EFFECTIVE HYPERFINE-STRUCTURE FUNCTIONS OF AMMONIA
Energy Technology Data Exchange (ETDEWEB)
Augustovičová, L.; Soldán, P.; Špirko, V., E-mail: spirko@marge.uochb.cas.cz [Charles University in Prague, Faculty of Mathematics and Physics, Department of Chemical Physics and Optics, Ke Karlovu 3, CZ-12116 Prague 2 (Czech Republic)
2016-06-20
The hyperfine structure of the rotation-inversion ( v {sub 2} = 0{sup +}, 0{sup −}, 1{sup +}, 1{sup −}) states of the {sup 14}NH{sub 3} and {sup 15}NH{sub 3} ammonia isotopomers is rationalized in terms of effective (ro-inversional) hyperfine-structure (hfs) functions. These are determined by fitting to available experimental data using the Hougen’s effective hyperfine-structure Hamiltonian within the framework of the non-rigid inverter theory. Involving only a moderate number of mass independent fitting parameters, the fitted hfs functions provide a fairly close reproduction of a large majority of available experimental data, thus evidencing adequacy of these functions for reliable prediction. In future experiments, this may help us derive spectroscopic constants of observed inversion and rotation-inversion transitions deperturbed from hyperfine effects. The deperturbed band centers of ammonia come to the forefront of fundamental physics especially as the probes of a variable proton-to-electron mass ratio.
Hyperfine structure of muonic lithium ions
Directory of Open Access Journals (Sweden)
Alexey P. Martynenko
2015-06-01
Full Text Available On the basis of perturbation theory in fine structure constant $\\alpha$ and the ratio of electron to muon masses we calculate recoil corrections of order $\\alpha^4 (M_e/M_\\mu$, $\\alpha^4 (M_e/M_\\mu^2\\ln(M_e/M_\\mu$, $\\alpha^4 (M_e/M_\\mu^2$, $\\alpha^5(m_e/m_\\mu\\ln(m_e/m_\\mu$ to hyperfine splitting of the ground state in muonic lithium ions $(\\mu e ^6_3\\mathrm{Li}^+$ and $(\\mu e ^7_3\\mathrm{Li}^+$. We obtain total results for the ground state small hyperfine splittings in $(\\mu e ^6_3\\mathrm{Li}^+$ $\\Delta\
The hyperfine structure - a message from the inner circle
International Nuclear Information System (INIS)
Sturesson, L.
1992-06-01
Experiment have been performed to determine the lifetimes and the hyperfine structures of excited states in atoms. Decay curves were recorded with the aid of time-resolved laser spectroscopy. From these curves, it was possible to evaluated the lifetimes with high accuracy. In certain cases, the hyperfine structures were also determined with high accuracy form quantum beat signals. The elements studied were lithium, sodium, copper, iron and silver. In favourable cases, the method of delayed coincidence gave uncertainties in lifetime measurements of about 0.5%. The detection of quantum beat signals with frequencies higher than 1 GHz was demonstrated. The effects of non-white excitation and delayed detection on level-crossing signals were also investigated. The method of delayed detection causes a narrowing of the detected signal, though most of the intensity of the signals is lost and it exhibits an oscillatory behaviour due to the gating procedure. The effect of high-intensity beams in combination with optically dense media applied to saturation absorption spectroscopy has been investigated both theoretically and experimentally. In this regime the signals exhibited sharp profiles, with widths narrower than the natural linewidth, duel to the non-linearity of the medium. Also, a strong rejection of the background was achieved. These features make this regime interesting for frequency stabilization purpose. Using wavefunctions calculated with the multi-configuration Hartree-Fock method, the hyperfine structure interaction constants of the 3s 2 S and the 3p 2 P states in 23 Na and the 3s3p 1.3 P and the 3s3d 1.3 D states in 25 Mg, the only stable isotope of magnesium with a hyperfine structure, were determined. (62 refs.) (au)
Hyperfine structure studies with the COMPLIS facility
Crawford, J E; Le Blanc, F; Lunney, M D; Obert, J; Oms, J; Putaux, J C; Roussière, B; Sauvage, J; Zemlyanoi, S G; Verney, D; Pinard, J; Cabaret, L A; Duong, H T; Huber, G; Krieg, M; Sebastian, V; Girod, M; Peru, S; Genevey, J; Ibrahim, F; Lettry, Jacques
1998-01-01
COMPLIS is an experimental facility designed to carry out spectroscopic studies on radioisotopes produced by disintegration of elements available at CERN's Booster-ISOLDE on-line isotope separator. During recent series of experimental runs, hyperfine structure measurements have yielded information on nuclear moments and deformations of platinum and iridium isotopes, For the first time, population by alpha -decay from Hg was exploited to investigate /sup 178/-/sup 181/Pt-the most neutron-deficient Pt isotopes yet studied. Successful measurements have recently been carried out on /sup 182-189/Ir. (10 refs).
Improved Study of the Antiprotonic Helium Hyperfine Structure
Pask, T.; Dax, A.; Hayano, R.S.; Hori, M.; Horvath, D.; Juhasz, B.; Malbrunot, C.; Marton, J.; Ono, N.; Suzuki, K.; Zmeskal, J.; Widmann, E.
2008-01-01
We report the initial results from a systematic study of the hyperfine (HF) structure of antiprotonic helium (n,l) = (37,~35) carried out at the Antiproton Decelerator (AD) at CERN. We performed a laser-microwave-laser resonance spectroscopy using a continuous wave (cw) pulse-amplified laser system and microwave cavity to measure the HF transition frequencies. Improvements in the spectral linewidth and stability of our laser system have increased the precision of these measurements by a factor of five and reduced the line width by a factor of three compared to our previous results. A comparison of the experimentally measured transition frequencies with three body QED calculations can be used to determine the antiproton spin magnetic moment, leading towards a test of CPT invariance.
Hyperfine structure of S-states of muonic tritium
Directory of Open Access Journals (Sweden)
Martynenko F.A.
2017-01-01
Full Text Available On the basis of quasipotential method in quantum electrodynamics we carry out a precise calculation of hyperfine splitting of S-states in muonic tritium. The one-loop and two-loop vacuum polarization corrections, relativistic effects, nuclear structure corrections in first and second orders of perturbation theory are taken into account. The contributions to hyperfine structure are obtained in integral form and calculated analytically and numerically. Obtained results for hyperfine splitting can be used for a comparison with future experimental data of CREMA collaboration.
Measurement of the hyperfine structure of antihydrogen in a beam
Energy Technology Data Exchange (ETDEWEB)
Widmann, E., E-mail: ew@antihydrogen.at; Diermaier, M. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria); Juhasz, B. [Lufthansa Systems Hungaria Kft. (Hungary); Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Suzuki, K.; Wuenschek, B.; Zmeskal, J. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria); Federmann, S. [CERN (Switzerland); Kuroda, N. [University of Tokyo, Institute of Physics (Japan); Ulmer, S.; Yamazaki, Y. [RIKEN Advanced Science Institute (Japan)
2013-03-15
A measurement of the hyperfine structure of antihydrogen promises one of the best tests of CPT symmetry. We describe an experiment planned at the Antiproton Decelerator of CERN to measure this quantity in a beam of slow antihydrogen atoms.
Spin-torsion effects in the hyperfine structure of methanol
International Nuclear Information System (INIS)
Coudert, L. H.; Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.
2015-01-01
The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling
Hyperfine structure of S-states of muonic deuterium
Directory of Open Access Journals (Sweden)
Alexey P. Martynenko
2015-09-01
Full Text Available On the basis of quasipotential method in quantum electrodynamics we calculate corrections of order $\\alpha^5$ and $\\alpha^6$ to hyperfine structure of $S$-wave energy levels of muonic deuterium. Relativistic corrections, effects of vacuum polarization in first, second and third orders of perturbation theory, nuclear structure and recoil corrections are taken into account. The obtained numerical values of hyperfine splitting $\\Delta E^{hfs}(1S=50.2814$ meV ($1S$ state and $\\Delta E^{hfs}(2S=6.2804$ meV ($2S$ state represent reliable estimate for a comparison with forthcoming experimental data of CREMA collaboration. The hyperfine structure interval $\\Delta_{12}=8\\Delta E^{hfs}(2S- \\Delta E^{hfs}(1S=-0.0379$ meV can be used for precision check of quantum electrodynamics prediction for muonic deuterium.
Calculation of hyperfine structure constants of small molecules using
Indian Academy of Sciences (India)
The Z-vector method in the relativistic coupled-cluster framework is employed to calculate the parallel and perpendicular components of the magnetic hyperfine structure constant of a few small alkaline earth hydrides (BeH, MgH, and CaH) and fluorides (MgF and CaF). We have compared our Z-vector results with the values ...
α-spectra hyperfine structure resolution by silicon planar detectors
International Nuclear Information System (INIS)
Eremin, V.K.; Verbitskaya, E.M.; Strokan, N.B.; Sukhanov, V.L.; Malyarenko, A.M.
1986-01-01
The lines with 13 keV step from the main one is α-spectra of nuclei with an odd number of nucleons take place. Silicon planar detectors n-Si with the operation surface of 10 mm 2 are developed for resolution of this hyperfine structure. The mechanism of losses in detectors for short-range-path particles is analyzed. The results of measurements from detectors with 10 keV resolution are presented
cap alpha. -spectra hyperfine structure resolution by silicon planar detectors
Energy Technology Data Exchange (ETDEWEB)
Eremin, V K; Verbitskaya, E M; Strokan, N B; Sukhanov, V L; Malyarenko, A M
1986-10-01
The lines with 13 keV step from the main one is ..cap alpha..-spectra of nuclei with an odd number of nucleons take place. Silicon planar detectors n-Si with the operation surface of 10 mm/sup 2/ are developed for resolution of this hyperfine structure. The mechanism of losses in detectors for short-range-path particles is analyzed. The results of measurements from detectors with 10 keV resolution are presented.
Hyperfine Structure Measurements of Antiprotonic $^3$He using Microwave Spectroscopy
Friedreich, Susanne
The goal of this project was to measure the hyperfine structure of $\\overline{\\text{p}}^3$He$^+$ using the technique of laser-microwave-laser spectroscopy. Antiprotonic helium ($\\overline{\\text{p}}$He$^+$) is a neutral exotic atom, consisting of a helium nucleus, an electron and an antiproton. The interactions of the angular momenta of its constituents cause a hyperfine splitting ({HFS}) within the energy states of this new atom. The 3\\% of formed antiprotonic helium atoms which remain in a metastable, radiative decay-dominated state have a lifetime of about 1-3~$\\mu$s. This time window is used to do spectroscopic studies. The hyperfine structure of $\\overline{\\text{p}}^4$He$^+$ was already extensively investigated before. From these measurements the spin magnetic moment of the antiproton can be determined. A comparison of the result to the proton magnetic moment provides a test of {CPT} invariance. Due to its higher complexity the new exotic three-body system of $\\overline{\\text{p}}^3$He$^+$ is a cross-check...
Theoretical and experimental investigation of atomic radiative lifetimes and hyperfine structures
International Nuclear Information System (INIS)
Joensson, Per.
1992-01-01
Atomic radiative lifetimes and hyperfine structures as well as other properties, such as total energy and specific mass shift, have been studied theoretically and experimentally. Computer programs to calculate hyperfine structure constants from non-relativistic multiconfiguration Hartree-Fock (MCHF) and relativistic multi-configuration Dirac-Fock (MCDF) wavefunctions have been written. Using these programs large-scale calculations of hyperfine structures in lithium and sodium have been performed. It is shown, that the MCHF method is able to predict hyperfine structures to an accuracy of a few per mille in lithium, whereas for the more complex hyperfine structures to an accuracy of a few per mille in lithium, whereas for the more complex sodium atom an accuracy of a few per cent is obtainable. For lithium convergence of the total energy, ionization energy, specific mass shift and hyperfine parameters has been studied with the MCHF method. Radiative lifetimes and hyperfine structures of excited states in sodium and silver have been experimentally determined using time-resolved laser spectroscopy. By recording the fluorescence light decay curves following VUV excitation, the radiative lifetimes and hyperfine structures of the 7p 2 P states in silver were measured. The delayed-coincidence technique has been used to make very accurate measurements of the radiative lifetimes and hyperfine structures of the lowest P states in sodium and silver
Hyperfine structure of nine levels in two configurations of 93Nb. Pt. 1
International Nuclear Information System (INIS)
Buettgenbach, S.; Dicke, R.; Gebauer, H.; Herschel, M.; Meisel, G.
1975-01-01
The hyperfine structure of the multiplets 4d 4 5s 6 D and 4d 3 5s 24 F of 93 Nb has been studied by the atomic-beam magnetic-resonance method. After applying corrections due to effects of off-diagonal hyperfine and Zeeman interactions the hyperfine interaction constants A and B and the electron g factors gsub(J) are determined for all nine levels of the two multiplets. (orig.) [de
Hyperfine Structure and Isotope Shifts in Dy II
Directory of Open Access Journals (Sweden)
Dylan F. Del Papa
2017-01-01
Full Text Available Using fast-ion-beam laser-fluorescence spectroscopy (FIBLAS, we have measured the hyperfine structure (hfs of 14 levels and an additional four transitions in Dy II and the isotope shifts (IS of 12 transitions in the wavelength range of 422–460 nm. These are the first precision measurements of this kind in Dy II. Along with hfs and IS, new undocumented transitions were discovered within 3 GHz of the targeted transitions. These atomic data are essential for astrophysical studies of chemical abundances, allowing correction for saturation and the effects of blended lines. Lanthanide abundances are important in diffusion modeling of stellar interiors, and in the mechanisms and history of nucleosynthesis in the universe. Hfs and IS also play an important role in the classification of energy levels, and provide a benchmark for theoretical atomic structure calculations.
Structural properties and hyperfine characterization of Sn-substituted goethites
Energy Technology Data Exchange (ETDEWEB)
Larralde, A.L. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Ramos, C.P. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Arcondo, B. [Departamento de Fisica, Facultad de Ingenieria, Universidad de Buenos Aires, Av. Paseo Colon 850 (C1063ACV), Bs. As. (Argentina); Tufo, A.E. [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Saragovi, C. [Departamento de Fisica de la Materia Condensada, GIyA - CAC - CNEA, Av. Gral. Paz 1499 (1650), San Martin, Bs. As. (Argentina); Sileo, E.E., E-mail: sileo@qi.fcen.uba.ar [INQUIMAE, Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)
2012-04-16
Highlights: Black-Right-Pointing-Pointer Pure and tin-doped goethites were synthesized from Sn(II) solutions at ambient pressure and 70 Degree-Sign C. Black-Right-Pointing-Pointer The Rietveld refinement of PXRD data indicated that Sn partially substituted the Fe(III) ions. Black-Right-Pointing-Pointer The substitution provoked unit cell expansion, and a distortion of the coordination polyhedron. Black-Right-Pointing-Pointer {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV). Black-Right-Pointing-Pointer {sup 57}Fe Moessbauer spectroscopy showed a lower magnetic coupling as tin concentration increased. - Abstract: Tin-doped goethites obtained by a simple method at ambient pressure and 70 Degree-Sign C were characterized by inductively coupled plasma atomic emission spectrometry, scanning electron microscopy, Rietveld refinement of powder X-ray diffraction data, and {sup 57}Fe and {sup 119}Sn Moessbauer spectroscopy. The particles size and the length to width ratios decreased with tin-doping. Sn partially substituted the Fe(III) ions provoking unit cell expansion and increasing the crystallinity of the particles with enlarged domains that grow in the perpendicular and parallel directions to the anisotropic broadening (1 1 1) axis. Intermetallic E, E Prime and DC distances also change although the variations are not monotonous, indicating different variations in the coordination polyhedron. In general, the Sn-substituted samples present larger intermetallic distances than pure goethite, and the greatest change is shown in the E Prime distance which coincides with the c-parameter. {sup 119}Sn Moessbauer spectroscopy revealed that Sn(II) is incorporated as Sn(IV) in the samples. On the other hand, Fe(II) presence was not detected by {sup 57}Fe Moessbauer spectroscopy, suggesting the existence of vacancies in the Sn-doped samples. A lower magnetic coupling is also evidenced from the average magnetic hyperfine field values obtained as tin
International Nuclear Information System (INIS)
Hong Fenglei; Zhang Yun; Ishikawa, Jun; Onae, Atsushi; Matsumoto, Hirokazu
2002-01-01
Hyperfine structures of the R(87)33-0, R(145)37-0, and P(132)36-0 transitions of molecular iodine near 532 nm are measured by observing the heterodyne beat-note signal of two I 2 -stabilized lasers, whose frequencies are bridged by an optical frequency comb generator. The measured hyperfine splittings are fit to a four-term Hamiltonian, which includes the electric quadrupole, spin-rotation, tensor spin-spin, and scalar spin-spin interactions, with an accuracy of ∼720 Hz. High-accurate hyperfine constants are obtained from this fit. Vibration dependences of the tensor spin-spin and scalar spin-spin hyperfine constants are determined for molecular iodine, for the first time to our knowledge. The observed hyperfine transitions are good optical frequency references in the 532-nm region
Experimental Constraints on Polarizability Corrections to Hydrogen Hyperfine Structure
International Nuclear Information System (INIS)
Nazaryan, Vahagn; Carlson, Carl E.; Griffioen, Keith A.
2006-01-01
We present a state-of-the-art evaluation of the polarizability corrections--the inelastic nucleon corrections--to the hydrogen ground-state hyperfine splitting using analytic fits to the most recent data. We find a value Δ pol =1.3±0.3 ppm. This is 1-2 ppm smaller than the value of Δ pol deduced using hyperfine splitting data and elastic nucleon corrections obtained from modern form factor fits
Hyperfine structure and isotope shift analysis of singly ionized titanium
Bouazza, Safa
2013-04-01
The even-parity low configuration system of Ti II has been considered on the basis of the experimental data found in the literature, and its fine structure has been reanalyzed by simultaneous parameterization of one- and two-body interactions for the model space (3d + 4s)3. Furthermore, the main one-electron hyperfine structure parameters for these configurations have been evaluated. For instance, for 3d24s1, a_{3{\\rm{d}}}^{01} = - {\\rm{63}}.{\\rm{2}}\\left( {{\\rm{3}}.{\\rm{1}}} \\right)\\,{\\rm{MHz}} and a_{4{\\rm{s}}}^{10} = - {\\rm{984}}.{\\rm{1}}\\left( {{\\rm{7}}.{\\rm{1}}} \\right)\\,{\\rm{MHz}} . Field shifts (FS) and specific mass shifts (SMS) of the main Ti II configurations are deduced by means of ab initio estimates combined with a small quantity of experimental isotope shift data available in the literature: FS(3d3) = -63.3 MHz, FS(3d24p1) = -49.7 MHz, FS(3d14s2) = 98.2 MHz, FS(4s24P1) = 163.4 MHz and SMS(3d3) = 1453.3 MHz, SMS(3d14s2) = -2179.7 MHz, …, referred to 3d24s1 for the pair Ti46-Ti48.
Energy Levels, wavelengths and hyperfine structure measurements of Sc II
Hala, Fnu; Nave, Gillian
2018-01-01
Lines of singly ionized Scandium (Sc II) along with other Iron group elements have been observed [1] in the region surrounding the massive star Eta Carinae [2,3] called the strontium filament (SrF). The last extensive analysis of Sc II was the four-decade old work of Johansson & Litzen [4], using low-resolution grating spectroscopy. To update and extend the Sc II spectra, we have made observation of Sc/Ar, Sc/Ne and Sc/Ge/Ar hollow cathode emission spectrum on the NIST high resolution FT700 UV/Vis and 2 m UV/Vis/IR Fourier transform spectrometers (FTS). More than 850 Sc II lines have been measured in the wavelength range of 187 nm to 3.2 μm. connecting a total of 152 energy levels. The present work also focuses to resolve hyperfine structure (HFS) in Sc II lines. We aim to obtain accurate transition wavelengths, improved energy levels and HFS constants of Sc II. The latest results from work in progress will be presented.Reference[1] Hartman H, Gull T, Johansson S and Smith N 2004 Astron. Astrophys. 419 215[2] Smith N, Morse J A and Gull T R 2004 Astrophys. J. 605 405[3] Davidson K and Humphreys R M 1997 Annu. Rev. Astron. Astrophys. 35[4] Johansson S and Litzén U 1980 Phys. Scr. 22 49
Recoil effects in the hyperfine structure of QED bound states
International Nuclear Information System (INIS)
Bodwin, G.T.; Yennie, D.R.; Gregorio, M.A.
1985-01-01
The authors give a general discussion of the derivation from field theory of a formalism for the perturbative solution of the relativistic two-body problem. The lowest-order expression for the four-point function is given in terms of a two-particle three-dimensional propagator in a static potential. It is obtained by fixing the loop energy in the four-dimensional formalism at a point which is independent of the loop momentum and is symmetric in the two particle variables. This method avoids awkward positive- and negative-energy projectors, with their attendant energy square roots, and allows one to recover the Dirac equation straightforwardly in the nonrecoil limit. The perturbations appear as a variety of four-dimensional kernels which are rearranged and regrouped into convenient sets. In particular, they are transformed from the Coulomb to the Feynman gauge, which greatly simplifies the expressions that must be evaluated. Although the approach is particularly convenient for the precision analysis of QED bound states, it is not limited to such applications. The authors use it to give the first unified treatment of all presently known recoil corrections to the muonium hyperfine structure and also to verify the corresponding contributions through order α 2 lnαE/sub F/ in positronium. The required integrals are evaluated analytically
Hyperfine structure of the S- and P-wave states of muonic deuterium
International Nuclear Information System (INIS)
Martynenko, A. P.; Martynenko, G. A.; Sorokin, V. V.; Faustov, R. N.
2016-01-01
Corrections of order α"5 and α"6 to the hyperfine structure of the S- and P-wave states of muonic deuteriumwere calculated on the basis of the quasipotential approach in quantum electrodynamics. Relativistic corrections, vacuum-polarization and deuteron-structure effects, and recoil corrections were taken into account in this calculation. The resulting hyperfine-splitting values can be used in a comparison with experimental data obtained by the CREMA Collaboration.
Energy Technology Data Exchange (ETDEWEB)
Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)
2016-07-28
We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O{sub 2} reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.
Germann, Matthias; Willitsch, Stefan
2016-07-28
We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.
Muonium hyperfine structure : An analytical solution to perturbative calculations
International Nuclear Information System (INIS)
Wotzasek, C.J.; Gregorio, M.A.; Reinecke, S.
1982-01-01
The purely coulombian contribution to the terms of order E sub(F) (α 2 m sub(e)/m sub(μ))ln α - 1 of the hyperfine splitting of muonium is computed. Results agree with those of other authors. The goal of the work was twofold: first, to confirm that contribution; second, and perhaps more important, to check the analytic solution of the relativistic coulombian problem of the Bethe-Salpeter equation with instantaneous kernel. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)
2016-07-28
Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structure that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.
Hosain, M. A.; Le Floch, J.-M.; Krupka, J.; Tobar, M. E.
2018-01-01
The impurity paramagnetic ion, Cu2+ substitutes Al in the SrLaAlO4 single crystal lattice, this results in a CuO6 elongated octahedron, and the resulting measured g-factors satisfy four-fold axes variation condition. The aggregate frequency width of the electron spin resonance with the required minimum level of impurity concentration has been evaluated in this single crystal SrLaAlO4 at 20 millikelvin. Measured parallel hyperfine constants, A\\Vert Cu , were determined to be -155.7×10-4~cm-1, ~ -163.0×10-4~cm-1, ~ -178.3×10-4~cm-1 and -211.1×10-4~cm-1 at 9.072~GHz~(WGH4, 1, 1) for the nuclear magnetic quantum number M_I=+\\frac{3}{2}, +\\frac{1}{2}, -\\frac{1}{2} , and -\\frac{3}{2} respectively. The anisotropy of the hyperfine structure reveals the characteristics of the static Jahn-Teller effect. The second-order-anisotropy term, ˜ (\\fracspin{-orbit~coupling}{10D_q}){\\hspace{0pt}}2 , is significant and cannot be disregarded, with the local strain dominating over the observed Zeeman-anisotropy-energy difference. The Bohr electron magneton, β=9.23× 10-24 JT-1 , (within -0.43% so-called experimental error) has been found using the measured spin-Hamiltonian parameters. Measured nuclear dipolar hyperfine structure parameter P\\Vert=12.3×10-4~cm-1 shows that the mean inverse third power of the electron distance from the nucleus is ≃ 5.23 a.u. for Cu2+ ion in the substituted Al3+ ion site assuming nuclear electric quadruple moment Q=-0.211 barn.
Hyperfine structure of ScI by infrared Fourier transform spectroscopy
International Nuclear Information System (INIS)
Aboussaid, A.; Carleer, M.; Hurtmans, D.; Biemont, E.; Godefroid, M.R.
1996-01-01
The spectrum of scandium was recorded in the infrared region using a high resolution Fourier transform spectrometer and a hollow-cathode discharge. Hyperfine structures of the lines connecting the 3d 2 4s and 3d4s4p level systems of Sc 45 I were observed between 4000 and 5000 cm -1 . The structures were not completely resolved but the individual line contributions to the complex profiles were simulated using the 3d 2 4s 4 F J hyperfine structure constants previously measured with a high precision by laser techniques. We investigate the possibility of extracting the hyperfine constants of the 3d4s4p levels from a least-squares fit of the line profiles, assuming a Doppler lineshape and theoretical relative intensities. New results are presented for 12 levels. (orig.)
Hyperfine structure in 5s4d 3D-5snf transitions of 87Sr
International Nuclear Information System (INIS)
Bushaw, B.A.; Kluge, H.J.; Lantzsch, J.; Schwalbach, R.; Stenner, J.; Stevens, H.; Wendt, K.; Zimmer, K.
1993-01-01
The hyperfine spectra of the 5s4d 3 D 1 -5s20f, 5s4d 3 D 2 -5s23f, and 5s4d 3 D 3 -5s32f transitions of 87 Sr (I=9/2) have been measured by collinear fast beam laser spectroscopy. The structure in the upper configurations is highly perturbed by fine structure splitting that is of comparable size to the hyperfine interaction energy. These perturbations can be adequately treated with conventional matrix diagonalization methods, using the 5s-electron magnetic dipole interaction term a 5s and the unperturbed fine structure splittings as input parameters. Additionally, hyperfine constants for the lower 5s4d 3 D configurations, including the A- and B-factors and a separation of the individual s- and d-electron contributions to these factors, are derived. (orig.)
Hyperfine structure measurements of neutral iodine atom (127I) using Fourier Transform Spectrometry
Ashok, Chilukoti; Vishwakarma, S. R.; Bhatt, Himal; Ankush, B. K.; Deo, M. N.
2018-01-01
We report the hyperfine Structure (hfs) splitting observations of neutral iodine atom (II) in the 6000 - 10,000 cm-1 near infrared spectral region. The measurements were carried out using a high-resolution Fourier Transform Spectrometer (FTS), where an electrodeless discharge lamp (EDL), excited using microwaves, was employed as the light source and InGaAs as the light detector. A specially designed setup was used to lower the plasma temperature of the medium so as to reduce the Doppler width and consequently to increase the spectral resolution of hfs components. A total of 183 lines with hfs splitting have been observed, out of which hfs in 53 spectral lines are reported for the first time. On the basis of hfs analysis, we derived the magnetic dipole and electric quadrupole coupling constants, A and B respectively for 30 even and 30 odd energy levels and are compared with the values available in the literature. New hfs values for 5 even and 4 odd levels are also reported here for the first time.
Hyperfine structure investigations for the odd-parity configuration system in atomic holmium
Stefanska, D.; Furmann, B.
2018-02-01
In this work new experimental results of the hyperfine structure (hfs) in the holmium atom are reported, concerning the odd-parity level system. Investigations were performed by the method of laser induced fluorescence in a hollow cathode discharge lamp on 97 spectral lines in the visible part of the spectrum. Hyperfine structure constants: magnetic dipole - A and electric quadrupole - B for 40 levels were determined for the first time; for another 21 levels the hfs constants available in the literature were remeasured. Results for the A constants can be viewed as fully reliable; for B constants further possibilities of improving the accuracy are considered.
Hyperfine structure of the S levels of the muonic helium ion
International Nuclear Information System (INIS)
Martynenko, A. P.
2008-01-01
Corrections of the α 5 and α 6 orders to the energy spectrum of the hyperfine splitting of the 1S and 2S levels of the muonic helium ion are calculated with the inclusion of the electron vacuum polarization effects, nuclear-structure corrections, and recoil effects. The values ΔE hfs (1S) = -1334.56 meV and ΔE hfs (2S) = -166.62 meV obtained for hyperfine splitting values can be considered as reliable estimates for comparison with experimental data. The hyperfine structure interval Δ 12 = 8ΔE hfs (2S) - ΔE hfs (1S) = 1.64 meV can be used to verify QED predictions
International Nuclear Information System (INIS)
Buettgenbach, S.; Dicke, R.; Gebauer, H.; Kuhnen, R.; Traeber, F.
1978-01-01
The hyperfine interaction constants A and B of six low-lying metastable fine structure states of the two iridium isotopes 191 Ir and 193 Ir and the electronic g-factors of these levels have been measured using the atomic-beam magnetic-resonance method. From the values of the magnetic-dipole interaction constants A, corrected for off-diagonal perturbations, we extracted the hyperfine anomaly of a pure 6s-electron state: 191 Δs 193 = 0.64(7)%. Using nonrelativistic approximations for the effective radial parameters the nuclear electric-quadrupole moments were obtained: Q( 191 Ir) = 0.81(21)b, Q( 193 Ir) = 0.73(19)b (corrected for Sternheimer shielding effects). (orig.) [de
Investigation of the hyperfine structure of Praseodymium-transitions using laser spectroscopy
International Nuclear Information System (INIS)
Shamim Khan
2011-01-01
A comprehensive knowledge of the electron levels in an atom is one of the prerequisite for understanding the electron-electron and electron-nucleus interactions inside an atom and for the classification of the atomic spectrum of an element. The spin-orbit interaction is the largest relativistic effect and is responsible for the fine structure splitting in an atom. The hyperfine structure splitting of the fine structure atomic energy levels arise as a result of the interaction between spinning and orbiting electrons and electromagnetic multipole nuclear moments. The electronic ground state configuration of praseodymium 59 Pr 141 is [Xe] 4f 3 6s 2 , with ground state level 4 I 9/2 . Because of its 5 outer electrons Praseodymium has a high density of energy levels which give rise to an extremely line rich emission spectrum. Due to this fact praseodymium serves as an efficient testing ground for hyperfine structure studies. The thesis is mainly devoted to the finding of previously unknown energy levels by the investigation of spectral lines and their hyperfine structures. In a hollow cathode discharge lamp praseodymium atoms and ions in ground and excited states are excited to high lying states by laser light. The excitation source is a tunable ring-dye laser system, operated with Stilbene 3, Rhodamine 6G, Kiton Red, DCM and LD 700. A high resolution Fourier Transform spectrum is used for extracting excitation wavelengths. Then the laser wavelength is tuned to a strong hyperfine component of the spectral line to be investigated, and a search for fluorescence from excited levels is performed. From the observed hyperfine structure pattern, J-values and hyperfine interaction constants A of the combining levels are determined. This information, together with excitation and fluorescence wavelengths, allows us to find the energies of the involved levels. During the course of this dissertation 313 new energy levels of Pr I and 4 new energy levels of Pr II were discovered
Stefanska, D.; Ruczkowski, J.; Elantkowska, M.; Furmann, B.
2018-04-01
In this work new experimental results concerning the hyperfine structure (hfs) for the even-parity level system of the holmium atom (Ho I) were obtained; additionally, hfs data obtained recently as a by-product in investigations of the odd-parity level system were summarized. In the present work the values of the magnetic dipole and the electric quadrupole hfs constants A and B were determined for 24 even-parity levels, for 14 of them for the first time. On the basis of these results, as well as on available literature data, a parametric study of the fine structure and the hyperfine structure for the even-parity configurations of atomic holmium was performed. A multi-configuration fit of 7 configurations was carried out, taking into account second-order of the perturbation theory. For unknown electronic levels predicted values of the level energies and hfs constants are given, which can facilitate further experimental investigations.
International Nuclear Information System (INIS)
Anjum, N.
2012-01-01
In this research work the hyperfine structures of spectral lines of barium (Ba) and three lanthanides elements; praseodymium (Pr), lanthanum (La) and neodymium (Nd) have been investigated. The hyperfine splitting factors A and B of the involved levels have been determined with high accuracy and the data are compared with other published results. This research work is divided in four parts. In the 1st part, the hyperfine structures of the spectral lines of the singly ionized praseodymium (Pr II) are investigated by three different laser spectroscopic techniques; laser induced fluorescence (LIF) spectroscopy, inter-modulated saturation spectroscopy and collinear laser ion beam spectroscopy (CLIBS). The 2nd part is concerned with the a control-check of the Marburg mass separator (MARS-II), as it was shifted from the University of Marburg, Germany, to Graz University of Technology in 2002. The check is performed using a well known spectral line 5853.67 Å of the odd isotope of singly ionized barium (137Ba II). In the 3rd part of this work the hyperfine structure of spectral lines of lanthanum-139 ions (139La II) is investigated. The 4th part is devoted to the investigation of the hyperfine structure of spectral lines of two odd isotopes of singly ionized neodymium (143Nd II and 145Nd II) and the determination of the coupling constants A and B of the involved levels. To determine the hyperfine anomaly the ratios of the magnetic dipole constants, i.e A143/A145, and the electric quadrupole constants B143/B145 of the corresponding levels are also calculated. The last three parts of this research project are executed using the high resolution, Doppler reduced method of CLIBS. In CLIBS technique the ions are accelerated by applying a high potential difference (∼ 20 kV). Due to the accelerating cooling (kinematic compression) the spread in velocities in the direction of the flight is reduced several times, hence the Doppler width is reduced. The accelerated ion beam is mass
Towards isotope shift and hyperfine structure measurements of the element nobelium
Energy Technology Data Exchange (ETDEWEB)
Chhetri, Premaditya; Lautenschlaeger, Felix; Walther, Thomas [Institut fuer Angewandte Physik, TU Darmstadt, D-64289 Darmstadt (Germany); Laatiaoui, Mustapha [Helmholtz Institut Mainz, D-55099 Mainz (Germany); Block, Michael; Hessberger, Fritz-Peter [Helmholtz Institut Mainz, D-55099 Mainz (Germany); GSI, D-64291 Darmstadt (Germany); Lauth, Werner; Backe, Hartmut [Institut fuer Kernphysik, JGU Mainz, D-55122 Mainz (Germany); Kunz, Peter [TRIUMF, D-V6T2A3 Vancouver (Canada)
2014-07-01
Laser spectroscopy on the heaviest elements is of great interest as it allows the study of the evolution of relativistic effects on their atomic structure. In our experiment we exploit the Radiation Detected Resonance Ionization Spectroscopy technique and use excimer-laser pumped dye lasers to search for the first time the {sup 1}P{sub 1} level in {sup 254}No. Etalons will be used in the forthcoming experiments at GSI, Darmstadt, to narrow down the bandwidth of the dye lasers to 0.04 cm{sup -1}, for the determination of the isotope shift and hyperfine splitting of {sup 253,} {sup 255}No. In this talk results from preparatory hyperfine structure studies in nat. ytterbium and the perspectives for future experiments of the heaviest elements are discussed.
Hyperfine structure in the Gd II spectrum and the nuclear electric quadrupole moment of 157Gd
International Nuclear Information System (INIS)
Clieves, H.P.; Steudel, A.
1979-01-01
The hyperfine structure of 157 Gd was investigated in 20 Gd II lines by means of a photoelectric recording Fabry-Perot interferometer with digital data processing. The hyperfine splitting factors, A and B, were obtained by computer fits to the observed line structures. Using a multiconfigurational set of wave functions in intermediate coupling derived by Wyart, mono-electronic parameters were deduced by a parametric treatment. The nuclear electric quadrupole moment of 157 Gd was evaluated from the quadrupole interaction of the 5d electron in 4f 7 5d6s, the 5d electron in 4f 7 5d6p, and the 6p electron in 4f 7 5d6p. The three values obtained for the quadrupole moment agree very well. The final result, corrected for Sternheimer shielding, is Q( 157 Gd) = 1.34(7) x 10 -24 cm 2 . (orig.) [de
The contribution of pseudoscalar mesons to hyperfine structure of muonic hydrogen
International Nuclear Information System (INIS)
Dorokhov, A.E.; Kochelev, N.I.; Martynenko, A.P.; Martynenko, F.A.; Faustov, R.N.
2017-01-01
In the framework of the quasipotential method in quantum electrodynamics we calculate the contribution of pseudoscalar mesons to the interaction operator of a muon and a proton in muonic hydrogen atom. The parametrization of the transition form factor of two photons into π, η mesons, based on the experimental data on the transition form factors and QCD asymptotics is used. Numerical estimates of the contributions to the hyperfine structure of the spectrum of the S and P levels are presented.
The contribution of pseudoscalar mesons to hyperfine structure of muonic hydrogen
Dorokhov, A. E.; Kochelev, N. I.; Martynenko, A. P.; Martynenko, F. A.; Faustov, R. N.
2017-01-01
In the framework of the quasipotential method in quantum electrodynamics we calculate the contribution of pseudoscalar mesons to the interaction operator of a muon and a proton in muonic hydrogen atom. The parametrization of the transition form factor of two photons into $\\pi$, $\\eta$ mesons, based on the experimental data on the transition form factors and QCD asymptotics is used. Numerical estimates of the contributions to the hyperfine structure of the spectrum of the S and P levels are pr...
New precise measurement of muonium hyperfine structure interval at J-PARC
Energy Technology Data Exchange (ETDEWEB)
Ueno, Y., E-mail: yueno@radphys4.c.u-tokyo.ac.jp [University of Tokyo, Graduate School of Arts and Sciences (Japan); Aoki, M. [Osaka University, Graduate School of Science (Japan); Fukao, Y. [KEK (Japan); Higashi, Y.; Higuchi, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Iinuma, H.; Ikedo, Y. [KEK (Japan); Ishida, K. [RIKEN (Japan); Ito, T. U. [Japan Atomic Energy Agency (Japan); Iwasaki, M. [RIKEN (Japan); Kadono, R. [KEK (Japan); Kamigaito, O. [RIKEN (Japan); Kanda, S. [University of Tokyo, Department of Physics (Japan); Kawall, D. [University of Massachusetts, Amherst, Department of Physics (United States); Kawamura, N.; Koda, A.; Kojima, K. M. [KEK (Japan); Kubo, M. K. [International Christian University, Graduate School of Arts and Science (Japan); Matsuda, Y. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Mibe, T. [KEK (Japan); and others
2017-11-15
MuSEUM is an international collaboration aiming at a new precise measurement of the muonium hyperfine structure at J-PARC (Japan Proton Accelerator Research Complex). Utilizing its intense pulsed muon beam, we expect a ten-fold improvement for both measurements at high magnetic field and zero magnetic field. We have developed a sophisticated monitoring system, including a beam profile monitor to measure the 3D distribution of muonium atoms to suppress the systematic uncertainty.
Energy Technology Data Exchange (ETDEWEB)
Pal' chikov, V.G. [National Research Institute for Physical-Technical and Radiotechnical Measurements - VNIIFTRI (Russian Federation)], E-mail: vitpal@mail.ru
2000-08-15
A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth.
The hyperfine structure constants for the 4s24p and 4s25s states of Ga
International Nuclear Information System (INIS)
Wang Qingmin; Dong Chenzhong
2012-01-01
The hyperfine structure (hfs) constants for the states 4s 2 4p 2 P 1/2,3/2 and 4s 2 5s 2 S 1/2 of 71 Ga were calculated using the GRASP2K package based on the multiconfiguration Dirac-Fock (MCDF) method. The results indicated that the core polarization effect was important for the hyperfine structure constants. (authors)
Energy Technology Data Exchange (ETDEWEB)
Kwon, Nam Ic [Hankuk University of foreign studies, Seoul (Korea)
2000-03-01
The source of anomalous broad linewidth of 3{sup 3}P{sub 1},{sub 2},{sub 3}-3{sup 3}D{sub 2},{sub 3},4(3s') transition was explained. The broad optogalvanic spectrum was consisted of two gaussian peaks of different linewidths, and they are separated by 250 MHz. The Narrow peak, which has linewidth of room temperature, is from oxygen atoms already separated, and the shifted broad peak, which has linewidth corresponding to a temperature of 9000 K, is from weakly bound molecular ions. Obtained hyperfine spectrum of fluorine atom at the expected frequency, was too weak to analyze hyperfine structure constants. Microwave discharge might be necessary for higher density of excited state. 16 refs., 11 figs. (Author)
Nuclear structure effects on alpha reduced widths
International Nuclear Information System (INIS)
Toth, K.S.; Ellis-Akovali, Y.A.; Kim, H.J.; McConnell, J.W.
1987-01-01
A review of α widths for s-wave transitions is presented together with a discussion of the following topics: (1) a new determination of the 218 Ra half-life and its relation to reflection asymmetry in nuclei near N = 130, (2) a measurement of the 194 Pb α-decay rate and the influence of the Z = 82 gap on neutron-deficient Pb nuclei, and (3) an up-date of α-decay-rate systematics for isotopes in the rare earth and medium-weight mass regions. 16 refs., 6 figs
International Nuclear Information System (INIS)
Siddiqui, Imran; Khan, Shamim; Gamper, B; Windholz, L; Dembczyński, J
2013-01-01
The hyperfine structure of weak La I lines was experimentally investigated using laser optogalvanic spectroscopy in a hollow cathode discharge lamp. More than 100 La I lines were investigated and 40 new energy levels were discovered, most of them having even parity. The magnetic hyperfine interaction constants A and in some cases the electric quadrupole interaction constants B for these levels were determined. All the newly discovered levels were confirmed either by additional laser excitations (from other known levels) or by lines in a Fourier transform spectrum which could now be classified. (paper)
Nave, Gillian
We propose to measure wavelengths, energy levels, and hyperfine structure parameters of Ni II, Mn II, Sc II and other singly-ionized iron-group elements, covering the wavelength range 80 nm to 5500 nm. We shall use archival data from spectrometers at NIST and Kitt Peak National Observatory for spectra above 140 nm. Additional experimental observations will be taken if needed using Fourier transform spectrometers at NIST. Spectra will be taken using our normal incidence grating spectrograph to provide better sensitivity than the FT spectra and to extend the wavelength range down to 80 nm. We aim to produce a comprehensive description of the spectra of all singly-ionized iron- group elements. The wavelength uncertainty of the strong lines will be better than 1 part in 10^7. For most singly-ionized iron-group elements available laboratory data have uncertainties an order of magnitude larger than astronomical observations over wide spectra ranges. Some of these laboratory measurements date back to the 1960's. Since then, Fourier transform spectroscopy has made significant progress in improving the accuracy and quantity of data in the UV-vis-IR region, but high quality Fourier transform spectra are still needed for Mn II, Ni II and Sc II. Fourier transform spectroscopy has low sensitivity in the VUV region and is limited to wavelengths above 140 nm. Spectra measured with high-resolution grating spectrographs are needed in this region in order to obtain laboratory data of comparable quality to the STIS and COS spectrographs on the Hubble Space Telescope. Currently, such data exist only for Fe II and Cr II. Lines of Sc II, V II, and Mn II show hyperfine structure, but hyperfine structure parameters have been measured for relatively few lines of these elements. Significant errors can occur if hyperfine structure is neglected when abundances are determined from stellar spectra. Measurements of hyperfine structure parameters will be made using Fourier transform spectroscopy
International Nuclear Information System (INIS)
Akhmedov, E.Kh.; Godunov, A.L.; Zemtsov, Yu.K.
1985-01-01
A theory of the contour of the Lsub(α) line of hydrogen-like ions in a dense plasma is developed by taking into account the hyperfine structure and Lamb and density shifts of levels. The effects of the ion microfield on the impact electron contribution to the widths and the radiative transition probabilities are taken into account. The ion microfield distribution function is found by taking into account the ion correlations. Results are presented of numerical calculations of the line contours for the Ne10, Al13 and Ar18 ions in a wide range of electron concentration
International Nuclear Information System (INIS)
Schroeder, L.; California Univ., Berkeley, CA; Lawrence Berkeley National Lab., Berkeley, CA
2007-01-01
The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the AMX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed. (orig.)
Schröder, Leif
2007-01-01
The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the A MX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed.
Design of a spin-flip cavity for the measurement of the antihydrogen hyperfine structure
Kroyer, T
2008-01-01
In the framework of the ASACUSA collaboration at the CERN Antiproton Decelerator an experiment for precisely testing the CPT invariance of the hydrogen hyperfine structure is currently being designed. An integral part of the set-up is the 1.42 GHz spin-flipping cavity, which should have a good field homogeneity over the large aperture of the antihydrogen beam. After the evaluation of various approaches a structure based on a resonant stripline is proposed as a concrete cavity design. For this structure the field homogeneity, undesired modes, coupling and power issues are discussed in detail.
Energy Technology Data Exchange (ETDEWEB)
Akhtar, Nadeem; Anjum, Naveed [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria); Optics Labs, Nilore, Islamabad (Pakistan); Huehnermann, Harry [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria); Fachbereich Physik, Univ. Marburg/Lahn (Germany); Windholz, Laurentius [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria)
2011-07-01
Investigation of narrow hyperfine structures needs a reduction of the Doppler broadening of the investigated lines. Here we have used two methods: collinear laser spectroscopy (CLIBS) and laser saturation spectroscopy. In the first method, the Doppler width is reduced by accelerating Pr ions to a high velocity and excitation with a collinear laser beam, while in the second method ions with velocity group zero are selected by nonlinear saturation. In this work the hyperfine spectra of several Pr II lines were investigated using CLIBS. A line width of ca. 60 MHz was measured. The same lines were then investigated in a hollow cathode discharge lamp using intermodulated laser-induced fluorescence spectroscopy. Using this technique a spectral line width of about 200 MHz was achieved. In both methods, the excitation source is a ring dye laser operated with R6G. Using a fit program, magnetic dipole interaction constants A and the electric-quadrupole interaction constants B of the involved levels have been determined in both cases. We discuss advantages and disadvantages of both methods.
Host material induced hyperfine structure of F{sup +} centres EPR spectra in CaS
Energy Technology Data Exchange (ETDEWEB)
Seeman, Viktor, E-mail: viktor.seeman@ut.ee; Dolgov, Sergei; Maaroos, Aarne
2017-05-15
The hyperfine structure (HFS) of F{sup +} centres in CaS single crystals due to the interaction with {sup 33}S and {sup 43}Ca nuclei was observed in EPR spectra for the first time. Angular variations of the HFS were measured for rotation of magnetic field in {100} and {110} crystallographic planes. Using measured orientation-dependent EPR spectra and the EPR NMR program, the parameters of the spin Hamiltonian were determined. In case of {sup 33}S nucleus there is a strong dependence of the F{sup +} centre EPR spectrum on the quadrupole term whereas for {sup 43}Ca nucleus this dependence is insignificant.
Crack width monitoring of concrete structures based on smart film
International Nuclear Information System (INIS)
Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhang, Xu; Yang, Guang; Qiu, Minfeng
2014-01-01
Due to its direct link to structural security, crack width is thought to be one of the most important parameters reflecting damage conditions of concrete structures. However, the width problem is difficult to solve with the existing structural health monitoring methods. In this paper, crack width monitoring by means of adhering enameled copper wires with different ultimate strains on the surface of structures is proposed, based on smart film crack monitoring put forward by the present authors. The basic idea of the proposed method is related to a proportional relationship between the crack width and ultimate strain of the broken wire. Namely, when a certain width of crack passes through the wire, some low ultimate strain wires will be broken and higher ultimate strain wires may stay non-broken until the crack extends to a larger scale. Detection of the copper wire condition as broken or non-broken may indicate the width of the structural crack. Thereafter, a multi-layered stress transfer model and specimen experiment are performed to quantify the relationship. A practical smart film is then redesigned with this idea and applied to Chongqing Jiangjin Yangtze River Bridge. (paper)
Crack width monitoring of concrete structures based on smart film
Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhang, Xu; Yang, Guang; Qiu, Minfeng
2014-04-01
Due to its direct link to structural security, crack width is thought to be one of the most important parameters reflecting damage conditions of concrete structures. However, the width problem is difficult to solve with the existing structural health monitoring methods. In this paper, crack width monitoring by means of adhering enameled copper wires with different ultimate strains on the surface of structures is proposed, based on smart film crack monitoring put forward by the present authors. The basic idea of the proposed method is related to a proportional relationship between the crack width and ultimate strain of the broken wire. Namely, when a certain width of crack passes through the wire, some low ultimate strain wires will be broken and higher ultimate strain wires may stay non-broken until the crack extends to a larger scale. Detection of the copper wire condition as broken or non-broken may indicate the width of the structural crack. Thereafter, a multi-layered stress transfer model and specimen experiment are performed to quantify the relationship. A practical smart film is then redesigned with this idea and applied to Chongqing Jiangjin Yangtze River Bridge.
High precision measurements of hyperfine structure in Tm II, N2+ and Sc II
International Nuclear Information System (INIS)
Mansour, N.B.; Dinneen, T.P.; Young, L.
1988-01-01
We have applied the technique of collinear fast-ion-beam laser spectroscopy to measure the hyperfine structure (hfs) in Sc II, Tm II and N 2 + . Laser induced fluorescence was observed from a 50 keV ion beam which was superimposed with the output of an actively stabilized ring dye laser (rms bandwidth 2 and the excited 3d4p configuration of Sc II and in the 4f 13 6s and 4f 13 5d configurations of the Tm II. The fine and hyperfine structure of N 2 + has been observed in the (0,1) and (1,2) band of B 2 Σ/sub u/ + /minus/X 2 Σ/sub g/ + system. Higher resolution measurements of the metastable 3d 2 configuration in Sc II were also made by laser-rf double resonance. The experimental results will be compared with those obtained by multiconfiguration Hartree-Fock ab-initio calculations. 15 refs., 4 figs., 5 tabs
Hyperfine structure in 229gTh3+ as a probe of the 229gTh→ 229mTh nuclear excitation energy.
Beloy, K
2014-02-14
We identify a potential means to extract the 229gTh→ 229mTh nuclear excitation energy from precision microwave spectroscopy of the 5F(5/2,7/2) hyperfine manifolds in the ion 229gTh3+. The hyperfine interaction mixes this ground fine structure doublet with states of the nuclear isomer, introducing small but observable shifts to the hyperfine sublevels. We demonstrate how accurate atomic structure calculations may be combined with the measurement of the hyperfine intervals to quantify the effects of this mixing. Further knowledge of the magnetic dipole decay rate of the isomer, as recently reported, allows an indirect determination of the nuclear excitation energy.
Electronic structure of radiation damage centre in zinc silicate from ESR hyperfine data
International Nuclear Information System (INIS)
Prasad, C.; Chakravarty, Sulata
1979-01-01
The occurrence of an ESR spectrum with six hyperfine components in X-irradiated zinc silicate, Zn 2 SiO was reported earlier. It is known that by the use of the experimental ESR data it is possible to work out the electronic structure of the paramagnetic damage center. The values of the hyperfine parameters A and B have been utilized to calculate the values of f'sub(s) and fsub(sigma), the fractional occupation of the 3s and 3psub(sigma) orbitals of the metal atom by the unpaired electron. The metal atom is 27 Al (I = 5/2, n.a. = 100%) which is present as an impurity in the lattice and occupies silicon sites. The bonding between the metal atom and each of the surrounding oxygen atom is assumed to be of the sigma-type. The values obtained for the fractional occupation are : f'sub(s) = 0.71 x 10sup(-2), fsub(sigma) = 14.65 x10sup(-2). The unpaired electron appears to belong to the ligand atom and is moderately delocalised on the Al atom where it occupies mainly the 3psup(sigma) orbital and not the 3s orbital. (auth.)
Analysis of structure of hyperfine poly(3-hydroxybutyrate) fibers (PHB) for controlled drug delivery
Olkhov, A. A.; Kosenko, R. Yu; Markin, V. S.; Zykova, A. K.; Pantyukhov, P. V.; Karpova, S. G.; Iordanskii, A. L.
2017-12-01
Hyperfine fibers based on biodegradable poly (3-hydroxybutyrate) with encapsulated drug substance (dipyridamol) were obtained by using electrospinning method. Addition of dipyridamol has a significant effect on geometrical shape and structure of microfibers as well as total porosity of fibrous material. Observation of fibers using scanning electron microscopy (SEM) method showed that without or at lower dipyridamol content (<3%) fibers consisted of interleaved ellipsoid and cylindrical fragments. At higher dipyridamol content (3-5%) anomalous ellipsoid structures did not practically form, and fiber’s shape became cylindrical. The totality of morphological and structural characteristics determined the rate of dipyridamol diffusive transports. The simplified model of drug desorption from fibrous matrix was presented. In current work it was showed that the rate-limiting stage of transport was the diffusion of dipyridamol in the bulk of cylindrical fibers.
Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy
2017-11-01
A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.
International Nuclear Information System (INIS)
Amarjit Sen; Childs, W.J.; Goodman, L.S.
1987-01-01
A new collinear laser-ion beam apparatus for slow ions (1 to 1.5 keV) has been built for measuring the hyperfine structure of metastable levels of ions with laser-rf double resonance technique. Narrow linewidths of ∼60 kHz (FWHM) have been observed for the first time in such systems. As a first application the hyperfine structure of the 4f 7 ( 8 S 0 )5d 9 D/sub J/ 0 metastable levels of /sup 151,153/Eu + has been measured with high precision. 10 refs., 8 figs
International Nuclear Information System (INIS)
Acharyulu, G.V.S.G.; Sankari, M.; Kiran Kumar, P.V.; Suryanarayana, M.V.
2012-01-01
A high-resolution atomic beam fluorescence spectroscopy facility for the determination of isotope shifts and hyperfine structure in atomic species has been designed and developed. A resistively heated graphite tube atomic beam source was designed, tested and integrated into a compact interaction chamber for atomic beam fluorescence experiments. The design of the laser-atom interaction chamber and the source has been modified in a phased manner so as to achieve sub-Doppler resolution. The system has been used to record the hyperfine spectrum of the D2 transitions of Rb and K isotopes. The spectral resolution achieved is ∼ 26 MHz and is adequate to carry out high resolution measurement of isotope shifts and hyperfine structure of various atomic species. The other major advantage of the source is that it requires very small amounts of sample for achieving very good signal to noise ratio. (author)
International Nuclear Information System (INIS)
Aldenhoven, R.
1976-01-01
By the method of atomic beam resonance the hyperfine structure of the first excited state 4 Isub(13/2) (5418 cm -1 ) of 165 Holmium was studied for the first time. Using a suitable ΔF = 0 transition, the gsub(J)-factor was measured. After a determination of estimates for the hyperfine constants A and B from two suitably chosen ΔF = 0 transitions, the hyperfine splittings have been measured. (orig./WL) [de
International Nuclear Information System (INIS)
Aldegunde, J.; Hutson, Jeremy M.; Ran Hong
2009-01-01
We calculate the microwave spectra of ultracold 40 K 87 Rb alkali-metal dimers, including hyperfine interactions and in the presence of electric and magnetic fields. We show that microwave transitions may be used to transfer molecules between different hyperfine states, but only because of the presence of nuclear quadrupole interactions. Hyperfine splittings may also complicate the use of ultracold molecules for quantum computing. The spectrum of molecules oriented in electric fields may be simplified dramatically by applying a simultaneous magnetic field.
Qing-Hui, Wang; Xu-Ping, Shao; Xiao-Hua, Yang
2016-01-01
Hyperfine structures of ICl in its vibronic ground state due to the nuclear spin and electric quadruple interactions are determined by diagonalizing the effective Hamiltonian matrix. Furthermore, the Stark sub-levels are precisely determined as well. The results are helpful for electro-static manipulation (trapping or further cooling) of cold ICl molecules. For example, an electric field of 1000 V/cm can trap ICl molecules less than 637 μK in the lowest hyperfine level. Project supported by the National Natural Science Foundation of China (Grant No. 11034002), the National Basic Research Program of China (Grant No. 2011CB921602), and Qing Lan Project, China.
International Nuclear Information System (INIS)
Park, Hyunmin; Lee, Miran; Rhee, Yongjoo
2003-01-01
The hyperfine structures of four levels of the Sm isotopes have been measured by means of diode-laser-based Doppler-free saturated absorption spectroscopy in combination with a diode-laser-initiated resonance-ionization mass spectroscopy. It was demonstrated that combining the two spectroscopic methods was very effective for the identification and accurate measurement of the spectral lines of atoms with several isotopes, such as the rare-earth elements. From the obtained spectra, the hyperfine constants A and B for the odd-mass isotopes 147 Sm and 149 Sm were determined for four upper levels of the studied transitions.
Hyperfine structure, nuclear spins and magnetic moments of some cesium isotopes
International Nuclear Information System (INIS)
Ekstroem, C.; Ingelman, S.; Wannberg, G.
1977-03-01
Using an atomic-beam magnetic resonance apparatus connected on-line with the ISOLDE isotope separator, CERN, hyperfine structure measurements have been performed in the 2 Ssub(1/2) electronic ground state of some cesium isotopes. An on-line oven system which efficiently converts a mass separated ion-beam of alkali isotopes to an atomic beam is described in some detail. Experimentally determined nuclear spins of sup(120, 121, 121m, 122, 122m, 123, 124, 126, 128, 130m, 135m)Cs and magnetic moments of sup(122, 123, 124, 126, 128, 130)Cs are reported and discussed in terms of different nuclear models. The experimental data indicate deformed nuclear shapes of the lightest cesium isotopes. (Auth.)
Measurement of Nitrogen Hyperfine Structure on the 53 CM (562 MHz) Butyronitrile Line
Dewberry, Christopher T.; Grubbs, Garry S. Grubbs, II; Raphelt, Andrew; Cooke, Stephen A.
2009-06-01
Recent improvements to our cavity-based Fourier transform radiofrequency spectrometer will be presented. Amongst other improvements use of Miteq amp, model AMF-6F-00100400-10-10P (0.1 GHz to 4 GHz, 65 dB gain minimum, 1 dB noise figure maximum) together with shielding from an improved Faraday cage have significantly helped us in this regard. Electromagnetic fields within our near-spherical cavity have been modeled and results will be presented. We have been able to easily resolve the nitrogen hyperfine structure on the ^aQ_{0,-1} transition 1_{1,0} ← 1_{1,1} located at 562 MHz. This result will be discussed.
Hyperfine structure of the odd parity level system in the terbium atom
International Nuclear Information System (INIS)
Stefanska, D; Furmann, B
2017-01-01
Within this work new experimental results concerning the hyperfine structure ( hfs ) in the terbium atom are presented, concerning the odd parity levels system, hitherto only scarcely investigated (apart from the ground term). hfs constants A and B for 113 levels were determined for the first time, and for another 16 levels, which already occurred in our earlier works, supplementary results were obtained; additionally, our earlier results for 93 levels were compiled. The hfs of the odd parity levels was investigated using the method of laser induced fluorescence in a hollow cathode discharge. The hfs of 165 spectral lines, where the levels in question were involved as the upper levels, was recorded. Literature values of hfs constants of the even-parity lower levels (including our own earlier results) greatly facilitated the present data evaluation. (paper)
Hyperfine interactions and structural features of Fe–44Co–6Mo (wt.%) nanostructured powders
International Nuclear Information System (INIS)
Moumeni, Hayet; Nemamcha, Abderrafik; Alleg, Safia; Grenèche, Jean Marc
2013-01-01
Nanocrystalline Fe–44Co–6Mo (wt.%) powders have been prepared by high-energy ball milling from elemental Fe, Co and Mo pure powders in a P7 planetary ball mill. The obtained powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Mössbauer spectrometry techniques. The influence of milling process and Mo substitution for Co in equiatomic FeCo have been examined in order to study structural evolution and formation mechanism of nanostructured Fe(CoMo) solid solution. XRD results show the formation of a BCC Fe(CoMo) solid solution (a = 0.2874 nm) where unmixed nanocrystalline Mo with a BCC structure is embedded. Disordered Fe(CoMo) solid solution is characterized by a broad hyperfine magnetic field distribution with two regions centered at B 1 = 35.0 T and B 2 = 30.7 T, respectively, attributed to disordered Fe(Co) solid solution and CoMo enriched environments. Prolonged milling and Mo addition cause the decrease of average hyperfine magnetic field while the average isomer shift remains nearly constant. - Highlights: ► BCC nanostructured Fe(CoMo) solid solution is prepared by milling of Fe, Co and Mo. ► Formation mechanism: Co diffusion into Fe lattice and Mo dissolution in Fe(Co). ► Crystallite size of Fe(CoMo) solid solution reaches 11 nm after 24 h of milling. ► Mössbauer analysis reveals 3 components: high field, enriched Co and low field
Hyperfine interactions and structural features of Fe–44Co–6Mo (wt.%) nanostructured powders
Energy Technology Data Exchange (ETDEWEB)
Moumeni, Hayet, E-mail: hmoumeni@yahoo.fr [Laboratoire de Chimie Computationnelle et Nanostructures, Département des Sciences de la Matière, Faculté des Mathématiques et de l' Informatique et des Sciences de la Matière, Université 08 Mai 1945 - Guelma, B.P. 401, Guelma 24000 (Algeria); Nemamcha, Abderrafik [Laboratoire d' Analyses Industrielles et Génie des Matériaux, Faculté des Sciences et de la Technologie, Université 08 Mai 1945 - Guelma, B.P. 401, Guelma 24000 (Algeria); Alleg, Safia [Laboratoire de Magnétisme et de Spectroscopie des Solides, Département de Physique, Faculté des Sciences, Université de Annaba, B.P. 12, Annaba 23000 (Algeria); Grenèche, Jean Marc [Laboratoire de Physique de l' Etat Condensé, UMR CNRS 6087, Institut de Recherche en Ingénierie Moléculaire et Matériaux Fonctionnels IRIM2F, FR CNRS 2575, Université du Maine, 72085 Le Mans Cedex 9 (France)
2013-02-15
Nanocrystalline Fe–44Co–6Mo (wt.%) powders have been prepared by high-energy ball milling from elemental Fe, Co and Mo pure powders in a P7 planetary ball mill. The obtained powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Mössbauer spectrometry techniques. The influence of milling process and Mo substitution for Co in equiatomic FeCo have been examined in order to study structural evolution and formation mechanism of nanostructured Fe(CoMo) solid solution. XRD results show the formation of a BCC Fe(CoMo) solid solution (a = 0.2874 nm) where unmixed nanocrystalline Mo with a BCC structure is embedded. Disordered Fe(CoMo) solid solution is characterized by a broad hyperfine magnetic field distribution with two regions centered at B{sub 1} = 35.0 T and B{sub 2} = 30.7 T, respectively, attributed to disordered Fe(Co) solid solution and CoMo enriched environments. Prolonged milling and Mo addition cause the decrease of average hyperfine magnetic field while the average isomer shift remains nearly constant. - Highlights: ► BCC nanostructured Fe(CoMo) solid solution is prepared by milling of Fe, Co and Mo. ► Formation mechanism: Co diffusion into Fe lattice and Mo dissolution in Fe(Co). ► Crystallite size of Fe(CoMo) solid solution reaches 11 nm after 24 h of milling. ► Mössbauer analysis reveals 3 components: high field, enriched Co and low field.
Hyperfine structure measurements and discovery of new energy levels in neutral praseodymium
Energy Technology Data Exchange (ETDEWEB)
Imran, Siddiqui; Khan, Shamim; Syed, Tanweer Iqbal; Gamper, Bettina; Windholz, Laurentius [Inst. f. Experimentalphysik, Techn. Univ. Graz, Petersgasse 16, A-8010 Graz (Austria)
2011-07-01
We present here 14 even and 17 odd parity new energy levels of the neutral praseodymium atom. Free praseodymium atoms in ground and excited states are produced in a hollow cathode discharge lamp by cathode sputtering. The hyperfine structure (hfs) of the spectral lines is investigated by the method of laser induced fluorescence (LIF) spectroscopy. As an example of the method used we discuss briefly the finding of the new level at 27304.431 cm{sup -1}, even parity, J=9/2 and A=690(1) MHz. Laser excitation of the line at 6004.23 Aa is performed and a LIF signal is detected at fluorescence lines 5246.709, 5412.95, 5925.10, 6107.88, 6287.02, 6419.16, and 6620.63 A. The hfs is then recorded digitally and fitted to find reliable values of angular momentum J, magnetic and electric quadrupole hyperfine constants A and B for the combining fine structure levels. Assuming an unknown upper level, a lower level is searched in the data base of known levels, having the J and A values determined from the fit procedure. A level with 10654.11 cm{sup -1}, odd parity, J=7/2 and A=169(2) MHz is found. The energy of the upper level is calculated by adding the center of gravity wave number of the excited line to the energy of the lower level. The existence of the new level is checked by at least one additional laser excitation from another known lower level.
Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms
Aldegunde, Jesus; Hutson, Jeremy M.
2018-04-01
Ultracold molecules with both electron spin and an electric dipole moment offer new possibilities in quantum science. We use density-functional theory to calculate hyperfine coupling constants for a selection of molecules important in this area, including RbSr, LiYb, RbYb, CaF, and SrF. We find substantial hyperfine coupling constants for the fermionic isotopes of the alkaline-earth-metal and Yb atoms. We discuss the hyperfine level patterns and Zeeman splittings expected for these molecules. The results will be important both to experiments aimed at forming ultracold open-shell molecules and to their applications.
International Nuclear Information System (INIS)
Olowe, A.A.; Genin, J.M.R.; Bauer, P.
1988-01-01
A sulfated ferrous hydroxide is obtained by mixing NaOH with melanterite depending on the R = [SO 4 -- ]/[OH - ] ratio and leading by oxidation to the green rust II transient compound. Hyperfine parameters are presented. (orig.)
Wavelengths, energy levels and hyperfine structure of Mn II and Sc II.
Nave, Gillian; Pickering, Juliet C.; Townley-Smith, Keeley I. M.; Hala, .
2015-08-01
For many decades, the Atomic Spectroscopy Groups at the National Institute of Standards and Technology (NIST) and Imperial College London (ICL) have measured atomic data of astronomical interest. Our spectrometers include Fourier transform (FT) spectrometers at NIST and ICL covering the region 1350 Å to 5.5 μm and a 10.7-m grating spectrometer at NIST covering wavelengths from 300 - 5000 Å. Sources for these spectra include high-current continuous and pulsed hollow cathode (HCL) lamps, Penning discharges, and sliding spark discharges. Recent work has focused on the measurement and analysis of wavelengths, energy levels, and hyperfine structure (HFS) constants for iron-group elements. The analysis of FT spectra of Cr I, Mn I, and Mn II is being led by ICL and is described in a companion poster [1]. Current work being led by NIST includes the analysis of HFS in Mn II, analysis of Mn II in the vacuum ultraviolet, and a comprehensive analysis of Sc II.Comprehensive HFS constants for Mn II are needed for the interpretation of stellar spectra and incorrect abundances may be obtained when HFS is omitted. Holt et al. [2] have measured HFS constants for 59 levels of Mn II using laser spectroscopy. We used FT spectra of Mn/Ni and Mn/Cu HCLs covering wavelength ranges from 1350 Å to 5.4 μm to confirm 26 of the A constants of Holt et al. and obtain values for roughly 40 additional levels. We aim to obtain HFS constants for the majority of lines showing significant HFS that are observed in chemically-peculiar stars.Spectra of Sc HCLs have been recorded from 1800 - 6700 Å using a vacuum ultraviolet FT spectrometer at NIST. Additional measurements to cover wavelengths above 6700 Å and below 1800 Å are in progress. The spectra are being analyzed by NIST and Alighar Muslim University, India in order to derive improved wavelengths, energy levels, and hyperfine structure parameters.This work was partially supported by NASA, the STFC and PPARC (UK), the Royal Society of the UK
Systematic model calculations of the hyperfine structure in light and heavy ions
Tomaselli, M; Nörtershäuser, W; Ewald, G; Sánchez, R; Fritzsche, S; Karshenboim, S G
2003-01-01
Systematic model calculations are performed for the magnetization distributions and the hyperfine structure (HFS) of light and heavy ions with a mass close to A ~ 6 208 235 to test the interplay of nuclear and atomic structure. A high-precision measurement of lithium-isotope shifts (IS) for suitable transition, combined with an accurate theoretical evaluation of the mass-shift contribution in the respective transition, can be used to determine the root-mean-square (rms) nuclear-charge radius of Li isotopes, particularly of the halo nucleus /sup 11/Li. An experiment of this type is currently underway at GSI in Darmstadt and ISOLDE at CERN. However, the field-shift contributions between the different isotopes can be evaluated using the results obtained for the charge radii, thus casting, with knowledge of the ratio of the HFS constants to the magnetic moments, new light on the IS theory. For heavy charged ions the calculated n- body magnetization distributions reproduce the HFS of hydrogen-like ions well if QED...
Structural, hyperfine and Raman properties of RE2FeSbO7 compounds
International Nuclear Information System (INIS)
Berndt, G.; Silva, K.L.; Ivashita, F.F.; Paesano, A.; Blanco, M.C.; Miner, E.V.P.; Carbonio, R.E.; Dantas, S.M.; Ayala, A.P.; Isnard, O.
2015-01-01
Highlights: • We prepared monophasic RE 2 FeSbO 7 pyrochlores. • RE 2 FeSbO 7 compounds were characterized regarding crystallographic, vibrational and hyperfine properties. • We find out that a site disorder takes place for the RE’s of larger ionic radii. • Lattice parameters, Raman bands and quadrupole splittings were shown to depend correlatedly on the RE ionic radius. - Abstract: Pyrochlores of the RE 2 FeSbO 7 type were synthesized by ball-milling followed by annealing in free atmosphere at high temperatures. The samples prepared were characterized by X-ray diffraction, Raman spectroscopy and 57 Fe Mössbauer spectroscopy, at room temperature. The results showed that RE 2 FeSbO 7 compounds have a cubic structure, i.e., Fd-3m (#227) space group, and that a site disorder takes place for the RE’s of larger ionic radii. Lattice parameters, Raman bands and quadrupole splittings were shown to depend correlatedly on the RE ionic radius. This behavior is discussed in terms of the pyrochlore crystallographic structure
Unravelling the local structure of topological crystalline insulators using hyperfine interactions
Phenomena emerging from relativistic electrons in solids have become one the main topical subjects in condensed matter physics. Among a wealth of intriguing new phenomena, several classes of materials have emerged including graphene, topological insulators and Dirac semi-metals. This project is devoted to one such class of materials, in which a subtle distortion of the crystalline lattice drives a material through different topological phases: Z$_{2}$ topological insulator (Z$_{2}$-TI), topological crystalline insulator (TCI), or ferroelectric Rashba semiconductor (FERS). We propose to investigate the local structure of Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te (with $\\textit{x}$ from 0 to 1) using a combination of experimental techniques based on hyperfine interactions: emission Mössbauer spectroscopy (eMS) and perturbed angular correlation spectroscopy (PAC). In particular, we propose to study the effect of composition ($\\textit{x}$ in Pb$_{1-x}$Sn$_{x}$Te and Ge$_{1-x}$Sn$_{x}$Te) on: \\\\ \\\\(1) the mag...
Experimental and theoretical study of the hyperfine structure in the lower configurations in 45Sc II
International Nuclear Information System (INIS)
Villemoes, P.; van Leeuwen, R.; Arnesen, A.; Heijkenskjoeld, F.; Kastberg, A.; Larsson, M.O.; Kotochigova, S.A.
1992-01-01
We have measured the hyperfine structure (hfs) of 12 levels in the configurations 3d4s, 3d 2 , and 3d4p in singly ionized scandium by collinear fast-ion-beam--laser spectroscopy. The hfs of the four levels in the configuration 3d4s has to our knowledge not been measured before. From these levels the ions were excited to levels in the 3d4p configuration by the frequency-doubled output of a ring dye laser with an intracavity mounted LiIO 3 crystal. Levels in the 3d 2 configuration were excited to levels in the 3d4p configuration with visible laser light. The resulting magnetic dipole (A) and electric quadrupole (B) hfs constants are analyzed in Sandars-Beck effective-operator formalism. The multiconfiguration Dirac-Fock method has been used to calculate the hfs constants for levels in the configurations 3d4s, 3d5s, 3d6s, 3d 2 , and 3d4p. Within the framework of the configuration-interaction method, an approach is presented for the calculation of the core polarization, which uses a virtual basis set localized inside the core. For all levels, this approach gives better results compared to previously published calculations
Hyperfine structure in 5s4d [sup 3]D-5snf transitions of [sup 87]Sr
Energy Technology Data Exchange (ETDEWEB)
Bushaw, B.A. (Pacific Northwest Lab., Richland, WA (United States)); Kluge, H.J. (Mainz Univ. (Germany). Inst. fuer Physik); Lantzsch, J. (Mainz Univ. (Germany). Inst. fuer Physik); Schwalbach, R. (Mainz Univ. (Germany). Inst. fuer Physik); Stenner, J. (Mainz Univ. (Germany). Inst. fuer Physik); Stevens, H. (Mainz Univ. (Germany). Inst. fuer Physik); Wendt, K. (Mainz Univ. (Germany). Inst. fuer Physik); Zimmer, K. (Mainz Univ. (Germany). Inst. fuer Physik)
1993-12-01
The hyperfine spectra of the 5s4d[sup 3]D[sub 1]-5s20f, 5s4d[sup 3]D[sub 2]-5s23f, and 5s4d[sup 3]D[sub 3]-5s32f transitions of [sup 87]Sr (I=9/2) have been measured by collinear fast beam laser spectroscopy. The structure in the upper configurations is highly perturbed by fine structure splitting that is of comparable size to the hyperfine interaction energy. These perturbations can be adequately treated with conventional matrix diagonalization methods, using the 5s-electron magnetic dipole interaction term a[sub 5s] and the unperturbed fine structure splittings as input parameters. Additionally, hyperfine constants for the lower 5s4d[sup 3]D configurations, including the A- and B-factors and a separation of the individual s- and d-electron contributions to these factors, are derived. (orig.)
Energy Technology Data Exchange (ETDEWEB)
D' yachkov, A.B.; Firsov, V.A.; Gorkunov, A.A.; Labozin, A.V.; Mironov, S.M.; Saperstein, E.E.; Tolokonnikov, S.V.; Tsvetkov, G.O.; Panchenko, V.Y. [National Research Center ' ' Kurchatov Institute' ' , Moscow (Russian Federation)
2017-01-15
Laser resonant photoionization spectroscopy was used to study the hyperfine structure of the optical 3d{sup 8}4s{sup 2} {sup 3}F{sub 4} → 3d{sup 8}4s4p {sup 3}G{sup o}{sub 3} and 3d{sup 9}4s {sup 3}D{sub 3} → 3d{sup 8}4s4p {sup 3}G{sup o}{sub 3} transitions of {sup 63}Ni and {sup 61}Ni isotopes. Experimental spectra allowed us to derive hyperfine interaction constants and determine the magnetic dipole moment of the nuclear ground state of {sup 63}Ni for the first time: μ = +0.496(5)μ{sub N}. The value obtained agrees well with the prediction of the self-consistent theory of finite Fermi systems. (orig.)
International Nuclear Information System (INIS)
Bhowmik, Anal; Majumder, Sonjoy; Roy, Sourav; Dutta, Narendra Nath
2017-01-01
This work presents precise calculations of important electromagnetic transition amplitudes along with details of their many-body correlations using the relativistic coupled-cluster method. Studies of hyperfine interaction constants, useful for plasma diagnostics, with this correlation exhaustive many-body approach, are another important area of this work. The calculated oscillator strengths of allowed transitions, amplitudes of forbidden transitions and lifetimes are compared with the other theoretical results wherever available and they show a good agreement. Hyperfine constants of different isotopes of W VI, presented in this paper, will be helpful in gaining an accurate picture of the abundances of this element in different astronomical bodies. (paper)
Hyperfine field and electronic structure of magnetite below the Verwey transition
Czech Academy of Sciences Publication Activity Database
Řezníček, R.; Chlan, V.; Štěpánková, H.; Novák, Pavel
2015-01-01
Roč. 91, č. 12 (2015), "125134-1"-"125134-10" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : hyperfine interactions and isotope effects * density functional theory * local density approximation * gradient and other corrections * nuclear magnetic resonance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014
Spectroscopy Apparatus for the Measurement of The Hyperfine Structure of Antihydrogen
Malbrunot, C.; Diermaier, M.; Dilaver, N.; Friedreich, S.; Kolbinger, B.; Lehner, S.; Lundmark, R.; Massiczek, O.; Radics, B.; Sauerzopf, C.; Simon, M.; Widmann, E.; Wolf, M.; Wünschek, B.; Zmeskal, J.
2014-02-04
The ASACUSA CUSP collaboration at the Antiproton Decelerator (AD) of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. We describe here the latest developments on the spectroscopy apparatus developed to be coupled to the antihydrogen production setup (CUSP).
Theoretical hyperfine structures of 19F i and 17O i
Aourir, Nouria; Nemouchi, Messaoud; Godefroid, Michel; Jönsson, Per
2018-03-01
Multiconfiguration Hartree-Fock (MCHF) and multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations are performed for the 2 p5P2o , 2 p4(3P ) 3 s 4P , 2 p4(3P ) 3 s 2P , and 2 p4(3P ) 3 p 4So states of 19F i to determine their hyperfine constants. Several computing strategies are considered to investigate electron correlation and relativistic effects. High-order correlation contributions are included in MCHF calculations based on single and double multireference expansions. The largest components of the single reference MCHF wave functions are selected to define the multireference (MR) sets. In this scheme, relativistic corrections are evaluated in the Breit-Pauli approximation. A similar strategy is used for the calculation of MCDHF relativistic wave functions and hyperfine parameters. While correlation and relativistic corrections are found to be rather small for the ground state, we highlight large relativistic effects on the hyperfine constant A3 /2 of 2 p4(3P ) 3 p 4So and, to a lesser extent, on A1 /2 of 2 p4(3P ) 3 s 4P . As expected for such a light system, electron correlation effects dominate over relativity in the calculation of the hyperfine interaction of all other levels considered. We also revisit the hyperfine constants of 2 p3(4S ) 3 s S5o and 2 p3(4S ) 3 p 5P in 17O using similar strategies. The results are found to be in excellent agreement with experiment.
Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.
1991-08-01
We present a complete analysis of the hyperfine structure of the MnH A 7Π-X 7Σ+ (0,0) band near 5680 Å, studied with sub-Doppler resolution by intermodulated fluorescence spectroscopy. Magnetic hyperfine interactions involving both the 55Mn (I=5/2) and 1H (I=1/2) nuclear spins are observed as well as 55Mn electric quadrupole effects. The manganese Fermi contact interaction in the X 7Σ+ state is the dominant contributor to the observed hyperfine splittings; the ΔF=0, ΔN=0, ΔJ=±1 matrix elements of this interaction mix the electron spin components of the ground state quite strongly at low N, destroying the ``goodness'' of J as a quantum number and inducing rotationally forbidden, ΔJ=±2 and ±3 transitions. The hyperfine splittings of over 50 rotational transitions covering all 7 spin components of both states were analyzed and fitted by least squares, allowing the accurate determination of 14 different hyperfine parameters. Using single electronic configurations to describe the A 7Π and X 7Σ+ states and Herman-Skillman atomic radial wave functions to represent the molecular orbitals, we calculated a priori values for the 55Mn and 1H hyperfine parameters which agree closely with experiment. We show that the five high-spin coupled Mn 3d electrons do not contribute to the manganese hyperfine structure but are responsible for the observed proton magnetic dipolar couplings. Furthermore, the results suggest that the Mn 3d electrons are not significantly involved in bonding and demonstrate that the molecular hyperfine interactions may be quantitatively understood using simple physical interpretations.
Nuclear spin of 185Au and hyperfine structure of 188Au
International Nuclear Information System (INIS)
Ekstroem, C.; Ingelman, S.; Wannberg, G.
1977-03-01
The nuclear spin of 185 Au, I = 5/2, and the hyperfine separation of 188 Au, Δγ = +- 2992(30) MHz, have been measured with the atomic-beam magnetic resonance method. The spin of 185 Au indicates a deformed nuclear shape in the ground state. The small magnetic moment of 188 Au is close in value to those of the heavier I = 1 gold isotopes 190 192 194 Au, being located in a typical transition region. (Auth.)
The contribution of axial-vector mesons to hyperfine structure of muonic hydrogen
Dorokhov, A. E.; Kochelev, N. I.; Martynenko, A. P.; Martynenko, F. A.; Radzhabov, A. E.
2017-01-01
The contribution from the axial-vector meson exchange to the potential of the muon–proton interaction in muonic hydrogen induced by anomalous axial-vector meson coupling to two photon state is calculated. It is shown that such contribution to the hyperfine splitting in muonic hydrogen is large and important for a comparison with precise experimental data. In the light of our result, the proton radius “puzzle” is discussed.
Computation of the hyperfine structure in the (α-μ- e-)0 atom
International Nuclear Information System (INIS)
Amusia, M.Ya.; Kuchiev, M.Ju.; Yakhontov, V.L.
1983-01-01
Computation of the ground-state hyperfine splitting of neutral muonic helium (α-μ - e - ) 0 has been carried out. Account of two terms in the expansion of this quantity in power series of a small parameter #betta# of the order of msub(e)/msub(μ) of the order of 1/200 results in the energy splitting value δ#betta# = 4462.9 MHz in good agreement with previously obtained experimental and theoretical values. (author)
Structure and Hyperfine Interactions in Aurivillius Bi9Ti3Fe5O27 Conventionally Sintered Compound
International Nuclear Information System (INIS)
Mazurek, M.; Lisinska-Czekaj, A.; Surowiec, Z.; Jartych, E.; Czekaj, D.
2011-01-01
The structure and hyperfine interactions in the Bi 9 Ti 3 Fe 5 O 27 Aurivillius compound were studied using X-ray diffraction and Moessbauer spectroscopy. Samples were prepared by the conventional solid-state sintering method at various temperatures. An X-ray diffraction analysis proved that the sintered compounds formed single phases at temperature above 993 K. Moessbauer measurements have been carried out at room and liquid nitrogen temperatures. Room-temperature Moessbauer spectrum of the Bi 9 Ti 3 Fe 5 O 27 compound confirmed its paramagnetic properties. However, low temperature measurements revealed the additional paramagnetic phase besides the antiferromagnetic one. (authors)
Hyperfine structure and isotope shift of the neutron-rich barium isotopes 139-146Ba and 148Ba
International Nuclear Information System (INIS)
Wendt, K.; Ahmad, S.A.; Klempt, W.; Neugart, R.; Otten, E.W.
1988-01-01
The hyperfine structure and isotope shift in the 6s 2 S 1/2 -6p 2 P 3/2 line of Ba II (455.4 nm) have been measured by collinear fast-beam laser spectroscopy for the neutron-rich isotopes 139-146 Ba and 148 Ba. Nuclear moments and mean square charge radii of these isotopes have been recalculated. The isotope shift of the isotope 148 Ba (T 1/2 = 0.64 s) could be studied for the first time, yielding δ 2 > 138,148 = 1.245(3) fm 2 . (orig.)
Grain boundaries of nanocrystalline materials - their widths, compositions, and internal structures
International Nuclear Information System (INIS)
Fultz, B.; Frase, H.N.
2000-01-01
Nanocrystalline materials contain many atoms at and near grain boundaries. Sufficient numbers of Moessbauer probe atoms can be situated in grain boundary environments to make a clear contribution to the measured Moessbauer spectrum. Three types of measurements on nanocrystalline materials are reported here, all using Moessbauer spectrometry in conjunction with X-ray diffractometry, transmission electron microscopy, or small angle neutron scattering. By measuring the fraction of atoms contributing to the grain boundary component in a Moessbauer spectrum, and by knowing the grain size of the material, it is possible to deduce the average width of grain boundaries in metallic alloys. It is found that these widths are approximately 0.5 nm for fcc alloys and slightly larger than 1.0 nm for bcc alloys.Chemical segregation to grain boundaries can be measured by Moessbauer spectrometry, especially in conjunction with small angle neutron scattering. Such measurements on Fe-Cu and Fe 3 Si-Nb were used to study how nanocrystalline materials could be stabilized against grain growth by the segregation of Cu and Nb to grain boundaries. The segregation of Cu to grain boundaries did not stabilize the Fe-Cu alloys against grain growth, since the grain boundaries were found to widen and accept more Cu atoms during annealing. The Nb additions to Fe 3 Si did suppress grain growth, perhaps because of the low mobility of Nb atoms, but also perhaps because Nb atoms altered the chemical ordering in the alloy.The internal structure of grain boundaries in nanocrystalline materials prepared by high-energy ball milling is found to be unstable against internal relaxations at low temperatures. The Moessbauer spectra of the nanocrystalline samples showed changes in the hyperfine fields attributable to movements of grain boundary atoms. In conjunction with SANS measurements, the changes in grain boundary structure induced by cryogenic exposure and annealing at low temperature were found to be
Analysis of Hydrogen Cyanide Hyperfine Spectral Components towards Star Forming Cores
Directory of Open Access Journals (Sweden)
Loughnane R. M.
2011-12-01
Full Text Available Although hydrogen cyanide has become quite a common molecular tracing species for a variety of astrophysical sources, it, however, exhibits dramatic non-LTE behaviour in its hyperfine line structure. Individual hyperfine components can be strongly boosted or suppressed. If these so-called hyperfine line anomalies are present in the HCN rotational spectra towards low or high mass cores, this will affect the interpretation of various physical properties such as the line opacity and excitation temperature in the case of low mass objects and infall velocities in the case of their higher mass counterparts. Anomalous line ratios are present either through the relative strengths of neighboring hyperfine lines or through the varying widths of hyperfine lines belonging to a particular rotational line. This work involves the first observational investigation of these anomalies in two HCN rotational transitions, J=1→0 and J=3→2, towards both low mass starless cores and high mass protostellar objects. The degree of anomaly in these two rotational transitions is considered by computing the ratios of neighboring hyperfine lines in individual spectra. Results indicate some degree of anomaly is present in all cores considered in our survey, the most likely cause being line overlap effects among hyperfine components in higher rotational transitions.
Nuclear hyperfine structure of muonium in CuCl resolved by means of avoided level crossing
International Nuclear Information System (INIS)
Schneider, J.W.; Celio, M.; Keller, H.; Kuendig, W.; Odermatt, W.; Puempin, B.; Savic, I.M.; Simmler, H.; Estle, T.L.; Schwab, C.; Kiefl, R.F.; Renker, D.
1990-01-01
We report detailed avoided-level-crossing spectra of a muonium center (Mu II ) in single-crystal CuCl in a magnetic field range of 4--5 T and at a temperature of 100 K. The hyperfine parameters of the muon and the closest two shells of nuclei indicate that this center consists of muonium at a tetrahedral interstice with four Cu nearest neighbors and six Cl next-nearest neighbors and that the spin density is appreciable on the muon and on the ten neighboring nuclei but negligible elsewhere
Morphodynamics structures induced by variations of the channel width
Duro, Gonzalo; Crosato, Alessandra; Tassi, Pablo
2014-05-01
In alluvial channels, forcing effects, such as a longitudinally varying width, can induce the formation of steady bars (Olesen, 1984). The type of bars that form, such as alternate, central or multiple, will mainly depend on the local flow width-to-depth ratio and on upstream conditions (Struiksma et al., 1985). The effects on bar formation of varying the channel width received attention only recently and investigations, based on flume experiments and mathematical modelling, are mostly restricted to small longitudinal sinusoidal variations of the channel width (e.g. Repetto et al., 2002; Wu and Yeh, 2005, Zolezzi et al., 2012; Frascati and Lanzoni, 2013). In this work, we analyze the variations in equilibrium bed topography in a longitudinal width-varying channel with characteristic scales of the Waal River (The Netherlands) using two different 2D depth-averaged morphodynamic models, one based on the Delft3D code and one on Telemac-Mascaret system. In particular, we explore the effects of changing the wavelength of sinusoidal width variations in a straight channel, focusing on the effects of the spatial lag between bar formation and forcing that is observed in numerical models and laboratory experiments (e.g. Crosato et al, 2011). We extend the investigations to finite width variations in which longitudinal changes of the width-to-depth ratio are such that they may affect the type of bars that become unstable (alternate, central or multiple bars). Numerical results are qualitatively validated with field observations and the resulting morphodynamic pattern is compared with the physics-based predictor of river bar modes by Crosato and Mosselman (2009). The numerical models are finally used to analyse the experimental conditions of Wu and Yeh (2005). The study should be seen as merely exploratory. The aim is to investigate possible approaches for future research aiming at assessing the effects of artificial river widening and narrowing to control bar formation in
International Nuclear Information System (INIS)
Volotka, A.V.
2006-01-01
Studies of the hyperfine splitting in hydrogen are strongly motivated by the level of accuracy achieved in recent atomic physics experiments, which yield finally model-independent informations about nuclear structure parameters with utmost precision. Considering the current status of the determination of corrections to the hyperfine splitting of the ground state in hydrogen, this thesis provides further improved calculations by taking into account the most recent value for the proton charge radius. Comparing theoretical and experimental data of the hyperfine splitting in hydrogen the proton-size contribution is extracted and a relativistic formula for this contribution is derived in terms of moments of the nuclear charge and magnetization distributions. An iterative scheme for the determination of the Zemach and magnetic radii of the proton is proposed. As a result, the Zemach and magnetic radii are determined and the values are compared with the corresponding ones deduced from data obtained in electron-proton scattering experiments. The extraction of the Zemach radius from a rescaled difference between the hyperfine splitting in hydrogen and in muonium is considered as well. Investigations of forbidden radiative transitions in few-electron ions within ab initio QED provide a most sensitive tool for probing the influence of relativistic electron-correlation and QED corrections to the transition rates. Accordingly, a major part of this thesis is devoted to detailed studies of radiative and interelectronic-interaction effects to the transition probabilities. The renormalized expressions for the corresponding corrections in one- and twoelectron ions as well as for ions with one electron over closed shells are derived employing the two-time Green's function method. Numerical results for the correlation corrections to magnetic transition rates in He-like ions are presented. For the first time also the frequency-dependent contribution is calculated, which has to be
Energy Technology Data Exchange (ETDEWEB)
Volotka, A.V.
2006-07-01
Studies of the hyperfine splitting in hydrogen are strongly motivated by the level of accuracy achieved in recent atomic physics experiments, which yield finally model-independent informations about nuclear structure parameters with utmost precision. Considering the current status of the determination of corrections to the hyperfine splitting of the ground state in hydrogen, this thesis provides further improved calculations by taking into account the most recent value for the proton charge radius. Comparing theoretical and experimental data of the hyperfine splitting in hydrogen the proton-size contribution is extracted and a relativistic formula for this contribution is derived in terms of moments of the nuclear charge and magnetization distributions. An iterative scheme for the determination of the Zemach and magnetic radii of the proton is proposed. As a result, the Zemach and magnetic radii are determined and the values are compared with the corresponding ones deduced from data obtained in electron-proton scattering experiments. The extraction of the Zemach radius from a rescaled difference between the hyperfine splitting in hydrogen and in muonium is considered as well. Investigations of forbidden radiative transitions in few-electron ions within ab initio QED provide a most sensitive tool for probing the influence of relativistic electron-correlation and QED corrections to the transition rates. Accordingly, a major part of this thesis is devoted to detailed studies of radiative and interelectronic-interaction effects to the transition probabilities. The renormalized expressions for the corresponding corrections in one- and twoelectron ions as well as for ions with one electron over closed shells are derived employing the two-time Green's function method. Numerical results for the correlation corrections to magnetic transition rates in He-like ions are presented. For the first time also the frequency-dependent contribution is calculated, which has to be
International Nuclear Information System (INIS)
Barik, N.; Jena, S.N.
1980-01-01
Within the framework of the Poggio-Schnitzer flavor-independent static-potential model with long-distance vacuum-polarization correction, we analyze the Lorentz-Dirac structure of the confinement potential with reference to the charmonium hyperfine splittings. In view of the questionable existence and/or doubtful identity of the X(2830) and chi(3455) states, we give preference to the Lorentz-Dirac character of the confinement potential in the form of an approximately equal admixture of scalar and vector components with no anomalous moment. This in turn predicts the 1 S 0 partners of psi and psi' to be near the 3.0- and 3.6-GeV mass regions, respectively. This also suggests the 1 P 1 state of charmonium is to be found above the 3 P 0 state near the mass region of 3.48 GeV
Measurement of the hyperfine structure of the 31D2, 41D2, 51D2 levels of helium 3
International Nuclear Information System (INIS)
Lemery, H.; Hamel, J.; Barrat, J.-P.
1981-01-01
It is well known that, in a discharge in 3 He, the nuclear spins in the ground state can be oriented through metastability exchange, by optical pumping of the metastable 2 3 S 1 atoms. The orientation is transmitted to the other levels excited in the discharge. If the nuclear spins in the ground state are submitted to magnetic resonance, the light emitted from these excited states is modulated at the R.F. field frequency. The degree of modulation is important only near a level crossing, in zero field or in non-zero field. This method has been used to determine the hyperfine structure of the 3 1 D 2 , 4 1 D 2 , 5 1 D 2 levels. The results are in good agreement with those of previous measurements and with theoretical predictions [fr
International Nuclear Information System (INIS)
Maciel, A.K.A.
1977-03-01
The electronic structure of the interstitial hydrogen atom in KF, NaCl, KCl, and RbCl cristals has been studied using the self-consistent-field multiple-scattering Xα method. In the present calculation a cluster constituted by the hydrogen atom surrounded by its first anion and cation neighbors in a cubic shell has been used. The optical transition energies and hyperfine contact parameters with the interstitial proton and the first shell nuclei have been evaluated. The agreement obtained with the experimental data and the relative independence of the method under variations of its intrinsic parameters, indicate that this method can be adequate to the study of defects in ionic cristals. (author) [pt
Energy Technology Data Exchange (ETDEWEB)
Lata, K. Ramani [State University of New York at Albany, Department of Physics (United States); Sahoo, N. [University of Texas M.D. Anderson Cancer Center, Department of Radiation Physics (United States); Dubey, Archana [University of Central Florida, Department of Physics (United States); Scheicher, R. H. [Uppsala University, Condensed Matter Theory Group, Department of Physics and Materials Science (Sweden); Badu, S. R.; Pink, R. H.; Mahato, Dip N. [State University of New York at Albany, Department of Physics (United States); Schulte, A. F.; Saha, H. P. [University of Central Florida, Department of Physics (United States); Maharjan, N. B. [State University of New York at Albany, Department of Physics (United States); Chow, Lee [University of Central Florida, Department of Physics (United States); Das, T. P., E-mail: tpd56@albany.edu [State University of New York at Albany, Department of Physics (United States)
2008-01-15
The electronic structure of the heme unit of deoxyhemoglobin including the proximal imidazole has been studied using the first-principles Hartree-Fock procedure. Our results for the {sup 57m}Fe isomer shift and asymmetry parameter are in very good agreement with the values obtained from Moessbauer spectroscopy measurements. The {sup 57m}Fe nuclear quadrupole coupling constant is smaller than the experimental result and possible ways to improve the agreement in the future are discussed. Improved analysis of the Moessbauer data, removing some approximations made for deriving the magnetic hyperfine tensor for the {sup 57m}Fe nucleus, is suggested to allow quantitative comparison with our results in the future.
International Nuclear Information System (INIS)
Jin, J.; Church, D.A.
1994-01-01
The mean lifetimes τ of the Ca II 4p 2 P 1/2 and 4p 2 P 3/2 levels, and the 35 Cl II 4p' 1 F 3 level, have been measured by a variant of the collinear laser--ion-beam lifetime technique applied previously to the Ar II 4p' 2 F 7/2 o level [Jian Jin and D. A. Church, Phys. Rev. A 47, 132 (1993)]. The present results are τ(Ca II, 4p 2 P 1/2 )=7.098(0.020) ns, τ(Ca II, 4p 2 P 3/2 )=6.924(0.019) ns, and τ(Cl II, 4p' 1 F 3 ) =11.17(0.06) ns. The experimental lifetimes of these, plus the Ar II 4p' 2 F 7/2 level, are compared with available recent many-electron calculations. Typically 1%--3% differences between measurement and ab initio theory are found, while certain semiempirical calculations are in better agreement with experiment. Data for other precise lifetime measurements on alkali-metal systems are compared with recent ab initio and semiempirical calculations to provide perspective on the Ca II results. The hyperfine structure of the 35 Cl II 3d' 1 G 4 --4p' 1 F 3 transition was also measured and analyzed in the course of the measurements, with the resulting hyperfine-structure constants: A( 1 F 3 )=301.9(0.5) MHz, B( 1 F 3 )=-6.7(0.8) MHz, A( 1 G 4 )=205.1(0.5) MHz, and B( 1 G 4 )=-3.9(2.4) MHz
International Nuclear Information System (INIS)
Albuquerque, E.L. de.
1975-12-01
The electronic structure, the optical absorption bands and the magnetic hyperfine contact terms have been calculated for CoF 6 4- cluster in LiF and KMgF 3 using the Self-Consistent-Field Multiple-Scattering Xα Method. The results obtained are compared with experiment and indicate that this scheme is convenient to treat such complex problems. (Author) [pt
Zinkstok, R.T.; van Duijn, E.J.; Witte, S.; Hogervorst, W.
2002-01-01
Using the third harmonic of a cw titanium:sapphire laser, the hyperfine structure (HFS) and isotope shift (IS) of three deep-UV transitions of neutral Yb have been measured for the first time. By exploiting the angular distribution of fluorescence radiation, accurate and complete results are
Nuclear Hyperfine Structure in the Donor – Acceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3
The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...
International Nuclear Information System (INIS)
Childs, W.J.
1997-01-01
Matrix elements of the hyperfine operators corresponding to the magnetic-dipole (A) and electric-quadrupole (B) hyperfine structures constants are given as linear combinations of the appropriate radial integrals for all states of the s, p N , and d N configurations in both the SL and pure jj representations. The associated SL-jj transformations are also given. 13 refs., 10 tabs
International Nuclear Information System (INIS)
Lassen, J.; Benck, E.C.; Schuessler, H.A.
1997-01-01
An experiment is presently being set up which combines collinear-fast-beam laser spectroscopy with photon burst spectroscopy. Selectivity is provided by the large kinetic isotope shifts together with the practically Doppler free linewidth of the fluorescence from the fast atom beam. The photon burst detection, based on photon correlations in the resonance fluorescence, increases the sensitivity, so that on-line optical isotope shift and hyperfine structure measurements on low intensity radioactive beams become feasible. In order to improve photon burst detection the solid angle of detection and the observation time have to be optimized. To this end a diffuse reflecting cavity has been designed and built, which collects fluorescence over a 45 cm length of the beam and covers the full solid angle. The light collection efficiency of the cavity is calculated to be about 45%. The cavity is being tested with a 11 keV beam of krypton atoms, probing the near infrared transitions in our apparatus at Texas A ampersand M University. copyright 1997 American Institute of Physics
Li, Cheng-Bin; Yu, Yan-Mei; Sahoo, B. K.
2018-02-01
Roles of electron correlation effects in the determination of attachment energies, magnetic-dipole hyperfine-structure constants, and electric-dipole (E 1 ) matrix elements of the low-lying states in the singly charged cadmium ion (Cd+) have been analyzed. We employ the singles and doubles approximated relativistic coupled-cluster (RCC) method to calculate these properties. Intermediate results from the Dirac-Hartree-Fock approximation,the second-order many-body perturbation theory, and considering only the linear terms of the RCC method are given to demonstrate propagation of electron correlation effects in this ion. Contributions from important RCC terms are also given to highlight the importance of various correlation effects in the evaluation of these properties. At the end, we also determine E 1 polarizabilities (αE 1) of the ground and 5 p 2P1 /2 ;3 /2 states of Cd+ in the ab initio approach. We estimate them again by replacing some of the E 1 matrix elements and energies from the measurements to reduce their uncertainties so that they can be used in the high-precision experiments of this ion.
Stochastic hyperfine interactions modeling library
Zacate, Matthew O.; Evenson, William E.
2011-04-01
The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When
International Nuclear Information System (INIS)
Widmann, E.; Eades, J.; Yamazaki, T.
1996-11-01
A precise scan of the previously discovered laser-induced transition (n,l) = (37,35) → (38,34) in p-barHe + revealed a doublet structure with a separation of Δν HF = 1.70 ± 0.05 GHz. This new type of 'hyperfine' splitting is ascribed to the interaction of the antiproton orbital angular momentum and the electron spin. (author)
Resolved nuclear hyperfine structure of muonium in CuCl by means of muon level-crossing resonance
International Nuclear Information System (INIS)
Schneider, J.W.; Keller, H.; Odermatt, W.; Puempin, B.; Savic, I.M.; Simmler, H.; Dodds, S.A.; Estle, T.L.; Duvarney, R.C.; Chow, K.; Kadono, R.; Kiefl, R.F.; Li, Q.; Riseman, T.M.; Zhou, H.; Lichti, R.L.; Schwab, C.
1991-01-01
Detailed muon level-crossing resonance measurements of Mu I and Mu II centres in single crystals of CuCl are presented. The hyperfine and nuclear hyperfine parameters of the closest two shells of nuclei are remarkably similar for the two centres, indicating that both are located at the same tetrahedral interstitial site with four Cu nearest neighbours and six Cl next-nearest neighbours. About 30% of the total unpaired-electron spin density is located on the muon, about 60% on the four nearest neighbours and the rest on the six next-nearest neighbours, with nothing observable for any other shell. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Coelho-Júnior, H.; Aquino, J. C. R.; Aragón, F. H. [Universidade de Brasília, Núcleo de Física Aplicada, Instituto de Física (Brazil); Hidalgo, P. [Universidade de Brasília, Faculdade Gama-FGA, Setor Central Gama (Brazil); Cohen, R.; Nagamine, L. C. C. M. [Universidade de São Paulo, Instituto de Física (Brazil); Coaquira, J. A. H., E-mail: coaquira@unb.br; Silva, S. W. da [Universidade de Brasília, Núcleo de Física Aplicada, Instituto de Física (Brazil); Brito, H. F. [Universidade de São Paulo, Instituto de Química (Brazil)
2014-12-15
In this work we present the study of the structural, magnetic, and hyperfine properties of Gd-doped SnO{sub 2} nanoparticles synthesized by a polymer precursor method. The X-ray diffraction data analysis shows the formation of the rutile-type structure in all samples with Gd content from 1.0 to 10.0 mol%. The mean crystallite size is ∼11 nm for the 1.0 mol% Gd-doped samples and it shows a decreasing tendency as the Gd content is increased. The analysis of magnetic measurements indicates the coexistence of ferromagnetic and paramagnetic phases for the 1.0 mol% Gd-doped sample; however, above that content, only a paramagnetic phase is observed. The ferromagnetic phase observed in the 1.0 mol% Gd-doped sample has been assigned to the presence of bound magnetic polarons which overlap to create a spin-split impurity band. Room-temperature {sup 119}Sn Mössbauer measurements reveal the occurrence of strong electric quadrupole interactions. It has been determined that the absence of magnetic interactions even for 1.0 mol% Gd-doped sample has been related to the weak magnetic field associated to the exchange interaction between magnetic ions and the donor impurity band. The broad distribution of electric quadrupole interactions are attributed to the several non-equivalent surroundings of Sn{sup 4+} ions provoked by the entrance of Gd{sup 3+} ions and to the likely presence of Sn{sup 2+} ions. The isomer shift seems to be nearly independent of the Gd content for samples with Gd content below 7.5 mol%.
di Lauro, C.
2018-03-01
Transformations of vector or tensor properties from a space-fixed to a molecule-fixed axis system are often required in the study of rotating molecules. Spherical components λμ,ν of a first rank irreducible tensor can be obtained from the direction cosines between the two axis systems, and a second rank tensor with spherical components λμ,ν(2) can be built from the direct product λ × λ. It is shown that the treatment of the interaction between molecular rotation and the electric quadrupole of a nucleus is greatly simplified, if the coefficients in the axis-system transformation of the gradient of the electric field of the outer charges at the coupled nucleus are arranged as spherical components λμ,ν(2). Then the reduced matrix elements of the field gradient operators in a symmetric top eigenfunction basis, including their dependence on the molecule-fixed z-angular momentum component k, can be determined from the knowledge of those of λ(2) . The hyperfine structure Hamiltonian Hq is expressed as the sum of terms characterized each by a value of the molecule-fixed index ν, whose matrix elements obey the rule Δk = ν. Some of these terms may vanish because of molecular symmetry, and the specific cases of linear and symmetric top molecules, orthorhombic molecules, and molecules with symmetry lower than orthorhombic are considered. Each ν-term consists of a contraction of the rotational tensor λ(2) and the nuclear quadrupole tensor in the space-fixed frame, and its matrix elements in the rotation-nuclear spin coupled representation can be determined by the standard spherical tensor methods.
International Nuclear Information System (INIS)
Oliveira, L.E.M.C. de.
1976-01-01
The electronic structure of the interstitial hydrogen atom in alkaline-earth fluorides has been studied using the self-consistent-field multiple-scattering Xα method. In the calculations a cluster constituted by the hydrogen atom and its first anion and cation neighbors has been used. The contact parameters with the proton and the fluorine nuclei have been evaluated. The agreement obtained with the experimental results is in general good and indicates that this method is also appropriate to study defects in ionic crystals. (author) [pt
Hyperfine-Structure-Induced Depolarization of Impulsively Aligned I2 Molecules
Thomas, Esben F.; Søndergaard, Anders A.; Shepperson, Benjamin; Henriksen, Niels E.; Stapelfeldt, Henrik
2018-04-01
A moderately intense 450 fs laser pulse is used to create rotational wave packets in gas phase I2 molecules. The ensuing time-dependent alignment, measured by Coulomb explosion imaging with a delayed probe pulse, exhibits the characteristic revival structures expected for rotational wave packets but also a complex nonperiodic substructure and decreasing mean alignment not observed before. A quantum mechanical model attributes the phenomena to coupling between the rotational angular momenta and the nuclear spins through the electric quadrupole interaction. The calculated alignment trace agrees very well with the experimental results.
Hyperfine interactions by Moessbauer effect
International Nuclear Information System (INIS)
Constantinescu, S.
1980-01-01
Moessbauer spectroscopy has been used to investigate hyperfine interactions in materials endowed with complex electromagnetic crystallographic structures. Such structures (Me 3 B 7 O 13 X boracite-type systems, for instance), equally interesting from both scientific and applications viewpoint, are drawing a special attention lately on account of their being examined by means of increasingly refined experimental techniques. In view of the wide prospects of using these materials in various practical fields, this thesis counts among the studies aiming to ameliorate the methods of processing and determining the Moessbauer spectra parameters, characterized by complex hyperfine interactions, as well as among the studies of electric, magnetic and crystallographic investigation of the Moessbauer nucleus neighbourhood, in boracite-type structures. (author)
International Nuclear Information System (INIS)
Childs, W.J.; Cok, D.R.; Goodman, L.S.
1982-01-01
The hyperfine structure of the X 2 Σ + state of Ca 35 Cl and Ca 37 Cl, unresolved in previous studies, has been investigated in detail by the molecular-beam, laser-rf, double-resonance technique. Results for the spin-rotation interaction and the dipole and quadrupole hfs constants are given in the form of Dunham coefficients so that the N'' and v'' dependence of each constant can be explicitly exhibited. The results, after dividing out the purely nuclear effects, fall between the corresponding values for CaF and CaBr, as expected
Varberg, Thomas D.; Gray, Jeffrey A.; Field, Robert W.; Merer, Anthony J.
1992-12-01
The A7Π- X7Σ + (0, 0) band of MnH at 568 nm has been recorded by laser fluorescence excitation spectroscopy. The original rotational analysis of Nevin [ Proc. R. Irish Acad.48A, 1-45 (1942); 50A, 123-137 (1945)] has been extended with some corrections at low J. Systematic internal hyperfine perturbations in the X7Σ + state, caused by the Δ N = 0, Δ J = ±1 matrix elements of the 55Mn hyperfine term in the Hamiltonian, have been observed in all seven electron spin components over the entire range of N″ studied. These perturbations destroy the "goodness" of J″ as a quantum number, giving rise to hyperfine-induced Δ J = ±2 rotational branches and to observable energy shifts of the most severely affected levels. The A7Π state, with A = 40.5 cm -1 and B = 6.35 cm -1, evolves rapidly from Hund's case ( a) to case ( b) coupling, which produces anomalous branch patterns at low J. A total of 156 rotational branches have been identified and fitted by least squares to an effective Hamiltonian, providing precise values for the rotational and fine structure constants. Values of the principal constants determined in the fit are (1σ errors in units of the last digit are listed in parentheses): The fine structures of the A7Π and X7Σ + states confirm the assignment of the A ← X transition as Mn 4 pπ ← 4 sσ in the presence of a spectator, nonbonding Mn 3 d5 ( 6S) open core.
Calculation of magnetic hyperfine constants
International Nuclear Information System (INIS)
Bufaical, R.F.; Maffeo, B.; Brandi, H.S.
1975-01-01
The magnetic hyperfine constants of the V sub(K) center in CaF 2 , SrF 2 and BaF 2 have been calculated assuming a phenomenological model, based on the F 2 - 'central molucule', to describe the wavefunction of the defect. Calculations have shown that introduction of a small degree of covalence, between this central molecule and neighboring ions, is necessary to improve the electronic structure description of the defect. It was also shown that the results for the hyperfine constants are strongly dependent on the relaxations of the ions neighboring the central molecule; these relaxations have been determined by fitting the experimental data. The present results are compared with other previous calculations where similar and different theoretical methods have been used
International Nuclear Information System (INIS)
Babbitt, W.R.; Lezama, A.; Mossberg, T.W.
1989-01-01
We have employed spectral-hole-burning, coherent-transient, and optical-rf double-resonance techniques to measure various parameters associated with the 580.8-nm 7 F 0 - 5 D 0 transition of Eu/sup 3+/ doped into Y 2 O 3 . In particular, we have measured the hyperfine splittings of the terminal levels (for both /sup 151/Eu and /sup 153/Eu), an effective thermalization rate of the ground-state ( 7 F 0 ) hyperfine manifold over the temperature range of ≅4--15 K, and the homogeneous linewidth of the optical transition over the range of ≅14--35 K. Large ratios of inhomogeneous to homogeneous linewidth at elevated temperatures (10 3 at 25 K) and long ground-state hyperfine thermalization times (>30 h at 4 K) make this an interesting crystal in the context of spectrally addressable optical memories
The Width of High Burnup Structure in LWR UO2 Fuel
International Nuclear Information System (INIS)
Koo, Yang-Hyun; Lee, Byung-Ho; Oh, Jae-Yong; Sohn, Dong-Seong
2007-01-01
The measured data available in the open literature on the width of high burnup structure (HBS) in LWR UO 2 fuel were analyzed in terms of pellet average burnup, enrichment, and grain size. Dependence of the HBS width on pellet average burnup was shown to be divided into three regions; while the HBS width is governed by accumulation of fission damage (i.e., burnup) for burnup below 60 GWd/tU, it seems to be restricted to some limiting value of around 1.5 mm for burnup above 75 GWd/tU due to high temperature which might have caused extensive annealing of irradiation damage. As for intermediate burnup between 60 and 75 GWd/tU, although temperature would not have been so high as to induce extensive annealing, the microstructural damage could have been partly annealed, resulting in the reduction of the HBS width. It was found that both enrichment and grain size also affects the HBS width. However, as long as the pellet average burnup is lower than about 75 GWd/tU, the effect does not appear to be significant for the enrichment and grain size that are typically used in current LWR fuel. (authors)
International Nuclear Information System (INIS)
Olsson, T.; Fraenkel, L.; Lindgren, I.; Nyberg, A.; Robertsson, L.; Rosen, A.
1986-01-01
A series of experiments has been performed to determine the hyperfine structure in the metastable 4d 5 5s 5 Dsub(1,2,3,4) states of Mo I by means of the laser radiofrequency double-resonance technique. Furthermore, hyperfine structure splittings and isotope shifts in seven optical transitions connecting the 4d 5 5s 5 Dsub(0,1,2,3,4) and the 4d 4 5s5p 5 Psub(1,2,3) states were resolved with the high-resolution laser spectroscopy technique. Radial hyperfine structure parameters are deduced for the effective operator within the 5 D states using the configurations 4d 4 5s 2 , 4d 5 5s and 4d 6 as a model space. The isotope shifts are also discussed, utilizing an effective operator, with particular emphasis on the J dependence. (orig.)
International Nuclear Information System (INIS)
Childs, W.J.; Goodman, L.S.; Pfeufer, V.
1983-01-01
Although the hyperfine structure (hfs) of many-electron atoms has been studied intensively in recent years, it is still difficult to distinguish between the competing effects of relativity and configuration interaction. The 4f/sup N/6s 2 configuration of the neutral rare earths is of particular interest because (a) the low-lying terms are relatively free of configuration interaction, and (b) trends can be examined systematically as one proceeds through the long 4f-shell. The procedure is to deduce, from the measured hfs constants of low levels, the underlying hyperfine radial integrals for comparison with ab initio predictions. Since some of these integrals are extremely sensitive to any configuration interaction and others are not, it is possible to determine both the extent and type of configuration interaction present in some cases. Prior to the start of the present research no precise hfs information existed for the entire second half of the 4f shell of the rare earths. The present measurements were designed both to provide such data and to make possible a systematic study of the hfs throughout the 4f shell. The atomic-beam, laser-rf, double-resonance method was used for the measurements. With this technique, the occurrence of a radiofrequency transition between atomic hfs levels is detected by noting an increase in the laser-induced fluorescence
International Nuclear Information System (INIS)
Kuijpers, P.; Dymanus, A.; Toerring, T.
1977-01-01
Hyperfine structure of rotational transitions of KOH, RbOH and CsOH in various v 2 - and l-states has been carefully measured in the 100 GHz range. From the observed splittings and broadenings information about quadrupole coupling constant (eqQ) of the K nucleus in KOH and about the spacing (Esub(Δ) - Esub(Σ)) between Σ and Δ levels in the vibrational spectrum of KOH, RbOH and CsOH has been derived. The measured value of the eqQ of KOH is close to that of KF. The separation between Σ and Δ levels is found to be rather similar for the group of the alkali hydroxides increasing gradually when progressing from LiOH to CsOH. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Cazzoli, Gabriele; Lattanzi, Valerio; Puzzarini, Cristina [Dipartimento di Chimica “Giacomo Ciamician”, Università di Bologna, Via Selmi 2, I-40126 Bologna (Italy); Alonso, José Luis [Grupo de Espectroscopía Molecular (GEM), Unidad Asociada CSIC, Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Parque Científico UVa, Universidad de Valladolid, E-47005 Valladolid (Spain); Gauss, Jürgen, E-mail: cristina.puzzarini@unibo.it [Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz (Germany)
2015-06-10
The rotational spectrum of the mono-deuterated isotopologue of water, HD{sup 16}O, has been investigated in the millimeter- and submillimeter-wave frequency regions, up to 1.6 THz. The Lamb-dip technique has been exploited to obtain sub-Doppler resolution and to resolve the hyperfine (hf) structure due to the deuterium and hydrogen nuclei, thus enabling the accurate determination of the corresponding hf parameters. Their experimental determination has been supported by high-level quantum-chemical calculations. The Lamb-dip measurements have been supplemented by Doppler-limited measurements (weak high-J and high-frequency transitions) in order to extend the predictive capability of the available spectroscopic constants. The possibility of resolving hf splittings in astronomical spectra has been discussed.
Hyperfine splitting in ordinary and muonic hydrogen
Energy Technology Data Exchange (ETDEWEB)
Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)
2018-01-15
We provide an accurate evaluation of the two-photon exchange correction to the hyperfine splitting of S energy levels in muonic hydrogen exploiting the corresponding measurements in electronic hydrogen. The proton structure uncertainty in the calculation of α{sup 5} contribution is sizably reduced. (orig.)
The effect of crack width on the service life of reinforced concrete structures
Van Hung, Nguyen; Viet Hung, Vu; Viet, Tran Bao
2018-04-01
Reinforced concrete has become a widely used construction material around the world. Nowadays, the assessment of deterioration and life expectancy of reinforced concrete structure is very important and necessary as concrete is a complex material with brittle failure. Under the effect of load and over time, cracks occur in the structure, significantly reducing its performance and durability. Therefore, a number of models for predicting the penetration of chloride ions into the concrete were proposed to assess the durability of the structure. In the study performed by T B Viet (2016) [1], the author proposed a new theoretical model, especially considering the effects of macro and micro cracking on the diffusion coefficient of chloride ion in the cracked concrete. The following experimental results, in term of electrical indication of concrete’s ability to resist chloride ion penetration, are used to calculate the lifespan of a reinforced concrete structure according to Dura Crete approach [8] with different crack widths to evaluate the accuracy and reliability of the above model in the range of concrete compressive strength of 30-70MPa.
The hyperfine properties of a hydrogenated Fe/V superlattice
Energy Technology Data Exchange (ETDEWEB)
Elzain, M., E-mail: elzain@squ.edu.om; Al-Barwani, M.; Gismelseed, A.; Al-Rawas, A.; Yousif, A.; Widatallah, H.; Bouziane, K.; Al-Omari, I. [Sultan Qaboos University, Department of Physics, College of Science (Oman)
2012-03-15
We study the effect of hydrogen on the electronic, magnetic and hyperfine structures of an iron-vanadium superlattice consisting of three Fe monolayers and nine V monolayers. The contact charge density ({rho}), the contact hyperfine field (B{sub hf}) and the electronic field gradient (EFG) at the Fe sites for different H locations and H fillings are calculated using the first principle full-potential linear-augmented-plane-wave (FP-LAPW) method. It is found that sizeable changes in the hyperfine properties are obtained only when H is in the interface region.
International Nuclear Information System (INIS)
Meier, T.
1973-01-01
The hyperfine structure of the resonance lines of the metastable silver isotopes sup(108m), sup(110m)Ag were investigated by means of optical interference spectroscopy. Both radioactive silver isotopes were obtained by irradiating isotope-pure 107 Ag or 109 Ag with neutrons in the reactor. In spite of the slight enrichment of the isotopes to be investigated compared to the stable isotopes ( [de
International Nuclear Information System (INIS)
Trickl, T.; Vrakking, M.J.J.; Cromwell, E.; Lee, Y.T.; Kung, A.H.
1989-01-01
High-resolution measurements of the hyperfine structures and isotope shifts are reported for Kr I n = 5,6,7 4p 5 ns Rydberg levels, obtained using an extreme-ultraviolet laser with a bandwidth of 210 MHz in a resonant two-photon-ionization scheme. Use of known I 2 frequencies yields an improved absolute calibration of the Kr energy levels by more than one order of magnitude. The nuclear quadrupole hyperfine structure indicates that the 4p 5 6s and 4p 5 7s states are described by a pure jj-coupling scheme, whereas the 4p 5 5s states depart from a pure jj-coupling scheme by 0.37(6)%. The magnetic hyperfine structure shows that the 4p 5 ns states are mixed with 4p 5 n'd states. The isotope shifts can be described as pure mass effects within the precision of our experiment. For the 4p 5 6s and 4p 5 7s states, lifetimes were determined that differ markedly from theoretical literature values
International Nuclear Information System (INIS)
Runge, S.; Pesnelle, A.; Perdrix, M.; Sevin, D.; Wolffer, N.; Watel, G.
1982-01-01
High resolution laser spectroscopy coupled to a sensitive method of detection via mass analysis of He + 2 ions produced in He(5 3 P) + He(1 1 S) collisions, is used to obtain the fine and hyperfine spectra of the ultra-violet He 2 3 S → 5 3 P transition. A cw tunable UV radiation around 294.5 nm is generated by intracavity frequency doubling a Rhodamine 6G single mode ring dye laser using an ADA crystal. Both spectra enable fine and hyperfine structures to be determined within a few MHz. The magnetic dipole coupling constant A of the 5 3 P term of 3 He is found to be -4326 +- 9 MHz (-0.1443 +- 0.0003 cm -1 ). (orig.)
Hyperfine interactions measured by nuclear orientation technique
International Nuclear Information System (INIS)
Brenier, R.
1982-01-01
This report concerns the use of hyperfine interaction to magnetism measurements and to the determination of the nuclear structure of Terbium isotopes by the low temperature nuclear orientation technique. In the first part we show that the rhodium atom does not support any localized moment in the chromium matrix. The hyperfine magnetic field at the rhodium nuclear site follows the Overhauser distribution, and the external applied magnetic field supports a negative Knight shift of 16%. In the second part we consider the structure of neutron deficient Terbium isotopes. We introduce a coherent way of evaluation and elaborate a new nuclear thermometer. The magnetic moments allows to strike on the studied states configuration. The analysis of our results shows a decrease of the nuclear deformation for the lighter isotopes [fr
Structural, electronic, and hyperfine properties of pure and Ta-doped em>m>-ZrO2
DEFF Research Database (Denmark)
Taylor, M.A.; Alonso, R.E.; Errico, L.A.
2012-01-01
plane wave plus local orbital (APW+lo) method was applied to treat the electronic structure of the doped system including the atomic relaxations introduced by the impurities in the host in a fully self-consistent way using a supercell approach. Different charge states of the Ta impurity were considered...
Energy Technology Data Exchange (ETDEWEB)
Schroeder, L. [Deutsches Krebsforschungszentrum, Heidelberg (Germany). Medizinische Physik in der Radiologie; California Univ., Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab., Berkeley, CA (United States). Dept. of Chemistry
2007-07-01
The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the AMX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed. (orig.)
Fluctuating hyperfine interactions: computational implementation
International Nuclear Information System (INIS)
Zacate, M. O.; Evenson, W. E.
2010-01-01
A library of computational routines has been created to assist in the analysis of stochastic models of hyperfine interactions. We call this library the stochastic hyperfine interactions modeling library (SHIML). It provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental hyperfine interaction measurements can be calculated. Example model calculations are included in the SHIML package to illustrate its use and to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A 22 can be neglected.
International Nuclear Information System (INIS)
Wang, Z.B.; Gou, B.C.; Chen, F.
2006-01-01
The relativistic energies, the oscillator strength, and the lifetimes of high-lying core-excited states 1s2s2pnp 5 P (n=2-5) and 1s2p 2 mp 5 S 0 (m=2-5) of Li - ion are calculated with the saddle-point variational method and restricted variation method. The fine structure and the hyperfine structure of the core-excited states for this system are also explored. The results are compared with other theoretical and experimental data in the literature. The energy obtained in this work are much lower than the others previously published whereas the wavelengths and radiative life-times are in agreement
Hyperfine excitation of OH+ by H
Lique, François; Bulut, Niyazi; Roncero, Octavio
2016-10-01
The OH+ ions are widespread in the interstellar medium and play an important role in the interstellar chemistry as they act as precursors to the H2O molecule. Accurate determination of their abundance rely on their collisional rate coefficients with atomic hydrogen and electrons. In this paper, we derive OH+-H fine and hyperfine-resolved rate coefficients by extrapolating recent quantum wave packet calculations for the OH+ + H collisions, including inelastic and exchange processes. The extrapolation method used is based on the infinite order sudden approach. State-to-state rate coefficients between the first 22 fine levels and 43 hyperfine levels of OH+ were obtained for temperatures ranging from 10 to 1000 K. Fine structure-resolved rate coefficients present a strong propensity rule in favour of Δj = ΔN transitions. The Δj = ΔF propensity rule is observed for the hyperfine transitions. The new rate coefficients will help significantly in the interpretation of OH+ spectra from photon-dominated region (PDR), and enable the OH+ molecule to become a powerful astrophysical tool for studying the oxygen chemistry.
Sciumè, Giuseppe; Benboudjema, Farid
2017-05-01
A post-processing technique which allows computing crack width in concrete is proposed for a viscoelastic damage model. Concrete creep is modeled by means of a Kelvin-Voight cell while the damage model is that of Mazars in its local form. Due to the local damage approach, the constitutive model is regularized with respect to finite element mesh to avoid mesh dependency in the computed solution (regularization is based on fracture energy).
Hyperfine interactions in iron substituted high-Tc superconducting oxides
International Nuclear Information System (INIS)
Ellis, D.E.; Saitovitch, E.B.; Lam, D.J.
1991-01-01
The hyperfine interactions in Fe substituted copper oxide ternary and quaternary compounds with perovskite-related structures are studied, using the Local Density theory in an embedded cluster approach. The self-consistent electronic structure is examined for Cu and Fe sites in a number of plausible local geometries representative of La 2 Cu O 4 , YBa 2 Cu 3 O 7-δ and related materials. Moessbauer isomer shifts, electric fields gradients, magnetic moments, and contact hyperfine fields are presented for comparison with experiment and discussed in light of lattice structure data. (author)
Hyperfine structure of 87,89Sr 5s4d3D-5snf transitions in collinear fast beam RIMS
International Nuclear Information System (INIS)
Bushaw, B. A.; Kluge, H.-J.; Lantzsch, J.; Schwalbach, R.; Schwarz, M.; Stenner, J.; Stevens, H.; Wendt, K.; Zimmer, K.
1995-01-01
The title transition, with n=20, 23, and 32 were measured for stable 87 Sr and the observed hfs was interpreted and strong hyperfine mixing of all four terms 1 F3 and 3 F2,3,4 in the upper configuration. The results of the analysis were used to predict the hfs for the radioactive isotope 89 Sr. Measurement were then performed on samples containing 10 9 atoms 89 Sr. The positions and intensities of the hfs components selected for study were found to agree well with the predicted values
International Nuclear Information System (INIS)
Blaum, K.; Bushaw, Bruce A.; Diel, S; Geppert, Ch; Kuschnick, A; Muller, P.; Nortershauser, W.; Schmitt, A.; Wendt, K.
1999-01-01
High-resolution resonance ionization mass spectrometry has been used to measure isotope shifts and hyperfine structure in all[Xe] 4f 7 5d 6s2 9DJ ---[Xe] 4f 7 5d 6s 6p 9FJ+1 (J= 2-6) and the[Xe] 4f 7 5d 6s2 9D6---[Xe] 4f 7 5d 6s 6p 9D5 transitions of gadolinium (Gd I). Gadolinium atoms in an atomic beam were excited with a tunable single-frequency laser in the wavelength range of 422 - 429 nm. Resonant excitation was followed by photoionization with the 363.8 nm line of an argon ion laser and resulting ions were mass separated and detected with a quadrupole mass spectrometer. Isotope shifts for all stable gadolinium isotopes in these transitions have been measured for the first time. Additionally, the hyperfine structure constants of the upper states have been derived for the isotopes 155, 157Gd and are compared with previous work. Using prior experimental values for the mean nuclear charge radii, derived from the combination of muonic atoms and electron scattering data, field shift a nd specific mass shift coefficients for the investigated transitions have been determined and nuclear charge parameters l for the minor isotopes 152, 154Gd have been calculated
Study of hyperfine anomaly in 9,11Be isotopes
International Nuclear Information System (INIS)
Parfenova, Y.; Leclercq-Willain
2005-01-01
The study of the hyperfine anomaly of neutron rich nuclei, in particular, neutron halo nuclei, can give a very specific and unique way to measure their neutron distribution and confirm a halo structure. The hyperfine structure anomaly in Be + ions is calculated with a realistic electronic wave function, obtained as a solution of the Dirac equation. In the calculations, the Coulomb potential modified by the charge distribution of the clustered nucleus and three electrons in the configuration 1s 2 2s is used. The nuclear wave function for the 11 Be nucleus is obtained in the core + nucleon model, and that for the 9 Be nucleus is calculated in the three-cluster (α+α + n) model. The aim of this study is to test whether the hyperfine structure anomaly reflects an extended spatial structure of '1 1 Be. The results of the calculations are listed. ε BW is the hyperfine anomaly in the Bohr-Weisskopf effect and δ is the charge structure correction, μ is the calculated magnetic moment, and μ exp is the experimental value of the magnetic moment, Q and Q exp are the calculated and measured values of the quadrupole moment. The results for 9 Be are obtained with two different three-body wave functions (WF1 and WF2) showing the sensitivity of the calculations to the input parameters. The value of ε BW is sensitive to the weights of the states in the nuclear ground state wave function. The total hyperfine anomaly value εε BW +δ in 11 Be differs from that in 9 Be by 25%. This gives a measure of the accuracy of the hyperfine anomaly measurements needed to study the neutron distribution in the Be isotopes. (authors)
Fe dimers: a theoretical study of the hyperfine interactions
International Nuclear Information System (INIS)
Guenzburger, D.J.R.; Saitovitch, E.M.B.
1981-01-01
The electronic structures of diatomic molecules Fe 2 and FeM, where M = Mn, Co, Ni and Cu, are investigated by molecular orbitals calculations using a discrete variational method and a local approximation for the exchange interaction. The one-electron wave functions obtained are used to calculate electric field gradients, electronic charge and spin densities at the Fe nucleus and spin-dipolar hyperfine fields, which are related to measured hyperfine parameters reported from experiments in solid inert-gas matrices. Molecular orbitals energy schemes and population analysis are presented. These and other aspects of the electronic structure of the FeM molecules are used in a qualitative interpretation of the hyperfine data; in some cases, are given suggestions for the ground-state configuration. (Author) [pt
Observation of the hyperfine spectrum of antihydrogen
Ahmadi, M.; Alves, B. X. R.; Baker, C. J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Johnson, M. A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, J. E.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.
2017-08-01
The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 1013 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger’s relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen—the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 104. This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.
Observation of the hyperfine spectrum of antihydrogen.
Ahmadi, M; Alves, B X R; Baker, C J; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Cohen, S; Collister, R; Eriksson, S; Evans, A; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Johnson, M A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Mathers, M; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; Stracka, S; Stutter, G; So, C; Tharp, T D; Thompson, J E; Thompson, R I; van der Werf, D P; Wurtele, J S
2017-08-02
The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 10 13 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger's relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen-the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 10 4 . This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.
Hyperfine interaction mediated electric-dipole spin resonance: the role of frequency modulation
International Nuclear Information System (INIS)
Li, Rui
2016-01-01
The electron spin in a semiconductor quantum dot can be coherently controlled by an external electric field, an effect called electric-dipole spin resonance (EDSR). Several mechanisms can give rise to the EDSR effect, among which there is a hyperfine mechanism, where the spin-electric coupling is mediated by the electron–nucleus hyperfine interaction. Here, we investigate the influence of frequency modulation (FM) on the spin-flip efficiency. Our results reveal that FM plays an important role in the hyperfine mechanism. Without FM, the electric field almost cannot flip the electron spin; the spin-flip probability is only about 20%. While under FM, the spin-flip probability can be improved to approximately 70%. In particular, we find that the modulation amplitude has a lower bound, which is related to the width of the fluctuated hyperfine field. (paper)
Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.
1990-06-01
Sub-Doppler spectra of the A 7Π-X 7Σ+ (0,0) band of gas phase MnH near 5680 Å were recorded by intermodulated fluorescence spectroscopy. The spectra reveal hyperfine splittings arising from both the 55Mn and 1H nuclear spins. Internal hyperfine perturbations have been observed between the different spin components of the ground state at low N`. From a preliminary analysis of several rotational lines originating from the isolated and unperturbed F1(J`=3) spin component of the X 7Σ+(N`=0) level, the 55Mn Fermi contact interaction in the ground state has been measured as bF=Aiso =276(1) MHz. This value is 11% smaller than the value obtained by Weltner et al. from an electron-nuclear double resonance (ENDOR) study of MnH in an argon matrix at 4 K. This unprecedented gas-to-matrix shift in the Fermi contact parameter is discussed.
International Nuclear Information System (INIS)
Varberg, T.D.; Field, R.W.; Merer, A.J.
1990-01-01
Sub-Doppler spectra of the A 7 Π--X 7 Σ + (0,0) band of gas phase MnH near 5680 A were recorded by intermodulated fluorescence spectroscopy. The spectra reveal hyperfine splittings arising from both the 55 Mn and 1 H nuclear spins. Internal hyperfine perturbations have been observed between the different spin components of the ground state at low N double-prime. From a preliminary analysis of several rotational lines originating from the isolated and unperturbed F 1 (J double-prime=3) spin component of the X 7 Σ + (N double-prime=0) level, the 55 Mn Fermi contact interaction in the ground state has been measured as b F =A iso =276(1) MHz. This value is 11% smaller than the value obtained by Weltner et al. from an electron-nuclear double resonance (ENDOR) study of MnH in an argon matrix at 4 K. This unprecedented gas-to-matrix shift in the Fermi contact parameter is discussed
International Nuclear Information System (INIS)
Perez, R.B.; de Saussure, G.; Olsen, D.K.; Difilippo, F.C.
1978-01-01
The complex poles and widths of the transition T matrix are determined by the trajectory equations which consist of a set of first order nonlinear differential equations. A hierarchy of approximate solutions to the trajectory equations is developed by iterative methods. The results of this formalism are compared with exact solutions for the case of some strongly interacting pairs of resonances in two iron isotopes. In the presence of intermediate structure the average neutron reaction cross section is interpreted in terms of a resonant strength function which exhibits peaks at neutron energies corresponding to ''doorways'' levels
Energy Technology Data Exchange (ETDEWEB)
Carette, T; Godefroid, M R, E-mail: tcarette@ulb.ac.be, E-mail: mrgodef@ulb.ac.be [Chimie Quantique et Photophysique, CP160/09, Universite Libre de Bruxelles, Avenue FD Roosevelt 50, B-1050 Brussels (Belgium)
2011-05-28
We present highly correlated multi-configuration Hartree-Fock (MCHF) calculations of the hyperfine structure of the 3p{sup 5} {sup 2}P{sup o}{sub J} levels of {sup 33}S{sup -} and {sup 35,} {sup 37}Cl. We obtain good agreement with observation. The hyperfine structure of the neutral sulphur {sup 33}S 3p{sup 4} {sup 3}P{sub J} lowest multiplet that has never been measured to the knowledge of the authors is also estimated theoretically. We discuss some interesting observations made on the description of the atomic core in MCHF theory.
Contact hyperfine field of the 4p and 4f series elements (rare-earths)
International Nuclear Information System (INIS)
Doi, I.
1973-01-01
The Coulomb correlation effect in the description of the contact hyperfine magnetic structure was analysed. The hyperfine magnetic structure was calculated from the spin polarized Hartree-Fock formalism, using the free electron gas approximation to the exchange-correlation energy of the 4p series atoms and some atoms and ions of the 4f series. No one of the analysed approximations to the exchange-correlation energy describes satisfactorily the contact hyperfine magnetic structure of the 4p and 4f series elements, which were studied [pt
Hyperfine magnetic fields in substituted Finemet alloys
Energy Technology Data Exchange (ETDEWEB)
Brzózka, K., E-mail: k.brzozka@uthrad.pl [University of Technology and Humanities in Radom, Department of Physics (Poland); Sovák, P. [P.J. Šafárik University, Institute of Physics (Slovakia); Szumiata, T.; Gawroński, M.; Górka, B. [University of Technology and Humanities in Radom, Department of Physics (Poland)
2016-12-15
Transmission Mössbauer spectroscopy was used to determine the hyperfine fields of Finemet-type alloys in form of ribbons, substituted alternatively by Mn, Ni, Co, Al, Zn, V or Ge of various concentration. The comparative analysis of magnetic hyperfine fields was carried out which enabled to understand the role of added elements in as-quenched as well as annealed samples. Moreover, the influence of the substitution on the mean direction of the local hyperfine magnetic field was examined.
International Nuclear Information System (INIS)
Rowe, Mary A.
1999-01-01
This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive 21 Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88in cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of 21 Na to the experiment. Efficient manipulation of the 21 Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of 21 Na. She measured the 3S 1/2 (F=1,m=0)-3S 1/2 (F=2,m=0) atomic level splitting of 21 Na to be 1,906,471,870±200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms
Energy Technology Data Exchange (ETDEWEB)
Rowe, Mary Anderson [Univ. of California, Berkeley, CA (United States)
1999-05-01
This thesis describes an experiment in which a neutral atom laser trap loaded with radioactive ^{21}Na was improved and then used for measurements. The sodium isotope (half-life=22 sec) is produced on line at the 88 in. cyclotron at Lawrence Berkeley National Laboratory. The author developed an effective magnesium oxide target system which is crucial to deliver a substantive beam of ^{21}Na to the experiment. Efficient manipulation of the ^{21}Na beam with lasers allowed 30,000 atoms to be contained in a magneto-optical trap. Using the cold trapped atoms, the author measured to high precision the hyperfine splitting of the atomic ground state of ^{21}Na. She measured the 3S_{1/2}(F=1,m=0)-3S_{1/2}(F=2,m=0) atomic level splitting of ^{21}Na to be 1,906,471,870±200 Hz. Additionally, she achieved initial detection of beta decay from the trap and evaluated the prospects of precision beta decay correlation studies with trapped atoms.
Dayi, Ertunc; Okuyan, Mukadder; Tan, Uner
2002-01-01
Recently, a family of homeobox genes involved in brain and craniofacial development was identified. In light of this genetic background, we hypothesized that some functional characteristics of human brain (hand skill, cognition) may be linked to some structural characteristics of human skull (e.g. craniofacial width) in humans. Hand preference was assessed by the Oldfield`s Handedness Questionaire. Hand skill was measured by Peg Moving Task. Face width was measured from the anteroposterior ce...
International Nuclear Information System (INIS)
Song Yuling; Zhang Yan; Zhang Jianmin; Lu Daobang
2010-01-01
Under the generalized gradient approximation (GGA), the structural and electronic properties are studied for H-terminated silicene nanoribbons (SiNRs) with either zigzag edge (ZSiNRs) or armchair edge (ASiNRs) by using the first-principles projector-augmented wave potential within the density function theory (DFT) framework. The results show that the length of the Si-H bond is always 1.50 A, but the edge Si-Si bonds are shorter than the inner ones with identical orientation, implying a contraction relaxation of edge Si atoms. An edge state appears at the Fermi level E F in broader ZSiNRs, but does not appear in all ASiNRs due to their dimer Si-Si bond at edge. With increasing width of ASiNRs, the direct band gaps exhibit not only an oscillation behavior, but also a periodic feature of Δ 3n > Δ 3n+1 > Δ 3n+2 for a certain integer n. The charge density contours analysis shows that the Si-H bond is an ionic bond due to a relative larger electronegativity of H atom. However, all kinds of the Si-Si bonds display a typical covalent bonding feature, although their strength depends on not only the bond orientation but also the bond position. That is, the larger deviation of the Si-Si bond orientation from the nanoribbon axis as well as the closer of the Si-Si bond to the nanoribbon edge, the stronger strength of the Si-Si bond. Besides the contraction of the nanoribbon is mainly in its width direction especially near edge, the addition contribution from the terminated H atoms may be the other reason.
Hyperfine interaction measurements on ceramics: PZT revisited
International Nuclear Information System (INIS)
Guarany, Cristiano A.; Araujo, Eudes B.; Silva, Paulo R.J.; Saitovitch, Henrique
2007-01-01
The solid solution of PbZr 1- x Ti x O 3 , known as lead-zirconate titanate (PZT), was probably one of the most studied ferroelectric materials, especially due to its excellent dielectric, ferroelectric and piezoelectric properties. The highest piezoelectric coefficients of the PZT are found near the morphotropic phase boundary (MPB) (0.46≤x≤0.49), between the tetragonal and rhombohedral regions of the composition-temperature phase diagram. Recently, a new monoclinic phase near the MPB was observed, which can be considered as a 'bridge' between PZT's tetragonal and rhombohedral phases. This work is concerned with the study of the structural properties of the ferroelectric PZT (Zr/Ti=52/48, 53/47) by hyperfine interaction (HI) measurements obtained from experiments performed by using the nuclear spectroscopy time differential perturbed angular correlation (TDPAC) in a wide temperature range
Hyperfine interaction measurements on ceramics: PZT revisited
Energy Technology Data Exchange (ETDEWEB)
Guarany, Cristiano A. [Universidade Estadual Paulista (Unesp), Departmento de Fisica Quimica, Caixa Postal 31, 15.385-000 Ilha Solteira, SP (Brazil); Araujo, Eudes B. [Universidade Estadual Paulista (Unesp), Departmento de Fisica Quimica, Caixa Postal 31, 15.385-000 Ilha Solteira, SP (Brazil); Silva, Paulo R.J. [Centro Brasileiro de Pesquisas Fisicas-Rua Dr. Xavier Sigaud, 150, 22290-180 Rio de Janeiro, RJ (Brazil); Saitovitch, Henrique [Centro Brasileiro de Pesquisas Fisicas-Rua Dr. Xavier Sigaud, 150, 22290-180 Rio de Janeiro, RJ (Brazil)]. E-mail: henrique@cbpf.br
2007-02-01
The solid solution of PbZr{sub 1-} {sub x} Ti {sub x} O{sub 3}, known as lead-zirconate titanate (PZT), was probably one of the most studied ferroelectric materials, especially due to its excellent dielectric, ferroelectric and piezoelectric properties. The highest piezoelectric coefficients of the PZT are found near the morphotropic phase boundary (MPB) (0.46{<=}x{<=}0.49), between the tetragonal and rhombohedral regions of the composition-temperature phase diagram. Recently, a new monoclinic phase near the MPB was observed, which can be considered as a 'bridge' between PZT's tetragonal and rhombohedral phases. This work is concerned with the study of the structural properties of the ferroelectric PZT (Zr/Ti=52/48, 53/47) by hyperfine interaction (HI) measurements obtained from experiments performed by using the nuclear spectroscopy time differential perturbed angular correlation (TDPAC) in a wide temperature range.
International Nuclear Information System (INIS)
Sobolev, O.; Vorderwisch, P.; Desmedt, A.
2005-01-01
Quantum rotations of NH 3 groups in Hofmann clathrates Ni-Ni-C 6 H 6 and Ni-Ni-C 12 H 10 have been studied using inelastic neutron scattering. Calculations of the dynamical structure factor for a free uniaxial quantum rotor reproduce the neutron scattering data with respect to their Q- and T-dependence as well as the relative intensities for the 0 → 1, 0 → 2 and 1 → 2 transitions. Though the effective NH 3 rotation constant is different from the gas phase value, the effective radius of rotation (i.e., the average distance of protons from the rotation axis) is equal or very close to the geometrical value r = 0.94 A for a NH 3 group. Comparing the experimental data with the calculated dynamical structure factor for the 0 → 3 transition it could be shown, that the corresponding transition line, in contrast to transitions between j = 0,1,2 levels measured so far, has a finite width at T = 0 K
Baumrind, S; Korn, E L
1992-12-01
This paper presents case-specific quantitative evidence of the systematic lateral displacement of metallic implants in the mandibles of treated and untreated human subjects between the ages of 8.5 and 15.5 years. This evidence appears to be consistent with the inference of small, but systematic increases in distance between the internal structures of the two sides of the osseous mandible during growth. Such a conclusion, however, is inconsistent with traditional beliefs that the internal structures of the mandibular symphysis fuse at the midline during the first post-natal year and remain dimensionally constant thereafter. We recently published evidence of statistically significant transverse displacement of metallic implants in the mandibular body region for 12 of 28 subjects for whom longitudinal data were available. Of the twelve subjects for whom statistically significant changes were observed, widening occurred in eleven cases and narrowing in one. Matching data are now available on concurrent ramus changes for 22 of the same 28 subjects, including 11 of the 12 for whom statistically significant width changes had previously been noted in the body region. In eight of these 11 subjects, statistically significant widening in the ramus region was also observed. No subject had statistically significant widening in the ramus region without also having statistically significant widening in the body region. No subject had statistically significant trans-ramus narrowing.
The hyperfine properties of iron-gallium alloys
Energy Technology Data Exchange (ETDEWEB)
Elzain, M., E-mail: elzain@squ.edu.om; Gismelseed, A.; Al-Rawas, A.; Yousif, A.; Widatallah, H.; Al-Azri, Maya [Sultan Qaboos University, Department of Physics (Oman); Al-Barwani, M. [NYU Abu Dhabi (United Arab Emirates)
2016-12-15
The hyperfine properties at Fe site in iron-gallium alloy are calculated using the full-potential linear-augmented-plane-waves method. We have calculated the Fermi contact field (B{sub hf}) and isomer shift (δ) at the Fe site versus the number of neighbouring Ga atoms. We found that B{sub hf} decrease whereas δ increases with increasing number of neighbouring G atom. In addition we have calculated the hyperfine properties of FeGa system with DO{sub 3} structure, where various distributions of 4 the Ga atoms in the conventional unit cell are considered (including the regular DO{sub 3} structure). We found that the DO{sub 3} structure has the lowest energy as compared to the other configurations. The two distinct A and D sites of the ordered DO{sub 3} conventional unit cell have two distinct values for B{sub hf} and δ. On changing the atomic arrangement of the Ga atoms within the conventional unit cell, the configuration of the A site is maintained whereas that of the D site becomes imperfect. The contact magnetic hyperfine fields of the D-like sites in the imperfect structures are lower than that of the DO{sub 3}D site.
Two-photon exchange correction to the hyperfine splitting in muonic hydrogen
Energy Technology Data Exchange (ETDEWEB)
Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)
2017-12-15
We reevaluate the Zemach, recoil and polarizability corrections to the hyperfine splitting in muonic hydrogen expressing them through the low-energy proton structure constants and obtain the precise values of the Zemach radius and two-photon exchange (TPE) contribution. The uncertainty of TPE correction to S energy levels in muonic hydrogen of 105 ppm exceeds the ppm accuracy level of the forthcoming 1S hyperfine splitting measurements at PSI, J-PARC and RIKEN-RAL. (orig.)
Hyperfine magnetic fields of disorder systems by 57Fe Moessbauer spectroscopy
International Nuclear Information System (INIS)
Miglierini, M.; Sitek, J.; Lipka, J.
1994-01-01
The feasibility of 57 Fe transmission Moessbauer spectroscopy in the study of hyperfine magnetic fields is described with emphasis on amorphous, nanocrystalline and quasicrystalline alloys. Distributions of hyperfine magnetic fields obtained are presented via three-dimensional projects where effects of sample composition, temperature and annealing time on magnetic structure are followed by changes in probability of the field values. This allows magnetic transitions as well as mixed electric-quadrupole and magnetic-dipole interactions to be observed
Unexpected lines due to hyperfine interaction
International Nuclear Information System (INIS)
Andersson, Martin
2009-01-01
Hyperfine interaction is often viewed as a small perturbation that only broadens or in some cases splits a line into many closely spaced lines. In this work, we present some cases where this picture is obsolete and where the hyperfine interaction makes drastic changes to spectra. Off-diagonal hyperfine interaction introduces a mixing between states which can differ in the J quantum number. In most cases this mixing is very small, but even so it could have a dramatic influence on the spectra. Some metastable levels are sensitive to the hyperfine interaction and we show this by presenting the results for hyperfine-dependent lifetimes of the 3d 9 4s 3 D 3 level along parts of the higher end of the Ni-like iso-electronic sequence. In the absence of a nuclear spin, this level can only decay through a magnetic-octupole transition, but in the presence of a nuclear spin, the off-diagonal hyperfine interaction introduces a mixing with the 3d 9 4s 3 D 2 level and a new electric-quadrupole transition channel is opened. It is shown that this new transition channel in many cases is the dominant one and that the lifetime of the 3 D 3 level is sensitive to hyperfine interaction all along the sequence. An example of other types of states that are sensitive to hyperfine interaction are those belonging to configurations of the type nsn'l' where l≥3. In such systems the levels are close in energy and the open s-shell gives rise to a strong hyperfine interaction. This in turn introduces a large mixing between the hyperfine levels and shows up in the spectra as a large intensity redistribution among the hyperfine lines. We present detailed results for the 4s4d 3 D 2 -4s4f 3 F 2 transitions in Ga ii, and show that by including the hyperfine interaction in a proper way, we could reproduce experimental spectra that had not been possible earlier.
Quark color-hyperfine interactions in baryons
International Nuclear Information System (INIS)
Anselmino, M.; Lichtenberg, D.B.
1990-01-01
We consider the contribution from the color-hyperfine interaction to the energies of groundstate hadrons, with an emphasis on baryons. We use experimental information about how the color-hyperfine term depends on flavor to make predictions about the masses of baryons containing a heavy quark. We then generalize some relations between color-hyperfine matrix elements in mesons and baryons to obtain a number of additional predictions about the masses of as-yet unobserved baryons. Most of our predictions are in the form of inequalities. (orig.)
Anomalies in resonant absorption line profiles of atoms with large hyperfine splitting
International Nuclear Information System (INIS)
Parkhomenko, A.I.; Pod'yachev, S.P.; Privalov, T.I.; Shalagin, A.M.
1997-01-01
We examine a monochromatic absorption line in the velocity-nonselective excitation of atoms when the components of the hyperfine stricture of the electronic ground states are optically pumped. We show that the absorption lines possess unusual substructures for some values of the hyperfine splitting of the ground state (which exceed the Doppler absorption linewidth severalfold). These substructures in the absorption spectrum are most apparent if the hyperfine structure of the excited electronic state is taken into account. We calculate the absorption spectra of monochromatic light near the D 1 and D 2 lines of atomic rubidium 85,87 Rb. With real hyperfine splitting taken into account, the D 1 and D 2 lines are modeled by 4- and 6-level diagrams, respectively. Finally, we show that atomic rubidium vapor can be successfully used to observe the spectral features experimentally
Numerical Simulations of Hyperfine Transitions of Antihydrogen
Kolbinger, B.; Diermaier, M.; Lehner, S.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M.C.; Widmann, E.
2015-02-04
One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration's goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.
Numerical simulations of hyperfine transitions of antihydrogen
Energy Technology Data Exchange (ETDEWEB)
Kolbinger, B., E-mail: bernadette.kolbinger@oeaw.ac.at; Capon, A.; Diermaier, M.; Lehner, S. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (Austria); Malbrunot, C. [CERN (Switzerland); Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Widmann, E. [Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences (Austria)
2015-08-15
One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration’s goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision.
Hyperfine spectroscopic study of Laves phase HfFe2
International Nuclear Information System (INIS)
Belosevic-Cavor, J.; Novakovic, N.; Cekic, B.; Ivanovic, N.; Manasijevic, M.
2004-01-01
Hyperfine fields in HfFe 2 were measured at 181 Ta probe using the time-differential perturbed angular correlation method (TDPAC) in the temperature range 78-1200 K. Analysis of the spectra revealed two interactions with hyperfine fields of 13.82(7) T and 8.0(2) T, at 293 K. First is ascribed to the interaction at the 8a position in the cubic C15 structure. The second can be assigned to a minor amount of hexagonal C14 phase, or to an irregular position of the probe in the C15 lattice. Results of calculations using LAPW-WIEN97 are in a good agreement with experiment
DEFF Research Database (Denmark)
Sing, M; Meyer, J; Hoinkis, M
2007-01-01
in the topmost surface layer. We find that the tilt angles of the molecules with respect to the one-dimensional axis are essentially the same as in the bulk. Thus, we can rule out surface relaxation as the origin of the renormalized band widths which were inferred from the analysis of photoemission data within...
Fine-hyperfine splittings of quarkonium levels in an effective power-law potential
Energy Technology Data Exchange (ETDEWEB)
Barik, N; Jena, S N [Utkal Univ., Bhubaneswar (India). Dept. of Physics
1980-12-01
We have shown that an effective non-coulombic power-law potential generating spin dependence through scalar and vector exchanges in almost equal proportions along with a very small or zero quark anomalous moment can describe very satisfactorily the up-to-date data on the fine-hyperfine levels and the leptonic width ratios of the vector mesons in the cc and bb families in a flavour independent manner.
Fine-hyperfine splittings of quarkonium levels in an effective power-law potential
International Nuclear Information System (INIS)
Barik, N.; Jena, S.N.
1980-01-01
We have shown that an effective non-coulombic power-law potential generating spin dependence through scalar and vector exchanges in almost equal proportions along with a very small or zero quark anomalous moment can describe very satisfactorily the up-to-date data on the fine-hyperfine levels and the leptonic width ratios of the vector mesons in the cc and bb families in a flavour independent manner. (orig.)
Muon contact hyperfine field in metals: A DFT calculation
Onuorah, Ifeanyi John; Bonfà, Pietro; De Renzi, Roberto
2018-05-01
In positive muon spin rotation and relaxation spectroscopy it is becoming customary to take advantage of density functional theory (DFT) based computational methods to aid the experimental data analysis. DFT-aided muon site determination is especially useful for measurements performed in magnetic materials, where large contact hyperfine interactions may arise. Here we present a systematic analysis of the accuracy of the ab initio estimation of muon's hyperfine contact field on elemental transition metals, performing state-of-the-art spin-polarized plane-wave DFT and using the projector-augmented pseudopotential approach, which allows one to include the core state effects due to the spin ordering. We further validate this method in not-so-simple, noncentrosymmetric metallic compounds, presently of topical interest for their spiral magnetic structure giving rise to skyrmion phases, such as MnSi and MnGe. The calculated hyperfine fields agree with experimental values in all cases, provided the spontaneous spin magnetization of the metal is well reproduced within the approach. To overcome the known limits of the conventional mean-field approximation of DFT on itinerant magnets, we adopt the so-called reduced Stoner theory [L. Ortenzi et al., Phys. Rev. B 86, 064437 (2012), 10.1103/PhysRevB.86.064437]. We establish the accuracy of the estimated muon contact field in metallic compounds with DFT and our results show improved agreement with experiments compared to those of earlier publications.
International Nuclear Information System (INIS)
Schneider, J.W.; Keller, H.; Schmid, B.; Boesiger, K.; Kuendig, W.; Odermatt, W.; Patterson, B.D.; Puempin, B.; Simmler, H.; Savic, I.M.; Heming, M.; Reid, I.D.; Roduner, E.; Louwrier, P.W.F.
1988-01-01
Avoided-level-crossing resonances from isotropic muonium centres interacting with neighbouring nuclear spins in powdered CuCl are reported. The prominent resonances have a complex multiline structure and are strongly temperature-dependent. In addition, previously unobserved resonances in single-crystal GaAs from anomalous muonium interacting with a 71 Ga neighbour are presented. (orig.)
Spin relaxation in nanowires by hyperfine coupling
International Nuclear Information System (INIS)
Echeverria-Arrondo, C.; Sherman, E.Ya.
2012-01-01
Hyperfine interactions establish limits on spin dynamics and relaxation rates in ensembles of semiconductor quantum dots. It is the confinement of electrons which determines nonzero hyperfine coupling and leads to the spin relaxation. As a result, in nanowires one would expect the vanishing of this effect due to extended electron states. However, even for relatively clean wires, disorder plays a crucial role and makes electron localization sufficient to cause spin relaxation on the time scale of the order of 10 ns. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Ground-state hyperfine splitting for Rb, Cs, Fr, Ba+, and Ra+
Ginges, J. S. M.; Volotka, A. V.; Fritzsche, S.
2017-12-01
We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms 87Rb,133Cs, and 211Fr and alkali-metal-like ions +135Ba and +225Ra, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.
The hyperfine spectrum of hydrogen dimers
International Nuclear Information System (INIS)
Verberne, J.F.C.
1979-01-01
The authors' aim was to obtain the level scheme for the hydrogen dimers and to investigate the angle dependent interactions by analyzing the zero magnetic field hyperfine spectrum of the ortho-ortho and ortho-para species. The results were tested by several recent semi-empirical and ab initio potentials. (Auth.)
Hyperfine interactions, the key to multiquark physics
Energy Technology Data Exchange (ETDEWEB)
Likpink, H.J.
1988-08-08
Clues in the search for a fundamental description of hadron physics based on QCD may be obtained from a phenomenological constituent quark model in which the color-electric force binds quarks into saturated color-singlet hadrons, and finer details of the spectrum and multiquark physics are dominated by the color-magnetic hyperfine interaction. 47 refs.
Hyperfine interactions, the key to multiquark physics?
International Nuclear Information System (INIS)
Likpink, H.J.
1988-01-01
Clues in the search for a fundamental description of hadron physics based on QCD may be obtained from a phenomenological constituent quark model in which the color-electric force binds quarks into saturated color-singlet hadrons, and finer details of the spectrum and multiquark physics are dominated by the color-magnetic hyperfine interaction. 47 refs
Investigation of transferred hyperfine interactions from 129I and 119Sn by Moessbauer spectroscopy
International Nuclear Information System (INIS)
Sanchez, J.-P.
1976-01-01
The hyperfine parameters at 129 I have been measured in the series of compounds CrI 3 , CsCrI 3 , MI 2 (M=V, Cr, Mn, Fe, Co, Ni, Cd) and NR 4 FeI 4 (R=ethyl, butyl). They have been interpreted in terms of the charge and spin densities in the ligand valence orbitals. Information about the spin polarization mechanisms as well as about the local magnetic and crystallographic structural arrangements have been furthermore deduced. The 119 Sn hyperfine data in the series of RESn 3 intermetallics have provided information about the magnetic structure and the spin polarization mechanisms [fr
Barionic spectroscopy masses and hyperfine structure
International Nuclear Information System (INIS)
Vale, M.A.B. do.
1986-01-01
Using the Bethe-Salpeter equation in QCD, we obtain, in the nonrelativistic approximation, a quark-antiquark interaction potential. We include, in a phenomenological way, a confining term in the potential (V(qq-bar) = V QCD (qq-bar) + V sub (conf) (qq-bar)). Assuming that the three-quark interaction can be described in terms of pair interactions, and that the quark-quark interaction is related to the quark-antiquark interaction (v (qq)= 1/2 V(qq-bar)), we evaluate the baryon masses as three-quark bound states. We also calculate the relativistic corrections coming from the spin-spin interaction. Finally, our results are compared to the available experimental data. (author) [pt
Effective hyperfine-structure functions of ammonia
Czech Academy of Sciences Publication Activity Database
Augustovičová, L.; Soldán, P.; Špirko, Vladimír
2016-01-01
Roč. 824, č. 2 (2016), č. článku 147. ISSN 0004-637X Institutional support: RVO:61388963 Keywords : cosmological parameters * infrared: ISM * line: profiles * molecular data * submillimeter: ISM Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.533, year: 2016
Barton Clinton; James Vose; Jennifer Knoepp; Katherine Elliott; Barbara Reynolds; Stanley Zarnock
2010-01-01
We characterized structural and functional attributes along hillslope gradients in headwater catchments. We endeavored to identify parameters that described significant transitions along the hillslope. On each of four catchments, we installed eight 50 m transects perpendicular to the stream. Structural attributes included woody and herbaceous vegetation; woody debris...
Hyperfine electric parameters calculation in Si samples implanted with {sup 57}Mn→{sup 57}Fe
Energy Technology Data Exchange (ETDEWEB)
Abreu, Y., E-mail: yabreu@ceaden.edu.cu [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Calle 30 No. 502 e/5ta y 7ma Ave., 11300 Miramar, Playa, La Habana (Cuba); Cruz, C.M.; Piñera, I.; Leyva, A.; Cabal, A.E. [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Calle 30 No. 502 e/5ta y 7ma Ave., 11300 Miramar, Playa, La Habana (Cuba); Van Espen, P. [Departement Chemie, Universiteit Antwerpen, Middelheimcampus, G.V.130, Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Van Remortel, N. [Departement Fysica, Universiteit Antwerpen, Middelheimcampus, G.U.236, Groenenborgerlaan 171, 2020 Antwerpen (Belgium)
2014-07-15
Nowadays the electronic structure calculations allow the study of complex systems determining the hyperfine parameters measured at a probe atom, including the presence of crystalline defects. The hyperfine electric parameters have been measured by Mössbauer spectroscopy in silicon materials implanted with {sup 57}Mn→{sup 57}Fe ions, observing four main contributions to the spectra. Nevertheless, some ambiguities still remain in the {sup 57}Fe Mössbauer spectra interpretation in this case, regarding the damage configurations and its evolution with annealing. In the present work several implantation environments are evaluated and the {sup 57}Fe hyperfine parameters are calculated. The observed correlation among the studied local environments and the experimental observations is presented, and a tentative microscopic description of the behavior and thermal evolution of the characteristic defects local environments of the probe atoms concerning the location of vacancies and interstitial Si in the neighborhood of {sup 57}Fe ions in substitutional and interstitial sites is proposed.
Effect of vanadium neighbors on the hyperfine properties of iron-vanadium alloys
Energy Technology Data Exchange (ETDEWEB)
Elzain, M., E-mail: elzain@squ.edu.om; Yousif, A.; Gismelseed, A.; Al Rawas, A.; Widatallah, H.; Bouziane, K.; Al-Omari, I. [College of Science, Sultan Qaboos University, Physics Department (Oman)
2008-06-15
The electronic and magnetic structures of Fe-V alloys are calculated using the discrete-variational and full-potential linearized-augmented-plane wave methods. The derived hyperfine properties at Fe sites are studied against the number of Fe atoms in the neighbouring shells. As expected the magnetic hyperfine field depends strongly on the number of Fe atoms in the first and second shells of neighbours while its dependence on the variation of atoms in the third shell is weak. The calculated distribution of the magnetic hyperfine fields at the Fe sites, are compared to the experimental data of Krause et al. (Phys Rev B 61:6196-6204, 2000). The contact charge densities and the magnetic moments are also calculated. It was found that the contact charge density increases with increasing V contents and this leads to negative isomer shift on addition of V.
Hyperfine splitting of the optical lines in the odd isotopes of uranium
International Nuclear Information System (INIS)
Gangrskij, Yu.P.; Zemlyanoj, S.G.; Markov, B.N.; Kul'dzhanov, B.K.
1996-01-01
The hyperfine structure was studied for two optical transitions in U between the ground state term 5 L 6 and the excited ones 7 M 7 and 7 L 6 . The method of laser resonance fluorescence in the atomic beam was used. The values of constants of hyperfine splitting-magnetic dipole and octupole, electric quadrupole were obtained for odd isotopes 223 U and 235 U. The connection of these constants and atomic and nuclear parameters is discussed. (author). 20 refs., 2 figs., 4 tabs
DEFF Research Database (Denmark)
Hedegård, Erik Donovan; Kongsted, Jacob; Sauer, Stephan P. A.
2012-01-01
Calculation of hyperfine coupling constants (HFCs) of Electron Paramagnetic Resonance from first principles can be a beneficial compliment to experimental data in cases where the molecular structure is unknown. We have recently investigated basis set convergence of HFCs in d-block complexes...... and obtained a set of basis functions for the elements Sc–Zn, which were saturated with respect to both the Fermi contact and spin-dipolar components of the hyperfine coupling tensor [Hedeg°ard et al., J. Chem. Theory Comput., 2011, 7, pp. 4077-4087]. Furthermore, a contraction scheme was proposed leading...
Hyperfine interactions in the cubic semiconductor CdO
International Nuclear Information System (INIS)
Desimoni, J.; Bibiloni, A.G.; Massolo, C.P.; Renteria, M.
1990-01-01
The time-differential perturbed angular correlation technique has been applied using 111 In probes, which decay through electron capture to 111 Cd, to study the hyperfine interaction in cubic cadmium oxide, in the temperature range RT--740 degree C (RT denotes room temperature). The main fraction of probes are located in perfect-lattice sites, with null electric field gradient in agreement with crystalline-structure considerations. Around 25% of the total intensity shows an electric-field-gradient distribution around V zz =0. This corresponds to probes located in sites perturbed by the vicinity of oxygen vacancies in the lattice. The temperature-independent behavior of the measured hyperfine parameters is discussed in terms of conductivity and band-structure properties of the semiconductor. No time-dependent interaction arising from nuclear electron-capture aftereffects are seen in this experiment. This is in agreement with a previously reported model of aftereffect processes which states that only holes trapped in impurity levels inside the band gap of the semiconductor can give rise to detectable fluctuating interactions
Hyperfine interactions in the cubic semiconductor CdO
Energy Technology Data Exchange (ETDEWEB)
Desimoni, J.; Bibiloni, A.G.; Massolo, C.P.; Renteria, M. (Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Casilla de Correo No. 67, 1900 La Plata, Argentina (AR))
1990-01-15
The time-differential perturbed angular correlation technique has been applied using {sup 111}In probes, which decay through electron capture to {sup 111}Cd, to study the hyperfine interaction in cubic cadmium oxide, in the temperature range RT--740 {degree}C (RT denotes room temperature). The main fraction of probes are located in perfect-lattice sites, with null electric field gradient in agreement with crystalline-structure considerations. Around 25% of the total intensity shows an electric-field-gradient distribution around {ital V}{sub {ital zz}}=0. This corresponds to probes located in sites perturbed by the vicinity of oxygen vacancies in the lattice. The temperature-independent behavior of the measured hyperfine parameters is discussed in terms of conductivity and band-structure properties of the semiconductor. No time-dependent interaction arising from nuclear electron-capture aftereffects are seen in this experiment. This is in agreement with a previously reported model of aftereffect processes which states that only holes trapped in impurity levels inside the band gap of the semiconductor can give rise to detectable fluctuating interactions.
The hyperfine Paschen–Back Faraday effect
International Nuclear Information System (INIS)
Zentile, Mark A; Andrews, Rebecca; Weller, Lee; Adams, Charles S; Hughes, Ifan G; Knappe, Svenja
2014-01-01
We investigate experimentally and theoretically the Faraday effect in an atomic medium in the hyperfine Paschen–Back regime, where the Zeeman interaction is larger than the hyperfine splitting. We use a small permanent magnet and a micro-fabricated vapour cell, giving magnetic fields of the order of a tesla. We show that for low absorption and small rotation angles, the refractive index is well approximated by the Faraday rotation signal, giving a simple way to measure the atomic refractive index. Fitting to the atomic spectra, we achieve magnetic field sensitivity at the 10 −4 level. Finally we note that the Faraday signal shows zero crossings which can be used as temperature insensitive error signals for laser frequency stabilization at large detuning. The theoretical sensitivity for 87 Rb is found to be ∼40 kHz °C −1 . (paper)
Muons as hyperfine interaction probes in chemistry
Energy Technology Data Exchange (ETDEWEB)
Ghandi, Khashayar, E-mail: kghandi@triumf.ca; MacLean, Amy [Mount Allison University, Department of Chemistry & Biochemistry (Canada)
2015-04-15
Spin polarized positive muons injected in matter serve as magnetic probes for the investigation of physical and chemical properties of free radicals, mechanisms of free radical reactions and their formations, and radiation effects. All muon techniques rely on the evolution of spin polarization (of the muon) and in that respect are similar to conventional magnetic resonance techniques. The applications of the muon as a hyperfine probe in several fields in chemistry are described.
Muons as hyperfine interaction probes in chemistry
International Nuclear Information System (INIS)
Ghandi, Khashayar; MacLean, Amy
2015-01-01
Spin polarized positive muons injected in matter serve as magnetic probes for the investigation of physical and chemical properties of free radicals, mechanisms of free radical reactions and their formations, and radiation effects. All muon techniques rely on the evolution of spin polarization (of the muon) and in that respect are similar to conventional magnetic resonance techniques. The applications of the muon as a hyperfine probe in several fields in chemistry are described
International Nuclear Information System (INIS)
Rehse, Steven J.; Fairbank, William M.; Lee, Siu Au
2001-01-01
The hyperfine structure of the 4d 2 D 3/2,5/2 levels of 69,71 Ga is determined. The 4p 2 P 3/2 ->4d 2 D 3/2 (294.50-nm) and 4p 2 P 3/2 ->4d 2 D 5/2 (294.45-nm) transitions are studied by laser-induced fluorescence in an atomic Ga beam. The hyperfine A constant measured for the 4d 2 D 5/2 level is 77.3±0.9 MHz for 69 Ga and 97.9± 0.7 MHz for 71 Ga (3σ errors). The A constant measured for the 4d 2 D 3/2 level is -36.3±2.2 MHz for 69 Ga and -46.2±3.8 MHz for 71 Ga. These measurements correct sign errors in the previous determination of these constants. For 69 Ga the hyperfine B constants measured for the 4d 2 D 5/2 and the 4d 2 D 3/2 levels are 5.3±4.1 MHz and 4.6±4.2 MHz, respectively. The isotope shift is determined to be 114±8 MHz for the 4p 2 P 3/2 ->4d 2 D 3/2 transition and 115±7 MHz for the 4p 2 P 3/2 ->4d 2 D 5/2 transition. The lines of 71 Ga are shifted to the blue. This is in agreement with previous measurement. [copyright] 2001 Optical Society of America
First-principles calculations of Moessbauer hyperfine parameters for solids and large molecules
Energy Technology Data Exchange (ETDEWEB)
Guenzburger, Diana [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Ellis, D.E. [Northwestern Univ., Evanston, IL (United States). Dept. of Physics; Zeng, Z. [Academia Sinica, Hefei, AH (China). Inst. of Solid-State Physics
1997-10-01
Electronic structure calculations based on Density Functional theory were performed for solids and large molecules. The solids were represented by clusters of 60-100 atoms embedded in the potential of the external crystal. Magnetic moments and Moessbauer hyperfine parameters were derived. (author) 22 refs., 8 figs., 1 tab.
First-principles calculations of Moessbauer hyperfine parameters for solids and large molecules
International Nuclear Information System (INIS)
Guenzburger, Diana; Ellis, D.E.; Zeng, Z.
1997-10-01
Electronic structure calculations based on Density Functional theory were performed for solids and large molecules. The solids were represented by clusters of 60-100 atoms embedded in the potential of the external crystal. Magnetic moments and Moessbauer hyperfine parameters were derived. (author)
International Nuclear Information System (INIS)
Taft, C.A.
1975-01-01
The compounds AFeO sub(2) and BFeS sub(2) (A = Na, Cu, Ag, B = K, Rb, Cs, Na) were investigated by Moessbauer spectroscopy. The spectra were registered at temperature range from 4.2 sup(0) to 300 sup(0)K and magnetic transitions were observed determining correspondent temperatures by variation of hyperfine field. The electric field gradient of these compounds and perovskite type compounds (Pb sub(1-x) - Ba sub(x)) Zr O sub(3) were calculated and experimental part were determined by perturbed angular correlation, taking in account the effects of covalence, crystal lattice parameters and dipolar contributions. (M.C.K.)
Hyperfine interactions of /sup 12/B implanted in ferromagnetic nickel
Energy Technology Data Exchange (ETDEWEB)
Hamagaki, H; Nojiri, Y; Sugimoto, K [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Nakai, K
1979-12-01
Temperature dependences of hyperfine interactions of /sup 12/B implanted in Ni were investigated in the temperature range of 6 K - 730 K by the NMR method with use of polarized /sup 12/B produced in a nuclear reaction and the asymmetric ..beta.. decay. Two kinds of hyperfine fields with different signs were observed (B sub(hf)sup(+) = +4.161 +- 0.022 kG and B sub(hf)sup(-) = -1.611 +- 0.021 kG at 6 K), which indicated that the implanted /sup 12/B were trapped in two different sites (S/sup +/ and S/sup -/, respectively). The spin-lattice relaxation times T/sub 1/ and the population rates at the two sites were studied. Near the Curie temperature, an effect of critical slowing-down of the spin-spin correlation was observed as steep variation of T/sub 1/. The behavior of local field around T sub(C) was also studied by varying the external field. Results of these experiments near T sub(C) indicate itinerant nature of the electron-spin structure in nickel.
International Nuclear Information System (INIS)
Jahanshahi, Mohammad R; Masri, Sami F
2013-01-01
In mechanical, aerospace and civil structures, cracks are important defects that can cause catastrophes if neglected. Visual inspection is currently the predominant method for crack assessment. This approach is tedious, labor-intensive, subjective and highly qualitative. An inexpensive alternative to current monitoring methods is to use a robotic system that could perform autonomous crack detection and quantification. To reach this goal, several image-based crack detection approaches have been developed; however, the crack thickness quantification, which is an essential element for a reliable structural condition assessment, has not been sufficiently investigated. In this paper, a new contact-less crack quantification methodology, based on computer vision and image processing concepts, is introduced and evaluated against a crack quantification approach which was previously developed by the authors. The proposed approach in this study utilizes depth perception to quantify crack thickness and, as opposed to most previous studies, needs no scale attachment to the region under inspection, which makes this approach ideal for incorporation with autonomous or semi-autonomous mobile inspection systems. Validation tests are performed to evaluate the performance of the proposed approach, and the results show that the new proposed approach outperforms the previously developed one. (paper)
Energy Technology Data Exchange (ETDEWEB)
Cabral-Prieto, A., E-mail: acpr@nuclear.inin.mx [Instituto Nacional de Investigaciones Nucleares, Department of Chemistry (Mexico); Garcia-Santibanez, F.; Lopez, A.; Lopez-Castanares, R.; Olea Cardoso, O. [Universidad Autonoma del Estado de Mexico, El Cerrillo Piedras Blancas, Facultad de Ciencias (Mexico)
2005-02-15
Amorphous Fe{sub 78}Si{sub 9}B{sub 13} alloy ribbons were heat treated between 296 and 763 K, using heating rates between 1 and 4.5 K/min. Whereas one ribbon partially crystallized at T{sub x} = 722 K, the other one partially crystallized at T{sub x} = 763 K. The partially crystallized ribbon at 722 K, heat treated using a triangular form for the heating and cooling rates, was substantially less fragile than the partially crystallized at 763 K where a tooth saw form for the heating and cooling rates was used. Vickers microhardness and hyperfine magnetic field values behaved almost concomitantly between 296 and 673 K. The Moessbauer spectral line widths of the heat-treated ribbons decreased continuously from 296 to 500 K, suggesting stress relief in this temperature range where the Vickers microhardness did not increase. At 523 K the line width decreased further but the microhardness increased substantially. After 523 K the line width behave in an oscillating form as well as the microhardness, indicating other structural changes in addition to the stress relief. Finally, positron lifetime data showed that both inner part and surface of Fe{sub 78}Si{sub 9}B{sub 13} alloy ribbons were affected distinctly. Variations on the surface may be the cause of some of the high Vickers microhardness values measured in the amorphous state.
DEFF Research Database (Denmark)
Rytka, Christian; Opara, Nadia; Andersen, Nis Korsgaard
2016-01-01
The replication of functional polymeric micro- and nanostructures requires a deep understanding of material and process interrelations. In this investigation the dewetting potential of a polymer is proposed as a simple rationale for estimation of the replicability of functional micro- and nanostr......The replication of functional polymeric micro- and nanostructures requires a deep understanding of material and process interrelations. In this investigation the dewetting potential of a polymer is proposed as a simple rationale for estimation of the replicability of functional micro......- and nanostructures by injection molding. The dewetting potential of a polymer is determined by integrating the spreading coefficient over the range from melt temperature to no-flow temperature. From all polymers tested, the lowest dewetting potential is calculated for PP and the highest for polymethylmethacrylate....... The dewetting potential correlates well with the replicated height of four different structures covering both the micro- and the nanorange on two different surfaces (brass and fluorocarbon modified nickel) and polymers with different spreading coefficients. It is clearly shown that a lower dewetting potential...
Proceedings of 4 conference on hyperfine interaction spectroscopic investigations
International Nuclear Information System (INIS)
Shpinel', V.S.
1992-01-01
Results of theoretical and experimental investigations on nuclear-spectroscopy of hyperfine interactions are presented. Possibility of the data use for technological and materials sceince problems is demonstrated
Magnetic hyperfine field at caesium in iron
International Nuclear Information System (INIS)
Ashworth, C.J.; Back, P.; Stone, N.J.; White, J.P.; Ohya, S.
1990-01-01
We report temperature dependence of nuclear orientation (NO), and the first observation of NMR/ON on Cs in iron. 132,136 Cs were implanted at room temperature into polycrystalline and single crystal iron. NO values for the (average) magnetic hyperfine field B hf (CsFe) are close to 34 T, intermediate between the value of 40.7 T found in on-line samples made at mK temperatures and the NMR/ON value of 27.8(2) T. The latter studies. The site/field distribution is briefly discussed. (orig.)
Man-made materials : An exciting area for hyperfine-interaction investigation
International Nuclear Information System (INIS)
Freeman, A.; Wu, R.
1996-01-01
Man-made low-dimensional magnetic systems including surfaces, interfaces and multilayers, have attracted a great amount of attention in the past decade because, as expected, the lowered symmetry and coordination number offer a variety of opportunities for inducing new and exotic phenomena and so hold out the promise of new device applications. Local spin density functional (LSDF) ab initio electronic-structure calculations employing the full-potential -linearized augmented-plane-wave (FLAPW) method have played a key role in the development of this exciting field by not only providing a clearer understanding of the experimental observations but also predicting new systems with desired properties. One of the striking successes of theory in the last decade has been the calculation of hyperfine fields at surfaces and interfaces. Concurrently, several groups have followed the pioneering work of Korecki and Gradmann and have measured hyperfine fields at surfaces and interfaces. In this paper, it is reviewed new features of hyperfine-interaction investigations in man-made materials which are essential because the hyperfine field is not proportional to the magnetization and so interpretations of experiment are totally dependent on theory
Measurement and modeling of hyperfine parameters in ferroic materials
Gonçalves, João Nuno; Correia, J G
This thesis presents the results of perturbed angular correlation (PAC) experiments , an experimental technique which measures the hyperfine interaction at probes (radioactive ions implanted in the materials to study), from which one infers local information on an atomic scale. Furthermore, abinitio calculations using density functional theory electronic obtain results that directly complement the experiments, and are also used for theoretical research. These methods were applied in two families of materials. The manganites, with the possible existence of magnetic, charge, orbital and ferroelectric orders, are of fundamental and technological interest. The experimental results are obtained in the alkaline-earth manganites (Ca, Ba, Sr), with special interest due to the structural variety of possible polymorphs. With probes of Cd and In the stability of the probe and its location in a wide temperature range is established and a comparison with calculations allows the physical interpretation of the results. Cal...
Directionally independent energy gap formation due to the hyperfine interaction
Miyashita, Seiji; Raedt, Hans De; Michielsen, Kristel
We study energy gap formation at the level-crossing point due to the hyperfine interaction. In contrast to the energy gap induced by the Dzyaloshinskii-Moriya interaction, the gap induced by the hyperfine interaction is independent of the direction of the magnetic field. We also study the dynamics
International Nuclear Information System (INIS)
Zhang Jingshang
2003-01-01
In file-6 for double-differential cross sections, the level width broadening effect should be taken into account properly due to Heisenberg' uncertainty. Besides level width broadening effect, the energy resolution in the measurements is also needed in fitting measurement procedure. In general, the traditional normal Gaussian expansion is employed. However, to do so in this way the energy balance could not be held. For this reason, the deformed Gaussian expansion functions with exponential form for both the single energy point and continuous spectrum are introduced, with which the normalization and energy balance conditions could be held exactly in the analytical form. (author)
Energy Technology Data Exchange (ETDEWEB)
Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Liu, F.; Ruden, P. P. [University of Minnesota, Minneapolis, Minnesota 55455 (United States)
2014-10-13
We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.
Muonium hyperfine parameters in Si1-x Ge x alloys
International Nuclear Information System (INIS)
King, Philip; Lichti, Roger; Cottrell, Stephen; Yonenaga, Ichiro
2006-01-01
We present studies of muonium behaviour in bulk, Czochralski-grown Si 1- x Ge x alloy material, focusing in particular on the hyperfine parameter of the tetrahedral muonium species. In contrast to the bond-centred species, the hyperfine parameter of the tetrahedral-site muonium centre (Mu T ) appears to vary non-linearly with alloy composition. The temperature dependence of the Mu T hyperfine parameter observed in low-Ge alloy material is compared with that seen in pure Si, and previous models of the Mu T behaviour in Si are discussed in the light of results from Si 1- x Ge x alloys
Measurement of the ground-state hyperfine splitting of antihydrogen
Juhász, B; Federmann, S
2011-01-01
The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, consisting of a cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of ~10−7. The first preliminary measurements of the hyperfine transitions will start in 2011.
International Nuclear Information System (INIS)
Nikiskov, A.I.; Ritus, V.I.
1993-01-01
The concept of Stokes line width is introduced for the asymptotic expansions of functions near an essential singularity. Explicit expressions are found for functions (switching functions) that switch on the exponentially small terms for the Dawson integral, Airy function, and the gamma function. A different, more natural representation of a function, not associated with expansion in an asymptotic series, in the form of dominant and recessive terms is obtained by a special division of the contour integral which represents the function into contributions of higher and lower saddle points. This division leads to a narrower, natural Stokes line width and a switching function of an argument that depends on the topology of the lines of steepest descent from the saddle point
Electrical detection of hyperfine interactions in silicon
Energy Technology Data Exchange (ETDEWEB)
Hoehne, Felix
2012-12-15
The main focus of this work was the measurement of hyperfine interactions of defects in silicon using EDMR. We combined the high sensitivity of EDMR when compared to conventional ESR with the two most commonly used methods for the measurement of hyperfine interactions: ESEEM and ENDOR. We first demonstrated the electrical detection of ESEEM by measuring the hyperfine interactions of {sup 31}P donors in Si:P with {sup 29}Si nuclear spins. We then apply EDESEEM to P{sub b0} defects at the Si/SiO{sub 2} interface. In isotopically engineered, we observe an ESEEM modulation with a characteristic beating caused by {sup 29}Si nuclei at 4th and 5th nearest neighbor lattice sites. Then we combine pulsed ENDOR with the high sensitivity of EDMR (EDENDOR). First we demonstrate the measurement of {sup 31}P nuclear spin hyperfine transitions and the coherent manipulation and readout of the {sup 31}P nuclear spins under continuous illumination with above bandgap light. We further show that the EDENDOR method can be greatly improved by switching off the illumination during the microwave and rf pulses. This improves the signal-to-noise ratio by two orders of magnitude and removes the non-resonant background induced by the strong rf pulse allowing to measure ENDOR with a sensitivity <3000 nuclear spins. We apply EDENDOR to the {sup 31}P-P{sub b0} spin system and the {sup 31}P-SL1 spin system allowing us to compare the hyperfine interactions of bulk and interface-near donors. The pulsed illumination also makes spectroscopy of the {sup 31}P{sup +} nuclear spin possible, which due to its long coherence time of 18 ms compared to 280 {mu}s for the {sup 31}P{sub 0} nuclear spin, might be a candidate for a nuclear spin memory. In the last part, we devise a scheme for the hyperpolarization of {sup 31}P nuclei by combining pulsed optical excitation and pulsed ENDOR and demonstrate a {sup 31}P nuclear spin polarization of more than 50%. Crucial for these experiments was the development of a
Electrical detection of hyperfine interactions in silicon
International Nuclear Information System (INIS)
Hoehne, Felix
2012-01-01
The main focus of this work was the measurement of hyperfine interactions of defects in silicon using EDMR. We combined the high sensitivity of EDMR when compared to conventional ESR with the two most commonly used methods for the measurement of hyperfine interactions: ESEEM and ENDOR. We first demonstrated the electrical detection of ESEEM by measuring the hyperfine interactions of 31 P donors in Si:P with 29 Si nuclear spins. We then apply EDESEEM to P b0 defects at the Si/SiO 2 interface. In isotopically engineered, we observe an ESEEM modulation with a characteristic beating caused by 29 Si nuclei at 4th and 5th nearest neighbor lattice sites. Then we combine pulsed ENDOR with the high sensitivity of EDMR (EDENDOR). First we demonstrate the measurement of 31 P nuclear spin hyperfine transitions and the coherent manipulation and readout of the 31 P nuclear spins under continuous illumination with above bandgap light. We further show that the EDENDOR method can be greatly improved by switching off the illumination during the microwave and rf pulses. This improves the signal-to-noise ratio by two orders of magnitude and removes the non-resonant background induced by the strong rf pulse allowing to measure ENDOR with a sensitivity 31 P-P b0 spin system and the 31 P-SL1 spin system allowing us to compare the hyperfine interactions of bulk and interface-near donors. The pulsed illumination also makes spectroscopy of the 31 P + nuclear spin possible, which due to its long coherence time of 18 ms compared to 280 μs for the 31 P 0 nuclear spin, might be a candidate for a nuclear spin memory. In the last part, we devise a scheme for the hyperpolarization of 31 P nuclei by combining pulsed optical excitation and pulsed ENDOR and demonstrate a 31 P nuclear spin polarization of more than 50%. Crucial for these experiments was the development of a lock-in detection scheme for pEDMR, which improves the signal-to-noise ratio by one order of magnitude by removing low
Hees, A.; Guéna, J.; Abgrall, M.; Bize, S.; Wolf, P.
2016-01-01
We use six years of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field can induce harmonic variations of the fine structure constant, of the mass of fermions and of the quantum chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition frequency ratio. We find no signal consistent with a scalar dark matter candidate but pr...
Measurement of the hyperfine magnetic field on rhodium in chromium
International Nuclear Information System (INIS)
Peretto, P.; Teisseron, G.; Berthier, J.
1978-01-01
Hyperfine magnetic field of rhodium in a chromium matrix is studied. Anisotropy of rhodium 100 is + 0.17. Time dependence of angular correlation is given with a sample containing 145 ppm of rhodium despite the short life [fr
Proceedings of the 2nd KUR symposium on hyperfine interactions
International Nuclear Information System (INIS)
Mekata, M.; Minamisono, T.; Kawase, Y.
1991-10-01
Hyperfine interactions between a nuclear spin and an electronic spin discovered from hyperfine splitting in atomic optical spectra have been utilized not only for the determination of nuclear parameters in nuclear physics but also for novel experimental techniques in many fields such as solid state physics, chemistry, biology, mineralogy and for diagnostic methods in medical science. Experimental techniques based on hyperfine interactions yield information about microscopic states of matter so that they are important in material science. Probes for material research using hyperfine interactions have been nuclei in the ground state and radioactive isotopes prepared with nuclear reactors or particle accelerators. But utilization of muons generated from accelerators is recently growing. Such wide spread application of hyperfine interaction techniques gives rise to some difficulty in collaboration among various research fields. In these circumstances, the present workshop was planned after four years since the last KUR symposium on the same subject. This report summarizes the contributions to the workshop in order to be available for the studies of hyperfine interactions. (J.P.N.)
Calculation of the hyperfine interaction using an effective-operator form of many-body theory
International Nuclear Information System (INIS)
Garpman, S.; Lindgren, I.; Lindgren, J.; Morrison, J.
1975-01-01
The effective-operator form of many-body theory is reviewed and applied to the calculation of the hyperfine structure. Numerical results are given for the 2p, 3p, and 4p excited states of Li and the 3p state of Na. This is the first complete calculation of the hyperfine structure using an effective-operator form of perturbation theory. As in the Brueckner-Goldstone form of many-body theory, the various terms in the perturbation expansion are represented by Feynman diagrams which correspond to basic physical processes. The angular part of the perturbation diagrams are evaluated by taking advantage of the formal analogy between the Feynman diagrams and the angular-momentum diagrams, introduced by Jucys et al. The radial part of the diagrams is calculated by solving one- and two-particle equations for the particular linear combination of excited states that contribute to the Feynman diagrams. In this way all second- and third-order effects are accurately evaluated without explicitly constructing the excited orbitals. For the 2p state of Li our results are in agreement with the calculations of Nesbet and of Hameed and Foley. However, our quadrupole calculation disagrees with the work of Das and co-workers. The many-body results for Li and Na are compared with semiempirical methods for evaluating the quadrupole moment from the hyperfine interaction, and a new quadrupole moment of 23 Na is given
International Nuclear Information System (INIS)
Budyashov, Yu.G.; Grebenyuk, V.M.; Zinov, V.G.
1978-01-01
A pulse duration discriminator is described which is intended for processing signals from multilayer scintillators. The basic elements of the scintillator are: an input gate, a current generator, an integrating capacitor, a Schmidt trigger and an anticoincidence circuit. The basic circuit of the discriminator and its time diagrams explaining its operating are given. The discriminator is based on microcircuits. Pulse duration discrimination threshold changes continuously from 20 to 100 ns, while its amplitude threshold changes within 20 to 100 mV. The temperature instability of discrimination thresholds (both in pulse width and in amplitude) is better than 0.1 per cent/deg C
Hyperfine interaction measurements in biological compounds: the case of hydroxyapatite
International Nuclear Information System (INIS)
Leite Neto, Osmar Flavio da Silveira
2014-01-01
The use o nanoparticles in current medicine are under intense investigation. The possible advantages proposed by these systems are very impressive and the results may be quite schemer. In this scenario, the association of nanoparticles with radioactive materials (radionuclide) may be the most important step since the discovery of radioactive for nuclear medicine and radiopharmacy, especially for cancer targeting and therapy. The hyperfine interaction of the nuclear probe 111 Cd in the Hydroxyapatite compounds has been investigated by perturbed angular correlation (PAC) spectroscopy in room temperature for the hydroxyapatite made in the temperatures of 90°C, 35°C and with Ho doped, both thermalized and not. The thermalized samples were heated to T= 1273 K for 6 h. The 111 Cd was broadcast in the structure of the material by diffusion, closing in quartz tubes were heated – together with the radioactive PAC probe 111 In/ 111 Cd to T = 1073 K for 12 h. In not thermalized samples the PAC spectra indicate a distribution of frequency, but in the thermalized samples, the PAC spectra shows the presence of β-tri calcium phosphate in the structure of this kind of Hydroxyapatite. (author)
Energy Technology Data Exchange (ETDEWEB)
Takano, M [Konan Univ., Kobe (Japan). Faculty of Science; Takeda, Y; Shimada, M; Matsuzawa, T; Shinjo, T
1975-09-01
Casub(1-x)Srsub(x)Mnsub(0.99)Snsub(0.01)O/sub 3/(0<=x<=1) with (nearly) cubic perovskite structures were prepared and the magnetic hyperfine fields of /sup 119/Sn (Sn/sup 4 +/) were measured by the Moessbauer effect. The hyperfine fields arise from unpaired s electron spin densities transferred from Mn/sup 4 +/ ions (supertransferred hyperfine interaction). The hyperfine field for a tin ion was found to depend linearly upon the numbers of Ca/sup 2 +/ and Sr/sup 2 +/ ions in the neighboring divalent cation sites, with proportional coefficients having opposite signs. To explain experimental results two kinds of spin transfer processes contributing to the hyperfine field oppositely to each other have been considered, and spin transfer via a divalent cation is emphasized particularly. The hyperfine field at 0 K for Sn/sup 4 +/ in CaMnO/sub 3/ is -75 kOe, while +20 kOe for Sn/sup 4 +/ in SrMnO/sub 3/.
Some recoil corrections to the hydrogen hyperfine splitting
International Nuclear Information System (INIS)
Bodwin, G.T.; Yennie, D.R.
1988-01-01
We compute all of the recoil corrections to the ground-state hyperfine splitting in hydrogen, with the exception of the proton polarizability, that are required to achieve an accuracy of 1 ppm. Our approach includes a unified treatment of the corrections that would arise from a pointlike Dirac proton and the corrections that are due to the proton's non-QED structure. Our principal new results are a calculation of the relative order-α 2 (m/sub e//m/sub p/) contributions that arise from the proton's anomalous magnetic moment and a systematic treatment of the relative order-α(m/sub e//m/sub p/) contributions that arise from form-factor corrections. In the former calculation we introduce some new technical improvements and are able to evaluate all of the expressions analytically. In the latter calculation, which has been the subject of previous investigations by other authors, we express the form-factor corrections in terms of two-dimensional integrals that are convenient for numerical evaluation and present numerical results for the commonly used dipole parametrization of the form factors. Because we use a parametrization of the form factors that differs slightly from the ones used in previous work, our numerical results are shifted from older ones by a small amount
Progress towards antihydrogen hyperfine spectroscopy in a beam
Energy Technology Data Exchange (ETDEWEB)
Widmann, Eberhard [Stefan Meyer Institute for Subatomic Physics, Vienna (Austria); Collaboration: ASACUSA CUSP collaboration
2014-07-01
The spectroscopy of antihydrogen promises one of the most precise tests of CPT symmetry. The ASACUSA CUSP collaboration at the Antiproton Decelerator of CERN is preparing an experiment to measure the ground-state hyperfine structure GS-HFS of antihydrogen, since this quantity is one of the most precisely determined transitions in ordinary hydrogen (relative accuracy ∝10{sup -12}). The experiment uses a Rabi-type atomic beam apparatus consisting of a source of spin-polarized antihydrogen (a so-called cusp trap), a microwave cavity to induce a spin flip, a superconducting sextuple magnet for spin analysis, and an antihydrogen detector. In this configuration, a relative accuracy of better than 10{sup -6} can be obtained. This precision will already allow to be sensitive to finite size effects of the antiproton, provided its magnetic moment will measured to higher precision, which is in progress by two collaborations at the AD. The recent progress in producing a beam of antihydrogen atoms and in the development of the apparatus as well as ways to further improve the accuracy by using the Ramsey method of separated oscillatory fields are presented.
Hyperfine fields for B and N in nickel
Energy Technology Data Exchange (ETDEWEB)
Hamagaki, H; Nakai, K [Tokyo Univ. (Japan). Faculty of Science; Nojiri, Y; Tanihata, I; Sugimoto, K [Osaka Univ., Toyonaka (Japan). Faculty of Science
1976-11-01
Hyperfine fields for non-magnetic impurity atoms of /sup 12/B and /sup 12/N in nickel have been investigated using a nuclear resonance method involving ..beta.. decay. The temperature dependence of the hyperfine fields and nuclear spin lattice relaxation time were also studied for /sup 12/B in Ni. Resonances were observed for recoil nuclei produced in the reactions /sup 11/B(d,p)/sup 12/B or /sup 10/B(/sup 3/He,n)/sup 12/N, implanted in polycrystalline Ni foils. A small correction to the Lorentz field was made because of a Co impurity in the Ni foils used. The sign of the hyperfine field was negative for B in Ni and positive for N. This result is in qualitative agreement with hyperfine field systematics for such impurities. Spin lattice relaxation time was determined from the time spectra of the ..beta..-decay asymmetry. Hyperfine fields measured in the given temperature range deviated significantly from the magnetization curve of Ni. At low temperatures spin lattice was long in comparison with /sup 12/B half life (11 ms), but became shorter around Curie temperature Tsub(c) (631 K), increasing again above this temperature. This is due to slowing down of spin fluctuations at a critical point of the ferromagnetic-paramagnetic phase transition.
Hyperfine-mediated static polarizabilities of monovalent atoms and ions
International Nuclear Information System (INIS)
Dzuba, V. A.; Flambaum, V. V.; Beloy, K.; Derevianko, A.
2010-01-01
We apply relativistic many-body methods to compute static differential polarizabilities for transitions inside the ground-state hyperfine manifolds of monovalent atoms and ions. Knowledge of this transition polarizability is required in a number of high-precision experiments, such as microwave atomic clocks and searches for CP-violating permanent electric dipole moments. While the traditional polarizability arises in the second order of interaction with the externally applied electric field, the differential polarizability involves an additional contribution from the hyperfine interaction of atomic electrons with nuclear moments. We derive formulas for the scalar and tensor polarizabilities including contributions from magnetic dipole and electric quadrupole hyperfine interactions. Numerical results are presented for Al, Rb, Cs, Yb + , Hg + , and Fr.
Determining hyperfine transitions with electromagnetically induced transparency and optical pumping
International Nuclear Information System (INIS)
Lee Yi-Chi; Tsai Chin-Chun; Huang Chen-Han; Chui Hsiang-Chen; Chang Yung-Yung
2011-01-01
A system is designed to observe the phenomena of electromagnetically induced transparency and optical pumping in cesium D 1 and D 2 lines at room temperature. When a pump laser is frequency-locked on the top of a hyperfine transition and the frequency of the probe laser scans over another hyperfine transition, a spectrum of V-type electromagnetically induced transparency or an optical pumping can be observed depending on whether the two lasers share a common ground state. Therefore, these results can be used to identify the unknown hyperfine transitions of the D 1 line transitions. For educational purposes, this system is helpful for understanding the electromagnetically induced transparency and the optical pumping
Hyperfine fields of Fe in Nd2Fe14BandSm2Fe17N3
Akai, Hisazumi; Ogura, Masako
2015-03-01
High saturation magnetization of rare-earth magnets originates from Fe and the strong magnetic anisotropy stems from f-states of rare-earth elements such as Nd and Sm. Therefore the hyperfine fields of both Fe and rare-earth provide us with important pieces of information: Fe NMR enable us to detect site dependence of the local magnetic moment and magnetic anisotropy (Fe sites also contribute to the magnetic anisotropy) while rare-earth NQR directly give the information of electric field gradients (EFG) that are related to the shape of the f-electron cloud as well as the EFG produced by ligands. In this study we focus on the hyperfine fields of materials used as permanent magnets, Nd2Fe14BandSm2Fe17N3 from theoretical points of view. The detailed electronic structure together with the hyperfine interactions are discussed on the basis of the first-principles calculation. In particular, the relations between the observed hyperfine fields and the magnetic properties are studies in detail. The effects of doping of those materials by other elements such as Dy and the effects of N adding in Sm2Fe17N3 will be discussed. This work was supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Baturo, V. V.; Cherepanov, I. N.; Lukashov, S. S.; Petrov, A. N.; Poretsky, S. A.; Pravilov, A. M.
2018-05-01
Detailed studies of I2(β1 g , v β = 13, J β ∼ D{0}u+, v D = 12, J D and D, 48, J D ∼ β, 47, J β ) rovibronic state coupling have been carried out using two-step two-color, hν 1 + hν 2 and hν 1 + 2hν 2, optical–optical double resonance excitation schemes, respectively. The hyperfine interaction satisfying the | {{Δ }}J| = 0, 1 selection rules (magnetic-dipole interaction) has been observed. No electric-quadrupole hyperfine coupling (| {{Δ }}J| = 2) has been found. The dependences of ratios of luminescence intensities from the rovibronic states populated due to the hyperfine coupling to those from optically populated ones on energy gaps between these states have been experimentally determined. The matrix elements as well as the hyperfine structure constant have been obtained using these dependences. It is shown that they increase slightly with the vibrational quantum number of the states.
International Nuclear Information System (INIS)
Lazzarini, A.J.; Steadman, S.G.; Ledoux, R.J.; Sperduto, A.; Young, G.R.; Van Bibber, K.; Cosman, E.R.
1983-01-01
Prominent gross and intermediate width structures are observed in the 12 C+ 12 C, 12 C+ 12 C((2 + ), 1 C((2 + )+ 12 C((2 + ), 8 Be+ 16 O, and 8 Be+ 16 O + (3 - , O + ) decay channels following 24 Mg* population via the 12 C( 16 O,α) 24 Mg reaction at E/sub c.m./ = 33 MeV. Evidence that the 12 C( 16 O,α) 24 Mg reaction populates states in 24 Mg which are associated with 12 C+ 12 C resonances is presented in the form of correlation analyses between the α+ 12 C+ 12 C three-body spectra and previously measured 12 C+ 12 C elastic and inelastic excitation functions. Direct determination of 12 C+ 12 C widths from these measurements is obscured by a background of other strong transitions which appear to be present in the 12 C( 16 O,α) 24 Mg singles spectrum
Mössbauer studies of hyperfine fields in disordered Fe CrAl
Indian Academy of Sciences (India)
magnetic hyperfine field, the average hyperfine field follows the ´T Tcµ3 2 law. The paramagnetic part of the hyperfine field is explained in terms of the clustering of Cr ... These alloys offer excellent systems for studying magnetic interactions. Large volumes of studies have been devoted to Heusler alloys bearing the general ...
Cryogenic tunable microwave cavity at 13GHz for hyperfine spectroscopy of antiprotonic helium
International Nuclear Information System (INIS)
Sakaguchi, J.; Gilg, H.; Hayano, R.S.; Ishikawa, T.; Suzuki, K.; Widmann, E.; Yamaguchi, H.; Caspers, F.; Eades, J.; Hori, M.; Barna, D.; Horvath, D.; Juhasz, B.; Torii, H.A.; Yamazaki, T.
2004-01-01
For the precise measurement of the hyperfine structure of antiprotonic helium, microwave radiation of 12.9GHz frequency is needed, tunable over +/-100MHz. A cylindrical microwave cavity is used whose front and rear faces are meshed to allow the antiprotons and laser beams to enter. The cavity is embedded in a cryogenic helium gas target. Frequency tuning of ∼300MHz with Q values of 2700-3000 was achieved using over-coupling and an external triple stub tuner. We also present Monte-Carlo simulations of the stopping distribution of antiprotons in the low-density helium gas using the GEANT4 package with modified energy loss routines
Calculation of hyperfine constants for the H center in LiF
International Nuclear Information System (INIS)
Alencar, P.T.S.
1975-01-01
The EPR and the ENDOR hyperfine parameters for the H center in LiF are calculated assuming that the F - 2 central molecule is a simplified model for the electronic structure of this deffect. The best theoretical fitting was obtained by relaxing the ions neighboring the central molecule. We have obtained relaxations which are in agreement with the physical nature of this deffect, but for some ions the results have shown that a better wave functions for the unpaired electrons must be used. The results and the limitations of the suggested model, are discussed proposing a more realistic description for the deffect, than the F - 2 central molecule model
Isotope effects in interstellar molecules by chemical hyperfine interaction
International Nuclear Information System (INIS)
Haberkorn, R.; Michel-Beyerle, M.E.
1977-01-01
If free radicals recombine on grain surfaces, not only the different masses of isotopes but also their differing nuclear spin moments (e.g. 12 C/ 13 C, 14 N/ 15 N, 17 O/ 18 O) may imply variations in the recombination probability due to hyperfine interaction. This mechanism has not been accounted for so far. (orig.) [de
Observation of Hyperfine Transitions in Trapped Ground-State Antihydrogen
Olin, Arthur
2015-01-01
This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4~parts~in~$10^3$. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.
Hyperfine field distribution of Fe83B17 glassy metal
International Nuclear Information System (INIS)
Miglierini, M.; Sitek, J.
1990-01-01
Convolutions of Gaussian and Lorentzian lines are proposed to fit the Moessbauer spectrum of Fe 83 B 17 metallic glass. The hyperfine field distribution is constructed from three Gaussian lines corresponding to the individual line pairs. (author). 1 fig., 7 refs
Split and Compensated Hyperfine Fields in Magnetic Metal Clusters
International Nuclear Information System (INIS)
Nakamura, H.; Chudo, H.; Shiga, M.; Kohara, T.
2004-01-01
As prominent characteristics of magnetic metal cluster found in vanadium sulfides, we point out marked separation and compensation of the hyperfine field at the nuclear site; these are in somewhat discordance with the common sense for 3d transition-metal magnets, where the on-site isotropic field, scaling the ordered moment magnitude, is dominant.
Kinetic models in spin chemistry. 1. The hyperfine interaction
DEFF Research Database (Denmark)
Mojaza, M.; Pedersen, J. B.
2012-01-01
Kinetic models for quantum systems are quite popular due to their simplicity, although they are difficult to justify. We show that the transformation from quantum to kinetic description can be done exactly for the hyperfine interaction of one nuclei with arbitrary spin; more spins are described w...... induced enhancement of the reaction yield. (C) 2012 Elsevier B.V. All rights reserved....
Muon zero point motion and the hyperfine field in nickel
International Nuclear Information System (INIS)
Elzain, M.E.
1984-09-01
It is argued that the effect of zero point motion of muons in Ni is to induce local vibrations of the neighbouring Ni atoms. This local vibration reduces the Hubbard correlation and hence decreases the net spin per atom. This acts back to reduce the hyperfine field at the muon site. (author)
Temperature dependence of the μ+ hyperfine field in ferromagnets
International Nuclear Information System (INIS)
Nagamine, K.; Nirhida, N.; Hayano, R.S.; Yamazaki, T.; Brewes, J.H.; Fleming, D.G.
1977-01-01
The temperature dependences of the μ + hyperfine fields in Ni and in Fe were found to deviate from that of the saturation magnetization in opposite senses. Difference in the screening mechanism of conduction electrons around the μ + is considered, among several possible explanations. (Auth.)
Pure nuclear reflexes and combined hyperfine interactions in YIG
Energy Technology Data Exchange (ETDEWEB)
Winkler, H; Eisberg, R; Alp, E; Rueffer, R; Gerdau, E; Lauer, S; Trautwein, A X; Grodzicki, M; Vera, A
1983-01-01
Moessbauer spectra of oriented YIG single crystals were taken and the numerical analysis using the transmission integral yielded a consistent set of hyperfine interaction parameters. They are in good agreement with theoretical values obtained by MO-calculations which included clusters up to 62 ions. Finally pure nuclear reflexes are predicted for single crystals and two theoretical spectra are given.
Observation of hyperfine transitions in trapped ground-state antihydrogen
Energy Technology Data Exchange (ETDEWEB)
Collaboration: A. Olin for the ALPHA Collaboration
2015-08-15
This paper discusses the first observation of stimulated magnetic resonance transitions between the hyperfine levels of trapped ground state atomic antihydrogen, confirming its presence in the ALPHA apparatus. Our observations show that these transitions are consistent with the values in hydrogen to within 4 parts in 10{sup 3}. Simulations of the trapped antiatoms in a microwave field are consistent with our measurements.
Effective spectrum width of the synchrotron radiation
Energy Technology Data Exchange (ETDEWEB)
Bagrov, V. G., E-mail: bagrov@phys.tsu.ru [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Institute of High Current Electronics, SB RAS, Tomsk (Russian Federation); Gitman, D. M., E-mail: gitman@if.usp.br [Department of Physics, Tomsk State University, Tomsk (Russian Federation); Institute of Physics, University of São Paulo, São Paulo (Brazil); P.N.Lebedev Physical Institute, Moscow (Russian Federation); Levin, A. D., E-mail: alevin@if.usp.br [Institute of Physics, University of São Paulo, São Paulo (Brazil); Loginov, A. S.; Saprykin, A. D. [Department of Physics, Tomsk State University, Tomsk (Russian Federation)
2015-11-25
For an exact quantitative description of spectral properties of synchrotron radiation (SR), the concept of effective width of the spectrum is introduced. In the most interesting case, which corresponds to the ultrarelativistic limit of SR, the effective width of the spectrum is calculated for the polarization components, and new physically important quantitative information on the structure of spectral distributions is obtained. For the first time, the spectral distribution for the circular polarization component of the SR for the upper half-space is obtained within classical theory.
Effective spectrum width of the synchrotron radiation
International Nuclear Information System (INIS)
Bagrov, V. G.; Gitman, D. M.; Levin, A. D.; Loginov, A. S.; Saprykin, A. D.
2015-01-01
For an exact quantitative description of spectral properties of synchrotron radiation (SR), the concept of effective width of the spectrum is introduced. In the most interesting case, which corresponds to the ultrarelativistic limit of SR, the effective width of the spectrum is calculated for the polarization components, and new physically important quantitative information on the structure of spectral distributions is obtained. For the first time, the spectral distribution for the circular polarization component of the SR for the upper half-space is obtained within classical theory
Effective spectrum width of the synchrotron radiation
Energy Technology Data Exchange (ETDEWEB)
Bagrov, V.G. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); SB RAS, Institute of High Current Electronics, Tomsk (Russian Federation); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); P.N. Lebedev Physical Institute, Moscow (Russian Federation); Levin, A.D. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Loginov, A.S.; Saprykin, A.D. [Tomsk State University, Department of Physics, Tomsk (Russian Federation)
2015-11-15
For an exact quantitative description of spectral properties of synchrotron radiation (SR), the concept of effective width of the spectrum is introduced. In the most interesting case, which corresponds to the ultrarelativistic limit of SR, the effective width of the spectrum is calculated for the polarization components, and new physically important quantitative information on the structure of spectral distributions is obtained. For the first time, the spectral distribution for the circular polarization component of the SR for the upper half-space is obtained within classical theory. (orig.)
Line width of Josephson flux flow oscillators
DEFF Research Database (Denmark)
Koshelets, V.P.; Dmitriev, P.N.; Sobolev, A.S.
2002-01-01
to be proven before one initiates real FFO applications. To achieve this goal a comprehensive set of line width measurements of the FFO operating in different regimes has been performed. FFOs with tapered shape have been successfully implemented in order to avoid the superfine resonant structure with voltage...... spacing of about 20 nV and extremely low differential resistance, recently observed in the IVC of the standard rectangular geometry. The obtained results have been compared with existing theories and FFO models in order to understand and possibly eliminate excess noise in the FFO. The intrinsic line width...
The decay width of stringy hadrons
Directory of Open Access Journals (Sweden)
Jacob Sonnenschein
2018-02-01
We fit the theoretical decay width to experimental data for mesons on the trajectories of ρ, ω, π, η, K⁎, ϕ, D, and Ds⁎, and of the baryons N, Δ, Λ, and Σ. We examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons A=0.095±0.015 is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. We discuss the relation with string fragmentation and jet formation. We extract the quark–diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia is proposed and is shown to reproduce the decay width of ϒ states. The dependence of the width on spin and flavor symmetry is discussed. We further apply this model to the decays of glueballs and exotic hadrons.
Hees, A; Guéna, J; Abgrall, M; Bize, S; Wolf, P
2016-08-05
We use 6 yrs of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field can induce harmonic variations of the fine structure constant, of the mass of fermions, and of the quantum chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition frequency ratio. We find no signal consistent with a scalar dark matter candidate but provide improved constraints on the coupling of the putative scalar field to standard matter. Our limits are complementary to previous results that were only sensitive to the fine structure constant and improve them by more than an order of magnitude when only a coupling to electromagnetism is assumed.
Modified model of neutron resonance widths distribution. Results of total gamma-widths approximation
International Nuclear Information System (INIS)
Sukhovoj, A.M.; Khitrov, V.A.
2011-01-01
Functional dependences of probability to observe given Γ n 0 value and algorithms for determination of the most probable magnitudes of the modified model of resonance parameter distributions were used for analysis of the experimental data on the total radiative widths of neutron resonances. As in the case of neutron widths, precise description of the Γ γ spectra requires a superposition of three and more probability distributions for squares of the random normally distributed values with different nonzero average and nonunit dispersion. This result confirms the preliminary conclusion obtained earlier at analysis of Γ n 0 that practically in all 56 tested sets of total gamma widths there are several groups noticeably differing from each other by the structure of their wave functions. In addition, it was determined that radiative widths are much more sensitive than the neutron ones to resonance wave functions structure. Analysis of early obtained neutron reduced widths distribution parameters for 157 resonance sets in the mass region of nuclei 35 ≤ A ≤ 249 was also performed. It was shown that the experimental values of widths can correspond with high probability to superposition of several expected independent distributions with their nonzero mean values and nonunit dispersion
Study of hyperfine parameters in Co-doped tin dioxide using PAC spectroscopy
International Nuclear Information System (INIS)
Ramos, Juliana M.; Carbonari, Artur W.; Martucci, Thiago; Costa, Messias S.; Saxena, Rajendra N.; Vianden, R.; Kessler, P.; Geruschke, T.; Steffens, M.
2011-01-01
PAC technique has been used to measure the hyperfine interactions in nano-structured powder samples of semiconducting SnO 2 doped with Co. The aim of this work is to compare the results of PAC measurements using two different techniques of introducing the radioactive 111 In probe nuclei in the sample of SnO 2 doped with Co. The perturbed gamma-gamma angular correlation (PAC) spectroscopy is used for the measurements of the magnetic hyperfine field (MHF) and the electric field gradient (EFG) at 111 Cd sites in SnO 2 doped with 1% and 2% Co. The measurement of EFG is used to study the defects introduced in the semiconductor material and also for the identification of different phases formed within the compound. The techniques utilized for introducing the radioactive 111 In in the sample are the ion-implantation using radioactive ion beam of 111 In and the chemical process in which 111 InCl 3 solution is added during the preparation of SnO 2 doped with Co using sol gel method. The ion-implantation of 111 In in SnO 2 doped with Co was carried out using the University of Bonn ion-implanter with beam energy of 160 keV. The PAC measurements were carried out with four BaF 2 detector gamma spectrometer in the temperature range of 10-295 K. The results show no significant difference in the values of hyperfine parameters. Both techniques show practically the same electric quadrupole interaction for the substitutional site. The results were compared with previous PAC and Moessbauer measurements of SnO 2 powder samples using 111 In- 111 Cd probe. (author)
Study of hyperfine parameters in Co-doped tin dioxide using PAC spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Ramos, Juliana M.; Carbonari, Artur W.; Martucci, Thiago; Costa, Messias S.; Saxena, Rajendra N. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Vianden, R.; Kessler, P.; Geruschke, T.; Steffens, M., E-mail: vianden@hiskp.uni-bonn.d [Rheinische Friedrich-Wilhelms-Universitaet Bonn (HISKP- Bonn) (Germany). Helmholtz - Institut fuer Strahlen- und Kernphysik
2011-07-01
PAC technique has been used to measure the hyperfine interactions in nano-structured powder samples of semiconducting SnO{sub 2} doped with Co. The aim of this work is to compare the results of PAC measurements using two different techniques of introducing the radioactive {sup 111}In probe nuclei in the sample of SnO{sub 2} doped with Co. The perturbed gamma-gamma angular correlation (PAC) spectroscopy is used for the measurements of the magnetic hyperfine field (MHF) and the electric field gradient (EFG) at {sup 111}Cd sites in SnO{sub 2} doped with 1% and 2% Co. The measurement of EFG is used to study the defects introduced in the semiconductor material and also for the identification of different phases formed within the compound. The techniques utilized for introducing the radioactive {sup 111}In in the sample are the ion-implantation using radioactive ion beam of {sup 111}In and the chemical process in which {sup 111}InCl{sub 3} solution is added during the preparation of SnO{sub 2} doped with Co using sol gel method. The ion-implantation of {sup 111}In in SnO{sub 2} doped with Co was carried out using the University of Bonn ion-implanter with beam energy of 160 keV. The PAC measurements were carried out with four BaF{sub 2} detector gamma spectrometer in the temperature range of 10-295 K. The results show no significant difference in the values of hyperfine parameters. Both techniques show practically the same electric quadrupole interaction for the substitutional site. The results were compared with previous PAC and Moessbauer measurements of SnO{sub 2} powder samples using {sup 111}In-{sup 111}Cd probe. (author)
Probabilistic Analysis of Crack Width
Directory of Open Access Journals (Sweden)
J. Marková
2000-01-01
Full Text Available Probabilistic analysis of crack width of a reinforced concrete element is based on the formulas accepted in Eurocode 2 and European Model Code 90. Obtained values of reliability index b seem to be satisfactory for the reinforced concrete slab that fulfils requirements for the crack width specified in Eurocode 2. However, the reliability of the slab seems to be insufficient when the European Model Code 90 is considered; reliability index is less than recommended value 1.5 for serviceability limit states indicated in Eurocode 1. Analysis of sensitivity factors of basic variables enables to find out variables significantly affecting the total crack width.
A deterministic width function model
Directory of Open Access Journals (Sweden)
C. E. Puente
2003-01-01
Full Text Available Use of a deterministic fractal-multifractal (FM geometric method to model width functions of natural river networks, as derived distributions of simple multifractal measures via fractal interpolating functions, is reported. It is first demonstrated that the FM procedure may be used to simulate natural width functions, preserving their most relevant features like their overall shape and texture and their observed power-law scaling on their power spectra. It is then shown, via two natural river networks (Racoon and Brushy creeks in the United States, that the FM approach may also be used to closely approximate existing width functions.
Experimental and ab initio study of the hyperfine parameters of ZnFe {sub 2}O{sub 4} with defects
Energy Technology Data Exchange (ETDEWEB)
Quintero, J. Melo; Salcedo Rodríguez, K. L.; Pasquevich, G. A.; Zélis, P. Mendoza; Stewart, S. J., E-mail: stewart@fisica.unlp.edu.ar; Rodríguez Torres, C. E.; Errico, L. A. [Universidad Nacional de La Plata, IFLP-CCT- La Plata-CONICET and Departamento de Física, Facultad de Ciencias Exactas, C. C. 67 (Argentina)
2016-12-15
We present a combined Mössbauer and ab initio study on the influence of oxygen-vacancies on the hyperfine and magnetic properties of the ZnFe {sub 2}O{sub 4} spinel ferrite. Samples with different degree of oxygen-vacancies were obtained from zinc ferrite powder that was thermally treated at different temperatures up to 650 {sup ∘}C under vacuum.Theoretical calculations of the hyperfine parameters, magnetic moments and magnetic alignment have been carried out considering different defects such as oxygen vacancies and cation inversion. We show how theoretical and experimental approaches are complementary to characterize the local structure around Fe atoms and interpret the observed changes in the hyperfine parameters as the level of defects increases.
International Nuclear Information System (INIS)
Ichinose, Kazuyoshi; Yoshie, Hiroshi; Nagai, Hiroyuki; Tsujimura, Akira; Fujiwara, Katsuyuki.
1983-01-01
NMR of 89 Y nuclei in Y(Fesub(1-x)Tsub(x)) 2 (T=V, Mn, Co, Ni, Al) has been observed at 4.2K. Well-resolved satellite structures of Y resonance appear in these compounds. This shows that the Y hyperfine field is mainly due to the magnetic nearest neighbor atoms. The magnetic moment of T atoms is estimated by two methods: (i) the contribution of T atoms to the hyperfine field is proportional to the magnetic moments of Fe and T atoms and (ii) the well known empirical relation between the hyperfine field and the mean magnetic moment of alloys is used. These results are in good agreement with those in dilute T-Fe alloys except for T=Mn. The intensity ratio of satellite peaks is discussed based upon a statistical distribution of Fe and T atoms. (author)
Energy Technology Data Exchange (ETDEWEB)
Petrov, Yu.I. [Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin str. 4, 119991, GSP-1, Moscow (Russian Federation); Shafranovsky, E.A., E-mail: shafr@chph.ras.r [Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin str. 4, 119991, GSP-1, Moscow (Russian Federation); Casas, Ll. [Departament de Geologia, Universitat Autonoma de Barcelona, Edifici C, Campus de la UAB, 08193 Bellaterra (Spain); Molins, E. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Spain)
2011-03-14
Advancing the early work in which a discontinuity of hyperfine fields at {sup 57}Fe nuclei in bulk iron and in aerosol Fe nanoparticles has been revealed by analyzing their Moessbauer spectra the present Letter evidences that the existence of several peaks in the hyperfine distribution (HFD) for bulk Fe is caused with the internal magnetic fields owing to its multidomain structure whereas aerosol Fe nanoparticles are single-domain and show only a unique peak in HFD. This argument has been corroborated by transformation of the HFD pattern for Fe foil after applying the external magnetic field of 0.03 T.
The decay width of stringy hadrons
Sonnenschein, Jacob; Weissman, Dorin
2018-02-01
In this paper we further develop a string model of hadrons by computing their strong decay widths and comparing them to experiment. The main decay mechanism is that of a string splitting into two strings. The corresponding total decay width behaves as Γ = π/2 ATL where T and L are the tension and length of the string and A is a dimensionless universal constant. We show that this result holds for a bosonic string not only in the critical dimension. The partial width of a given decay mode is given by Γi / Γ =Φi exp (- 2 πCmsep2 / T) where Φi is a phase space factor, msep is the mass of the "quark" and "antiquark" created at the splitting point, and C is a dimensionless coefficient close to unity. Based on the spectra of hadrons we observe that their (modified) Regge trajectories are characterized by a negative intercept. This implies a repulsive Casimir force that gives the string a "zero point length". We fit the theoretical decay width to experimental data for mesons on the trajectories of ρ, ω, π, η, K*, ϕ, D, and Ds*, and of the baryons N, Δ, Λ, and Σ. We examine both the linearity in L and the exponential suppression factor. The linearity was found to agree with the data well for mesons but less for baryons. The extracted coefficient for mesons A = 0.095 ± 0.015 is indeed quite universal. The exponential suppression was applied to both strong and radiative decays. We discuss the relation with string fragmentation and jet formation. We extract the quark-diquark structure of baryons from their decays. A stringy mechanism for Zweig suppressed decays of quarkonia is proposed and is shown to reproduce the decay width of ϒ states. The dependence of the width on spin and flavor symmetry is discussed. We further apply this model to the decays of glueballs and exotic hadrons.
Hyperfine interaction studies with pulsed heavy-ion beams
International Nuclear Information System (INIS)
Raghavan, P.
1985-01-01
Heavy-ion reactions using pulsed beams have had a strong impact on the study of hyperfine interactions. Unique advantages offered by this technique have considerably extended the scope, detail and systematic range of its applications beyond that possible with radioactivity or light-ion reaction. This survey will cover a brief description of the methodological aspects of the field and recent applications to selected problems in nuclear and solid state physiscs illustrating its role. These include measurements of nuclear magnetic and electric quadrupole moments of high spin isomers, measurements of hyperfine magnetic fields at impurities in 3d and rare-earths ferromagnetic hosts, studies of paramagnetic systems, especially those exhibiting valence instabilities, and investigations of electric field gradients of impurities in noncubic metals. Future prospects of this technique will be briefly assessed. (orig.)
Hyperfine relaxation of an optically pumped cesium vapor
International Nuclear Information System (INIS)
Tornos, J.; Amare, J.C.
1986-01-01
The relaxation of hyperfine orientation indirectly induced by optical pumping with a σ-polarized D 1 -light in a cesium vapor in the presence of Ar is experimentally studied. The detection technique ensures the absence of quadrupole relaxation contributions in the relaxation signals. The results from the dependences of the hyperfine relaxation rate on the temperature and argon pressure are: diffusion coefficient of Cs in Ar, D 0 = 0.101 +- 0.010 cm 2 s -1 at 0 0 C and 760 Torr; relaxation cross section by Cs-Ar collisions, σ/sub c/ = (104 +- 5) x 10 -23 cm 2 ; relaxation cross section by Cs-Cs (spin exchange) collisions, σ/sub e//sub x/ = (1.63 +- 0.13) x 10 -14 cm 2
Chen, Yan-Cong; Liu, Jun-Liang; Wernsdorfer, Wolfgang; Liu, Dan; Chibotaru, Liviu F; Chen, Xiao-Ming; Tong, Ming-Liang
2017-04-24
An extremely rare non-Kramers holmium(III) single-ion magnet (SIM) is reported to be stabilized in the pentagonal-bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm -1 . The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine structures originating from field-induced QTMs can be observed even from the field-dependent alternating-current magnetic susceptibility in addition to single-crystal hysteresis loops. These dramatic dynamics were attributed to the combination of the favorable crystal-field environment and the hyperfine interactions arising from 165 Ho (I=7/2) with a natural abundance of 100 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy Technology Data Exchange (ETDEWEB)
Chen, Yan-Cong; Liu, Jun-Liang; Chen, Xiao-Ming; Tong, Ming-Liang [Key Lab. of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen Univ., Guangzhou (China); Wernsdorfer, Wolfgang [Institut Neel, CNRS and Universite Joseph Fournier, Grenoble (France); Institute of Nanotechnology, Karlsruhe Institute of Technology (Germany); Physikalisches Institut, Karlsruhe Institute of Technology (Germany); Liu, Dan; Chibotaru, Liviu F. [Theory of Nanomaterials Group and INPAC-Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven (Belgium)
2017-04-24
An extremely rare non-Kramers holmium(III) single-ion magnet (SIM) is reported to be stabilized in the pentagonal-bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm{sup -1}. The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine structures originating from field-induced QTMs can be observed even from the field-dependent alternating-current magnetic susceptibility in addition to single-crystal hysteresis loops. These dramatic dynamics were attributed to the combination of the favorable crystal-field environment and the hyperfine interactions arising from {sup 165}Ho (I=7/2) with a natural abundance of 100 %. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
International Nuclear Information System (INIS)
Pavlov, R.L.; Pavlov, L.I.; Raychev, P.P.; Garistov, V.P.; Dimitrova-Ivanovich, M.
2002-01-01
The matrix elements and expectation values of the hyperfine interaction operators are presented in a form suitable for numerical implementation in density matrix methods. The electron-nuclear spin-spin (dipolar and contact) interactions are considered, as well as the interaction between nuclear spin and electron-orbital motions. These interactions from the effective Breit-Pauli Hamiltonian determine the hyperfine structure in ESR spectra and contribute to chemical shifts in NMR. Applying the Wigner-Eckart theorem in the irreducible tensor-operator technique and the spin-space separation scheme, the matrix elements and expectation values of these relativistic corrections are expressed in analytical form. The final results are presented as products, or sums of products, of factors determined by the spin and (or) angular momentum symmetry and a spatial part determined by the action of the symmetrized tensor-operators on the normalized matrix or function of the spin or charge distribution.
Dephasing and hyperfine interaction in carbon nanotubes double quantum dots
DEFF Research Database (Denmark)
Reynoso, Andres Alejandro; Flensberg, Karsten
2012-01-01
We study theoretically the return probability experiment, which is used to measure the dephasing time T-2*, in a double quantum dot (DQD) in semiconducting carbon nanotubes with spin-orbit coupling and disorder-induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the C...... with these for DQDs in clean nanotubes, whereas the disorder effect is always relevant when the magnetic field is perpendicular to the nanotube axis....
Hyperfine field at 111Cd nuclei in Heusler alloys
International Nuclear Information System (INIS)
Styczen, B.; Walus, W.; Szytula, A.
1978-01-01
The magnitudes and signs of the hyperfine fields in the ordered ferromagnetic Heusler Alloys X 2 MnZ and XMnZ (where X is Cu, Ni, Pd while Z is In, Sn and Sb) have been investigated at liquid nitrogen and room temperatures using TDPAC method. Their signs have been found to be negative. The results have been compared with the predictions of Caroll-Blandin and Cambell-Blandin models and RKKY theory. (Auth)
Weak-interaction contributions to hyperfine splitting and Lamb shift
International Nuclear Information System (INIS)
Eides, M.I.
1996-01-01
Weak-interaction contributions to hyperfine splitting and the Lamb shift in hydrogen and muonium are discussed. The problem of sign of the weak-interaction contribution to HFS is clarified, and simple physical arguments that make this sign evident are presented. It is shown that weak-interaction contributions to HFS in hydrogen and muonium have opposite signs. A weak-interaction contribution to the Lamb shift is obtained. copyright 1996 The American Physical Society
Spherical bodies of constant width
Lassak, Marek; Musielak, Michał
2018-01-01
The intersection $L$ of two different non-opposite hemispheres $G$ and $H$ of a $d$-dimensional sphere $S^d$ is called a lune. By the thickness of $L$ we mean the distance of the centers of the $(d-1)$-dimensional hemispheres bounding $L$. For a hemisphere $G$ supporting a %spherical convex body $C \\subset S^d$ we define ${\\rm width}_G(C)$ as the thickness of the narrowest lune or lunes of the form $G \\cap H$ containing $C$. If ${\\rm width}_G(C) =w$ for every hemisphere $G$ supporting $C$, we...
Anomalous behavior of the magnetic hyperfine field at 140Ce impurities at La sites in LaMnSi2
Domienikan, C.; Bosch-Santos, B.; Cabrera-Pasca, G. A.; Saxena, R. N.; Carbonari, A. W.
2018-05-01
Magnetic hyperfine field has been measured in the orthorhombic intermetallic compound LaMnSi2 with perturbed angular correlation (PAC) spectroscopy using radioactive 140La(140Ce) nuclear probes. Magnetization measurements were also carried out in this compound with MPSM-SQUID magnetometer. Samples of LaMnSi2 compound were prepared by arc melting the component metals with high purity under argon atmosphere followed by annealing at 1000°C for 60 h under helium atmosphere and quenching in water. X-ray analysis confirmed the samples to be in a single phase with correct crystal structure expected for LaMnSi2 compound. The radioactive 140La (T1/2 = 40 h) nuclei were produced by direct irradiation of the sample with neutrons in the IEA-R1 nuclear research reactor at IPEN with a flux of ˜ 1013 n cm-2s-1 for about 3 - 4 min. The PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 10 K and 400 K. Temperature dependence of the hyperfine field, Bhf was found to be anomalous. A modified two-state model explained this anomalous behavior where the effective magnetic hyperfine field at 140Ce is believed to have two contributions, one from the unstable localized spins at Ce impurities and another from the magnetic Mn atoms of the host. The competition of these two contributions explains the anomalous behavior observed for the temperature dependence of the magnetic hyperfine field at 140Ce. The ferromagnetic transition temperature (TC) of LaMnSi2 was determined to be 400(1) K confirming the magnetic measurements.
Investigation of Rubidium Hyperfine Structure Frequency Stabilization Mechanisms.
1984-08-01
Frueholtz, and C. H. Volk, Phys. Rev. A 27, 1914 (1983). 4. C. Cohen-Tannoudji, Metrologia 13, 161 (1977). 5. W. Happer, and A. C. Tam, Phys. Rev. A 16, 1877...w U C) ED W mF w c M0 -0 Dm U(i2 DOW V) ZivF 00. LA *I U-(JL OLLIAJ - (I 0 7 a I I ~w..-..- ~ * * ~ -~.’,** ~-, .*h4w.’.-* .- ,-~-. . .- * 8
Calculation of hyperfine structure constants of small molecules using ...
Indian Academy of Sciences (India)
SUDIP SASMALa, KAUSHIK TALUKDARb, MALAYA K NAYAKc, NAYANA VAVALa and. SOURAV PALb,∗ ... Abstract. The Z-vector method in the relativistic coupled-cluster framework is employed to calculate the parallel and perpendicular .... subscript c means only the connected terms exist in the contraction between HN ...
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-16
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
Crack widths in concrete with fibers and main reinforcement
DEFF Research Database (Denmark)
Christensen, Frede; Ulfkjær, Jens Peder; Brincker, Rune
2015-01-01
The main object of the research work presented in this paper is to establish design tools for concrete structures where main reinforcement is combined with addition of short discrete steel fibers. The work is concerned with calculating and measuring crack widths in structural elements subjected...... to bending load. Thus, the aim of the work is to enable engineers to calculate crack widths for flexural concrete members and analyze how different combinations of amounts of fibers and amounts of main reinforcement can meet a given maximum crack width requirement. A mathematical model including...... the ductility of the fiber reinforced concrete (FRC) is set up and experimental work is conducted in order to verify the crack width model. The ductility of the FRC is taken into account by using the stress crack width relation. The constitutive model for the FRC is based on the idea that the initial part...
The significance of biometric parameters in determining anterior teeth width
Directory of Open Access Journals (Sweden)
Strajnić Ljiljana
2013-01-01
Full Text Available Background/Aim. An important element of prosthetic treatment of edentulous patients is selecting the size of anterior artificial teeth that will restore the natural harmony of one’s dentolabial structure as well as the whole face. The main objective of this study was to determine the correlation between the inner canthal distance (ICD and interalar width (IAW on one side and the width of both central incisors (CIW, the width of central and lateral incisors (CLIW, the width of anterior teeth (ATW, the width between the canine cusps (CCW, which may be useful in clinical practice. Methods. A total of 89 subjects comprising 23 male and 66 female were studied. Their age ranged from 19 to 34 years with the mean of 25 years. Only the subjects with the preserved natural dentition were included in the sample. All facial and intraoral tooth measurements were made with a Boley Gauge (Buffalo Dental Manufacturing Co., Brooklyn NY, USA having a resolution of 0.1mm. Results. A moderate correlation was established between the interalar width and combined width of anterior teeth and canine cusp width (r = 0.439, r = 0.374. A low correlation was established between the inner canthal distance and the width of anterior teeth and canine cusp width (r = 0.335, r = 0.303. The differences between the two genders were highly significant for all the parameters (p < 0.01. The measured facial distances and width of anterior teeth were higher in men than in women. Conclusion. The results of this study suggest that the examined interalar width and inner canthal distance cannot be considered reliable guidelines in the selection of artificial upper anterior teeth. However, they may be used as a useful additional factor combined with other methods for objective tooth selection. The final decision should be made while working on dentures fitting models with the patient’s consent.
Nonrelativistic hyperfine splitting in muonic helium by adiabatic perturbation theory
International Nuclear Information System (INIS)
Drachman, R.J.
1980-01-01
Huang and Hughes have recently discussed the hyperfine splitting Δν of muonic helium (α ++ μ - e - ) using a variational approach. In this paper, the Born-Oppenheimer approximation is used to simplify the evaluation of Δν in the nonrelativistic limit. The first-order perturbed wave function of the electron is obtained in closed form by slightly modifying the method used by Dalgarno and Lynn. The result Δν=4450 MHz, is quite close to the published result of Huang and Hughes 4455.2 +- 1 MHz, which required a very large Hylleraas expansion as well as considerable extrapolation
Nuclear hyperfine interactions and chemical bonding in high TC superconductors
International Nuclear Information System (INIS)
Danon, J.
1987-01-01
Nuclear quadrupole resonances of Cu 63 and Fe 57 Moessbauer spectroscopy of the high temperature superconductor YBa 2 Cu 3 O 7-γ e described together with synchrotron radiation studies of the copper oxidation states in this material. The Moessbauer spectra of 57 Fe in the two distinct crystallographic sites of the Cu atoms in YBa 2 Cu 3 O 7-γ are very similar from the quadrupole coupling point of view although exhibiting markedly different values for the isomer shift. The role of oxygen vacancies in the hyperfine interactions is discussed. (author) [pt
Hyperfine magnetic fields at 111Cd in Heusler alloys
International Nuclear Information System (INIS)
Styczen, B.; Szytula, A.; Walus, W.
1977-01-01
The magnitudes and signs of the hyperfine magnetic field on 111 Cd nuclei at Z sites in the ordered ferromagnetic Heusler alloys X 2 MnZ and XMnZ (where X is Cu, Ni, Pd while Z is In, Sn and Sb) have been investigated at liquid nitrogen and room temperatures using TDPAC method. Their signs have been found to be negative. The results have been compared with the predictions of Caroli-Blandin and Campbell-Blandin models and RKKY theory. (author)
Hyperfine interactions: the past, the present and the future
Energy Technology Data Exchange (ETDEWEB)
Langouche, Guido, E-mail: guido.langouche@kuleuven.be [Katholieke Universiteit Leuven, Physics Department, Institute of Nuclear and Radiation Physics (Belgium)
2008-01-15
Five major hyperfine interaction techniques, detected by nuclear radiation, originated in the short time span between 1950 and 1965. The coincidence with the demographic expansion, especially in Europe, of university education led to the creation of many new research laboratories applying these promising techniques in solid state physics, chemistry and biology. Since the turn of century many of the early pioneers are going into retirement, leading to a decline in activities in Europe, compensated in some degree by an increase in activities outside Europe. The organisation of the 2007 HI/NQI-conference was impeccable and took place in a superb setting. Thanks to all those involved in its organization.
Energy Technology Data Exchange (ETDEWEB)
El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Department of Physics, Faculty of Education, Suez Canal University, Al-Arish 45511, North Sinaa (Egypt); Ibrahim, F.A. [Department of Physics, Faculty of Education, Suez Canal University, Al-Arish 45511, North Sinaa (Egypt); Mostafa, A.G.; Hassaan, M.Y. [Department of Physics, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo (Egypt)
2010-09-15
Selected glasses of Fe{sub 2}O{sub 3}-PbO{sub 2}-Bi{sub 2}O{sub 3} system have been transformed into nanomaterials by annealing at temperature close to crystallization temperature (T{sub c}) for 1 h. The effects of the annealing of the present samples on its structural and electrical properties were studied by Moessbauer spectroscopy, transmission electron micrograph (TEM), differential scanning calorimeter (DSC) and dc conductivity ({sigma}). Moessbauer spectroscopy was used in order to determine the states of iron and its hyperfine structure. The effect of nanocrystalization on the Moessbauer hyperfine parameters did not exhibit significant modifications in present glasses. However, in case of glass ceramic nanocrystals show a distinct decrease in the quadrupole splitting ({Delta}) is observed, reflecting an evident decrease in the distortion of structural units like FeO{sub 4} units. In general, the Moessbauer parameters of the nano-crystalline phase exhibit tendency to increase with PbO{sub 2} content. TEM of as-quenched glasses confirm the homogeneous and essentially featureless morphology. TEM of the corresponding glass ceramic nanocrystals indicates nanocrystals embedded in the glassy matrix with average particle size of about 32 nm. The crystallization temperature (T{sub c}) was observed to decrease with PbO{sub 2} content. The glass ceramic nanocrystals obtained by annealing at T{sub c} exhibit improvement of electrical conductivity up to four orders of magnitude than the starting glasses. This considerable improvement of electrical conductivity after nanocrystallization is attributed to formation of defective, well-conducting phases 'easy conduction paths' along the glass-crystallites interfaces.
Salvio, Alberto; Strumia, Alessandro; Urbano, Alfredo
2016-01-01
Motivated by the 750 GeV diphoton excess found at LHC, we compute the maximal width into $\\gamma\\gamma$ that a neutral scalar can acquire through a loop of charged fermions or scalars as function of the maximal scale at which the theory holds, taking into account vacuum (meta)stability bounds. We show how an extra gauge symmetry can qualitatively weaken such bounds, and explore collider probes and connections with Dark Matter.
Meson widths from string worldsheet instantons
International Nuclear Information System (INIS)
Faulkner, Thomas; Liu, Hong
2009-01-01
We show that open strings living on a D-brane which lies outside an AdS black hole can tunnel into the black hole through worldsheet instantons. These instantons have a simple interpretation in terms of thermal quarks in the dual Yang-Mills (YM) theory. As an application we calculate the width of a meson in a strongly coupled quark-gluon plasma which is described holographically as a massless mode on a D7 brane in AdS 5 xS 5 . While the width of the meson is zero to all orders in the 1/√(λ) expansion with λ the 't Hooft coupling, it receives non-perturbative contributions in 1/√(λ) from worldsheet instantons. We find that the width increases quadratically with momentum at large momentum and comment on potential phenomenological implications of this enhancement for heavy ion collisions. We also comment on how this non-perturbative effect has important consequences for the phase structure of the YM theory obtained in the classical gravity limit
International Nuclear Information System (INIS)
Mohanta, S.K.; Mishra, S.N.; Srivastava, S.K.
2014-01-01
We present first principles calculations of electronic structure and magnetic properties of dilute transition metal (3d, 4d and 5d) impurities in a Gd host. The calculations have been performed within the density functional theory using the full potential linearized augmented plane wave technique and the GGA+U method. The spin and orbital contributions to the magnetic moment and the hyperfine fields have been computed. We find large magnetic moments for 3d (Ti–Co), 4d (Nb–Ru) and 5d (Ta–Os) impurities with magnitudes significantly different from the values estimated from earlier mean field calculation [J. Magn. Magn. Mater. 320 (2008) e446–e449]. The exchange interaction between the impurity and host Gd moments is found to be positive for early 3d elements (Sc–V) while in all other cases an anti-ferromagnetic coupling is observed. The trends for the magnetic moment and hyperfine field of d-impurities in Gd show qualitative difference with respect to their behavior in Fe, Co and Ni. The calculated total hyperfine field, in most cases, shows excellent agreement with the experimental results. A detailed analysis of the Fermi contact hyperfine field has been made, revealing striking differences for impurities having less or more than half filled d-shell. The impurity induced perturbations in host moments and the change in the global magnetization of the unit cell have also been computed. The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. - Highlights: • Detailed study of transition metal impurities in ferromagnetic Gd has been carried out. • The trends in impurity magnetic moment are qualitatively different from Fe, Co and Ni. • The variation within each of the d-series is found to correlate with the d–d hybridization strength between the impurity and host atoms. • Experimental trend in a hyperfine field has been reproduced successfully
Investigation of Pr I lines by a simulation of their hyperfine patterns: discovery of new levels
International Nuclear Information System (INIS)
Uddin, Zaheer; Siddiqui, Imran; Shamim, Khan; Windholz, L; Zafar, Roohi; Sikander, Rubeka
2012-01-01
Hyperfine structure (hf) patterns of unclassified spectral lines of the praseodymium atom, as appear in a high-resolution Fourier transform spectrum, have been simulated. In this way, the J-values and hf constants of the levels involved in the transitions were determined. Assuming that so far only one unknown level is participating in the transition, these constants were used to identify the known level. The second unknown level was found by performing subtraction or addition of the wave number of the transition to the wave number of the known level. The existence of the new level was then checked by explaining other unclassified lines with respect to the wave number and the hf pattern. In this way, 19 new levels of the praseodymium atom were discovered and are presented in this paper. In some cases, the accuracy of the hf constants was improved by laser-induced fluorescence spectroscopy.
Self-energy correction to the hyperfine splitting for excited states
International Nuclear Information System (INIS)
Wundt, B. J.; Jentschura, U. D.
2011-01-01
The self-energy corrections to the hyperfine splitting is evaluated for higher excited states in hydrogenlike ions using an expansion in the binding parameter Zα, where Z is the nuclear-charge number and α is the fine-structure constant. We present analytic results for D, F, and G states, and for a number of highly excited Rydberg states, with principal quantum numbers in the range 13≤n≤16, and orbital angular momenta l=n-2 and l=n-1. A closed-form analytic expression is derived for the contribution of high-energy photons, valid for any state with l≥2 and arbitrary n, l, and total angular momentum j. The low-energy contributions are written in the form of generalized Bethe logarithms and evaluated for selected states.
Hyperfine field calculations: search for muon stopping sites in Fe3O4
International Nuclear Information System (INIS)
Boekema, C.; Denison, A.B.; Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Schillaci, M.E.
1983-01-01
Muon Spin Rotation (μSR) results for magnetite (Fe 3 O 4 ) are analyzed and discussed. At room temperature, a μSR signal is observed due to the presence of an internal magnetic field (Bsub(int)) at the muon site. External transverse field measurements show that Bsub(int) is parallel to the magnetic spin direction, the direction in zero applied field. Calculations of the hyperfine field to pinpoint muon stopping sites in magnetite show that the local field contains supertransfer (covalent) and dipolar field contributions. The implanted muons appear to stop at sites structurally similar to those reported for hematite (α-Fe 2 O 3 ), where muon-oxygen bond formation was strongly indicated. (Auth.)
International Nuclear Information System (INIS)
Karshenboim, S.G.; Shelyuto, V.A.; Eides, M.E.
1988-01-01
Analytic expressions are obtained for radiative corrections to the hyperfine splitting related to the muon line. The corresponding contribution amounts to (Z 2 a) (Za) (m/M) (9/2 ζ(3) - 3π 2 ln 2 + 39/8) in units of the Fermi hyperfine splitting energy. A complete analytic result for all radiative-recoil corrections is also presented
Hyperfine spectra of the radioactive isotopes 81Kr and 85Kr
International Nuclear Information System (INIS)
Cannon, B.D.
1993-01-01
Isotope shifts and hyperfine constants are reported for the radioactive isotopes 81 Kr and 85 Kr and the stable isotope 83 Kr. The previously unreported nuclear moments of 81 Kr were determined to be μ I =-0.909(4) nuclear magneton and Q=+0.630(13) b from the hyperfine constants. This work increases the number of transitions for which 85 Kr hyperfine constants and isotope shifts have been measured from 1 to 4. The hyperfine anomaly for krypton reported in the previous measurement of 85 Kr hyperfine constants [H. Gerhardt et al., Hyperfine Interact. 9, 175 (1981)] is not supported by this work. The isotope shifts and hyperfine constants of 83 Kr measured in this work are in excellent agreement with previous work. Saturation spectroscopy was used to study transitions from krypton's metastable 1s 5 state to the 2p 9 , 2p 7 , and 2p 6 states. In saturation spectra, different line shapes were observed for the even- and odd-mass krypton isotopes. This even- versus odd-line-mass shape difference can be explained using the large cross section that has been reported for collisional transfer of the 1s 5 state excitation between krypton atoms. Two-color two-photon laser-induced fluorescence was used to measure the hyperfine spectra of the 1s 5- 4d 4 ' transition using the 2p 9 state as the intermediate state. This technique proved to be more sensitive than saturation spectroscopy
International Nuclear Information System (INIS)
Bernas, H.
1977-01-01
The influence of the strong d character of the Fe conduction band on the hyperfine interaction of dilute rare earth impurities is emphasized, and the contact contributions are estimated. Apparent inconsistencies between hyperfine field measurements for Eu and Gd in Fe are noted
Masses, widths, and leptonic widths of the higher upsilon resonances
International Nuclear Information System (INIS)
Lovelock, D.M.J.; Horstkotte, J.E.; Klopfenstein, C.
1985-01-01
The masses, total widths, and leptonic widths of three triplet s-wave bb-bar states UPSILON(4S), UPSILON(5S), and UPSILON(6S) are determined from measurements of the e + e - annihilation cross section into hadrons for 10.55< W<11.25 GeV. The resonances are identified from potential model results and their properties are obtained with the help of a simplified coupled-channels calculation. We find M(4S) = 10.577 GeV, GAMMA(4S) = 25 MeV, GAMMA/sub e/e(4S) = 0.28 keV; M(5S) = 10.845 GeV, GAMMA(5S) = 110 MeV, GAMMA/sub e/e(5S) = 0.37 keV; M(6S) = 11.02 GeV, GAMMA(6S) = 90 MeV, GAMMA/sub e/e(6S) = 0.16 keV
Masses, widths and leptonic widths of the higher upsilon resonances
International Nuclear Information System (INIS)
Klopfenstein, C.; Lovelock, D.M.J.; Horstkotte, J.E.
1985-01-01
The masses, total widths and leptonic widths of three triplet s-wave bb-bar states Υ(4S), Υ(5S) and Υ(6S) are determined by unfolding the cross section features observed in the hadronic cross section in the √s region betweeen 10.55 to 11.25 GeV. Both the identification of the resonances and the deduction of their properties rely on the validity of potential models' description of heavy quarkonium states which lie close (<0.6 GeV) to the open flavor threshold. The authors find M(4S) = 10.5774 +- 0.0008 GeV, Γ(4S) = 23 +- 2.3 MeV, Γ/sub ee/(4S) = 0.28 +- 0.04 keV; M(5S) = 10.845 +- 0.02 GeV, Γ(5S) = 110 +- 15 MeV, Γ/sub ee/(5S) = 0.37 +- 0.06 keV; M(6S) = 11.02 +- 0.03 GeV, Γ(6S) = 90 +- 20 MeV, Γ/sub ee/(6S) = 0.16 +- 0.04 keV. All errors are statistical only
Tourniquet pressures: strap width and tensioning system widths.
Wall, Piper L; Coughlin, Ohmar; Rometti, Mary; Birkholz, Sarah; Gildemaster, Yvonne; Grulke, Lisa; Sahr, Sheryl; Buising, Charisse M
2014-01-01
Pressure distribution over tourniquet width is a determinant of pressure needed for arterial occlusion. Different width tensioning systems could result in arterial occlusion pressure differences among nonelastic strap designs of equal width. Ratcheting Medical Tourniquets (RMTs; m2 inc., http://www.ratcheting buckles.com) with a 1.9 cm-wide (Tactical RMT) or 2.3 cm-wide (Mass Casualty RMT) ladder were directly compared (16 recipients, 16 thighs and 16 upper arms for each tourniquetx2). Then, RMTs were retrospectively compared with the windlass Combat Application Tourniquet (C-A-T ["CAT"], http://combattourniquet.com) with a 2.5 cm-wide internal tensioning strap. Pressure was measured with an air-filled No. 1 neonatal blood pressure cuff under each 3.8 cm-wide tourniquet. RMT circumferential pressure distribution was not uniform. Tactical RMT pressures were not higher, and there were no differences between the RMTs in the effectiveness, ease of use ("97% easy"), or discomfort. However, a difference did occur regarding tooth skipping of the pawl during ratchet advancement: it occurred in 1 of 64 Tactical RMT applications versus 27 of 64 Mass Casualty RMT applications. CAT and RMT occlusion pressures were frequently over 300 mmHg. RMT arm occlusion pressures (175-397 mmHg), however, were lower than RMT thigh occlusion pressures (197-562 mmHg). RMT effectiveness was better with 99% reached occlusion and 1% lost occlusion over 1 minute versus the CAT with 95% reached occlusion and 28% lost occlusion over 1 minute. RMT muscle tension changes (up to 232 mmHg) and pressure losses over 1 minute (24±11 mmHg arm under strap to 40±12 mmHg thigh under ladder) suggest more occlusion losses may have occurred if tourniquet duration was extended. The narrower tensioning system Tactical RMT has better performance characteristics than the Mass Casualty RMT. The 3.8 cm-wide RMTs have some pressure and effectiveness similarities and differences compared with the CAT. Clinically
Fine and hyperfine collisional excitation of C6H by He
Walker, Kyle M.; Lique, François; Dawes, Richard
2018-01-01
Hydrogenated carbon chains have been detected in interstellar and circumstellar media and accurate modelling of their abundances requires collisional excitation rate coefficients with the most abundant species. Among them, the C6H molecule is one of the most abundant towards many lines of sight. Hence, we determined fine and hyperfine-resolved rate coefficients for the excitation of C6H(X2Π) due to collisions with He. We present the first interaction potential energy surface for the C6H-He system, obtained from highly correlated ab initio calculations and characterized by a large anisotropy due to the length of the molecule. We performed dynamical calculations for transitions among the first fine structure levels (up to J = 30.5) of both spin-orbit manifolds of C6H using the close-coupling method, and rate coefficients are determined for temperatures ranging from 5 to 100 K. The largest rate coefficients for even ΔJ transitions conserve parity, while parity-breaking rate coefficients are favoured for odd ΔJ. Spin-orbit changing rate coefficients are several orders of magnitude lower than transitions within a single manifold. State-to-state hyperfine-resolved cross-sections for the first levels (up to J = 13.5) in the Ω = 3/2 spin-orbit manifold are deduced using recoupling techniques. Rate coefficients are obtained and the propensity rule ΔJ = ΔF is seen. These new data will help determine the abundance of C6H in astrophysical environments such as cold dense molecular clouds, star-forming regions and circumstellar envelopes, and will help in the interpretation of the puzzling C6H-/C6H abundance ratios deduced from observations.
Directory of Open Access Journals (Sweden)
Satuła Dariusz
2015-03-01
Full Text Available The hyperfine fields and atomic ordering in Ni1−xFexMnGe (x = 0.1, 0.2, 0.3 alloys were investigated using X-ray diffraction and Mössbauer spectroscopy at room temperature. The X-ray diffraction measurements show that the samples with x = 0.2, 0.3 crystallized in the hexagonal Ni2In-type of structure, whereas in the sample with x = 0.1, the coexistence of two phases, Ni2In- and orthorhombic TiNiSi-type of structures, were found. The Mössbauer spectra measured with x = 0.2, 0.3 show three doublets with different values of isomer shift (IS and quadrupole splitting (QS related to three different local surroundings of Fe atoms in the hexagonal Ni2In-type structure. It was shown that Fe atoms in the hexagonal Ni2In-type structure of as-cast Ni1−xFexMnGe alloys are preferentially located in Ni sites and small amount of Fe is located in Mn and probably in Ge sites. The spectrum for x = 0.1 shows the doublets in the central part of spectrum and a broad sextet. The doublets originate from the Fe atoms in the paramagnetic state of hexagonal Ni2In-type structure, whereas the sextet results from the Fe atoms in orthorhombic TiNiSi-type structure.
Coulomb artifacts and bottomonium hyperfine splitting in lattice NRQCD
Energy Technology Data Exchange (ETDEWEB)
Liu, T. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada); Penin, A.A. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada); Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology,Wolfgang-Gaede-Strasse 1, 76128 Karlsruhe (Germany); Rayyan, A. [Department of Physics, University of Alberta,11455 Saskatchewan Drive, Edmonton, Alberta T6G 2J1 (Canada)
2017-02-16
We study the role of the lattice artifacts associated with the Coulomb binding effects in the analysis of the heavy quarkonium within lattice NRQCD. We find that a “naïve” perturbative matching generates spurious linear Coulomb artifacts, which result in a large systematic error in the lattice predictions for the heavy quarkonium spectrum. This effect is responsible, in particular, for the discrepancy between the recent determinations of the bottomonium hyperfine splitting in the radiatively improved lattice NRQCD (DOI: 10.1103/PhysRevD.92.054502; Arxiv:1309.5797). We show that the correct matching procedure which provides full control over discretization errors is based on the asymptotic expansion of the lattice theory about the continuum limit, which gives M{sub Υ(1S)}−M{sub η{sub b(1S)}}=52.9±5.5 MeV (DOI: 10.1103/PhysRevD.92.054502).
Hyperfine splitting of low-lying heavy baryons
Energy Technology Data Exchange (ETDEWEB)
Harada, M.; Qamar, A.; Schechter, J. [Syracuse Univ., NY (United States). Dept. of Physics; Sannino, F. [Syracuse Univ., NY (United States). Dept. of Physics]|[Dipartimento di Scienze Fisiche and Istituto Nazionale di Fisica Nucleare, Mostra D`Oltremare Pad. 19, 80125, Napoli (Italy); Weigel, H. [Institute for Theoretical Physics, Tuebingen University, Auf der Morgenstelle 14, D-72076, Tuebingen (Germany)
1997-11-10
We calculate the next-to-leading order contribution to the masses of the heavy baryons in the bound-state approach for baryons containing a heavy quark. These 1/N{sub C} corrections arise when states of good spin and isospin are generated from the background soliton of the light meson fields. Our study is motivated by the previously established result that light vector meson fields are required for this soliton in order to reasonably describe the spectrum of both the light and the heavy baryons. We note that the inclusion of light vector mesons significantly improves the agreement of the predicted hyperfine splitting with experiment. A number of aspects of this somewhat complicated calculation are discussed in detail. (orig.). 33 refs.
Control of inhomogeneous atomic ensembles of hyperfine qudits
DEFF Research Database (Denmark)
Mischuck, Brian Edward; Merkel, Seth T.; Deutsch, Ivan H.
2012-01-01
We study the ability to control d-dimensional quantum systems (qudits) encoded in the hyperfine spin of alkali-metal atoms through the application of radio- and microwave-frequency magnetic fields in the presence of inhomogeneities in amplitude and detuning. Such a capability is essential...... to the design of robust pulses that mitigate the effects of experimental uncertainty and also for application to tomographic addressing of particular members of an extended ensemble. We study the problem of preparing an arbitrary state in the Hilbert space from an initial fiducial state. We prove...... that inhomogeneous control of qudit ensembles is possible based on a semianalytic protocol that synthesizes the target through a sequence of alternating rf and microwave-driven SU(2) rotations in overlapping irreducible subspaces. Several examples of robust control are studied, and the semianalytic protocol...
A source of antihydrogen for in-flight hyperfine spectroscopy
Kuroda, N; Murtagh, D J; Van Gorp, S; Nagata, Y; Diermaier, M; Federmann, S; Leali, M; Malbrunot, C; Mascagna, V; Massiczek, O; Michishio, K; Mizutani, T; Mohri, A; Nagahama, H; Ohtsuka, M; Radics, B; Sakurai, S; Sauerzopf, C; Suzuki, K; Tajima, M; Torii, H A; Venturelli, L; Wünschek, B; Zmeskal, J; Zurlo, N; Higaki, H; Kanai, Y; Lodi Rizzini, E; Nagashima, Y; Matsuda, Y; Widmann, E; Yamazaki, Y
2014-01-01
Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart—hydrogen—is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference would point to CPT violation and thus to new physics. Here we report the development of an antihydrogen source using a cusp trap for in-flight spectroscopy. A total of 80 antihydrogen atoms are unambiguously detected 2.7 m downstream of the production region, where perturbing residual magnetic fields are small. This is a major step towards precision spectroscopy of the ground-state hyperfine splitting of antihydrogen using Rabi-like beam spectroscopy.
Hyperfine interactions associated with iron substitute superconducting oxides
International Nuclear Information System (INIS)
Ellis, D.E.; Dunlap, B.D.; Saitovitch, E.B.; Azevedo, I.S.; Scorzelli, R.B.; Kimball, C.W.
1988-01-01
Theoretical and experimental Moessbauer spectroscopy studies have been made concerning charge and spin densities and magnetic hyperfine fields (H hf in iron-substituted superconducting oxides. Calculations were carried out in the self-consistent-field embedded cluster model using local density theory (SCF-Xα) with a variational atomic orbital basis. Spectral densities and changes in charge and spin density were monitored around neighboring Cu sites, as well as Fe impurity site, in La 2 Cu 1-x Fe x O 4 and YBa 2 Cu 3-x Fe x O 7-y compounds. Moessbauer isomer shifts (IS), quadrupole splittings (QS) and H hf are obtained by fitting multiline models to the observed spectra and are compared with SCF-Xα results for specific lattice sites. The influence of oxygen vacancies and partial oxygen disorder is modelled and compared with the experimental data on variable oxygen content and disorder. (author)
Comparison of Arch Width Changes Following Orthodontic ...
African Journals Online (AJOL)
2015-11-21
Nov 21, 2015 ... Materials and Methods: The study was conducted with pre- and post-treatment digital models from ... or posterior arch width following orthodontic treatment ..... premolar extraction cases show significant arch width increases in ...
International Nuclear Information System (INIS)
Jitschin, W.
1977-01-01
A sensitive two-photon-laser spectrometer was constructed, that allowed to measure atomic states with an energy from 31 000 up to 37500 cm -1 with about 2 MHz resolution. The large energy range and the high resolution were reached by using a wide-wavelength tunable, narrow-band dye-laser. With this spectrometer transitions could be detected at barium from the electron ground-state 6s 2 1 S 0 to 10 upper states in the 5 most common isotopes 138 Ba, 137 Ba, 136 Ba, 135 Ba and 134 Ba. The transitions could be measured precisely. It was possible to derive lower limits of the life-time of these states from the widths of the recorded resonance lines (typically several nsec), that should in fact not be smaller than the actual lifetimes. From the measured hyper-fine splitting of the 6 transitions with angular momentum J = 2 at the oddnumbered isotopes 137 Ba and 135 Ba the parameters of the hyper-fine splitting could be determined. Hereby an accuracy of about IMH 2 could be reached at the A-factor and about 5MHz at the B-factor. At the measured transitions the isotopic shifts of the particular isotope could be determined with an accuracy of a few MHz. There was only a simple theory of the isotopic shift with only few parameters worked out for the theoretical interpretation of the measured data, that describes the data even at the experimentally reached high accuracy. Two parameters of this theory depending only from atomic nucleus properties, could be determined with a 0.5 % error. (orig./WB) [de
Influence of diffuse goiter on tracheal width
International Nuclear Information System (INIS)
Baik, Sung Mo; Shon, Hyung Sun; Kim, Choon Yul; Bahk, Yong Whee
1980-01-01
The radioisotopic scanning of the thyroid gland is well established method of demonstrating morphology of the thyroid gland and is used to measure the size, area and weight of thyroid gland. The purpose of this investigation is to observe the various effects of goiter to the regional trachea. Both radioisotopic scanning and roentgenogram were taken at the same time to evaluate size, area and weight of the thyroid glands, as well as to measure the width of soft tissue structure of the neck and the regional trachea in normal and goitrous patients. The clinical materials consisted of normal thyroid group for control (46 cases), diffuse simple goiter group (76 cases) and Graves' disease group (59 cases). The results were as follows; 1. The goiter causes some narrowing of the regional trachea to various degree which is not necessarily reflective of the size of goiter. 2. The goiter may increase the width of retrotracheal soft tissue space. 3. The lateral roentgenogram of the neck appear very useful in estimating the thyroid gland three dimensionally and the effect of goiter to the regional trachea
International Nuclear Information System (INIS)
Guenzburger, D.J.R.
1982-01-01
A survey is made of some theoretical calculations of electrostatic and magnetic hyperfine interactions in transition metal compounds and complex irons. The molecular orbital methods considered are the Multiple Scattering and Discrete Variational, in which the local Xα approximation for the exchange interaction is employed. Emphasis is given to the qualitative informations, derived from the calculations, relating the hyperfine parameters to characteristics of the chemical bonds. (Author) [pt
Theoretical study of Moessbauer hyperfine parameters of Fe bound to ammonia
International Nuclear Information System (INIS)
Terra, J.; Guenzburger, D.
1995-01-01
The first-principles Discrete Variational method was employed to study the species formed by the interaction of an Fe atom and ammonia. Total energy calculations were performed for several configurations. The hyperfine parameters isomer shift, quadrupole splitting and magnetic hyperfine were calculated for the ground state found, and compared to reported experimental values obtained by Moessbauer spectroscopy in frozen ammonia. (author). 14 refs, 1 tab
Hyperfine field distributions in disordered Mn2CoSn and Mn2NiSn ...
Indian Academy of Sciences (India)
Unknown
Jha S, Seyoum H M, Demarco M, Julian G M, Stubbs D A,. Blue J W, Silva M T X and Vasquez A 1983 Hyperfine Inter- act. 15/16 685. Ritcey S P and Dunlap R A 1984 J. Appl. Phys. 55 2051. Surikov V V, Zhordochkin V N and Astakhova T Yu 1990. Hyperfine Interact. 59 469. Webster P J and Ziebeck K R A 1973 J. Phys.
Paramagnetic hyperfine interactions of iron in solid ammonia from Moessbauer spectroscopy
International Nuclear Information System (INIS)
Litterst, F.J.; Saitovitch, E.M.B.; Terra, J.
1988-01-01
Moessbauer studies on highly dilute 57 Fe in solid ammonia are reported. The hyperfine parameters of the paramagnetic reaction product FeNH 3 point to a nearly atomic configuration of iron [Ar]3d 7 4s. The electronic spin relaxation slows down rapidly under application of an external magnetic field. The field dependence of the magnetic hyperfine patterns indicates a strong axial magnetic anisotropy. (author) [pt
Hyperfine Fields on Actinide Impurities in Ferromagnetic Fe and Ni Hosts
International Nuclear Information System (INIS)
Oliveira, A.L. de; Oliveira, N.A. de; Troper, A.
2003-01-01
We discuss the local magnetic moments and magnetic hyperfine fields on actinide impurities diluted in Fe and Ni hosts. One adopts a Anderson- Moriya model in which a localized 5f level is hybridized with a spin polarized and charge perturbed d-conduction band. Our self-consistent numerical calculations for the hyperfine fields on the impurity sites are in good agreement with the available experimental data. (author)
Analysis of the width correlation in 54Fe(nγ)55Fe reaction
International Nuclear Information System (INIS)
Knat'ko, V.A.; Shimanovich, E.A.
1982-01-01
To find out structural effects manifesting themselves in the form of correlation between widths of different channels of γ decay of levels and violation of Porter-Thomas distribution, calculated are partial widths of levels for 20 high-energy γ transitions in the 54 Fe(nγ) 55 Fe reaction. Calculations are carried out for widths in relation to γ transitions on 8 low p levels of 55 Fe, for 100 sets of partial γ widths (20 widths in a set). Results of analysis of theoretical values of partial γ widths of s resonances are presented in the form of the table. Results, obtained, show that consideration of contributions into γ decay of one-particle-vibrational configurations improve the accordance with experimental data, in comparison with calculations according to the model of valent capture. It is concluded that properties of γ widths of 55 Fe resonances, calculated in studied model, agree satisfactorily with properties of experimental γ widths [ru
Stieltjes-moment-theory technique for calculating resonance width's
International Nuclear Information System (INIS)
Hazi, A.U.
1978-12-01
A recently developed method for calculating the widths of atomic and molecular resonances is reviewed. The method is based on the golden-rule definition of the resonance width, GAMMA(E). The method uses only square-integrable, L 2 , basis functions to describe both the resonant and the non-resonant parts of the scattering wave function. It employs Stieltjes-moment-theory techniques to extract a continuous approximation for the width discrete representation of the background continuum. Its implementation requires only existing atomic and molecular structure codes. Many-electron effects, such as correlation and polarization, are easily incorporated into the calculation of the width via configuration interaction techniques. Once the width, GAMMA(E), has been determined, the energy shift can be computed by a straightforward evaluation of the required principal-value integral. The main disadvantage of the method is that it provides only the total width of a resonance which decays into more than one channel in a multichannel problem. A review of the various aspects of the theory is given first, and then representative results that have been obtained with this method for several atomic and molecular resonances are discussed. 28 references, 3 figures, 4 tables
Hyperfine anomalies of HCN in cold dark clouds
International Nuclear Information System (INIS)
Walmsley, C.M.; Churchwell, E.; Nash, A.; Fitzpatrick, E.; and Physics Department, University of Illinois at Urbana-Champaign)
1982-01-01
We report observations of the J = 1→0 line of HCN measured toward six positions in nearby low-temperature dark clouds. The measured relative intensities of the hyperfine components of the J = 1→0 line are anomalous in that the F = 0→1 transition is stronger than would be expected if all three components (F = 2→1, F = 1→1, F = 0→1) had equal excitation temperatures. Differences of approximately 20% in the populations per sublevel of J = 1 could account for the observations. The results are in contrast to the situation observed in warmer molecular clouds associated with H II regions where the F = 1→1 line is anomalously weak. The apparent overpopulation of J = 1, F = 0 in dark clouds may be related to the phenomenon observed in the J = 1→0 transitions of HCO + and HNC in the same objects where 13 C substituted version of these species is found to be stronger than the 12 C species
Ab initio calculation of hyperfine splitting constants of molecules
Ohta, K.; Nakatsuji, H.; Hirao, K.; Yonezawa, T.
1980-08-01
Hyperfine splitting (hfs) constants of molecules, methyl, ethyl, vinyl, allyl, cyclopropyl, formyl, O3-, NH2, NO2, and NF2 radicals have been calculated by the pseudo-orbital (PO) theory, the unrestricted HF (UHF), projected UHF (PUHF) and single excitation (SE) CI theories. The pseudo-orbital (PO) theory is based on the symmetry-adapted-cluster (SAC) expansion proposed previously. Several contractions of the Gaussian basis sets of double-zeta accuracy have been examined. The UHF results were consistently too large to compare with experiments and the PUHF results were too small. For molecules studied here, the PO theory and SECI theory gave relatively close results. They were in fair agreement with experiments. The first-order spin-polarization self-consistency effect, which was shown to be important for atoms, is relatively small for the molecules. The present result also shows an importance of eliminating orbital-transformation dependence from conventional first-order perturbation calculations. The present calculations have explained well several important variations in the experimental hfs constants.
Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics
Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.
2018-04-01
Gd_2Fe_{17-x}Si_x (x = 0.25 , 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17} -type structure (space group R\\bar{3}m ). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R-R, M-M and R-M (R—rare earth, M—transition metal) have been determined from M(T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6c, 9d, 18f, and 18h of the R\\bar{3} m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h} . The mean hyperfine field decreases with the Si content.
Statistical distribution of partial widths in the microscopic theory of nuclear reactions
International Nuclear Information System (INIS)
Bunakov, V.E.; Ogloblin, S.G.
1978-01-01
Using the microscopic theory of nuclear reaction the distribution function of neutron reduced partial widths is obtained. It is shown that the distribution of reduced partial widths of a radiative transition is of the same form. The distribution obtained differs from the Porter-Thomas law for neutron widths only in the presence of intermediate structures. It is noteworthy that the presence of an intermediate structure leads to a greater dispersion
Hyperfine interactions studies in perovskite oxides of the type LaMO3 (M = Fe, Cr, Mn and Co)
International Nuclear Information System (INIS)
Junqueira, Astrogildo de Carvalho
2004-01-01
ABO 3 -type perovskite oxides have ideal cubic structure and usually show distortions to the orthorhombic or rombohedric symmetry. The A and B siteshave 12-fold and 6-fold oxygen coordination, respectively. Distortions of thecubic structure give rise to new electric, structural and magnetic propertieswhich have great technological and scientific interests. Magnetic dipole and electric quadrupole hyperfine interaction measurements were obtained using 111 In -> 111 Cd , 181 Hf -> 181 Ta e 140 La -> 140 Ceradioactive nuclei substituting for the A or B sites via Perturbed Angulargamma-gamma Correlation technique (1-4) . LaMO 3 (M = Fe, Cr, Mn and Co)samples were prepared through the chemical route known as Sol-Gel techniqueand analyzed with x-ray diffraction. Both 111 In and 181 Hf nuclei wereintroduced in to the sample during the chemical procedure and the 140 Lawas obtained by irradiating with neutrons in the IPEN reactor the natural Lapresent in the samples. One of the aims of this work was the analysis of theElectric Field Gradient (EFG) in the A and B sites as function oftemperature, crystal structure or the electronic characteristic of thetransition metal in the B site. The temperature range of the measurements wasabout from 4 K to 1400 K. The experimental EFG showed to be dependent of thesite occupation and the nuclear probe used in the measurements. Spintransition phenomena were also observed in LaCoO 3 samples, which confirmed amodel used to interpret the spin properties in such compound.Crystallographic phase transition effects on the hyperfine parameters inperovskites where M = Fe, Cr and K4n were also analyzed. An additional aim ofthis work was to carry out measurements in the antiferromagnetic region ofthe systems with M = Fe, Cr and Mn using the three radioactive nuclei. Theresults for the magnetic interaction measurements showed a strong influenceof the substitutional sites in the supertransferred magnetic hyperfine fieldfor all the three probe nuclei
Partial Widths of Nonmesonic Weak Decays of Lambda-Hypernuclei
Kuzmin, V A
2002-01-01
It is shown that the phenomenological matrix elements completely describing \\Lambda N \\to NN weak interaction in the 1p-shell nuclei can be obtained from the partial widths of nonmesonic decays of ^{10}_{\\Lambda}Be and ^{10}_{\\Lambda}B hypernuclei. It is shown that the uncertainties related to the description of nuclear structure are not essential for this task.
Hyperfine 3D neutronic calculations in CANDU supercells
International Nuclear Information System (INIS)
Balaceanu, V.; Aioanei, L.; Pavelescu, M.
2010-01-01
For an accurate evaluation of the fuel performances, it is very important to have capability to calculate the three dimensional spatial flux distributions in the fuel bundle. According this issue, in our Institute, a multigroup calculation methodology named WIMS-PIJXYZ was especially developed for estimating the local neutronic parameters in CANDU cell/supercells. The objective of this paper is to present this calculation methodology and to use it in performing some hyperfine neutronic calculations in CANDU type supercells. More exactly, after a short description for the WIMS-PIJXYZ methodology, the end effect for some CANDU fuel bundles is estimated. The WIMS-PIJXYZ methodology is based on WIMS and PIJXYZ transport codes. WIMS is a standard lattice-cell code and it is used for generating the multigroup macroscopic cross sections for the materials in the fuel cells. For obtaining the flux and power distributions in CANDU fuel bundles the PIJXYZ code is used. This code is consistent with WIMS lattice-cell calculations and allows a good geometrical representation of the CANDU bundle in three dimensions. The end effect consists in the increasing of the thermal neutron flux in the end region and the increasing of power in the end of the fuel rod. The region separating the CANDU fuel in two adjoining bundles in a channel is called the 'end region' and the end of the last pellet in the fuel stack adjacent to the end region is called the 'fuel end'. The end effect appears because the end region of the bundle is made up of coolant and Zircaloy-4, a very low neutron absorption material. To estimate the end effect, the flux peaking factors and the power peaking factors are calculated. It was taken in consideration CANDU Standard (Natural Uranium, with 37 elements) fuel bundles. In the end of the paper, the results obtained by WIMS-PIJXYZ methodology with the similar LEGENTR results are compared. The comparative analysis shows a good agreement. (authors)
Constant Width Planar Computation Characterizes ACC0
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt
2006-01-01
We obtain a characterization of ACC0 in terms of a natural class of constant width circuits, namely in terms of constant width polynomial size planar circuits. This is shown via a characterization of the class of acyclic digraphs which can be embedded on a cylinder surface in such a way that all...
Palindromic widths of nilpotent and wreath products
Indian Academy of Sciences (India)
Palindromic width; commutator width; wreath products; nilpotent product. 2000 Mathematics ... An algorithm of the computation of the commutator length in free non-abelian .... It is clear that A(1)B = A × B is the direct sum. Let us list some ...
Combined ion beam and hyperfine interaction studies of LiNbO3 single crystals
International Nuclear Information System (INIS)
Marques, J.G.; Kling, A.; Soares, J.C.; Rebouta, L.
1999-01-01
A review of recent studies of LiNbO 3 crystals doped with Hf and Mg,Hf combining high precision RBS/channelling, PIXE/channelling and hyperfine interaction techniques is presented. The lattice location of Hf was found to depend strongly on the dopant concentration, crystal stoichiometry and Mg co-doping level. At low concentrations Hf occupies Li sites in congruent crystals, while it occupies both Li and Nb sites for higher doping levels or in near-stoichiometric crystals. Co-doping with Mg also forces a split location of Hf in Li and Nb sites and when the MgO amount exceeds 4.5 mol% Hf occupies only Nb sites. Neutron irradiation of these crystals displaces Hf from its initial lattice site and leads to a strong decrease of the Nb site fraction. The results are discussed in the framework of the Li and Nb vacancy models currently proposed in the literature for the defect structure of LiNbO 3 . (author)
Helium Pressure Shift of the Hyperfine Clock Transition in Hg-201(+)
Larigani, S. Taghavi; Burt, E. A.; Tjoelker, R. L.
2010-01-01
There are two stable odd isotopes of mercury with singly ionized hyperfine structure suitable for a microwave atomic clock: Hg-199(+) and Hg-201(+). We are investigating the viability of a trapped ion clock based on Hg-201(+) in a configuration that uses a buffer gas to increase ion loading efficiency and counter ion heating from rf trapping fields. Traditionally, either helium or neon is used as the buffer gas at approx. 10(exp -5) torr to confine mercury ions near room temperature. In addition to the buffer gas, other residual background gasses such as H2O, N2, O2, CO, CO2, and CH2 may be present in trace quantities. Collisions between trapped ions and buffer gas or background gas atoms/molecules produce a momentary shift of the ion clock transition frequency and constitute one of the largest systematic effects in this type of clock. Here we report an initial measurement of the He pressure shift in Hg-201(+) and compare this to Hg-199(+).
In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy.
Diermaier, M; Jepsen, C B; Kolbinger, B; Malbrunot, C; Massiczek, O; Sauerzopf, C; Simon, M C; Zmeskal, J; Widmann, E
2017-06-12
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of ν HF =1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10 -9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.
Hyperfine Interaction Studies on Y, Zr, Nb, Mo, Rh, In and Xe in Co
International Nuclear Information System (INIS)
Seewald, G.; Zech, E.; Ratai, H.; Schmid, R.; Stadler, R.; Schramm, O.; Koenig, C.; Hinfurtner, B.; Hagn, E.; Deicher, M.; Eder, R.; Forkel-Wirth, D.
2004-01-01
Nuclear magnetic resonance on oriented nuclei and modulated adiabatic fast passage on oriented nuclei measurements were performed on several 4d and 5sp impurities in polycrystalline Co(fcc) foils and Co(hcp) single crystals. The hyperfine fields of Y and Zr in Co(fcc), the hyperfine fields of Y, Zr, Nb, Mo, Rh, In and Xe in Co(hcp), the electric field gradients of Zr, Nb and In in Co(hcp), and the nuclear spin-lattice relaxations of Zr, Nb, Rh and In in Co(hcp) were determined. The dependence of the hyperfine fields and electric field gradients in Co(hcp) on the angle between the magnetization and the c axis was investigated in most cases. The magnetic-field dependence of the spin-lattice relaxation was studied for Nb, Rh and In in Co(hcp), applying the magnetic field perpendicular to the c axis. The known hyperfine interaction parameters of the4d and 5sp impurities in Co(fcc) and Co(hcp) are summarized. The new results provide a more detailed picture of the hyperfine interaction in Co.
Precision Measurements of Atomic Lifetimes and Hyperfine Energies in Alkali Like Systems
International Nuclear Information System (INIS)
Tanner, Carol E.
2005-01-01
Financial support of this research project has lead to advances in the study of atomic structure through precision measurements of atomic lifetimes, energy splittings, and transitions energies. The interpretation of data from many areas of physics and chemistry requires an accurate understanding of atomic structure. For example, scientists in the fields of astrophysics, geophysics, and plasma fusion depend on transition strengths to determine the relative abundances of elements. Assessing the operation of discharges and atomic resonance line filters also depends on accurate knowledge of transition strengths. Often relative transition strengths are measured precisely, but accurate atomic lifetimes are needed to obtain absolute values. Precision measurements of atomic lifetimes and energy splittings also provide fundamentally important atomic structure information. Lifetimes of allowed transitions depend most strongly on the electronic wave function far from the nucleus. Alternatively, hyperfine splittings give important information about the electronic wave function in the vicinity of the nucleus as well as the structure of the nucleus. Our main focus throughout this project has been the structure of atomic cesium because of its connection to the study of atomic parity nonconservation (PNC). The interpretation of atomic PNC experiments in terms of weak interaction coupling constants requires accurate knowledge of the electronic wave function near the nucleus as well as far from the nucleus. It is possible to address some of these needs theoretically with sophisticated many-electron atomic structure calculations. However, this program has been able to address these needs experimentally with a precision that surpasses current theoretical accuracy. Our measurements also play the important role of providing a means for testing the accuracy of many-electron calculations and guiding further theoretical development, Atomic systems such as cesium, with a single electron
Precision Measurements of Atomic Lifetimes and Hyperfine Energies in Alkali Like Systems
Energy Technology Data Exchange (ETDEWEB)
Tanner, Carol E.
2005-03-04
Financial support of this research project has lead to advances in the study of atomic structure through precision measurements of atomic lifetimes, energy splittings, and transitions energies. The interpretation of data from many areas of physics and chemistry requires an accurate understanding of atomic structure. For example, scientists in the fields of astrophysics, geophysics, and plasma fusion depend on transition strengths to determine the relative abundances of elements. Assessing the operation of discharges and atomic resonance line filters also depends on accurate knowledge of transition strengths. Often relative transition strengths are measured precisely, but accurate atomic lifetimes are needed to obtain absolute values. Precision measurements of atomic lifetimes and energy splittings also provide fundamentally important atomic structure information. Lifetimes of allowed transitions depend most strongly on the electronic wave function far from the nucleus. Alternatively, hyperfine splittings give important information about the electronic wave function in the vicinity of the nucleus as well as the structure of the nucleus. Our main focus throughout this project has been the structure of atomic cesium because of its connection to the study of atomic parity nonconservation (PNC). The interpretation of atomic PNC experiments in terms of weak interaction coupling constants requires accurate knowledge of the electronic wave function near the nucleus as well as far from the nucleus. It is possible to address some of these needs theoretically with sophisticated many-electron atomic structure calculations. However, this program has been able to address these needs experimentally with a precision that surpasses current theoretical accuracy. Our measurements also play the important role of providing a means for testing the accuracy of many-electron calculations and guiding further theoretical development, Atomic systems such as cesium, with a single electron
Hyperfine interactions of a muoniated ethyl radical in supercritical CO{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Cormier, Philip; Taylor, Becky [Department of Chemistry, Mount Allison University, Sackville, New Brunswick, E4L 1G8 (Canada); Ghandi, Khashayar, E-mail: kghandi@mta.c [Department of Chemistry, Mount Allison University, Sackville, New Brunswick, E4L 1G8 (Canada)
2009-04-15
A muoniated ethyl radical was studied in supercritical carbon dioxide. The muon and the proton hyperfine coupling constants were measured over temperatures ranging from 305 to 475 K, and a density range from 0.2 to 0.7 (g cm{sup -3}). A decrease was found in the muon hyperfine coupling constants as a function of the density, which can be attributed to the interaction between the CO{sub 2} molecule and the p-orbital of the ethyl radical. The changes to the alpha-proton and beta-proton hyperfine coupling constants with density are attributed to changes in the overall geometry in the formed radical. This system was modeled using quantum calculations.
Hyperfine interactions of a muoniated ethyl radical in supercritical CO2
International Nuclear Information System (INIS)
Cormier, Philip; Taylor, Becky; Ghandi, Khashayar
2009-01-01
A muoniated ethyl radical was studied in supercritical carbon dioxide. The muon and the proton hyperfine coupling constants were measured over temperatures ranging from 305 to 475 K, and a density range from 0.2 to 0.7 (g cm -3 ). A decrease was found in the muon hyperfine coupling constants as a function of the density, which can be attributed to the interaction between the CO 2 molecule and the p-orbital of the ethyl radical. The changes to the α-proton and β-proton hyperfine coupling constants with density are attributed to changes in the overall geometry in the formed radical. This system was modeled using quantum calculations.
Ab initio calculations of torsionally mediated hyperfine splittings in E states of acetaldehyde
Xu, Li-Hong; Reid, E. M.; Guislain, B.; Hougen, J. T.; Alekseev, E. A.; Krapivin, I.
2017-12-01
Quantum chemistry packages can be used to predict with reasonable accuracy spin-rotation hyperfine interaction constants for methanol, which contains one methyl-top internal rotor. In this work we use one of these packages to calculate components of the spin-rotation interaction tensor for acetaldehyde. We then use torsion-rotation wavefunctions obtained from a fit to the acetaldehyde torsion-rotation spectrum to calculate the expected magnitude of hyperfine splittings analogous to those observed at relatively high J values in the E symmetry states of methanol. We find that theory does indeed predict doublet splittings at moderate J values in the acetaldehyde torsion-rotation spectrum, which closely resemble those seen in methanol, but that the factor of three decrease in hyperfine spin-rotation constants compared to methanol puts the largest of the acetaldehyde splittings a factor of two below presently available Lamb-dip resolution.
Towards the measurement of the ground-state hyperfine splitting of antihydrogen
Energy Technology Data Exchange (ETDEWEB)
Juhasz, Bertalan, E-mail: bertalan.juhasz@oeaw.ac.at [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics (Austria)
2012-12-15
The ASACUSA collaboration at the Antiproton Decelerator of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic beam line, which will consist of a superconducting cusp trap as a source of partially polarized antihydrogen atoms, a radiofrequency spin-flip cavity, a superconducting sextupole magnet as spin analyser, and an antihydrogen detector. This will be a measurement of the antiproton magnetic moment, and also a test of the CPT invariance. Monte Carlo simulations predict that the antihydrogen ground-state hyperfine splitting can be determined with a relative precision of better than {approx} 10{sup - 6}. The first preliminary measurements of the hyperfine transitions will start in 2011.
International Nuclear Information System (INIS)
Anderssen, S.S.; Stuchberry, A.E.
1994-06-01
The static hyperfine magnetic field present at Pt nuclei implanted in ferromagnetic Fe has been measured using the ion-implantation perturbed angular correlation (IMPAC) technique following Coulomb excitation. The present measured precessions agree with earlier data, but more recent information on the transient field correction leads to an inferred static field strength that is ∼ 25% smaller than obtained previously. Comparisons are made between the static fields measured by various techniques for Pt and neighbouring ions in iron. From these comparisons, it is show that the IMPAC data are consistent with a scenario in which (i) the static field takes about 10 ps to reach its equilibrium value, following recovery from dynamic structural damage caused by the ion-implantation process, and (ii) following equilibration, a large fraction (∼ 90%) of the implanted ions have final positions on lattice sites of the Fe host. 50 refs., 5 tabs., 7 figs
Energy Technology Data Exchange (ETDEWEB)
Anderssen, S S; Stuchberry, A E
1994-06-01
The static hyperfine magnetic field present at Pt nuclei implanted in ferromagnetic Fe has been measured using the ion-implantation perturbed angular correlation (IMPAC) technique following Coulomb excitation. The present measured precessions agree with earlier data, but more recent information on the transient field correction leads to an inferred static field strength that is {approx} 25% smaller than obtained previously. Comparisons are made between the static fields measured by various techniques for Pt and neighbouring ions in iron. From these comparisons, it is show that the IMPAC data are consistent with a scenario in which (i) the static field takes about 10 ps to reach its equilibrium value, following recovery from dynamic structural damage caused by the ion-implantation process, and (ii) following equilibration, a large fraction ({approx} 90%) of the implanted ions have final positions on lattice sites of the Fe host. 50 refs., 5 tabs., 7 figs.
Hyperfine field calculations: search for muon stopping sites in Fe/sub 3/O/sub 4/
Energy Technology Data Exchange (ETDEWEB)
Boekema, C. (Texas Tech Univ., Lubbock (USA)); Denison, A.B. (Wyoming Univ., Laramie (USA)); Cooke, D.W.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Schillaci, M.E. (Los Alamos National Lab., NM (USA))
1983-12-01
Muon Spin Rotation (..mu..SR) results for magnetite (Fe/sub 3/O/sub 4/) are analyzed and discussed. At room temperature, a ..mu..SR signal is observed due to the presence of an internal magnetic field (Bsub(int)) at the muon site. External transverse field measurements show that Bsub(int) is parallel to the magnetic spin direction, the <111> direction in zero applied field. Calculations of the hyperfine field to pinpoint muon stopping sites in magnetite show that the local field contains supertransfer (covalent) and dipolar field contributions. The implanted muons appear to stop at sites structurally similar to those reported for hematite (..cap alpha..-Fe/sub 2/O/sub 3/), where muon-oxygen bond formation was strongly indicated.
International Nuclear Information System (INIS)
Rotter, M.
1985-01-01
Part I and part II are presented of the contributions submitted to the International study meeting on physics with oriented nuclei and of papers from the International summer school on hyperfine interactions. The contributions and papers are devoted to the present status and further development of low temperature nuclear orientation of short-lived nuclei with emphasis on online techniques. The following topics are covered: nuclear orientation, NMR/ON, level mixing and level crossing resonances, laser spectroscopy, Moessbauer spectroscopy, polarization phenomena in low, medium and high energy physics, applications of hyperfine interaction techniques in nuclear physics, atomic physics, solid state physics, biology and materials research. (Z.J.)
Theory of Electric-Field Effects on Electron-Spin-Resonance Hyperfine Couplings
International Nuclear Information System (INIS)
Karna, S.P.
1997-01-01
A quantum mechanical theory of the effects of a uniform electric field on electron-spin-resonance hyperfine couplings is presented. The electric-field effects are described in terms of perturbation coefficients which can be used to probe the local symmetry as well as the strength of the electric field at paramagnetic sites in a solid. Results are presented for the first-order perturbation coefficients describing the Bloembergen effect (linear electric-field effect on hyperfine coupling tensor) for the O atom and the OH radical. copyright 1997 The American Physical Society
Moessbauer investigation of magnetic hyperfine fields near bivalent Eu compounds under high pressure
International Nuclear Information System (INIS)
Abd Elmeguid, M.
1979-01-01
The paper deals with the pressure or volume dependence of hyperfine interactions of magnetically ordered, bivalent europium compounds. Emphasis is laid on the investigation of the pressure or volume dependence of magnetic hyperfine fields as they are found at the nuclear site of 151 Eu or of diamagnetic 119 Sn or 197 Au probe atoms. The measurements were carried out with the aid of the gamma resonance of 151 Eu (21.6 keV) 119 Sn (23.8 keV) and 167 Au (77.4 keV) at low temperatures and external pressures up to 65 kbar. (orig./WBU) [de
The hyperfine fields at 181Ta in HfFe2
International Nuclear Information System (INIS)
Cekic, B.; Ivanovic, N.; Manasijevic, M.; Koicki, S.; Koteski, V.; Cavor, J.; Radisavljevic, I.; Milosevic, Z.; Novakovic, N.
2001-01-01
The hyperfine fields (HFF) in the polycrystalline HfFe 2 binary compound consisting the two various phases MgCu 2 and MgZn 2 , were measured at 181 Ta probe ion sites by gamma-gamma time differential perturbed angular correlations (TDPAC) technique in a wide temperature range. The origin of the hyperfine magnetic field is discussed taking in account the coordination of the 181 Ta probe ion, its core polarization and the polarization of conduction electrons around the 181 Ta site in both phases. (author)
Quantum versus classical hyperfine-induced dynamics in a quantum dota)
Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.
2007-04-01
In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.
Energy Technology Data Exchange (ETDEWEB)
Michel, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires
1967-12-01
We have studied the hyperfine coupling in gadolinium-praseodymium alloys by specific heat measurements down to 0.3 K. In the first part we describe the apparatus used to perform our measurements. The second part is devoted to some theoretical considerations. We have studied in detail the case of praseodymium which is an exception in the rare earth series. The third part shows the results we have obtained. (author) [French] Nous avons etudie le couplage hyperfin d'alliages de gadolinium-praseodyme par des mesures de chaleur specifique jusqu'a 0.3 K. Dans la premiere partie de cette etude nous decrivons le dispositif experimental. La deuxieme partie est consacree a des considerations theoriques. Nous avons etudie en detail le cas du praseodyme qui est une exception dans la serie des terres rares. La troisieme partie est consacree aux resultats experimentaux. (auteur)
Energy Technology Data Exchange (ETDEWEB)
Faustov, R.N. [Dorodnicyn Computing Centre, Russian Academy of Science, Vavilov Str. 40, 119991 Moscow (Russian Federation); Martynenko, A.P. [Samara State University, Pavlov Str. 1, 443011 Samara (Russian Federation); Samara State Aerospace University named after S.P. Korolyov, Moskovskoye Shosse 34, 443086 Samara (Russian Federation); Martynenko, G.A.; Sorokin, V.V. [Samara State University, Pavlov Str. 1, 443011 Samara (Russian Federation)
2014-06-02
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα){sup 5} to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried–Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.
International Nuclear Information System (INIS)
Faustov, R.N.; Martynenko, A.P.; Martynenko, G.A.; Sorokin, V.V.
2014-01-01
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα) 5 to the hyperfine structure of S-wave energy levels in muonic hydrogen and muonic deuterium. For the construction of the particle interaction operator we employ the projection operators on the particle bound states with definite spins. The calculation is performed in the infrared safe Fried–Yennie gauge. Modern experimental data on the electromagnetic form factors of the proton and deuteron are used.
International Nuclear Information System (INIS)
Skopenko, V.V.; Amirkhanov, V.M.; Turov, A.V.; Trachevskij, V.V.
1991-01-01
By the method of 1 H and 31 P NMR at 233 and 298 K acetone solutions of lanthanide complexes of the composition [LnCl 2 Hmpa 4 ]BPh 4 (Hmpa=OP[N(CH 3 ) 2 ] 3 , Ln=La, Ce-Lu) have been considered. Two series of complexes having similar structure of coordination sphere (Ln=Pr-Ho and Ln=Er-Yb) are revealed and for each series the values of hyperfine interaction constants, which are 0.49 and 0.28 MHz respectively, have been determined
Magnetic hyperfine interactions of U2 center in CaF2, SrF2 and BaF2
International Nuclear Information System (INIS)
Graf, C.J.F.
1976-02-01
The magnetic hyperfine parameters of the U 2 center in CaF 2 , SeF 2 and BaF 2 , using a molecular orbitals scheme have been calculated. The need for the inclusion of mechanisms such as Pauli Repulsion and Covalence in order to describe the electronic structure of the defect has been shown. In the molecular orbitals model a weak covalence parameter has been phenomenologically introduced, mixing the is atomic wavefunction of hydrogen with a properly symmetrized linear combination of 2p F - functions centered on the ions of the first fluorine shell. The results obtained are compared with experimental measurements of EPR and ENDOR. (Author) [pt
International Nuclear Information System (INIS)
Constantinescu, S.
2007-01-01
The refined 57 Fe Moessbauer spectra of some static-disordered crystalline media (with melilite and Ca-gallate structure) evidenced observable electric and magnetic crystal field dispersions. It is the fifth in a series of papers published previously in the same journal on this subject. The data of crystalline hyperfine fields and their dispersion parameters have calculated using the modeling procedure given in a paper by Kaminskii, et al. published in 1986. The obtained values of the magnetic and quadrupole splitting parameters compared with to experimental data showed the possibility to predict the crystal fields' dispersion. (author)
Hyperfine splitting in positronium to O(α7me). One-photon annihilation contribution
International Nuclear Information System (INIS)
Baker, M.; Penin, A.A.; Karlsruher Institut fuer Technologie; Piclum, J.; RWTH Aachen; Steinhauser, M.
2014-02-01
We present the complete result for the O(α 7 m e ) one-photon annihilation contribution to the hyperfine splitting of the ground state energy levels in positronium. Numerically it increases the prediction of quantum electrodynamics by 217±1 kHz.
61Ni Moessbauer study of the surface hyperfine magnetic field in nickel
International Nuclear Information System (INIS)
Stadnik, Z.M.; Stroink, G.; Griesbach, P.; Guetlich, P.; Kohara, T.
1988-01-01
61 Ni Moessbauer measurements have been performed at 4.2 K on spherical Ni particles with an average diameter of 100 and 30 A, covered with a protective layer of SiO. Their spectra contain a surface component with a significantly reduced hyperfine magnetic field as compared with the field in the bulk. This result confirms recent theoretical predictions. (orig.)
Towards measuring the ground state hyperfine splitting of antihydrogen – a progress report
Energy Technology Data Exchange (ETDEWEB)
Sauerzopf, C., E-mail: clemens.sauerzopf@oeaw.ac.at; Capon, A. A.; Diermaier, M. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Dupré, P. [Atomic Physics Laboratory, RIKEN (Japan); Higashi, Y. [University of Tokyo, Institute of Physics, Graduate School of Arts and Sciences (Japan); Kaga, C. [Hiroshima University, Graduate School of Advanced Sciences of Matter (Japan); Kolbinger, B. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Leali, M. [Università di Brescia, Dipartimento di Ingegneria dell’ Informazione (Italy); Lehner, S. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Rizzini, E. Lodi [Università di Brescia, Dipartimento di Ingegneria dell’ Informazione (Italy); Malbrunot, C. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Mascagna, V. [Università di Brescia, Dipartimento di Ingegneria dell’ Informazione (Italy); Massiczek, O. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Murtagh, D. J.; Nagata, Y.; Radics, B. [Atomic Physics Laboratory, RIKEN (Japan); Simon, M. C.; Suzuki, K. [Stefan Meyer Institute for subatomic physics, Austrian Academy of Sciences (Austria); Tajima, M. [University of Tokyo, Institute of Physics, Graduate School of Arts and Sciences (Japan); Ulmer, S. [Ulmer Initiative Research Unit, RIKEN (Japan); and others
2016-12-15
We report the successful commissioning and testing of a dedicated field-ioniser chamber for measuring principal quantum number distributions in antihydrogen as part of the ASACUSA hyperfine spectroscopy apparatus. The new chamber is combined with a beam normalisation detector that consists of plastic scintillators and a retractable passivated implanted planar silicon (PIPS) detector.
Measurement of the magnetic hyperfine field at the 181 Ta site in nickel matrix
International Nuclear Information System (INIS)
Saxena, R.N.; Carbonari, A.W.; Pendl Junior, W.; Attili, R.N.; Kenchian, G.; Soares, J.C.A.C.R.; Moreno, M.S.
1990-01-01
The hyperfine magnetic field on the Ta 181 nucleus were determined using the gamma-gamma perturbed angular correlation method, on a nickel matrix, with a 133-482 KeV cascade from the Hf- 181 beta minus decay. (L.C.J.A.)
Relativistic DFT calculations of hyperfine coupling constants in the 5d hexafluorido complexes
DEFF Research Database (Denmark)
Haase, Pi Ariane Bresling; Repisky, Michal; Komorovsky, Stanislav
2018-01-01
We have investigated the performance of the most popular relativistic density functional theory methods, zeroth order regular approximation (ZORA) and 4-component Dirac-Kohn-Sham (DKS), in the calculation of the recently measured hyperfine coupling constants of ReIV and IrIV in their hexafluorido...
Magnetic hyperfine field at a Cd impurity diluted in RCo{sub 2} at finite temperatures
Energy Technology Data Exchange (ETDEWEB)
Oliveira, A.L. de, E-mail: alexandre.oliveira@ifrj.edu.br [Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Campus Nilópolis – RJ (Brazil); Chaves, C.M., E-mail: cmch@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro (Brazil); Oliveira, N.A. de [Instituto de Física Armando Dias Tavares, Universidade do Estado do Rio de Janeiro, Rio de Janeiro (Brazil); Troper, A. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro (Brazil)
2015-06-15
The local magnetic moments and the magnetic hyperfine fields at an s–p Cd impurity diluted in inter-metallic Laves phase compounds RCo{sub 2} (R=Gd, Tb) at finite temperatures are calculated. For other rare earth elements (light or heavy) the pure compounds display a magnetic first order transition and are not describable by our formalism. The host has two coupled lattices (R and Co) both having itinerant d electrons but only the rare earth lattice has localized f electrons. They all contribute to the magnetization of the host and also to the local moment and to the magnetic hyperfine field at the impurity. The investigation of magnetic hyperfine field in these materials then provides valuable information on the d-itinerant electrons and also on the localized (4f) magnetic moments. For the d–d electronic interaction we use the Hubbard–Stratonovich identity thus allowing the employment of functional integral in the static saddle point approximation. Our model reproduces quite well the experimental data. - Highlights: • A functional integral method in the static limit, producing site disorder, is used. • The site disorder is treated with the coherent potential approximation (CPA) • A Friedel sum rule gives a self-consistency condition for the impurity energy. • The experimental curve of hyperfine fields×temperature is very well reproduced.
Towards Measuring the Ground State Hyperfine Splitting of Antihydrogen -- A Progress Report
Sauerzopf, C.
2016-06-20
We report the successful commissioning and testing of a dedicated field-ioniser chamber for measuring principal quantum number distributions in antihydrogen as part of the ASACUSA hyperfine spectroscopy apparatus. The new chamber is combined with a beam normalisation detector that consists of plastic scintillators and a retractable passivated implanted planar silicon (PIPS) detector.
A quantitative analysis of transtensional margin width
Jeanniot, Ludovic; Buiter, Susanne J. H.
2018-06-01
Continental rifted margins show variations between a few hundred to almost a thousand kilometres in their conjugated widths from the relatively undisturbed continent to the oceanic crust. Analogue and numerical modelling results suggest that the conjugated width of rifted margins may have a relationship to their obliquity of divergence, with narrower margins occurring for higher obliquity. We here test this prediction by analysing the obliquity and rift width for 26 segments of transtensional conjugate rifted margins in the Atlantic and Indian Oceans. We use the plate reconstruction software GPlates (http://www.gplates.org) for different plate rotation models to estimate the direction and magnitude of rifting from the initial phases of continental rifting until breakup. Our rift width corresponds to the distance between the onshore maximum topography and the last identified continental crust. We find a weak positive correlation between the obliquity of rifting and rift width. Highly oblique margins are narrower than orthogonal margins, as expected from analogue and numerical models. We find no relationships between rift obliquities and rift duration nor the presence or absence of Large Igneous Provinces (LIPs).
Porous Alumina Films with Width-Controllable Alumina Stripes
Directory of Open Access Journals (Sweden)
Huang Shi-Ming
2010-01-01
Full Text Available Abstract Porous alumina films had been fabricated by anodizing from aluminum films after an electropolishing procedure. Alumina stripes without pores can be distinguished on the surface of the porous alumina films. The width of the alumina stripes increases proportionally with the anodizing voltage. And the pores tend to be initiated close to the alumina stripes. These phenomena can be ascribed to the electric field distribution in the alumina barrier layer caused by the geometric structure of the aluminum surface.
Porous Alumina Films with Width-Controllable Alumina Stripes
2010-01-01
Porous alumina films had been fabricated by anodizing from aluminum films after an electropolishing procedure. Alumina stripes without pores can be distinguished on the surface of the porous alumina films. The width of the alumina stripes increases proportionally with the anodizing voltage. And the pores tend to be initiated close to the alumina stripes. These phenomena can be ascribed to the electric field distribution in the alumina barrier layer caused by the geometric structure of the aluminum surface. PMID:21170406
Influence of MLC leaf width on biologically adapted IMRT plans
Energy Technology Data Exchange (ETDEWEB)
Roedal, Jan; Soevik, Aaste; Malinen, Eirik (Dept. of Medical Physics, The Norwegian Radium Hospital, Oslo Univ. Hospital, Oslo (Norway)), E-mail: jan.rodal@radiumhospitalet.no
2010-10-15
Introduction. High resolution beam delivery may be required for optimal biology-guided adaptive therapy. In this work, we have studied the influence of multi leaf collimator (MLC) leaf widths on the treatment outcome following adapted IMRT of a hypoxic tumour. Material and methods. Dynamic contrast enhanced MR images of a dog with a spontaneous tumour in the nasal region were used to create a tentative hypoxia map following a previously published procedure. The hypoxia map was used as a basis for generating compartmental gross tumour volumes, which were utilised as planning structures in biologically adapted IMRT. Three different MLCs were employed in inverse treatment planning, with leaf widths of 2.5 mm, 5 mm and 10 mm. The number of treatment beams and the degree of step-and-shoot beam modulation were varied. By optimising the tumour control probability (TCP) function, optimal compartmental doses were derived and used as target doses in the inverse planning. Resulting IMRT dose distributions and dose volume histograms (DVHs) were exported and analysed, giving estimates of TCP and compartmental equivalent uniform doses (EUDs). The impact of patient setup accuracy was simulated. Results. The MLC with the smallest leaf width (2.5 mm) consistently gave the highest TCPs and compartmental EUDs, assuming no setup error. The difference between this MLC and the 5 mm MLC was rather small, while the MLC with 10 mm leaf width gave considerably lower TCPs. When including random and systematic setup errors, errors larger than 5 mm gave only small differences between the MLC types. For setup errors larger than 7 mm no differences were found between non-uniform and uniform dose distributions. Conclusions. Biologically adapted radiotherapy may require MLCs with leaf widths smaller than 10 mm. However, for a high probability of cure it is crucial that accurate patient setup is ensured.
Temperature dependence of giant dipole resonance width
International Nuclear Information System (INIS)
Vdovin, A.I.; Storozhenko, A.N.
2005-01-01
The quasiparticle-phonon nuclear model extended to finite temperature within the framework of the thermo field dynamics is applied to calculate a temperature dependence of the spreading width Γ d own of a giant dipole resonance. Numerical calculations are made for 12S n and 208 Pb nuclei. It is found that the width Γ d own increases with T. The reason of this effect is discussed as well as a relation of the present approach to other ones existing in the literature
Radiative width of molecular-cluster states
International Nuclear Information System (INIS)
Alhassid, Y.; Gai, M.; Bertsch, G.F.
1982-01-01
Molecular states are characterized by enhanced electromagnetic deexcitations of many different multipolarities. The expected enhancement of E1, E2, and E3 transitions is examined by deriving molecular sum rules for radiative deexcitation widths and via a dimensionality approach. The enhancement of the E1 transitions is the most striking
Bounding the Higgs boson width through interferometry.
Dixon, Lance J; Li, Ye
2013-09-13
We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum.
Practical algorithms for linear boolean-width
ten Brinke, C.B.; van Houten, F.J.P.; Bodlaender, H.L.
2015-01-01
In this paper, we give a number of new exact algorithms and heuristics to compute linear boolean decompositions, and experimentally evaluate these algorithms. The experimental evaluation shows that significant improvements can be made with respect to running time without increasing the width of the
Practical algorithms for linear Boolean-width
ten Brinke, C.B.; van Houten, F.J.P.; Bodlaender, H.L.
2015-01-01
In this paper, we give a number of new exact algorithms and heuristics to compute linear boolean decompositions, and experimentally evaluate these algorithms. The experimental evaluation shows that significant improvements can be made with respect to running time without increasing the width of the
Statistical analysis of P-wave neutron reduced widths
International Nuclear Information System (INIS)
Joshi, G.C.; Agrawal, H.M.
2000-01-01
The fluctuations of the p-wave neutron reduced widths for fifty one nuclei have been analyzed with emphasis on recent measurements by a statistical procedure which is based on the method of maximum likelihood. It is shown that the p-wave neutron reduced widths of even-even nuclei fallow single channel Porter Thomas distribution (χ 2 -distribution with degree of freedom ν=1) for most of the cases where there are no intermediate structure. It is emphasized that the distribution in nuclei other than even-even may differ from a χ 2 -distribution with one degree of freedom. Possible explanation and significance of this deviation from ν=1 is given. (author)
Energy Technology Data Exchange (ETDEWEB)
Munoz, Emiliano L., E-mail: munoz@fisica.unlp.edu.ar [Departamento de Fisica and Instituto de Fisica La Plata (IFLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina); Mercurio, Marcio E.; Cordeiro, Moacir R.; Pereira, Luciano F.D.; Carbonari, Artur W. [Instituto de Pesquisas Energeticas y Nucleares-IPEN-CNEN/SP, Sao Paulo (Brazil); Renteria, Mario [Departamento de Fisica and Instituto de Fisica La Plata (IFLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina)
2012-08-15
In this work, we present results of Time-Differential {gamma}-{gamma} Perturbed-Angular-Correlations (PAC) experiments performed in {sup 111}Cd-doped ZnO semiconductor. The PAC technique has been applied in order to characterize the electric-field-gradient (EFG) tensor at ({sup 111}In (EC){yields}) {sup 111}Cd nuclei located, as was later demonstrated, at defect-free cation sites of the ZnO host structure. The PAC experiments were performed in the temperature range of 77-1075 K. At first glance, the unexpected presence of low-intensity dynamic hyperfine interactions was observed, which were analyzed with a perturbation factor based on the Baeverstam and Othaz model. The experimental EFG results were compared with ab initio calculations performed with the Full-Potential Augmented Plane Wave plus local orbital (FP-APW+lo) method, in the framework of the Density Functional Theory (DFT), using the Wien2K code. The presence of the dynamic hyperfine interactions has been analyzed enlightened by the FP-APW+lo calculations of the EFG performed as a function of the charge state of the cell. We could correlate the large strength of the dynamic hyperfine interaction with the strong variation of the EFG due to changes in the electronic charge distribution in the Cd vicinity during the time-window of the PAC measurement. It was also revealed that the Cd impurity decays to a final stable neutral charge state (Cd{sup 2+}) fast enough (in few ns) to produce the nearly undamped observed PAC spectra.
Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol
Energy Technology Data Exchange (ETDEWEB)
Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V. [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Ilyushin, V. V.; Mescheryakov, A. A. [Institute of Radio Astronomy of National Academy of Sciences of Ukraine, Chervonopraporna 4, 61002 Kharkov (Ukraine); Alekseev, E. A. [Institute of Radio Astronomy of National Academy of Sciences of Ukraine, Chervonopraporna 4, 61002 Kharkov (Ukraine); Quantum Radiophysics Department of V. N. Karazin Kharkiv National University, Svobody Square 4, 61022 Kharkov (Ukraine); Hougen, J. T., E-mail: jon.hougen@nist.gov [Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8441 (United States); Xu, Li-Hong [Department of Physics and Centre for Laser, Atomic, and Molecular Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5 (Canada)
2016-07-14
This paper presents an explanation based on torsionally mediated proton-spin–overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = − 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric “torsionally mediated spin-rotation operators” by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e{sup ±niα}. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A{sub 1} and A{sub 2} states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.
Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol
Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Alekseev, E. A.; Mescheryakov, A. A.; Hougen, J. T.; Xu, Li-Hong
2016-07-01
This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.
International Nuclear Information System (INIS)
Steffens, Michael
2014-01-01
On the example of the three oxide compounds of the hafnium, gallium, and aluminium among others the method of the perturbed γ-γ angular correlation (PAC) was applied in dependence on the sample temperature. Applied were thereby the PAC probe nuclei 111 Cd and 181 Ga, which were inserted in the samples by ion implantation or proced by neutron activation in the samples. In HfO 2 thereby especially the hyperfine interaction of thin layers with thicknesses from 2.7 to 17 nm and 100 nm were studied. Strongly disagreeing field gradients and a great influence of the sample surface on the measurement are shown. It could be shown that ν qO x should scale with the layer thickness of the oxide and that the temperature-dependent behaviour, which is influenced by the thermal expansion of the lattice, underlies also this scaling. Conditioned by the neighbourhood to the surface at high temperature oxygen can escape from the samples and so degrade the oxide. The studied Ga 2 O 3 layers were produced by oxidation of GaN at 1223 K in air. The structure of the oxide layer was thereby stepwise pursued with the PAC and could be modelled with an exponential time dependence. The oxidation was repeated with several samples at equal absolute oxidation time but different partition in intermediate steps. Altogether the result were shown as reproducable, the occuring differences of the hyperfine interactions are probably given by external quantities fluctuating in the oxidation. The measurement of the Al 2 O 3 sample in the PAC furnace and cryostat represents mainly a reproduction of the preceding experiments of Penner et al. In this materials the attempt held the spotlight to manipulate the temperature-dependent behaviour of the hyperfine interaction by additional doping. Over the experiments of the single materials was set the more precise consideration of dynamic hyperfine interactions on the probe nucleus 111 Cd. In the spin-correlation functions R(t) these were manifested by an
International Nuclear Information System (INIS)
Thome, L.; Bernas, H.; Meunier, R.
1978-01-01
The hyperfine interaction of 169 Tm and 175 Lu implanted in Fe and annealed, or implanted at high temperatures, was studied by time-integral and time-differential perturbed angular correlation experiments. The heat treatment was performed in order to modify the impurity-radiation damage interaction in the sample. Comparison of our results with other hyperfine interaction results on rare earths implanted in iron shows that after room-temperature implantation, all the implanted nuclei experience the same hyperfine interaction. The annealing-and implantation-temperature dependences of the fraction of nuclei experiencing this hyperfine interaction are significantly different. The results are interpreted in terms of precipitation of an increasing proportion of implanted impurities. A discussion of their relation to the implanted impurity lattice location is presented in a companion paper
Narrow widths of old and new resonances
International Nuclear Information System (INIS)
Pasupathy, J.
1977-01-01
A quantitative measure of the suppression factors involved in the pionic decays of mesons phi(1019) and f'(1514) as compared to their kaonic psi(3100) and psi(3700) decays are explained using the two different approaches, viz., the phenomenological S matrix approach and the field theoretical approach. The importance of the O-Z-I rule is brought out. The partial width GAMMA(phi → 3π) has been calculated using the dual model for the scattering kappa kappa(bar) → rhoπ. The effective coupling psi rho π is evaluated. The partial widths for psi → e + e - and psi → hadrons is calculated on a field theoretical approach. In conclusion, it appears that there are no serious objections to interpreting psi and psi' as cc - states. Most of their properties can be understood in a qualitative and in semi-quantitative way. (A.K.)
Numerical simulation of distorted crystal Darwin width
International Nuclear Information System (INIS)
Wang Li; Xu Zhongmin; Wang Naxiu
2012-01-01
A new numerical simulation method according to distorted crystal optical theory was used to predict the direct-cooling crystal monochromator optical properties(crystal Darwin width) in this study. The finite element analysis software was used to calculate the deformed displacements of DCM crystal and to get the local reciprocal lattice vector of distorted crystal. The broadening of direct-cooling crystal Darwin width in meridional direction was estimated at 4.12 μrad. The result agrees well with the experimental data of 5 μrad, while it was 3.89 μrad by traditional calculation method of root mean square (RMS) of the slope error in the center line of footprint. The new method provides important theoretical support for designing and processing of monochromator crystal for synchrotron radiation beamline. (authors)
Exotic meson decay widths using lattice QCD
International Nuclear Information System (INIS)
Cook, M. S.; Fiebig, H. R.
2006-01-01
A decay width calculation for a hybrid exotic meson h, with J PC =1 -+ , is presented for the channel h→πa 1 . This quenched lattice QCD simulation employs Luescher's finite box method. Operators coupling to the h and πa 1 states are used at various levels of smearing and fuzzing, and at four quark masses. Eigenvalues of the corresponding correlation matrices yield energy spectra that determine scattering phase shifts for a discrete set of relative πa 1 momenta. Although the phase shift data is sparse, fits to a Breit-Wigner model are attempted, resulting in a decay width of about 60 MeV when averaged over two lattice sizes having a lattice spacing of 0.07 fm
Analysis of reduced widths and size
International Nuclear Information System (INIS)
Sharma, H.C.; Ram Raj; Nath, N.
1977-01-01
Recent data on S-wave neutron reduced widths for a large number of nuclei have been analysed nucleus-wise and the calculations for the degree of freedom of the associated (chi) 2 -distribution have been made using the Porter and Thomas procedure. It is noted that a number of nuclei can be fitted by a (chi) 2 -distribution with degree of freedom one, while there are few which are identified to follow a (chi) 2 -distribution with degree of freedom two and even more than two. The present analysis thus contradicts the usual presumption according to which the degree of freedom is taken to be always unity. An analytical attempt has also been made to ascertain the suitability of the data on reduced widths to be used for the analysis. These considerations are likely to modify the neutron cross-section evaluations. (author)
Mössbauer studies of hyperfine fields in disordered Fe
Indian Academy of Sciences (India)
Heusler-like alloy Fe2CrAl was prepared and studied. Structure determination was done by X-ray. The structure was found to conform to the B2 type. Magnetic hyperﬁne ﬁelds in this sample were studied by the Mössbauer effect. The Mössbauer spectra were recorded over a range of temperature from 40 to 296 K. The ...
Determination of hyperfine-induced transition rates from observations of a planetary nebula.
Brage, Tomas; Judge, Philip G; Proffitt, Charles R
2002-12-31
Observations of the planetary nebula NGC3918 made with the STIS instrument on the Hubble Space Telescope reveal the first unambiguous detection of a hyperfine-induced transition 2s2p 3P(o)(0)-->2s2 1S0 in the berylliumlike emission line spectrum of N IV at 1487.89 A. A nebular model allows us to confirm a transition rate of 4x10(-4) sec(-1)+/-33% for this line. The measurement represents the first independent confirmation of the transition rate of hyperfine-induced lines in low ionization stages, and it provides support for the techniques used to compute these transitions for the determination of very low densities and isotope ratios.
Studies of hyperfine magnetic fields in transition metals by radioactive ion implantation
International Nuclear Information System (INIS)
Kawase, Yoichi; Uehara, Shin-ichi; Nasu, Saburo; Ni Xinbo.
1994-01-01
In order to investigate hyperfine magnetic fields in transition metals by a time-differential perturbed angular correlation (TDPAC) technique, radioactive probes of 140 Cs obtained by KUR-ISOL have been implanted on transition metals of Fe, Ni and Co. Lamor precessions of 140 Ce used as a probe nucleus have been observed clearly and the hyperfine fields have been determined precisely corresponding to implanted sites in host metal. The irradiation effects caused by implantation have been examined by annealing the irradiated specimen at about 723 K. Some of the Lamor precessions have disappeared by the annealing. Discussions have been made on the occupied sites after implantation and the recovery process of induced damages by annealing. (author)
Hyperfine characterization of the Ba Ti1-x Hfx O3 for x = 0.20
International Nuclear Information System (INIS)
Ayala, Alexandro; Lopez-Garcia, Alberto
1996-01-01
It is known that the cation substitution in perovskites produce changes in the macroscopic properties of these materials. A case to study is for example the influence of cation B partially substituted by cation B ' when ABO 3 is ferroelectric, and A B ' O 3 is paraelectric. In this work the system Ba Ti 1-x Hf x O 3 with x = 0.05, 0.10, 0.15 and 0.20 is studied by Perturbed Angular Correlations (Pac) in order to obtain microscopic information through the electric field gradient tensor (EFG) produced by electrons close to probes. Two hyperfine quadrupole interactions were detected. One interaction associated to probes with defects originated during the nuclear processes after neutron irradiation, and the other are located in B sites. At R T, the hyperfine parameters are analyzed in terms of Hf concentration. (author)
Derivation of the electric dipole--dipole interaction as an electric hyperfine interaction
International Nuclear Information System (INIS)
Parker, G.W.
1986-01-01
The electric dipole--dipole interaction is derived by assuming that the electron and proton in hydrogen have intrinsic electric dipole moments that interact to give an electric hyperfine interaction. The electric field at the proton due to the electron's presumed dipole moment then gives rise to a contact type term for l = 0 and the normal dipole--dipole term for lnot =0. When combined with our previous derivation of the magnetic hyperfine interaction [Am. J. Phys. 52, 36 (1984)], which used a similar approach, these derivations provide a unified treatment of the interaction of electric and magnetic dipoles. As an application of these results, the product of the electron's and proton's dipole moments is estimated to be less than 10 -29 e 2 cm 2
Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical
Energy Technology Data Exchange (ETDEWEB)
Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de [Fakultät Mathematik und Naturwissenschaften, Physikalische und Theoretische Chemie, Bergische Universität Wuppertal, D-42097 Wuppertal (Germany); Yachmenev, Andrey; Yurchenko, Sergei N. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)
2015-12-28
We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.
Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical
Adam, Ahmad Y.; Yachmenev, Andrey; Yurchenko, Sergei N.; Jensen, Per
2015-12-01
We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH3 radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH3 in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant's equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.
Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical
International Nuclear Information System (INIS)
Adam, Ahmad Y.; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.
2015-01-01
We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH 3 radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH 3 in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in very good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role
Hyperfine transition in 209Bi80+—one step forward
International Nuclear Information System (INIS)
Sánchez, R; Andelkovic, Z; Geithner, W; König, K; Litvinov, Yu A; Maaß, B; Ullmann, J; Geppert, Ch; Gorges, Ch; Lochmann, M; Nörtershäuser, W; Schmidt, S; Vollbrecht, J; Hannen, V; Dax, A; Hammen, M; Kaufmann, S; Meisner, J; Schmidt, M; Murböck, T
2015-01-01
The hyperfine transitions in lithium-like and hydrogen-like bismuth were remeasured by direct laser spectroscopy at the experimental storage ring. For this we have now employed a voltage divider which enabled us to monitor the electron cooler voltage in situ. This will improve the experimental accuracy by about one order of magnitude with respect to our previous measurement using the same technique. (paper)
Hyperfine interactions of {beta}-emitter {sup 12}N in TiO{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Maruyama, Yukiko [Osaka Univ., Toyonaka (Japan). Faculty of Science; Izumikawa, Takuji; Tanigaki, Minoru [and others
1997-03-01
Hyperfine interactions of {beta}-emitter {sup 12}N (I{sup {pi}} = 1{sup -}, T{sub 1/2} 11ms) in TiO{sub 2} has been studied. A {beta}-NMR spectrum on the polarized {sup 12}N implanted in TiO{sub 2} shows that {sup 12}N are located at two different sites and maintain about 100% of initial polarization. These are the first phenomena observed in ionic crystals. (author)
Theoretical study of hyperfine fields due to S-P and transition impurities in gadolinium matrix
International Nuclear Information System (INIS)
Santos Leal, C.E. dos.
1985-01-01
This work presents a systematic theoretical study for the hyperfine field due to diluted s-p-and transition impurities in metallic gadolinium matrices. The peculiarities de a gadolinium matrix are shown, they are characterized by a semi-completed 4f-shell, which is far from (below) the energetic levels such as the type s-p and d-conduction bands. (author)
Hyperfine coupling in gadolinium-praseodymium alloys by specific heat measurements
International Nuclear Information System (INIS)
Michel, J.
1969-01-01
We have studied the hyperfine coupling in gadolinium-praseodymium alloys by specific heat measurements down to 0.3 K. In the first part we describe the apparatus used to perform our measurements. The second part is devoted to some theoretical considerations. We have studied in detail the case of praseodymium which is an exception in the rare earth series. The third part shows the results we have obtained. (author) [fr
International Nuclear Information System (INIS)
Troper, A.
1978-01-01
A theoretical study involving rare earth impurities, which were embedded in transition metals (s-p or noble), from the point of view of the hyperfine interactions is presented. A model was created to describe a d-resonance (Anderson-Moriya) acting on a s-p conduction band which was strongly perturbed by a slater-koster potential, used to describe the rare earths which were diluted in matrices of transition elements. (author)
Width and partial widths of unstable particles in the light of the Nielsen identities
International Nuclear Information System (INIS)
Grassi, P.A.; Sirlin, A.; Kniehl, B.A.; Hamburg Univ.
2001-09-01
Fundamental properties of unstable particles, including mass, width, and partial widths, are examined on the basis of the Nielsen identities (NI) that describe the gauge dependence of Green functions. In particular, we prove that the pole residues and associated definitions of branching ratios and partial widths are gauge independent to all orders. A simpler, previously discussed definition of branching ratios and partial widths is found to be gauge independent through next-to-next-to-leading order. It is then explained how it may be modified in order to extend the gauge independence to all orders. We also show that the physical scattering amplitude is the most general combination of self-energy, vertex, and box contributions that is gauge independent for arbitrary s, discuss the analytical properties of the NI functions, and exhibit explicitly their one-loop expressions in the Z-γ sector of the Standard Model. (orig.)
Width and partial widths of unstable particles in the light of the Nielsen identities
International Nuclear Information System (INIS)
Grassi, Pietro A.; Kniehl, Bernd A.; Sirlin, Alberto
2002-01-01
Fundamental properties of unstable particles, including mass, width, and partial widths, are examined on the basis of the Nielsen identities (NI) that describe the gauge dependence of Green functions. In particular, we prove that the pole residues and associated definitions of branching ratios and partial widths are gauge independent to all orders. A simpler, previously discussed definition of branching ratios and partial widths is found to be gauge independent through next-to-next-to-leading order. It is then explained how it may be modified in order to extend the gauge independence to all orders. We also show that the physical scattering amplitude is the most general combination of self-energy, vertex, and box contributions that is gauge independent for arbitrary s, discuss the analytical properties of the NI functions, and exhibit explicitly their one-loop expressions in the Z-γ sector of the standard model
International Nuclear Information System (INIS)
Silva, Andreia dos Santos; Carbonari, Artur Wilson; Lapolli, Andre Luis; Saxena, Rajendra Narain; Saitovitch, Henrique
2013-01-01
Perturbed γγ angular correlations (PAC) spectroscopy has been used to study the DNA nitrogenous bases (adenine, cytosine, guanine, thymine), using 111 In→ 111 Cd and 111m Cd→ 111 Cd probe nuclei. One of the advantages of applying PAC technique to biological molecules is that the experiments can be carried out on molecules in aqueous solution [1], approaching the function of molecules under conditions that are close to in vivo conditions. The measurements were carried out for DNA nitrogenous bases molecules at 295 K and 77 K in order to investigate dynamic and static hyperfine interactions, respectively. The interpretation of the results was based on the measurements of dynamic interaction characterized by the decay constant from which valuable information on the macroscopic behavior of the molecules was obtained [2; 3]. On the other hand, PAC measurements at low temperature showed interaction frequency (ν Q ), asymmetry parameter (η) and the distribution of the quadrupole frequency (δ). These parameters provide a local microscopic description of the chemical environment in the neighborhood of the probe nuclei. Results showed differences in the hyperfine interactions of probe nuclei bound to the studied biomolecules. Such differences were observed by variations in the hyperfine parameters, which depended on the type of biomolecule and the results also showed that the probe nuclei bounded at the molecules in some cases and at others did not. (author)
New Nuclear Magnetic Moment of 209Bi: Resolving the Bismuth Hyperfine Puzzle
Skripnikov, Leonid V.; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F.; Scheibe, Benjamin; Shabaev, Vladimir M.; Vogel, Michael; Volotka, Andrey V.
2018-03-01
A recent measurement of the hyperfine splitting in the ground state of Li-like 80+208Bi has established a "hyperfine puzzle"—the experimental result exhibits a 7 σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017), 10.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017), 10.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μI) of 209Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μI(209ipts>) and combine it with nuclear magnetic resonance measurements of Bi (NO3 )3 in nitric acid solutions and of the hexafluoridobismuthate(V) BiF6- ion in acetonitrile. The result clearly reveals that μI(209Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.
New Nuclear Magnetic Moment of ^{209}Bi: Resolving the Bismuth Hyperfine Puzzle.
Skripnikov, Leonid V; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F; Scheibe, Benjamin; Shabaev, Vladimir M; Vogel, Michael; Volotka, Andrey V
2018-03-02
A recent measurement of the hyperfine splitting in the ground state of Li-like ^{208}Bi^{80+} has established a "hyperfine puzzle"-the experimental result exhibits a 7σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017)NCAOBW2041-172310.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017)NPAHAX1745-247310.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μ_{I}) of ^{209}Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μ_{I}(^{209}Bi) and combine it with nuclear magnetic resonance measurements of Bi(NO_{3})_{3} in nitric acid solutions and of the hexafluoridobismuthate(V) BiF_{6}^{-} ion in acetonitrile. The result clearly reveals that μ_{I}(^{209}Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.
Samokhvalov, V; Dietrich, M; Schneider, F; Tiginyanu, I M; Tsurkan, V; Unterricker, S
2003-01-01
The semiconducting ferromagnetic spinel compounds CdCr//2Se //4, CdCr //2S//4, HgCr//2Se//4 and CuCr//2Se//4 (metallic) were investigated by the perturbed angular correlations (PAC) method with the radioactive probes **1**1**1In, **1**1**1**mCd, **1**1**1Ag, **1**1**7Cd, **1**9**9**mHg and **7**7Br. The probes were implanted at the ISOLDE on-line separator (CERN-Geneva) into single crystals. From the time dependence of the PAC spectra and the measured hyperfine interaction parameters: electric field gradient and magnetic hyperfine field, the probe positions and the thermal behavior of the probes could be determined. Cd, Ag and Hg are substituted at the A-site, In at the A- and B-site in the semiconducting compounds and Br at the anion position. Electric and magnetic hyperfine fields were used as test quantities for theoretical charge and spin density distributions of LAPW calculations (WIEN97).
Vibrational Averaging of the Isotropic Hyperfine Coupling Constants for the Methyl Radical
Adam, Ahmad; Jensen, Per; Yachmenev, Andrey; Yurchenko, Sergei N.
2014-06-01
Electronic contributions to molecular properties are often considered as the major factor and usually reported in the literature without ro-vibrational corrections. However, there are many cases where the nuclear motion contributions are significant and even larger than the electronic contribution. In order to obtain accurate theoretical predictions, nuclear motion effects on molecular properties need to be taken into account. The computed isotropic hyperfine coupling constants for the nonvibrating methyl radical CH_3 are far from the experimental values. For CH_3, we have calculated the vibrational-state-dependence of the isotropic hyperfine coupling constant in the electronic ground state. The vibrational wavefunctions used in the averaging procedure were obtained variationally with the TROVE program. Analytical representations for the potential energy surfaces and the hyperfine coupling constant surfaces are obtained in least-squares fitting procedures. Thermal averaging has been carried out for molecules in thermal equilibrium, i.e., with Boltzmann-distributed populations. The calculation methods and the results will be discussed in detail.
International Nuclear Information System (INIS)
Vanstone, Jessica R; Sauchyn, David J
2010-01-01
Fluctuations in size of annual ring-widths of Quercus species suggest that environmental factors influence the size and density of vessels within the ring, either by acting as a limiting factor for growth or through fine tuning of the wood structure to environmental factors. The purpose of this study is to assess the potential of Q. macrocarpa to provide multiple dendroclimatic proxies for the Canadian Prairies, by investigating growth responses of annual, early- and latewood widths to regional climate variability. Results indicate that ring width chronologies, from southeastern Saskatchewan capture regional signals related to moisture and drought conditions. Correlations suggest that late-wood widths are more representative of annual ring-widths, than are early-wood widths, and are the best proxy of seasonal fluctuations in climate. Thus regression models that include latewood widths were able to account for more variance in the Palmer Drought Severity Index (PDSI) than when annual ring-widths are used as the only proxy. This study demonstrates that Q. macrocarpa can provide multiple dendroclimatic proxies for investigating large scale climatic fluctuations at annual and sub-annual time scales. It is novel in terms of sub-annual analysis of tree-rings in a region that previously lacked dendrochronological research.
International Nuclear Information System (INIS)
Aoki, Yuji; Namiki, Takahiro; Saha, Shanta R.; Sato, Hideyuki; Tayama, Takashi; Sakakibara, Toshiro; Shiina, Ryousuke; Shiba, Hiroyuki; Sugawara, Hitoshi
2011-01-01
The filled skutterudite PrRu 4 P 12 is known to undergo an unconventional charge order phase transition at 63 K, below which two sublattices with distinct f-electron crystalline-electric-field ground states are formed. In this paper, we study experimentally and theoretically the properties of the charge order phase at very low temperature, particularly focusing on the nature of the degenerate triplet ground state on one of the sublattices. First, we present experimental results of specific heat and magnetization measured with high quality single crystals. In spite of the absence of any symmetry breaking, the specific heat shows a peak structure at T p =0.30 K in zero field; it shifts to higher temperatures as the magnetic field is applied. In addition, the magnetization curve has a remarkable rounding below 1 T. Then, we study the origin of these experimental findings by considering the hyperfine interaction between 4f electron and nuclear spin. We demonstrate that the puzzling behaviors at low temperatures can be well accounted for by the formation of 4f-electron-nuclear hyperfine-coupled multiplets, the first thermodynamical observation of its kind. (author)
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Yasuhiko
1987-09-28
The hyperfine shifted resonances arising from all four individual haem carbons of the paramagnetic low-spin met-cyano complex of sperm whale myoglobin have been clearly identified and assigned for the first time with the aid of /sup 1/H-/sup 13/C heteronuclear chemical shift correlated spectroscopy. Alteration of the in-plane symmetry of the electronic structure of haem induced by the ligation of proximal histidyl imidazole spreads the haem carbon resonances to 32 ppm at 22/sup 0/C, indicating the sensitivity of those resonances to the haem electronic/molecular structure. Those resonances are potentially powerful probes in characterizing the nature of haem electronic structure. 25 refs.; 2 figs.; 1 table.
Hyperfine properties of La(V{sub 1−x}Fe{sub x})O{sub 3} compounds
Energy Technology Data Exchange (ETDEWEB)
Tupan, L. F. S.; Ivashita, F. F.; Barco, R. [Universidade Estadual de Maringá (Brazil); Hallouche, B. [Universidade de Santa Cruz do Sul (Brazil); Paesano, A., E-mail: paesano@wnet.com.br [Universidade Estadual de Maringá (Brazil)
2017-11-15
LaV{sub 1−x}Fe{sub x}O{sub 3} perovskites were synthesized in the vanadium-rich concentration range (i.e., x < 0.5) and characterized structurally and for the hyperfine properties of the iron nuclear probe. The aim of this investigation was to better understand the physical transformations that take place in the undoped compound (LaVO{sub 3}) at low temperatures. For that, X-ray diffraction analysis and, more extensively, {sup 57}Fe Mössbauer spectroscopy were applied. The results revealed that the LaV{sub 1}-xFexO{sub 3} vanadium-rich perovskites are orthorhombic at RT, and their lattice parameters decrease with increasing vanadium concentration. Lowering the temperature, the system becomes magnetic, with the iron moment freezing progressively. The presence of two magnetic subspectral components obtained at the lowest measurement temperatures suggests that the vanadium-rich samples, including LaVO{sub 3}, undergo a phase transition from an orthorhombic to a monoclinic structure at low temperatures.
Use of artificial neural networks on optical track width measurements
Smith, Richard J.; See, Chung W.; Somekh, Mike G.; Yacoot, Andrew
2007-08-01
We have demonstrated recently that, by using an ultrastable optical interferometer together with artificial neural networks (ANNs), track widths down to 60 nm can be measured with a 0.3 NA objective lens. We investigate the effective conditions for training ANNs. Experimental results will be used to show the characteristics of the training samples and the data format of the ANN inputs required to produce suitably trained ANNs. Results obtained with networks measuring double tracks, and classifying different structures, will be presented to illustrate the capability of the technique. We include a discussion on expansion of the application areas of the system, allowing it to be used as a general purpose instrument.
Statistical analysis of partial reduced width distributions
International Nuclear Information System (INIS)
Tran Quoc Thuong.
1973-01-01
The aim of this study was to develop rigorous methods for analysing experimental event distributions according to a law in chi 2 and to check if the number of degrees of freedom ν is compatible with the value 1 for the reduced neutron width distribution. Two statistical methods were used (the maximum-likelihood method and the method of moments); it was shown, in a few particular cases, that ν is compatible with 1. The difference between ν and 1, if it exists, should not exceed 3%. These results confirm the validity of the compound nucleus model [fr
Simple method for calculating island widths
International Nuclear Information System (INIS)
Cary, J.R.; Hanson, J.D.; Carreras, B.A.; Lynch, V.E.
1989-01-01
A simple method for calculating magnetic island widths has been developed. This method uses only information obtained from integrating along the closed field line at the island center. Thus, this method is computationally less intensive than the usual method of producing surfaces of section of sufficient detail to locate and resolve the island separatrix. This method has been implemented numerically and used to analyze the buss work islands of ATF. In this case the method proves to be accurate to at least within 30%. 7 refs
Resolving single bubble sonoluminescence flask width
Arakeri, Vijay H
1998-01-01
Single bubble sonoluminescence (SBSL), first studied and observed by Gaitan et al., is the of light emission from a single gas bubble trapped at the pressure maximum of a resonant sound field in a liquid medium, generally water. One of the most striking aspects of SBSL was the estimated optical flash width being less than 50 picoseconds (ps)3; this upper estimate was based on the relative response of a SBSL flash in comparison to a 34 ps laser pulse using a microchannel platephotomultiplier ...
Energy Technology Data Exchange (ETDEWEB)
Kisynska, K
1979-01-01
The Moessbauer technique was used to investigate the hyperfine interaction of /sup 161/Dy and /sup 151/Eu in cubic rare earth tungsten bronzes: Dysub(0.18)WO/sub 3/ and Eusub(0.18)WO/sub 3/. Well resolved hfs spectrum was obtained at 4.2 K for Dysub(0.18)WO/sub 3/. The effective hf field approximation sufficed to interpret the spectrum. The obtained hyperfine interaction parameters were: -g/sub 0/..beta..sub(N)Hsub(eff)=(805+-19) Mc/s and e/sup 2/qQ/sub 0//4 = (506+-56) Mc/s. These results imply that ground doublet of Dy/sup +3/ ion in bronze is a Kramers doublet Vertical Bar+-15/2> with asymmetrical hyperfine tensor Asub(z) non equal to 0, Asub(x) = Asub(y) = 0 and that local crystalline field at RE metal in tungsten bronze at 4.2 K cannot be cubic. From ME absorption spectra of Eusub(0.18)WO/sub 3/ taken at 4.2 K, 78 K and 300 K the values of quadrupole interaction constants for bronze lattice and its temperature dependence were obtained. These data indicate that a phase transition from the high temperature ideal perovskite structure to a distorted one occurs in RE bronzes and that the distortion concerns the nearest tungsten-oxygen environment of RE ion.
Pulse width modulation inverter with battery charger
Slicker, James M.
1985-01-01
An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.
Hyperfine interactions in 111Cd-doped lutetium sesquioxide
International Nuclear Information System (INIS)
Errico, L.A.; Renteria, M.; Bibiloni, A.G.; Requejo, F.G.
1999-01-01
We report here first Perturbed Angular Correlation (PAC) results of the electric field gradient (EFG) characterisation at 111 Cd impurities located at both non-equivalent cation sites of the bixbyite structure of Lutetium sesquioxide, between room temperature (RT) and 1273 K. The comparison with results coming from a systematic 111 Cd PAC study in bixbyites and with point-charge model (PCM) predictions shows the presence of a trapped defect at RT in the neighbourhood of the asymmetric cation site, which is completely removed at T > 623 K. The anomalous EFG temperature dependence in Lu 2 O 3 can be described in the frame of a 'two-state' model with fluctuating interactions, which enables the experimental determination of the acceptor energy level introduced by the Cd impurity in the band-gap of the semiconductor and the estimation of the oxygen vacancy density in the sample
Hyperfine interactions in {sup 111}Cd-doped lutetium sesquioxide
Energy Technology Data Exchange (ETDEWEB)
Errico, L.A.; Renteria, M.; Bibiloni, A.G.; Requejo, F.G. [Universidad Nacional de La Plata, Programa TENAES (CONICET), Departamento de Fisica, Facultad de Ciencias Exactas (Argentina)
1999-09-15
We report here first Perturbed Angular Correlation (PAC) results of the electric field gradient (EFG) characterisation at {sup 111}Cd impurities located at both non-equivalent cation sites of the bixbyite structure of Lutetium sesquioxide, between room temperature (RT) and 1273 K. The comparison with results coming from a systematic {sup 111}Cd PAC study in bixbyites and with point-charge model (PCM) predictions shows the presence of a trapped defect at RT in the neighbourhood of the asymmetric cation site, which is completely removed at T > 623 K. The anomalous EFG temperature dependence in Lu{sub 2}O{sub 3} can be described in the frame of a 'two-state' model with fluctuating interactions, which enables the experimental determination of the acceptor energy level introduced by the Cd impurity in the band-gap of the semiconductor and the estimation of the oxygen vacancy density in the sample.
Ion orbit loss and pedestal width of H-mode tokamak plasmas in limiter geometry
International Nuclear Information System (INIS)
Xiao Xiaotao; Liu Lei; Zhang Xiaodong; Wang Shaojie
2011-01-01
A simple analytical model is proposed to analyze the effects of ion orbit loss on the edge radial electric field in a tokamak with limiter configuration. The analytically predicted edge radial electric field is consistent with the H-mode experiments, including the width, the magnitude, and the well-like shape. This model provides an explanation to the H-mode pedestal structure. Scaling of the pedestal width based on this model is proposed.
Directory of Open Access Journals (Sweden)
B. Bosch-Santos
2017-05-01
Full Text Available The magnetic properties of PrMn2Ge2 compound have been investigated by perturbed γ−γ angular correlation (PAC spectroscopy using 111In(111Cd as probe nuclei as well as by magnetization measurements. This ternary intermetallic compound exhibits different magnetic structures depending on the temperature. The magnetic ordering is mainly associated with the magnetic moment of 3d-Mn sublattice but at low temperatures a magnetic contribution due to ordering of the magnetic moment from 4f-Pr sublattice appears. PAC results with 111Cd probe nuclei at Mn sites show that the temperature dependence of hyperfine field Bhf(T follows the expected behavior for the host magnetization, which could be fitted by two Brillouin functions, one for antiferromagnetic phase and the other for ferromagnetic phase, associated with the magnetic ordering of Mn ions. Magnetization measurements showed the magnetic behavior due to Mn ions highlighting the antiferromagnetic to ferromagnetic transition around 326 K and an increase in the magnetization around 36 K, which is ascribed to Pr ions ordering.
Energy Technology Data Exchange (ETDEWEB)
Sauerzopf, Clemens, E-mail: clemens.sauerzopf@oeaw.ac.at [Stefan Meyer Institute for subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Wien (Austria); Capon, Aaron A.; Diermaier, Martin; Fleck, Markus; Kolbinger, Bernadette [Stefan Meyer Institute for subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Wien (Austria); Malbrunot, Chloé [Stefan Meyer Institute for subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Wien (Austria); Organisation Européenne pour la Recherche Nucléaire (CERN), 1211 Geneva 23 (Switzerland); Massiczek, Oswald; Simon, Martin C.; Vamosi, Stefan; Zmeskal, Johann; Widmann, Eberhard [Stefan Meyer Institute for subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Wien (Austria)
2017-02-11
The matter-antimatter asymmetry observed in the universe today still lacks a quantitative explanation. One possible mechanism that could contribute to the observed imbalance is a violation of the combined Charge-, Parity- and Time symmetries (CPT). A test of CPT symmetry using anti-atoms is being carried out by the ASACUSA-CUSP collaboration at the CERN Antiproton Decelerator using a low temperature beam of antihydrogen—the most simple atomic system built only of antiparticles. While hydrogen is the most abundant element in the universe, antihydrogen is produced in very small quantities in a laboratory framework. A detector for in-beam measurements of the ground state hyperfine structure of antihydrogen has to be able to detect very low signal rates within high background. To fulfil this challenging task, a two layer barrel hodoscope detector was developed. It is built of plastic scintillators with double sided readout via Silicon Photomultipliers (SiPMs). The SiPM readout is done using novel, compact and cost efficient electronics that incorporate power supply, amplifier and discriminator on a single board. This contribution will evaluate the performance of the new hodoscope detector. - Highlights: • A novel detector for Antihydrogen was successfully commissioned. • A time of flight resolution of better than 1 ns was achieved. • Rudimentary 3D tracking is possible without bar segmentation.
International Nuclear Information System (INIS)
Sougrati, Moulay T; Hermann, Raphael P; Grandjean, Fernande; Long, Gary J; Brueck, E; Tegus, O; Trung, N T; Buschow, K H J
2008-01-01
The structural, magnetic and Moessbauer spectral properties of the magnetocaloric Mn 1.1 Fe 0.9 P 1-x Ge x compounds, with 0.19 1.1 Fe 0.9 P 0.74 Ge 0.26 . The temperature dependence of the magnetization reveals a ferromagnetic to paramagnetic transition with a Curie temperature between approximately 250 and 330 K and hysteresis width of 10 to 4 K, for 0.19 1.1 Fe 0.9 P 0.78 Ge 0.22 shows the largest isothermal entropy change of approximately 10 J/(kgKT) at 290 K. The Moessbauer spectra have been analysed with a binomial distribution of hyperfine fields correlated with a change in isomer shift and quadrupole shift, a distribution that results from the distribution of phosphorus and germanium among the near neighbours of the iron. The coexistence of paramagnetic and magnetically ordered phases in ranges of temperature of up to 50 K around the Curie temperature is observed in the Moessbauer spectra and is associated with the first-order character of the ferromagnetic to paramagnetic transition. The temperature dependence of the weighted average hyperfine field is well fitted within the magnetostrictive model of Bean and Rodbell. Good fits of the Moessbauer spectra could only be achieved by introducing a difference between the isomer shifts in the paramagnetic and ferromagnetic phases, a difference that is related to the magnetostriction and electronic structure change.
Hyperfine interaction studies of the perovskite oxides of the type RCrO3 (R = Gd, Tb e Dy)
International Nuclear Information System (INIS)
Silva, Renilson Adriano da
2009-01-01
ABO 3 perovskite oxides have ideal cubic structure, however, some distortions in this type of structure may induce changes from cubic to orthorhombic or rhombroedric symmetry. The larger atoms A are located at the center of a cube, the B atoms are on 8 vertices and oxygen atoms occupy 12 positions in the middle of each side of the cube. Distortions in this structure may lead to new magnetic and electrical properties, with great scientific and technological interest. In this work RCrO 3 (R = Gd, Tb, Dγ) compounds (also known as orthocromites) were studied. The samples were produced by means of sol-gel chemical procedure and analyzed by X-Ray Diffraction. The results showed a single phase with Pbnm space group. The perturbed gamma-gamma angular correlation (PAC) measurements were carried out using 181 Hf( 181 Ta) and 111 In( 111 Cd) nuclear probes, which substitute 'A' and 'B' positions respectively. The probe nuclei were introduced in the samples during the chemical procedures for preparation. One of the objectives of this work's was to study the hyperfine magnetic field and its variation as a function of temperature, crystallographic structure as well as the antiferromagnetic transition temperature (T N ). The PAC Measurements were carried out in the temperature range of 20 to 300 K for R = Gd, Tb and 20 to 800 K in the case of R = Dγ from. Electric field gradient was also measured as a function of temperature. It was possible to observe the expected transition as well as the alignment of Cr spins, as found in literature. The Neel temperatures (TN) for investigated samples are ∼170 K, ∼164 K and ∼148 K for GdCrO 3 , TbCrO 3 and DyCrO 3 respectively. (author)
Direct measurement of the W boson width
Energy Technology Data Exchange (ETDEWEB)
Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Aguilo, E.; /Alberta U. /Simon Fraser U. /McGill U.; Ahsan, M.; /Kansas State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, G.; /St. Petersburg, INP; Alton, A.; /Michigan U. /Northeastern U.
2009-09-01
We present a direct measurement of the width of the W boson using the shape of the transverse mass distribution of W {yields} e{nu} candidates selected in 1 fb{sup -1} of data collected with the D0 detector at the Fermilab Tevatron collider in p{bar p} collisions at {radical}s = 1.96 TeV. We use the same methods and data sample that were used for our recently published W boson mass measurement, except for the modeling of the recoil, which is done with a new method based on a recoil library. Our result, 2.028 {+-} 0.072 GeV, is in agreement with the predictions of the standard model and is the most precise direct measurement result from a single experiment to date.
Width lines of non hydrogenoid ions
International Nuclear Information System (INIS)
Bertuccelli, D.; Bertuccelli, G.; Di Rocco, H.O.
1990-01-01
An extensive theoretical and experimental work was carried out on the ns-np and np-nd line widths (w) of noble gases after ionization (n=n 0 +1, were n 0 is the principal quantum number of the fundamental configuration). A high current 'pinch' discharge was used as source. Electron density and temperature were estimated to be N e =2.65x10 16 cm -3 and T=1.45x10 4 K respectively. Calculations were based on a semi-empirical approximation and the matrix elements (or transition probabilities) were evaluated in different approximation. Comparing our measurements with those of other authors, a systematic tendency, with a dependence on atomic number Z and ionization energy of the higher level L, was established. Finally, it has been established that for N e >10 17 cm -3 , w ∝ N e γ , where γ=5/6. (Author). 8 refs., 1 fig., 1 tab
Lake Basin Fetch and Maximum Length/Width
Minnesota Department of Natural Resources — Linear features representing the Fetch, Maximum Length and Maximum Width of a lake basin. Fetch, maximum length and average width are calcuated from the lake polygon...
Kirova, T.; Cinins, A.; Efimov, D. K.; Bruvelis, M.; Miculis, K.; Bezuglov, N. N.; Auzinsh, M.; Ryabtsev, I. I.; Ekers, A.
2017-10-01
This paper is devoted to clarifying the implications of hyperfine (HF) interaction in the formation of adiabatic (i.e., "laser-dressed") states and their expression in the Autler-Townes (AT) spectra. We first use the Morris-Shore model [J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906 (1983), 10.1103/PhysRevA.27.906] to illustrate how bright and dark states are formed in a simple reference system where closely spaced energy levels are coupled to a single state with a strong laser field with the respective Rabi frequency ΩS. We then expand the simulations to realistic hyperfine level systems in Na atoms for a more general case when non-negligible HF interaction can be treated as a perturbation in the total system Hamiltonian. A numerical analysis of the adiabatic states that are formed by coupling of the 3 p3 /2 and 4 d5 /2 states by the strong laser field and probed by a weak laser field on the 3 s1 /2-3 p3 /2 transition yielded two important conclusions. Firstly, the perturbation introduced by the HF interaction leads to the observation of what we term "chameleon" states—states that change their appearance in the AT spectrum, behaving as bright states at small to moderate ΩS, and fading from the spectrum similarly to dark states when ΩS is much larger than the HF splitting of the 3 p3 /2 state. Secondly, excitation by the probe field from two different HF levels of the ground state allows one to address orthogonal sets of adiabatic states; this enables, with appropriate choice of ΩS and the involved quantum states, a selective excitation of otherwise unresolved hyperfine levels in excited electronic states.
Half-width at half-maximum, full-width at half-maximum analysis
Indian Academy of Sciences (India)
addition to the well-defined parameter full-width at half-maximum (FWHM). The distribution of ... optical side-lobes in the diffraction pattern resulting in steep central maxima [6], reduc- tion of effects of ... and broad central peak. The idea of.
International Nuclear Information System (INIS)
Roth, H.D.; Hutton, R.S.; Hwang, Kuochu; Turro, N.J.; Welsh, K.M.
1989-01-01
Nuclear spin polarization effects induced in radical pairs with one or more strong ( 13 C) hyperfine coupling constants have been evaluated. The pairs were generated by photoinduced α-cleavage or hydrogen abstraction reactions of carbonyl compounds. Several examples illustrate how changes in the magnetic field strength (H 0 ) and the g-factor difference (Δg) affect the general appearance of the resulting CIDNP multiplets. The results bear out an earlier caveat concerning the qualitative interpretation of CIDNP effects observed for multiplets
Ab Initio Calculation of Hyperfine Interaction Parameters: Recent Evolutions, Recent Examples
International Nuclear Information System (INIS)
Cottenier, Stefaan; Vanhoof, Veerle; Torumba, Doru; Bellini, Valerio; Cakmak, Mehmet; Rots, Michel
2004-01-01
For some years already, ab initio calculations based on Density Functional Theory (DFT) belong to the toolbox of the field of hyperfine interaction studies. In this paper, the standard ab initio approach is schematically sketched. New features, methods and possibilities that broke through during the past few years are listed, and their relation to the standard approach is explained. All this is illustrated by some highlights of recent ab initio work done by the Nuclear Condensed Matter Group at the K.U.Leuven.
Hyperfine electric parameters calculation in Si samples irradiated with 57Mn
International Nuclear Information System (INIS)
Abreu, Y.; Cruz, C. M.; Pinnera, I.; Leyva, A.; Van Espen, P.; Perez, C.
2011-01-01
The radiation damage created in silicon crystalline material by 57 Mn→ 57 Fe ion implantation was characterized by Moessbauer spectroscopy showing three main lines, assigned to: substitutional, interstitial and a damage configuration sites of the implanted ions. The hyperfine electric parameters, Quadrupole Splitting and Isomer Shift, were calculated for various implantation environments. In the calculations the full potential linearized-augmented plane-wave plus local orbitals (L/APW+lo) method as embodied in the WIEN2k code was used. Good agreement was found between the experimental and the calculated values for some implantation configurations; suggesting that the implantation environments could be similar to the ones proposed by the authors. (Author)
Negative muon spin precession measurement of the hyperfine states of muonic sodium
International Nuclear Information System (INIS)
Brewer, J.H.; Ghandi, K.; Froese, A.M.; Fryer, B.A.
2005-01-01
Both hyperfine states of muonic 23 Na and the rate R of conversion between them have been observed directly in a high field negative muon spin precession experiment using a backward muon beam with transverse spin polarization. The result in metallic sodium, R=13.7±2.2 μs -1 , is consistent with Winston's prediction in 1963 based on Auger emission of core electrons, and with the measurements of Gorringe et al. in Na metal, but not with their smaller result in NaF. In NaOH we find R=23.5±8 μs -1 , leaving medium-dependent effects ambiguous
Forward two-photon exchange in elastic lepton-proton scattering and hyperfine-splitting correction
Energy Technology Data Exchange (ETDEWEB)
Tomalak, Oleksandr [Johannes Gutenberg Universitaet, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)
2017-08-15
We relate the forward two-photon exchange (TPE) amplitudes to integrals of the inclusive lepton-proton scattering cross sections. These relations yield an alternative way for the evaluation of the TPE correction to hyperfine-splitting (HFS) in the hydrogen-like atoms with an equivalent to the standard approach (Iddings, Drell and Sullivan) result implying the Burkhardt-Cottingham sum rule. For evaluation of the individual effects (e.g., elastic contribution) our approach yields a distinct result. We compare both methods numerically on examples of the elastic contribution and the full TPE correction to HFS in electronic and muonic hydrogen. (orig.)
Isotope shifts and hyperfine splittings in 144-154Sm I
International Nuclear Information System (INIS)
England, J.G.; Grant, I.S.; Newton, G.W.A.; Walker, P.M.
1990-01-01
The isotope shifts and hyperfine splittings have been measured in 144-154 Sm I using the crossed-beam laser fluorescence method. Transitions at 598.98 nm and 570.68 nm were investigated for all isotopes except 146 Sm and 153 Sm, in which measurements were only obtained at 570.68 nm. Laser-induced fluorescence has not previously been reported for 145 Sm. The magnetic dipole and electric quadrupole moments of the odd isotopes and the changes in mean square radii of the even ones are shown to be consistent with the information obtained from nuclear spectroscopy. (author)
International Nuclear Information System (INIS)
Oshtrakh, M. I.; Novikov, E. G.; Dubiel, S. M.; Semionkin, V. A.
2010-01-01
Several commercially available medicaments containing ferrous fumarate (FeC 4 H 2 O 4 ) and ferrous sulfate (FeSO 4 ), as a source of ferrous iron, were studied using a high velocity resolution Mössbauer spectroscopy. A comparison of the 57 Fe hyperfine parameters revealed small variations for the main components in both medicaments indicating some differences in the ferrous fumarates and ferrous sulfates. It was also found that all spectra contained additional minor components probably related to ferrous and ferric impurities or to partially modified main components.
Energy Technology Data Exchange (ETDEWEB)
Oshtrakh, M. I., E-mail: oshtrakh@mail.utnet.ru; Novikov, E. G. [Ural Federal University (The former Ural State Technical University-UPI), Faculty of Physical Techniques and Devices for Quality Control (Russian Federation); Dubiel, S. M. [AGH University of Science and Technology, Faculty of Physics and Computer Science (Poland); Semionkin, V. A. [Ural Federal University (The former Ural State Technical University-UPI), Faculty of Physical Techniques and Devices for Quality Control (Russian Federation)
2010-04-15
Several commercially available medicaments containing ferrous fumarate (FeC{sub 4}H{sub 2}O{sub 4}) and ferrous sulfate (FeSO{sub 4}), as a source of ferrous iron, were studied using a high velocity resolution Moessbauer spectroscopy. A comparison of the {sup 57}Fe hyperfine parameters revealed small variations for the main components in both medicaments indicating some differences in the ferrous fumarates and ferrous sulfates. It was also found that all spectra contained additional minor components probably related to ferrous and ferric impurities or to partially modified main components.
Hyperfine splitting in positronium measured through quantum beats in the 3γ decay
International Nuclear Information System (INIS)
Fan, S.; Beling, C.D.; Fung, S.
1996-01-01
Quantum beat oscillations in the 3γ decay of the positronium atom arising from interference between the different spin states have been observed using a simple β-start and γ-stop detection system. Measurements of the beat frequency at different magnetic fields have yielded a value of the 1 1 S 0 -1 3 S 1 hyperfine interaction of 202.5±3.5 GHz, in good agreement with previous measurements. This novel approach does not require high magnetic fields and the use of microwave radiation to quench the triplet substate of the positronium atom. (orig.)
Solvent polarity effects on hyperfine couplings of cyclohexadienyl-type radicals
International Nuclear Information System (INIS)
Vujosevic', D.; Scheuermann, R.; Dilger, H.; Tucker, I.M.; Martyniak, A.; McKenzie, I.; Roduner, E.
2006-01-01
In this study muon-spin rotation (μSR) serves as a tool for sensitive monitoring of the environment of muoniated radicals in isotropic liquids. A systematic investigation of the behaviour of the hyperfine coupling constants of cyclohexadienyl-type radicals is performed, and it is found that they are in linear dependence on solvent polarity, with certain deviations. These deviations are discussed in detail. It is found that with increasing length of the hydroxyalkyl substituent group the perturbation of the phenyl ring becomes smaller
Solvent polarity effects on hyperfine couplings of cyclohexadienyl-type radicals
Energy Technology Data Exchange (ETDEWEB)
Vujosevic' , D. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Scheuermann, R. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Dilger, H. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Tucker, I.M. [Unilever Research and Development, Port Sunlight, Wirral CH63 3JW (United Kingdom); Martyniak, A. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); McKenzie, I. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany); Roduner, E. [Institut fuer Physikalische Chemie, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart (Germany)]. E-mail: e.rodunder@ipc.uni-stuttgart.de
2006-03-31
In this study muon-spin rotation ({mu}SR) serves as a tool for sensitive monitoring of the environment of muoniated radicals in isotropic liquids. A systematic investigation of the behaviour of the hyperfine coupling constants of cyclohexadienyl-type radicals is performed, and it is found that they are in linear dependence on solvent polarity, with certain deviations. These deviations are discussed in detail. It is found that with increasing length of the hydroxyalkyl substituent group the perturbation of the phenyl ring becomes smaller.
Characterizing graphs of maximum matching width at most 2
DEFF Research Database (Denmark)
Jeong, Jisu; Ok, Seongmin; Suh, Geewon
2017-01-01
The maximum matching width is a width-parameter that is de ned on a branch-decomposition over the vertex set of a graph. The size of a maximum matching in the bipartite graph is used as a cut-function. In this paper, we characterize the graphs of maximum matching width at most 2 using the minor o...
Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width.
De Sa, Christopher; Zhang, Ce; Olukotun, Kunle; Ré, Christopher
2015-12-01
Gibbs sampling on factor graphs is a widely used inference technique, which often produces good empirical results. Theoretical guarantees for its performance are weak: even for tree structured graphs, the mixing time of Gibbs may be exponential in the number of variables. To help understand the behavior of Gibbs sampling, we introduce a new (hyper)graph property, called hierarchy width . We show that under suitable conditions on the weights, bounded hierarchy width ensures polynomial mixing time. Our study of hierarchy width is in part motivated by a class of factor graph templates, hierarchical templates , which have bounded hierarchy width-regardless of the data used to instantiate them. We demonstrate a rich application from natural language processing in which Gibbs sampling provably mixes rapidly and achieves accuracy that exceeds human volunteers.
Directory of Open Access Journals (Sweden)
S. S. Ghosh
2004-01-01
Full Text Available The presence of dynamic, large amplitude solitary waves in the auroral regions of space is well known. Since their velocities are of the order of the ion acoustic speed, they may well be considered as being generated from the nonlinear evolution of ion acoustic waves. However, they do not show the expected width-amplitude correlation for K-dV solitons. Recent POLAR observations have actually revealed that the low altitude rarefactive ion acoustic solitary waves are associated with an increase in the width with increasing amplitude. This indicates that a weakly nonlinear theory is not appropriate to describe the solitary structures in the auroral regions. In the present work, a fully nonlinear analysis based on Sagdeev pseudopotential technique has been adopted for both parallel and oblique propagation of rarefactive solitary waves in a two electron temperature multi-ion plasma. The large amplitude solutions have consistently shown an increase in the width with increasing amplitude. The width-amplitude variation profile of obliquely propagating rarefactive solitary waves in a magnetized plasma have been compared with the recent POLAR observations. The width-amplitude variation pattern is found to fit well with the analytical results. It indicates that a fully nonlinear theory of ion acoustic solitary waves may well explain the observed anomalous width variations of large amplitude structures in the auroral region.
Characterization of the hyperfine interaction of the excited D50 state of Eu3 +:Y2SiO5
Cruzeiro, Emmanuel Zambrini; Etesse, Jean; Tiranov, Alexey; Bourdel, Pierre-Antoine; Fröwis, Florian; Goldner, Philippe; Gisin, Nicolas; Afzelius, Mikael
2018-03-01
We characterize the europium (Eu3 +) hyperfine interaction of the excited state (D50) and determine its effective spin Hamiltonian parameters for the Zeeman and quadrupole tensors. An optical free induction decay method is used to measure all hyperfine splittings under a weak external magnetic field (up to 10 mT) for various field orientations. On the basis of the determined Hamiltonian, we discuss the possibility to predict optical transition probabilities between hyperfine levels for the F70⟷D50 transition. The obtained results provide necessary information to realize an optical quantum memory scheme which utilizes long spin coherence properties of 3 + 151Eu :Y2SiO5 material under external magnetic fields.
Fallahi, P; Yilmaz, S T; Imamoğlu, A
2010-12-17
We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.
Chen, Jia; An, Chunsheng; Chen, Hong
2018-02-01
We investigate mixing of the lowest-lying qqq configurations with JP = 1/2- caused by the hyperfine interactions between quarks mediated by Goldstone Boson Exchange, One Gluon Exchange, and both Goldstone Boson and One Gluon exchange, respectively. The first orbitally excited nucleon, Σ, Λ and Ξ states are considered. Contributions of both the contact term and tensor term are taken into account. Our numerical results show that mixing of the studied configurations in the two employed hyperfine interaction models are very different. Therefore, the present results, which should affect the strong and electromagnetic decays of baryon resonances, may be used to examine the present employed hyperfine interaction models. Supported by National Natural Science Foundation of China (11675131,11645002), Chongqing Natural Science Foundation (cstc2015jcyjA00032) and Fundamental Research Funds for the Central Universities (SWU115020)
International Nuclear Information System (INIS)
Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.
2012-01-01
Analytical expressions for the shape and width of the lasing spectra of a quantum-dot (QD) laser in the case of a small (in comparison with the spectrum width) homogeneous broadening of the QD energy levels have been obtained. It is shown that the dependence of the lasing spectrum width on the output power at room temperature is determined by two dimensionless parameters: the width of QD distribution over the optical-transition energy, normalized to temperature, and the ratio of the optical loss to the maximum gain. The optimal dimensions of the laser active region have been found to obtain a specified width of the emission spectrum at a minimum pump current. The possibility of using multilayer structures with QDs to increase the lasing spectrum’s width has been analyzed. It is shown that the use of several arrays of QDs with deliberately variable optical-transition energies leads to broadening of the lasing spectra; some numerical estimates are presented.
Global synchronization of parallel processors using clock pulse width modulation
Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.
2013-04-02
A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.
Beam-width spreading of vortex beams in free space
Wang, Weiwei; Li, Jinhong; Duan, Meiling
2018-01-01
Based on the extended Huygens-Fresnel principle and the definition of second-order moments of the Wigner distribution function, the analytical expression for the beam-width spreading of Gaussian Schell-model (GSM) vortex beams in free space are derived, and used to study the influence of beam parameters on the beam-width spreading of GSM vortex beams. With the increment of the propagation distance, the beam-width spreading of GSM vortex beams will increase; the bigger the topological charge, spatial correlation length, wavelength and waist width are, the smaller the beam-width spreading is.
Narrow-width mechanism of a=5 Ξ-state
International Nuclear Information System (INIS)
Kumagai-Fuse, I.; Akaishi, Y.
1995-04-01
Narrow-width mechanism of ≡ 5 H is discussed by calculating conversion widths to all its possible decay channels. Since the conversion processes have small reaction Q values, the three- and four- body decays are strongly suppressed owing to small phase volumes available. Decay widths to the two-body channels are significantly reduced by the distortion of emitted-particle waves. This mechanism brings about a narrow width of ≡ 5 H. The total width is estimated to be 0.87 MeV, in which the largest contribution comes from the decay into the Λ 4 H * +Λ channel. (author)
Hyperfine interactions and some thermomagnetic properties of amorphous FeZr(CrNbBCu alloys
Directory of Open Access Journals (Sweden)
Łukiewska Agnieszka
2017-06-01
Full Text Available In this research, we studied the magnetic phase transition by Mössbauer spectroscopy and using vibrating sample magnetometer for amorphous Fe86-xZr7CrxNb2Cu1B4 (x = 0 or 6 alloys in the as-quenched state and after accumulative annealing in the temperature range 600-750 K. The Mössbauer investigations were carried out at room and nitrogen temperatures. The Mössbauer spectra of the investigated alloys at room temperature are characteristic of amorphous paramagnets and have a form of asymmetric doublets. However, at nitrogen temperature, the alloys behave like ferromagnetic amorphous materials. The two components are distinguished in the spectrum recorded at both room and nitrogen temperatures. The low field component in the distribution of hyperfine field induction shifts towards higher field with the annealing temperature. It is assumed that during annealing at higher temperature, due to diffusion processes, the grains of α-Fe are created in the area corresponding to this component. Both investigated alloys show the invar effect and the decrease of hyperfine field induction after annealing at 600 K for 10 min is observed. It is accompanied by the lowering of Curie temperature.
Electron plasmas as a diagnostic tool for hyperfine spectroscopy of antihydrogen
Energy Technology Data Exchange (ETDEWEB)
Friesen, T.; Thompson, R. I. [Department of Physics and Astronomy, University of Calgary, Calgary AB, T2N 1N4 (Canada); Amole, C.; Capra, A.; Menary, S. [Department of Physics and Astronomy, York University, Toronto ON, M3J 1P3 (Canada); Ashkezari, M. D.; Hayden, M. E. [Department of Physics, Simon Fraser University, Burnaby BC, V5A 1S6 (Canada); Baquero-Ruiz, M.; Fajans, J.; Little, A.; So, C.; Wurtele, J. S. [Department of Physics, University of California, Berkeley, CA 94720-7300 (United States); Bertsche, W. [School of Physics and Astronomy, University of Manchester, M13 9PL Manchester, UK and The Cockcroft Institute, WA4 4AD Warrington (United Kingdom); Bowe, P. D.; Hangst, J. S.; Rasmussen, C. O. [Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Butler, E. [Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Cesar, C. L.; Silveira, D. M. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-972 (Brazil); Charlton, M. [Department of Physics, College of Science, Swansea University, Swansea SA2 8PP (United Kingdom); and others
2013-03-19
Long term magnetic confinement of antihydrogen atoms has recently been demonstrated by the ALPHA collaboration at CERN, opening the door to a range of experimental possibilities. Of particular interest is a measurement of the antihydrogen spectrum. A precise comparison of the spectrum of antihydrogen with that of hydrogen would be an excellent test of CPT symmetry. One prime candidate for precision CPT tests is the ground-state hyperfine transition; measured in hydrogen to a precision of nearly one part in 10{sup 12}. Effective execution of such an experiment with trapped antihydrogen requires precise knowledge of the magnetic environment. Here we present a solution that uses an electron plasma confined in the antihydrogen trapping region. The cyclotron resonance of the electron plasma is probed with microwaves at the cyclotron frequency and the subsequent heating of the electron plasma is measured through the plasma quadrupole mode frequency. Using this method, the minimum magnetic field of the neutral trap can be determined to within 4 parts in 10{sup 4}. This technique was used extensively in the recent demonstration of resonant interaction with the hyperfine levels of trapped antihydrogen atoms.
Theory of long-range interactions for Rydberg states attached to hyperfine-split cores
Robicheaux, F.; Booth, D. W.; Saffman, M.
2018-02-01
The theory is developed for one- and two-atom interactions when the atom has a Rydberg electron attached to a hyperfine-split core state. This situation is relevant for some of the rare-earth and alkaline-earth atoms that have been proposed for experiments on Rydberg-Rydberg interactions. For the rare-earth atoms, the core electrons can have a very substantial total angular momentum J and a nonzero nuclear spin I . In the alkaline-earth atoms there is a single (s ) core electron whose spin can couple to a nonzero nuclear spin for odd isotopes. The resulting hyperfine splitting of the core state can lead to substantial mixing between the Rydberg series attached to different thresholds. Compared to the unperturbed Rydberg series of the alkali-metal atoms, the series perturbations and near degeneracies from the different parity states could lead to qualitatively different behavior for single-atom Rydberg properties (polarizability, Zeeman mixing and splitting, etc.) as well as Rydberg-Rydberg interactions (C5 and C6 matrices).
Study of hyperfine interactions in V2O3 by angular correlation
International Nuclear Information System (INIS)
Jesus Silva, P.R. de.
1985-01-01
The hyperfine interaction in v 2 O 3 in function of temperature by measurements of time differential perturbed angular correlation is studied. The samples presented quadrupole interaction in the probe center, Cd 111 immediatelly after sintering, when reduced in H 2 flux at 800 0 C. A pure electric quadrupole interaction at the metallic phase and a combined interaction of magnetic dipole and electric quadrupole at the insulating antiferromagnetic phase, were observed. The electric field gradient undergoes abrupt variation at the metal-insulating transition at T=160 0 K from 8.2x10 17 v/cm 2 at the insulating phase to 6.3x10 17 v/cm 2 in the metallic phase, however varies smoothly with the temperature at T=450 0 K when variations in resistivity also occur. At metallic phase the electric field increases with the temperature enhacement. The hyperfine magnetic field of Cd 111 at antiferromagnetic phase of V 2 O 3 has a saturation value of 15(1) KOe and performes an angle of β=68(2) 0 with the main component direction of electric field gradient. (M.C.K.) [pt
Hyperfine interactions in ferromagnetic materials and magnetic properties of 1fsub(7/2) nuclei
International Nuclear Information System (INIS)
Bozek, E.
1976-01-01
Hyperfine interactions of light nuclei recoil-implanted into iron, nickel and cobalt were studied using the perturbed integral angular distribution IMPAD. Isomeric states of lifetimes within the nanosecond range were excited in the following reactions: 28 Si 14 N, xn, yp 37 Ar, 39 K, 40 K; 27 Al 16 O, xn, yp 41 K, 41 Ca. In all cases except implantation of potassium isotopes into nickel observed shifts of angular distribution were found much smaller than the ones calculated using the known values of g factors, livetimes and strengths of the hyperfine fields. This effect can be explained under the assumption that only a fraction of nuclei feel the full magnetic field. Different fractions obtained for 40 K and 41 K suggest a migration process on a ns time scale. The magnetic moments of isomeric nuclear states excited in reaction 27 Al 14 N, p 36 Cl, 24 Mg 19 F, 2pn 40 K and 48 Ca, 2n 50 Ti were measured using the perturbed integral angular distribution technique - IPAD in an external magnetic field. The g factors for the investigated states were interpreted on the base of the shell model, assuming the effective magnetic moments associated with shell model orbitals dsub(3/2) and fsub(7/2). (author)
Dodin, Dmitry V; Ivanov, Anatoly I; Burshtein, Anatoly I
2013-03-28
The magnetic field effect on the fluorescence of the photoexcited electron acceptor, (1)A∗, and the exciplex, (1)[D(+δ)A(-δ)] formed at contact of (1)A∗ with an electron donor (1)D, is theoretically explored in the framework of Integral Encounter Theory. It is assumed that the excited fluorophore is equilibrated with the exciplex that reversibly dissociates into the radical-ion pair. The magnetic field sensitive stage is the spin conversion in the resulting geminate radical-ion pair, (1, 3)[D(+)...A(-)] that proceeds due to hyperfine interaction. We confirm our earlier conclusion (obtained with a rate description of spin conversion) that in the model with a single nucleus spin 1/2 the magnitude of the Magnetic Field Effect (MFE) also vanishes in the opposite limits of low and high dielectric permittivity of the solvent. Moreover, it is shown that MFE being positive at small hyperfine interaction A, first increases with A but approaching the maximum starts to decrease and even changes the sign.
Orbital hyperfine interaction and qubit dephasing in carbon nanotube quantum dots
Palyi, Andras; Csiszar, Gabor
2015-03-01
Hyperfine interaction (HF) is of key importance for the functionality of solid-state quantum information processing, as it affects qubit coherence and enables nuclear-spin quantum memories. In this work, we complete the theory of the basic hyperfine interaction mechanisms (Fermi contact, dipolar, orbital) in carbon nanotube quantum dots by providing a theoretical description of the orbital HF. We find that orbital HF induces an interaction between the nuclear spins of the nanotube lattice and the valley degree of freedom of the electrons confined in the quantum dot. We show that the resulting nuclear-spin-electron-valley interaction (i) is approximately of Ising type, (ii) is essentially local, in the sense that an effective atomic interaction strength can be defined, and (iii) has a strength that is comparable to the combined strength of Fermi contact and dipolar interactions. We argue that orbital HF provides a new decoherence mechanism for single-electron valley qubits and spin-valley qubits in a range of multi-valley materials. We explicitly evaluate the corresponding inhomogeneous dephasing time T2* for a nanotube-based valley qubit. We acknowledge funding from the EU Marie Curie CIG-293834, OTKA Grant PD 100373, and EU ERC Starting Grant CooPairEnt 258789. AP is supported by the Janos Bolyai Scholarship of the Hungarian Academy of Sciences.
Very low temperature studies of hyperfine effects in metals. [Progress report
International Nuclear Information System (INIS)
Weyhmann, W.
1985-01-01
We are using nuclei through the hyperfine coupling as a probe of magnetic interactions in metallic systems, emphasizing the role conduction electrons play. Three types of systems are of interest to us: nuclear singlet ground state intermetallic compounds, very dilute magnetic impurities in non-magnetic metals, and itinerant ferromagnets. The nuclear ordering in singlet ground state alloys of praseodymium appears to be analogous to electronic ordering in rare earth metals, with the RKKY interaction moderating the indirect exchange in both cases. We are measuring the static and dynamic properties of these materials both to study rare earth ordering, since only first order effects should play a role in the nuclear case, and to develop the sub-millikelvin refrigeration capabilities of these materials. Using this cooling power, we propose studying the local moment of Mn based Kondo systems at millikelvin and sub-millikelvin temperatures. Kondo systems with a Kondo temperature below 0.1 K have the advantage that magnetic saturation can be achieved with available magnets. We propose studying both the local magnetization as measured with nuclear orientation and the macroscopic magnetization measured with SQUID magnetometry. We also propose searching for electron polarization effects in itinerant ferromagnets using nuclear orientation. Induced hyperfine fields of less than 1 k0e can be detected at 1 mK
International Nuclear Information System (INIS)
Fries, S.M.; Crummenauer, J.; Wagner, H.-G.; Gonser, U.; Chien, C.L.
1986-01-01
Conventional 57 Fe-Moessbauer spectroscopy provides only information about the magnitude of the splitting QS in the case of electric quadrupole hyperfine interaction, but not on the sign of the main component of the electric field gradient (EFG) or the asymmetry parameter which are sensitive to the local environment of the 57 Fe nuclei. This kind of information is obtained by measurements in external magnetic fields. In the case of amorphous Fe-Zr sputtered films mixed hyperfine interaction leads to a clear change in the behaviour of the Zr-rich and the Fe-rich alloys, indicating the existence of magnetic clusters in the Fe-rich samples. (Auth.)
International Nuclear Information System (INIS)
Ramos, S.M.M.
1985-01-01
The magnetic hyperfine fields in the Heusler alloys Rh 2 Mn .98 Ge Sn 02 , Rh 2 Mn Ge .98 Sn .02 , Rh 2 Mn Pb .98 Sn .02 and Rh 2 Mn Sn has been studied by 119 Sn Moessbauer spectroscopy at 293 K, 77 K, 4.2 K and 293 K with applied external magnetic field. The results show that when one compare the magnetic hyperfine fields systematic with the Heusler alloys X 2 Mn Z (X = Co, Ni, Cu, Pd, and Z = s p metal), this systematic is similar to the Co alloys, although can not explained by the currents models for the Heusler alloys. (author)
International Nuclear Information System (INIS)
Orre, B.; Norlin, L.O.; Johansson, K.; Falk, F.; Thun, J.E.
1975-11-01
The α-γ angular correlation method has been applied to 226 Ra and 224 Ra decay with emphasis on source and backing preparations. A simple method to prepare sources suitable for hyperfine interaction studies has been developed, namely to implant the 224 Ra activity into the backing by recoil implantation in vacuum from a 228 Th source. A high voltage should be applied, which considerably improved the profile of the implantation. The hyperfine interactions in Fe,Co,Gd,Ni were measured and analysed according to a random static quadrupole interaction combined with an aligned magnetic interaction. (Auth.)
GAP WIDTH STUDY IN LASER BUTT-WELDING
DEFF Research Database (Denmark)
Gong, Hui; Olsen, Flemming Ove
power : 2 and 2.6 kW and the focal point position : 0 and -1.2 mm. Quality of all the butt welds are destructively tested according to ISO 13919-1.Influences of the variable process parameters to the maximum allowable gap width are observed as (1) the maximum gap width is inversely related......In this paper the maximum allowable gap width in laser butt-welding is intensively studied. The gap width study (GWS) is performed on the material of SST of W1.4401 (AISI 316) under various welding conditions, which are the gap width : 0.00-0.50 mm, the welding speed : 0.5-2.0 m/min, the laser...... to the welding speed, (2) the larger laser power leads to the bigger maximum allowable gap width and (3) the focal point position has very little influence on the maximum gap width....
Energy Technology Data Exchange (ETDEWEB)
Oba, Yuki; Kawatsu, Tsutomu; Tachikawa, Masanori, E-mail: tachi@yokohama-cu.ac.jp [Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan)
2016-08-14
The on-the-fly ab initio density functional path integral molecular dynamics (PIMD) simulations, which can account for both the nuclear quantum effect and thermal effect, were carried out to evaluate the structures and “reduced” isotropic hyperfine coupling constants (HFCCs) for muoniated and hydrogenated acetone radicals (2-muoxy-2-propyl and 2-hydoxy-2-propyl) in vacuo. The reduced HFCC value from a simple geometry optimization calculation without both the nuclear quantum effect and thermal effect is −8.18 MHz, and that by standard ab initio molecular dynamics simulation with only the thermal effect and without the nuclear quantum effect is 0.33 MHz at 300 K, where these two methods cannot distinguish the difference between muoniated and hydrogenated acetone radicals. In contrast, the reduced HFCC value of the muoniated acetone radical by our PIMD simulation is 32.1 MHz, which is about 8 times larger than that for the hydrogenated radical of 3.97 MHz with the same level of calculation. We have found that the HFCC values are highly correlated with the local molecular structures; especially, the Mu—O bond length in the muoniated acetone radical is elongated due to the large nuclear quantum effect of the muon, which makes the expectation value of the HFCC larger. Although our PIMD result calculated in vacuo is about 4 times larger than the measured experimental value in aqueous solvent, the ratio of these HFCC values between muoniated and hydrogenated acetone radicals in vacuo is in reasonable agreement with the ratio of the experimental values in aqueous solvent (8.56 MHz and 0.9 MHz); the explicit presence of solvent molecules has a major effect on decreasing the reduced muon HFCC of in vacuo calculations for the quantitative reproduction.
International Nuclear Information System (INIS)
Oba, Yuki; Kawatsu, Tsutomu; Tachikawa, Masanori
2016-01-01
The on-the-fly ab initio density functional path integral molecular dynamics (PIMD) simulations, which can account for both the nuclear quantum effect and thermal effect, were carried out to evaluate the structures and “reduced” isotropic hyperfine coupling constants (HFCCs) for muoniated and hydrogenated acetone radicals (2-muoxy-2-propyl and 2-hydoxy-2-propyl) in vacuo. The reduced HFCC value from a simple geometry optimization calculation without both the nuclear quantum effect and thermal effect is −8.18 MHz, and that by standard ab initio molecular dynamics simulation with only the thermal effect and without the nuclear quantum effect is 0.33 MHz at 300 K, where these two methods cannot distinguish the difference between muoniated and hydrogenated acetone radicals. In contrast, the reduced HFCC value of the muoniated acetone radical by our PIMD simulation is 32.1 MHz, which is about 8 times larger than that for the hydrogenated radical of 3.97 MHz with the same level of calculation. We have found that the HFCC values are highly correlated with the local molecular structures; especially, the Mu—O bond length in the muoniated acetone radical is elongated due to the large nuclear quantum effect of the muon, which makes the expectation value of the HFCC larger. Although our PIMD result calculated in vacuo is about 4 times larger than the measured experimental value in aqueous solvent, the ratio of these HFCC values between muoniated and hydrogenated acetone radicals in vacuo is in reasonable agreement with the ratio of the experimental values in aqueous solvent (8.56 MHz and 0.9 MHz); the explicit presence of solvent molecules has a major effect on decreasing the reduced muon HFCC of in vacuo calculations for the quantitative reproduction.
Energy Technology Data Exchange (ETDEWEB)
Peset, Clara; Pineda, Antonio [Grup de Física Teòrica, Dept. Física and IFAE-BIST, Universitat Autònoma de Barcelona,E-08193 Bellaterra (Barcelona) (Spain)
2017-04-11
We obtain a model-independent prediction for the two-photon exchange contribution to the hyperfine splitting in muonic hydrogen. We use the relation of the Wilson coefficients of the spin-dependent dimension-six four-fermion operator of NRQED applied to the electron-proton and to the muon-proton sectors. Their difference can be reliably computed using chiral perturbation theory, whereas the Wilson coefficient of the electron-proton sector can be determined from the hyperfine splitting in hydrogen. This allows us to give a precise model-independent determination of the Wilson coefficient for the muon-proton sector, and consequently of the two-photon exchange contribution to the hyperfine splitting in muonic hydrogen, which reads δĒ{sub pμ,HF}{sup TPE}(nS)=−(1/(n{sup 3}))1.161(20) meV. Together with the associated QED analysis, we obtain a prediction for the hyperfine splitting in muonic hydrogen that reads E{sub pμ,HF}{sup th}(1S)=182.623(27) meV and E{sub pμ,HF}{sup th}(2S)=22.8123(33) meV. The error is dominated by the two-photon exchange contribution.
Hyperfine structure investigations of Pr-I lines in the region 4200-4450 A
Energy Technology Data Exchange (ETDEWEB)
Siddiqui, Imran; Khan, Shamim; Tanweer Iqbal, Syed; Windholz, Laurentius [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, A 8010 Graz (Austria)
2012-07-01
Praseodymium I spectral lines were investigated using laser induced fluorescence spectroscopy in a hollow cathode discharge lamp. The investigations led to the discovery of new Pr I energy levels of even and odd parity. A high resolution Fourier transform (FT) spectrum was used to extract promising excitation wavelengths. In the FT spectrum the investigated line 4375.53 A shows up as a narrow peak hfs with a weak SNR. Nevertheless, the line was excited and fluorescence signals were observed on 6 lines (4163 A, 4816 A, 5091 A, 5164 A, 5209 A, 5233 A). The hfs of the line was recorded by scanning the laser frequency and was fitted to obtain angular momentum J and hf constant A of the combining levels. We got J{sub up}=5/2, A{sub up}=1028.30 MHz, J{sub lo}=7/2 and A{sub lo}=861.46 MHz (the subscripts refer to upper and lower level). Assuming an unknown upper level, a known lower level was searched among the known levels having sufficient values of J and A. The level 7617.440 cm{sup -1}, even parity, J{sub lo}=7/2 and A{sub lo}=868 MHz fulfils these requirements. Using the center of gravity wave number of the line 4375.53 A and the energy of the lower level, the unknown upper level was calculated to have 30465.424 cm{sup -1}, odd parity, J{sub up}=5/2 and A{sub up}=1033(6) MHz.
The contribution of pseudoscalar and axial-vector mesons to hyperfine structure of muonic hydrogen
Dorokhov, A. E.; Kochelev, N. I.; Martynenko, A. P.; Martynenko, F. A.; Radzhabov, A. E.; Faustov, R. N.
2017-01-01
In the framework of the quasipotential method in quantum electrodynamics we calculate the contribution of light pseudoscalar (PS) and axial-vector (AV) mesons to the interaction operator of a muon and a proton in muonic hydrogen atom. The coupling of mesons with the muon is via two-photon intermediate state. The parametrization of the transition form factor of two photons into PS and AV mesons, based on the experimental data on the transition form factors and QCD asymptotics, is used. Numeric...
Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment
DEFF Research Database (Denmark)
Riis, E.; Sinclair, A. G.; Poulsen, Ove
1994-01-01
. The accuracy of 11 parts per million is the best two-electron Lamb shift measurement in the literature, and is comparable to the accuracies achieved in hydrogen. Theoretical contributions to the two-electron Lamb shift are discussed, including terms of order (alpha Z)(4) recently obtained by Chen, Cheng...
[Hyperfine structure and isotope shift measurements of short lived elements by laser spectroscopy
International Nuclear Information System (INIS)
Schuessler, H.A.
1986-01-01
The aim of this research is to determine nuclear moments and charge distributions of short-lived isotopes produced both on-line and off-line to a nuclear facility. These measurements give detailed information on the nuclear force and are used to test current nuclear models. The small amounts of nuclei which can be produced off stability constitute the challenge in these experiments. Presently mainly neutron-rich isotopes are being studied by three ultrasensitive high-resolution laser techniques. These are collinear fast ion-beam laser spectroscopy, stored-ion laser spectroscopy and fluorescence spectroscopy. 5 figs
Measurement of the hyperfine structure of the ground state of muonic helium(3)
International Nuclear Information System (INIS)
Arnold, K.P.
1984-01-01
Polarization measurements by the muon spin rotation method yielded the detection that in the formation of 3 Heμ - e - the hfs states are occupied differently. In pure helium(3) a residual polarization of 2.6(4)% of the ( 3 Heμ - ) + ion was found. At an admixture of 2% xenon the neutral 3 Heμ - e - atom is formed with a polarization of 1.8(4)%. The hfs measurements were performed by means of the high-frequency spectroscopy. By inducing of Δmsub(F)=+-1 transitions the muon polarization is changed. This effects a change of the asymmetric electron distribution which arises by the parity-violating muon decay and can be detected by plastic scintillators. The measurements were performed at a highly pure gas target of 19.90 bar helium(3) to which 1.6% Xe were admixed, at 20 0 C and in a magnetic zero field. The pressure shift for the hfs measurements of 3 Heμ - e - , extrapolated to the buffer gas pressure zero, is: Δνsub(hfs)=4166.41(5) MHz. (orig./HSI) [de
MAGNETIC AND HYPERFINE CHARACTERIZATION OF THE THERMAL TRANSFORMATION CuO - Fe2O3 TO Fe3O4
Directory of Open Access Journals (Sweden)
Juan D. Betancur
2018-01-01
Full Text Available A magnetic study about the thermal transformation of hematite doped with CuO (Fe2O3 + CuO is presented. The heat treatment was carried out at a temperature of 375 ± 1 ºC, in a controlled atmosphere composed by 20% hydrogen and 80% nitrogen. Samples were characterized by Mössbauer spectroscopy at room temperature, magnetization as a function of temperature and hysteresis loops at 10K. Our results suggest that both the hyperfine fields and linewidths of the A and B sites remain essentially constant with increasing the CuO concentration, while at the same time a paramagnetic component arises, which is indicative of the appearance of a precipitate or a new phase of Fe-Cu, i.e. there is not an effective incorporation of the copper into the structure of the magnetite. The saturation magnetization falls from approximately 87 emu/g to 78 emu/g, consistent with such a paramagnetic phase. Also, an increase in the coercivity from ~576 Oe up to ~621 Oe by increasing the percentage of CuO from 2% up to 20% is observed. Such increase is also attributed to the paramagnetic phase acting as pinning center for domain walls, besides also de pinning effect due to vacancies induced by the thermal treatment. Finally, an inversion of the magnetization in the Verwey temperature is observed. The data suggest that by means of the synthesis method employed, it is possible to obtain Fe3O4 magnetite particles coexisting with precipitates of Fe-Cu, giving rise to a modification in the magnetic properties and generatingan interesting effect in the magnetization at the Verwey temperature.
Step width alters iliotibial band strain during running.
Meardon, Stacey A; Campbell, Samuel; Derrick, Timothy R
2012-11-01
This study assessed the effect of step width during running on factors related to iliotibial band (ITB) syndrome. Three-dimensional (3D) kinematics and kinetics were recorded from 15 healthy recreational runners during overground running under various step width conditions (preferred and at least +/- 5% of their leg length). Strain and strain rate were estimated from a musculoskeletal model of the lower extremity. Greater ITB strain and strain rate were found in the narrower step width condition (p running, especially in persons whose running style is characterized by a narrow step width, may be beneficial in the treatment and prevention of running-related ITB syndrome.
Measurement of inner wall limiter SOL widths in KSTAR tokamak
Directory of Open Access Journals (Sweden)
J.G. Bak
2017-08-01
Full Text Available Scrape-off layer (SOL widths λq are presented from the KSTAR tokamak using fast reciprocating Langmuir probe assembly (FRLPA measurements at the outboard mid-plane (OMP and the infra-Red (IR thermography at inboard limiter tiles in moderately elongated (κ = 1.45 – 1.55 L-mode inner wall-limited (IWL plasmas under experimental conditions such as BT = 2.0 T, PNBI = 1.4 – 1.5 MW, line averaged densities 2.5 – 5.1 × 1019 m−3 and plasma current Ip = 0.4 − 0.7 MA. There is clear evidence for a double exponential structure in q||(r from the FRLPA such that, for example at Ip = 0.6 MA, a narrow feature, λq,near (=3.5 mm is found close to the LFCS, followed by a broader width, λq,main (=57.0 mm. Double exponential profiles (λq,near = 1.5 – 2.8 mm, λq,main = 17.0 – 35.0 mm can be also observed in the IR heat flux mapped to the OMP throughout the range of Ip investigated. In addition, analysis of SOL turbulence statistics obtained with the FRLPA shows high relative fluctuation levels and positively skewed distributions in electron temperature and ion particle flux across the SOL, with both properties increasing for longer distance from the LCFS, as often previously observed in the tokamaks. Interestingly, the fluctuation character expressed in terms of spectral distributions remains unchanged in passing from the narrow to the broad SOL heat flux channel.
High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits.
Ballance, C J; Harty, T P; Linke, N M; Sepiol, M A; Lucas, D M
2016-08-05
We demonstrate laser-driven two-qubit and single-qubit logic gates with respective fidelities 99.9(1)% and 99.9934(3)%, significantly above the ≈99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed-fidelity trade-off for the two-qubit gate, for gate times between 3.8 μs and 520 μs, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity.
Theory of solvent effects on the hyperfine splitting constants in ESR spectra of free radicals
International Nuclear Information System (INIS)
Abe, T.; Tero-Kubota, S.; Ikegami, Y.
1982-01-01
An expression for the effects of solvation and hydrogen bonding on the hyperfine splitting constants of a free radical has been derived by obtaining π-electron spin densities of the radical in solution by perturbation theory. When no hydrogen bonding occurs between the radical and a solvent molecule, the splitting constant is approximately proportional to the Block and Walker parameter of theta(epsilon/sub r/) identical with 3 epsilon/sub r/ (ln epsilon/sub r/)/(epsilon/sub r/ ln epsilon/sub r/ - epsilon/sub r/ + 1) - 6/(ln epsilon/sub r/) - 2, where epsilon/sub r/ is the relative permittivity of the solvent. The expression is successfully applied to the di-tert-butyl nitroxide radical, the 1-methyl-4-(methoxycarbonyl)pyridinyl radical, and other free radicals. The effects of hydrogen bonding are discussed
Hyperfine splitting of B mesons and Bs production at the Υ(5S)
International Nuclear Information System (INIS)
Lee-Franzini, J.; Heintz, U.; Lovelock, D.M.J.; Narain, M.; Schamberger, R.D.; Willins, J.; Yanagisawa, C.; Franzini, P.; Tuts, P.M.
1990-01-01
Using the Columbia University--Stony Brook (CUSB-II) detector we have studied the inclusive photon spectrum from 2.9x10 4 Υ(5S) decays. We observe a strong signal due to B * →Bγ decays. From this we obtain (i) the average B * -B mass difference, 46.7±0.4 MeV, (ii) the photon yield per Υ(5S) decay, left-angle γ/Υ(5S)right-angle=1.09±0.06, and (iii) the average velocity of the B * 's, left-angle β right-angle=0.156±0.010, for a mix of nonstrange (B) and strange (B s ) B * mesons from Υ(5S) decays. From the shape of the photon line, we find that both B and B s mesons are produced with nearly equal values for the hyperfine splitting of the B and B s meson systems
Toward the measurement of the hyperfine splitting in the ground state of muonic hydrogen
Energy Technology Data Exchange (ETDEWEB)
Bakalov, Dimitar, E-mail: dbakalov@inrne.bas.bg [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria); Adamczak, Andrzej [Polish Academy of Sciences, Institute of Nuclear Physics (Poland); Stoilov, Mihail [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria); Vacchi, Andrea [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste (Italy)
2015-08-15
The recent Lamb shift experiment at PSI and the controversy about proton size revived the interest in measuring the hyperfine splitting in muonic hydrogen and extracting the proton Zemach radius. The efficiency of the experimental method depends on the energy dependence of the muon transfer rate to higher-Z gases in the near epithermal energy range. As long as the available experimental data only give the average transfer rate in the whole epithermal range, and the detailed theoretical calculations have not yet been verified, an experiment has been started for the measurement of the transfer rate in thermalized gas target at different temperatures and extracting from the data an estimate of the transfer rate for arbitrary energies. We outline the underlying mathematical method and estimate its accuracy.
Decoupling of the hyperfine interactions in /sup 12/B ions by the external magnetic field
Energy Technology Data Exchange (ETDEWEB)
Sugimoto, K; Tanihata, I; Kogo, S; Tanaka, M [Osaka Univ., Toyonaka (Japan). Faculty of Science
1976-11-01
It is known that product nuclei /sup 12/B (Isup(..pi..) = 1/sup +/, Tsub(1/2) = 20 ms) by the /sup 11/B(d,p)/sup 12/B reaction are sizably oriented if one selects recoil nuclei at the incident deuteron energy and the recoil angle thetasub(R). The hyperfine interactions in recoil ions in flight in free space affect the nuclear orientation. In this experiment, the nuclear orientation in the recoil ions implanted into a stopper were measured as a function of strength of a static magnetic field applied in normal to the reaction plane. A thin single crystal of magnesium was used as the recoil stopper, of which the hexagonal c-axis was set in parallel to the external field.
International Nuclear Information System (INIS)
Zuo, Z G; Ling, F R; Wang, P; Liu, J S; Yao, J Q; Weng, C X
2013-01-01
In this letter, we present a Michelson interferometer for the hyperfine spectrum measurement of an optically pumped far-infrared laser with a highest frequency resolution of 3–5 GHz. CH 3 OH gas with a purity of 99.9%, is pumped by the CO 2 9P36 and 9R10 laser lines to generate terahertz lasers with frequencies of 2.52 and 3.11 THz, respectively. Moreover, except for the center frequency, which is in good agreement with theoretical work, some additional frequencies on both sides of the center frequency are obtained at a frequency interval of 0.15 THz. Meanwhile, the mechanism behind the observed experimental results is also investigated. (letter)
International Nuclear Information System (INIS)
Stuchbery, A.E.; Ryan, G.C.; Bolotin, H.H.; Sie, S.H.
1980-01-01
The velocity-dependence of the magnitude of the enchanced dynamic hyperfine magnetic field (EDF) manifest at nuclei of 108 Pd ions swiftly recoiling through thin magnetized Fe has been investigated at ion velocities higher than have heretofore been examined for the heavier nuclides (i.e., at initial recoil velocities (v/Zv 0 )=0.090 and 0.160, v 0 =c/137). These results for 108 Pd, when taken in conjunction with those of prior similar measurements for 106 Pd at lower velocities, and fitted to a velocity dependence for the EDF, give for the Pd isotopes over the extended velocity range 1.74 0 )<=7.02, p=0.41+-0.15; a result incompatible with previous attributions of a linear velocity dependence for the field
International Nuclear Information System (INIS)
Kraken, Mathias
2014-01-01
Magnetic nanoparticles (MNPs) nowadays have a wide variety of applications that are mostly based on the fact that MNPs below a critical size consist of only a single magnetic domain. The big magnetic moments of these MNPs may fluctuate, driven by thermal excitations and controlled by magnetic anisotropies and interparticle interactions. Successful applications go along with a good control of the properties of the MNPs, which requires detailed knowledge about the preparation process and a proper characterization. These are the main topics this thesis deals with. First, the characterization of the MNPs using Moessbauer spectroscopy is discussed. Despite it is a standard method in research on iron-based MNPs, most publications only present a qualitative discussion of measurements, since available analysis models for dynamic hyperfine spectra are not capable of a satisfying description. Here, a modified version of an established model is presented, which proved to be applicable to the majority of hyperfine spectra and allows deriving detailed microscopic information about magnetic fluctuations on nanoscale. This model is succesfully used, to study the preparation of MNPs with the so-called non-aqueous sol-gel method (a cooperation with the Institut fuer Partikeltechnik, Technische Universitaet Braunschweig). In the last part of the thesis, a model is developed that describes the Moessbauer spectra of magnetically fluctuating iron clusters in different non-magnetic metallic matrices (silver and ytterbium). This part is based on a cooperation with the Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brasil. The results of this thesis present possibilities for a detailed quantitative analysis of the magnetic dynamics derived from Moessbauer spectra measured on iron-based MNPs and nanoscale clusters.
NH3 quantum rotators in Hofmann clathrates: intensity and width of rotational transition lines
International Nuclear Information System (INIS)
Vorderwisch, Peter; Sobolev, Oleg; Desmedt, Arnaud
2004-01-01
Inelastic structure factors for rotational transitions of uniaxial NH 3 quantum rotators, measured in a Hofmann clathrate with biphenyl as guest molecule, agree with those calculated for free rotators. A finite intrinsic line width, found for rotational transitions involving the rotational level j=3 at low temperature, supports a recently suggested model based on resonant rotor-rotor coupling
Hong's grading for evaluating anterior chamber angle width.
Kim, Seok Hwan; Kang, Ja Heon; Park, Ki Ho; Hong, Chul
2012-11-01
To compare Hong's grading method with anterior segment optical coherence tomography (AS-OCT), gonioscopy, and the dark-room prone-position test (DRPT) for evaluating anterior chamber width. The anterior chamber angle was graded using Hong's grading method, and Hong's angle width was calculated from the arctangent of Hong's grades. The correlation between Hong's angle width and AS-OCT parameters was analyzed. The area under the receiver operating characteristic curve (AUC) for Hong's grading method when discriminating between narrow and open angles as determined by gonioscopy was calculated. Correlation analysis was performed between Hong's angle width and intraocular pressure (IOP) changes determined by DRPT. A total of 60 subjects were enrolled. Of these subjects, 53.5 % had a narrow angle. Hong's angle width correlated significantly with the AS-OCT parameters (r = 0.562-0.719, P < 0.01). A Bland-Altman plot showed relatively good agreement between Hong's angle width and the angle width obtained by AS-OCT. The ability of Hong's grading method to discriminate between open and narrow angles was good (AUC = 0.868, 95 % CI 0.756-0.942). A significant linear correlation was found between Hong's angle width and IOP change determined by DRPT (r = -0.761, P < 0.01). Hong's grading method is useful for detecting narrow angles. Hong's grading correlated well with AS-OCT parameters and DRPT.
Constant Width Planar Computation Characterizes ACC^{0}
DEFF Research Database (Denmark)
Hansen, K.A.
2004-01-01
We obtain a characterization of ACC 0 in terms of a natural class of constant width circuits, namely in terms of constant width polynomial size planar circuits. This is shown via a characterization of the class of acyclic digraphs which can be embedded on a cylinder surface in such a way that all...
Stream water responses to timber harvest: Riparian buffer width effectiveness
Barton D. Clinton
2011-01-01
Vegetated riparian buffers are critical for protecting aquatic and terrestrial processes and habitats in southern Appalachian ecosystems. In this case study, we examined the effect of riparian buffer width on stream water quality following upland forest management activities in four headwater catchments. Three riparian buffer widths were delineated prior to cutting; 0m...
Intraflow width variations in Martian and terrestrial lava flows
Peitersen, Matthew N.; Crown, David A.
1997-03-01
Flow morphology is used to interpret emplacement processes for lava flows on Earth and Mars. Accurate measurements of flow geometry are essential, particularly for planetary flows where neither compositional sampling nor direct observations of active flows may be possible. Width behavior may indicate a flow's response to topography, its emplacement regime, and its physical properties. Variations in width with downflow distance from the vent may therefore provide critical clues to flow emplacement processes. Flow width is also one of the few characteristics that can be readily measured from planetary mission data with accuracy. Recent analyses of individual flows at two terrestrial and four Martian sites show that widths within an individual flow vary by up to an order of magnitude. Width is generally thought to be correlated to topography; however, recent studies show that this relationship is neither straightforward nor easily quantifiable.
Effect of step width manipulation on tibial stress during running.
Meardon, Stacey A; Derrick, Timothy R
2014-08-22
Narrow step width has been linked to variables associated with tibial stress fracture. The purpose of this study was to evaluate the effect of step width on bone stresses using a standardized model of the tibia. 15 runners ran at their preferred 5k running velocity in three running conditions, preferred step width (PSW) and PSW±5% of leg length. 10 successful trials of force and 3-D motion data were collected. A combination of inverse dynamics, musculoskeletal modeling and beam theory was used to estimate stresses applied to the tibia using subject-specific anthropometrics and motion data. The tibia was modeled as a hollow ellipse. Multivariate analysis revealed that tibial stresses at the distal 1/3 of the tibia differed with step width manipulation (p=0.002). Compression on the posterior and medial aspect of the tibia was inversely related to step width such that as step width increased, compression on the surface of tibia decreased (linear trend p=0.036 and 0.003). Similarly, tension on the anterior surface of the tibia decreased as step width increased (linear trend p=0.029). Widening step width linearly reduced shear stress at all 4 sites (pstresses experienced by the tibia during running were influenced by step width when using a standardized model of the tibia. Wider step widths were generally associated with reduced loading of the tibia and may benefit runners at risk of or experiencing stress injury at the tibia, especially if they present with a crossover running style. Copyright © 2014 Elsevier Ltd. All rights reserved.
Angular beam width of a slit-diffracted wave with noncollinear group and phase velocities
International Nuclear Information System (INIS)
Lock, Edwin H
2012-01-01
Taking magnetostatic surface wave diffraction as an example, this paper theoretically investigates the 2D diffraction pattern arising in the far-field region of a ferrite slab in the case of a plane wave with noncollinear group and phase velocities incident on a wide, arbitrarily oriented slit in an opaque screen. A universal analytical formula for the angular width of a diffracted beam is derived, which is valid for magnetostatic and other types of waves in anisotropic media and structures (including metamaterials) in 2D geometries. It is shown that the angular width of a diffracted beam in an anisotropic medium can not only take values greater or less than λ 0 /D (where λ 0 is the incident wavelength, and D is the slit width), but can also be zero under certain conditions. (methodological notes)
The effect of scattering interference term on the practical width
International Nuclear Information System (INIS)
Martins do Amaral, C.; Martinez, A.S.
2001-01-01
The practical width Γ p has an important application in the characterization of the resonance type for the calculation of neutron average cross sections. Previous treatments ignore the interference term χζ,x for the Doppler broadening function in the practical width calculation. In the present paper, a rational approximation for the χζ,x function is derived, using a modified asymptotic Pade method. A new approximation for Γ p is obtained. The results which are presented here provide evidence that the practical width as a function of temperature varies considerably with the inclusion of the interference term χζ,x
Nightside studies of coherent HF Radar spectral width behaviour
Directory of Open Access Journals (Sweden)
E. E. Woodfield
2002-09-01
Full Text Available A previous case study found a relationship between high spectral width measured by the CUTLASS Finland HF radar and elevated electron temperatures observed by the EISCAT and ESR incoherent scatter radars in the post-midnight sector of magnetic local time. This paper expands that work by briefly re-examining that interval and looking in depth at two further case studies. In all three cases a region of high HF spectral width (>200 ms-1 exists poleward of a region of low HF spectral width (<200 ms-1. Each case, however, occurs under quite different geomagnetic conditions. The original case study occurred during an interval with no observed electrojet activity, the second study during a transition from quiet to active conditions with a clear band of ion frictional heating indicating the location of the flow reversal boundary, and the third during an isolated sub-storm. These case studies indicate that the relationship between elevated electron temperature and high HF radar spectral width appears on closed field lines after 03:00 magnetic local time (MLT on the nightside. It is not clear whether the same relationship would hold on open field lines, since our analysis of this relationship is restricted in latitude. We find two important properties of high spectral width data on the nightside. Firstly the high spectral width values occur on both open and closed field lines, and secondly that the power spectra which exhibit high widths are both single-peak and multiple-peak. In general the regions of high spectral width (>200 ms-1 have more multiple-peak spectra than the regions of low spectral widths whilst still maintaining a majority of single-peak spectra. We also find that the region of ion frictional heating is collocated with many multiple-peak HF spectra. Several mechanisms for the generation of high spectral width have been proposed which would produce multiple-peak spectra, these are discussed in relation to the data presented here. Since the
Influence of electrical sheet width on dynamic magnetic properties
Chevalier, T; Cornut, B
2000-01-01
Effects of the width of electrical steel sheets on dynamic magnetic properties are investigated by solving diffusion equation on the cross-section of the sheet. Linear and non-linear cases are studied, and are compared with measurement on Epstein frame. For the first one an analytical solution is found, while for the second, a 2D finite element simulation is achieved. The influence of width is highlighted for a width thickness ratio lower than 10. It is shown that the behaviour modification in such cases is conditioned by the excitation signal waveform, amplitude and also frequency.
Nightside studies of coherent HF Radar spectral width behaviour
Directory of Open Access Journals (Sweden)
E. E. Woodfield
Full Text Available A previous case study found a relationship between high spectral width measured by the CUTLASS Finland HF radar and elevated electron temperatures observed by the EISCAT and ESR incoherent scatter radars in the post-midnight sector of magnetic local time. This paper expands that work by briefly re-examining that interval and looking in depth at two further case studies. In all three cases a region of high HF spectral width (>200 ms^{-1} exists poleward of a region of low HF spectral width (<200 ms^{-1}. Each case, however, occurs under quite different geomagnetic conditions. The original case study occurred during an interval with no observed electrojet activity, the second study during a transition from quiet to active conditions with a clear band of ion frictional heating indicating the location of the flow reversal boundary, and the third during an isolated sub-storm. These case studies indicate that the relationship between elevated electron temperature and high HF radar spectral width appears on closed field lines after 03:00 magnetic local time (MLT on the nightside. It is not clear whether the same relationship would hold on open field lines, since our analysis of this relationship is restricted in latitude. We find two important properties of high spectral width data on the nightside. Firstly the high spectral width values occur on both open and closed field lines, and secondly that the power spectra which exhibit high widths are both single-peak and multiple-peak. In general the regions of high spectral width (>200 ms^{-1} have more multiple-peak spectra than the regions of low spectral widths whilst still maintaining a majority of single-peak spectra. We also find that the region of ion frictional heating is collocated with many multiple-peak HF spectra. Several mechanisms for the generation of high spectral width have been proposed which would produce multiple-peak spectra, these are discussed in relation to
Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: +174Yb and +171Yb
Brown, Natalie C.; Brown, Kenneth R.
2018-05-01
Many systems used for quantum computing possess additional states beyond those defining the qubit. Leakage out of the qubit subspace must be considered when designing quantum error correction codes. Here we consider trapped ion qubits manipulated by Raman transitions. Zeeman qubits do not suffer from leakage errors but are sensitive to magnetic fields to first order. Hyperfine qubits can be encoded in clock states that are insensitive to magnetic fields to first order, but spontaneous scattering during the Raman transition can lead to leakage. Here we compare a Zeeman qubit (+174Yb) to a hyperfine qubit (+171Yb) in the context of the surface code. We find that the number of physical qubits required to reach a specific logical qubit error can be reduced by using +174Yb if the magnetic field can be stabilized with fluctuations smaller than 10 μ G .
International Nuclear Information System (INIS)
Zeng, Z.; Duan, Y.; Guenzburger, Diana
1996-09-01
The electronic and magnetic properties of the nanometer-size antiferromagnet (the ferric wheel molecule) are investigated with the first-principles spin-polarized Discrete Variational Method, in the framework of Density Functional theory. Magnetic moments, densities of the states and charge and spin-density maps are obtained. The Moessbauer hyperfine parameters Isomer shift, Quadrupole Splitting and Hyperfine Field are obtained from the calculations and compared to reported experimental values when available. (author). 33 refs., 8 figs., 4 tabs
International Nuclear Information System (INIS)
Brook, V.Yu.; Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A.
1989-01-01
A new analytic calculation of radiative-recoil corrections to muonium ground-state hyperfine splitting induced by electron line insertions is performed. The starting point of this calculation is presented by the Fried-Yennie gauge expression for the electron line factor. The final result confirms the one obtained previously from the apparently different expression in the Feynman gauge and removes the slight discrepancy which existed in the literature between the calculations in different gauges. (orig.)
Czech Academy of Sciences Publication Activity Database
Azamat, Dmitry; Badalyan, A. G.; Feng, D.H.; Lančok, Ján; Jastrabík, Lubomír; Dejneka, Alexandr; Baranov, P. G.; Yakovlev, D.R.; Bayer, M.
2017-01-01
Roč. 122, č. 24 (2017), s. 1-3, č. článku 243903. ISSN 0021-8979 R&D Projects: GA MŠk LO1409; GA ČR GA16-22092S Institutional support: RVO:68378271 Keywords : ENDOR * Ce 3+ ions in YAG * transferred hyperfine interactions Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.068, year: 2016
DEFF Research Database (Denmark)
Hansen, P. E.; Nevald, Rolf; Guggenheim, H. G.
1978-01-01
The isotropic and anisotropic transferred hyperfine interactions between F ions in the two chemically inequivalent sites and the rare-earth ions (R) have been derived from 19F NMR measurements in the temperature region 100-300 K on single crystals of TbF3 and DyF3. The isotropic interactions are ...... to vary only slightly with temperature. They are further assigned to definite R's in the unit cell, which cannot be done from macroscopic magnetic measurements....
Ionospheric propagation effects on spectral widths measured by SuperDARN HF radars
Directory of Open Access Journals (Sweden)
X. Vallières
2004-06-01
Full Text Available SuperDARN HF radars provide a global survey of the large-scale convection transversely to the Earth's magnetic field in the high-latitude ionosphere. In addition to the mean plasma velocity, this network also provides measurements of spectral widths which are related to the level of turbulence of the sounded plasma. There is an increasing interest in using spectral widths in geophysical studies, since they are used to monitor the footprints of several magnetospheric regions. In the present paper, we show the effect of radio wave propagation through a typical turbulent ionosphere on spectral widths measured by SuperDARN radars. This effect has already been evidenced experimentally in a previous paper. Here, we model the effects of meso-scale structures on a radar wave front and study their impact on a typical measurement. Numerical simulations reproduce the effect evidenced experimentally and show the role of meso-scale structures (1-10km in the systematic bias that affects spectral width values. As in experimental data, this effect is shown to be increasing with decreasing radar frequency.
Ionospheric propagation effects on spectral widths measured by SuperDARN HF radars
Directory of Open Access Journals (Sweden)
X. Vallières
2004-06-01
Full Text Available SuperDARN HF radars provide a global survey of the large-scale convection transversely to the Earth's magnetic field in the high-latitude ionosphere. In addition to the mean plasma velocity, this network also provides measurements of spectral widths which are related to the level of turbulence of the sounded plasma. There is an increasing interest in using spectral widths in geophysical studies, since they are used to monitor the footprints of several magnetospheric regions. In the present paper, we show the effect of radio wave propagation through a typical turbulent ionosphere on spectral widths measured by SuperDARN radars. This effect has already been evidenced experimentally in a previous paper. Here, we model the effects of meso-scale structures on a radar wave front and study their impact on a typical measurement. Numerical simulations reproduce the effect evidenced experimentally and show the role of meso-scale structures (1-10km in the systematic bias that affects spectral width values. As in experimental data, this effect is shown to be increasing with decreasing radar frequency.
Viradia, Neal K; Berger, Alex A; Dahners, Laurence E
2011-09-01
Trochanteric bursitis is a common disorder that is characterized by inflammation of the bursa, superficial to the greater trochanter of the femur, leading to pain in the lateral hip, and often occurs because of acute trauma or repetitive friction involving the iliotibial band, the greater trochanter, and the bursa. In the study reported here, we hypothesized that the increased incidence of bursitis may be the result of the increased prominence of the trochanter in relation to the wings of the iliac crest. Distances between the outermost edges of trochanters and iliac wings were measured in 202 patients from the University of North Carolina Health Care System-101 without a known diagnosis and 101 with a clinical diagnosis of trochanteric bursitis. To determine significance, t tests for nonpaired data were used. Mean (SD) difference between trochanter and iliac wing widths was 28 (20) mm in the group diagnosed with trochanteric bursitis and 17 (18) mm in the control group. The difference between the groups in this regard was significant (Pbursitis group and 1.05 (.06) in the control group. The difference between these groups was significant (Pbursitis.
International Nuclear Information System (INIS)
Skjeldal, L.; Markley, J.L.; Coghlan, V.M.; Vickery, L.E.
1991-01-01
The authors report the observation of paramagnetically shifted (hyperfine) proton resonances from vertebrate mitochondrial [2Fe-2S] ferredoxins. The hyperfine signals of human, bovine, and chick [2Fe-2S] ferredoxins are described and compared with those of Anabena 7120 vegetative ferredoxin, a plant-type [2Fe-2S] ferredoxin studied previously. The hyperfine resonances of the three vertebrate ferredoxins were very similar to one another both in the oxidized state and in the reduced state, and slow (on the NMR scale) electron self-exchange was observed in partially reduced samples. For the oxidized vertebrate ferredoxins, hyperfine signals were observed downfield of the diamagnetic envelope from +13 to +50 ppm, and the general pattern of peaks and their anti-Curie temperature dependence are similar to those observed for the oxidized plant-type ferredoxins. For the reduced vertebrate ferredoxins, hyperfine signals were observed for the oxidized plant-type ferredoxins. For the reduced vertebrate ferredoxins, hyperfine signals were observed both upfield (-2 to -18 ppm) and downfield (+15 to +45 ppm), and all were found to exhibit Curie-type temperature dependence. These results indicate that the contact-shifted resonances in the reduced vertebrate ferredoxins detect different spin magnetization from those in the reduced plant ferredoxins and suggest that plant and vertebrate ferredoxins have fundamentally different patterns of electron delocalization in the reduced [2Fe-2S] center
Enhancement of heat transfer using varying width twisted tape inserts
African Journals Online (AJOL)
International Journal of Engineering, Science and Technology ... experimental investigations of the augmentation of turbulent flow heat transfer in a horizontal tube by means of varying width twisted tape inserts with air as the working fluid.
A fast integrated discriminator with continuously variable width
International Nuclear Information System (INIS)
Borghesi, A.; Goggi, G.; Nardo, R.
1976-01-01
A simple dc-coupled discriminator with fast switching characteristics has been realized. Both input threshold and output width are continuously variable; the ECL design allows high speed and high density with ample fanout. (Auth.)
Line Width Recovery after Vectorization of Engineering Drawings
Directory of Open Access Journals (Sweden)
Gramblička Matúš
2016-12-01
Full Text Available Vectorization is the conversion process of a raster image representation into a vector representation. The contemporary commercial vectorization software applications do not provide sufficiently high quality outputs for such images as do mechanical engineering drawings. Line width preservation is one of the problems. There are applications which need to know the line width after vectorization because this line attribute carries the important semantic information for the next 3D model generation. This article describes the algorithm that is able to recover line width of individual lines in the vectorized engineering drawings. Two approaches are proposed, one examines the line width at three points, whereas the second uses a variable number of points depending on the line length. The algorithm is tested on real mechanical engineering drawings.
Estimates for the widths of weighted Sobolev classes
International Nuclear Information System (INIS)
Vasil'eva, Anastasia A
2010-01-01
Estimates for the Kolmogorov widths in the L q,v -metric of weighted Sobolev classes as well as for the approximation numbers of the corresponding embedding operators are found. Bibliography: 33 titles.
International Nuclear Information System (INIS)
Tarucha, S; Obata, T; Pioro-Ladriere, M; Brunner, R; Shin, Y-S; Kubo, T; Tokura, Y
2011-01-01
Electric dipole spin resonance of two individual electrons and the influence of hyperfine coupling on the spin resonance are studied for a double quantum dot equipped with a micro-magnet. The spin resonance occurs by oscillating the electron in each dot at microwave (MW) frequencies in the presence of a micro-magnet induced stray field. The observed continuous wave (CW) and time-resolved spin resonances are consistent with calculations in which the MW induced AC electric field and micro-magnet induced stray field are taken into account. The influence of hyperfine coupling causes an increase and broadening of the respective CW spin resonance peaks through dynamical nuclear polarization when sweeping up the magnetic field. This behaviour appears stronger for the larger of the two spin resonance peaks and in general becomes more pronounced as the MW power increases, both reflecting that the electron-nuclei interaction is more efficient for the stronger spin resonance. In addition the hyperfine coupling effect only becomes pronounced when the MW induced AC magnetic field exceeds the fluctuating nuclear field.
Hyperfine fields and spin relaxation of Ce in GdAl2 and DyAl2
International Nuclear Information System (INIS)
Waeckelgaard, E.; Karlsson, E.; Lindgren, B.; Mayer, A.
1987-04-01
We have investigated the ferromagnetic state of the cubic intermetallic compounds GdAl 2 and DyAl 2 with the 140 Ce nuclei using DPAC. The local fields of Ce are for the lowest measured temperatures B eff (30 K) = 54(2) T for GdAl 2 and B eff (12.5 K) = 27(1) T for DyAl 2 which are considerably lower than the hyperfine field measured for a free Ce ion (183 T). By introducing a crystal field, of cubic symmetry, a lower hyperfine field is obtained which is in quantitative agreement with the local field of Ce in GdAl 2 . For DyAl 2 an additional effect, represented by a non-magnetic level below the lowest magnetic level, may explain a further reduction of the hyperfine field. Two models relating to a Kondo non-magnetic state of Ce are discussed. Spin relaxation in the paramagnetic state are also studied and compared with observations of the same systems measured with μSR. (authors)
The width of the giant dipole resonance at finite temperature
International Nuclear Information System (INIS)
Mau, N.V.
1992-01-01
A method is proposed to evaluate the effect of the change of the Fermi sea on the width of the giant dipole resonance at finite temperature. In a schematic model it is found that, indeed, in 208 Pb the width increases very sharply up to about T=4 MeV but shows a much weaker variation for higher temperature. (author) 26 refs., 7 figs., 2 tabs
SM Higgs decay branching ratios and total Higgs width
Daniel Denegri
2001-01-01
Upper: Higgs decay ratios as a function of Higgs mass. The largest branching ratio is not necessarily the most usefull one. The most usefull ones are gamma gamma bbar ZZ and WW as in those modes latter signal to background ratios can be achieved. Lower: Total Higgs decay width versus Higgs mass. At low masses the natural width is extremely small, thus observability depends on instrumental resolution primarily.
Estimating the Spectral Width of a Narrowband Optical Signal
DEFF Research Database (Denmark)
Lading, Lars; Skov Jensen, A.
1980-01-01
Methods for estimating the spectral width of a narrowband optical signal are investigated. Spectral analysis and Fourier spectroscopy are compared. Optimum and close-to-optimum estimators are developed under the constraint of having only one photodetector.......Methods for estimating the spectral width of a narrowband optical signal are investigated. Spectral analysis and Fourier spectroscopy are compared. Optimum and close-to-optimum estimators are developed under the constraint of having only one photodetector....
Width of electromagnetic wave instability spectrum in tungsten plate
International Nuclear Information System (INIS)
Rinkevich, A.B.
1995-01-01
Based on the study of high-frequency signal modulation and spectrum analysis of the envelope a measurement of spectrum width for electromagnetic wave instability was carried out under conditions of current pulse action on tungsten plate in magnetic field. The existence of amplitude-frequency wave modulation was revealed. The width of current disturbance spectrum in a specimen was evaluated. Current disturbances are shown to cause the instability of electromagnetic wave. 11 refs.; 6 figs
Correlations for reduced-width amplitudes in 49V
International Nuclear Information System (INIS)
Chou, B.H.; Mitchell, G.E.; Bilpuch, E.G.; Westerfeldt, C.R.
1980-01-01
Measurement of the relative sign of inelastic proton-channel amplitudes permits the determination of amplitude correlations. Data were obtained for 45 5/2 + resonances in 49 V. Although the reduced widths in each channel followed a Porter-Thomas distribution, large amplitude correlations were observed. The results are compared with the reduced-width--amplitude distribution of Krieger and Porter. This is the first direct test of the Krieger-Porter distribution
Quantum numbers and decay widths of the psi (3684)
International Nuclear Information System (INIS)
Luth, V.; Boyarski, A.M.; Lynch, H.L.; Breidenbach, M.; Bulos, F.; Feldman, G.J.; Fryberger, D.; Hanson, G.; Hartill, D.L.; Jean-Marie, B.; Larsen, R.R.; Luke, D.; Morehouse, C.C.; Paterson, J.M.; Perl, M.L.; Pun, T.P.; Rapidis, P.; Richter, B.; Schwitters, R.F.; Tanenbaum, W.; Vannucci, F.; Abrams, G.S.; Chinowsky, W.; Friedberg, C.E.; Goldhaber, G.; Kadyk, J.A.; Litke, A.M.; Lulu, B.A.; Pierre, F.M.; Sadoulet, B.; Trilling, G.H.; Whitaker, J.S.; Winkelmann, F.C.; Wiss, J.E.
1975-01-01
Cross sections for e + e - →hadrons, e + e - , and μ + μ - near 3684 MeV are presented. The psi(3684) resonance is established as having the assignment J/sup PC/=1 -- . The mass is 3684+-5 MeV. The partial width for decay to electrons is GAMMA/sube/=2.1+-0.3 keV and the total width is GAMMA=228+-56 keV
International Nuclear Information System (INIS)
Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A.
1991-01-01
The detailed account of analytic calculation of radiative-recoil correction to muonium hyperfine splitting, induced by electron-line radiative insertions, is presented. The consideration is performed in the framework of the effective two-particle formalism. A good deal of attention is paid to the problem of the divergence cancellation and the selection of graphs, relevant to radiative-recoil corrections. The analysis is greatly facilitated by use of the Fried-Yennie gauge for radiative photons. The obtained set of graphs turns out to be gauge-invariant and actual calculations are performed in the Feynman gauge. The main technical tricks, with the help of which we have effectively utilized the existence in the problem of the small parameter-mass ratio and managed to perform all calculations in the analytic form are described. The main intermediate results, as well as the final answer, δE rr = (α(Ζα)/π 2 )(m/M)E F (6ζ(3) + 3π 2 In 2 + π 2 /2 + 17/8), are also presented
Singlet-to-triplet interconversion using hyperfine as well as ferromagnetic fringe fields.
Wohlgenannt, M; Flatté, M E; Harmon, N J; Wang, F; Kent, A D; Macià, F
2015-06-28
Until recently the important role that spin-physics ('spintronics') plays in organic light-emitting devices and photovoltaic cells was not sufficiently recognized. This attitude has begun to change. We review our recent work that shows that spatially rapidly varying local magnetic fields that may be present in the organic layer dramatically affect electronic transport properties and electroluminescence efficiency. Competition between spin-dynamics due to these spatially varying fields and an applied, spatially homogeneous magnetic field leads to large magnetoresistance, even at room temperature where the thermodynamic influences of the resulting nuclear and electronic Zeeman splittings are negligible. Spatially rapidly varying local magnetic fields are naturally present in many organic materials in the form of nuclear hyperfine fields, but we will also review a second method of controlling the electrical conductivity/electroluminescence, using the spatially varying magnetic fringe fields of a magnetically unsaturated ferromagnet. Fringe-field magnetoresistance has a magnitude of several per cent and is hysteretic and anisotropic. This new method of control is sensitive to even remanent magnetic states, leading to different conductivity/electroluminescence values in the absence of an applied field. We briefly review a model based on fringe-field-induced polaron-pair spin-dynamics that successfully describes several key features of the experimental fringe-field magnetoresistance and magnetoelectroluminescence. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Leggett-Garg inequalities violation via the Fermi contact hyperfine interaction
Energy Technology Data Exchange (ETDEWEB)
Lobejko, Marcin; Dajka, Jerzy [Institute of Physics, University of Silesia, Katowice (Poland); Silesian Center for Education and Interdisciplinary Research, University of Silesia, Chorzow (Poland)
2017-06-15
In this paper we examine theoretically how the spin-spin interaction between a nuclei and an electron in the atom affects violation of the Leggett-Garg inequalities. We consider the simplest case of atoms in the {sup 2}S{sub 1/2} state that in the valence shell have just a single electron and the evolution in time of the spin is dictated only by the Fermi contact hyperfine interaction. We found that for special initial conditions and a particular measured observable the high spin nucleus couple to the valence electron such that violation of Leggett-Garg inequalities increases with total spin of states. Consequently, our results show that for the Hydrogen, the smallest atom in Nature, the violation of the Leggett-Garg inequalities is the smallest whereas for the largest atom, the Cesium, the violation is the largest. Moreover, this violation does not depend on a principal quantum number, thus our model can be used for Rydberg atoms in order to test macrorealism for 'almost macroscopic' objects. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Velocity dependence of transient hyperfine field at Pt ions rapidly recoiling through magnetized Fe
International Nuclear Information System (INIS)
Stuchbery, A.E.; Ryan, C.G.; Bolotin, H.H.
1981-01-01
The velocity-dependence of the transient hyperfine magnetic field acting at nuclei of 196 Pt ions rapidly recoiling through thin magnetized Fe was investigated at a number of recoil velocities. The state of interest (2 1 + ) was populated by Coulomb excitation using beams of 80- and 120-MeV 32 S and 150- and 220-MeV 58 Ni ions. The 2 1 + →0 1 + γ-ray angular distribution precession measurements were carried out in coincidence with backscattered projectiles. From these results, the strength of the transient field acting on Pt ions recoiling through magnetized Fe with average velocities in the extended range 2.14<=v/vsub(o)<=4.82 (vsub(o) = c/137) was found to be consistent with a linear velocity dependence and to be incompatible with the specific vsup(0.45+-0.18) dependence which has been previously reported to account well for all ions in the mass range from oxygen through samarium. This seemingly singular behaviour for Pt and other ions in the Pt mass vicinity is discussed
Maraging-350 steel: Following the aging through diffractometric, magnetic and hyperfine analysis
Energy Technology Data Exchange (ETDEWEB)
Nunes, G.C.S. [Universidade Estadual de Maringá, Departamento de Física, Av. Colombo, 5790, PR, 87.020-900 Brazil (Brazil); Sarvezuk, P.W.C. [Universidade Tecnológica Federal do Paraná, Campo Mourão, PR (Brazil); Alves, T.J.B.; Biondo, V.; Ivashita, F.F. [Universidade Estadual de Maringá, Departamento de Física, Av. Colombo, 5790, PR, 87.020-900 Brazil (Brazil); Paesano, A., E-mail: paesano@wnet.com.br [Universidade Estadual de Maringá, Departamento de Física, Av. Colombo, 5790, PR, 87.020-900 Brazil (Brazil)
2017-01-01
Plates of solution annealed Maraging-350 steel were submitted to aging under an inert atmosphere, varying the time and temperature. The aged samples were characterized by X-ray diffraction and Mössbauer spectroscopy. The results revealed that the aging treatments induced the reversion of austenite, in amounts that vary with the time and the temperature of the heat treatment. The lattice parameters of the martensite and austenite phases, as well as their hyperfine parameters, were obtained at all aging conditions. No intermetallic compounds were identified in any of the aged samples, but a poorly crystallized phase fraction, the consequence of an incomplete martensite ⇒ austenite reversion transformation, was observed for some samples. The tetragonal distortion from cubic symmetry presented by the martensite in the solution annealed steel was not eliminated after aging. - Highlights: • We report a fine characterization of aged Maraging-350 steel. • Martensite shows a crystallographic distortion from the cubic symmetry. • Reverted austenite is present in amounts that depend on the aging conditions. • Properties measured are key information for a proper control of the steel aging.
Energy Technology Data Exchange (ETDEWEB)
Johnson, M.E.
1979-01-01
Recently there has been increasing interest in studying the rotational motion of biological molecules by monitoring the electron paramagnetic resonance (EPR) spectra of spin labels which are tightly bound to the molecule of interest. Theoretical studies have shown that in the slow motion region the correlation time may be determined by comparing the apparent hyperfine separation (HFS) in the presence of rotational motion with the rigid limit HFS in the absence of rotational motion. The majority of work to date has assumed the tightly bound nitroxide label to act simply as a reporter group for molecular motion, exhibiting little or no intrinsic environmental or temperature sensitivity. However, we have demonstrated that the rigid limit EPR spectra exhibit a substantial intrinsic temperature dependence, with the rigid limit HFS of MAL-6-labelled carboxyhemoglobin (HbCO) decreasing by nearly 10G over the temperature range -196/sup 0/C to +45/sup 0/C. The steepest temperature dependence was also found to occur over the 0 to 40/sup 0/C temperature range where most biological measurements are made. This strong temperature dependence in the intrinsic HFS was shown to produce substantial errors in correlation time calculations if it was not explicitly recognized and appropriate corrections made. This detailed behavior of this intrinsic temperature dependence suggests that it is most probably produced by equilibrium hydrogen bonding between the nitroxide NO/sup ./ group and an unidentified proton donor within the spin label binding site. (RJC)
Gonçalves, J N; Correia, J G; Lopes, A M L
2011-01-01
The MnAs compound shows a first-order transition at T$_{c}$≈ 42$^{\\circ}$C, and a second-order transition at T$_{t}$ ≈120$^{\\circ}$C. The first-order transition, with structural (hexagonal-orthorhombic), magnetic (FM-PM) and electrical conductivity changes, is associated to magnetocaloric, magnetoelastic, and magnetoresistance effects. We report a study in a large temperature range from −196$^{\\circ}$C up to 140$^{\\circ}$C, using the $\\gamma\\!-\\!\\gamma$ perturbed angular correlations method with the radioactive probe $^{77}$Br→$^{77}$Se, produced at the ISOLDE-CERN facility. The electric field gradients and magnetic hyperfine fields are determined across the first- and second-order phase transitions encompassing the pure and mixed phase regimes in cooling and heating cycles. The temperature irreversibility of the 1st order phase transition is seen locally, at the nanoscopic scale sensitivity of the hyperfine field, by its hysteresis, detailing and complementing information obtained with macroscopic me...
International Nuclear Information System (INIS)
Genin, J.-M.R.; Refait, Ph.; Simon, L.; Drissi, S.H.
1998-01-01
Fe(II)-Fe(III) hydroxy-chloride, -sulphate and -carbonate were prepared by oxidation of a ferrous hydroxide precipitate in anion-containing aqueous solutions. The compounds are characterized by monitoring the redox potential E h and the pH of stochiometric suspension vs time with the appropriate concentration ratios. X-ray diffraction allows us to characterize the crystal structure by distinguishing 'green rust one' (GR1) from 'green rust two' (GR2). Since green rusts (GRs) are of a pyroaurite-sjoegrenite-like structure, i.e., consisting of intercalated foreign anions and water molecules in the interlayers between the brucite-like layers of Fe(OH) 2 , their chemical formulae can be determined from the Moessbauer spectra. Three quadrupole doublets are observed: D 1 and D 2 correspond to a ferrous state with isomershift IS of about 1.27 mm s -1 and quadrupole splittings QS of about 2.85 and 2.60 mm s -1 , respectively, whereas D 3 corresponds to a ferric state with IS and QS of about 0.4 mm s -1 . The hyperfine parameters of these doublets are similar from one green rust to another but their intensity ratios vary considerably. Finally, E h and pH equilibrium diagrams of the Fe species in the presence of chloride, sulphate and carbonate anions contained within the water solution are drawn and the thermodynamic conditions of existence and degrees of oxidation of green rusts are discussed
Wang, K.; Zhang, C. Y.; Jönsson, P.; Si, R.; Zhao, X. H.; Chen, Z. B.; Guo, X. L.; Chen, C. Y.; Yan, J.
2018-03-01
Employing two state-of-the-art methods, multiconfiguration Dirac-Hartree-Fock and second-order many-body perturbation theory, highly accurate calculations are performed for the lowest 272 fine-structure levels arising from the 2s22p3, 2s2p4, 2p5, 2s22p23l (l = s , p , d), 2s2p33l (l = s , p , d), and 2p43l (l = s , p , d) configurations in nitrogen-like Ge XXVI. Complete and consistent atomic data, including excitation energies, lifetimes, wavelengths, hyperfine structures, Landé gJ-factors, and E1, E2, M1, M2 line strengths, oscillator strengths, and transition rates among these 272 levels are provided. Comparisons are made between the present two data sets, as well as with other available experimental and theoretical values. The present data are accurate enough for identification and deblending of emission lines involving the n = 3 levels, and are also useful for modeling and diagnosing fusion plasmas.
Pulse Width Affects Scalp Sensation of Transcranial Magnetic Stimulation.
Peterchev, Angel V; Luber, Bruce; Westin, Gregory G; Lisanby, Sarah H
Scalp sensation and pain comprise the most common side effect of transcranial magnetic stimulation (TMS), which can reduce tolerability and complicate experimental blinding. We explored whether changing the width of single TMS pulses affects the quality and tolerability of the resultant somatic sensation. Using a controllable pulse parameter TMS device with a figure-8 coil, single monophasic magnetic pulses inducing electric field with initial phase width of 30, 60, and 120 µs were delivered in 23 healthy volunteers. Resting motor threshold of the right first dorsal interosseus was determined for each pulse width, as reported previously. Subsequently, pulses were delivered over the left dorsolateral prefrontal cortex at each of the three pulse widths at two amplitudes (100% and 120% of the pulse-width-specific motor threshold), with 20 repetitions per condition delivered in random order. After each pulse, subjects rated 0-to-10 visual analog scales for Discomfort, Sharpness, and Strength of the sensation. Briefer TMS pulses with amplitude normalized to the motor threshold were perceived as slightly more uncomfortable than longer pulses (with an average 0.89 point increase on the Discomfort scale for pulse width of 30 µs compared to 120 µs). The sensation of the briefer pulses was felt to be substantially sharper (2.95 points increase for 30 µs compared to 120 µs pulse width), but not stronger than longer pulses. As expected, higher amplitude pulses increased the perceived discomfort and strength, and, to a lesser degree the perceived sharpness. Our findings contradict a previously published hypothesis that briefer TMS pulses are more tolerable. We discovered that the opposite is true, which merits further study as a means of enhancing tolerability in the context of repetitive TMS. Copyright © 2016 Elsevier Inc. All rights reserved.
Widths of atomic 4s and 4p vacancy states, Z between 46 and 50
Chen, M. H.; Crasemann, B.; Yin, L. I.; Tsang, T.; Adler, I.
1976-01-01
X-ray photoelectron and Auger spectra involving N sub 1, N sub 2, and N sub 3 vacancy states of Pd, Ag, Cd, In, and Sn were measured and compared with results of free-atom calculations. As previously observed in Cu and Zn Auger spectra that involve 3d-band electrons, free-atom characteristics are found, with regard to widths and structure, in the Ag and Cd M sub 4-N sub 4,5 N sub 4,5 and M sub 5-N sub 4,5 N sub 4,5 Auger spectra that arise from transitions of 4d-band electrons. Theoretical N sub 1 widths computed with calculated free-atom Auger energies agree well with measurements. Theory, however, predicts wider N sub 2 than N sub 3 vacancy states (as observed for Xe), while the measured N sub 2 and N sub 3 widths are nearly equal to each other and to the average of the calculated N sub 2 and N sub 3 widths. The calculations are made difficult by the exceedingly short lifetime of some 4 p vacancies and by the extreme sensitivity of super-Coster-Kronig rates, which dominate the deexcitation to the transition energy and to the fine details of the atomic potential.