Jon M
2014-09-01
A normal mode solution to the ocean acoustic problem of the Pekeris waveguide with an elastic bottom using a Green's function formulation for a compressional wave point source is considered. Analytic solutions to these types of waveguide propagation problems are strongly dependent on the eigenvalues of the problem; these eigenvalues represent horizontal wavenumbers, corresponding to propagating modes of energy. The eigenvalues arise as singularities in the inverse Hankel transform integral and are specified by roots to a characteristic equation. These roots manifest themselves as poles in the inverse transform integral and can be both subtle and difficult to determine. Following methods previously developed [S. Ivansson et al., J. Sound Vib. 161 (1993)], a root finding routine has been implemented using the argument principle. Using the roots to the characteristic equation in the Green's function formulation, full-field solutions are calculated for scenarios where an acoustic source lies in either the water column or elastic half space. Solutions are benchmarked against laboratory data and existing numerical solutions.
Asphahani, Aziz; Siegel, Sidney; Siegel, Edward
2010-03-01
Carbides solid-state chemistry domination of old/new nuclear- reactors/spent-fuel-casks/refineries/jet/missile/rocket-engines in austenitic/FCC Ni/Fe-based(so miscalled)``super"alloys(182/82; Hastelloy-X,600,304/304L-SSs,...,690!!!) GENERIC ENDEMIC EXTANT detrimental(synonyms): Wigner's-diseas(WD)[J.Appl.Phys.17,857 (1946)]/Ostwald-ripening/spinodal-decomposition/overageing- embrittlement/thermal-leading-to-mechanical(TLTM)-INstability: Mayo[Google:``If Leaks Could Kill"; at flickr.com search on ``Giant-Magnotoresistance"; find: Siegel[J.Mag.Mag.Mtls.7,312 (1978)]Politics(1979)]-Hoffman[animatedsoftware.com], what DOE/NRC MISlabels as ``butt-welds" ``stress-corrosion cracking" endpoint's ROOT-CAUSE ULTIMATE-ORIGIN is WD overageing-embritt- lement caused brittle-fracture cracking from early/ongoing AEC/ DOE-n"u"tional-la"v"atories sabotage!!!
International Nuclear Information System (INIS)
Cao Rui; Zhang Jian
2013-01-01
In this paper, the trial function method is extended to study the generalized nonlinear Schrödinger equation with time-dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrödinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrödinger equation with time-dependent coefficients under constraint conditions. (general)
International Nuclear Information System (INIS)
Vyas, Manan; Kota, V.K.B.
2010-01-01
For m fermions in Ω number of single particle orbitals, each fourfold degenerate, we introduce and analyze in detail embedded Gaussian unitary ensemble of random matrices generated by random two-body interactions that are SU(4) scalar [EGUE(2)-SU(4)]. Here the SU(4) algebra corresponds to the Wigner's supermultiplet SU(4) symmetry in nuclei. Embedding algebra for the EGUE(2)-SU(4) ensemble is U(4Ω) contains U(Ω) x SU(4). Exploiting the Wigner-Racah algebra of the embedding algebra, analytical expression for the ensemble average of the product of any two m particle Hamiltonian matrix elements is derived. Using this, formulas for a special class of U(Ω) irreducible representations (irreps) {4 r , p}, p = 0, 1, 2, 3 are derived for the ensemble averaged spectral variances and also for the covariances in energy centroids and spectral variances. On the other hand, simplifying the tabulations of Hecht for SU(Ω) Racah coefficients, numerical calculations are carried out for general U(Ω) irreps. Spectral variances clearly show, by applying Jacquod and Stone prescription, that the EGUE(2)-SU(4) ensemble generates ground state structure just as the quadratic Casimir invariant (C 2 ) of SU(4). This is further corroborated by the calculation of the expectation values of C 2 [SU(4)] and the four periodicity in the ground state energies. Secondly, it is found that the covariances in energy centroids and spectral variances increase in magnitude considerably as we go from EGUE(2) for spinless fermions to EGUE(2) for fermions with spin to EGUE(2)-SU(4) implying that the differences in ensemble and spectral averages grow with increasing symmetry. Also for EGUE(2)-SU(4) there are, unlike for GUE, non-zero cross-correlations in energy centroids and spectral variances defined over spaces with different particle numbers and/or U(Ω) [equivalently SU(4)] irreps. In the dilute limit defined by Ω → ∞, r >> 1 and r/Ω → 0, for the {4 r , p} irreps, we have derived analytical
Solutions of the two-level problem in terms of biconfluent Heun functions
Energy Technology Data Exchange (ETDEWEB)
Ishkhanyan, Artur [Engineering Center of Armenian National Academy of Sciences, Ashtarak (Armenia)]. E-mail: artur@ec.sci.am; Suominen, Kalle-Antti [Helsinki Institute of Physics, Helsinki (Finland); Department of Applied Physics, University of Turku, Turku (Finland)
2001-08-17
Five four-parametric classes of quantum mechanical two-level models permitting solutions in terms of the biconfluent Heun function are derived. Three of these classes are generalizations of the well known classes of Landau-Zener, Nikitin and Crothers. It is shown that two other classes describe super- and sublinear and essentially nonlinear level crossings, as well as processes with three crossing points. In particular, these classes include two-level models where the field amplitude is constant and the detuning varies as {delta}{sub 0}t+{delta}{sub 2}t{sup 3} or {approx}t{sup 1/3}. For the essentially nonlinear cubic-crossing model, {delta}{sub t}{approx}{delta}{sub 2}t{sup 3}, the general solution of the two-level problem is shown to be expressed as series of confluent hypergeometric functions. (author)
Plane strain analytical solutions for a functionally graded elastic-plastic pressurized tube
International Nuclear Information System (INIS)
Eraslan, Ahmet N.; Akis, Tolga
2006-01-01
Plane strain analytical solutions to functionally graded elastic and elastic-plastic pressurized tube problems are obtained in the framework of small deformation theory. The modulus of elasticity and the uniaxial yield limit of the tube material are assumed to vary radially according to two parametric parabolic forms. The analytical plastic model is based on Tresca's yield criterion, its associated flow rule and ideally plastic material behaviour. Elastic, partially plastic and fully plastic stress states are investigated. It is shown that the elastoplastic response of the functionally graded pressurized tube is affected significantly by the material nonhomogeneity. Different modes of plasticization may take place unlike the homogeneous case. It is also shown mathematically that the nonhomogeneous elastoplastic solution presented here reduces to that of a homogeneous one by appropriate choice of the material parameters
Discrete linear canonical transforms based on dilated Hermite functions.
Pei, Soo-Chang; Lai, Yun-Chiu
2011-08-01
Linear canonical transform (LCT) is very useful and powerful in signal processing and optics. In this paper, discrete LCT (DLCT) is proposed to approximate LCT by utilizing the discrete dilated Hermite functions. The Wigner distribution function is also used to investigate DLCT performances in the time-frequency domain. Compared with the existing digital computation of LCT, our proposed DLCT possess additivity and reversibility properties with no oversampling involved. In addition, the length of input/output signals will not be changed before and after the DLCT transformations, which is consistent with the time-frequency area-preserving nature of LCT; meanwhile, the proposed DLCT has very good approximation of continuous LCT.
Optical Coherence Tomography: Advanced Modeling
DEFF Research Database (Denmark)
Andersen, Peter E.; Thrane, Lars; Yura, Harold T.
2013-01-01
- and multiple-scattering regimes is derived. An advanced Monte Carlo model for calculating the OCT signal is also derived, and the validity of this model is shown through a mathematical proof based on the extended Huygens-Fresnel principle. From the analytical model, an algorithm for enhancing OCT images...... are discussed. Finally, the Wigner phase-space distribution function is derived in a closed-form solution, which may have applications in OCT....
Quark imaging in the proton via quantum phase-space distributions
International Nuclear Information System (INIS)
Belitsky, A.V.; Ji Xiangdong; Yuan Feng
2004-01-01
We develop the concept of quantum phase-space (Wigner) distributions for quarks and gluons in the proton. To appreciate their physical content, we analyze the contraints from special relativity on the interpretation of elastic form factors, and examine the physics of the Feynman parton distributions in the proton's rest frame. We relate the quark Wigner functions to the transverse-momentum dependent parton distributions and generalized parton distributions, emphasizing the physical role of the skewness parameter. We show that the Wigner functions allow us to visualize quantum quarks and gluons using the language of classical phase space. We present two examples of the quark Wigner distributions and point out some model-independent features
Exp-function method for constructing exact solutions of Sharma-Tasso-Olver equation
International Nuclear Information System (INIS)
Erbas, Baris; Yusufoglu, Elcin
2009-01-01
In this paper we use the Exp-function method for the analytic treatment of Sharma-Tasso-Olver equation. New solitonary solutions are formally derived. Change of parameters, which drastically changes the characteristics of the equations, is examined. It is shown that the Exp-function method provides a powerful mathematical tool for solving high-dimensional nonlinear evolutions in mathematical physics. The proposed schemes are reliable and manageable.
New parameterization of the E1 gamma-ray strength function
International Nuclear Information System (INIS)
Gardner, D.G.; Dietrich, F.S.
1979-01-01
The giant dipole (GD) parameters of peak energy, width, and cross section were satisfactorily correlated for elements from V to Bi, assuming two overlapping peaks with a separation dependent on deformation. The energy dependence of the GD resonance is assumed to have a Breit-Wigner form, but with an energy-dependent width. The resulting gamma-ray strength function model is used to predict neutron capture cross sections and gamma-ray spectra for isotopes of Ta, Os, and Au. 23 references
A note on monotone solutions for a nonconvex second-order functional differential inclusion
Directory of Open Access Journals (Sweden)
Aurelian Cernea
2011-12-01
Full Text Available The existence of monotone solutions for a second-order functional differential inclusion with Carath\\'{e}odory perturbation is obtained in the case when the multifunction that define the inclusion is upper semicontinuous compact valued and contained in the Fr\\'{e}chet subdifferential of a $\\phi $-convex function of order two.
Characterization of topological phases of dimerized Kitaev chain via edge correlation functions
Wang, Yucheng; Miao, Jian-Jian; Jin, Hui-Ke; Chen, Shu
2017-11-01
We study analytically topological properties of a noninteracting modified dimerized Kitaev chain and an exactly solvable interacting dimerized Kitaev chain under open boundary conditions by analyzing two introduced edge correlation functions. The interacting dimerized Kitaev chain at the symmetry point Δ =t and the chemical potential μ =0 can be exactly solved by applying two Jordan-Wigner transformations and a spin rotation, which permits us to calculate the edge correlation functions analytically. We demonstrate that the two edge correlation functions can be used to characterize the trivial, Su-Schrieffer-Heeger-like topological and topological superconductor phases of both the noninteracting and interacting systems and give their phase diagrams.
Lötstedt, Erik; Jentschura, Ulrich D
2009-02-01
In the relativistic and the nonrelativistic theoretical treatment of moderate and high-power laser-matter interaction, the generalized Bessel function occurs naturally when a Schrödinger-Volkov and Dirac-Volkov solution is expanded into plane waves. For the evaluation of cross sections of quantum electrodynamic processes in a linearly polarized laser field, it is often necessary to evaluate large arrays of generalized Bessel functions, of arbitrary index but with fixed arguments. We show that the generalized Bessel function can be evaluated, in a numerically stable way, by utilizing a recurrence relation and a normalization condition only, without having to compute any initial value. We demonstrate the utility of the method by illustrating the quantum-classical correspondence of the Dirac-Volkov solutions via numerical calculations.
Relativistic quantum kinetic analysis of a pion--nucleon system
International Nuclear Information System (INIS)
Alonso, J.D.
1985-01-01
A relativistic plasma of nucleons interacting through pions via the usual isospin-invariant Yukawa coupling is analyzed in the framework of the covariant Wigner function technique. The method is manifestly covariant and the temperature effects are considered. The relativistic quantum BBGKY hierarchy for the pion--nucleon system is derived. By generalizing the Bogolioubov analysis of the classical BBGKY hierarchy a non-perturbative renormalizable method is elaborated which allows the solution of the kinetic problem in form of power series of two cluster parameters which measure the importance of correlations. In the lowest order of the cluster expansion (Hartree approximation of zero-order approximation) the quasi-nucleon Fock space is introduced, the fermion Wigner function in the thermodynamic equilibrium is obtained and the vacuum effects are renormalized. In this approximation the plasma behaves as a perfect Fermi gas of nucleons and antinucleons, but there exists an abnormal configuration with a uniform pion condensate which is unstable. In the next approximation (quadratic in the small parameters) the quasi-pion dispersion relation is obtained and the vacuum polarization tensor is renormalized. The quasi-pion rest-mass spectra (''plasma frequency'') and the effective-coupling behaviour as functions of the thermodynamic state are given. By estimating the size of the cluster parameters the self-consistency of the approximation scheme is proved. The quasi-pion Fock space is introduced and the quasi-pion equilibrium Wigner function is obtained. From these results the problem of the higher-order corrections to the Hartree thermodynamics is outlined