Sample records for widths alfven waves


    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Andries, J.; Soler, R.; Van Doorsselaere, T. [Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Arregui, I.; Terradas, J., E-mail: [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)


    Magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. Alfven waves and magneto-sonic waves are particular classes of MHD waves. These wave modes are clearly different and have pure properties in uniform plasmas of infinite extent only. Due to plasma non-uniformity, MHD waves have mixed properties and cannot be classified as pure Alfven or magneto-sonic waves. However, vorticity is a quantity unequivocally related to Alfven waves as compression is for magneto-sonic waves. Here, we investigate MHD waves superimposed on a one-dimensional non-uniform straight cylinder with constant magnetic field. For a piecewise constant density profile, we find that the fundamental radial modes of the non-axisymmetric waves have the same properties as surface Alfven waves at a true discontinuity in density. Contrary to the classic Alfven waves in a uniform plasma of infinite extent, vorticity is zero everywhere except at the cylinder boundary. If the discontinuity in density is replaced with a continuous variation of density, vorticity is spread out over the whole interval with non-uniform density. The fundamental radial modes of the non-axisymmetric waves do not need compression to exist unlike the radial overtones. In thin magnetic cylinders, the fundamental radial modes of the non-axisymmetric waves with phase velocities between the internal and the external Alfven velocities can be considered as surface Alfven waves. On the contrary, the radial overtones can be related to fast-like magneto-sonic modes.

  2. Nonlinear Landau damping and Alfven wave dissipation (United States)

    Vinas, Adolfo F.; Miller, James A.


    Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.

  3. Alfven wave. DOE Critical Review Series

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, A.; Uberoi, C.


    This monograph deals with the properties of Alfven waves and with their application to fusion. The book is divided into 7 chapters dealing with linear properties in homogeneous and inhomogeneous plasmas. Absorption is treated by means of kinetic theory. Instabilities and nonlinear processes are treated in Chapters 1 to 6, and the closing chapter is devoted to theory and experiments in plasma heating by Alfven waves. (MOW)

  4. Nonlinear Evolution of Alfvenic Wave Packets (United States)

    Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.


    Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.

  5. Nonlinear propagation of short wavelength drift-Alfven waves

    DEFF Research Database (Denmark)

    Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens


    Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two...

  6. Production of Alfven Daughter Waves Through Nonlinear Interactions of Counterpropagating Alfven Waves (United States)

    Hamilton, David; Dorfman, Seth; Howes, Gregory; Carter, Troy


    The current theoretical understanding of astrophysical turbulence is based largely upon the nonlinear interactions between counterpropagating Alfven waves. These interactions are the fundamental building block used to model energy transfer from large to small scales. We present current experimental findings obtained in a laboratory plasma at the Large Plasma Device (LAPD), in which counterpropagating Alfven waves with crossed polarizations interacted with each other after being generated by antennas at the two ends of the device. This work is largely based off of previous efforts conducted at the LAPD by G. G. Howes, et al., but with differing key parameters, such as the amplitudes and frequencies of the two waves. We expect to find a daughter wave produced by the nonlinear interactions of the two parent waves. Additionally, ongoing analysis may reveal the same phenomenon to occur between the main daughter wave and either of the two parent waves; this effect has not yet been observed in the laboratory. This work may assist in furthering our understanding of the energy cascade effect in astrophysical turbulence. This work was performed at UCLA's Basic Plasma Science Facility, which is supported by the DOE and NSF.

  7. Heating of solar coronal holes by reflected Alfven waves (United States)

    Moore, R. L.; Musielak, Z. E.; Suess, S. T.; An, C.-H.


    As a continuation of the work of Moore et al. (1991), who found evidence that coronal holes are heated by Alfven waves that are reflected back down within the coronal holes, this paper shows that to demonstrate this evidence, it is only necessary to consider a subset of the Moore et al. models, namely, those having radial magnetic field. Using these models, it is shown that the Alfven velocity is not constant in the atmosphere of coronal holes, but changes with height (or radius), causing downward reflection of all upward Alfven waves of sufficiently long wavelength (or period).


    Energy Technology Data Exchange (ETDEWEB)

    Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail:, E-mail:, E-mail:, E-mail: [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)


    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  9. Excitation of kinetic Alfven waves by resonant mode conversion and longitudinal heating of magnetized plasmas (United States)

    Tanaka, Motohiko; Sato, Tetsuya; Hasegawa, A.


    The excitation of the kinetic Alfven wave by resonant mode conversion and longitudinal heating of the plasma by the kinetic Alfven wave were demonstrated on the basis of a macroscale particle simulation. The longitudinal electron current was shown to be cancelled by the ions. The kinetic Alfven wave produced an ordered motion of the plasma particles in the wave propagation direction. The electrons were pushed forward along the ambient magnetic field by absorbing the kinetic Alfven wave through the Landau resonance.

  10. Cutoff frequencies for Alfven waves in the solar atmosphere (United States)

    Perera, B. L. Harsha Kalpanie

    Propagation of linear Alfven waves in the isothermal and non-isothermal solar atmosphere is investigated numerically and analytically. It is shown that the two wave variables, the velocity and magnetic field perturbations, behave differently and that there is a range of wave frequencies for which the wave behavior changes from propagating to non-propagating. The so-called transition and turning points corresponding to this change are determined analytically, and their locations in the atmosphere are calculated and verified against the numerical results. The transition and turning points are then used to introduce cutoff frequencies, which are different for different wave variables. The main result is that there isn't a unique cutoff frequency for Alfven waves. Instead, a number of cutoff frequencies can be introduced depending upon the method used to define them, as well as on the choice of the wave variable used to describe the waves. Relevance of the obtained results to recent observations of Alfven waves in the solar atmosphere is also discussed. A concept of global cutoff frequencies is also introduced by using Leighton's, Hille's and Kneser's oscillation theorems, as well as the Sturm comparison theorems. The oscillation theorems have been applied to bounded and unbounded Alfven wave equations for both the velocity and magnetic field wave variables. The obtained results demonstrated that the global cutoff frequency and the local cutoff frequency are two different physical concepts. Furthermore, the latter exists if and only if the wave frequency is greater than the former. These analytical results have been verified using numerical solutions of the linear Alfven wave equations. The original ideal MHD equations were modified by taking into account the displacement current, and several oscillations theorems were applied to the resulting wave equations. As expected, only oscillatory solutions were found. The results presented in this PhD dissertation give strong

  11. Parametric generation of Alfven and sound waves in the solar atmosphere. Isothermal atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Petrukhin, N.S.; Fajnshtejn, S.M. (Gor' kovskij Politekhnicheskij Inst. (USSR))

    The parametric instability of Alfven and sound waves in an isothermal layer of the solar plasma is investigated. Conditions of the wave generation are found under the condition that the velocities of Alfven waves and isothermal sound are constant. The results obtained are used for the interpretation of attenuation of Alfven wave fluxes in solar spots.

  12. Nonlinear Spatial Absorption of Alfven Waves by Dissipative Plasma (United States)

    Gavrikov, M. B.; Taiurskii, A. A.


    A mathematical model is proposed for explaining anomalous heating of the solar corona by Alfven waves generated in lower, much cooler, layers of the Sun. Numerical analysis shows that the absorption of Alfven waves occurs at wavelengths of the order of skin depth, in which case neither the classical nor Hall’s MHD equations are applicable. Therefore, our research was based on the equations of two-fluid magnetohydrodynamics that fully take into account the inertia of the electrons. This investigation reveals some important features of the absorption process, in particular: the depth of the heated layer of the solar corona is finite and the parameters of the Alfven waves stabilize to a quasi-stationary regime whose parameters can be found.

  13. First Results of PIC Modeling of Kinetic Alfven Wave Dissipation (United States)

    Chulaki, Anna; Hesse, Michael; Zenitani, Seiji


    We present first results of an investigation of the kinetic damping of Alfven wave turbulence. The methodology is based on a fully electromagnetic, three-dimensional, particle in cell code. The calculation is initialized by an Alfven wave spectrum. Subsequently, a cascade develops, and damping by coupling to both ions and electrons is observed. We discuss results of these calculations, and present first estimates of damping rates and of the effects of energy transfer on ion and electron distributions. The results pertain to solar wind heating and acceleration.

  14. Neutrino induced vorticity, Alfven waves and the normal modes

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Jitesh R. [Theory Division, Physical Research Laboratory, Ahmedabad (India); George, Manu [Theory Division, Physical Research Laboratory, Ahmedabad (India); Indian Institute of Technology, Department of Physics, Ahmedabad (India)


    We consider a plasma consisting of electrons and ions in the presence of a background neutrino gas and develop the magnetohydrodynamic equations for the system. We show that the electron neutrino interaction can induce vorticity in the plasma even in the absence of any electromagnetic perturbations if the background neutrino density is left-right asymmetric. This induced vorticity supports a new kind of Alfven wave whose velocity depends on both the external magnetic field and on the neutrino asymmetry. The normal mode analysis show that in the presence of neutrino background the Alfven waves can have different velocities. We also discuss our results in the context of dense astrophysical plasma such as magnetars and show that the difference in the Alfven velocities can be used to explain the observed pulsar kick. We discuss also the relativistic generalisation of the electron fluid in presence of an asymmetric neutrino background. (orig.)

  15. A new way to convert Alfven waves into heat in solar coronal holes - Intermittent magnetic levitation (United States)

    Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.; An, C.-H.


    In our recent analysis of Alfven wave reflection in solar coronal holes, we found evidence that coronal holes are heated by reflected Alfven waves. This result suggests that the reflection is inherent to the process that dissipates these Alfven waves into heat. We propose a novel dissipation process that is driven by the reflection, and that plausibly dominates the heating in coronal holes.

  16. Observations of optical aurora modulated by resonant Alfven waves

    Energy Technology Data Exchange (ETDEWEB)

    Xu, B.L.; Samson, C.; Liu, W.W. [Univ. of Alberta (Canada)] [and others


    The authors present a study of the modulation behavior of optical aurora, done using the CANOPUS array to look at the optical lines 5577 and 4709{angstrom}, along with magnetometer data. They looked for modulation in the range 1 to 4 mHz, which would be an indication of Alfven wave modulation by resonant waves propagating along field lines. The authors show by several examples that such modulation is seen over an array of latitudes, and that they typically see spectral peaks near 1.3, 1.9, and 3.1 mHz, and in addition large phase shifts are observed when the effects are looked at across the latitude maximum where they are observed. These observations support resonant Alfven waves as the origin of such modulation effects.

  17. Generation of sound by Alfven waves with random phases in the solar atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Petrukhin, N.S.; Fainshtein, S.M.


    The problem of the excitation of sound by Alfven waves meeting in the solar plasma is discussed. Kinetic equations for the interacting waves are derived and analyzed on the assumption that the Alfven waves have random phases. Estimates are given which show the possibility of the generation of LF-pulsations in the solar atmosphere.

  18. Alfven Waves Underlying Ionospheric Destabilization: Ground-Based Observations (United States)

    Hirsch, Michael

    During geomagnetic storms, terawatts of power in the million mile-per-hour solar wind pierce the Earth's magnetosphere. Geomagnetic storms and substorms create transverse magnetic waves known as Alfven waves. In the auroral acceleration region, Alfven waves accelerate electrons up to one-tenth the speed of light via wave-particle interactions. These inertial Alfven wave (IAW) accelerated electrons are imbued with sub-100 meter structure perpendicular to geomagnetic field B. The IAW electric field parallel to B accelerates electrons up to about 10 keV along B. The IAW dispersion relation quantifies the precipitating electron striation observed with high-speed cameras as spatiotemporally dynamic fine structured aurora. A network of tightly synchronized tomographic auroral observatories using model based iterative reconstruction (MBIR) techniques were developed in this dissertation. The TRANSCAR electron penetration model creates a basis set of monoenergetic electron beam eigenprofiles of auroral volume emission rate for the given location and ionospheric conditions. Each eigenprofile consists of nearly 200 broadband line spectra modulated by atmospheric attenuation, bandstop filter and imager quantum efficiency. The L-BFGS-B minimization routine combined with sub-pixel registered electron multiplying CCD video stream at order 10 ms cadence yields estimates of electron differential number flux at the top of the ionosphere. Our automatic data curation algorithm reduces one terabyte/camera/day into accurate MBIR-processed estimates of IAW-driven electron precipitation microstructure. This computer vision structured auroral discrimination algorithm was developed using a multiscale dual-camera system observing a 175 km and 14 km swath of sky simultaneously. This collective behavior algorithm exploits the "swarm" behavior of aurora, detectable even as video SNR approaches zero. A modified version of the algorithm is applied to topside ionospheric radar at Mars and

  19. Alfven wave trapping, network microflaring, and heating in solar coronal holes (United States)

    Moore, R. L.; Suess, S. T.; Musielak, Z. E.; An, C.-H.


    Fresh evidence that much of the heating in coronal holes is provided by Alfven waves is presented. This evidence comes from examining the reflection of Alfven waves in an isothermal hydrostatic model coronal hole with an open magnetic field. Reflection occurs if the wavelength is as long as the order of the scale height of the Alfven velocity. For Alfven waves with periods of about 5 min, and for realistic density, magnetic field strength, and magnetic field spreading in the model, the waves are reflected back down within the model hole if the coronal temperature is only slightly less than 1.0 x 10 to the 6th K, but are not reflected and escape out the top of the model if the coronal temperature is only slightly greater than 1.0 x 10 to the 6th K. Because the spectrum of Alfven waves in real coronal holes is expected to peak around 5 min and the temperature is observed to be close to 1.0 x 10 to the 6th K, the sensitive temperature dependence of the trapping suggests that the temperature in coronal holes is regulated by heating by the trapped Alfven waves.

  20. Nonlinear excitation of acoustic modes by large amplitude Alfv\\'en waves in a laboratory plasma

    CERN Document Server

    Dorfman, S


    The nonlinear three-wave interaction process at the heart of the parametric decay process is studied by launching counter-propagating Alfv\\'en waves from antennas placed at either end of the Large Plasma Device (LAPD). A resonance in the beat wave response produced by the two launched Alfv\\'en waves is observed and is identified as a damped ion acoustic mode based on the measured dispersion relation. Other properties of the interaction including the spatial profile of the beat mode and response amplitude are also consistent with theoretical predictions for a three-wave interaction driven by a non-linear pondermotive force.

  1. Multi-fluid Global Coronal Model with Alfven Wave Turbulence: Validation with SOHO/SUMER data (United States)

    van der Holst, B.


    We present a generalization of the AWSoM model, a global solar corona model with low-frequency Alfven wave turbulence (van der Holst et al., 2014). The new extended model includes electron and multi-ion temperatures (proton, alpha particles and heavy ions). The coronal heating is addressed via outward propagating Alfven waves that are partially reflected by the Alfven speed gradients. The resulting counter-propagating waves are responsible for the nonlinear turbulent cascade. To apportion the wave dissipation to the electron and ion temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating as described by Chandran et al. (2011, 2013). This heat partitioning results in a more than mass proportional heating among ions. We validate the model result with SOHO/SUMER data.

  2. Alfven wave. [Book on linear and nonlinear properties for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, A.; Uberoi, C.


    Seven chapters are included. Chapters 1 and 2 introduce the Alfven wave and describe its linear properties in a homogeneous medium. Chapters 3 and 4 cover the effects of inhomogeneities on these linear properties. Particular emphasis is placed on the appearance of a continuum spectrum and the associated absorption of the Alfven wave which arise due to the inhomogeneity. The explanation of the physical origin of absorption is given using kinetic theory. Chapter 5 is devoted to the associated plasma instabilities. Nonlinear effects discussed in Chapter 6 include quasilinear diffusion, decay, a solitary wave, and a modulational instability. The principles of Alfven wave heating, a design example and present-day experimental results are described in Chapter 7.

  3. Parametric generation of Alfven and sound waves in the solar atmosphere. A homogeneous medium

    Energy Technology Data Exchange (ETDEWEB)

    Petrukhin, N.S.; Fajnshtejn, S.M. (Gor' kovskij Politekhnicheskij Inst. (USSR))

    The parametric generation of Alfven and sound waves in a homogeneous plasma layer with constant values of Alfven (Csub(A)) and sound (Csub(S)) velocities is considered. The two cases are studied. In the first case Csub(A) > Csub(S) which one is realized in active regions. The second one Csub(S) > Csub(A) is taken place in the quiet chromosphere. Conditions are found out for excitation of waves at different ratios of magnetic and gas-kinetic pressures. Coefficients of the nonlinear wave scattering in a layer of the solar plasma have been found.

  4. Exploring the Use of Alfven Waves in Magnetometer Calibration at Geosynchronous Orbit (United States)

    Bentley, John; Sheppard, David; RIch, Frederick; Redmon, Robert; Loto'aniu, Paul; Chu, Donald


    An Alfven wave is a type magnetohydrodynamicwave that travels through a conducting fluid under the influence of a magnetic field. Researchers have successfully calculated offset vectors of magnetometers in interplanetary space by optimizing the offset to maximize certain Alfvenic properties of observed waves (Leinweber, Belcher). If suitable Alfven waves can be found in the magnetosphere at geosynchronous altitude then these techniques could be used to augment the overall calibration plan for magnetometers in this region such as on the GOES spacecraft, possibly increasing the time between regular maneuvers. Calibration maneuvers may be undesirable because they disrupt the activities of other instruments. Various algorithms to calculate an offset using Alfven waves were considered. A new variation of the Davis-Smith method was derived because it can be mathematically shown that the Davis-Smith method tolerates filtered data, which expands potential applications. The variant developed was designed to find only the offset in the plane normal to the main field because the overall direction of Earth's magnetic field rarely changes, and theory suggests the Alfvenic disturbances occur transverse to the main field. Other variations of the Davis-Smith method encounter problems with data containing waves that propagate in mostly the same direction. A searching algorithm was then designed to look for periods of time with potential Alfven waves in GOES 15 data based on parameters requiring that disturbances be normal to the main field and not change field magnitude. Final waves for calculation were hand-selected. These waves produced credible two-dimensional offset vectors when input to the Davis-Smith method. Multiple two-dimensional solutions in different planes can be combined to get a measurement of the complete offset. The resulting three dimensional offset did not show sufficient precision over several years to be used as a primary calibration method, but reflected

  5. Heating of solar coronal loops by resonant absorption of Alfven waves (United States)

    Grossmann, William; Smith, Robert A.


    Numerical calculations governing the efficiency of coronal loop heating by the resonant absorption of shear Alfven waves are reported. The loop structure is modeled by a class of axisymmetric force-free equilibria of a long straight cylinder, approximating a large aspect ratio loop. For a range of parameters characterizing the evolution of solar coronal loops, the absorption bandwidth falls in the frequency range of the photospheric motions due to granulation and p-modes. Resonant Alfven wave absorption is thus a viable mechanism for coronal loop heating.

  6. Differential field equations for the MHD waves and wave equation of Alfven; Las ecuaciones diferenciales de campo para las ondas MHD y la ecuacion de onda de Alfven

    Energy Technology Data Exchange (ETDEWEB)

    Fierros Palacios, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)


    In this work the complete set of differential field equations which describes the dynamic state of a continuos conducting media which flow in presence of a perturbed magnetic field is obtained. Then, the thermic equation of state, the wave equation and the conservation law of energy for the Alfven MHD waves are obtained. [Spanish] Es este trabajo se obtiene el conjunto completo de ecuaciones diferenciales de campo que describen el estado dinamico de un medio continuo conductor que se mueve en presencia de un campo magnetico externo perturbado. Asi, se obtiene la ecuacion termica de estado, la ecuacion de onda y la ley de la conservacion de la energia para las ondas de Alfven de la MHD.

  7. Stability of Global Alfven Waves (Tae, Eae) in Jet Tritium Discharges

    NARCIS (Netherlands)

    Kerner, W.; Borba, D.; Huysmans, G. T. A.; Porcelli, F.; Poedts, S.; Goedbloed, J. P.; Betti, R.


    The interaction of alpha-particles in JET tritium discharges with global Alfven waves via inverse Landau damping is analysed. It is found that alpha-particle driven eigenmodes were stable in the PTE1 and should also be stable in a future 50:50 deuterium-tritium mix discharge aiming at Q(DT) = 1,

  8. Nonlinear evolution of a large-amplitude circularly polarized Alfven wave: High beta (United States)

    Ghosh, S.; Vinas, A. F.; Goldstein, M. L.


    The nonlinear dynamics following saturation of the parametric instabilities of a monochromatic field-aligned large-amplitude circularly polarized Alfven wave is investigated via direct numerical simulation in the case of high plasma beta and no wave dispersion. The magnetohydrodynamic (MHD) code permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Turbulent cascades develop after saturation of two coupled oblique three-wave parametric instabilities; one of which is an oblique filamentationlike instability reported earlier. Remnants of the parametric processes, as well as of the original Alfven pump wave, persist during late nonlinear times. Nearly incompressible MHD features such as spectral anisotropies appear as well.

  9. Nonlinear interaction of fast particles with Alfven waves in toroidal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.; Borba, D.; Huysmans, G.T.A.; Kerner, W. [JET Joint Undertaking, Abingdon (United Kingdom); Berk, H.L. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies


    A numerical algorithm to study the nonlinear, resonant interaction of fast particles with Alfven waves in tokamak geometry has been developed. The scope of the formalism is wide enough to describe the nonlinear evolution of fishbone modes, toroidicity-induced Alfven eigenmodes and ellipticity-induced Alfven eigenmodes, driven by both passing and trapped fast ions. When the instability is sufficiently weak, it is known that the wave-particle trapping nonlinearity will lead to mode saturation before wave-wave nonlinearities are appreciable. The spectrum of linear modes can thus be calculated using a magnetohydrodynamic normal-mode code, then nonlinearly evolved in time in an efficient way according to a two-time-scale Lagrangian dynamical wave model. The fast particle kinetic equation, including the effect of orbit nonlinearity arising from the mode perturbation, is simultaneously solved of the deviation, {delta}f = f {minus} f{sub 0}, from an initial analytic distribution f{sub 0}. High statistical resolution allows linear growth rates, frequency shifts, resonance broadening effects, and nonlinear saturation to be calculated quickly and precisely. The results have been applied to an ITER instability scenario. Results show that weakly-damped core-localized modes alone cause negligible alpha transport in ITER-like plasmas--even with growth rates one order of magnitude higher than expected values. However, the possibility of significant transport in reactor-type plasmas due to weakly unstable global modes remains an open question.

  10. Parametric instabilities of large amplitude Alfven waves with obliquely propagating sidebands (United States)

    Vinas, A. F.; Goldstein, M. L.


    This paper presents a brief report on properties of the parametric decay and modulational, filamentation, and magnetoacoustic instabilities of a large amplitude, circularly polarized Alfven wave. We allow the daughter and sideband waves to propagate at an arbitrary angle to the background magnetic field so that the electrostatic and electromagnetic characteristics of these waves are coupled. We investigate the dependance of these instabilities on dispersion, plasma/beta, pump wave amplitude, and propagation angle. Analytical and numerical results are compared with numerical simulations to investigate the full nonlinear evolution of these instabilities.

  11. Preferential Heating of Oxygen 5+ Ions by Finite-Amplitude Oblique Alfven Waves (United States)

    Maneva, Yana G.; Vinas, Adolfo; Araneda, Jamie; Poedts, Stefaan


    Minor ions in the fast solar wind are known to have higher temperatures and to flow faster than protons in the interplanetary space. In this study we combine previous research on parametric instability theory and 2.5D hybrid simulations to study the onset of preferential heating of Oxygen 5+ ions by large-scale finite-amplitude Alfven waves in the collisionless fast solar wind. We consider initially non-drifting isotropic multi-species plasma, consisting of isothermal massless fluid electrons, kinetic protons and kinetic Oxygen 5+ ions. The external energy source for the plasma heating and energization are oblique monochromatic Alfven-cyclotron waves. The waves have been created by rotating the direction of initial parallel pump, which is a solution of the multi-fluid plasma dispersion relation. We consider propagation angles theta less than or equal to 30 deg. The obliquely propagating Alfven pump waves lead to strong diffusion in the ion phase space, resulting in highly anisotropic heavy ion velocity distribution functions and proton beams. We discuss the application of the model to the problems of preferential heating of minor ions in the solar corona and the fast solar wind.

  12. Nonresonant absorption of shear Alfven waves. [in solar coronal heating and solar wind acceleration (United States)

    Strauss, H. R.


    Resonant absorption of shear Alfven waves is thought to be a likely candidate to explain heating of the solar corona and acceleration of the solar wind. A difficulty with the theory is that the absorption process is slow. Moreover, heating occurs in a very thin layer. A faster absorption mechanism is nonresonant absorption by compressional viscosity, in a curved magnetic field. Heating is nonresonant and is not localized to a narrow layer. The effect could be quite important where the solar coronal magnetic field is strongly curved, in the chromosphere. It could also be important on open field lines in the upper corona, where the compressional viscosity is large. It might imply that a significant part of outgoing Alfven waves are absorbed in the corona.

  13. Electrostatic Wave Generation and Transverse Ion Acceleration by Alfvenic Wave Components of BBELF Turbulence (United States)

    Singh, Nagendra; Khazanov, George; Mukhter, Ali


    We present results here from 2.5-D particle-in-cell simulations showing that the electrostatic (ES) components of broadband extremely low frequency (BBELF) waves could possibly be generated by cross-field plasma instabilities driven by the relative drifts between the heavy and light ion species in the electromagnetic (EM) Alfvenic component of the BBELF waves in a multi-ion plasma. The ES components consist of ion cyclotron as well as lower hybrid modes. We also demonstrate that the ES wave generation is directly involved in the transverse acceleration of ions (TAI) as commonly measured with the BBELF wave events. The heating is affected by ion cyclotron resonance in the cyclotron modes and Landau resonance in the lower hybrid waves. In the simulation we drive the plasma by the transverse electric field, E(sub y), of the EM waves; the frequency of E(sub y), omega(sub d), is varied from a frequency below the heavy ion cyclotron frequency, OMEGA(sub h), to below the light ion cyclotron frequency, OMEGA(sub i). We have also performed simulations for E(sub y) having a continuous spectrum given by a power law, namely, |Ey| approx. omega(sub d) (exp -alpha), where the exponent alpha = _, 1, and 2 in three different simulations. The driving electric field generates polarization and ExB drifts of the ions and electrons. When the interspecies relative drifts are sufficiently large, they drive electrostatic waves, which cause perpendicular heating of both light and heavy ions. The transverse ion heating found here is discussed in relation to observations from Cluster, FAST and Freja.

  14. The Parametric Instability of Alfven Waves: Effects of Temperature Anisotropy

    Czech Academy of Sciences Publication Activity Database

    Tenerani, A.; Velli, M.; Hellinger, Petr


    Roč. 851, č. 2 (2017), 99/1-99/9 ISSN 0004-637X R&D Projects: GA ČR GA15-10057S Institutional support: RVO:67985815 Keywords : instabilities * plasmas * waves Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.533, year: 2016

  15. Oblique Propagation and Dissipation of Alfven Waves in Coronal ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 28; Issue 1 ... Sun: Alfvén waves; coronal holes; solar wind. ... For any propagation angle, the energy flux density and damping length scale also show a decrement in the source region of the solar wind (< 1.05 R⊙) where these may be one of the primary ...

  16. Parametric instabilities of circularly polarized large-amplitude dispersive Alfven waves: excitation of parallel-propagating electromagnetic daughter waves

    Energy Technology Data Exchange (ETDEWEB)

    Vinas, A.F.; Goldstein, M.L. (National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center)


    The parametric decay and modulational instabilities of a large-amplitude circularly polarized dispersive Alfven wave are investigated. The treatment is more general than that of previous derivations based on the two-fluid equations in that allowance is made for propagation of the unstable daughter waves at arbitrary angles to the background magnetic field, although the main concern is the exploration of new aspects of propagation parallel to the DC magnetic field. In addition to the well-known coupling of pump waves to electrostatic daughter waves, a new parametric channel is found where the pump wave couples directly to electromagnetic daughter waves. The growth rate of the electromagnetic instability increases monotonically with increasing pump wave amplitude. Analysis confirms that, for decay, the dominant process is coupling to electrostatic daughter waves, at least for parallel propagation. For modulation, the coupling to electromagnetic daughter waves usually dominates, suggesting that the parametric modulational instability is really an electromagnetic phenomena. (author).

  17. Evolution of large amplitude Alfven waves in solar wind plasmas: Kinetic-fluid models (United States)

    Nariyuki, Y.


    Large amplitude Alfven waves are ubiquitously observed in solar wind plasmas. Mjolhus(JPP, 1976) and Mio et al(JPSJ, 1976) found that nonlinear evolution of the uni-directional, parallel propagating Alfven waves can be described by the derivative nonlinear Schrodinger equation (DNLS). Later, the multi-dimensional extension (Mjolhus and Wyller, JPP, 1988; Passot and Sulem, POP, 1993; Gazol et al, POP, 1999) and ion kinetic modification (Mjolhus and Wyller, JPP, 1988; Spangler, POP, 1989; Medvedev and Diamond, POP, 1996; Nariyuki et al, POP, 2013) of DNLS have been reported. Recently, Nariyuki derived multi-dimensional DNLS from an expanding box model of the Hall-MHD system (Nariyuki, submitted). The set of equations including the nonlinear evolution of compressional wave modes (TDNLS) was derived by Hada(GRL, 1993). DNLS can be derived from TDNLS by rescaling of the variables (Mjolhus, Phys. Scr., 2006). Nariyuki and Hada(JPSJ, 2007) derived a kinetically modified TDNLS by using a simple Landau closure (Hammet and Perkins, PRL, 1990; Medvedev and Diamond, POP, 1996). In the present study, we revisit the ion kinetic modification of multi-dimensional TDNLS through more rigorous derivations, which is consistent with the past kinetic modification of DNLS. Although the original TDNLS was derived in the multi-dimensional form, the evolution of waves with finite propagation angles in TDNLS has not been paid much attention. Applicability of the resultant models to solar wind turbulence is discussed.

  18. Electron trapping and acceleration by kinetic Alfven waves in the inner magnetosphere (United States)

    Artemyev, A. V.; Rankin, R.; Blanco, M.


    In this paper we study the interaction of kinetic Alfven waves generated near the equatorial plane of the magnetosphere with electrons having initial energies up to ˜100 eV. Wave-particle interactions are investigated using a theoretical model of trapping into an effective potential generated by the wave parallel electric field and the mirror force acting along geomagnetic field lines. It is demonstrated that waves with an effective potential amplitude on the order of ˜100-400 V and with perpendicular wavelengths on the order of the ion gyroradius can trap and efficiently accelerate electrons up to energies of several keV. Trapping acceleration corresponds to conservation of the electron magnetic moment and, thus, results in a significant decrease of the electron equatorial pitch angle with time. Analytical and numerical estimates of the maximum energy and probability of trapping are presented, and the application of the proposed model is discussed.

  19. Comment on Propagation and Dissipation of Alfven Waves in Coronal Holes (United States)

    Chandra, Suresh


    Dwivedi and Srivastava [1] (DS) investigated the propagation and dissipation of Alfven waves in coronal holes after accounting for the viscosity and magnetic diffusivity. After solving a set of equations with the help of computer results are reported by them. We find that the same set of equations can be solved even analytically. Since DS have not reported any values of physical parameters used by them except their expressions, we could not trace out the source of error. One reason for the difference in our results and those of DS can be assigned to some mistakes in their computer program or to the values of parameters used.

  20. Polarization and Compressibility of Oblique Kinetic Alfven Waves (United States)

    Hunana, Peter; Goldstein, M. L.; Passot, T.; Sulem, P. L.; Laveder, D.; Zank, G. P.


    Even though solar wind, as a collisionless plasma, is properly described by the kineticMaxwell-Vlasov description, it can be argued that much of our understanding of solar wind observational data comes from an interpretation and numerical modeling which is based on a fluid description of magnetohydrodynamics. In recent years, there has been a significant interest in better understanding the importance of kinetic effects, i.e. the differences between the kinetic and usual fluid descriptions. Here we concentrate on physical properties of oblique kinetic Alfvn waves (KAWs), which are often recognized as one of the key ingredients in the solar wind turbulence cascade. We use three different fluid models with various degrees of complexity and calculate polarization and magnetic compressibility of oblique KAWs (propagation angle q = 88), which we compare to solutions derived from linear kinetic theory. We explore a wide range of possible proton plasma b = [0.1,10.0] and a wide range of length scales krL = [0.001,10.0]. It is shown that the classical isotropic two-fluid model is very compressible in comparison with kinetic theory and that the largest discrepancy occurs at scales larger than the proton gyroscale. We also show that the two-fluid model contains a large error in the polarization of electric field, even at scales krL 1. Furthermore, to understand these discrepancies between the two-fluid model and the kinetic theory, we employ two versions of the Landau fluid model that incorporate linear low-frequency kinetic effects such as Landau damping and finite Larmor radius (FLR) corrections into the fluid description. It is shown that Landau damping significantly reduces the magnetic compressibility and that FLR corrections (i.e. nongyrotropic contributions) are required to correctly capture the polarization.We also show that, in addition to Landau damping, FLR corrections are necessary to accurately describe the damping rate of KAWs. We conclude that kinetic effects

  1. High-Frequency Electrostatic Wave Generation and Transverse Ion Acceleration by Low Alfvenic Wave Components of BBELF Turbulence (United States)

    Singh, Nagendra; Khazanov, George; Mukhter, Ali


    Satellite observations in the auroral plasma have revealed that extremely low frequency (ELF) waves play a dominant role in the acceleration of electrons and ions in the auroral plasma. The electromagnetic components of the ELF (EMELF) waves are the electromagnetic ion cyclotron (EMIC) waves below the cyclotron frequency of the lightest ion species in a multi-ion plasma. Shear Alfv6n waves (SAWS) constitute the lowest frequency components of the ELF waves below the ion cyclotron frequency of the heaviest ion. The -2 mechanism for the transfer of energy from such EMELF waves to ions affecting transverse ion heating still remains a matter of debate. A very ubiquitous fe8ture of ELF waves now observed in several rocket and satellite experiments is that they occur in conjunction with high-frequency electrostatic waves. The frequency spectrum of the composite wave turbulence extends from the low frequency of the Alfvenic waves to the high frequency of proton plasma frequency and/or the lower hybrid frequency. The spectrum does not show any feature organized by the ion cyclotron frequencies and their harmonics. Such broadband waves consisting of both the EM and ES waves are now popularly referred as BBELF waves. We present results here from 2.5-D particle-in-cell simulations showing that the ES components are directly generated by cross- field plasma instabilities driven by the drifts of the ions and electrons in the EM component of the BBELF waves.

  2. Parametric instabilities of circularly polarized large-amplitude dispersive Alfven waves: excitation of obliquely-propagating daughter and side-band waves

    Energy Technology Data Exchange (ETDEWEB)

    Vinas, A.F.; Goldstein, M.L. (National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center)


    The parametric instabilities of a large-amplitude circularly polarized dispersive parallel-propagating Alfven wave are investigated. The treatment is more general than that of previous derivations based on the two-fluid equations in that allowance is made for propagation of the unstable daughter and side-band waves at arbitrary angles to the background (DC) magnetic field. The characteristics of the decay and modulational instabilities as functions of propagation angle are presented. It is found that in addition to the well-known decay and modulational instabilities, that at oblique and perpendicular propagation there is another parametric instability, namely the filamentation instability, which is characterized by a broad band-width in wavenumber. A second parametric process at oblique and perpendicular angles of propagation, namely the parametric magneto-acoustic instability is also investigated. The magneto-acoustic instability extends over a broad angular range, but has a very narrow band-width in wavenumber. The dispersive characteristics of the filamentation and magneto-acoustic instabilities as functions of plasma {beta}, dispersion {kappa} and pump amplitude {eta} for arbitrary propagation angles are reported. (author).

  3. Cowling channel formation through the ionosphere-magnetosphere coupling via Alfven waves (United States)

    Yoshikawa, Akimasa; Amm, Olaf; Fujii, Ryoichi


    An inclusive formulation of Magnetosphere-Ionosphere (MI) coupling system, which enables to describe the Cowling channel formation through the MI-coupling via the shear Alfven wave, is proposed. By applying the Walen-relation [Walen, 1944] to the Alfvenic disturbance near the ionosphere, arbitrary incompressible MHD fields (b,v) can be separated into the incident component to the ionosphere and the reflected component from the ionosphere. The separated incident component gives an electromotive force (emf) for the excitation of the MI-coupled system. In addition, the thermospheric wind dynamo also becomes a source of 'emf' in the ionosphere, while the reflected components are generated as a result of the MI-coupling process. Using this separation, we clarify that the MI-coupling processes are composed of the 'direct reflection' process for incident MHD field, the 'radiation' process for the thermospheric wind-driven dynamo, and the 'polarization' process for the charge separation originating from conductivity gradients. Clearly, the 'reflection' and the 'radiation' processes are caused by the cancellation process of the divergence of the primary Pedersen current (primary current means directly driven current by the 'emf' field). The 'polarization' process is caused by the both the divergent part of the primary Pedersen and of the primary Hall current. Since the direction of the primary Pedersen current and the direction of the primary Hall current are perpendicular to each other, the reflected fields generated to cancel out these two irrotational parts of the primary currents are also expected to be perpendicular to each other. Thus, the MI-coupled ionospheric current system can be separated into two orthogonal irrotational current systems, the first channel originating from the primary Pedersen current divergence (generator-channel) and the second channel from the primary Hall current divergence (loading-channel). A combination of these two channels forms so

  4. The dominant mode of standing Alfven waves at the synchronous orbit (United States)

    Cummins, W. D.; Countee, C.; Lyons, D.; Wiley, W., III


    Low-frequency oscillations of the earth's magnetic field recorded by a magnetometer on board ATS 1 have been examined for the 6-month interval between January and June 1968. Using evidence from OGO 5 and ATS 5 as well as the data from ATS 1, it is argued that the dominant mode at ATS 1 must be the fundamental rather than the second harmonic of a standing Alfven wave. It is concluded that these transverse oscillations are more accurately associated with magnetically disturbed days than with quiet days. From 14 instances when oscillations of distinctly different periods occurred during the same time interval at ATS 1, it is also concluded that higher harmonics can exist. The period ratio in seven of the 14 cases corresponds to the simultaneous occurrence of the second harmonic with the fundamental, and four other cases could be identified as the simultaneous occurrence of the fourth harmonic with the fundamental.


    Energy Technology Data Exchange (ETDEWEB)

    Evans, R. M. [NASA Goddard Space Flight Center, Space Weather Lab, Greenbelt, MD 20771 (United States); Opher, M. [Astronomy Department, Boston University, 675 Commonwealth Avenue, Boston, MA 02215 (United States); Oran, R.; Van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I. [Center for Space Environment Modeling, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Vasquez, A., E-mail: [Instituto de Astronomia y Fisica del Espacio (CONICET-UBA) and FCEN (UBA), CC 67, Suc 28, Ciudad de Buenos Aires (Argentina)


    The heating and acceleration of the solar wind is an active area of research. Alfven waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfven wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfven wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfven speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfven speed profile in the model. We find that, compared to a polytropic solar wind model, the wave

  6. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies (United States)

    Ofman, L.


    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  7. On the generation of Alfven wave current drive in low aspect ratio Tokamaks with neoclassical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Bruma, C.; Cuperman, S.; Komoshvili, K. [School of Physics and Astronomy, Tel Aviv University, Tel Aviv (Israel)


    Several low aspect ratio (spherical) Tokamaks (ST's) are now in operation or under construction. These devices would permit cost-effective and attractive embodiment of future fusion reactors: they would provide high {beta}, good confinement and steady state operation at modest field values. Now, a steady state reactor has to be sustained by non-inductively driven currents. Recently, the generation of non-inductive current drive by Alfven waves (AWCD) has been investigated theoretically within the framework of ideal (E{sub p}arallel=0) MHD and non-ideal, resistive (E{sub p}arallel{ne}0) MHD; however, in all these cases, the tokamak device consisted of a cylindrical plasma with simulated toroidal effects. Rather encouraging results have been obtained. In this work we further investigate AWCD in ST's as follows: (i) we use consistent equilibrium profiles with neoclassical conductivity corresponding to an ohmic START discharge; (ii) incorporate effects due to neoclassical conductivity in the elements of the resistive MHD dielectric tensor, in the solution of the full (E{sub p}arallel{ne}0) wave equation as well as in the calculation of AWCD; and (iii) carry out a systematic search for antenna parameters optimizing the AWCD. (author)

  8. Effects of density fluctuations on nonlinear evolution of low-frequency Alfven waves in solar wind plasmas (United States)

    Nariyuki, Y.; Seough, J.


    It is well known that low-frequency Alfven waves are unstable to parametric instabilities, in which these waves are nonlinearly coupled with density fluctuations [e.g, Nariyuki+Hada, JGR, 2007 and references therein]. In solar wind plasmas, low-frequency fluctuations with non-zero cross-helicity are frequently observed [e.g., Bruno+Carbone, Living Rev. Solar Phys. (2013) and references therein]. When the absolute values of normalized cross helicities are close to the unity, the fluctuations may be composed of uni-directionally (anti-sunward) propagating Alfven waves. The derivative nonlinear Schrodinger equation (DNLS) has been known as the mode of modulational instabilities of unidirectional Alfven waves [Mio et al, JPSJ, 1976; Mjolhus, JPP, 1976]. In the DNLS, the density fluctuations are assumed to be the quasi-static state, which is determined according to the ponderomotive force of envelope-modulated Alfven waves. The DNLS was extended to include the obliquely propagating, compressional component of magnetic field by Mjolhus and Wyller (JPP, 1988). The kinetically modified DNLS (KDNLS) has also been discussed by many authors [Rogister, POF, 1971; Mjolhus and Wyller, Phys. Scr, 1986; JPP, 1988; Spangler, POF B, 1989; 1990; Medvedev+Diamond, POP, 1996; Nariyuki et al, POP, 2013]. On the other hand, ion acoustic modes [Hada, 1993], large scale inhomogeneity of plasmas [Buti et al, APJ, 1999; Nariyuki, POP, 2015] and random density fluctuations [Ruderman, POP, 2002] can also affect nonlinear evolution of Alfven waves. At the present time, combined effects of these effects are not fully understood. In this presentation, we discuss two models: one of them is the model including both ion kinetic effects and ion acoustic mode and another is the model including finite thermal effects and random density fluctuations. In the former case, ion kinetic effects on both longitudinal [Nariyuki+Hada, JPSJ, 2007] and transverse modulational instabilities are discussed, while the

  9. Simulation and Theoretical Study of Spontaneous Excitation of Convective Cells by Kinetic Alfven Waves (United States)

    Lin, Yu; Zonca, Fulvio; Chen, Liu


    It has been recently demonstrated that, generally, electrostatic (ES) and magnetostatic (MS) convective cells (CCs), or zonal flows, can be excited simultaneously by kinetic Alfven waves (KAWs). In this paper, spontaneous excitations of electrostatic as well as magnetostatic convective cells by KAWs are investigated through hybrid simulations, and the results are compared with the analytical theory based on the nonlinear gyrokinetic equations. In the hybrid simulation, ions are treated as fully kinetic particles, and electrons are treated as a massless fluid. It is found that finite ion-Larmor-radius (FILR) effects play a crucial. Furthermore, ES and MS convective cells are intrinsically coupled and must be treated on an equal footing. Excellent agreement is obtained for mode structure and generation rate of convective cells by KAW, demonstrating that ESCC and MSCC are indeed coupled, and that spontaneous CC excitation is suppressed at long wavelength, showing the crucial destabilizing role of FILR effects in the excitation via modulational instabilities. This work is supported by US DoE, NSF, ITER-CN, and NSFC grants.

  10. Kinetic Alfven Waves and the Depletion of the Thermal Population in Extragalactic Jets (United States)

    Jafelice, L. C.; Opher, R.


    evident that both problems are intimately related to one another. Jafe- lice and Opher (1987a)(Astrophys. Space Sci. 137, 303)showed that an abundant generation of kinetic Alfven waves (KAw) within EJ and ERS is expected. In the present work we study the chain of processes: a) KAW accelerate thermal electrons along the background magnetic field producing suprathermal runaway electrons; b) which generate Langmuir waves and c) which in turn further accelerate a fraction of the runaway electrons to moderately relativistic energies. We show that assuming that there is no other source of a thermal population but the original one, the above sequence of processes can account for the consumption of thermal electrons in a time scale the source lifetime. Key o : GALAXIES-JETS - HYDROMAGNETICS

  11. The ion cyclotron turbulence generated by a low frequency kinetic Alfven wave, and the related turbulent heating of ions (United States)

    Mykhaylenko, Volodymyr S.; Mykhaylenko, Volodymyr V.; Lee, Hae June


    The ion cyclotron instability driven by the strong kinetic Alfven wave is investigated as a possible source of the anisotropic heating of ions in the coronal holes and solar wind. We present a novel model of a plasma with coupled inhomogeneous current and the sheared flow, which follows from the studies of the particles motion in the electric field of the kinetic Alfven wave of the finite wavelength. The investigation is performed employing the non-modal kinetic theory grounded on the shearing modes approach. The solution of the governing linear integral equation for the perturbed potential displays that the flow velocity shear, which for the corona conditions may be above the growth rate of the ion cyclotron instability in plasma with steady current, changes the exponential growth of the ion cyclotron potential on the power function of time, that impedes the growth of the unstable ion cyclotron wave and reduces the turbulent heating rate of ions across the magnetic field. This work was funded by National R&D Program through the National Research Foundation of Korea (NRF) (Grant No. NRF-2015R1D1A1A01061160).

  12. The effect of broad-band Alfven-cyclotron waves spectra on the preferential heating and differential acceleration of He{sup ++} ions in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Y. G. [Department of Physics, Catholic University of America, Washington DC, 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ofman, L. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Vinas, A. F. [Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)


    In anticipation of results from inner heliospheric missions such as the Solar Orbiter and the Solar Probe we present the results from 1.5D hybrid simulations to study the role of magnetic fluctuations for the heating and differential acceleration of He{sup ++} ions in the solar wind. We consider the effects of nonlinear Alfven-cyclotron waves at different frequency regimes. Monochromatic nonlinear Alfven-alpha-cyclotron waves are known to preferentially heat and accelerate He{sup ++} ions in collisionless low beta plasma. In this study we demonstrate that these effects are preserved when higherfrequency monochromatic and broad-band spectra of Alfven-proton-cyclotron waves are considered. Comparison between several nonlinear monochromatic waves shows that the ion temperatures, anisotropies and relative drift are quantitatively affected by the shift in frequency. Including a broad-band wave-spectrum results in a significant reduction of both the parallel and the perpendicular temperature components for the He{sup ++} ions, whereas the proton heating is barely influenced, with the parallel proton temperature only slightly enhanced. The differential streaming is strongly affected by the available wave power in the resonant daughter ion-acoustic waves. Therefore for the same initial wave energy, the relative drift is significantly reduced in the case of initial wave-spectra in comparison to the simulations with monochromatic waves.

  13. Excitation of low frequency Alfven eigenmodes in toroidal plasmas (United States)

    Liu, Yaqi; Lin, Zhihong; Zhang, Huasen; Zhang, Wenlu


    Global gyrokinetic simulations find that realistic density gradients of energetic particles can simultaneously excite low frequency Alfven eigenmodes in toroidal geometry, beta-induced Alfven-acoustic eigenmode (BAAE) and beta-induced Alfven eigenmode (BAE), with similar radial mode widths and comparable linear growth rates even though damping rate of BAAE is much larger than BAE in the absence of energetic particles. This surprising result is attributed to non-perturbative effects of energetic particles that modify ideal BAAE mode polarizations and nonlocal geometry effects that invalidate radially local dispersion relation. Dominant mode changes from BAAE in a larger tokamak to BAE in a smaller tokamak due to the dependence of wave-particle resonance condition on the tokamak size.

  14. Potential dominance of oscillating crescent waves in finite width tanks

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.


    Recently, it has been proposed that the emergence of previously observed oscillating crescent water wave patterns, created by class II (three-dimensional) instabilities which are in principle not dominant, could in fact be explained as an artifact of a finite width tank, combined with a suppression...... of the class I (Benjamin-Feir) instability. Within this context, we investigate quantitatively the dominance of class II deep water wave instabilities for particular transversal wavenumbers, and it is shown that the regions where non-phase-locked (oscillating) crescent wave patterns are locally dominant...

  15. Reflectionless wave dynamics in channels of variable depth and width (United States)

    Pelinovsky, Efim; Didenkulova, Ira; Shurgalina, Ekaterina


    In this work we discuss long wave dynamics in rectangular channels of variable depth and width. Demonstrated, that for conditions of "self-consistent channel" when Bc = const (B is a channel width, and c is a celerity), the wave propagates without inner reflection from the channel bottom and walls even if the function c(x) is arbitrary. It is shown, in the framework of the linear shallow-water theory, that the temporal shape of the travelling wave does not change with the distance; its amplitude and duration are constant. However, the spatial shape of the wave varies due to the change in celerity along the channel. In the framework of the nonlinear shallow-water theory, it is shown that the travelling wave deforms while the inner reflection from the channel bottom and walls is still absent. In this case dispersive effects lead to a disintegration of the initial wave into solitons. This process is studied in detail. Such unusual waves may propagate over long distances without loss of energy.

  16. ELF wave production by an electron beam emitting rocket system and its suppression on auroral field lines - Evidence for Alfven and drift waves (United States)

    Winckler, J. R.; Erickson, K. N.; Abe, Y.; Steffen, J. E.; Malcolm, P. R.


    Orthogonal probes on a free-flying plasma diagnostics payload are used to study ELF electric disturbances in the auroral ionosphere that are due to the injection of powerful electron beams. Frequency spectrograms are presented for various pitch angles, pulsing characteristics, and other properties of the injected beams; the large scale DC ionospheric convection electric field is measured, together with auroral particle precipitation, visual auroral forms, and ionospheric parameters. In view of the experimental results obtained, it is postulated that the observed ELF waves are in the Alfven and drift modes, and are generated by the positive vehicle potential during beam injection.

  17. Kinetic Effects in Parametric Instabilities of Finite Amplitude Alfven Waves in a Drifting Multi-Species Plasma (United States)

    Maneva, Y. G.; Araneda, J. A.; Poedts, S.


    We consider parametric instabilities of finite-amplitude large-scale Alfven waves in a low-beta collisionless multi-species plasma, consisting of fluid electrons, kinetic protons and a drifting population of minor ions. Complementary to many theoretical studies, relying on fluid or multi-fluid approach, in this work we present the solutions of the parametric instability dispersion relation, including kinetic effects in the parallel direction, along the ambient magnetic field. This provides us with the opportunity to predict the importance of some wave-particle interactions like Landau damping of the daughter ion-acoustic waves for the given pump wave and plasma conditions. We apply the dispersion relation to plasma parameters, typical for low-beta collisionless solar wind close to the Sun. We compare the analytical solutions to the linear stage of hybrid numerical simulations and discuss the application of the model to the problems of preferential heating and differential acceleration of minor ions in the solar corona and the fast solar wind. The results of this study provide tools for prediction and interpretation of the magnetic field and particles data as expected from the future Solar Orbiter and Solar Probe Plus missions.

  18. Width-modulated square-wave pulses for ultrasound applications. (United States)

    Smith, Peter R; Cowell, David M J; Freear, Steven


    A method of output pressure control for ultrasound transducers using switched excitation is described. The method generates width-modulated square-wave pulse sequences that are suitable for driving ultrasound transducers using MOSFETs or similar devices. Sequences are encoded using an optimized level-shifted, carrier-comparison, pulse-width modulation (PWM) strategy derived from existing PWM theory, and modified specifically for ultrasound applications. The modifications are: a reduction in carrier frequency so that the smallest number of pulses are generated and minimal switching is necessary; alteration of a linear carrier form to follow a trigonometric relationship in accordance with the expected fundamental output; and application of frequency modulation to the carrier when generating frequency-modulated, amplitude- tapered signals. The PWM method permits control of output pressure for arbitrary waveform sequences at diagnostic frequencies (approximately 5 MHz) when sampled at 100 MHz, and is applicable to pulse shaping and array apodization. Arbitrary waveform generation capability is demonstrated in simulation using convolution with a transducer's impulse response, and experimentally with hydrophone measurement. Benefits in coded imaging are demonstrated when compared with fixed-width square-wave (pseudo-chirp) excitation in coded imaging, including reduction in image artifacts and peak side-lobe levels for two cases, showing 10 and 8 dB reduction in peak side-lobe level experimentally, compared with 11 and 7 dB reduction in simulation. In all cases, the experimental observations correlate strongly with simulated data.

  19. Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liu [Univ. of California, Irvine, CA (United States)


    This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novel findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.

  20. Alfven Waves and Electron Energization and Their Interaction with Auroral Ionospheric Plasma Transport (United States)

    Jaafari, F. B.; Horwitz, J. L.; Jones, S.; Su, Y.; Zeng, W.


    When inertial Alfvén waves propagate along auroral field lines, they involve parallel electric fields which can accelerate auroral electrons. Here, we simulate the propagation of Alfvén waves through O+ and H+ auroral ionosphere-magnetosphere density profiles obtained from the UT Arlington Dynamic Fluid- Kinetic (DyFK) ionospheric plasma transport model. A linear one dimensional gyrofluid code [Jones and Parker, 2003] is used for the Alfvén wave description, incorporating electron inertia, electron pressure gradient and finite ion gyroradius effects. Then, the test particle approach of Su et al. [2004] is used to simulate the response of a distribution of electrons to these Alfvén wave electric fields. These electrons are incorporated into the DyFK model to produce a partially-self-consistent approach to producing the associated ionization and thermal electron heating within the ionosphere-magnetosphere system. Jones, S. T., and S. E. Parker (2003), Including electron inertia without advancing electron flow, J. Comput. Phys., 191, 322. Su, Y.-J., S. T. Jones, R. E. Ergun, and S. E. Parker (2004), Modeling of field-aligned electron bursts by dispersive Alfvén waves in the dayside auroral region, J. Geophys. Res., 109, A11201, doi:10.1029/2003JA010344.

  1. Kinetic Alfven Waves Carrying Intense Field Aligned Currents: Particle Trapping and Electron Acceleration (United States)

    Rankin, R.; Artemyev, A.


    It is now common knowledge that dispersive scale Alfvén waves can drive parallel electron acceleration [Lotko et al., JGR, 1998; Samson et al., Ann. Geophys., 2003; Wygant et al., JGR, 2002] and transverse ion energization in the auroral zone and inner magnetosphere [Johnson and Cheng, JGR, 2001; Chaston et al., 2004]. In this paper we show that relatively low energy electrons (plasma sheet electrons with energies ranging up to ˜100 eV) can be accelerated very efficiently as they interact nonlinearly with kinetic Alfvén waves (KAWs) that carry intense field aligned currents from the equatorial plane toward the ionosphere in the inner magnetosphere. We propose a theoretical model describing electron trapping into an effective wave potential generated by parallel wave electric fields (with perpendicular wavelengths on the order of the ion gyro-radius) and the mirror force acting on electrons as they propagate along geomagnetic field lines. We demonstrate that waves with an electric potential amplitude between ~100 - 400 V can trap and accelerate electrons to energies approaching several keVs. Trapping acceleration corresponds to conservation of the electron magnetic moment and, thus, results in a significant decrease of the electron equatorial pitch-angle with time. Analytical and numerical estimates of the maximum energy and probability of trapping are presented. We discuss the application of the proposed model in light of recent observations of electromagnetic fluctuations in the inner magnetosphere that are present during periods of strong geomagnetic activity [Chaston et al., GRL, 2014; Califf et al., JGR, 2015].

  2. Excitation of dust kinetic Alfven waves by semi-relativistic ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Rubab, N. [Department of Space Science, Institute of Space Technology, Islamabad (Pakistan); Jaffer, G. [Department of Space Science, University of the Punjab, Lahore (Pakistan)


    The growth rates for dust kinetic Alfvén wave (DKAW) based on semi-relativistic Maxwellian distribution function are investigated in a hot and magnetized plasma. The dispersion relation of DKAW is obtained on a dust acoustic velocity branch, and the kinetic instability due to cross-field semi-relativistic ion flow is examined by the effect of dust parameters. Analytical expressions are derived for various modes as a natural consequence of the form of the solution, and is shown through graphical representation that the presence of dust particles and the cross-field semi-relativistic ions sensibly modify the dispersion characteristics of low-frequency DKAW. The results are valid for a frequency regime well below the dust cyclotron frequency. We suggest that semi-relativistic particles are an important factor in the growth/damping of DKAWs. It is also found that relativistic effects appear with the dust lower hybrid frequency are more effective for dust kinetic Alfvén waves in the perpendicular component as compared to the parallel one. In particular, the relativistic effects associated with electrons suppress the instability while ions enhance the growth rates. The growth rates are significantly modified with dust parameters and streaming velocity of cross-field ions.

  3. Magnetic confinement, Alfven wave reflection, and the origins of X-ray and mass-loss 'dividing lines' for late-type giants and supergiants (United States)

    Rosner, R.; An, C.-H.; Musielak, Z. E.; Moore, R. L.; Suess, S. T.


    A simple qualitative model for the origin of the coronal and mass-loss dividing lines separating late-type giants and supergiants with and without hot, X-ray-emitting corona, and with and without significant mass loss is discussed. The basic physical effects considered are the necessity of magnetic confinement for hot coronal material on the surface of such stars and the large reflection efficiency for Alfven waves in cool exponential atmospheres. The model assumes that the magnetic field geometry of these stars changes across the observed 'dividing lines' from being mostly closed on the high effective temperature side to being mostly open on the low effective temperature side.

  4. On Alfvenic Waves and Stochastic Ion Heating with 1Re Observations of Strong Field-aligned Currents, Electric Fields, and O+ ions (United States)

    Coffey, Victoria; Chandler, Michael; Singh, Nagendra


    The role that the cleft/cusp has in ionosphere/magnetosphere coupling makes it a very dynamic region having similar fundamental processes to those within the auroral regions. With Polar passing through the cusp at 1 Re in the Spring of 1996, we observe a strong correlation between ion heating and broadband ELF (BBELF) emissions. This commonly observed relationship led to the study of the coupling of large field-aligned currents, burst electric fields, and the thermal O+ ions. We demonstrate the role of these measurements to Alfvenic waves and stochastic ion heating. Finally we will show the properties of the resulting density cavities.

  5. Width gauging of surface slot using laser-generated Rayleigh waves (United States)

    Wang, Chuanyong; Sun, Anyu; Xue, Maosheng; Ju, Bing-Feng; Xiong, Jichuan; Xu, Xiaodong


    A method of width gauging of surface slot using laser-generated Rayleigh waves in time domain is presented. A two-step detection is employed in this method, Rayleigh waves are first generated on one side of the surface slot and then on the other side. Incident and reflected Rayleigh waves from surface slot are detected respectively on both sides of the slot in the two detections. Width of surface slot is calculated based on the arrival time of incident and reflected Rayleigh waves. Experiment results agree well with the measured results by digital microscope and validate the feasibility of the proposed method. The approach will open the way for simultaneous measurement of the depth and width of surface slot and provide a potential application for characterization of surface slot in extreme environment and width gauging of subsurface structure.

  6. Anomalous width variation of rarefactive ion acoustic solitary waves in the context of auroral plasmas

    Directory of Open Access Journals (Sweden)

    S. S. Ghosh


    Full Text Available The presence of dynamic, large amplitude solitary waves in the auroral regions of space is well known. Since their velocities are of the order of the ion acoustic speed, they may well be considered as being generated from the nonlinear evolution of ion acoustic waves. However, they do not show the expected width-amplitude correlation for K-dV solitons. Recent POLAR observations have actually revealed that the low altitude rarefactive ion acoustic solitary waves are associated with an increase in the width with increasing amplitude. This indicates that a weakly nonlinear theory is not appropriate to describe the solitary structures in the auroral regions. In the present work, a fully nonlinear analysis based on Sagdeev pseudopotential technique has been adopted for both parallel and oblique propagation of rarefactive solitary waves in a two electron temperature multi-ion plasma. The large amplitude solutions have consistently shown an increase in the width with increasing amplitude. The width-amplitude variation profile of obliquely propagating rarefactive solitary waves in a magnetized plasma have been compared with the recent POLAR observations. The width-amplitude variation pattern is found to fit well with the analytical results. It indicates that a fully nonlinear theory of ion acoustic solitary waves may well explain the observed anomalous width variations of large amplitude structures in the auroral region.

  7. Electric Field Observations of Plasma Convection, Shear, Alfven Waves, and other Phenomena Observed on Sounding Rockets in the Cusp and Boundary Layer (United States)

    Pfaff, R. F.


    On December 14,2002, a NASA Black Brant X sounding rocket was launched equatorward from Ny Alesund, Spitzbergen (79 N) into the dayside cusp and subsequently cut across the open/closed field line boundary, reaching an apogee of771 km. The launch occurred during Bz negative conditions with strong By negative that was changing during the flight. SuperDarn (CUTLASS) radar and subsequent model patterns reveal a strong westward/poleward convection, indicating that the rocket traversed a rotational reversal in the afternoon merging cell. The payload returned DC electric and magnetic fields, plasma waves, energetic particle, suprathermal electron and ion, and thermal plasma data. We provide an overview of the main observations and focus on the DC electric field results, comparing the measured E x B plasma drifts in detail with the CUTLASS radar observations of plasma drifts gathered simultaneously in the same volume. The in situ DC electric fields reveal steady poleward flows within the cusp with strong shears at the interface of the closed/open field lines and within the boundary layer. We use the observations to discuss ionospheric signatures of the open/closed character of the cusp/low latitude boundary layer as a function of the IMF. The electric field and plasma density data also reveal the presence of very strong plasma irregularities with a large range of scales (10 m to 10 km) that exist within the open field line cusp region yet disappear when the payload was equatorward of the cusp on closed field lines. These intense low frequency wave observations are consistent with strong scintillations observed on the ground at Ny Alesund during the flight. We present detailed wave characteristics and discuss them in terms of Alfven waves and static irregularities that pervade the cusp region at all altitudes.

  8. Runge-Kutta Integration of the Equal Width Wave Equation Using the Method of Lines

    Directory of Open Access Journals (Sweden)

    M. A. Banaja


    Full Text Available The equal width (EW equation governs nonlinear wave phenomena like waves in shallow water. Numerical solution of the (EW equation is obtained by using the method of lines (MOL based on Runge-Kutta integration. Using von Neumann stability analysis, the scheme is found to be unconditionally stable. Solitary wave motion and interaction of two solitary waves are studied using the proposed method. The three invariants of the motion are evaluated to determine the conservation properties of the generated scheme. Accuracy of the proposed method is discussed by computing the L2 and L∞ error norms. The results are found in good agreement with exact solution.

  9. PIC simulations of the trapped electron filamentation instability in finite-width electron plasma waves (United States)

    Winjum, B. J.; Banks, J. W.; Berger, R. L.; Cohen, B. I.; Chapman, T.; Hittinger, J. A. F.; Rozmus, W.; Strozzi, D. J.; Brunner, S.


    We present results on the kinetic filamentation of finite-width nonlinear electron plasma waves (EPW). Using 2D simulations with the PIC code BEPS, we excite a traveling EPW with a Gaussian transverse profile and a wavenumber k0λDe= 1/3. The transverse wavenumber spectrum broadens during transverse EPW localization for small width (but sufficiently large amplitude) waves, while the spectrum narrows to a dominant k as the initial EPW width increases to the plane-wave limit. For large EPW widths, filaments can grow and destroy the wave coherence before transverse localization destroys the wave; the filaments in turn evolve individually as self-focusing EPWs. Additionally, a transverse electric field develops that affects trapped electrons, and a beam-like distribution of untrapped electrons develops between filaments and on the sides of a localizing EPW. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 12-ERD-061. Supported also under Grants DE-FG52-09NA29552 and NSF-Phy-0904039. Simulations were performed on UCLA's Hoffman2 and NERSC's Hopper.

  10. Influence of slot width on the performance of multi-stage overtopping wave energy converters

    Directory of Open Access Journals (Sweden)

    Sirirat Jungrungruengtaworn


    Full Text Available A two-dimensional numerical investigation is performed to study the influence of slot width of multi-stage stationary floating overtopping wave energy devices on overtopping flow rate and performance. The hydraulic efficiency based on captured crest energy of different device layouts is compared with that of single-stage device to determine the effect of the geometrical design. The results show optimal trends giving a huge increase in overtopping energy. Plots of efficiency versus the relative slot width show that, for multi-stage devices, the greatest hydraulic efficiency is achieved at an intermediate value of the variable within the parametric range considered, relative slot width of 0.15 and 0.2 depending on design layouts. Moreover, an application of adaptive slot width of multi-stage device is investigated. The numerical results show that the overall hydraulic efficiency of non-adaptive and adaptive slot devices are approximately on par. The effect of adaptive slot width on performance can be negligible. Keywords: Wave energy converter, Overtopping, Multi-stage, Slot width

  11. The effect of poloidal antenna width on lower-hybrid wave propagation

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, R.A. (University of St Andrews, St Andrews, Fife, KY16 9SS (United Kingdom)); Fuchs, V. (Centre Canadien de Fusion Magnetique, Varennes, Quebec, J3X 1S1 (Canada))


    In simulations of lower hybrid heating and current drive in tokamaks, an important part of the calculation is the determination of the ray paths from the antenna to the central region of the plasma. The role of the parallel wavenumber spectrum and the need to launch a set of rays which cover it adequately is well known. However, the antenna also has a finite poloidal extent and a corresponding poloidal wavenumber spectrum, which will contribute to the spreading of wave energy within the tokamak and affect the absorption and current profiles. We describe a technique for estimating the spatial width of the beam produced by a finite width antenna, taking account of both the poloidal spread in launch position and the spectral width. The method uses standard ray tracing methods and estimates the beam width from data on three rays.

  12. What Do s- and p-Wave Neutron Average Radiative Widths Reveal

    Energy Technology Data Exchange (ETDEWEB)

    Mughabghab, S.F.


    A first observation of two resonance-like structures at mass numbers 92 and 112 in the average capture widths of the p-wave neutron resonances relative to the s-wave component is interpreted in terms of a spin-orbit splitting of the 3p single-particle state into P{sub 3/2} and P{sub 1/2} components at the neutron separation energy. A third structure at about A = 124, which is not correlated with the 3p-wave neutron strength function, is possibly due to the Pygmy Dipole Resonance. Five significant results emerge from this investigation: (i) The strength of the spin-orbit potential of the optical-model is determined as 5.7 {+-} 0.5 MeV, (ii) Non-statistical effects dominate the p-wave neutron-capture in the mass region A = 85 - 130, (iii) The background magnitude of the p-wave average capture-width relative to that of the s-wave is determined as 0.50 {+-} 0.05, which is accounted for quantitatively in tenns of the generalized Fermi liquid model of Mughabghab and Dunford, (iv) The p-wave resonances arc partially decoupled from the giant-dipole resonance (GDR), and (v) Gamma-ray transitions, enhanced over the predictions of the GDR, are observed in the {sup 90}Zr - {sup 98}Mo and Sn-Ba regions.

  13. Quantum black hole wave packet: Average area entropy and temperature dependent width

    Directory of Open Access Journals (Sweden)

    Aharon Davidson


    Full Text Available A quantum Schwarzschild black hole is described, at the mini super spacetime level, by a non-singular wave packet composed of plane wave eigenstates of the momentum Dirac-conjugate to the mass operator. The entropy of the mass spectrum acquires then independent contributions from the average mass and the width. Hence, Bekenstein's area entropy is formulated using the 〈mass2〉 average, leaving the 〈mass〉 average to set the Hawking temperature. The width function peaks at the Planck scale for an elementary (zero entropy, zero free energy micro black hole of finite rms size, and decreases Doppler-like towards the classical limit.

  14. Parametric instabilities of a large-amplitude circularly polarized Alfven wave - Linear growth in two-dimensional geometries (United States)

    Ghosh, S.; Vinas, A. F.; Goldstein, M. L.


    The growth of parametric instabilities, which may lead to the development of a turbulent cascade, is studied using an MHD code that permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Parametric instabilities associated with a parallel-propagating decay instability are found to dominate the low-beta case. An obliquely propagating filamentationlike instability dominates the high-beta case. The nonlinear growth of the nth harmonic of a daughter wave growing as a factor of n times the fundamental's growth rate is found in both cases. Nonlinear saturation is caused by the parallel decay instability in the low-beta case and by the oblique filamentationlike instability in the high-beta case.

  15. Parametric instabilities of a large-amplitude circularly polarized Alfven wave: Linear growth in two-dimensional geometries

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, S.; Vinas, A.F.; Goldstein, M.L. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)


    The growth of parametric instabilities, which may lead to the development of a turbulent cascade, is studied using a magnetohydrodynamic (MHD) code that permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Parametric instabilities associated with a parallel-propagating decay instability are found to dominate the low-beta case. An obliquely propagating filamentationlike instability dominates the high-beta case. The nonlinear growth of the nth harmonic of a daughter wave growing as a factor of n times the fundamental`s growth rate is found in both cases. Nonlinear saturation is caused by the parallel decay instability in the low-beta case and by the oblique filamentationlike instability in the high-beta case. 31 refs., 7 figs.

  16. Persistent Doppler Shift Oscillations Observed with HINODE-EIS in the Solar Corona: Spectroscopic Signatures of Alfvenic Waves and Recurring Upflows (United States)

    Tian, Hui; McIntosh, Scott W.; Wang, Tongjiang; Offman, Leon; De Pontieu, Bart; Innes, Davina E.; Peter, Hardi


    Using data obtained by the EUV Imaging Spectrometer on board Hinode, we have performed a survey of obvious and persistent (without significant damping) Doppler shift oscillations in the corona. We have found mainly two types of oscillations from February to April in 2007. One type is found at loop footpoint regions, with a dominant period around 10 minutes. They are characterized by coherent behavior of all line parameters (line intensity, Doppler shift, line width, and profile asymmetry), and apparent blueshift and blueward asymmetry throughout almost the entire duration. Such oscillations are likely to be signatures of quasi-periodic upflows (small-scale jets, or coronal counterpart of type-II spicules), which may play an important role in the supply of mass and energy to the hot corona. The other type of oscillation is usually associated with the upper part of loops. They are most clearly seen in the Doppler shift of coronal lines with formation temperatures between one and two million degrees. The global wavelets of these oscillations usually peak sharply around a period in the range of three to six minutes. No obvious profile asymmetry is found and the variation of the line width is typically very small. The intensity variation is often less than 2%. These oscillations are more likely to be signatures of kink/Alfv´en waves rather than flows. In a few cases, there seems to be a p/2 phase shift between the intensity and Doppler shift oscillations, which may suggest the presence of slow-mode standing waves according to wave theories. However, we demonstrate that such a phase shift could also be produced by loops moving into and out of a spatial pixel as a result of Alfv´enic oscillations. In this scenario, the intensity oscillations associated with Alfv´enic waves are caused by loop displacement rather than density change. These coronal waves may be used to investigate properties of the coronal plasma and magnetic field.

  17. Kinetic Simulations of the Self-Focusing and Dissipation of Finite-Width Electron Plasma Waves

    Energy Technology Data Exchange (ETDEWEB)

    Winjum, B. J. [Univ. of California, Los Angeles, CA (United States); Berger, R. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chapman, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Banks, J. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brunner, S. [Federal Inst. of Technology, Lausanne (Switzerland)


    Two-dimensional simulations, both Vlasov and particle-in-cell, are presented that show the evolution of the field and electron distribution of finite-width, nonlinear electron plasma waves. The intrinsically intertwined effects of self-focusing and dissipation of field energy caused by electron trapping are studied in simulated systems that are hundreds of wavelengths long in the transverse direction but only one wavelength long and periodic in the propagation direction. From various initial wave states, both the width at focus Δm relative to the initial width Δ0 and the maximum field amplitude at focus are shown to be a function of the growth rate of the transverse modulational instability γTPMI divided by the loss rate of field energy νE to electrons escaping the trapping region. With dissipation included, an amplitude threshold for self-focusing γTPMIE~1 is found that supports the analysis of Rose [Phys. Plasmas 12, 012318 (2005)].

  18. The interaction of Alfvenic electrons and the auroral ionosphere: First results (United States)

    Horwitz, James; Jaafari, Fajer; Su, Yi-Jiun; Jones, Sam

    Inertial Alfven waves propagating along auroral field lines produce parallel electric fields which accelerate auroral precipitating electrons. In this presentation, we examine the propagation of Alfven waves within O+ and H+ auroral ionosphere-magnetosphere density profiles from the UT Arlington Dynamic Fluid-Kinetic (DyFK) ionospheric plasma transport model. For the Alfven wave description, a linear one dimensional gyrofluid code [Jones and Parker, 2003] is used, in which electron inertia, electron pressure gradient and finite ion gyroradius effects are incorporated. This Alfven wave propagation code determines the characteristics of propagating Alfven waves which generate the inertial parallel electric field responsible for energizing electrons. A test particle model developed by Su et al.[2004] is then used to simulate the response of a distribution of electrons to these Alfven wave electric fields. The integrated energy flux of the resulting precipitating electrons will be obtained, and the effect of such Alfvenic electrons on the plasma evolution in the DyFK code will be presented. Jones, S. T., and S. E. Parker (2003), Including electron inertia without advancing electron flow, J. Comput. Phys., 191, 322. Su, Y.-J., S. T. Jones, R. E. Ergun, and S. E. Parker (2004), Modeling of field-aligned electron bursts by dispersive Alfvén waves in the dayside auroral region, J. Geophys. Res., 109, A11201, e doi:10.1029/2003JA010344


    Energy Technology Data Exchange (ETDEWEB)

    Kajdič, P. [Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City (Mexico); Alexandrova, O.; Maksimovic, M.; Lacombe, C. [LESIA, Observatoire de Paris, PSL Research University, CNRS, UPMC UniversitéParis 06, Université Paris-Diderot, 5 Place Jules Janssen, F-92190 Meudon (France); Fazakerley, A. N., E-mail: [Mullard Space Science Laboratory, University College London (United Kingdom)


    We perform the first statistical study of the effects of the interaction of suprathermal electrons with narrow-band whistler mode waves in the solar wind (SW). We show that this interaction does occur and that it is associated with enhanced widths of the so-called strahl component. The latter is directed along the interplanetary magnetic field away from the Sun. We do the study by comparing the strahl pitch angle widths in the SW at 1 AU in the absence of large scale discontinuities and transient structures, such as interplanetary shocks, interplanetary coronal mass ejections, stream interaction regions, etc. during times when the whistler mode waves were present and when they were absent. This is done by using the data from two Cluster instruments: Spatio Temporal Analysis of Field Fluctuations experiment (STAFF) data in the frequency range between ∼0.1 and ∼200 Hz were used for determining the wave properties and Plasma Electron And Current Experiment (PEACE) data sets at 12 central energies between ∼57 eV (equivalent to ∼10 typical electron thermal energies in the SW, E{sub T}) and ∼676 eV (∼113 E{sub T}) for pitch angle measurements. Statistical analysis shows that, during the intervals with the whistler waves, the strahl component on average exhibits pitch angle widths between 2° and 12° larger than during the intervals when these waves are not present. The largest difference is obtained for the electron central energy of ∼344 eV (∼57 ET).

  20. Alfven, Prof. Hannes Olof Gosta

    Indian Academy of Sciences (India)

    Alfven, Prof. Hannes Olof Gosta Nobel Laureate (Physics) - 1970. Date of birth: 30 May 1908. Date of death: 2 April 1995. YouTube; Twitter ... Posted on 21 December 2017. ASTROPHYSICS: An Observational View of the Universe. Math Art and Design: MAD about Math, Math Education and Outreach. Math and Finance ...

  1. Bit rate and pulse width dependence of four-wave mixing of short optical pulses in semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Diez, S.; Mecozzi, A.; Mørk, Jesper


    We investigate the saturation properties of four-wave mixing of short optical pulses in a semiconductor optical amplifier. By varying the gain of the optical amplifier, we find a strong dependence of both conversion efficiency and signal-to-background ratio on pulse width and bit rate....... In particular, the signal-to-background ratio can be optimized for a specific amplifier gain. This behavior, which is coherently described in experiment and theory, is attributed to the dynamics of the amplified spontaneous emission, which is the main source of noise in a semiconductor optical amplifier....

  2. Baecklund transformations and exact solutions for Alfven solitons in a relativistic electron-positron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khater, A.H.; El-Kalaawy, O.H. [Cairo Univ., Beni-Suef (Egypt). Dept. of Mathematics; Callebaut, D.K. [Universitaire Instelling Antwerpen, Wilrijk (Belgium). Dept. of Physics


    Nonlinear Alfven waves, propagating along a homogeneous magnetic field, are studied using relativistic isotropic hydrodynamics. Alfven solitons of the moving-wave and wave packet types are considered for modified Korteweg-de Vries (mKdV) equation and the nonlinear Schroedinger (NLS) equation, respectively. The method of characteristics is used and the Baecklund transformations (BTs) are employed to generate new solutions from the old ones. Thus, families of new solutions for the mKdV and the NLS equations are obtained. The question arises which solitons exist in the pulsar atmosphere. (orig.) 37 refs.

  3. Reconstruction of a Broadband Spectrum of Alfvenic Fluctuations (United States)

    Vinas, Adolfo F.; Fuentes, Pablo S. M.; Araneda, Jaime A.; Maneva, Yana G.


    Alfvenic fluctuations in the solar wind exhibit a high degree of velocities and magnetic field correlations consistent with Alfven waves propagating away and toward the Sun. Two remarkable properties of these fluctuations are the tendencies to have either positive or negative magnetic helicity (-1 less than or equal to sigma(sub m) less than or equal to +1) associated with either left- or right- topological handedness of the fluctuations and to have a constant magnetic field magnitude. This paper provides, for the first time, a theoretical framework for reconstructing both the magnetic and velocity field fluctuations with a divergence-free magnetic field, with any specified power spectral index and normalized magnetic- and cross-helicity spectrum field fluctuations for any plasma species. The spectrum is constructed in the Fourier domain by imposing two conditions-a divergence-free magnetic field and the preservation of the sense of magnetic helicity in both spaces-as well as using Parseval's theorem for the conservation of energy between configuration and Fourier spaces. Applications to the one-dimensional spatial Alfvenic propagation are presented. The theoretical construction is in agreement with typical time series and power spectra properties observed in the solar wind. The theoretical ideas presented in this spectral reconstruction provide a foundation for more realistic simulations of plasma waves, solar wind turbulence, and the propagation of energetic particles in such fluctuating fields.

  4. Generation of Alfven Waves by Magnetic Reconnection


    Kigure, Hiromitsu; Takahashi, Kunio; Shibata, Kazunari; Yokoyama, Takaaki; Nozawa, Satoshi


    In this paper, results of 2.5-dimensional magnetohydrodynamical simulations are reported for the magnetic reconnection of non-perfectly antiparallel magnetic fields. The magnetic field has a component perpendicular to the computational plane, that is, guide field. The angle theta between magnetic field lines in two half regions is a key parameter in our simulations whereas the initial distribution of the plasma is assumed to be simple; density and pressure are uniform except for the current s...

  5. On Alfven hypothesis about nuclear hydromagnetic resonances


    Bastrukov, S. I.; Molodtsova, I. V.; Yu, J. W.; Xu, R. X.


    The atomic nucleus capability of responding by hydromagnetic vibrations, that has been considered long ago by Hannes Alfven, is re-examined in the context of current development of nuclear physics and pulsar astrophysics.

  6. Sub-Alfvenic reduced equations in a tokamak (United States)

    Sengupta, Wrick

    Magnetized fusion experiments generally perform under conditions where ideal Alfvenic modes are stable. It is therefore desirable to develop a reduced formalism which would order out Alfvenic frequencies. This is challenging because sub-Alfvenic phenomena are sensitive to magnetic geometries. In this work an attempt has been made to develop a formalism to study plasma phenomena on time scales much longer than the Alfvenic time scales. (Abstract shortened by ProQuest.).

  7. On the possibility for laboratory simulation of generation of Alfven disturbances in magnetic tubes in the solar atmosphere (United States)

    Prokopov, Pavel; Zaharov, Yuriy; Tishchenko, Vladimir; Boyarintsev, Eduard; Melehov, Aleksandr; Ponomarenko, Arnold; Posuh, Vitaliy; Shayhislamov, Ildar


    The paper deals with generation of Alfven plasma disturbances in magnetic flux tubes through exploding laser plasma in magnetized background plasma. Processes with similar effect of excitation of torsion-type waves seem to provide energy transfer from the solar photosphere to corona. The studies were carried out at experimental stand KI-1 represented a high-vacuum chamber of 1.2 m diameter, 5 m long, external magnetic field up to 500 Gs along the chamber axis, and up to 2×10^-6 Torr pressure in operating mode. Laser plasma was produced when focusing the CO2 laser pulse on a flat polyethylene target, and then the laser plasma propagated in θ-pinch background hydrogen (or helium) plasma. As a result, the magnetic flux tube of 15-20 cm radius was experimentally simulated along the chamber axis and the external magnetic field direction. Also, the plasma density distribution in the tube was measured. Alfven wave propagation along the magnetic field was registered from disturbance of the magnetic field transverse component B_ψ and field-aligned current J_z. The disturbances propagate at near-Alfven velocity of 70-90 km/s and they are of left-hand circular polarization of the transverse component of magnetic field. Presumably, Alfven wave is generated by the magnetic laminar mechanism of collisionless interaction between laser plasma cloud and background. The right-hand polarized high-frequency whistler predictor was registered which have been propagating before Alfven wave at 300 km/s velocity. The polarization direction changed with Alfven wave coming. Features of a slow magnetosonic wave as a sudden change in background plasma concentration along with simultaneous displacement of the external magnetic field were found. The disturbance propagates at ~20-30 km/s velocity, which is close to that of ion sound at low plasma beta value. From preliminary estimates, the disturbance transfers about 10 % of the original energy of laser plasma.

  8. Orbit width scaling of TAE instability growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Wong, H.V.; Berk, H.L.; Breizman, B.N.


    The growth rate of Toroidal Alfven Eigenmodes (TAE) driven unstable by resonant coupling of energetic charged particles is evaluated in the ballooning limit over a wide range of parameters. All damping effects are ignored. Variations in orbit width, aspect ratio, and the ratio of alfven velocity to energetic particle birth velocity, are explored. The relative contribution of passing and trapped particles, and finite Larmor radius effects, are also examined. The phase space location of resonant particles with interact strongly with the modes is described. The accuracy of the analytic results with respect to growth rate magnitude and parametric dependence is investigated by comparison with numerical results.

  9. Step Width Tolerable for Offset of the Aperture in a Millimeter-Wave Transducer between Post-Wall and Hollow Standard Waveguides (United States)

    Lee, Jungaun; Hirokawa, Jiro; Ando, Makoto

    A transducer with a wide step from a post-wall waveguide to a hollow waveguide width is proposed which is tolerant against the aperture offset. The modes in the step width of about 1.50 wavelengths are stable for the aperture offset and the fields are not so perturbed while in the conventional stepped structure with step width of about 1.00 wavelength, the higher evanescent mode of TE30 is excessively enhanced by the aperture offset. The operation of the transducer with the wider step is robust for the fabrication errors in the millimeter wave band. It is also suggested that the anti-symmetrical TE20 mode which is excited only by non-zero offset or the misalignment of the aperture exists in both structures and can not be the dominant factor for the improvement. The transducers are designed and fabricated at 61.25GHz using PTFE substrate with glass fiber of εr=2.17. The bandwidth for the reflection lower than -15dB is almost unchanged (6.30-6.60GHz) for the offset from -0.2mm to 0.2mm, while it is degraded in the conventional stepped structure, from 7.65GHz for no offset to 3.30-5.70GHz for the same range of the offset.

  10. On resonant destabilization of toroidal Alfven eigenmodes by circulating and trapped energetic ions/alpha particles in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Biglari, H.; Zonca, F.; Chen, L.


    Toroidal Alfven eigenmodes are shown to be resonantly destabilized by both circulating and trapped energetic ions/alpha particles. In particular, the energetic circulating ions are shown to resonate with the mode not only at the Alfven speed ({upsilon}{sub A}), but also one-third of this speed, while resonances exist between trapped energetic ions and the wave when {upsilon} = {upsilon}{sub A}/21{epsilon}{sup {1/2}} (l=integer, {epsilon}=r/R is the local inverse aspect ratio), although the instability becomes weaker for resonances other than the fundamental. The oft-quoted criterion that instability requires super-Alfvenic ion velocities is thus sufficient but not necessary. 14 refs.

  11. Source duration of stress and water-pressure induced seismicity derived from experimental analysis of P wave pulse width in granite (United States)

    Masuda, K.


    Pulse widths of P waves in granite, measured in the laboratory, were analyzed to investigate source durations of rupture processes for water-pressure induced and stress-induced microseismicity. Much evidence suggests that fluids in the subsurface are intimately linked to faulting processes. Studies of seismicity induced by water injection are thus important for understanding the trigger mechanisms of earthquakes as well as for engineering applications such as hydraulic fracturing of rocks at depth for petroleum extraction. Determining the cause of seismic events is very important in seismology and engineering; however, water-pressure induced seismic events are difficult to distinguish from those induced by purely tectonic stress. To investigate this problem, we analyzed the waveforms of acoustic emissions (AEs) produced in the laboratory by both water-pressure induced and stress-induced microseismicity. We used a cylinder (50 mm in diameter and 100 mm in length) of medium-grained granite. We applied a differential stress of about 70% of fracture strength, to the rock sample under 40 MPa confining pressure and held it constant throughout the experiment. When the primary creep stage and acoustic emissions (AEs) caused by the initial loading had ceased, we injected distilled water into the bottom end of the sample at a constant pressure of 17 MPa until macroscopic fracture occurred. We analysed AE waveforms produced by stress-induced AEs which occurred before the water-injection and by water-pressure induced AEs which occurred after the water-injection. Pulse widths were measured from the waveform traces plotted from the digital data. To investigate the source duration of the rupture process, we estimated the pulse width at the source and normalized by event magnitude to obtain a scaled pulse width at the source. After the effects of event size and hypocentral distance were removed from observed pulse widths, the ratio of the scaled source durations of water

  12. Star of Lima - Overview and optical diagnostics of a barium Alfven critical velocity experiment (United States)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T.; Foeppl, H.; Valenzuela, A.


    The Alfven critical velocity mechanism for ionization of a neutral gas streaming across the magnetic field has been demonstrated in laboratory experiments. In March 1983, two rocket-borne experiments with Ba and Sr tested the effect in the wall-less laboratory of space from Punto Lobos, Peru, near 430 km altitude. 'Star of Lima' used a conical Ba shaped charge aimed at an instrument payload about 2 km away. Because of rocket overperformance the detonation occurred in partial sunlight, so that less than 21.6 percent of the ionizing UV was present. Particle and field measurements indicate the production of hot electrons and waves in the energy and frequency range that are respectively predicted to produce a cascade of ionization by the Alfven mechanism. However, the ionization fluxes and wave energy density did not reach cascade levels, and optical observations indicate that only 2.5 to 5 x 10 to the 20th Ba ions were produced. A substantial portion and perhaps all of the ionization could have been produced by solar UV. The failure of the Alfven process in this experiment is not well understood.

  13. A Finite-Orbit-Width Fokker-Planck solver for modeling of energetic particle interactions with waves, with application to Helicons in ITER

    Directory of Open Access Journals (Sweden)

    Petrov Yuri V.


    Full Text Available The bounce-average (BA finite-difference Fokker-Planck (FP code CQL3D [1,2] now includes the essential physics to describe the RF heating of Finite-Orbit-Width (FOW ions in tokamaks. The FP equation is reformulated in terms of Constants-Of-Motion coordinates, which we select to be particle speed, pitch angle, and major radius on the equatorial plane thus obtaining the distribution function directly at this location. Full-orbit, low collisionality neoclassical radial transport emerges from averaging the local friction and diffusion coefficients along guiding center orbits. Similarly, the BA of local quasilinear RF diffusion terms gives rise to additional radial transport. The local RF electric field components needed for the BA operator are usually obtained by a ray-tracing code, such as GENRAY, or in conjunction with full-wave codes. As a new, practical application, the CQL3D-FOW version is used for simulation of alpha-particle heating by high-harmonic waves in ITER. Coupling of high harmonic or helicon fast waves power to electrons is a promising current drive (CD scenario for high beta plasmas. However, the efficiency of current drive can be diminished by parasitic channeling of RF power into fast ions, such as alphas, through finite Larmor-radius effects. We investigate possibilities to reduce the fast ion heating in CD scenarios.

  14. A Finite-Orbit-Width Fokker-Planck solver for modeling of energetic particle interactions with waves, with application to Helicons in ITER (United States)

    Petrov, Yuri V.; Harvey, R. W.


    The bounce-average (BA) finite-difference Fokker-Planck (FP) code CQL3D [1,2] now includes the essential physics to describe the RF heating of Finite-Orbit-Width (FOW) ions in tokamaks. The FP equation is reformulated in terms of Constants-Of-Motion coordinates, which we select to be particle speed, pitch angle, and major radius on the equatorial plane thus obtaining the distribution function directly at this location. Full-orbit, low collisionality neoclassical radial transport emerges from averaging the local friction and diffusion coefficients along guiding center orbits. Similarly, the BA of local quasilinear RF diffusion terms gives rise to additional radial transport. The local RF electric field components needed for the BA operator are usually obtained by a ray-tracing code, such as GENRAY, or in conjunction with full-wave codes. As a new, practical application, the CQL3D-FOW version is used for simulation of alpha-particle heating by high-harmonic waves in ITER. Coupling of high harmonic or helicon fast waves power to electrons is a promising current drive (CD) scenario for high beta plasmas. However, the efficiency of current drive can be diminished by parasitic channeling of RF power into fast ions, such as alphas, through finite Larmor-radius effects. We investigate possibilities to reduce the fast ion heating in CD scenarios.

  15. NBI-driven Alfvenic modes at ASDEX Upgrade

    NARCIS (Netherlands)

    Lauber, P.; Classen, I.G.J.; Curran, D.; Igochine, V.; Geiger, B.; da Graca, S.; M. García-Muñoz,; Maraschek, M.; McCarthy, P.


    A large variety of electromagnetic modes excited by NBI-generated energetic ions are observed in the early phase of many discharges at ASDEX Upgrade. In addition to the well-known reversed shear Alfven eigenmodes (RSAE) and the toroidal Alfven eigenmodes (TAE), a set of modes around 70 kHz is

  16. Oxygen Ion Heat Rate within Alfvenic Turbulence in the Cusp (United States)

    Coffey, Victoria N.; Singh, Nagendra; Chandler, Michael O.


    The role that the cleft/cusp has in ionosphere-magnetosphere coupling makes it a dynamic and important region. It is directly exposed to the solar wind, making it possible for the entry of electromagnetic energy and precipitating electrons and ions from dayside reconnection and other dayside events. It is also a significant source of ionospheric plasma, contributing largely to the mass loading of the magnetosphere with large fluxes of outflowing ions. Crossing the cusp/cleft near 5100 km, the Polar instruments observe the common correlation of downward Poynting flux, ion energization, soft electron precipitation, broadband extremely low-frequency (BB-ELF) emissions, and density depletions. The dominant power in the BB-ELF emissions is now identified to be from spatially broad, low frequency Alfv nic structures. For a cusp crossing, we determine using the Electric Field Investigation (EFI), that the electric and magnetic field fluctuations are Alfv nic and the electric field gradients satisfy the inequality for stochastic acceleration. With all the Polar 1996 horizontal crossings of the cusp, we determine the O+ heating rate using the Thermal Ion Dynamics Experiment (TIDE) and Plasma Wave Investigation (PWI). We then compare this heating rate to other heating rates assuming the electric field gradient criteria exceeds the limit for stochastic acceleration for the remaining crossings. The comparison suggests that a stochastic acceleration mechanism is operational and the heating is controlled by the transverse spatial scale of the Alfvenic waves.

  17. MHD-kinetic transition in imbalanced Alfv$\\'{e}$nic turbulence

    CERN Document Server

    Voitenko, Yuriy


    Alfvenic turbulence in space is usually imbalanced: amplitudes of waves propagating parallel and anti-parallel to the mean magnetic field $B_0$ are unequal. It is commonly accepted that the turbulence is driven by (counter-) collisions between these counter-propagating wave fractions. Contrary to this, we found a new ion-scale dynamical range of the turbulence established by (co-) collisions among waves co-propagating in the same direction along $B_0$. The turbulent cascade is accelerated there and power spectra are steep and non-universal. The spectral indexes vary around -3 (-4) in the strong (weak) turbulence, such that steeper spectra follow larger imbalances. Intermittency steepens spectra further, up to -3.7 (-4.5). Our theoretical predictions are compatible with steep variable spectra observed in the solar wind at ion kinetic scales.

  18. Excitation of global Alfven Eigenmodes by RF heating in JET

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, W.; Borba, D.; Gormezano, C.; Huysmans, G.; Porcelli, F.; Start, D. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Fasoli, A. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP); Sharapov, S. [Kurchatov Institute, Moscow (Russian Federation)


    The alpha-particle confinement of future D-T experiments at JET can be severely degraded by Global Alfven Eigenmodes (AE). Scenarios for the excitation of Alfven Eigenmodes in usual (e.g. D-D) plasmas are proposed, which provide a MHD diagnostic and allow the study of the transport of super-Alfvenic ions. Active studies with separate control of TAE amplitude and energetic particle destabilization, measuring the plasma response, give more information than passive studies, in particular concerning the damping mechanisms. The TAE excitation can be achieved by means of the saddle coil and the ICRH antenna. The experimental method is introduced together with a theoretical model for RF excitation. (authors). 6 refs., 3 figs.

  19. Alfven Waves in a Cold Plasma with Curved Magnetic Fields (United States)


    magnetic field. They discussed a possible method of avoiding spatially dependent eigenfrequencies which are not acceptable; they introduced an electric...1036, Hasegawa, A. 1974 12. Radoski, H. J. Geomag. Geoelectr ., v 25, P�, 1973 13. Kivelson, M., Geophys. Res. Letters, v 12, Southwood, D. pp 49-52

  20. Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas (United States)

    Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.


    We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.

  1. The Structure of Plasma Heating in Gyrokinetic Alfv\\'enic Turbulence

    CERN Document Server

    Navarro, A B; Told, D; Groselj, D; Crandall, P; Jenko, F


    We analyze plasma heating in weakly collisional kinetic Alfv\\'en wave (KAW) turbulence using high resolution gyrokinetic simulations spanning the range of scales between the ion and the electron gyroradii. Real space structures that have a higher than average heating rate are shown not to be confined to current sheets. This novel result is at odds with previous studies, which use the electromagnetic work in the local electron fluid frame, i.e. $\\mathbf{J} \\!\\cdot\\! (\\mathbf{E} + \\mathbf{v}_e\\times\\mathbf{B})$, as a proxy for turbulent dissipation to argue that heating follows the intermittent spatial structure of the electric current. Furthermore, we show that electrons are dominated by parallel heating while the ions prefer the perpendicular heating route. We comment on the implications of the results presented here.

  2. Edge turbulence and divertor heat flux width simulations of Alcator C-Mod discharges using an electromagnetic two-fluid model (United States)

    Chen, B.; Xu, X. Q.; Xia, T. Y.; Porkolab, M.; Edlund, E.; LaBombard, B.; Terry, J.; Hughes, J. W.; Mao, S. F.; Ye, M. Y.; Wan, Y. X.


    The BOUT++ code has been exploited in order to improve the understanding of the role of turbulent modes in controlling edge transport and resulting scaling of the scrape-off layer (SOL) heat flux width. For the C-Mod enhanced D_α (EDA) H-mode discharges, BOUT++ six-field two-fluid nonlinear simulations show a reasonable agreement of upstream turbulence and divertor target heat flux behavior: (a) the simulated quasi-coherent modes show consistent characteristics of the frequency versus poloidal wave number spectra of the electromagnetic fluctuations when compared with experimental measurements: frequencies are around 60-120 kHz (experiment: about 70-110 kHz), k_θ are around 2.0 cm-1 which is similar to the phase contrast imaging data; (b) linear spectrum analysis is consistent with the nonlinear phase relationship calculation which indicates the dominance of resistive-ballooning modes and drift-Alfven wave instabilities; (c) the SOL heat flux width λq versus current I p scaling is reproduced by turbulent transport: the simulations yield similar λq to experimental measurements within a factor of 2. However the magnitudes of divertor heat fluxes can be varied, depending on the physics models, sources and sinks, sheath boundary conditions, or flux limiting coefficient; (d) Simple estimate by the ‘2-point model’ for λq is consistent with simulation. Moreover, blobby turbulent spreading is confirmed for these relatively high B p shots.

  3. Kinetic theory of plasma waves: Part II homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.


    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  4. KINETIC THEORY OF PLASMA WAVES: Part II: Homogeneous Plasma

    NARCIS (Netherlands)

    Westerhof, E.


    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves are discussed in the limit of the cold

  5. Kinetic theory of plasma waves - Part II: Homogeneous plasma

    NARCIS (Netherlands)

    Westerhof, E.


    The theory of electromagnetic waves in a homogeneous plasma is reviewed. The linear response of the plasma to the waves is obtained in the form of the dielectric tensor. Waves ranging from the low frequency Alfven to the high frequency electron cyclotron waves axe discussed in the limit of the cold

  6. Theoretical Studies of Drift-Alfven and Energetic Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    CHEN, L.


    The research program supported by this DOE grant has been rather successful and productive in terms of both scientific investigations as well as human resources development; as demonstrated by the large number (60) of journal articles, 6 doctoral degrees, and 3 postdocs. This PI is particularly grateful to the generous support and flexible management of the DOE–SC-OFES Program. He has received three award/prize (APS Excellence in Plasma Physics Research Award, 2004; EPS Alfven Prize, 2008; APS Maxwell Prize, 2012) as the results of research accomplishments supported by this grant.

  7. Alfven. Symphony No 5 in A minor, Op. 54 / Robert Layton

    Index Scriptorium Estoniae

    Layton, Robert


    Uuest heliplaadist "Alfven. Symphony No 5 in A minor, Op. 54. The Mountain King - Suite, Gustav II Adolf, Op. 49 - Elegy. Royal Stockholm Philarmonic Orchestra / Neeme Järvi. BIS CD 585 (68 minutes) Recorded in association with Trygg Hansa"

  8. Progress towards modeling tokamak boundary plasma turbulence and understanding its role in setting divertor heat flux widths (United States)

    Chen, Bin


    QCMs (quasi-coherent modes) are well characterized in the edge of Alcator C-Mod, when operating in the Enhanced Dα (EDA) H-mode, a promising alternative regime for ELM (edge localized modes) suppressed operation. To improve the understanding of the physics behind the QCMs, three typical C-Mod EDA H-Mode discharges are simulated by BOUT + + using a six-field two-fluid model (based on the Braginskii equations). The simulated characteristics of the frequency versus wave number spectra of the modes is in reasonable agreement with phase contrast imaging data. The key simulation results are: 1) Linear spectrum analysis and the nonlinear phase relationship indicate the dominance of resistive-ballooning modes and drift-Alfven wave instabilities; 2) QCMs originate inside the separatrix; (3) magnetic flutter causes the mode spreading into the SOL; 4) the boundary electric field Er changes the turbulent characteristics of the QCMs and controls edge transport and the divertor heat flux width; 5) the magnitude of the divertor heat flux depends on the physics models, such as sources and sinks, sheath boundary conditions, and parallel heat flux limiting coefficient. The BOUT + + simulations have also been performed for inter-ELM periods of DIII-D and EAST discharges, and similar quasi-coherent modes have been found. The parallel electron heat fluxes projected onto the target from these BOUT + + simulations follow the experimental heat flux width scaling, in particular the inverse dependence of the width on the poloidal magnetic field with an outlier. Further turbulence statistics analysis shows that the blobs are generated near the pedestal peak gradient region inside the separatrix and contribute to the transport of the particle and heat in the SOL region. To understand the Goldston heuristic drift-based model, results will also be presented from self-consistent transport simulations with the electric and magnetic drifts in BOUT + + and with the sheath potential included in the

  9. Low-frequency waves in a high-beta collisionless plasma Polarization, compressibility and helicity (United States)

    Gary, S. P.


    This paper considers the linear theory of waves near and below the ion cyclotron frequency in an isothermal electron-ion Vlasov plasma which is isotropic, homogeneous and magnetized. Numerical solutions of the full dispersion equation for the magnetosonic/whistler and Alfven/ion cyclotron modes at beta(i) = 1.0 are presented, and the polarizations, compressibilities, helicities, ion Alfven ratios and ion cross-helicities are exhibited and compared. At sufficiently large beta(i) and theta, the angle of propagation with respect to the magnetic field, the real part of the polarization of the Alfven/ion cyclotron wave changes sign, so that, for such parameters, this mode is no longer left-hand polarized. The Alfven/ion cyclotron mode becomes more compressive as the wavenumber increases, whereas the magnetosonic/whistler becomes more compressive with increasing theta.

  10. The manifestation of Alfven's hypothesis of critical ionization velocity in the performance of MPD thrusters (United States)

    Choueiri, E. Y.; Kelly, A. J.; Jahn, R. G.


    The role of Alfven's critical ionization velocity in the performance of the self-field MPD thruster has been investigated. The existence of a well defined characteristic velocity can be attributed to an ionization process involving the production of a population of suprathermal electrons by an electrostatic instability. It is shown that for the MPD thruster plasma, suprathermalization of electrons via this electrostatic instability can only happen if ions are initially accelerated to velocities larger than the Alfven critical ionization velocity. When this occurs the mechanism will be initiated and the ions decelerated to velocities near the critical velocity. This mechanism ceases to be limiting when all neutrals are ionized. A model of MPD thruster terminal behavior, incorporating Alfven's hypothesis, is presented. Experiments with three different propellants reveal that operation at values of the current squared to total mass flow ratio corresponding to the Alfven critical velocity is marked by a transition wherein low frequency voltage oscillations and a notable change in the voltage-current dependence occurs. One major result of this study is the demonstration that the Alfven critical velocity is not a fundamental limitation on MPD exhaust velocity.

  11. Long period slow MHD waves in the solar wind source region


    Dwivedi, B. N.; Srivastava, A. K.


    We consider compressive viscosity and thermal conductivity to study the propagation and dissipation of long period slow longitudinal MHD waves in polar coronal holes. We discuss their likely role in the line profile narrowing, and in the energy budget for coronal holes and the solar wind. We compare the contribution of longitudinal MHD waves with high frequency Alfven waves.

  12. The theory of magnetohydrodynamic wave generation by localized sources. III - Efficiency of plasma heating by dissipation of far-field waves. [in solar corona (United States)

    Collins, William


    The fraction of radiation emitted by Alfven waves is calculated by using two separate methods to determine whether the Alfven flux generated in the photosphere is sufficient to heat the corona. One method employs a set of scaling laws for the fluxes as functions of plasma and source parameters; the second method consist of a procedure for calculating the flux in each waveband from the interaction of vector-harmonic components of an arbitrary applied forcing. Both methods indicate that the Alfven flux accounts roughly for half of the total emission. The need to reexamine estimates of the amount of Alfven flux reaching the corona based on observations of plasma disturbances in the photosphere is emphasized.

  13. Planetary Consequences of Sub-Alfvenic Space Environment in Close-in Planets (United States)

    Cohen, Ofer; Drake, Jeremy J.; Garraffo, Cecilia; Kashyap, Vinay; Gombosi, Tamas


    Close-in gas giant planets, as well as close-in terrestrial planets may reside in a sub-Alfvenic environment, at which the surrounding plasma's speed is slower than the local Alfven speed. Such an environment is very different from the typical space environment near the Earth and the other solar system planets. I will review the unique conditions of this situation and will point out crucial consequences in the context of star-planet interaction, detectibility, radio emissions, and planet habitability.


    Energy Technology Data Exchange (ETDEWEB)

    Goossens, M.; Van Doorsselaere, T. [Centre for mathematical Plasma Astrophysics, Mathematics Department, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Soler, R. [Solar Physics Group, Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Verth, G., E-mail: [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Hicks Building, Sheffield S3 7RH (United Kingdom)


    Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.

  15. The effect of toroidal plasma rotation on low-frequency reversed shear Alfven eigenmodes in tokamaks

    NARCIS (Netherlands)

    Haverkort, J. W.


    The influence of toroidal plasma rotation on the existence of reversed shear Alfven eigenmodes (RSAEs) near their minimum frequency is investigated analytically. An existence condition is derived showing that a radially decreasing kinetic energy density is unfavourable for the existence of RSAEs.

  16. Alfven, Hugo. Die drei Schwedischen Rhapsodien op. 19, 24 und 47 / Andreas Meyer

    Index Scriptorium Estoniae

    Meyer, Andreas


    Uuest heliplaadist "Alfven, Hugo. Die drei Schwedischen Rhapsodien op. 19, 24 und 47, En skärgardssägen op. 20, Suite aus Der Berkönig. Königliche Stockholmer Philharmoniker, Neeme Järvi". AD: 1987-1992. BIS?Disco-Center CD 725 (WD: 77'00")

  17. Cusp Alfven and Plasma Electrodynamics Rocket (CAPER) Project (United States)

    National Aeronautics and Space Administration — Launch a single rocket from Andoya Rocket Range into an active cusp event. Observe electric and magnetic fields, HF waves, electron and ion distributions and...

  18. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo


    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  19. Probabilistic Analysis of Crack Width

    Directory of Open Access Journals (Sweden)

    J. Marková


    Full Text Available Probabilistic analysis of crack width of a reinforced concrete element is based on the formulas accepted in Eurocode 2 and European Model Code 90. Obtained values of reliability index b seem to be satisfactory for the reinforced concrete slab that fulfils requirements for the crack width specified in Eurocode 2. However, the reliability of the slab seems to be insufficient when the European Model Code 90 is considered; reliability index is less than recommended value 1.5 for serviceability limit states indicated in Eurocode 1. Analysis of sensitivity factors of basic variables enables to find out variables significantly affecting the total crack width.

  20. A deterministic width function model

    Directory of Open Access Journals (Sweden)

    C. E. Puente


    Full Text Available Use of a deterministic fractal-multifractal (FM geometric method to model width functions of natural river networks, as derived distributions of simple multifractal measures via fractal interpolating functions, is reported. It is first demonstrated that the FM procedure may be used to simulate natural width functions, preserving their most relevant features like their overall shape and texture and their observed power-law scaling on their power spectra. It is then shown, via two natural river networks (Racoon and Brushy creeks in the United States, that the FM approach may also be used to closely approximate existing width functions.

  1. Phenomenology of non-Alfvenic turbulence in a uniformly expanding medium (United States)

    Matthaeus, W. H.; Zank, G. P.


    Transport and decay of magnetohydrodynamic (MHD) turbulence in a weakly inhomogeneous uniformly expanding medium involves a fairly complex formalism, even for the case where no spectral information is required. Here we argue that the phenomenology for decay simplifies greatly if: (1) the cross helicity (Alfvenicity) is small, (2) the dynamical influence of the large scale magnetic field is negligible either because of spectral anisotropy or because the expansion speed is much greater than the corresponding Alfven speed, and (3) the ratio of kinetic energy to magnetic energy for the fluctuations is either unity or some other constant. These conditions are acceptable as an approximation to solar wind turbulence in the outer heliosphere. In these circumstances a reasonable MHD energy-containing phenomenology is essentially that of locally homogeneous Kolmogoroff turbulence in a uniformly expanding medium. Analytical solutions for this model are presented for both undriven and driven cases.

  2. Bi-directional Alfv\\'en Cyclotron Instabilities in the Mega-Amp Spherical Tokamak

    CERN Document Server

    Sharapov, S E; Akers, R; Ayed, N Ben; Cecconello, M; Cook, J W C; Cunningham, G; Verwichte, E; Tea, the MAST


    Alfv\\'en cyclotron instabilities excited by velocity gradients of energetic beam ions were investigated in MAST experiments with super-Alfv\\'enic NBI over a wide range of toroidal magnetic fields from ~0.34 T to ~0.585 T. In MAST discharges with high magnetic field, a discrete spectrum of modes in the sub-cyclotron frequency range is excited toroidally propagating counter to the beam and plasma current (toroidal mode numbers n < 0).

  3. The critical role associated with beach slope and its width in ...

    African Journals Online (AJOL)

    ... to the transformation of the beach waves. There from, it is deduced that the wave energy is an increasing function of the beach bottom gradient and the shelf width. The later should, however, be finite. Further, the nonlinear interactions between the wave trains and the resulting excitations of the seabed are also discussed

  4. Fine Structure Zonal Flow Excitation by Beta-induced Alfven Eigenmode

    CERN Document Server

    Qiu, Zhiyong; Zonca, Fulvio


    Nonlinear excitation of low frequency zonal structure (LFZS) by beta-induced Alfven eigenmode (BAE) is investigated using nonlinear gyrokinetic theory. It is found that electrostatic zonal flow (ZF), rather than zonal current, is preferentially excited by finite amplitude BAE. In addition to the well-known meso-scale radial envelope structure, ZF is also found to exhibit fine radial structure due to the localization of BAE with respect to mode rational surfaces. Specifically, the zonal electric field has an even mode structure at the rational surface where radial envelope peaks.

  5. Electromagnetic transport components and sheared flows in drift-Alfven turbulence

    DEFF Research Database (Denmark)

    Naulin, V.


    Results from three-dimensional numerical simulations of drift-Alfven turbulence in a toroidal geometry with sheared magnetic field are presented. The simulations show a relation between self-generated poloidal shear flows and magnetic field perturbations. For large values of the plasma beta we...... observe an increase of the transport if the viscous damping of the self-generated shear flows is absent. This behavior is in contrast to the standard argument that sheared flows suppress turbulence and transport via a decorrelation mechanism. An explanation of this behavior in terms of the transport...

  6. Anomalous Electron Transport Due to Multiple High Frequency Beam Ion Driven Alfven Eigenmode

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, N. N.; Stutman, D.; Tritz, K.; Boozer, A.; Delgardo-Aparicio, L.; Fredrickson, E.; Kaye, S.; White, R.


    We report on the simulations of recently observed correlations of the core electron transport with the sub-thermal ion cyclotron frequency instabilities in low aspect ratio plasmas of the National Spherical Torus Experiment (NSTX). In order to model the electron transport of the guiding center code ORBIT is employed. A spectrum of test functions of multiple core localized Global shear Alfven Eigenmode (GAE) instabilities based on a previously developed theory and experimental observations is used to examine the electron transport properties. The simulations exhibit thermal electron transport induced by electron drift orbit stochasticity in the presence of multiple core localized GAE.

  7. Sensitivity of alpha-particle-driven Alfven eigenmodes to q-profile variation in ITER scenarios

    CERN Document Server

    Rodrigues, P; Fazendeiro, L; Ferreira, J; Coelho, R; Nabais, F; Borba, D; Polevoi, N F Loureiro A R; Pinches, S D; Sharapov, S E


    An hybrid ideal-MHD/drift-kinetic approach to assess the stability of alpha-particle-driven Alfven eigenmodes in burning plasmas is used to show that certain foreseen ITER scenarios, namely the $I_\\mathrm{p} = 15$ MA baseline scenario with very low and broad core magnetic shear, are sensitive to small changes in the background magnetic equilibrium. Slight perturbations (of the order of 1%) in the total plasma current are seen to cause large variations in the growth rate, toroidal mode number, and radial location of the most unstable eigenmodes found. The observed sensitivity is shown to proceed from the very low magnetic shear values attained throughout the plasma core.

  8. Measurement of effective sheath width around the cutoff probe based on electromagnetic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. W.; Oh, W. Y., E-mail:, E-mail: [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); You, S. J., E-mail:, E-mail: [Department of Physics, Chungnam National University, Daejeon 305-701 (Korea, Republic of); Kim, J. H. [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon 305-306 (Korea, Republic of); Chang, H. Y. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Yoon, J.-S. [Plasma Technology Research Center, National Fusion Research Institute, Gunsan 573-540 (Korea, Republic of)


    We inferred the effective sheath width using the cutoff probe and incorporating a full-wave three-dimensional electromagnetic (EM) simulation. The EM simulation reproduced the experimentally obtained plasma-sheath resonance (PSR) on the microwave transmission (S{sub 21}) spectrum well. The PSR frequency has a one-to-one correspondence with the width of the vacuum layer assumed to be the effective sheath in the EM simulation model. The sheath width was estimated by matching the S{sub 21} spectra of the experiment and the EM simulation for different widths of the sheath. We found that the inferred sheath widths quantitatively and qualitatively agree with the sheath width measured by incorporating an equivalent circuit model. These results demonstrate the excellent potential of the cutoff probe for inferring the effective sheath width from its experimental spectrum data.

  9. Perturbative Study of Energetic Particle Redistribution by Alfven Eigenmodes in ITER

    Energy Technology Data Exchange (ETDEWEB)

    N.N. Gorelenkov and R.B. White


    The modification of particle distributions by magnetohydrodynamic modes is an important topic for magnetically confined plasmas. Low amplitude modes are known to be capable of producing significant modification of injected neutral beam profiles. Flattening of a distribution due to phase mixing in an island or due to portions of phase space becoming stochastic is a process extremely rapid on the time scale of an experiment. In this paper we examine the effect of toroidal Alfven eigenmodes (TAE) and reversed shear Alfven eigenmodes (RSAE) in ITER on alpha particle and injected beam distributions using theoretically predicted mode amplitudes. It is found that for the equilibrium of a hybrid scenario even at ten times the predicted saturation level the modes have negligible effect on these distributions. A strongly reversed shear (or advanced) scenario, having a spectrum of modes that are much more global, is somewhat more susceptible to induced loss due to mode resonance, with alpha particle losses of over one percent with predicted amplitudes and somewhat larger with the assistance of toroidal field ripple. The elevated q profile contributes to stronger TAE (RSAE) drive and more unstable modes. An analysis of the existing mode-particle resonances is carried out to determine which modes are responsible for the profile modification and induced loss. We find that losses are entirely due to resonance with the counter-moving and trapped particle populations, with co-moving passing particles participating in resonances only deep within the plasma and not leading to loss.

  10. Identification of characteristic ELM evolution patterns with Alfven-scale measurements and unsupervised machine learning analysis (United States)

    Smith, David R.; Fonck, R. J.; McKee, G. R.; Diallo, A.; Kaye, S. M.; Leblanc, B. P.; Sabbagh, S. A.


    Edge localized mode (ELM) saturation mechanisms, filament dynamics, and multi-mode interactions require nonlinear models, and validation of nonlinear ELM models requires fast, localized measurements on Alfven timescales. Recently, we investigated characteristic ELM evolution patterns with Alfven-scale measurements from the NSTX/NSTX-U beam emission spectroscopy (BES) system. We applied clustering algorithms from the machine learning domain to ELM time-series data. The algorithms identified two or three groups of ELM events with distinct evolution patterns. In addition, we found that the identified ELM groups correspond to distinct parameter regimes for plasma current, shape, magnetic balance, and density pedestal profile. The observed characteristic evolution patterns and corresponding parameter regimes suggest genuine variation in the underlying physical mechanisms that influence the evolution of ELM events and motivate nonlinear MHD simulations. Here, we review the previous results for characteristic ELM evolution patterns and parameter regimes, and we report on a new effort to explore the identified ELM groups with 2D BES measurements and nonlinear MHD simulations. Supported by U.S. Department of Energy Award Numbers DE-SC0001288 and DE-AC02-09CH11466.

  11. Low-frequency electromagnetic waves driven by gyrotropic gyrating ion beams (United States)

    Sharma, O. P.; Patel, V. L.


    The origin of left- and right-hand-polarized low-frequency waves in space plasmas is analyzed. It has been shown that a gyrotropic gyrating ion beam, a ring in velocity space, can excite electromagnetic modes in the plasma near the beam gyrofrequency. It excites left-hand-polarized shear Alfven waves and their harmonics via the coupling of Alfven modes with the beam modes. It can also excite right-hand-polarized fast-mode magnetosonic waves and their harmonics as well. The excitation is possible for beam ions heavier than the plasma ions. The growth rate varies as one-third power of the beam density and decreases with the angle of wave propagation with respect to the ambient magnetic field. The nonlocality has a stabilizing effect on the instability. The predicted values of the wave frequencies compare reasonably well with those observed in satellite data.

  12. The Potential for Ambient Plasma Wave Propulsion (United States)

    Gilland, James H.; Williams, George J.


    A truly robust space exploration program will need to make use of in-situ resources as much as possible to make the endeavor affordable. Most space propulsion concepts are saddled with one fundamental burden; the propellant needed to produce momentum. The most advanced propulsion systems currently in use utilize electric and/or magnetic fields to accelerate ionized propellant. However, significant planetary exploration missions in the coming decades, such as the now canceled Jupiter Icy Moons Orbiter, are restricted by propellant mass and propulsion system lifetimes, using even the most optimistic projections of performance. These electric propulsion vehicles are inherently limited in flexibility at their final destination, due to propulsion system wear, propellant requirements, and the relatively low acceleration of the vehicle. A few concepts are able to utilize the environment around them to produce thrust: Solar or magnetic sails and, with certain restrictions, electrodynamic tethers. These concepts focus primarily on using the solar wind or ambient magnetic fields to generate thrust. Technically immature, quasi-propellantless alternatives lack either the sensitivity or the power to provide significant maneuvering. An additional resource to be considered is the ambient plasma and magnetic fields in solar and planetary magnetospheres. These environments, such as those around the Sun or Jupiter, have been shown to host a variety of plasma waves. Plasma wave propulsion takes advantage of an observed astrophysical and terrestrial phenomenon: Alfven waves. These are waves that propagate in the plasma and magnetic fields around and between planets and stars. The generation of Alfven waves in ambient magnetic and plasma fields to generate thrust is proposed as a truly propellantless propulsion system which may enable an entirely new matrix of exploration missions. Alfven waves are well known, transverse electromagnetic waves that propagate in magnetized plasmas at

  13. Dispersion Relations and Polarizations of Low-frequency Waves in Two-fluid Plasmas

    CERN Document Server

    Zhao, Jinsong


    Analytical expressions for the dispersion relations and polarizations of low-frequency waves in magnetized plasmas based on two-fluid model are obtained. The properties of waves propagating at different angles (to the ambient magnetic field $\\mathbf{B}_{0}$) and \\beta (the ratio of the plasma to magnetic pressures) values are investigated. It is shown that two linearly polarized waves, namely the fast and Alfv\\'{e}n modes in the low-\\beta $\\left( \\beta \\ll 1\\right)$ plasmas, the fast and slow modes in the \\beta \\sim 1 plasmas, and the Alfv\\'{e}n and slow modes in the high-\\beta $\\left( \\beta \\gg 1\\right)$ plasmas, become circularly polarized at the near-parallel (to $\\mathbf{B}_{0}$) propagation. The negative magnetic-helicity of the Alfv\\'{e}n mode occurs only at small or moderate angles in the low-\\beta plasmas, and the ion cross-helicity of the slow mode is nearly the same as that of the Alfv\\'{e}n mode in the high-\\beta plasmas. It also shown the electric polarization $\\delta E_{z}/\\delta E_{y}$ decreases...

  14. A statistical model of three-dimensional anisotropy and intermittency in strong Alfv\\'enic turbulence

    CERN Document Server

    Mallet, A


    We propose a simple statistical model of three-dimensionally anisotropic, intermittent, strong Alfv\\'enic turbulence, incorporating both critical balance and dynamic alignment. Our model is based on log-Poisson statistics for Elsasser-field increments {\\em along} the magnetic field. We predict the scalings of Elsasser-field conditional two-point structure functions with point separations in all three directions in a coordinate system locally aligned with the direction of the magnetic field and of the fluctuating fields and obtain good agreement with numerical simulations. We also derive a scaling of the parallel coherence scale of the fluctuations, $l_\\parallel \\propto \\lambda^{1/2}$, where $\\lambda$ is the perpendicular scale. This is indeed observed for the bulk of the fluctuations in numerical simulations.

  15. Resonance width distribution for open quantum systems


    Shchedrin, Gavriil; Zelevinsky, Vladimir


    Recent measurements of resonance widths for low-energy neutron scattering off heavy nuclei show large deviations from the standard Porter-Thomas distribution. We propose a new resonance width distribution based on the random matrix theory for an open quantum system. Two methods of derivation lead to a single analytical expression; in the limit of vanishing continuum coupling, we recover the Porter-Thomas distribution. The result depends on the ratio of typical widths $\\Gamma$ to the energy le...

  16. Frequency spectrum of toroidal Alfv\\'en mode in a neutron star with Ferraro's form of nonhomogeneous poloidal magnetic field


    Bastrukov, S. I.; Chang, H. -K.; Molodtsova, I. V.; Wu, E. H.; Chen, G. -T.; Lan, S. -H.


    Using the energy variational method of magneto-solid-mechanical theory of a perfectly conducting elastic medium threaded by magnetic field, the frequency spectrum of Lorentz-force-driven global torsional nodeless vibrations of a neutron star with Ferraro's form of axisymmetric poloidal nonhomogeneous internal and dipole-like external magnetic field is obtained and compared with that for this toroidal Alfv\\'en mode in a neutron star with homogeneous internal and dipolar external magnetic field...

  17. Constant Width Planar Computation Characterizes ACC0

    DEFF Research Database (Denmark)

    Hansen, K.A.


    We obtain a characterization of ACC 0 in terms of a natural class of constant width circuits, namely in terms of constant width polynomial size planar circuits. This is shown via a characterization of the class of acyclic digraphs which can be embedded on a cylinder surface in such a way that all...

  18. Comparison of Arch Width Changes Following Orthodontic ...

    African Journals Online (AJOL)


    Nov 21, 2015 ... Materials and Methods: The study was conducted with pre- and post-treatment digital models from 240 patients. ... this distance was maintained in calculating posttreatment measurements (T2). Mandibular and maxillary arch ... Arch width changes after different treatment modalities or posterior arch width ...

  19. Resonance width distribution for open quantum systems (United States)

    Shchedrin, Gavriil; Zelevinsky, Vladimir


    Recent measurements of resonance widths for low-energy neutron scattering off heavy nuclei show large deviations from the Porter-Thomas distribution. We propose a “standard” width distribution based on the random matrix theory for a chaotic quantum system with a single open decay channel. Two methods of derivation lead to a single analytical expression that recovers, in the limit of very weak continuum coupling, the Porter-Thomas distribution. The parameter defining the result is the ratio of typical widths Γ to the energy level spacing D. Compared to the Porter-Thomas distribution, the new distribution suppresses small widths and increases the probabilities of larger widths. We show also that it is necessary to take into account the γ channels.

  20. Ultrasonic nondestructive characterization of mortars by the width of the resonances (United States)

    Bita, H.; Faiz, B.; Moudden, A.; Lotfi, H.; Ouacha, El H.


    In this work, we study the width of the resonances of the ultrasound waves reflection coefficient backscattered by a plane structure of the mortar. We establish the relationship between this width with two parameters which are widely used in non-destructive characterization of cementitious materials namely the velocity and attenuation. Monitoring the hydration of three solutions of mortars produced with different sizes of sand grains shows that the experimental results confirmed the theoretical predictions. Linear correlations are established between the width of resonance and the two ultrasonic parameters.

  1. Electromagnetic Waves and Bursty Electron Acceleration: Implications from Freja (United States)

    Andersson, Laila; Ivchenko, N.; Wahlund, J.-E.; Clemmons, J.; Gustavsson, B.; Eliasson, L.


    Dispersive Alfven wave activity is identified in four dayside auroral oval events measured by the Freja satellite. The events are characterized by ion injection, bursty electron precipitation below about I keV, transverse ion heating and broadband extremely low frequency (ELF) emissions below the lower hybrid cutoff frequency (a few kHz). The broadband emissions are observed to become more electrostatic towards higher frequencies. Large-scale density depletions/cavities, as determined by the Langmuir probe measurements, and strong electrostatic emissions are often observed simultaneously. A correlation study has been carried out between the E- and B-field fluctuations below 64 Hz (the dc instrument's upper threshold) and the characteristics of the precipitating electrons. This study revealed that the energization of electrons is indeed related to the broadband ELF emissions and that the electrostatic component plays a predominant role during very active magnetospheric conditions. Furthermore, the effect of the ELF electromagnetic emissions on the larger scale field-aligned current systems has been investigated, and it is found that such an effect cannot be detected. Instead, the Alfvenic activity creates a local region of field-aligned currents. It is suggested that dispersive Alfven waves set up these local field-aligned current regions and in turn trigger more electrostatic emissions during certain conditions. In these regions ions are transversely heated, and large-scale density depletions/cavities may be created during especially active periods.

  2. ULF waves in other magnetospheres - observations and possible source mechanisms (United States)

    Khurana, K. K.


    Five other planets besides the Earth (Mercury, Jupiter, Saturn, Uranus and Neptune) in our solar system are now known to possess internal magnetic fields. The exploration of these planets by the Mariner, Pioneer, Voyager and Ulysses spacecraft has revealed that all of them possess fully expressed magnetospheres which share several similarities in their structures with the Earth's magnetosphere. This paper presents an overview of the work done so far in the field of the ULF waves in the magnetospheres of Mercury, Jupiter, Saturn and Uranus. To give an idea of the expected wave periods, gyroperiods of the dominant ion species and the fundamental periods of the standing Alfven waves are presented as functions of L parameter in these magnetospheres. In the magnetosphere of Mercury, ULF waves were observed in the vicinity of the magnetopause and in the inner magnetosphere with frequencies in the range of 0.1-0.5 Hz. In the magnetosphere of Jupiter, at least three different types of wave sources are observed. Near the dayside and the dawn magnetopause, waves with periods 5-20 min and amplitudes between 5 and 10 nT are observed which may be caused by an interaction between the corotating outflowing plasma and the antisunward moving plasma from the magnetosheath. In Saturn's magnetosphere, ULF waves have been observed to be strongly confined to the plasma sheet and have wave periods in the range of 5-60 minutes. The calculated fundamental has a wave period of 5-6 hours in the region where these waves were observed. The ULF waves have extremely small amplitudes (approximately = 0.3 nT) in the magnetosphere of Uranus. These waves were also seen to be confined to the low magnitude latitudes and have periods much shorter than that of the fundamental of a standing Alfven wave.

  3. Radiative widths of neutral kaon excitations

    Indian Academy of Sciences (India)

    we limit the radiative widths Γr(K*(1410)) and Γr(K*. 2(1430)) to 52.9 and 5.4 keV, respectively, at 90% CL. While there is no prediction for Γr(K*(1410)), Babcock and Rosner [9] used SU(3) invariance to predict that excitations with JPC = 1++ or 2++ would have vanishing radiative widths. In the limit of SU(3), K*. 2(1430) has.

  4. Magnetic Cyclotron Waves near the Proton Cyclotron Frequency in the Solar Wind: Wind and ACE Observations in 2005 (United States)

    Broiles, T. W.; Jian, L.; Stevens, M. L.; Gary, S. P.; Lepri, S. T.; Vinas, A. F.; Moya, P. S.; Alexander, R.


    Strong narrow-band electromagnetic waves near the proton cyclotron frequency (fpc) have been observed extensively in the solar wind throughout the inner heliosphere. They are transverse and near-circularly polarized, and propagate in directions quasi-parallel or anti-parallel to the magnetic field. Their frequency is a few times of fpc in the spacecraft frame and a fraction of fpc in the plasma frame after removing the Doppler shift effect. These waves are left-hand (LH) or right-hand (RH) polarized in the spacecraft frame with otherwise similar characteristics except LH ones appear more often and have higher wave power. Intrinsically they can be LH polarized Alfven-cyclotron waves or RH polarized magnetosonic waves. Through the assistance of audification, we have studied the long-lasting wave events near fpc in 2005 using the high-cadence magnetic field data and well-calibrated plasma data from the Wind mission. A mixture of temperature anisotropies for core protons, beam protons, and alpha particles, as well as proton beam drift are often found for selected events of extensive waves. The wave dispersion analysis using these ion moments indicate these waves are likely to be associated with unstable Alfven-cyclotron anisotropy instability or ion beam instability, and suggest there is a mixture of Alfven-cyclotron waves and magnetosonic waves in the solar wind. Using the conjunction of Wind and ACE spacecraft when they were within 50 Earth radii of each other, we study how often the two spacecraft observe the same waves and whether there is noticeable heating for heavy ions associated with these waves.

  5. New Predictions of the Jovian Aurora: Location, Latitudinal Width, and Intensity (United States)

    Tsurutani, B. T.; Arballo, J. K.; Ho, C. M.; Lin, N. G.; Kellogg, P. J.; Cornileau-Wehrlin, N.; Krupp, N.


    A model/theory for the Jovian aurora is formed based on a similar model for the dayside aurora at Earth and recent Ulysses field and particle measurements at Jupiter. Items discussed are plasma boundary layer, wave-particle resonant interactions, and the model's prediction of the aurora's location, latitudinal width, and intensity.

  6. Effect of stimulus width on simultaneous contrast

    Directory of Open Access Journals (Sweden)

    Veronica Shi


    Full Text Available Perceived brightness of a stimulus depends on the background against which the stimulus is set, a phenomenon known as simultaneous contrast. For instance, the same gray stimulus can look light against a black background or dark against a white background. Here we quantified the perceptual strength of simultaneous contrast as a function of stimulus width. Previous studies have reported that wider stimuli result in weaker simultaneous contrast, whereas narrower stimuli result in stronger simultaneous contrast. However, no previous research has quantified this relationship. Our results show a logarithmic relationship between stimulus width and perceived brightness. This relationship is well matched by the normalized output of a Difference-of-Gaussians (DOG filter applied to stimuli of varied widths.

  7. Preequilibrium escape widths of giant resonances (United States)

    Roos, M. O.; Dias, H.; Rodriguez, O.; Teruya, N.; Hussein, M. S.


    In this work we present a calculation of the 2p-2h preequilibrium escape width of giant resonances for the nuclei 40Ca, 90Zr, and 208Pb. The problem studied here involves an excited nucleus in the 1p-1h configuration, evolving to the 2p-2h configuration with the 1p in the continuum. The theoretical approach used for our calculations is based on the statistical multistep compound theory of Feshbach, Kerman, and Koonin (FKK) and on the particle-hole state densities given by Obložinský. Our calculations show that although different state densities supply a similar result for the damping width, the escape width is strongly dependent on the nuclei, on the binding energy of the emitted nucleon, and the excitation energy of the giant resonance.

  8. Beta-induced Alfven-acousti Eigenmodes in NSTX and DIII-D Driven by Beam Ions

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, N. N.; Van Zeeland, M. A.; Berk, H. L.; Crocker, N. A.; Darrow, D.; Fredrickson, E.; Fu, G. Y.; Heidbrink, W. W.; Menard, J.; Nazikian, R.


    Kinetic theory and experimental observations of a special class of energetic particle driven instabilities called here Beta-induced Alfven-Acoustic Eigenmodes (BAAE) are reported confirming previous results [N.N. Gorelenkov H.L. Berk, N.A. Crocker et. al. Plasma Phys. Control. Fusion 49 B371 (2007)] The kinetic theory is based on the ballooning dispersion relation where the drift frequency effects are retained. BAAE gaps are recovered in kinetic theory. It is shown that the observed certain low-frequency instabilities on DIII-D [J.L. Luxon, Nucl. Fusion 42 614 (2002)] and National Spherical Torus Experiment [M. Ono, S.M. Kaye, Y.-K M. Peng et. al., Nucl. Fusion 40 3Y 557 (2000)] are consistent with their identification as BAAEs. BAAEs deteriorated the fast ion confinement in DIII-D and can have a similar effect in next-step fusion plasmas, especially if excited together with multiple global Toroidicity-induced shear Alfven Eigenmode (TAE) instabilities. BAAEs can also be used to diagnose safety factor profiles, a technique known as magnetohydrodynamic spectroscopy.

  9. Comprehensive evaluation of the linear stability of Alfv\\'en eigenmodes driven by alpha particles in an ITER baseline scenario

    CERN Document Server

    Figueiredo, A C A; Borba, D; Coelho, R; Fazendeiro, L; Ferreira, J; Loureiro, N F; Nabais, F; Pinches, S D; Polevoi, A R; Sharapov, S E


    The linear stability of Alfv\\'en eigenmodes in the presence of fusion-born alpha particles is thoroughly assessed for two variants of an ITER baseline scenario, which differ significantly in their core and pedestal temperatures. A systematic approach is used that considers all possible eigenmodes for a given magnetic equilibrium and determines their growth rates due to alpha-particle drive and Landau damping on fuel ions, helium ashes and electrons. This extensive stability study is efficiently conducted through the use of a specialized workflow that profits from the performance of the hybrid MHD drift-kinetic code $\\mbox{CASTOR-K}$ (Borba D. and Kerner W. 1999 J. Comput. Phys. ${\\bf 153}$ 101; Nabais F. ${\\it et\\,al}$ 2015 Plasma Sci. Technol. ${\\bf 17}$ 89), which can rapidly evaluate the linear growth rate of an eigenmode. It is found that the fastest growing instabilities in the aforementioned ITER scenario are core-localized, low-shear toroidal Alfv\\'en eigenmodes. The largest growth-rates occur in the s...

  10. An efficient algorithm for equal width (United States)

    Bakodah, Huda. O.; Banaja, Mona. A.


    The new modification of Laplace Adomian decomposition method (ADM) to obtain numerical solution of the equal width equation is presented. The performance of the method illustrated by solving some test examples of the problem. By computing the absolute error the results are found in good agreement with exact solution.

  11. Palindromic widths of nilpotent and wreath products

    Indian Academy of Sciences (India)

    and Research (IISER) Mohali, Knowledge City, Sector 81, S.A.S. Nagar,. P.O. Manauli 140 306, India. *Corresponding author. E-mail:; ..... Logika 39(4) (2000) 395–440, translation in Algebra and Logic 39(4) (2000) 224–251. [4] Bardakov V G and Gongopadhyay K, Palindromic width of free nilpotent ...

  12. Wireline equalization using pulse-width modulation

    NARCIS (Netherlands)

    Schrader, J.H.R.; Klumperink, Eric A.M.; Visschers, J.L.; Nauta, Bram


    Abstract-High-speed data links over copper cables can be effectively equalized using pulse-width modulation (PWM) pre-emphasis. This provides an alternative to the usual 2-tap FIR filters. The use of PWM pre-emphasis allows a channel loss at the Nyquist frequency of ~30dB, compared to ~20dB for a

  13. Comparative evaluation of modified pulse width modulation ...

    African Journals Online (AJOL)

    Comparative evaluation of modified pulse width modulation schemes of Z-source inverter for various applications and demands. ... In this paper, for the common boost factor and modulation index, the output voltage, output current, output line harmonics profile of the inverters with different PWM schemes powered by the ...

  14. Complexity in the high latitude HF radar spectral width boundary region

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson


    Full Text Available SuperDARN radars are sensitive to the collective Doppler characteristics of decametre-scale irregularities in the high latitude ionosphere. The radars routinely observe a distinct transition from large spectral width (>100 m s−1 located at higher latitudes to low spectral width (<50 m s−1 located at lower latitudes. Because of its equatorward location, the TIGER Tasmanian radar is very sensitive to the detection of the spectral width boundary (SWB in the nightside auroral ionosphere. An analysis of the line-of-sight velocities and 2-D beam-swinging vectors suggests the meso-scale (~100 km convection is more erratic in the high spectral width region, but slower and more homogeneous in the low spectral width region. The radar autocorrelation functions are better modelled using Lorentzian Doppler spectra in the high spectral width region, and Gaussian Doppler spectra in the low spectral width region. However, paradoxically, Gaussian Doppler spectra are associated with the largest spectral widths. Application of the Burg maximum entropy method suggests the occurrence of double-peaked Doppler spectra is greater in the high spectral width region, implying the small-scale (~10 km velocity fluctuations are more intense above the SWB. These observations combined with collective wave scattering theory imply there is a transition from a fast flowing, turbulent plasma with a correlation length of velocity fluctuations less than the scattering wavelength, to a slower moving plasma with a correlation length greater than the scattering wavelength. Peak scaling and structure function analysis of fluctuations in the SWB itself reveals approximately scale-free behaviour across temporal scales of ~10 s to ~34 min. Preliminary scaling exponents for these fluctuations, αGSF=0.18±0.02 and αGSF=0.09±0.01, are even smaller than that expected for MHD turbulence.

  15. An inter-hemispheric, statistical study of nightside spectral width distributions from coherent HF scatter radars

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield


    Full Text Available A statistical investigation of the Doppler spectral width parameter routinely observed by HF coherent radars has been conducted between the Northern and Southern Hemispheres for the nightside ionosphere. Data from the SuperDARN radars at Thykkvibær, Iceland and Syowa East, Antarctica have been employed for this purpose. Both radars frequently observe regions of high (>200 ms-1 spectral width polewards of low (<200 ms-1 spectral width. Three years of data from both radars have been analysed both for the spectral width and line of sight velocity. The pointing direction of these two radars is such that the flow reversal boundary may be estimated from the velocity data, and therefore, we have an estimate of the open/closed field line boundary location for comparison with the high spectral widths. Five key observations regarding the behaviour of the spectral width on the nightside have been made. These are (i the two radars observe similar characteristics on a statistical basis; (ii a latitudinal dependence related to magnetic local time is found in both hemispheres; (iii a seasonal dependence of the spectral width is observed by both radars, which shows a marked absence of latitudinal dependence during the summer months; (iv in general, the Syowa East spectral width tends to be larger than that from Iceland East, and (v the highest spectral widths seem to appear on both open and closed field lines. Points (i and (ii indicate that the cause of high spectral width is magnetospheric in origin. Point (iii suggests that either the propagation of the HF radio waves to regions of high spectral width or the generating mechanism(s for high spectral width is affected by solar illumination or other seasonal effects. Point (iv suggests that the radar beams from each of the radars are subject either to different instrumental or propagation effects, or different geophysical conditions due to their locations, although we suggest that this result is more likely to

  16. Bidirectional Energy Cascades and the Origin of Kinetic Alfvenic and Whistler Turbulence in the Solar Wind (United States)

    Che, H.; Goldstein, M. L.; Vinas, A. F.


    The observed steep kinetic scale turbulence spectrum in the solar wind raises the question of how that turbulence originates. Observations of keV energetic electrons during solar quiet time suggest them as a possible source of free energy to drive kinetic turbulence. Using particle-in-cell simulations, we explore how the free energy released by an electron two-stream instability drives Weibel-like electromagnetic waves that excite wave-wave interactions. Consequently, both kinetic Alfvénic and whistler turbulence are excited that evolve through inverse and forward magnetic energy cascades.

  17. K- nuclear states: Binding energies and widths (United States)

    Hrtánková, J.; Mareš, J.


    K- optical potentials relevant to calculations of K- nuclear quasibound states were developed within several chiral meson-baryon coupled-channels interaction models. The applied models yield quite different K- binding energies and widths. Then the K- multinucleon interactions were incorporated by a phenomenological optical potential fitted recently to kaonic atom data. Though the applied K- interaction models differ significantly in the K-N subthreshold region, our self-consistent calculations of kaonic nuclei across the periodic table lead to conclusions valid quite generally. Due to K- multinucleon absorption in the nuclear medium, the calculated widths of K- nuclear states are sizable, ΓK-≥90 MeV, and exceed substantially their binding energies in all considered nuclei.

  18. Continuum RPA calculation of escape widths

    Energy Technology Data Exchange (ETDEWEB)

    Vertse, T. (Inst. of Nuclear Research, Hungarian Academy of Sciences, Debrecen (Hungary)); Curutchet, P.; Liotta, R.J. (Manne Siegbahn Inst. of Physics, Stockholm (Sweden)); Bang, J. (Niels Bohr Inst., Copenhagen (Denmark)); Giai, N. van (Inst. de Physique Nucleaire, 91 - Orsay (France))


    Particle-hole partial decay widths are calculated within the continuum RPA exactly, i.e. without any further approximation, in a square well plus Coulomb potential and using a separable residual interaction. The results are compared with the ones obtained by making pole expansions of the single-particle Green functions (Berggren and Mittag-Leffler). It is found that the Berggren and Mittag-Leffler expansions give results in good agreement with the 'exact' ones. (orig.).

  19. Dynamics of niche width and resource partitioning.


    Dobrev, S.; Kim, T-Y; Hannan, M.T.


    This article examines the effects of crowding in a market center on rates of change in organizational niche width and on organizational mortality. It proposes that, although firms with wide niches benefit from risk spreading and economies of scale, they are simultaneously exposed to intense competition. An analysis of organizational dynamics in automobile manufacturing firms in France, Germany, and Great Britain shows that competitive pressure not only increases the hazard of disbanding but a...

  20. Testing Computability by Width Two OBDDs (United States)

    Ron, Dana; Tsur, Gilad

    Property testing is concerned with deciding whether an object (e.g. a graph or a function) has a certain property or is “far” (for some definition of far) from every object with that property. In this paper we give lower and upper bounds for testing functions for the property of being computable by a read-once width-2 Ordered Binary Decision Diagram (OBDD), also known as a branching program, where the order of the variables is known. Width-2 OBDDs generalize two classes of functions that have been studied in the context of property testing - linear functions (over GF(2)) and monomials. In both these cases membership can be tested in time that is linear in 1/ɛ. Interestingly, unlike either of these classes, in which the query complexity of the testing algorithm does not depend on the number, n, of variables in the tested function, we show that (one-sided error) testing for computability by a width-2 OBDD requires Ω(log(n)) queries, and give an algorithm (with one-sided error) that tests for this property and performs tilde{O}(log(n)/ɛ) queries.

  1. Experimental study of reversed shear Alfven eigenmodes during the current ramp in the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, E M; Kramer, G J [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Porkolab, M; Lin, Y; Tsujii, N; Wukitch, S J [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Lin, L, E-mail: eedlund@pppl.go [University of California Los Angeles, Los Angeles, CA 90095 (United States)


    Experiments conducted in the Alcator C-Mod tokamak have explored the physics of reversed shear Alfven eigenmodes (RSAEs) during the current ramp. The frequency evolution of the RSAEs during the current ramp provides a constraint on the evolution of q{sub min}, a result which is important in transport modeling and for comparison with other diagnostics which directly measure the magnetic field line structure. Additionally, a scaling of the RSAE minimum frequency with the sound speed is used to derive bounds on the adiabatic index, a measure of the plasma compressibility. This scaling places the adiabatic index at 1.40 {+-} 0.15 and supports the kinetic calculation of separate electron and ion compressibilities with an ion adiabatic index close to 7/4.

  2. Experimental Study of Reversed Shear Alfven Eigenmodes During The Current Ramp In The Alcator C-Mod Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, E. M.; Porkolab, M.; Kramer, G. J.; Lin, L.; Lin, Y.; Tsuji, N.; Wukitch, S. J.


    Experiments conducted in the Alcator C-Mod tokamak at MIT have explored the physics of reversed shear Alfven eigenmodes (RSAEs) during the current ramp. The frequency evolution of the RSAEs throughout the current ramp provides a constraint on the evolution of qmin, a result which is important in transport modeling and for comparison with other diagnostics which directly measure the magnetic field line structure. Additionally, a scaling of the RSAE minimum frequency with the sound speed is used to derive a measure of the adiabatic index, a measure of the plasma compressibility. This scaling bounds the adiabatic index at 1.40 ± 0:15 used in MHD models and supports the kinetic calculation of separate electron and ion compressibilities with an ion adiabatic index close to 7~4.

  3. Quasi-periodic compressive waves in polar plumes (United States)

    DeForest, C. E.; Gurman, J. B.


    The observation of polar plumes in the south polar coronal hole, carried out on 7 March 1996 by the Solar and Heliospheric Observatory (SOHO), are analyzed. These polar plumes are cool density structures that arise from morphologically unipolar magnetic footpoints. Data from the extreme ultraviolet imaging telescope show quasi-periodic perturbations in the brightness of the Fe IX and X line emissions at 171 A from polar plumes. The perturbations have periods of 10 to 15 min, and repeat for several cycles suggesting that they are compressive waves propagating through the plume at or near the Alfven speed. Possible explanations for the observed phenomenon are proposed.

  4. Formation and loss of hierarchical structure in two-dimensional MHD simulations of wave-driven turbulence in interstellar clouds


    Elmegreen, Bruce G.


    Two dimensional compressible magneto-hydrodynamical (MHD) simulations run for 20 crossing times on a 800x640 grid with two stable thermal states show persistent hierarchical density structures and Kolmogorov turbulent motions in the interaction zone between incoming non-linear Alfven waves. These structures and motions are similar to what are commonly observed in weakly self-gravitating interstellar clouds, suggesting that these clouds get their fractal structures from non-linear magnetic wav...

  5. Line width of Josephson flux flow oscillators

    DEFF Research Database (Denmark)

    Koshelets, V.P.; Dmitriev, P.N.; Sobolev, A.S.


    spacing of about 20 nV and extremely low differential resistance, recently observed in the IVC of the standard rectangular geometry. The obtained results have been compared with existing theories and FFO models in order to understand and possibly eliminate excess noise in the FFO. The intrinsic line width...... increases considerably at voltages above the boundary voltage because of the abrupt increase of the internal damping due to Josephson self-coupling. The influence of FFO parameters, in particular the differential resistances associated both with the bias current and with the applied magnetic field...

  6. Digital Pulse-Width-Modulation Circuit (United States)

    Wenzler, Carl J.; Eichenberg, Dennis J.


    Digital pulse-width-modulation circuit provides programmable duration from 1 microsecond to full on, at repetition rate of 1 kHz. Designed for use in controlling CO2 laser, also used in applications in which precision and flexibility of digital control of pulse durations needed. Circuit incorporates low-power Schottky transistor/transistor-logic (TTL) devices in critical high-speed parts. Designed in TTL to make it compatible with Pro-Log 7914 (or equivalent) decoder input/output (I/O) utility printed-circuit card.

  7. Pulse width modulation inverter with battery charger (United States)

    Slicker, James M. (Inventor)


    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a flyback DC-DC converter circuit for recharging the battery.

  8. Ramsey fringe width compared to the spectral width of the driving pulse pair (United States)

    Supplee, James; Makhija


    In a population inversion versus detuning curve, fringes due to a Ramsey pulse-pair are vastly narrower than a peak due to just one of the pulses would be. For subtler reasons, the Ramsey fringe width is also less than the inversion peak that would be obtained using one long pulse with duration as long as the entire Ramsey pair including the time between pulses. This narrowing is by a factor of about 0.6 in many typical circumstances, but that factor can vary (sometimes significantly) depending on parameters such as pulse duration, pulse area, and time between pulses. We are doing calculations using an idealized semiclassical model with a two-level quantum system to address the following question: In which parameter regimes is the Ramsey fringe width well explained just by the spectral width of the driving pulse pair?

  9. Pulse width Modulation Command Systems Used for the Optimization of Three Phase Inverters

    Directory of Open Access Journals (Sweden)

    LUCANU, M.


    Full Text Available This paper deals with a novel pulse width modulation (PWM switching strategy for a voltage source inverter through carrier modification. The proposed discontinuous sine carrier PWM (DPWM1 method, which uses two modified sine waves, has a better spectral quality and a higher fundamental component. This improved waveform has been derived from the original sine PWM technique through the addition of the 17-percent third-harmonic component to the original sine reference.

  10. Lake Basin Fetch and Maximum Length/Width (United States)

    Minnesota Department of Natural Resources — Linear features representing the Fetch, Maximum Length and Maximum Width of a lake basin. Fetch, maximum length and average width are calcuated from the lake polygon...

  11. Direct measurement of the W boson width

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Aguilo, E.; /Alberta U. /Simon Fraser U. /McGill U.; Ahsan, M.; /Kansas State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, G.; /St. Petersburg, INP; Alton, A.; /Michigan U. /Northeastern U.


    We present a direct measurement of the width of the W boson using the shape of the transverse mass distribution of W {yields} e{nu} candidates selected in 1 fb{sup -1} of data collected with the D0 detector at the Fermilab Tevatron collider in p{bar p} collisions at {radical}s = 1.96 TeV. We use the same methods and data sample that were used for our recently published W boson mass measurement, except for the modeling of the recoil, which is done with a new method based on a recoil library. Our result, 2.028 {+-} 0.072 GeV, is in agreement with the predictions of the standard model and is the most precise direct measurement result from a single experiment to date.

  12. Half-width at half-maximum, full-width at half-maximum analysis for ...

    Indian Academy of Sciences (India)

    In the present study, HWHM (half-width at half-maximum) of the resultant PSF has been defined to characterize the resolution of the detection system. ... Department of Physics, University College of Science, Osmania University, Hyderabad 500 007, India; Department of Humanities & Sciences, C.M.R. Institute of Technology ...

  13. A Full-wave Model for Wave Propagation and Dissipation in the Inner Magnetosphere Using the Finite Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Ernest Valeo, Jay R. Johnson, Eun-Hwa and Cynthia Phillips


    A wide variety of plasma waves play an important role in the energization and loss of particles in the inner magnetosphere. Our ability to understand and model wave-particle interactions in this region requires improved knowledge of the spatial distribution and properties of these waves as well as improved understanding of how the waves depend on changes in solar wind forcing and/or geomagnetic activity. To this end, we have developed a two-dimensional, finite element code that solves the full wave equations in global magnetospheric geometry. The code describes three-dimensional wave structure including mode conversion when ULF, EMIC, and whistler waves are launched in a two-dimensional axisymmetric background plasma with general magnetic field topology. We illustrate the capabilities of the code by examining the role of plasmaspheric plumes on magnetosonic wave propagation; mode conversion at the ion-ion and Alfven resonances resulting from external, solar wind compressions; and wave structure and mode conversion of electromagnetic ion cyclotron waves launched in the equatorial magnetosphere, which propagate along the magnetic field lines toward the ionosphere. We also discuss advantages of the finite element method for resolving resonant structures, and how the model may be adapted to include nonlocal kinetic effects.


    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    In this paper the maximum allowable gap width in laser butt-welding is intensively studied. The gap width study (GWS) is performed on the material of SST of W1.4401 (AISI 316) under various welding conditions, which are the gap width : 0.00-0.50 mm, the welding speed : 0.5-2.0 m/min, the laser po...

  15. Circuit multiplies pulse width modulation, exhibits linear transfer function (United States)

    Carlson, A. W.; Furciniti, A.


    Modulation multiplier provides a simple means of multiplying the width modulation of a pulse train by a constant factor. It operates directly on a pulse width modulated input signal to generate an output pulse train having a greater degree of width modulation than the input signal.

  16. Enhancement of heat transfer using varying width twisted tape inserts

    African Journals Online (AJOL)

    ... developed for friction factors and Nusselt numbers for a fully developed turbulent swirl flow, which are applicable to full width as well as reduced width twisted tapes, using a modified twist ratio as pitch to width ratio of the tape. International Journal of Engineering, Science and Technology, Vol. 2, No. 6, 2010, pp. 107-118 ...

  17. Global synchronization of parallel processors using clock pulse width modulation (United States)

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.


    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  18. Alfvenic accelerated electrons and short burst auroral kilometric radiations observed by the FAST satellite (United States)

    Ma, Lun

    This investigation is motivated by previous study of short burst radiations (S- bursts) reported by Ergun et al. [2006], who suggested two generation mechanisms of S-bursts: one is the electron cyclotron maser instability due to an unstable ring distribution; the other is an upward electron beam generating upper hybrid resonance. The simulation results reported by Su et al. [2007] support the former mechanism. Only one Earth-based S-burst event was reported prior to our study. A systematic study was performed on particle and field observations from the FAST spacecraft to search for events of S-bursts and Alfvén waves. Eight events involving coexistence were identified and are presented in this thesis. All of them were observed at altitudes greater than 2500 km during winter months. In addition, S-bursts associated with Alfvénic perturbations were detected during periods when the AE indices were high, indicating a possible association with substorms. Furthermore, 24 dayside Alfvénic events and 20 nightside events were examined in detail. We found that the electron phase space density peaks along the magnetic field line for the nightside, which supports the concept of field-aligned acceleration by inertial Alfvén waves. However, the electron anisotropies involving the phase space densities peaked perpendicular to the magnetic field were observed on the dayside.

  19. Interaction of solitary waves in longitudinal magnetic field in two-fluid MHD (United States)

    Gavrikov, M. B.; Savelyev, V. V.


    The interaction of solitary waves in a model of two-fluid MHD is studied analytically and numerically in the most general case of waves in cold plasma in longitudinal magnetic field. The distinctive feature of this work is the use of “exact” equations rather than an approximate approach (a model equation). Numerical analysis of the solutions of this system of eight partial differential equations shows that the the interaction of solitary waves found in this case is the same (with great accuracy) as that of solitons, i.e., solitary waves that are solutions of various model equations. The solitary waves considered here transport plasmoids with velocities of the order of the Alfven velocity. The main finite-difference method used here for solving the said equations is a natural generalization of the classical two-step Lax-Wendorff scheme.

  20. Resonant behaviour of MHD waves on magnetic flux tubes. I - Connection formulae at the resonant surfaces. II - Absorption of sound waves by sunspots (United States)

    Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.


    The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.

  1. Crack Width Analysis of Steel Fiber Reinforced Concrete Elements

    Directory of Open Access Journals (Sweden)

    Darius Ulbinas


    Full Text Available The article investigates the effectiveness of steel fiber reinforcement in RC concrete members in regard to ordinary reinforcement. The advantages and disadvantages of different shapes of steel fibers are discussed. The algorithm for calculating crack width based on EC2 and Rilem methodologies is presented. A comparison of theoretical and experimental crack widths has been performed. The relative errors of crack width predictions at different load levels were defined.Article in Lithuanian

  2. The significance of biometric parameters in determining anterior teeth width

    Directory of Open Access Journals (Sweden)

    Strajnić Ljiljana


    Full Text Available Background/Aim. An important element of prosthetic treatment of edentulous patients is selecting the size of anterior artificial teeth that will restore the natural harmony of one’s dentolabial structure as well as the whole face. The main objective of this study was to determine the correlation between the inner canthal distance (ICD and interalar width (IAW on one side and the width of both central incisors (CIW, the width of central and lateral incisors (CLIW, the width of anterior teeth (ATW, the width between the canine cusps (CCW, which may be useful in clinical practice. Methods. A total of 89 subjects comprising 23 male and 66 female were studied. Their age ranged from 19 to 34 years with the mean of 25 years. Only the subjects with the preserved natural dentition were included in the sample. All facial and intraoral tooth measurements were made with a Boley Gauge (Buffalo Dental Manufacturing Co., Brooklyn NY, USA having a resolution of 0.1mm. Results. A moderate correlation was established between the interalar width and combined width of anterior teeth and canine cusp width (r = 0.439, r = 0.374. A low correlation was established between the inner canthal distance and the width of anterior teeth and canine cusp width (r = 0.335, r = 0.303. The differences between the two genders were highly significant for all the parameters (p < 0.01. The measured facial distances and width of anterior teeth were higher in men than in women. Conclusion. The results of this study suggest that the examined interalar width and inner canthal distance cannot be considered reliable guidelines in the selection of artificial upper anterior teeth. However, they may be used as a useful additional factor combined with other methods for objective tooth selection. The final decision should be made while working on dentures fitting models with the patient’s consent.

  3. Distribution of resonance widths and dynamics of continuum coupling. (United States)

    Celardo, G L; Auerbach, N; Izrailev, F M; Zelevinsky, V G


    We analyze the statistics of resonance widths in a many-body Fermi system with open decay channels. Depending on the strength of continuum coupling, such a system reveals growing deviations from the standard chi-square (Porter-Thomas) width distribution. The deviations emerge from the process of increasing interaction of intrinsic states through common decay channels; in the limit of perfect coupling this process leads to the superradiance phase transition. The width distribution depends also on the intrinsic dynamics (chaotic versus regular). The results presented here are important for understanding the recent experimental data concerning the width distribution for neutron resonances in nuclei.

  4. A Statistical Approach for Obtaining the Controlled Woven Fabric Width

    Directory of Open Access Journals (Sweden)

    Shaker Khubab


    Full Text Available A common problem faced in fabric manufacturing is the production of inconsistent fabric width on shuttleless looms in spite of the same fabric specifications. Weft-wise crimp controls the fabric width and it depends on a number of factors, including warp tension, temple type, fabric take-up pressing tension and loom working width. The aim of this study is to investigate the effect of these parameters on the fabric width produced. Taguchi’s orthogonal design was used to optimise the weaving parameters for obtaining controlled fabric width. On the basis of signal to noise ratios, it could be concluded that controlled fabric width could be produced using medium temple type and intense take-up pressing tension at relatively lower warp tension and smaller loom working width. The analysis of variance revealed that temple needle size was the most significant factor affecting the fabric width, followed by loom working width and warp tension, whereas take-up pressing tension was least significant of all the factors investigated in the study.

  5. Flexural waves on narrow plates. (United States)

    Norris, Andrew N


    Flexural wave speeds on beams or plates depend upon the bending stiffnesses which differ by the well-known factor (1 - nu2). A quantitative analysis of a plate of finite lateral width displays the plate-to-beam transition, and permits asymptotic analysis that shows the leading order dependence on the width. Orthotropic plates are analyzed using both the Kirchhoff and Kirchhoff-Rayleigh theories, and isotropic plates are considered for Mindlin's theory with and without rotational inertia. A frequency-dependent Young's modulus for beams or strips of finite width is suggested, although the form of the correction to the modulus is not unique and depends on the theory used. The sign of the correction for the Kirchhoff theory is opposite to that for the Mindlin theory. These results indicate that the different plate and beam theories can produce quite distinct behavior. This divergence in predictions is further illustrated by comparison of the speeds for antisymmetric flexural, or torsional, modes on narrow plates. The four classical theories predict limiting wave speeds as the plate width vanishes, but the values are different in each case. The deviations can be understood in terms of torsional waves and how each theory succeeds, or fails, in approximating the effect of torsion. Dispersion equations are also derived, some for the first time, for the flexural edge wave in each of the four "engineering" theories.

  6. Dependence of residual displacements on the width and depth of compliant fault zones: a 3D study (United States)

    Kang, J.; Duan, B.


    Compliant fault zones have been detected along active faults by seismic investigations (trapped waves and travel time analysis) and InSAR observations. However, the width and depth extent of compliant fault zones are still under debate in the community. Numerical models of dynamic rupture build a bridge between theories and the geological and geophysical observations. Theoretical 2D plane-strain studies of elastic and inelastic response of compliant fault zones to nearby earthquake have been conducted by Duan [2010] and Duan et al [2010]. In this study, we further extend the experiments to 3D with a focus on elastic response. We are specifically interested in how residual displacements depend on the structure and properties of complaint fault zones, in particular on the width and depth extent. We conduct numerical experiments on various types of fault-zone models, including fault zones with a constant width along depth, with decreasing widths along depth, and with Hanning taper profiles of velocity reduction. . Our preliminary results suggest 1) the width of anomalous horizontal residual displacement is only indicative of the width of a fault zone near the surface, and 2) the vertical residual displacement contains information of the depth extent of compliant fault zones.

  7. Drift waves in the turbulence of reversed field pinch plasmas (United States)

    Thuecks, Derek


    Turbulence is one of the principal mediators of energy exchange in natural and laboratory plasma settings, for example wave-particle interactions that lead to collisionless heating and acceleration. The turbulent cascade carried by Alfvenic fluctuations is especially important in magnetized plasmas, operating on a wide range of scales larger than the ion gyroradius. The MST laboratory plasma exhibits a robust turbulent cascade driven by tearing instability, which is likely connected to powerful non-collisional ion heating that is also observed. New electric and magnetic field fluctuation measurements in the plasma edge reveal a broadband cascade that is anisotropic relative to the mean B0. Magnetic fluctuations dominate at the tearing scale, as expected, but energy equipartition is not observed at smaller scales. Instead, the kinetic energy, 1/2 mini (Ẽ ×B0)2 , begins to dominate at kperpρi > 0.2 . Statistical coherency between density, parallel magnetic field, and floating potential fluctuations reveals previously unobserved features at this energy-crossing scale that are consistent with electron-branch drift waves with a phase velocity comparable to the electron drift speed. The edge region contains a strong density gradient, and either drift-Alfven coupling or unstable modes could be responsible for the excess kinetic energy. The turbulent energy rises and falls in concert with the tearing mode amplitudes, which suggests nonlinear wave coupling powers the cascade, but the coherency at small scales is more persistent than at the tearing-scale during sawtooth relaxation cycles, which suggests possible independent drift wave instability. Gradient regions are a universal feature of plasma interfaces, and similarities may be exploited to better understand turbulent dynamics in other space and laboratory plasmas, e.g., the corona-wind interface. Supported by DOE and NSF.

  8. Fast wave current drive at high ion cyclotron harmonics on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Petty, C.C.; Grassie, J.S. de; Pinsker, R.I.; Prater, R. [General Atomics, San Diego, CA (United States); Baity, F.W. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mau, T.K. [University of California, San Diego, La Jolla, CA (United States); Porkolab, M. [Massachusetts Institute of Technology, Cambridge, MA (United States)


    Current driven by the fast Alfven wave is measured at the fourth and eighth harmonics of the deuterium ion cyclotron frequency in identical plasmas on the DIII-D tokamak. In non-sawtoothing discharges with neutral beam injection heating, the radial profile of the fast wave current drive (FWCD) is determined by the response of the loop voltage profile to co- and counter-antenna phasings. The dimensionless current drive efficiency is a factor of two greater for the eighth harmonic case compared to the fourth harmonic case. Modelling of the fast wave absorption using a ray tracing code shows that the decrease in FWCD efficiency for the latter situation can be explained by high harmonic damping of the fast waves on energetic ions. (author)

  9. Widths of narrow mesons made from heavy quarks

    CERN Document Server

    Farrar, Glennys R S; Okun, Lev Borisovich; Shifman, M A; Voloshin, M B; Zakharov, V I


    Presents predictions for the electronic widths of neutral vector mesons made from heavy quarks. Relying principally on dispersion relations and asymptotic freedom of QCD, these results are quite model-independent. Photonic and total hadronic widths of C-even mesons are also discussed. (6 refs).

  10. A design aid for determining width of filter strips (United States)

    M.G. Dosskey; M.J. Helmers; D.E. Eisenhauer


    watershed planners need a tool for determining width of filter strips that is accurate enough for developing cost-effective site designs and easy enough to use for making quick determinations on a large number and variety of sites.This study employed the process-based Vegetative Filter Strip Model to evaluate the relationship between filter strip width and trapping...

  11. Comparison of arch width changes following orthodontic treatment ...

    African Journals Online (AJOL)

    Comparison of arch width changes following orthodontic treatment with and without extraction using three-dimensional models. ... Conclusion: Extraction treatment mechanics did not cause narrow dental arches, but nonextraction treatment increased arch width in all 3 measurements. Treatments with only upper arch ...

  12. Stream water responses to timber harvest: Riparian buffer width effectiveness (United States)

    Barton D. Clinton


    Vegetated riparian buffers are critical for protecting aquatic and terrestrial processes and habitats in southern Appalachian ecosystems. In this case study, we examined the effect of riparian buffer width on stream water quality following upland forest management activities in four headwater catchments. Three riparian buffer widths were delineated prior to cutting; 0m...

  13. 3D Global PIC simulation of Alfvenic transition layers at the cusp outer boundary during IMF rotations from north to south (United States)

    Cai, D. S.; Lembege, B.; Esmaeili, A.; Nishikawa, K.


    Statistical experimental observations of the cusp boundaries from CLUSTER mission made by Lavraud et al. (2005) have clearly evidenced the presence of a transition layer inside the magnetosheath near the outer boundary of the cusp. This layer characterized by Log(MA)~ 1 allows a transition from super-Alfvenic to sub-Alfvenic bulk flow from the exterior to the interior side of the outer cusp and has been mainly observed experimentally under northward interplanetary magnetic field (IMF). The role of this layer is important in order to understand the flow variations (and later the entry and precipitation of particles) when penetrating the outer boundary of the cusp. In order to analyze this layer, a large 3D PIC simulation of the global solar wind-terrestrial magnetosphere interaction have been performed, and the attention has been focused on the cusp region and its nearby surrounding during IMF rotation from north to south. Present results retrieve quite well the presence of this layer within the meridian plane for exactly northward IMF, but its location differs in the sense that it is located slightly below the X reconnection region associated to the nearby magnetopause (above the outer boundary of the cusp). In order to clarify this question, an extensive study has been performed as follows: (i) a 3D mapping of this transition layer in order to analyze more precisely the thickness, the location and the spatial extension of this layer on the magnetosphere flanks for a fixed Northward IMF configuration; (ii) a parametric study in order to analyze the impact of the IMF rotation from north to south on the persistence and the main features of this transition layer. The locations of this transition layer slightly radially expand and shrink during the IMF rotation and the thickness of the layer increases during the rotation. We show how these transition layers render the flow from super to sub Alfvenic and allow the particles enter into the magnetic cusp region. Alfven

  14. Crack widths in concrete with fibers and main reinforcement

    DEFF Research Database (Denmark)

    Christensen, Frede; Ulfkjær, Jens Peder; Brincker, Rune

    The main object of the research work presented in this paper is to establish design tools for concrete structures where main reinforcement is combined with addition of short discrete steel fibers. The work is concerned with calculating and measuring crack widths in structural elements subjected...... to bending load. Thus, the aim of the work is to enable engineers to calculate crack widths for flexural concrete members and analyze how different combinations of amounts of fibers and amounts of main reinforcement can meet a given maximum crack width requirement. A mathematical model including...... the ductility of the fiber reinforced concrete (FRC) is set up and experimental work is conducted in order to verify the crack width model. The ductility of the FRC is taken into account by using the stress crack width relation. The constitutive model for the FRC is based on the idea that the initial part...

  15. Wave Run-Up on Rubble Breakwaters

    DEFF Research Database (Denmark)

    Van de Walle, Bjorn; De Rouck, Julien; Troch, Peter


    Seven sets of data for wave run-up on a rubble mound breakwater were combined and re-analysed, with full-scale, large-scale and small-scale model test results being taken into account. The dimensionless wave run-up value Ru-2%/Hm0 was considered, where R u-2% is the wave run-up height exceeded by 2......% of the wave run-up events and Hm0 is the significant wave height. The wave run-up data sets were compared and a clear influence of the spectral shape, characterised by the spectral width parameter epsilon, on wave run-up was noticed: high values of epsilon correspond to high values of Ru-2%/Hm0 and vice versa...... or rip-rap with a slope steeper than 1 : 2, surging waves and a JONSWAP-type wave spectrum....

  16. Kinetic theory of geomagnetic pulsations 2. Ion flux modulations by transverse waves

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chen (Princeton Plasma Physics Lab., NJ (United States)); Hasegawa, Akira (Osaka Univ. (Japan))


    Ion flux modulations by ultra-low-frequency radially polarized geomagnetic pulsations are examined theoretically based on the gyrokinetic analysis of Chen and Hasegawa. The theoretical results thus contain important effects such as plasma anisotropy and inhomogeneities, finite Larmor radii, realistic magnetic field, magnetic trapping, and wave mode structures. The predicted properties are consistent with the satellite observations [Takahashi et al.] and further support the drift-Alfven ballooning mode as a primary instability candidate. The analysis, furthermore, demonstrates that, in the case of highly energetic ions, it is crucial to include the finite-Larmor-radius effects self-consistently in order to properly analyze and compare with the satellite observations.

  17. Influence of the Gap Width on the Geometry of the Welded Joint in Hybrid Laser-Arc Welding (United States)

    Turichin, G.; Tsibulskiy, I.; Kuznetsov, M.; Akhmetov, A.; Mildebrath, M.; Hassel, T.

    The aim of this research was the experimental investigation of the influence of the gap width and speed of the welding wire on the changes of the geometry in the welded joint in the hybrid laser-arc welding of shipbuilding steel RS E36. The research was divided into three parts. First, in order to understand the influence of the gap width on the welded joint geometry, experimental research was done using continuous wave fiber laser IPG YLS-15000 with arc rectifier VDU-1500DC. The second part involved study of the geometry of the welded joint and hardness test results. Three macrosections from each welded joint were obtained. Influence of the gap width and welding wire speed on the welded joint geometry was researched in the three lines: in the right side of the plates, middle welded joint and in the root welded joint.

  18. Effects of ρ-meson width on pion distributions in heavy-ion collisions (United States)

    Huovinen, Pasi; Lo, Pok Man; Marczenko, Michał; Morita, Kenji; Redlich, Krzysztof; Sasaki, Chihiro


    The influence of the finite width of ρ meson on the pion momentum distribution is studied quantitatively in the framework of the S-matrix approach combined with a blast-wave model to describe particle emissions from an expanding fireball. We find that the proper treatment of resonances which accounts for their production dynamics encoded in data for partial wave scattering amplitudes can substantially modify spectra of daughter particles originating in their two body decays. In particular, it results in an enhancement of the low-pT pions from the decays of ρ mesons which improves the quantitative description of the pion spectra in heavy ion collisions obtained by the ALICE collaboration at the LHC energy.

  19. Nightside studies of coherent HF Radar spectral width behaviour

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield

    Full Text Available A previous case study found a relationship between high spectral width measured by the CUTLASS Finland HF radar and elevated electron temperatures observed by the EISCAT and ESR incoherent scatter radars in the post-midnight sector of magnetic local time. This paper expands that work by briefly re-examining that interval and looking in depth at two further case studies. In all three cases a region of high HF spectral width (>200 ms-1 exists poleward of a region of low HF spectral width (<200 ms-1. Each case, however, occurs under quite different geomagnetic conditions. The original case study occurred during an interval with no observed electrojet activity, the second study during a transition from quiet to active conditions with a clear band of ion frictional heating indicating the location of the flow reversal boundary, and the third during an isolated sub-storm. These case studies indicate that the relationship between elevated electron temperature and high HF radar spectral width appears on closed field lines after 03:00 magnetic local time (MLT on the nightside. It is not clear whether the same relationship would hold on open field lines, since our analysis of this relationship is restricted in latitude. We find two important properties of high spectral width data on the nightside. Firstly the high spectral width values occur on both open and closed field lines, and secondly that the power spectra which exhibit high widths are both single-peak and multiple-peak. In general the regions of high spectral width (>200 ms-1 have more multiple-peak spectra than the regions of low spectral widths whilst still maintaining a majority of single-peak spectra. We also find that the region of ion frictional heating is collocated with many multiple-peak HF spectra. Several mechanisms for the generation of high spectral width have been proposed which would produce multiple-peak spectra, these are discussed in relation to

  20. Nightside studies of coherent HF Radar spectral width behaviour

    Directory of Open Access Journals (Sweden)

    E. E. Woodfield


    Full Text Available A previous case study found a relationship between high spectral width measured by the CUTLASS Finland HF radar and elevated electron temperatures observed by the EISCAT and ESR incoherent scatter radars in the post-midnight sector of magnetic local time. This paper expands that work by briefly re-examining that interval and looking in depth at two further case studies. In all three cases a region of high HF spectral width (>200 ms-1 exists poleward of a region of low HF spectral width (<200 ms-1. Each case, however, occurs under quite different geomagnetic conditions. The original case study occurred during an interval with no observed electrojet activity, the second study during a transition from quiet to active conditions with a clear band of ion frictional heating indicating the location of the flow reversal boundary, and the third during an isolated sub-storm. These case studies indicate that the relationship between elevated electron temperature and high HF radar spectral width appears on closed field lines after 03:00 magnetic local time (MLT on the nightside. It is not clear whether the same relationship would hold on open field lines, since our analysis of this relationship is restricted in latitude. We find two important properties of high spectral width data on the nightside. Firstly the high spectral width values occur on both open and closed field lines, and secondly that the power spectra which exhibit high widths are both single-peak and multiple-peak. In general the regions of high spectral width (>200 ms-1 have more multiple-peak spectra than the regions of low spectral widths whilst still maintaining a majority of single-peak spectra. We also find that the region of ion frictional heating is collocated with many multiple-peak HF spectra. Several mechanisms for the generation of high spectral width have been proposed which would produce multiple-peak spectra, these are discussed in relation to the data presented here. Since the

  1. Influence of electrical sheet width on dynamic magnetic properties

    CERN Document Server

    Chevalier, T; Cornut, B


    Effects of the width of electrical steel sheets on dynamic magnetic properties are investigated by solving diffusion equation on the cross-section of the sheet. Linear and non-linear cases are studied, and are compared with measurement on Epstein frame. For the first one an analytical solution is found, while for the second, a 2D finite element simulation is achieved. The influence of width is highlighted for a width thickness ratio lower than 10. It is shown that the behaviour modification in such cases is conditioned by the excitation signal waveform, amplitude and also frequency.

  2. Effect of pulse width on object movement in vitro using holmium:YAG laser. (United States)

    Kalra, Pankaj; Le, Ngoc-Bich; Bagley, Demetrius


    The holmium:YAG laser is an effective modality for intracorporeal lithotripsy. The fiber tip needs to be in contact with the calculus for maximal effect. Laser energy can cause stone retropulsion, necessitating cumbersome repositioning of the fiber. We examined the effect of varying the laser pulse width on object movement in vitro. Two experiments were conducted using a holmium:YAG laser at the 350-microsec and 700-microsec pulse-width settings. In the first experiment, one pulse was delivered to a non-fragmentable ball bearing at increasing energy settings, and object displacement was measured. In the second experiment, a train of pulses was delivered to a fragmentable soda lime phantom at increasing energy settings, and the total energy delivered before movement from the tip of the fiber was determined. The mean ball bearing movement was significantly greater at the 350-microsec setting with a 200-microm fiber (P waves from Ho:YAG lithotripsy are less than with other modalities, yet some retropulsion occurs. The duration of the laser pulse can influence shockwave generation and object migration. Longer pulse width results in less object movement after one shock and more energy delivery during repetitive shocks. Clinically, this regimen may reduce the need for fiber readjustment and lead to more efficient stone fragmentation.

  3. Verification of the Uncertainty Principle by Using Diffraction of Light Waves (United States)

    Nikolic, D.; Nesic, Lj


    We described a simple idea for experimental verification of the uncertainty principle for light waves. We used a single-slit diffraction of a laser beam for measuring the angular width of zero-order diffraction maximum and obtained the corresponding wave number uncertainty. We will assume that the uncertainty in position is the slit width. For the…

  4. Variation of wave directional spread parameters along the Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.

    collected at four locations along the East as well as the West side of the Indian coast. The directional spreading parameter was correlated with other characteristic wave parameters, like non-linearity parameter, and directional width. Working empirical...

  5. Optical waveguide device with an adiabatically-varying width

    Energy Technology Data Exchange (ETDEWEB)

    Watts,; Michael R. (Albuquerque, NM), Nielson; Gregory, N [Albuquerque, NM


    Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.

  6. Sweep Width Estimation for Ground Search and Rescue (United States)


    that may influence sweep width were measured during the experiments. Promising variables include SAR background, height, age, color - blindness , fatigue...123 8.3.9 Color Blindness ................................................................................................... 124... Color Blindness ................................................................................................ 200 Searcher Profile

  7. Concerning the width of spark channels with different polarities in submicrosecond sliding discharges in noble gases (United States)

    Trusov, K. K.


    Previously, the parameters of submicrosecond (with a duration of ceramic surface in Ne, Ar, and Xe were studied only for the negative polarity of the applied voltage. The experimental data indicate that the channels expand in the transverse direction mainly due to electron drift from the channel surface layer under the action of the electric field perpendicular to the channel axis and subsequent gas ionization by these electrons. To investigate mechanisms for the channel development in a sliding discharge—in particular, to determine the contribution of electron drift—it is necessary to carry out experiments similar to those performed earlier for the opposite polarity of the applied voltage. Here, the results of measurements of the widths of the spark channels of negativeand positive-polarity sliding discharges excited in Ne, Ar, and Xe at pressures of 30 and 100 kPa are presented and discussed. It is shown that, depending on the pressure and sort of gas, the averaged optical width of positive-polarity channels is smaller by a factor of 1.27-1.60 than that of negative-polarity channels. The experimental data are analyzed using the theory of propagation of ionization waves with different polarities in gases. Analysis has shown that electron diffusion contributes insignificantly to channel expansion and that, for both polarities, the channel expansion rate exceeds the electron drift velocity in the transverse electric field near the channel. In the framework of the so-called approximation of nonlocalized initial conditions, the measured ratio between of the widths of negativeand positive-polarity channels and their relation to the electron mobility are explained by the channel expansion governed by both electron drift and primary free electrons produced by a short-term source in a narrow region ahead of the front of the expansion wave. Numerical simulations show that the width of this region is comparable with that of the wave front and is more than one order of


    Energy Technology Data Exchange (ETDEWEB)

    Brooks, David H. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)


    Spectral line widths are often observed to be larger than can be accounted for by thermal and instrumental broadening alone. This excess broadening is a key observational constraint for both nanoflare and wave dissipation models of coronal heating. Here we present a survey of non-thermal velocities measured in the high temperature loops (1–4 MK) often found in the cores of solar active regions. This survey of Hinode Extreme Ultraviolet Imaging Spectrometer (EIS) observations covers 15 non-flaring active regions that span a wide range of solar conditions. We find relatively small non-thermal velocities, with a mean value of 17.6 ± 5.3 km s{sup −1}, and no significant trend with temperature or active region magnetic flux. These measurements appear to be inconsistent with those expected from reconnection jets in the corona, chromospheric evaporation induced by coronal nanoflares, and Alfvén wave turbulence models. Furthermore, because the observed non-thermal widths are generally small, such measurements are difficult and susceptible to systematic effects.

  9. Red and blue pulse timing control for pulse width modulation light dimming of light emitting diodes for plant cultivation. (United States)

    Shimada, Aoi; Taniguchi, Yoshio


    A pulse width modulation (PWM) light dimming system containing red and blue light emitting diodes was designed and constructed. Cultivation of the plant Arabidopsis thaliana under various light dimming wave patterns was compared. Control of the pulse timing (phase of wave pattern) between red and blue light in PWM light dimming was examined. Different plant growth was obtained by changing the phase of red and blue pulses. Pulse timing control of PWM light dimming for plant cultivation has the potential to act as a method for probing photosynthesis. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Evolution of giant dipole resonance width at low temperatures ...

    Indian Academy of Sciences (India)

    The measured GDR widths for a wide range of nuclei at temperatures (1.5 <. T < 2.5 MeV) and spins ... perature region below 1.5 MeV has rarely been investigated to verify if such a behaviour is really true. In Sn and nearby nuclei (A ∼ 120), mostly investigated so far, only a sin- gle GDR width .... The average temperature.

  11. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...

  12. Comparing fixed and variable-width Gaussian networks. (United States)

    Kůrková, Věra; Kainen, Paul C


    The role of width of Gaussians in two types of computational models is investigated: Gaussian radial-basis-functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have fixed widths but varying centers. The effect of width on functional equivalence, universal approximation property, and form of norms in reproducing kernel Hilbert spaces (RKHS) is explored. It is proven that if two Gaussian RBF networks have the same input-output functions, then they must have the same numbers of units with the same centers and widths. Further, it is shown that while sets of input-output functions of Gaussian kernel networks with two different widths are disjoint, each such set is large enough to be a universal approximator. Embedding of RKHSs induced by "flatter" Gaussians into RKHSs induced by "sharper" Gaussians is described and growth of the ratios of norms on these spaces with increasing input dimension is estimated. Finally, large sets of argminima of error functionals in sets of input-output functions of Gaussian RBFs are described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Dual Waves


    Kallosh, Renata


    We study the gravitational waves in the 10-dimensional target space of the superstring theory. Some of these waves have unbroken supersymmetries. They consist of Brinkmann metric and of a 2-form field. Sigma-model duality is applied to such waves. The corresponding solutions we call dual partners of gravitational waves, or dual waves. Some of these dual waves upon Kaluza-Klein dimensional reduction to 4 dimensions become equivalent to the conformo-stationary solutions of axion-dilaton gravity...

  14. Direct Determination of Ground-State Transition Widths and Natural Level Widths with the Method of Relative Self Absorption

    Directory of Open Access Journals (Sweden)

    Romig C.


    Full Text Available The method of relative self absorption is based on the technique of nuclear resonance fluorescence measurements. It allows for a model-independent determination of ground-state transition widths, natural level widths, and, consequently, of branching ratios to the ground state for individual excitations. Relative self–absorption experiments have been performed on the nuclei 6Li and 140Ce. In order to investigate the total level width for the 0+1, T = 1 level at 3563 keV in 6Li, a high-precision self-absorption measurement has been performed. In the case of 140Ce, self absorption has been applied for the first time to study decay widths of dipole-excited states in the energy regime of the pygmy dipole resonance.

  15. Hydrodynamic loads of sea waves on horizontal elements of berths with wave quenching chambers

    Directory of Open Access Journals (Sweden)

    Leshchenko Sergey Vladimirovich


    Full Text Available In the process of hydraulic structures design, in particular berths with wave cancelling structures, which serve to decrease the wave impact on structures, there appears a problem of vertical wave hydrodynamic loads calculation on floor slabs. In the existing normative documents there are no requirements on calculating vertical wave loads on the horizontal floor slabs of open-type structures (enveloping, mooring, approach trestles, etc. and stairs of sloping-staired open-type structures. A mathematical model is proposed for calculation of the vertical wave loads on the floor slab through moorings. The model is based on the theory of jet impact on a solid surface. The width of the wave crest, striking in the overlap of the pier, and its vertical velocity is determined by the linear wave theory. The coefficient of transmission of waves through wave quenching chambers is calculated according to the previously developed methods. Vertical wave loading is adjusted based on the ratio of the wave length and width of the overlay. Model validation is performed according to the hydraulic modelling interaction of waves with through berths in the port of Tuapse. 7 variants of their design were considered. Data mapping mathematical and hydraulic modeling showed them a close match.

  16. Twin boundaries in d-wave superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Feder, D.L.; Beardsall, A.; Berlinsky, A.J.; Kallin, C. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)


    Twin boundaries in orthorhombic d-wave superconductors are investigated numerically using the Bogoliubov{endash}deGennes formalism within the context of an extended Hubbard model. The twin boundaries are represented by tetragonal regions of variable width, with a reduced chemical potential. For sufficiently large twin boundary width and change in chemical potential, an induced s-wave component may break time-reversal symmetry at a low temperature T{sup {asterisk}}. The temperature T{sup {asterisk}}, and the magnitude of the imaginary component, are found to depend strongly on electron density. The results are compared with recent tunneling measurements. {copyright} {ital 1997} {ital The American Physical Society}

  17. Does Cleft Palate Width Correlate With Veau Classification and Outcome? (United States)

    Wu, Robin; Cheraghlou, Shayan; Parsaei, Yassmin; Travieso, Roberto; Steinbacher, Derek M


    Wider cleft palates are thought to be associated with increased complications and poorer outcomes following cleft palate repair. Objective cleft palate photographic measurement and assessment of complications have not been previously performed. The purpose of this study is to quantitatively characterize a series of cleft palate dimensions and to investigate possible correlations with Veau classification and intra-, peri-, and postoperative outcomes. The analytic sample included primary cleft palate repairs performed by the senior author over a 2-year period. Standard photographs of clefts taken at the time of repair were analyzed using Image-J software. Demographic, intraoperative, perioperative, and postoperative information were collected. Width measurements were correlated with Veau classification, intraoperative variables, perioperative variables, and adverse outcomes. Statistical tests performed included simple regression analyses and multiple regression analysis. Out of 70 patients, 50 had adequate photographic documentation for inclusion in the study; 44% of patients were classified as Veau I with an average cleft width of 5.4 mm, 28% Veau II with an average of 8.9 mm, 16% Veau III with an average of 11.3 mm, and 12% Veau IV with an average of 10.0 mm. No patients exhibited postoperative bleeding, dehiscence, airway problems, infection, fistula formation, or return to the operating room. The authors found that increasing cleft width significantly predicts increasing Veau classification (P clefts) significantly predicts fluid emission (P cleft width did not predict fluid emission. Increased cleft width did not significantly predict length of stay. Our data demonstrate that wider preoperative cleft palates correlate with Veau classification, increased operating time, and slightly worsened postoperative sequela. There were no perioperative instances of bleeding, dehiscence, respiratory complications, infection, fistula formation, and return to

  18. 3D Global PIC simulation of Cusp Dynamics and Alfvenic transition layers at cusp outer boundary during IMF rotations from north to south (United States)

    Cai, DongSheng; Lembege, Bertrand; Esmaeili, Amin; Nishikawa, Ken-ichi


    The first 3D global full electro-magnetic particle-in-cell (PIC) simulations in the global view of solar-wind-magnetosphere interaction are performed, and compared with the statistical surveys of the plasma flows measured by the CLUSTER satellites in the high-altitude cusp region of the Northern Hemisphere. he magnetospheric polar cusp regions are considered to be key regions to transfer mass, and energy from the solar-wind to the plasma sheet. Using the global PIC simulation, we try to understand these key regions and the dynamical interactions that occur there. Statistical experimental observations of the cusp boundaries from CLUSTER mission made by Lavraud et al. (2005) have clearly evidenced the presence of a transition layer inside the magnetosheath near the outer boundary of the cusp. This layer characterized by Log(MA) ~ 1 allows a transition from super-Alfvenic to sub-Alfvenic bulk flow from the exterior to the interior side of the outer cusp and has been mainly observed experimentally under northward interplanetary magnetic field (IMF). The role of this layer is important in order to understand the flow variations (and later the entry and precipitation of particles) when penetrating the outer boundary of the cusp. In order to analyze this layer, a large 3D PIC simulation of the global solar wind-terrestrial magnetosphere interaction have been performed, and the attention has been focused on the cusp region and its nearby surrounding during IMF rotation from north to south. Present results retrieve quite well the presence of this layer within the meridian plane for exactly northward IMF, but its location differs in the sense that it is located slightly below the X reconnection region associated to the nearby magnetopause (above the outer boundary of the cusp). In order to clarify this question, an extensive study has been performed as follows: (i) a 3D mapping of this transition layer in order to analyze more precisely the thickness, the location and the

  19. Nonlinear localized elastoplastic waves in a rod (United States)

    Erofeev, V. I.; Leonteva, A. V.; Malkhanov, A. O.


    It has been shown that longitudinal nonlinear stationary elastic-plastic waves can be formed in a rod. Waves can be both periodic and solitary (solitons), which is determined by the index of strain hardening of the material.The velocity of propagation of such waves is less than the speed of the elastic shear wave. Along with classical solitons, so-called “embedded solitons” can be formed, that is, double solitons, one of which with a smaller amplitude and widthis located inside the other with a larger amplitude and width.

  20. Gravitational Waves in Effective Quantum Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, Xavier; Kuntz, Ibere; Mohapatra, Sonali [University of Sussex, Physics and Astronomy, Brighton (United Kingdom)


    In this short paper we investigate quantum gravitational effects on Einstein's equations using Effective Field Theory techniques. We consider the leading order quantum gravitational correction to the wave equation. Besides the usual massless mode, we find a pair of modes with complex masses. These massive particles have a width and could thus lead to a damping of gravitational waves if excited in violent astrophysical processes producing gravitational waves such as e.g. black hole mergers. We discuss the consequences for gravitational wave events such as GW 150914 recently observed by the Advanced LIGO collaboration. (orig.)

  1. Resonance Width Distribution for Open Chaotic Quantum Systems (United States)

    Shchedrin, Gavriil


    Recent measurements of resonance widths, γ, for low-energy neutron scattering off heavy nuclei claim significant deviations from the standard chi-square 2̂1(γ), or the Porter-Thomas, distribution. The unstable nucleus is an open quantum system, where the intrinsic dynamics has to be supplemented by the coupling of chaotic internal states through the continuum. We propose a new resonance width distribution based on the random matrix theory for an open quantum system. For a single open channel, the new distribution is P(γ)=C2̂1(γ)√sinhκ/κ where κ=πγ/2D and D is the mean energy level spacing. This result naturally recovers the Porter-Thomas distribution for small κ and can be directly applied to a whole range of mesoscopic systems, and is invariant under γ->η-γ, whereη is the total width. The realistic situation in nuclei is not that of a single neutron channel. Many photon channels are always opened which modifies the width distribution into P(,)=C2̂1(γ-γ)√sinhκγ/κγ with κγ=π(γ-γ)/2D, and the whole distribution is shifted by γ, an average radiation width.

  2. The effects of lane width, shoulder width, and road cross-sectional reallocation on drivers' behavioral adaptations. (United States)

    Mecheri, Sami; Rosey, Florence; Lobjois, Régis


    Previous research has shown that lane-width reduction makes drivers operate vehicles closer to the center of the road whereas hard-shoulder widening induces a position farther away from the road's center. The goal of the present driving-simulator study was twofold. First, it was aimed at further investigating the respective effects of lane and shoulder width on in-lane positioning strategies, by examining vehicle distance from the center of the lane. The second aim was to assess the impact on safety of three possible cross-sectional reallocations of the width of the road (i.e., three lane-width reductions with concomitant shoulder widening at a fixed cross-sectional width) as compared to a control road. The results confirmed that lane-width reduction made participants drive closer to the road's center. However, in-lane position was affected differently by lane narrowing, depending on the traffic situation. In the absence of oncoming traffic, lane narrowing gave rise to significant shifts in the car's distance from the lane's center toward the edge line, whereas this distance remained similar across lane widths during traffic periods. When the shoulders were at least 0.50m wide, participants drove farther away from both the road center and the lane center. Road reallocation operations resulted in vehicles positioned farther away from the edge of the road and less swerving behavior, without generating higher driving speeds. Finally, it is argued that road-space reallocation may serve as a good low-cost tool for providing a recovery area for steering errors, without impairing drivers' behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Symphysis pubis width and unaffected hip joint width in patients with slipped upper femoral epiphysis: widening compared with normal values

    Energy Technology Data Exchange (ETDEWEB)

    Tins, Bernhard; Cassar-Pullicino, Victor; Haddaway, Mike [RJAH Orthopaedic Hospital, Department of Radiology, Shropshire (United Kingdom)


    The exact pathomechanism of slipped upper femoral epiphysis (SUFE) remains elusive. This paper suggests a generalised abnormality of the development or maturation of cartilage as a possible cause. It is proposed that SUFE is part of a generalised abnormality of the cartilage formation or maturation resulting in abnormal measurements of cartilaginous joint structures. Radiographs of SUFE patients were assessed for the width of the unaffected hip joint and the symphysis pubis. Comparison with previously published normal values was made. Fifty-one patients were assessed, 35 male, 16 female. The average age was 12 years and 11 months combined for both sexes, 13 years 8 months for boys, 11 years 4 months for girls. Width of the symphysis pubis was assessed on 46 datasets, and comparison with normal values was performed using the Wilcoxon paired rank test. Statistical significance was set as p < 0.05. The average expected width was 5.8 mm (5.4-6.2 mm), the average measured width was 7.3 mm (3.5-12 mm), median value 7.0 mm, and the difference is statistically significant. Cartilage thickness of the uninvolved hip joint could be assessed in 46 cases, and comparison using the Wilcoxon paired rank test resulted in a statistically significant difference (significance set as p < 0.05). The average expected width was 4.9 mm (3.6-6.5 mm), the average measured width was 5.5 mm (4-8 mm), and median 5.3 mm. The results indicate that SUFE patients display a generalised increased width of joint cartilage for their age. This could be due to increased cartilage formation or decreased maturation or a combination of the two, and could explain the increased mechanical vulnerability of these children to normal or abnormal stresses, despite histologically normal organisation of the physis as shown in previous studies. (orig.)

  4. Narrow line width frequency comb source based on an injection-locked III-V-on-silicon mode-locked laser. (United States)

    Uvin, Sarah; Keyvaninia, Shahram; Lelarge, Francois; Duan, Guang-Hua; Kuyken, Bart; Roelkens, Gunther


    In this paper, we report the optical injection locking of an L-band (∼1580 nm) 4.7 GHz III-V-on-silicon mode-locked laser with a narrow line width continuous wave (CW) source. This technique allows us to reduce the MHz optical line width of the mode-locked laser longitudinal modes down to the line width of the source used for injection locking, 50 kHz. We show that more than 50 laser lines generated by the mode-locked laser are coherent with the narrow line width CW source. Two locking techniques are explored. In a first approach a hybrid mode-locked laser is injection-locked with a CW source. In a second approach, light from a modulated CW source is injected in a passively mode-locked laser cavity. The realization of such a frequency comb on a chip enables transceivers for high spectral efficiency optical communication.

  5. Modelling the widths of fission observables in GEF

    Directory of Open Access Journals (Sweden)

    Schmidt K.-H.


    Full Text Available The widths of the mass distributions of the different fission channels are traced back to the probability distributions of the corresponding quantum oscillators that are coupled to the heat bath, which is formed by the intrinsic degrees of freedom of the fissioning system under the influence of pairing correlations and shell effects. Following conclusion from stochastic calculations of Adeev and Pashkevich, an early freezing due to dynamical effects is assumed. It is shown that the mass width of the fission channels in low-energy fission is strongly influenced by the zero-point motion of the corresponding quantum oscillator. The observed variation of the mass widths of the asymmetric fission channels with excitation energy is attributed to the energy-dependent properties of the heat bath and not to the population of excited states of the corresponding quantum oscillator.

  6. Analysis of edge stability for models of heat flux width

    Directory of Open Access Journals (Sweden)

    M.A. Makowski


    Full Text Available Detailed measurements of the ne, Te, and Ti profiles in the vicinity of the separatrix of ELMing H-mode discharges have been used to examine plasma stability at the extreme edge of the plasma and assess stability dependent models of the heat flux width. The results are strongly contrary to the critical gradient model, which posits that a ballooning instability determines a gradient scale length related to the heat flux width. The results of this analysis are not sensitive to the choice of location to evaluate stability. Significantly, it is also found that the results are completely consistent with the heuristic drift model for the heat flux width. Here the edge pressure gradient scales with plasma density and is proportional to the pressure gradient inferred from the equilibrium in accordance with the predictions of that theory.

  7. Experimental Studies on Wave Interactions of Partially Perforated Wall under Obliquely Incident Waves

    Directory of Open Access Journals (Sweden)

    Jong-In Lee


    Full Text Available This study presents wave height distribution in terms of stem wave evolution phenomena on partially perforated wall structures through three-dimensional laboratory experiments. The plain and partially perforated walls were tested to understand their effects on the stem wave evolution under the monochromatic and random wave cases with the various wave conditions, incident angle (from 10 to 40 degrees, and configurations of front and side walls. The partially perforated wall reduced the relative wave heights more effectively compared to the plain wall structure. Partially perforated walls with side walls showed a better performance in terms of wave height reduction compared to the structure without the side wall. Moreover, the relative wave heights along the wall were relatively small when the relative chamber width is large, within the range of the chamber width in this study. The wave spectra showed a frequency dependency of the wave energy dissipation. In most cases, the existence of side wall is a more important factor than the porosity of the front wall in terms of the wave height reduction even if the partially perforated wall was still effective compared to the plain wall.

  8. Fjords in viscous fingering: selection of width and opening scale

    Energy Technology Data Exchange (ETDEWEB)

    Mineev-weinstein, Mark [Los Alamos National Laboratory; Ristroph, Leif [UT-AUSTIN; Thrasher, Matthew [UT-AUSTIN; Swinney, Harry [UT-AUSTIN


    Our experiments on viscous fingering of air into oil contained between closely spaced plates reveal two selection rules for the fjords of oil that separate fingers of air. (Fjords are the building blocks of solutions of the zero-surface-tension Laplacian growth equation.) Experiments in rectangular and circular geometries yield fjords with base widths {lambda}{sub c}/2, where {lambda}{sub c} is the most unstable wavelength from a linear stability analysis. Further, fjords open at an angle of 8.0{sup o}{+-}1.0{sup o}. These selection rules hold for a wide range of pumping rates and fjord lengths, widths, and directions.

  9. Characteristics of pulse width for an enhanced second harmonic generation (United States)

    Zhang, Yun; Hyodo, Masaharu; Okada-Shudo, Yoshiko; Zhu, Yun; Wang, Xiaoyang; Zhu, Yong; Wang, Guiling; Chen, Chuangtian; Watanabe, Shuntaro; Watanabe, Masayoshi


    Temporal characteristics of a cavity enhancement second harmonic (SH) generation for picosecond laser pulse are investigated. We experimentally measured pulse width changes that were indued by group velocity mismatching (GVM), SH process, and enhancement cavity. It indicates that the generated pulse width is a combined effect of the GVM and SH process. Meanwhile, the effect of the enhancement cavity can be avoided by controlling its free spectrum range. A interferometric autocorrelator with a KBBF-PCD as nonlinear crystal is also composed and this extends the measurement light wavelength below 410 nm.

  10. Domain wall width of lithium niobate poled during growth

    CERN Document Server

    Brooks, R; Hole, D E; Callejo, D; Bermudez, V; Diéguez, E


    Good quality crystals of periodically poled lithium niobate can be generated directly during growth. However, the temperature gradients at the zone boundaries define the width of the regions where the polarity is reversed. Hence, the region influenced the domain transition may be a significant fraction of the overall poling period for material poled during growth. Evidence for the scale of this feature is reported both by chemical etching and by the less common method of ion beam luminescence and the 'domain wall' width approximately 1 mu m for these analyses. The influence of the reversal region may differ for alternative techniques but the relevance to device design for second harmonic generation is noted.

  11. Resonance widths in open microwave cavities studied by harmonic inversion


    Kuhl, U.; Hoehmann, R.; Main, J; Stoeckmann, H. -J.


    From the measurement of a reflection spectrum of an open microwave cavity the poles of the scattering matrix in the complex plane have been determined. The resonances have been extracted by means of the harmonic inversion method. By this it became possible to resolve the resonances in a regime where the line widths exceed the mean level spacing up to a factor of 10, a value inaccessible in experiments up to now. The obtained experimental distributions of line widths were found to be in perfec...

  12. Rogue waves management by external potentials

    Energy Technology Data Exchange (ETDEWEB)

    Al Khawaja, U., E-mail: [Physics Department, United Arab Emirates University, P.O. Box 17551, Al-Ain (United Arab Emirates); Taki, Majid [Laboratoire de Physique des Lasers, Atomes et Molécules, CNRS UMR 8523, Centre d' Etudes et de Recherches Lasers et Applications, Université de Lille 1 (Sciences et Technologies), 59655 Villeneuve d' Ascq Cedex (France)


    We study the effect of time-dependent linear and quadratic potentials on the profile and dynamics of rogue waves represented by a Peregrine soliton. The Akhmediev breather, Ma breather, bright soliton, Peregrine soliton, and constant wave (CW) are all obtained by changing the value of one parameter in the general solution corresponding to the amplitude of the input CW. The corresponding solutions for the case with linear and quadratic potentials were derived by the similarity transformation method. While the peak height and width of the rogue wave turn out to be insensitive to the linear potential, the trajectory of its center-of-mass can be manipulated with an arbitrary time-dependent slope of the linear potential. With a quadratic potential, the peak height and width of the rogue wave can be arbitrarily manipulated to result, for a special case, in a very intense pulse.

  13. Plasma waves

    CERN Document Server

    Swanson, DG


    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  14. Widths of the atomic K-N7 levels

    CERN Document Server

    Campbell, J L


    Atomic level widths obtained from experimental measurements are collected in Table I, along with the corresponding theoretical widths derived from the Evaluated Atomic Data Library (EADL) of Lawrence Livermore National Laboratory; these EADL values are based upon the Dirac-Hartree-Slater version of the independent-particle model. In a minority of cases, many-body theory predictions are also provided. A brief discussion of the manner in which the experimental widths were deduced from spectroscopic data is included. The bulk of the data are for elements in the solid state, but a few data for gases and simple compounds are included. For the K, L2, L3, and M5 levels, where Coster-Kronig contributions do not contribute or contribute only to a small extent to the overall widths, the EADL predictions appear satisfactory for elements in the solid state. For other levels, where Coster-Kronig and super-Coster-Kronig transitions have large probabilities within the independent-particle model, this model is not satisfacto...

  15. Crack width analysis of steel fibers reinforced concrete beams

    Directory of Open Access Journals (Sweden)

    Šahinagić-Isović Merima


    Full Text Available Fibre reinforced concrete in recent years has grown from experimental material to a practical usable material, due to its positive properties such as increased tensile strength, bending strength, toughness etc. However, still there are many unanswered questions that are the subject of many research. In this paper results and analysis of crack width of concrete beams with steel fibres are presented. This analysis considers influence of steel fibre addition on the crack width of reinforced concrete beams (dimensions 15/28/300 cm loaded up to fracture during short-term ultimate static load with one unloading cycle. Concrete beams were made of two types of concrete: ordinary strength concrete (OSC - C30/37 and high strength concrete (HSC - C60/70, with and without 0.45% of steel fibres. The results indicate that there is a significant influence of fibre addition on crack width, especially for ordinary concrete. At the end, empirical calculations of the concrete elements' crack width with steel fibres according to the recommendations of RILEM and ACI building code are given.

  16. Frequency width of open channels in multiple scattering media

    NARCIS (Netherlands)

    Bosch, J.; Goorden, S.A.; Mosk, Allard


    We report optical measurements of the spectral width of open transmission channels in a three-dimensional diffusive medium. The light transmission through a sample is enhanced by efficiently coupling to open transmission channels using repeated digital optical phase conjugation. The spectral

  17. Directed path-width and monotonicity in digraph searching

    DEFF Research Database (Denmark)

    Barat, Janos


    Directed path-width was defined by Reed, Thomas and Seymour around 1995. The author and P. Hajnal defined a cops-and-robber game on digraphs in 2000. We prove that the two notions are closely related and for any digraph D, the corresponding graph parameters differ by at most one. The result is ac...

  18. Stark Widths of Spectral Lines of Neutral Neon

    Indian Academy of Sciences (India)

    Abstract. In order to complete Stark broadening data for Ne I spec- tral lines which are needed for analysis of stellar atmospheres, collisional widths and shifts (the so-called Stark broadening parameters) of 29 iso- lated spectral lines of neutral neon have been determined within the impact semiclassical perturbation method.

  19. An Improved determination of the width of the top quark

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, Victor Mukhamedovich; /Dubna, JINR; Abbott, Braden Keim; /Oklahoma U.; Acharya, Bannanje Sripath; /Tata Inst.; Adams, Mark Raymond; /Illinois U., Chicago; Adams, Todd; /Florida State U.; Alexeev, Guennadi D.; /Dubna, JINR; Alkhazov, Georgiy D.; /St. Petersburg, INP; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls; Alverson, George O.; /Northeastern U.; Aoki, Masato; /Fermilab; Askew, Andrew Warren; /Florida State U. /Stockholm U.


    We present an improved determination of the total width of the top quark, {Lambda}{sub t}, using 5.4 fb{sup -1} of integrated luminosity collected by the D0 Collaboration at the Tevatron p{bar p} Collider. The total width {Lambda}{sub t} is extracted from the partial decay width {Lambda}(t {yields} Wb) and the branching fraction {Beta}(t {yields} Wb). {Lambda}(t {yields} Wb) is obtained from the t-channel single top quark production cross section and {Beta}(t {yields} Wb) is measured in t{bar t} events. For a top mass of 172.5 GeV, the resulting width is {Lambda}{sub t} = 2.00{sub -0.43}{sup +0.47} GeV. This translates to a top-quark lifetime of {tau}{sub t} = (3.29{sub -0.63}{sup +0.90}) x 10{sup -25} s. We also extract an improved direct limit on the CKM matrix element 0.81 < |V{sub tb}| {le} 1 at 95% C.L. and a limit of |V{sub tb'}| < 0.59 for a high mass fourth generation bottom quark assuming unitarity of the fourth generation quark mixing matrix.

  20. The effect of buffer zone width on biodiversity

    DEFF Research Database (Denmark)

    Navntoft, Søren; Sigsgaard, Lene; Kristensen, Kristian


    Field margin management for conservation purposes is a way to protect both functional biodiversity and biodiversity per se without considerable economical loss as field margins are less productive. However, the effect of width of the buffer zone on achievable biodiversity gains has received little...

  1. Downstream flow top width prediction in a river system | Choudhury ...

    African Journals Online (AJOL)

    ANFIS, ARIMA and Hybrid Multiple Inflows Muskingum models (HMIM) were applied to simulate and forecast downstream discharge and flow top widths in a river system. The ANFIS model works on a set of linguistic rules while the ARIMA model uses a set of past values to predict the next value in a time series. The HMIM ...

  2. Width adjustment: relative dominance in unstable alluvial streams (United States)

    Simon, Andrew


    The mechanisms that control the relative dominance of width adjustment in unstable streams are described. Specifically, the role of the following factors affecting the fluvial environment were investigated: vertical processes and fluvial action, bed-material particle, cohesive strength of bank material, and riparian vegetation.

  3. Enhancement of heat transfer using varying width twisted tape inserts

    African Journals Online (AJOL)


    width twisted tape inserts, ASME Transactions, Vol. 122, pp. 143-149. Naphon P., 2006. Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert, International communications in Heat and Mass Transfer, Vol. 33, pp. 166-175. Promvonge P. and Eiamsa-ard S., 2007. Heat transfer ...

  4. Prediction of concentrated flow width in ephemeral gully channels (United States)

    Nachtergaele, J.; Poesen, J.; Sidorchuk, A.; Torri, D.


    Empirical prediction equations of the form W = aQb have been reported for rills and rivers, but not for ephemeral gullies. In this study six experimental data sets are used to establish a relationship between channel width (W, m) and flow discharge (Q, m3 s-1) for ephemeral gullies formed on cropland. The resulting regression equation (W = 2·51 Q0·412; R2 = 0·72; n = 67) predicts observed channel width reasonably well. Owing to logistic limitations related to the respective experimental set ups, only relatively small runoff discharges (i.e. Q channel width was attributed to a calculated peak runoff discharge on sealed cropland, the application field of the regression equation was extended towards larger discharges (i.e. 5 × 10channels revealed that the discharge exponent (distribution over the wetted perimeter between rills, gullies and rivers, (ii) a decrease in probability of a channel formed in soil material with uniform erosion resistance from rills over gullies to rivers and (iii) a decrease in average surface slope from rills over gullies to width equation for concentrated flow on cropland. For the frozen soils the equation

  5. Enhancement of heat transfer using varying width twisted tape inserts

    African Journals Online (AJOL)


    International Journal of Engineering, Science and Technology. Vol. ... 2*Sri Sai College of Engineering and Technology, Loluru(V), Anantapur(Dist.) ..... tape acting as fin. It is observed that the reduction in tape width causes reduction in Nusselt numbers as well as reduction in pressure drop. From Figure 7, the percentage ...

  6. Echo width of foam supports used in scattering measurements

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen; Solodukhov, V. V.


    Theoretically and experimentally determined echo widths of dielectric cylinders having circular, triangular, and quadratic cross sections have been compared. The cylinders were made of foam material having a relative dielectric constant of about 1.035. The purpose of the investigation was to find...

  7. Harmonic Orientation of Pulse Width Modulation Technique in Multilevel Inverters


    Urmila Bandaru; Subba D Rayudu


    The Multilevel Inverter topology gives the advantages of usage in high power and high voltage application with reduced harmonic distortion without a transformer. This paper presents a comparative study of orientation of higher ordered harmonics with increase in switching frequency around the frequency modulation index of nine level diode clamped inverter for different Switching frequency Multicarrier Pulse width Modulation.

  8. Finite-width plasmonic waveguides with hyperbolic multilayer cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi


    Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any......, are strongly absorbed. By avoiding the resonant widths in the design of the actual waveguides, the strong absorption can be eliminated. (C) 2015 Optical Society of America...

  9. Utility Interfaced Pulse-Width Modulation of Solar Fed Voltage ...

    African Journals Online (AJOL)

    This paper describes a utility interfaced pulse-width modulation of solar-fed voltage source single phase full bridge inverter. The proposed system has to do with the conversion of solar energy into electrical energy; boosting the dc power; inversion of the dc to ac and then synchronization of the inverter output with the utility, ...

  10. Analyzing bin-width effect on the computed entropy (United States)

    Purwani, Sri; Nahar, Julita; Twining, Carole


    The Shannon entropy is a mathematical expression for quantifying the amount of randomness which can be used to measure information content. It is used in objective function. Mutual Information (MI) uses Shannon entropy in order to determine shared information content of two images. The Shannon entropy, which was originally derived by Shannon in the context of lossless encoding of messages, is also used to define an optimum message length used in the Minimum Description Length (MDL) principle for groupwise registration. Majority of papers used histogram for computing MI, and hence the entropy. We therefore, aim to analyze the effect of bin-width on the computed entropy. We first derived the Shannon entropy from the integral of probability density function (pdf), and found that Gaussian has maximum entropy over all possible distribution. We also show that the entropy of the flat distribution is less than the entropy of the Gaussian distribution with the same variance. We then investigated the bin-width effect on the computed entropy, and analyzed the relationship between the computed entropy and the integral entropy when we vary bin-width, but fix variance and the number of samples. We then found that the value of the computed entropy lies within the theoretical predictions at small and large bin-widths. We also show two types of bias in entropy estimator.

  11. Writer identification using directional ink-trace width measurements

    NARCIS (Netherlands)

    Brink, A. A.; Smit, J.; Bulacu, M. L.; Schomaker, L. R. B.

    As suggested by modern paleography, the width of ink traces is a powerful source of information for off-line writer identification, particularly if combined with its direction. Such measurements can be computed using simple, fast and accurate methods based on pixel contours, the combination of which

  12. The width of the gamma-ray burst luminosity function

    NARCIS (Netherlands)

    Ulmer, A.; Wijers, R.A.M.J.


    We examine the width of the gamma-ray burst (GRB) luminosity function through the distribution of GRB peak count rates, Cpeak, as detected by Burst and Transient Source Experiment (BATSE) (1993). In the context of Galactic corona spatial distribution models, we attempt to place constaints on the

  13. Association of Anterior Cruciate Ligament Width With Anterior Knee Laxity. (United States)

    Wang, Hsin-Min; Shultz, Sandra J; Schmitz, Randy J


    Greater anterior knee laxity (AKL) has been identified as an anterior cruciate ligament (ACL) injury risk factor. The structural factors that contribute to greater AKL are not fully understood but may include the ACL and bone geometry. To determine the relationship of ACL width and femoral notch angle to AKL. Cross-sectional study. Controlled laboratory. Twenty recreationally active females (age = 21.2 ± 3.1 years, height = 1.66.1 ± 7.3 cm, mass = 66.5 ± 12.0 kg). Anterior cruciate ligament width and femoral notch angle were obtained with magnetic resonance imaging of the knee and AKL was assessed. Anterior cruciate ligament width was measured as the width of a line that transected the ACL and was drawn perpendicular to the Blumensaat line. Femoral notch angle was formed by the intersection of the line parallel to the posterior cortex of the femur and the Blumensaat line. Anterior knee laxity was the anterior displacement of the tibia relative to the femur (mm) at 130 N of an applied force. Ten participants' magnetic resonance imaging data were assessed on 2 occasions to establish intratester reliability and precision. Using stepwise backward linear regression, we examined the extent to which ACL width, femoral notch angle, and weight were associated with AKL. Strong measurement consistency and precision (intraclass correlation coefficient [2,1] ± SEM) were established for ACL width (0.98 ± 0.3 mm) and femoral notch angle (0.97° ± 1.1°). The regression demonstrated that ACL width (5.9 ± 1.4 mm) was negatively associated with AKL (7.2 ± 2.0 mm; R(2) = 0.22, P = .04). Femoral notch angle and weight were not retained in the final model. A narrower ACL was associated with greater AKL. This finding may inform the development of ACL injury-prevention programs that include components designed to increase ACL size or strength (or both). Future authors should establish which other factors contribute to greater AKL in order to best inform injury-prevention efforts.

  14. Wave-function reconstruction in a graded semiconductor superlattice

    DEFF Research Database (Denmark)

    Lyssenko, V. G.; Hvam, Jørn Märcher; Meinhold, D.


    We reconstruct a test wave function in a strongly coupled, graded well-width superlattice by resolving the spatial extension of the interband polarisation and deducing the wave function employing non-linear optical spectroscopy. The graded gap superlattice allows us to precisely control the dista...

  15. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  16. Heat Waves (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and ... having trouble with the heat. If a heat wave is predicted or happening… - Slow down. Avoid strenuous ...

  17. Solution of the pulse width modulation problem using orthogonal polynomials and Korteweg-de Vries equations. (United States)

    Chudnovsky, D V; Chudnovsky, G V


    The mathematical underpinning of the pulse width modulation (PWM) technique lies in the attempt to represent "accurately" harmonic waveforms using only square forms of a fixed height. The accuracy can be measured using many norms, but the quality of the approximation of the analog signal (a harmonic form) by a digital one (simple pulses of a fixed high voltage level) requires the elimination of high order harmonics in the error term. The most important practical problem is in "accurate" reproduction of sine-wave using the same number of pulses as the number of high harmonics eliminated. We describe in this paper a complete solution of the PWM problem using Pade approximations, orthogonal polynomials, and solitons. The main result of the paper is the characterization of discrete pulses answering the general PWM problem in terms of the manifold of all rational solutions to Korteweg-de Vries equations.

  18. Decay widths of the spin-2 partners of the X(3872)

    Energy Technology Data Exchange (ETDEWEB)

    Albaladejo, Miguel, E-mail: [Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Aptd. 22085, 46071, Valencia (Spain); Guo, Feng-Kun, E-mail: [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 100190, Beijing (China); Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, 53115, Bonn (Germany); Hidalgo-Duque, Carlos, E-mail:; Nieves, Juan, E-mail: [Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Aptd. 22085, 46071, Valencia (Spain); Valderrama, Manuel Pavón, E-mail: [Institut de Physique Nucléaire, Université Paris-Sud, IN2P3/CNRS, 91406, Orsay Cedex (France)


    We consider the X(3872) resonance as a J{sup PC}=1{sup ++}DD{sup -bar∗} hadronic molecule. According to heavy quark spin symmetry, there will exist a partner with quantum numbers 2{sup ++}, X{sub 2}, which would be a D{sup ∗}D{sup -bar∗} loosely bound state. The X{sub 2} is expected to decay dominantly into DD{sup -bar}, DD{sup -bar∗} and D{sup -bar}D{sup ∗} in d-wave. In this work, we calculate the decay widths of the X{sub 2} resonance into the above channels, as well as those of its bottom partner, X{sub b2}, the mass of which comes from assuming heavy flavor symmetry for the contact terms. We find partial widths of the X{sub 2} and X{sub b2} of the order of a few MeV. Finally, we also study the radiative X{sub 2}→DD{sup -bar∗}γ and X{sub b2}→B{sup -bar}B{sup ∗}γ decays. These decay modes are more sensitive to the long-distance structure of the resonances and to the DD{sup -bar∗} or BB{sup -bar∗} final state interaction.

  19. Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.


    This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies......, concerning a hydraulic evaluation and optimisation of the geometry of the Wave Dragon, is presented. Furthermore, the plans for the future development projects are sketched....

  20. Gravitational Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Jonah Maxwell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    This report has slides on Gravitational Waves; Pound and Rebka: A Shocking Fact; Light is a Ruler; Gravity is the Curvature of Spacetime; Gravitational Waves Made Simple; How a Gravitational Wave Affects Stuff Here; LIGO; This Detection: Neutron Stars; What the Gravitational Wave Looks Like; The Sound of Merging Neutron Stars; Neutron Star Mergers: More than GWs; The Radioactive Cloud; The Kilonova; and finally Summary, Multimessenger Astronomy.

  1. Electromagnetic Waves


    Blok, H.; van den Berg, P.M.


    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc.

  2. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Knapp, W.


    Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...

  3. Wave phenomena

    CERN Document Server

    Towne, Dudley H


    This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.

  4. Development of slow and fast wave coupling and heating from the C-Stellarator to NSTX

    Directory of Open Access Journals (Sweden)

    Hosea Joel


    Full Text Available A historical perspective on key discoveries which contributed to understanding the properties of coupling both slow and fast waves and the effects on plasma heating and current drive will be presented. Important steps made include the demonstration that the Alfven resonance was in fact a mode conversion on the C-stellarator, that toroidal m = -1 eigenmodes were excited in toroidal geometry and impurity influx caused the Z mode on the ST tokamak, that the H minority regime provided strong heating and that 3He minority could be used as well on PLT, that the 2nd harmonic majority tritium regime was viable on TFTR, and that high harmonic fast wave heating was efficient when the SOL losses were avoided on NSTX.


    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, Igor V.; Van der Holst, Bart; Oran, Rona; Jin, Meng; Manchester, Ward B. IV; Gombosi, Tamas I. [Department of AOSS, University of Michigan, 2455 Hayward Street, Ann Arbor, MI 48109 (United States); Downs, Cooper [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego, CA 92121 (United States); Roussev, Ilia I. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Evans, Rebekah M., E-mail: [NASA Goddard Space Flight Center, Space Weather Lab, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)


    We present a new global model of the solar corona, including the low corona, the transition region, and the top of the chromosphere. The realistic three-dimensional magnetic field is simulated using the data from the photospheric magnetic field measurements. The distinctive feature of the new model is incorporating MHD Alfven wave turbulence. We assume this turbulence and its nonlinear dissipation to be the only momentum and energy source for heating the coronal plasma and driving the solar wind. The difference between the turbulence dissipation efficiency in coronal holes and that in closed field regions is because the nonlinear cascade rate degrades in strongly anisotropic (imbalanced) turbulence in coronal holes (no inward propagating wave), thus resulting in colder coronal holes, from which the fast solar wind originates. The detailed presentation of the theoretical model is illustrated with the synthetic images for multi-wavelength EUV emission compared with the observations from SDO AIA and STEREO EUVI instruments for the Carrington rotation 2107.

  6. Development of slow and fast wave coupling and heating from the C-Stellarator to NSTX (United States)

    Hosea, Joel


    A historical perspective on key discoveries which contributed to understanding the properties of coupling both slow and fast waves and the effects on plasma heating and current drive will be presented. Important steps made include the demonstration that the Alfven resonance was in fact a mode conversion on the C-stellarator, that toroidal m = -1 eigenmodes were excited in toroidal geometry and impurity influx caused the Z mode on the ST tokamak, that the H minority regime provided strong heating and that 3He minority could be used as well on PLT, that the 2nd harmonic majority tritium regime was viable on TFTR, and that high harmonic fast wave heating was efficient when the SOL losses were avoided on NSTX.

  7. On the generation of magnetohydrodynamic waves in a stratified and magnetized fluid. I - Vertical propagation. [in sun (United States)

    Musielak, Z. E.; Rosner, R.


    The generation of MHD waves by turbulent motions in a stratified medium with an embedded uniform magnetic field, a topic which is relevant to the study of the solar atmosphere, is considered. Both compressible and incompressible MHD waves are treated in a one-dimensional approach; however, the direction of the background magnetic field is permitted to vary in an arbitrary direction. Theoretical expressions for MHD energy fluxes are obtained as a function of wave frequency and multipole coefficients. It is shown that monopole, dipole, and quadrupole emissions are responsible for the generation of the compressible components of the fast and slow modes. However, the incompressible components and the Alfven modes can be generated by the dipole emission only. Specific results obtained for special magnetic field geometries are discussed for the fast and slow modes.

  8. Oblique solitary waves in a five component plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sijo, S.; Manesh, M.; Sreekala, G.; Venugopal, C., E-mail: [School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, 686 560 Kerala (India); Neethu, T. W. [Department of Physics, CMS College, Mahatma Gandhi University, Kottayam, 686 001 Kerala (India); Renuka, G. [Kerala State Council for Science, Technology and Environment, Thiruvananthapuram, 695 004 Kerala (India)


    We investigate the influence of a second electron component on oblique dust ion acoustic solitary waves in a five component plasma consisting of positively and negatively charged dust, hydrogen ions, and hotter and colder electrons. Of these, the heavier dust and colder photo-electrons are of cometary origin while the other two are of solar origin; electron components are described by kappa distributions. The K-dV equation is derived, and different attributes of the soliton such as amplitude and width are plotted for parameters relevant to comet Halley. We find that the second electron component has a profound influence on the solitary wave, decreasing both its amplitude and width. The normalized hydrogen density strongly influences the solitary wave by decreasing its width; the amplitude of the solitary wave, however, increases with increasing solar electron temperatures.

  9. Wave Climate Resource Analysis Based on a Revised Gamma Spectrum for Wave Energy Conversion Technology

    Directory of Open Access Journals (Sweden)

    Jeremiah Pastor


    Full Text Available In order to correctly predict and evaluate the response of wave energy converters (WECs, an accurate representation of wave climate resource is crucial. This paper gives an overview of wave resource modeling techniques and applies a methodology to estimate the naturally available and technically recoverable resource in a given deployment site. The methodology was initially developed by the Electric Power Research Institute (EPRI, which uses a modified gamma spectrum to interpret sea state hindcast parameter data produced by National Oceanic and Atmospheric Administration’s (NOAA’s WaveWatch III. This gamma spectrum is dependent on the calibration of two variables relating to the spectral width parameter and spectral peakedness parameter. In this study, this methodology was revised by the authors to increase its accuracy in formulating wavelength. The revised methodology shows how to assess a given geographic area’s wave resource based on its wave power density and total annual wave energy flux.

  10. Joint space width in dysplasia of the hip

    DEFF Research Database (Denmark)

    Jacobsen, Steffen; Sonne-Holm, Stig; Søballe, K


    . Neither subjects with dysplasia nor controls had radiological signs of ongoing degenerative disease at admission. The primary radiological discriminator of degeneration of the hip was a change in the minimum joint space width over time. There were no significant differences between these with dysplasia...... and controls in regard to age, body mass index or occupational exposure to daily repeated lifting at admission.We found no significant differences in the reduction of the joint space width at follow-up between subjects with dysplasia and the control subjects nor in self-reported pain in the hip......In a longitudinal case-control study, we followed 81 subjects with dysplasia of the hip and 136 control subjects without dysplasia for ten years assessing radiological evidence of degeneration of the hip at admission and follow-up. There were no cases of subluxation in the group with dysplasia...

  11. The SOL width and the MHD interchange instability in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Kerner, W. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Pogutse, O. [Kurchatov institute, Moscow (Russian Federation)


    Instabilities in the SOL plasma can strongly influence the SOL plasma behaviour and in particular the SOL width. The SOL stability analysis shows that there exists a critical ratio of the thermal energy and the magnetic energy. If the SOL beta is greater than this critical value, the magnetic field cannot prevent the plasma displacement and a strong MHD instability in the SOL occurs. In the opposite case only slower resistive instabilities can develop. A theoretical investigation of the SOL plasma stability is presented for JET single-null and double-null divertor configurations. The dependence of the stability threshold on the SOL beta and on the sheath resistance is established. Applying a simple mixing length argument gives the scaling of the SOL width. 5 refs., 2 figs.

  12. Determination of the width of the top quark. (United States)

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Ancu, L S; Aoki, M; Arnoud, Y; Arov, M; Askew, A; Åsman, B; Atramentov, O; Avila, C; BackusMayes, J; Badaud, F; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Barberis, E; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bazterra, V; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Beri, S B; Bernardi, G; Bernhard, R; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Blazey, G; Blessing, S; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bose, T; Brandt, A; Brandt, O; Brock, R; Brooijmans, G; Bross, A; Brown, D; Brown, J; Bu, X B; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burnett, T H; Buszello, C P; Calpas, B; Camacho-Pérez, E; Carrasco-Lizarraga, M A; Casey, B C K; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chen, G; Chevalier-Théry, S; Cho, D K; Cho, S W; Choi, S; Choudhary, B; Christoudias, T; Cihangir, S; Claes, D; Clutter, J; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Croc, A; Cutts, D; Ćwiok, M; Das, A; Davies, G; De, K; de Jong, S J; De la Cruz-Burelo, E; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; DeVaughan, K; Diehl, H T; Diesburg, M; Dominguez, A; Dorland, T; Dubey, A; Dudko, L V; Duggan, D; Duperrin, A; Dutt, S; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Evans, H; Evdokimov, A; Evdokimov, V N; Facini, G; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fortner, M; Fox, H; Fuess, S; Gadfort, T; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Geng, W; Gerbaudo, D; Gerber, C E; Gershtein, Y; Ginther, G; Golovanov, G; Goussiou, A; Grannis, P D; Greder, S; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hagopian, S; Haley, J; Han, L; Harder, K; Harel, A; Hauptman, J M; Hays, J; Head, T; Hebbeker, T; Hedin, D; Hegab, H; Heinson, A P; Heintz, U; Hensel, C; Heredia-De la Cruz, I; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hoang, T; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hossain, S; Hubacek, Z; Huske, N; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jamin, D; Jesik, R; Johns, K; Johnson, M; Johnston, D; Jonckheere, A; Jonsson, P; Joshi, J; Juste, A; Kaadze, K; Kajfasz, E; Karmanov, D; Kasper, P A; Katsanos, I; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y N; Khatidze, D; Kirby, M H; Kohli, J M; Kozelov, A V; Kraus, J; Kumar, A; Kupco, A; Kurča, T; Kuzmin, V A; Kvita, J; Lammers, S; Landsberg, G; Lebrun, P; Lee, H S; Lee, S W; Lee, W M; Lellouch, J; Li, L; Li, Q Z; Lietti, S M; Lim, J K; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobodenko, A; Lokajicek, M; Love, P; Lubatti, H J; Luna-Garcia, R; Lyon, A L; Maciel, A K A; Mackin, D; Madar, R; Magaña-Villalba, R; Malik, S; Malyshev, V L; Maravin, Y; Martínez-Ortega, J; McCarthy, R; McGivern, C L; Meijer, M M; Melnitchouk, A; Menezes, D; Mercadante, P G; Merkin, M; Meyer, A; Meyer, J; Mondal, N K; Muanza, G S; Mulhearn, M; Nagy, E; Naimuddin, M; Narain, M; Nayyar, R; Neal, H A; Negret, J P; Neustroev, P; Novaes, S F; Nunnemann, T; Obrant, G; Orduna, J; Osman, N; Osta, J; Otero y Garzón, G J; Owen, M; Padilla, M; Pangilinan, M; Parashar, N; Parihar, V; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Penning, B; Perfilov, M; Peters, K; Peters, Y; Petrillo, G; Pétroff, P; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pol, M-E; Polozov, P; Popov, A V; Prewitt, M; Price, D; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Ranjan, K; Ratoff, P N; Razumov, I; Renkel, P; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Rominsky, M; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Sanghi, B; Santos, A S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Scheglov, Y; Schellman, H; Schliephake, T; Schlobohm, S; Schwanenberger, C; Schwienhorst, R; Sekaric, J; Severini, H; Shabalina, E; Shary, V; Shchukin, A A; Shivpuri, R K; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, K J; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Spurlock, B; Stark, J; Stolin, V; Stoyanova, D A; Strauss, E; Strauss, M; Strom, D; Stutte, L; Svoisky, P; Takahashi, M; Tanasijczuk, A; Taylor, W; Titov, M; Tokmenin, V V; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Verdier, P; Vertogradov, L S; Verzocchi, M; Vesterinen, M; Vilanova, D; Vint, P; Vokac, P; Wahl, H D; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Welty-Rieger, L; Wetstein, M; White, A; Wicke, D; Williams, M R J; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Xu, C; Yacoob, S; Yamada, R; Yang, W-C; Yasuda, T; Yatsunenko, Y A; Ye, Z; Yin, H; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zelitch, S; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zivkovic, L


    We extract the total width of the top quark, Γ(t), from the partial decay width Γ(t → Wb) measured using the t-channel cross section for single top-quark production and from the branching fraction B(t → Wb) measured in tt events using up to 2.3  fb(-1) of integrated luminosity collected by the D0 Collaboration at the Tevatron pp Collider. The result is Γ(t) = 1.99(-0.55)(+0.69)  GeV, which translates to a top-quark lifetime of τ(t) = (3.3(-0.9)(+1.3)) × 10(-25)   s. Assuming a high mass fourth generation b' quark and unitarity of the four-generation quark-mixing matrix, we set the first upper limit on |V(tb')| < 0.63 at 95% C.L.

  13. A Direct Measurement of the $W$ Decay Width

    Energy Technology Data Exchange (ETDEWEB)

    Vine, Troy [Univ. of College, London (United Kingdom)


    A direct measurement of the W boson total decay width is presented in proton-antiproton collisions at √s = 1.96 TeV using data collected by the CDF II detector. The measurement is made by fitting a simulated signal to the tail of the transverse mass distribution in the electron and muon decay channels. An integrated luminosity of 350 pb-1 is used, collected between February 2002 and August 2004. Combining the results from the separate decay channels gives the decay width as 2.038 ± 0.072 GeV in agreement with the theoretical prediction of 2.093 ± 0.002 GeV. A system is presented for the management of detector calibrations using a relational database schema. A description of the implementation and monitoring of a procedure to provide general users with a simple interface to the complete set of calibrations is also given.

  14. Letter to the editor: The ionospheric response during an interval of Pc5 ULF wave activity

    Directory of Open Access Journals (Sweden)

    M. Lester


    Full Text Available A preliminary analysis of Pc5, ULF wave activity observed with the IMAGE magnetometer array and the EISCAT UHF radar in the post midnight sector indicates that such waves can be caused by the modulation of the ionospheric conductivity as well as the wave electric field. An observed Pc5 pulsation is divided into three separate intervals based upon the EISCAT data. In the first and third, the Pc5 waves are observed only in the measured electron density between 90 and 112 km and maxima in the electron density at these altitudes are attributed to pulsed precipitation of electrons with energies up to 40 keV which result in the height integrated Hall conductivity being pulsed between 10 and 50 S. In the second interval, the Pc5 wave is observed in the F-region ion temperature, electron density and electron temperature but not in the D and E region electron densities. The analysis suggests that the wave during this interval is a coupled Alfven and compressional mode.Key words: Ionosphere (electric fields and currents - Magnetospheric physics (magnetosphere-ionosphere interaction; MHD waves and instabilities

  15. Parallel Propagation of Electromagnetic Waves in a Partially Ionized Plasma with Multiple Species (United States)

    Huang, Y.; Song, P.; Tu, J.


    When waves propagate along the magnetic field in a partially ionized plasma with two or more ion species e.g. H+ and O+, such as in the Earth's ionosphere, because of the differences in mass and density, each species responds to the perturbations of electromagnetic fields differently. Furthermore, collisions among the different ions species, between ions and electrons, and between ions and neutrals also affect the wave propagation. With the linear analysis and the assumption of cold plasma, the general dispersion relation of propagation covering all frequencies, from MHD waves to the light propagation, in a medium with arbitrary species of ions, anions and neutrals is derived from the multiple fluids treatment, in combination with Faraday's Law and Ampere's Law including the displacement current. There are several stop bands and characteristic frequencies. For each ion or anion species, there is a resonant frequency at its cyclotron frequency and a cutoff frequency which depends on the mass density of the speciesand and the magnetic field. The waves are strongly damped at the resonant frequencies and become reflective at the cutoff frequencies. With the collisions, the wave propagates slower than the Alfven speed with the frequency below the ion-neutral collision frequency because of an inertia loading process by neutrals. When the collisions are stronger, the resonance is weaker as the cyclotron motion of the ions is disrupted frequently by the collisions. The roles of the collisions played in wave propagation in the stop bands and in wave damping will be discussed.

  16. Influence of Doppler Bin Width on GNSS Detection Probabilities

    CERN Document Server

    Geiger, Bernhard C


    The acquisition stage in GNSS receivers determines Doppler shifts and code phases of visible satellites. Acquisition is thus a search in two continuous dimensions, where the digital algorithms require a partitioning of the search space into cells. We present analytic expressions for the acquisition performance depending on the partitioning of the Doppler frequency domain. In particular, the impact of the number and width of Doppler bins is analyzed. The presented results are verified by simulations.

  17. Pulse-Width-Modulating Driver for Brushless dc Motor (United States)

    Salomon, Phil M.


    High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.

  18. Influence Coefficients of Constructive Parameters of Meander Slow-Wave System with Additional Shields

    Directory of Open Access Journals (Sweden)

    Metlevskis Edvardas


    Full Text Available Constructions of meander slow-wave systems with additional shields grounded at different positions are presented. The construction of meander slow-wave systems with additional shields grounded at both edges is investigated in detail. The influence of the main constructive parameters on the electrical characteristics of meander slow-wave systems with additional shields grounded at both edges is evaluated. The main constructive parameters of the investigated system are: the length of the conductor, the width of meander conductor, the width of additional shield, and the width of the gap between adjacent meander conductors.

  19. Measurement of the mass and width of the W boson

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, Robert M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krasznahorkay, A.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, Niels T.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rossi, A.M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija


    The mass and width of the W boson are measured using e+e- -> W+W- events from the data sample collected by the OPAL experiment at LEP at centre-of-mass energies between 170 GeV and 209 GeV. The mass (mw) and width (gw) are determined using direct reconstruction of the kinematics of W+W- -> qqbarlv and W+W- -> qqbarqqbar events. When combined with previous OPAL measurements using W+W- -> lvlv events and the dependence on mw of the WW production cross-section at threshold, the results are determined to be mw = 80.415 +- 0.042 +- 0.030 +- 0.009 GeV gw = 1.996 +- 0.096 +- 0.102 +- 0.003 GeV where the first error is statistical, the second systematic and the third due to uncertainties in the value of the LEP beam energy. By measuring mw with several different jet algorithms in the qqbarqqbar channel, a limit is also obtained on possible final-state interactions due to colour reconnection effects in W+W- -> qqbarqqbar events. The consistency of the results for the W mass and width with those inferred from other ele...

  20. The meatal/urethral width in healthy uncircumcised boys. (United States)

    Orkiszewski, Marek; Madej, Joanna


    Knowledge of normal meatal/urethral width in a growing boy is important to create a neourethra of adequate size to correct hypospadias. Thus far, normal size values have been based on the study of circumcised, awake boys. The aim of this study was to measure normal urethral width in healthy uncircumcised boys under general anesthesia to provide a tool to create a neourethra of adequate size. Sixty healthy uncircumcised boys, aged 5 months through 16 years, were examined. Measurements were carried out under general anesthesia with Hegar dilators, size 1-8mm. Care was taken not to dilate or injure the urethra. The patients were divided into age groups similar to those in the literature and those recommended for hypospadias surgery. The data were analyzed in relation to age, body length and weight. With minimum size 3.5mm and maximum 7.5mm, the mean width was significantly larger in the age groups 5 months-2 years and 2-4 years than in the literature (P<0.001). This study presents a practical tool for surgeons involved in hypospadias repair. Standardization of procedure may result in better assessment of results and education. Copyright © 2009 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  1. The width of the {omega} meson in the nuclear medium

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, A. [Universitat de Barcelona, Departament d' Estructura i Constituents de la Materia and Institut de Ciencies del Cosmos, Barcelona (Spain); Tolos, L. [Facultat de Ciencies, Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autonoma de Barcelona, Barcelona (Spain); Johann Wolfgang Goethe University, Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main (Germany); Molina, R. [Research Center for Nuclear Physics (RCNP), Ibaraki (Japan); Oset, E. [Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Departamento de Fisica Teorica and IFIC, Aptdo. 22085, Valencia (Spain)


    We evaluate the width of the {omega} meson in nuclear matter. We consider the free decay mode of the {omega} into three pions, which is dominated by {rho}{pi} decay, and replace the {rho} and {pi} propagators by their medium-modified ones. We also take into account the quasielastic and inelastic processes induced by a vector-baryon interaction dominated by vector meson exchange, as well as the contributions coming from the {omega}{yields}K anti K mechanism with medium-modified K, anti K propagators. We obtain a substantial increase of the {omega} width in the medium, reaching a value of 121 {+-} 10 MeV at normal nuclear matter density for an {omega} at rest, which comes mainly from {omega}N {yields} {pi}{pi}N, {omega}NN {yields} {pi}NN processes associated to the dominant {omega} {yields} {rho}{pi} decay mode. The value of the width increases moderately with momentum, reaching values of around 200MeV at 600MeV/c. (orig.)

  2. Stark widths regularities within spectral series of sodium isoelectronic sequence (United States)

    Trklja, Nora; Tapalaga, Irinel; Dojčinović, Ivan P.; Purić, Jagoš


    Stark widths within spectral series of sodium isoelectronic sequence have been studied. This is a unique approach that includes both neutrals and ions. Two levels of problem are considered: if the required atomic parameters are known, Stark widths can be calculated by some of the known methods (in present paper modified semiempirical formula has been used), but if there is a lack of parameters, regularities enable determination of Stark broadening data. In the framework of regularity research, Stark broadening dependence on environmental conditions and certain atomic parameters has been investigated. The aim of this work is to give a simple model, with minimum of required parameters, which can be used for calculation of Stark broadening data for any chosen transitions within sodium like emitters. Obtained relations were used for predictions of Stark widths for transitions that have not been measured or calculated yet. This system enables fast data processing by using of proposed theoretical model and it provides quality control and verification of obtained results.

  3. Nonlinear Waves in Transmission Lines Periodically Loaded with Tunneling Diodes


    Narahara, Koichi


    This chapter reviews the pulse propagation characteristics of TD lines.We found that a pulse wave propagates on the line either by theunstable exponential-sinusoidal hybrid mode or stable exponential-exponential mode. Through thesepeculiar wave propagation properties, an input impulse experiences width shortening and an edge of the step pulse oscillates. These provide efficient methods for generating short pulses and continuous waves. Moreover, TD lines can be used to manage pulse amplitude a...

  4. Wave scattering in spatially inhomogeneous currents (United States)

    Churilov, Semyon; Ermakov, Andrei; Stepanyants, Yury


    We analytically study a scattering of long linear surface waves on stationary currents in a duct (canal) of constant depth and variable width. It is assumed that the background velocity linearly increases or decreases with the longitudinal coordinate due to the gradual variation of duct width. Such a model admits an analytical solution of the problem in hand, and we calculate the scattering coefficients as functions of incident wave frequency for all possible cases of sub-, super-, and transcritical currents. For completeness we study both cocurrent and countercurrent wave propagation in accelerating and decelerating currents. The results obtained are analyzed in application to recent analog gravity experiments and shed light on the problem of hydrodynamic modeling of Hawking radiation.

  5. Measurements of the Mass, Total Width and Two-Photon Partial Width of the $\\eta_{c}$ Meson

    CERN Document Server

    Brandenburg, G; Gao, Y S; Kim, D Y J; Wilson, R; Browder, T E; Li, Y; Rodríguez, J L; Yamamoto, H; Bergfeld, T; Eisenstein, B I; Ernst, J; Gladding, G E; Gollin, G D; Hans, R M; Johnson, E; Karliner, I; Marsh, M A; Palmer, M; Plager, C; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Janicek, R; Patel, P M; Sadoff, A J; Ammar, R; Bean, A; Besson, D; Davis, R; Kwak, N; Zhao, X; Anderson, S; Frolov, V V; Kubota, Y; Lee, S J; Mahapatra, R; O'Neill, J J; Poling, R A; Riehle, T; Smith, A; Stepaniak, C J; Urheim, J; Ahmed, S; Alam, M S; Athar, S B; Jian, L; Ling, L; Saleem, M; Timm, S; Wappler, F; Anastassov, A; Duboscq, J E; Eckhart, E; Gan, K K; Gwon, C; Hart, T; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pedlar, T K; Schwarthoff, H; Thayer, J B; Von Törne, E; Zoeller, M M; Richichi, S J; Severini, H; Skubic, P L; Undrus, A; Chen, S; Fast, J; Hinson, J W; Lee, J; Miller, D H; Shibata, E I; Shipsey, I P J; Pavlunin, V; Cronin-Hennessy, D; Lyon, A L; Thorndike, E H; Jessop, C P; Marsiske, H; Perl, Martin Lewis; Savinov, V; Ugolini, D W; Zhou, X; Coan, T E; Fadeev, V; Maravin, Y; Narsky, I; Stroynowski, R; Ye, J; Wlodek, T; Artuso, M; Ayad, R; Boulahouache, C; Bukin, K; Dambasuren, E; Karamov, S; Majumder, G; Moneti, G C; Mountain, R; Schuh, S; Skwarnicki, T; Stone, S; Viehhauser, G; Wang, J C; Wolf, A; Wu, J; Kopp, S E; Mahmood, A H; Csorna, S E; Danko, I; McLean, K W; Marka, S; Xu, Z; Godang, R; Kinoshita, K; Lai, I C; Schrenk, S; Bonvicini, G; Cinabro, D; McGee, S; Perera, L P; Zhou, G J; Lipeles, E; Pappas, S P; Schmidtler, M; Shapiro, A; Sun, W M; Weinstein, A J; Würthwein, F; Jaffe, D E; Masek, G E; Paar, H P; Potter, E M; Prell, S; Sharma, V; Asner, D M; Eppich, A; Hill, T S; Morrison, R J; Briere, R A; Ferguson, T; Vogel, H; Behrens, B H; Ford, W T; Gritsan, A; Roy, J D; Smith, J G; Alexander, J P; Baker, R; Bebek, C; Berger, B E; Berkelman, K; Blanc, F; Boisvert, V; Cassel, David G; Dickson, M; Drell, P S; Ecklund, K M; Ehrlich, R; Foland, A D; Gaidarev, P B; Galik, R S; Gibbons, L K; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hopman, P I; Jones, C D; Kreinick, D L; Lohner, M; Magerkurth, A; Meyer, T O; Mistry, N B; Nordberg, E; Patterson, J R; Peterson, D; Riley, D; Thayer, J G; Thies, P G; Urner, D; Valant-Spaight, B L; Warburton, A; Avery, P; Prescott, C; Rubiera, A I; Yelton, J; Zheng, J


    Using 13.4 $fb^{-1}$ of data collected with the CLEO detector at the Cornell Electron Storage Ring, we have observed 300 events for the two-photon production of ground-state pseudo-scalar charmonium in the decay $\\eta_c$ -> $K_S K^{\\mp} \\pi^{\\pm}$. We have measured the $\\eta_c$ mass to be (2980.4 +- 2.3 (stat) +- 0.6 (sys)) MeV and its full width as (27.0 +- 5.8 (stat) +- 1.4 (sys)) MeV. We have determined the two-photon partial width of the $\\eta_c$ meson to be (7.6 +- 0.8 (stat) +- 0.4 (sys) +- 2.3 (br)) keV, with the last uncertainty associated with the decay branching fraction.

  6. Analysis Of The Effect Of Flow Channel Width On The Performance Of PEMFC

    Directory of Open Access Journals (Sweden)

    Elif Eker


    Full Text Available In this work, it was analysed the effect of different channel width on performance of PEM fuel cell. Current density were measured on the single cells of parallel flow fields that has 25 cm² active layer, using three different kinds of channel width. The cell width and the channel height remain constant.The results show that increasing the channel width while the cell width remains constant decreases the current density.

  7. Determination of the sign of the decay width difference in the $B^0_s$ system

    CERN Document Server

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Constantin, F; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Voss, H; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A


    The interference between the $K^+K^-$ S-wave and P-wave amplitudes in $B_s \\rightarrow J/\\psi K^+K^-$ decays with the $K^+K^-$ pairs in the region around the $\\phi(1020)$ resonance is used to determine the variation of the difference of the strong phase between these amplitudes as a function of $K^+K^-$ invariant mass. Combined with the results from our $CP$ asymmetry measurements in the $B_s \\rightarrow J/\\psi \\phi$ decays, we conclude that the $B_s$ mass eigenstate that is almost $CP =+1$ is lighter and decays faster than the mass eigenstate that is almost $CP =-1$. This determines the sign of the decay width difference $\\Delta\\Gamma_s \\equiv \\Gamma_L -\\Gamma_H$ to be positive. Our result also resolves the ambiguity in the past measurements of the $CP$ violating phase $\\phi_s$ to be close to zero rather than $\\pi$. These conclusions are in agreement with the Standard Model expectations.

  8. Linear electromagnetic excitation of an asymmetric low pressure capacitive discharge with unequal sheath widths

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, M. A., E-mail:; Lichtenberg, A. J.; Kawamura, E. [Department of Electrical Engineering and Computer Science, University of California, Berkeley, California 94720-1770 (United States); Chabert, P. [Laboratoire de Physique des Plasmas, CNRS, Ecole Polytechnique, UPMC, Paris XI, Observatoire de Paris, 91128 Palaiseau (France)


    It is well-known that standing waves having radially center-high radio frequency (rf) voltage profiles exist in high frequency capacitive discharges. In this work, we determine the symmetric and antisymmetric radially propagating waves in a cylindrical capacitive discharge that is asymmetrically driven at the lower electrode by an rf voltage source. The discharge is modeled as a uniform bulk plasma which at lower frequencies has a thicker sheath at the smaller area powered electrode and a thinner sheath at the larger area grounded electrode. These are self-consistently determined at a specified density using the Child law to calculate sheath widths and the electron power balance to calculate the rf voltage. The fields and the system resonant frequencies are determined. The center-to-edge voltage ratio on the powered electrode is calculated versus frequency, and central highs are found near the resonances. The results are compared with simulations in a similar geometry using a two-dimensional hybrid fluid-analytical code, giving mainly a reasonable agreement. The analytic model may be useful for finding good operating frequencies for a given discharge geometry and power.

  9. Solar off-limb line widths with SUMER: revised value of the non-thermal velocity and new results

    Directory of Open Access Journals (Sweden)

    L. Dolla


    Full Text Available Alfvén waves and ion-cyclotron absorption of high-frequency waves are frequently brought into models devoted to coronal heating and fast solar-wind acceleration. Signatures of ion-cyclotron resonance have already been observed in situ in the solar wind and in the upper corona. In the lower corona, one can use the line profiles to infer the ion temperatures. But the value of the so-called "non-thermal" (or "unresolved" velocity, potentially related to the amplitude of Alfvén waves propagating in the corona, is critical in firmly identifying ion-cyclotron preferential heating. In a previous paper, we proposed a method to constrain both the Alfvén wave amplitude and the preferential heating, above a polar coronal hole observed with the SUMER/SOHO spectrometer. Taking into account the effect of instrumental stray light before analysing the line profiles, we ruled out any direct evidence of damping of the Alfvén waves and showed that ions with the lowest charge-to-mass ratios were preferentially heated. We re-analyse these data here to correct the derived non-thermal velocity, and we discuss the consequences on the main results. We also include a measure of the Fe VIII 1442.56 Å line width (second order, thus extending the charge-to-mass ratio domain towards ions more likely to experience cyclotron resonance.

  10. Gravitation Waves

    CERN Multimedia

    CERN. Geneva


    We will present a brief introduction to the physics of gravitational waves and their properties. We will review potential astrophysical sources of gravitational waves, and the physics and astrophysics that can be learned from their study. We will survey the techniques and technologies for detecting gravitational waves for the first time, including bar detectors and broadband interferometers, and give a brief status report on the international search effort, with special emphasis on the LIGO detectors and search results.

  11. Janus Waves


    Papazoglou, Dimitris G.; Fedorov, Vladimir Yu.; Tzortzakis, Stelios


    We show the existence of a family of waves that share a common interesting property affecting the way they propagate and focus. These waves are a superposition of twin waves, which are conjugate to each other under inversion of the propagation direction. In analogy to holography, these twin "real" and "virtual" waves are related respectively to the converging and the diverging part of the beam and can be clearly visualized in real space at two distinct foci under the action of a focusing lens...

  12. Energy detection UWB system based on pulse width modulation

    Directory of Open Access Journals (Sweden)

    Song Cui


    Full Text Available A new energy detection ultra-wideband system based on pulse width modulation is proposed. The bit error rate (BER performance of this new system is slightly worst than that of a pulse position modulation (PPM system in additive white Gaussian noise channels. In multipath channels, this system does not suffer from cross-modulation interference as PPM, so it can achieve better BER performance than PPM when cross-modulation interference occurs. In addition, when synchronisation errors occur, this system is more robust than PPM.

  13. Width of the confining string in Yang-Mills theory. (United States)

    Gliozzi, F; Pepe, M; Wiese, U-J


    We investigate the transverse fluctuations of the confining string connecting two static quarks in (2+1)D SU(2) Yang-Mills theory using Monte Carlo calculations. The exponentially suppressed signal is extracted from the large noise by a very efficient multilevel algorithm. The resulting width of the string increases logarithmically with the distance between the static quark charges. Corrections at intermediate distances due to universal higher-order terms in the effective string action are calculated analytically. They accurately fit the numerical data.

  14. Width Criterion For Weld-Seam-Tracking Data (United States)

    Lincir, Mark R.


    Image-processing algorithm in "through-torch-vision" (T3V) system developed to guide gas/tungsten arc welding robot along weld seam modified, according to proposal, reducing incidence of inaccurate tracking of weld seam. Developmental system intended to provide closed-loop control of motion of welding robot along weld seam on basis of lines in T3V image identified by use of image-processing algorithm and assumed to coincide with edges of weld seam. Use of width criterion prevents tracking of many false pairs of lines, with consequent decrease in incidence of inaccurate tracking and increase in confidence in weld-tracking capability of robotic welding system.

  15. CGC beyond eikonal accuracy: finite width target effects

    Directory of Open Access Journals (Sweden)

    Altinoluk Tolga


    Full Text Available We present a method to systematically include the corrections to the eikonal approximation that are associated with the finite width of the target. The retarded gluon propagator in background field is calculated at next-to-next-to-eikonal (NNE accuracy by using this method. The corrections to the strict eikonal limit of the gluon propagator are found to be Wilson lines decorated by gradients of the background field of the target. The result is then applied to single inclusive gluon production and to single transverse spin asymmetry for a polarized target in pA collisions.

  16. LADAR Range Image Interpolation Exploiting Pulse Width Expansion (United States)


    pulse width expansion of each pulse in this study. The Pearson’s Product -moment coefficient, described by [27] ρ = 1 N N∑ n=1 ( dn − d̄ ) (rn − r̄...until after the simulations were conducted. But, the obvious question arose about whether the subsitution of the slope angle for the magnitude of the...Attack System,” 2006, [Online]. Available at products /l/locaas.htm. [Accessed 23-September- 2011]. 3. A. V. Oppenheim and R. W

  17. Pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K


    This book studies switch-mode power supplies (SMPS) in great detail. This type of converter changes an unregulated DC voltage into a high-frequency pulse-width modulated (PWM) voltage controlled by varying the duty cycle, then changes the PWM AC voltage to a regulated DC voltage at a high efficiency by rectification and filtering. Used to supply electronic circuits, this converter saves energy and space in the overall system. With concept-orientated explanations, this book offers state-of-the-art SMPS technology and promotes an understanding of the principle operations of PWM converters,

  18. Hydromagnetic Waves in a Compressed Dipole Field via Field-Aligned Klein-Gordon Equations

    CERN Document Server

    Zheng, Jinlei; McKenzie, J F; Webb, G M


    Hydromagnetic waves, especially those of frequencies in the range of a few milli-Hz to a few Hz observed in the Earth's magnetosphere, are categorized as Ultra Low Frequency (ULF) waves or pulsations. They have been extensively studied due to their importance in the interaction with radiation belt particles and in probing the structures of the magnetosphere. We developed an approach in examining the toroidal standing Aflv\\'{e}n waves in a background magnetic field by recasting the wave equation into a Klein-Gordon (KG) form along individual field lines. The eigenvalue solutions to the system are characteristic of a propagation type when the corresponding eigen-frequency is greater than a cut-off frequency and an evanescent type otherwise. We apply the approach to a compressed dipole magnetic field model of the inner magnetosphere, and obtain the spatial profiles of relevant parameters and the spatial wave forms of harmonic oscillations. We further extend the approach to poloidal mode standing Alfv\\'{e}n waves...

  19. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms (United States)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey


    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  20. Internal Waves In The Mozambique Channel (United States)

    Manders, A. M. M.; Gerkema, T.; Maas, L. R. M.; Ridderinkhof, H.

    The Mozambique channel has strong tides an a steep topography, which makes inter- nal wave activity likely. The research area is the narrowest part between Madagascar and Mozambique. Data were collected during cruises in 2000 and 2001 and from an array of current meters that have been deployed for more than a year, spanning the full width of the channel. Internal waves are detected in 13 hour yoyo-stations, with amplitudes of isotherms up to 40 m and with considerable differences in amplitude and depth of maximum amplitude between the stations. Internal waves are also found in the current meter data but they are not always clearly present. The results are com- pared with numerical models for internal wave generation and wave ray propagation.

  1. Rossby Waves



    tut quiz Tutorial Quiz Interactive Media Element This interactive tutorial reviews the mechanisms of Rossby waves. Rossby waves in both the northern and southern hemispheres are considered. The interactions involve answering simple fill-in-the-blank questions. Diagrams are used to illustrate some of the concepts reviewed. MR4322 Dynamic Meteorology

  2. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Friis-Madsen, Erik


    Since March 2003 a prototype of Wave Dragon has been tested in an inland sea in Denmark. This has been a great success with all subsystems tested and improved through working in an offshore environment. The project has proved the Wave Dragon device and has enabled the next stage, a production sized...

  3. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  4. Wave Solutions

    CERN Document Server

    Christov, Ivan C


    In classical continuum physics, a wave is a mechanical disturbance. Whether the disturbance is stationary or traveling and whether it is caused by the motion of atoms and molecules or the vibration of a lattice structure, a wave can be understood as a specific type of solution of an appropriate mathematical equation modeling the underlying physics. Typical models consist of partial differential equations that exhibit certain general properties, e.g., hyperbolicity. This, in turn, leads to the possibility of wave solutions. Various analytical techniques (integral transforms, complex variables, reduction to ordinary differential equations, etc.) are available to find wave solutions of linear partial differential equations. Furthermore, linear hyperbolic equations with higher-order derivatives provide the mathematical underpinning of the phenomenon of dispersion, i.e., the dependence of a wave's phase speed on its wavenumber. For systems of nonlinear first-order hyperbolic equations, there also exists a general ...

  5. Effect of horizontal wave barriers on ground vibration propagation. (United States)

    Grau, L; Laulagnet, B


    The aim of this article is to introduce a method to mitigate ground surface vibration through a flexural plate coupled to the ground and acting as a horizontal wave barrier. Using the thin plate hypothesis, two flexural plates are coupled to the ground, the first plate being the excited plate and the second plate the horizontal wave barrier. For instance, the first plate may represent a slab track and be excited by the tramway wheels. A solution to the problem can be found using a spatial two-dimensional Fourier transform of the elastodynamics equation for the ground and a modal decomposition for the flexural plate vibration. The authors show that vibration is substantially mitigated by the horizontal wave barrier and depends on its thickness and width. When the top surface wavelength becomes smaller than twice the plate width, the horizontal wave barrier acts as a wave barrier in the frequency range of interest, i.e., from 20 Hz.

  6. Effects of pulse width and repetition rate of pulsed laser on kinetics and production of singlet oxygen luminescence

    Directory of Open Access Journals (Sweden)

    Defu Chen


    Full Text Available Pulsed and continuous-wave (CW lasers have been widely used as the light sources for photodynamic therapy (PDT treatment. Singlet oxygen (1O2 is known to be a major cytotoxic agent in type-II PDT and can be directly detected by its near-infrared luminescence at 1270nm. As compared to CW laser excitation, the effects of pulse width and repetition rate of pulsed laser on the kinetics and production of 1O2 luminescence were quantitatively studied during photosensitization of Rose Bengal. Significant difference in kinetics of 1O2 luminescence was found under the excitation with various pulse widths of nanosecond, microsecond and CW irradiation with power of 20mW. The peak intensity and duration of 1O2 production varied with the pulse widths for pulsed laser excitation, while the 1O2 was generated continuously and its production reached a steady state with CW excitation. However, no significant difference (P>0.05 in integral 1O2 production was observed. The results suggest that the PDT efficacy using pulsed laser may be identical to the CW laser with the same wavelength and the same average fluence rate below a threshold in solution.

  7. Measurement of the Higgs decay width in the diphoton channel

    CERN Document Server

    Adolfsson, Jonatan


    In this note, a projected measurement of the Higgs decay width ($\\Gamma_{H}$) is presented, based on interference in the diphoton channel. Two different hypotheses were tested. Hypothesis A assumes that the $H\\to\\gamma\\gamma$ cross-section is proportional to $\\Gamma_{H}^{-1}$, whereas hypothesis B assumes that this cross-section is constant and instead uses the overall change in $m_{\\gamma\\gamma}$ line shape. Events were simulated using Sherpa 2.1, and were used to produce test statistics in order to obtain a 95 % confidence limit of $\\Gamma_{H}$. The standard model width was tested using Asimov data sets, which were validated using pseudo-experiments for the integrated luminosities of Run 1, Run 2 and HL-LHC. The obtained limits are significantly improved with respect to previous studies, but further validations of the test are required. The expected limits for 300 fb$^{-1}$ are $1.19\\times\\Gamma_{H\\,SM}$ for hypothesis A and $24\\times\\Gamma_{H\\,SM}$ for hypothesis B.

  8. Determination of the width of the top quark

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, Victor Mukhamedovich; /Dubna, JINR; Abbott, Braden Keim; /Oklahoma U.; Abolins, Maris A.; /Michigan State U.; Acharya, Bannanje Sripath; /Tata Inst.; Adams, Mark Raymond; /Illinois U., Chicago; Adams, Todd; /Florida State U.; Alexeev, Guennadi D.; /Dubna, JINR; Alkhazov, Georgiy D.; /St. Petersburg, INP; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls; Alverson, George O.; /Northeastern U.; Alves, Gilvan Augusto; /Rio de Janeiro, CBPF /Nijmegen U.


    We extract the total width of the top quark, {Lambda}{sub t}, from the partial decay width {Lambda}(t {yields} Wb) measured using the t-channel cross section for single top quark production and from the branching fraction B(t {yields} Wb) measured in t{bar t} events using up to 2.3 fb{sup -1} of integrated luminosity collected by the D0 Collaboration at the Tevatron p{bar p} Collider. The result is {Lambda}{sub t} = 1.99{sub -0.55}{sup +0.69} GeV, which translates to a top-quark lifetime of {tau}{sub t} = (3.3{sub -0.9}{sup +1.3}) x 10{sup -25} s. Assuming a high mass fourth generation b{prime} quark and unitarity of the four-generation quark-mixing matrix, we set the first upper limit on |V{sub tb{prime}}| < 0.63 at 95% C.L.

  9. Validity of joint space width measurements in hand osteoarthritis. (United States)

    Kwok, W Y; Bijsterbosch, J; Malm, S H; Biermasz, N R; Huetink, K; Nelissen, R G; Meulenbelt, I; Huizinga, T W J; van 't Klooster, R; Stoel, B C; Kloppenburg, M


    To investigate the validity of joint space width (JSW) measurements in millimeters (mm) in hand osteoarthritis (OA) patients by comparison to controls, grading of joint space narrowing (JSN), and clinical features. Hand radiographs of 235 hand OA patients (mean age 65 years, 83% women) and 471 controls were used. JSW was measured with semi-automated image analysis software in the distal, proximal interphalangeal and metacarpal joints (DIPJs, PIPJs and MCPJs). JSN (grade 0-3) was assessed using the osteoarthritis research society international (OARSI) atlas. Associations between the two methods and clinical determinants (presence of pain, nodes and/or erosions, decreased mobility) were assessed using Generalized Estimating Equations with adjustments for age, sex, body mass index (BMI) and mean width of proximal phalanx. JSW was measured in 5631 joints with a mean JSW of 0.98 mm (standard deviation (SD) 0.21), being the smallest for DIPJs (0.70 (SD 0.25)) and largest for MCPJs (1.40 (SD 0.25)). The JSN=0 group had a mean JSW of 1.28 mm (SD 0.34), the JSN=3 group 0.17 mm (SD 0.23). Controls had larger JSW than hand OA patients (P-valuemeasurement is a valid method to measure joint space and shows a good relation with clinical features. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  10. Fractal Reference Signals in Pulse-Width Modulation (United States)

    Lurie, Boris; Lurie, Helen


    A report proposes the use of waveforms having fractal shapes reminiscent of sawteeth (in contradistinction to conventional regular sawtooth waveforms) as reference signals for pulse-width modulation in control systems for thrusters of spacecraft flying in formation. Fractal reference signals may also be attractive in some terrestrial control systems - especially those in which pulse-width modulation is used for precise control of electric motors. The report asserts that the use of fractal reference signals would enable the synchronous control of several variables of a spacecraft formation, such that consumption of propellant would be minimized, intervals between thruster firings would be long (as preferred for performing scientific observations), and delays in controlling large-thrust maneuvers for retargeting would be minimized. The report further asserts that whereas different controllers would be needed for different modes of operation if conventional pulsewidth modulation were used, the use of fractal reference signals would enable the same controller to function nearly optimally in all regimes of operation, so that only this one controller would be needed.

  11. Thumbnail with Integrated Blur Based on Edge Width Analysis

    Directory of Open Access Journals (Sweden)

    Boon Tatt Koik


    Full Text Available Thumbnail image is widely used in electronic devices to help the user to scan through original high resolution images. Hence, it is essential to represent the thumbnail image correspondingly to the original image. A blur image should not appear to be a clear image in thumbnail form, where this situation might mislead the perceptual analysis of user. The main purpose of this research work is to develop a downsampling algorithm to create a thumbnail image which includes blur information. The proposed method has three stages involved to obtain the proposed output thumbnail, which are preliminary processes, blur detection, and lastly image downsampling. For preliminary processes, Sobel first-order derivatives, gradient magnitude, and gradient orientation are determined. In blur detection stage, local maximum, local minimum, and gradient orientation are ultilized to calculate the edge width. The thumbnail image with blur information is generated using the average edge width map as a weightage to integrate blur information. This proposed method has achieved satisfying results and has high potential to be applied as one of the thumbnail generation options for photo viewing.

  12. Direct top-quark width measurement at CDF. (United States)

    Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bauer, G; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Bland, K R; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Brisuda, A; Bromberg, C; Brucken, E; Bucciantonio, M; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; De Cecco, S; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hidas, D; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, Q; Liu, T; Lockwitz, S; Lockyer, N S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shreyber, I; Simonenko, A; Sinervo, P; Sissakian, A; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamaoka, J; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zucchelli, S


    We present a measurement of the top-quark width in the lepton+jets decay channel of tt events produced in p p collisions at Fermilab's Tevatron collider and collected by the CDF II detector. From a data sample corresponding to 4.3 fb(-1) of integrated luminosity, we identify 756 candidate events. The top-quark mass and the mass of the hadronically decaying W boson that comes from the top-quark decay are reconstructed for each event and compared with templates of different top-quark widths (Γ(t)) and deviations from nominal jet energy scale (Δ(JES)) to perform a simultaneous fit for both parameters, where Δ(JES) is used for the in situ calibration of the jet energy scale. By applying a Feldman-Cousins approach, we establish an upper limit at 95% confidence level (CL) of Γ(t) quark mass of 172.5 GeV/c(2), which are consistent with the standard model prediction.

  13. Generic calculation of two-body partial decay widths at the full one-loop level (United States)

    Goodsell, Mark D.; Liebler, Stefan; Staub, Florian


    We describe a fully generic implementation of two-body partial decay widths at the full one-loop level in the SARAH and SPheno framework compatible with most supported models. It incorporates fermionic decays to a fermion and a scalar or a gauge boson as well as scalar decays into two fermions, two gauge bosons, two scalars or a scalar and a gauge boson. We present the relevant generic expressions for virtual and real corrections. Whereas wave-function corrections are determined from on-shell conditions, the parameters of the underlying model are by default renormalised in a \\overline{ {DR}} (or \\overline{ {MS}}) scheme. However, the user can also define model-specific counter-terms. As an example we discuss the renormalisation of the electric charge in the Thomson limit for top-quark decays in the standard model. One-loop-induced decays are also supported. The framework additionally allows the addition of mass and mixing corrections induced at higher orders for the involved external states. We explain our procedure to cancel infrared divergences for such cases, which is achieved through an infrared counter-term taking into account corrected Goldstone boson vertices. We compare our results for sfermion, gluino and Higgs decays in the minimal supersymmetric standard model (MSSM) against the public codes SFOLD, FVSFOLD and HFOLD and explain observed differences. Radiatively induced gluino and neutralino decays are compared against the original implementation in SPheno in the MSSM. We exactly reproduce the results of the code CNNDecays for decays of neutralinos and charginos in R-parity violating models. The new version SARAH 4.11.0 by default includes the calculation of two-body decay widths at the full one-loop level. Current limitations for certain model classes are described.

  14. The strong interaction shift and width of the ground state of pionic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, D. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Badertscher, A. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Bogdan, M. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Goudsmit, P.F.A. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Leisi, H.J. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Schroeder, H.-C. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Zhao, Z.G. [Eidgenoessische Technische Hochschule, Villigen (Switzerland). Inst. fuer Teilchenphysik; Chatellard, D. [Institut de Physique de l`Universite de Neuchatel, 2000 Neuchatel (Switzerland); Egger, J.-P. [Institut de Physique de l`Universite de Neuchatel, 2000 Neuchatel (Switzerland); Jeannet, E. [Institut de Physique de l`Universite de Neuchatel, 2000 Neuchatel (Switzerland); Aschenauer, E.C. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Gabathuler, K. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Simons, L.M. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Rusi El Hassani, A.J. [Ecole Mohammadia d`Ingenieurs, Rabat (Morocco)


    The 3p-1s transition in pionic hydrogen was investigated with a high-resolution crystal spectrometer system. From the precisely measured transition energy, together with the (calculated) electromagnetic energy, the strong interaction shift of the 1s state was obtained as {epsilon}{sub 1s} = -7.127 {+-}0.028 (stat.) {+-}0.036 (syst.) eV (attractive). From the natural line width, measured for the first time, we determine the decay width of the 1s state: {Gamma}{sub 1s}{sup (decay)} = 0.97 {+-}0.10 (stat.) {+-}0.05 (syst.) eV. With the recently calculated electromagnetic corrections the s-wave scattering lengths of an isospin symmetric strong interaction are deduced. The scattering length for elastic scattering of a negative pion on a proton is a{sup h}{sub {pi}{sup -}p{yields}{pi}{sup -}p} = 0.0885 {+-}0.0003 (stat.) {+-}0.0006 (syst.) m{sub {pi}}{sup -1}. The scattering length for single charge exchange is found to be a{sup h}{sub {pi}{sup -}p{yields}{pi}{sup 0}n} = -0.136 {+-}0.007 (stat.) {+-}0.003 (syst.) m{sub {pi}}{sup -1}. The experiment was performed at the Paul Scherrer Institute (PSI) in Switzerland. A focussing crystal spectrometer with an array of bent crystals, the cyclotron trap (a magnetic system designed to increase the particle stop density) and a CCD (charge-coupled device) detector system were employed. The results from the pionic hydrogen experiment - together with those from the pionic deuterium experiment - were used to test the isospin symmetry of the strong interaction. The present data are still consistent with isospin symmetry. (orig.).

  15. Using the local positioning system based on Pulse Width Modulation ...

    African Journals Online (AJOL)

    Michael Horsfall

    location using a GPS which calculates longitude and latitude of the object by the data received by the satellites ... In multi-path environments, in which we have radio wave reflectors, a weight s(r) will be dedicated to each vector (r) of the workspace. Then, position (Rx) can ..... Figure8: the robot trajectory in a circular path.

  16. Experimental study of nonlinear dust acoustic solitary waves in a dusty plasma

    CERN Document Server

    Bandyopadhyay, P; Sen, A; Kaw, P K


    The excitation and propagation of finite amplitude low frequency solitary waves are investigated in an Argon plasma impregnated with kaolin dust particles. A nonlinear longitudinal dust acoustic solitary wave is excited by pulse modulating the discharge voltage with a negative potential. It is found that the velocity of the solitary wave increases and the width decreases with the increase of the modulating voltage, but the product of the solitary wave amplitude and the square of the width remains nearly constant. The experimental findings are compared with analytic soliton solutions of a model Kortweg-de Vries equation.

  17. Three-dimensional, time-dependent, MHD model of a solar flare-generated interplanetary shock wave (United States)

    Dryer, M.; Wu, S. T.; Han, S. M.


    A three-dimensional time-dependent MHD model of the propagation of an interplanetary shock wave into an ambient three-dimensional heliospheric solar wind is initialized with a peak velocity of 1000 km/s at the center of a right circular cone of 18 deg included angle at 18 solar radii. Differences from a previous 2-1/2 simulation (Wu et al., 1983; Gislason et al., 1984; Dryer et al., 1984) include diminuation of the solar peak velocity and concentration of the peak density at each radius. The IMF magnitude starts with high-latitude peaks, and helical-like IMF rotation is noted due to a large-amplitude nonlinear Alfven wave in the shocked plasma.

  18. Invariantly propagating dissolution fingers in finite-width systems (United States)

    Dutka, Filip; Szymczak, Piotr


    Dissolution fingers are formed in porous medium due to positive feedback between transport of reactant and chemical reactions [1-4]. We investigate two-dimensional semi-infinite systems, with constant width W in one direction. In numerical simulations we solve the Darcy flow problem combined with advection-dispersion-reaction equation for the solute transport to track the evolving shapes of the fingers and concentration of reactant in the system. We find the stationary, invariantly propagating finger shapes for different widths of the system, flow and reaction rates. Shape of the reaction front, turns out to be controlled by two dimensionless numbers - the (width-based) Péclet number PeW = vW/Dφ0 and Damköhler number DaW = ksW/v, where k is the reaction rate, s - specific reactive surface area, v - characteristic flow rate, D - diffusion coefficient of the solute, and φ0 - initial porosity of the rock matrix. Depending on PeW and DaW stationary shapes can be divided into seperate classes, e.g. parabolic-like and needle-like structures, which can be inferred from theoretical predictions. In addition we determine velocity of propagating fingers in time and concentration of reagent in the system. Our simulations are compared with natural forms (solution pipes). P. Ortoleva, J. Chadam, E. Merino, and A. Sen, Geochemical self-organization II: the reactive-infiltration instability, Am. J. Sci, 287, 1008-1040 (1987). M. L. Hoefner, and H. S. Fogler. Pore evolution and channel formation during flow and reaction in porous media, AIChE Journal 34, 45-54 (1988). C. E. Cohen, D. Ding, M. Quintard, and B. Bazin, From pore scale to wellbore scale: impact of geometry on wormhole growth in carbonate acidization, Chemical Engineering Science 63, 3088-3099 (2008). P. Szymczak and A. J. C. Ladd, Reactive-infiltration nstabilities in rocks. Part II: Dissolution of a porous matrix, J. Fluid Mech. 738, 591-630 (2014).

  19. Requirements to gap widths and clamping for CO2 laser butt welding

    DEFF Research Database (Denmark)

    Gong, Hui; Juhl, Thomas Winther


    In the experimental study of fixturing and gap width requirements a clamping device for laser butt welding of steel sheets has been developed and tested. It has fulfilled the work and made the gap width experiments possible.It has shown that the maximum allowable gap width to some extent is inver......In the experimental study of fixturing and gap width requirements a clamping device for laser butt welding of steel sheets has been developed and tested. It has fulfilled the work and made the gap width experiments possible.It has shown that the maximum allowable gap width to some extent....../min 2.6 kWThe quality level is measured according to ISO 13919-1. Qualities of the butt welds with the maximum gap width listed in the table are mainly grouped in level B (stringent). The maximum gap width should be chosen with respect to the application requirements....

  20. The numerical simulation of Lamb wave propagation in laser welding of stainless steel (United States)

    Zhang, Bo; Liu, Fang; Liu, Chang; Li, Jingming; Zhang, Baojun; Zhou, Qingxiang; Han, Xiaohui; Zhao, Yang


    In order to explore the Lamb wave propagation in laser welding of stainless steel, the numerical simulation is used to show the feature of Lamb wave. In this paper, according to Lamb dispersion equation, excites the Lamb wave on the edge of thin stainless steel plate, and presents the reflection coefficient for quantizing the Lamb wave energy, the results show that the reflection coefficient is increased with the welding width increasing,

  1. The lifecycle of axisymmetric internal solitary waves

    Directory of Open Access Journals (Sweden)

    J. M. McMillan


    Full Text Available The generation and evolution of solitary waves by intrusive gravity currents in an approximate two-layer fluid with equal upper- and lower-layer depths is examined in a cylindrical geometry by way of theory and numerical simulations. The study is limited to vertically symmetric cases in which the density of the intruding fluid is equal to the average density of the ambient. We show that even though the head height of the intrusion decreases, it propagates at a constant speed well beyond 3 lock radii. This is because the strong stratification at the interface supports the formation of a mode-2 solitary wave that surrounds the intrusion head and carries it outwards at a constant speed. The wave and intrusion propagate faster than a linear long wave; therefore, there is strong supporting evidence that the wave is indeed nonlinear. Rectilinear Korteweg-de Vries theory is extended to allow the wave amplitude to decay as r-p with p=½ and the theory is compared to the observed waves to demonstrate that the width of the wave scales with its amplitude. After propagating beyond 7 lock radii the intrusion runs out of fluid. Thereafter, the wave continues to spread radially at a constant speed, however, the amplitude decreases sufficiently so that linear dispersion dominates and the amplitude decays with distance as r-1.

  2. Reflected-wave maser. [low noise amplifier (United States)

    Clauss, R. C. (Inventor)


    A number of traveling-wave, slow-wave maser structures, containing active maser material but absent the typical ferrite isolators, are immersed in a nonuniform magnetic field. The microwave signal to be amplified is inserted at a circulator which directs the signal to a slow-wave structure. The signal travels through the slow-wave structure, being amplified according to the distance traveled. The end of the slow-wave structure farthest from the circulator is arranged to be a point of maximum reflection of the signal traveling through the slow-wave structure. As a consequence, the signal to be amplified traverses the slow-wave structure again, in the opposite direction (towards the circulator) experiencing amplification equivalent to that achieved by a conventional traveling-wave maser having twice the length. The circulator directs the amplified signal to following like stages of amplification. Isolators are used in between stages to prevent signals from traveling in the wrong direction, between the stages. Reduced signal loss is experienced at each stage. The high gain produced by each slow-wave structure is reduced to a moderate value by use of a nonuniform magnetic field which also broadens the line width of the maser material. The resulting bandwidth can be exceptionally wide. Cascaded stages provide high gain, exceptionally wide bandwith and very low noise temperature.

  3. Feedback optimization of pulse width in the SORC sequence. (United States)

    Schiano, J L; Routhier, T; Blauch, A J; Ginsberg, M D


    A method for increasing the signal-to-noise ratio (SNR) of nuclear quadrupole resonance (NQR) measurements by automatically adjusting a pulse parameter in real-time is presented. This approach is useful in situations where the optimal pulse parameters cannot be chosen beforehand due to lack of knowledge regarding the system. For example, NQR provides a means for detecting explosives by revealing the presence of (14)N. In this particular application, the distance between the search coil and the explosive, as well as the temperature of the explosive, is unknown. As a result, a fixed set of pulse parameters will not yield the largest SNR for all possible search applications. This paper describes a feedback algorithm that uses measurements of the NQR signal to automatically adjust the pulse width in the strong off-resonant comb sequence to maximize the SNR of the NQR measurement. Experimental results obtained using a sample of sodium nitrite are presented. Copyright 1999 Academic Press.

  4. Pulsed lasers in speckle photography: error owing to pulse width. (United States)

    Joenathan, C; Blair, S M; Ganesan, A R


    The effect of the pulse width of a pulsed laser in the studies of speckle velocimetry and transient vibration analysis is discussed. Because of the motion of the object during an exposure, a sine function is obtained by using the pointwise filtering method. This function modulates the halo along with the Young's fringes. It is shown that for high object velocities the sinc function modifies the halo distribution; as a result, the error in calculating the fringe position increases. An aperture geometry for which the autocorrelation halo is made constant in certain regions is proposed in which the intensity variation in this region is the result of the modulating sinc function only. A closed-form solution for the shift in the position of the fringes in this region is obtained. Experimental results of the simulation are presented.

  5. Nonlinear temperature dependent failure analysis of finite width composite laminates (United States)

    Nagarkar, A. P.; Herakovich, C. T.


    A quasi-three dimensional, nonlinear elastic finite element stress analysis of finite width composite laminates including curing stresses is presented. Cross-ply, angle-ply, and two quasi-isotropic graphite/epoxy laminates are studied. Curing stresses are calculated using temperature dependent elastic properties that are input as percent retention curves, and stresses due to mechanical loading in the form of an axial strain are calculated using tangent modulii obtained by Ramberg-Osgood parameters. It is shown that curing stresses and stresses due to tensile loading are significant as edge effects in all types of laminate studies. The tensor polynomial failure criterion is used to predict the initiation of failure. The mode of failure is predicted by examining individual stress contributions to the tensor polynomial.

  6. The Width difference of $B_{d}$ mesons

    CERN Document Server

    Dighe, Amol S; Kim, C S; Yoshikawa, T; Dighe, Amol; Hurth, Tobias; Kim, Choong Sun; Yoshikawa, Tadashi


    We estimate $\\dg/\\Gamma_d$, including $1/m_b$ contributions and part of the next-to-leading order QCD corrections. We find that adding the latter corrections decreases the value of $\\dg/\\Gamma_d$ computed at the leading order by a factor of almost 2. We also show that under certain conditions an upper bound on the value of $\\dg/\\Gamma_d$ in the presence of new physics can be derived. With the high statistics and accurate time resolution of the upcoming LHC experiment, the measurement of $\\dg$ seems to be possible. This measurement would be important for an accurate measurement of $\\sin(2\\beta)$ at the LHC. In addition, we point out the possibility that the measurement of the width difference leads to a clear signal for new physics.

  7. Red cell distribution width and mortality in carotid atherosclerosis. (United States)

    Wonnerth, Anna; Krychtiuk, Konstantin A; Mayer, Florian J; Minar, Erich; Wojta, Johann; Schillinger, Martin; Koppensteiner, Renate; Hoke, Matthias


    Red cell distribution width (RDW) is associated with morbidity and mortality in chronic cardiac disease. The aim of the present study was to investigate the role of RDW as a predictor of adverse outcome in patients with carotid atherosclerosis. We prospectively studied 1065 of 1286 consecutive patients with neurological asymptomatic carotid artery stenosis as assessed by duplex Doppler sonography. The study end points were all-cause mortality and cardiovascular mortality respectively. During a median follow-up time of 6·2 years (interquartile range 5·9-6·6), corresponding to 5551 overall person-years, 275 patients (25·8%) died. Of them, 182 patients (66·2%) died due to cardiovascular causes. RDW was significantly associated with adverse outcome. In a continuous multivariate Cox regression analysis, the adjusted hazard ratio for each per cent increase in RDW was 1·39 (95% CI 1·27-1·53; P < 0·001) for all-cause and 1·43 (95% CI 1·28-1·60; P < 0·001) for cardiovascular mortality respectively. Kaplan-Meier estimates showed a gradual relationship between increasing quartiles of RDW and death (log rank P < 0·001). Adjusted hazard ratios for all-cause death ranged from 0·89 to 1·94 for the highest vs. the lowest quartile (P < 0·001 for trend) and for cardiovascular death from 1·08 to 2·34 for the highest vs. the lowest quartile (P < 0·001 for trend) respectively. Red cell distribution width was significantly and independently associated with all-cause and cardiovascular death in patients with asymptomatic carotid atherosclerosis. © 2016 Stichting European Society for Clinical Investigation Journal Foundation.

  8. Search for an emission line of a gravitational wave background

    CERN Document Server

    Nishizawa, Atsushi


    In the light of the history of researches on electromagnetic wave spectrum, a sharp emission line of gravitational-wave background (GWB) would be an interesting observational target. Here we study an efficient method to detect a line GWB by correlating data of multiple ground-based detectors. We find that the width of frequency bin for coarse graining is a critical parameter, and the commonly-used value 0.25 Hz is far from optimal, decreasing the signal-to-noise ratio by up to a factor of seven. By reanalyzing the existing data with a smaller bin width, we might detect a precious line signal from the early universe.

  9. Consolidation Waves


    Berg, Ward; Smit, Han


    textabstractThis paper explains why consolidation acquisitions occur in waves and it predicts the differing role each firm is likely to play in the consolidation game. We propose that whether a firm assumes the role of rival consolidator, target, or passive observer depends on the position of the firm relative to the entity that merges first. Our model predicts that an initial acquisition triggers a wave of follow-on acquisitions, where the process of asset accumulation by the consolidator is...

  10. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  11. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  12. Estimating tree crown widths for the primary Acadian species in Maine (United States)

    Matthew B. Russell; Aaron R. Weiskittel


    In this analysis, data for seven conifer and eight hardwood species were gathered from across the state of Maine for estimating tree crown widths. Maximum and largest crown width equations were developed using tree diameter at breast height as the primary predicting variable. Quantile regression techniques were used to estimate the maximum crown width and a constrained...

  13. Blast Waves

    CERN Document Server

    Needham, Charles E


    The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...

  14. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maroof, R. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan)


    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  15. Non-diffracting chirped Bessel waves in optical antiguides

    CERN Document Server

    Chremmos, Ioannis


    Chirped Bessel waves are introduced as stable (non-diffracting) solutions of the paraxial wave equation in optical antiguides with a power-law radial variation in their index of refraction. Through numerical simulations, we investigate the propagation of apodized (finite-energy) versions of such waves, with or without vorticity, in antiguides with practical parameters. The new waves exhibit a remarkable resistance against the defocusing effect of the unstable index potentials, outperforming standard Gaussians with the same full width at half maximum. The chirped profile persists even under conditions of eccentric launching or antiguide bending and is also capable of self-healing like standard diffraction-free beams in free space.

  16. Optimization of wave energy capture of wave-powered navigational lighting buoys of seadromes

    Directory of Open Access Journals (Sweden)

    WANG Guangda


    Full Text Available [Objectives] This paper proposes an optimized design for wave-power navigational lighting buoys of seadromes.[Methods] Based on the theory of three-dimensional potential flow, the buoyant motion response of a buoy is calculated. A type of array of wave-power navigational lighting buoys located in an offshore seadrome is proposed,and a procedure for the design optimization of its component buoys is presented. Matching the best Power Take-Off(PTO damping, the diameter to draft ratio and array distance with the best energy capture width ratio are acquired, and the energy capture for the short-term forecast of the buoy array is accomplished. On this basis, combined with the actual sea conditions, energy capture for the long-term forecast of an individual buoy is accomplished. The influence of the buoy diameter, buoy draft and array distance on the energy capture width ratio is discussed.[Results] The results show that the energy capture width ratio is at its greatest when the diameter to draft ratio is between 2.4-2.6; the smaller the distance between array buoys, the greater the energy capture width of each buoy.[Conclusions] The results can provide a reference and suggestions for the optimization of the design of wave energy generation for arrays buoy.

  17. Key features of wave energy. (United States)

    Rainey, R C T


    For a weak point source or dipole, or a small body operating as either, we show that the power from a wave energy converter (WEC) is the product of the particle velocity in the waves, and the wave force (suitably defined). There is a thus a strong analogy with a wind or tidal turbine, where the power is the product of the fluid velocity through the turbine, and the force on it. As a first approximation, the cost of a structure is controlled by the force it has to carry, which governs its strength, and the distance it has to be carried, which governs its size. Thus, WECs are at a disadvantage compared with wind and tidal turbines because the fluid velocities are lower, and hence the forces are higher. On the other hand, the distances involved are lower. As with turbines, the implication is also that a WEC must make the most of its force-carrying ability-ideally, to carry its maximum force all the time, the '100% sweating WEC'. It must be able to limit the wave force on it in larger waves, ultimately becoming near-transparent to them in the survival condition-just like a turbine in extreme conditions, which can stop and feather its blades. A turbine of any force rating can achieve its maximum force in low wind speeds, if its diameter is sufficiently large. This is not possible with a simple monopole or dipole WEC, however, because of the 'nλ/2π' capture width limits. To achieve reasonable 'sweating' in typical wave climates, the force is limited to about 1 MN for a monopole device, or 2 MN for a dipole. The conclusion is that the future of wave energy is in devices that are not simple monopoles or dipoles, but multi-body devices or other shapes equivalent to arrays.

  18. Laboratory study of peculiarities of the freak-wave generation (United States)

    Rodin, Artem; Tyugin, Dmitry; Kurkin, Andrey; Kurkina, Oxana; Didenkulova, Ira


    A new wave tank for wave measurements in experimental conditions is installed in the year of 2015 in the Nizhny Novgorod State Technical University n.a. R.E. Alekseev, which is now beginning to run. In recent study series of experiments were conducted in order to reproduce analytic solutions of approximate theories in the case of strong nonlinearity. In particular experimental work is aiming to test methods of extreme wave forecasting on the background of the irregular wave field. The statistics of rogue wave heights is studied together with the statistics of rogue wave crests and rogue wave troughs. The full length of the wave tank is 7 meters, which includes the size of the working area of 6.5 m and the rest occupies the hinged-type wavemaker. Width of the wave tank is 0.5 m and height is 1 m. The wavemaker has the amplitude in the range of 0-15 degrees and frequency in the range of 0.1 - 10 Hz. The wave tank set up contains also the basic instrumentation and video fixation system including a high-speed camera. The height of waves generated during strongly nonlinear regimes is comparable to the unperturbed depth of the water in the wave tank. In order to prevent the wave reflection from the walls laboratory facility is equipped with an effective removable louvered wave absorber, mounted on opposite end of the wave tank. Construction of wave absorber has adjustable height and tilt in order to select the most effective way of wave absorption. With this equipment conditions for different wave modes can be arranged: breaking waves, full absorbtion, as well as partial reflection that corresponds to different modes of wave field in the coastal zone. The research was supported within the framework of the Russian Science Foundation grant Nr 16-17-00041.

  19. Wave Generation Theory

    DEFF Research Database (Denmark)

    Frigaard, Peter; Høgedal, Michael; Christensen, Morten

    The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....

  20. Identification of Some Low Frequency Wave Modes in the Turbulent Solar Wind (United States)

    Kellogg, P. J.; Goetz, K.; Monson, S. J.


    Electric fields provide the major coupling between the turbulence of the solar wind and particles. It has been shown, using statistical methods, that a large part of the turbulent spectrum of fluctuations in the solar wind is due to kinetic Alfven waves (KAW). In this note, an attempt is made to determine the mode identification of individual waveforms using the three dimensional system of SWaves on the STEREO spacecraft. Samples are chosen, using waveforms with an apparent periodic structure, selected visually. The short antennas of STEREO respond to density fluctuations as well as to electric fields. Measurement of four quantities using only three antennas presents a problem. Methods to overcome, or to ignore, this difficulty will be presented. On the other hand, density measurement can sometimes be useful in mode identification. All of these methods will be used, and results presented

  1. Localized injection of large-amplitude Pc 1 waves and electron temperature enhancement near the plasmapause observed by DE2 in the upper ionosphere (United States)

    Iyemori, T.; Sugiura, M.; Oka, A.; Morita, Y.; Ishii, M.; Slavin, J. A.; Brace, L. H.; Hoffman, R. A.; Winningham, J. D.


    The relation between electron temperature enhancement and large amplitude Pc 1 wave injections in the upper ionosphere is investigated using the data obtained by the Dynamics Explorer 2 spacecraft. Results can be summarized as follows: (1) The region of the temperature enhancement coincides with that of the wave injection which is latitudinally very narrow (less than 100 km) in comparison with the wavelength along the ambient magnetic field (several hundred kilometers). (2) The duration of the wave injection (or the temperature enhancement) seems to be less than a few hours even under quiet geomagnetic conditions, and/or the injection seems to be very localized, not only latitudinally, but also longitudinally. (3) The appearance and the magnitude of temperature enhancement depend on both the wave amplitude and the satellite altitude. (4) Two of the 22 events that were analyzed show a clear enhancement of low-energy electron flux (5 to 30 eV) at the wave injection, and the flux is field-aligned both downward and upward. The region of the temperature enhancement coincides with that of the downward electron flux. From these results, it is suggested that the temperature enhancement which accompanies large-amplitude waves with Pc 1 pulsation frequencies (0.2 to 5 Hz) is caused by the direct acceleration of thermal electrons at low altitudes by the parallel electric field (0.01 to 0.001 mV/m) of the ion-cyclotron waves (kinetic Alfven waves) having an oblique wave normal.

  2. Low-velocity fault-zone guided waves: Numerical investigations of trapping efficiency (United States)

    Li, Y.-G.; Vidale, J.E.


    Recent observations have shown that shear waves trapped within low-velocity fault zones may be the most sensitive measure of fault-zone structure (Li et al., 1994a, 1994b). Finite-difference simulations demonstrate the effects of several types of complexity on observations of fault-zone trapped waves. Overlying sediments with a thickness more than one or two fault-zone widths and fault-zone step-overs more than one or two fault widths disrupt the wave guide. Fault kinks and changes in fault-zone width with depth leave readily observable trapped waves. We also demonstrate the effects of decreased trapped wave excitation with increasing hypocentral offset from the fault and the effects of varying the contrast between the velocity in the fault zone and surrounding hard rock. Careful field studies may provide dramatic improvements in our knowledge of fault-zone structure.

  3. Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides. (United States)

    Apiratikul, Paveen; Wathen, Jeremiah J; Porkolab, Gyorgy A; Wang, Bohan; He, Lei; Murphy, Thomas E; Richardson, Christopher J K


    Enhancements of the continuous-wave four-wave mixing conversion efficiency and bandwidth are accomplished through the application of plasma-assisted photoresist reflow to reduce the sidewall roughness of sub-square-micron-modal area waveguides. Nonlinear AlGaAs optical waveguides with a propagation loss of 0.56 dB/cm demonstrate continuous-wave four-wave mixing conversion efficiency of -7.8 dB. Narrow waveguides that are fabricated with engineered processing produce waveguides with uncoated sidewalls and anti-reflection coatings that show group velocity dispersion of +0.22 ps²/m. Waveguides that are 5-mm long demonstrate broadband four-wave mixing conversion efficiencies with a half-width 3-dB bandwidth of 63.8-nm.

  4. Better algorithms for satisfiability problems for formulas of bounded rank-width

    CERN Document Server

    Ganian, Robert; Obdržálek, Jan


    We provide a parameterized polynomial algorithm for the propositional model counting problem #SAT, the runtime of which is single-exponential in the rank-width of a formula. Previously, analogous algorithms have been known -- e.g.~[Fischer, Makowsky, and Ravve] -- with a single-exponential dependency on the clique-width of a formula. Our algorithm thus presents an exponential runtime improvement (since clique-width reaches up to exponentially higher values than rank-width), and can be of practical interest for small values of rank-width. We also provide an algorithm for the MAX-SAT problem along the same lines.

  5. First Metatarsal Head and Medial Eminence Widths with and Without Hallux Valgus. (United States)

    Lenz, Robin C; Nagesh, Darshan; Park, Hannah K; Grady, John


    Resection of the medial eminence in hallux valgus surgery is common. True hypertrophy of the medial eminence in hallux valgus is debated. No studies have compared metatarsal head width in patients with hallux valgus and control patients. We reviewed 43 radiographs with hallux valgus and 27 without hallux valgus. We measured medial eminence width, first metatarsal head width, and first metatarsal shaft width in patients with and without radiographic hallux valgus. Medial eminence width was 1.12 mm larger in patients with hallux valgus (P hallux valgus (P hallux valgus. However, frontal plane rotation of the first metatarsal likely accounts for this difference.

  6. Strong interaction shift and width of the 1{ital s} level in pionic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sigg, D.; Badertscher, A.; Bogdan, M.; Goudsmit, P.F.A.; Leisi, H.J.; Matsinos, E.; Schroeder, H.; Zhao, Z.G. [Institute for Particle Physics, Eidgenoessische Technische Hoschschule Zurich, CH-5232 Villigen PSI (Switzerland); Chatellard, D.; Egger, J.; Jeannet, E. [Institut de Physique de l` Universite de Neuchatel, CH-2000 Neuchatel (Switzerland); Aschenauer, E.C.; Gabathuler, K.; Simons, L.M. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Rusi El Hassani, A.J. [Ecole Mohammadia d`Ingenieurs, Rabat (Morocco)


    The 3{ital p}{minus}1{ital s} x-ray line of pionic hydrogen was measured with a reflecting bent crystal spectrometer. The strong interaction energy level shift and the total decay width of the 1{ital s} state, obtained from the transition energy and the linewidth, are {var_epsilon}{sub 1{ital s}}={minus}7.127{plus_minus}0.028(stat){plus_minus}0.036(syst)eV (attractive) and {Gamma}{sub 1{ital s}}=0.97{plus_minus}0.10(stat){plus_minus}0.05(syst)eV. The corresponding hadronic {pi}{ital N} {ital s}-wave scattering lengths for elastic scattering and single charge exchange are {ital a}{sub {pi}{sup {minus}}{ital p}{r_arrow}{pi}{sup {minus}}{ital p}}{sup {ital h}}=0.0885{plus_minus}0.0009{ital m}{sub {pi}}{sup {minus}1} and {ital a}{sub {pi}{sup {minus}}{ital p}{r_arrow}{pi}{sup 0}{ital n}}{sup {ital h}}={minus}0.136{plus_minus}0.010{ital m}{sub {pi}}{sup {minus}1}. {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.

  7. Measurement of radiative widths of $a_2(1320)$ and $\\pi_2(1670)$

    CERN Document Server

    Adolph, C; Alekseev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anosov, V; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Beck, R; Bedfer, Y; Berlin, A; Bernhard, J; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bodlak, M; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Buchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger jr, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J.M; Frolov, V; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Gnesi, I; Gobbo, B; Goertz, S; Gorzellik, M; Grabmuller, S; Grasso, A; Grube, B; Guskov, A; Guthorl, T; Haas, F; von Harrach, D; Hahne, D; Hashimoto, R; Heinsius, F H; Herrmann, F; Hinterberger, F; Hoppner, Ch; Horikawa, N; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Jorg, P; Joosten, R; Kabuss, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Kral, Z; Kramer, M; Kroumchtein, Z V; Kuchinski, N; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A.A; Lehmann, A; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Marchand, C; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Miyachi, Y; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Novy, J; Nowak, W D; Nunes, A S; Orlov, I; Olshevsky, A G; Ostrick, M; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Pesek, M; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Reicherz, G; Rocco, E; Rychter, A; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schluter, T; Schmidt, A; Schmidt, K; Schmieden, H; Schonning, K; Schopferer, S; Schott, M; Shevchenko, O Yu; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; ter Wolbeek, J; Tessaro, S; Tessarotto, F; Thibaud, F; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vondra, J; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M


    The COMPASS Collaboration at CERN has investigated the reaction $\\pi^- \\gamma \\rightarrow \\pi^-\\pi^-\\pi^+$ embedded in the Primakoff reaction of $190~\\textrm{GeV}$ pions scattering in the Coulomb field of a lead target, $\\pi^- \\text{Pb} \\rightarrow \\pi^-\\pi^-\\pi^+ \\text{Pb}$. Exchange of quasi-real photons is selected by isolating the sharp Coulomb peak observed at momentum transfer below $0.001~(\\text{GeV}/c)^2$. Using a partial-wave analysis the amplitudes and relative phases of the $a_2(1320)$ and $\\pi_2(1670)$ mesons have been extracted, and the Coulomb and the diffractive contributions have been disentangled. Measuring absolute production cross sections we have determined the radiative width of the $a_2(1320)$ to be $\\Gamma_0(a_2(1320) \\rightarrow \\pi\\gamma) = (358 \\pm 6_{\\textrm{stat}} \\pm 42_{\\textrm{syst}})~\\textrm{keV}$. As the first measurement, $\\Gamma_0(\\pi_2(1670) \\rightarrow \\pi\\gamma) = (181 \\pm 11_{\\textrm{stat}} \\pm 27_{\\textrm{syst}})~\\textrm{keV} \\cdot (\\textrm{BR}^{\\textrm{PDG}}_{f_2 \\pi}/...

  8. Ultra low frequency waves at Venus: Observations by the Venus Express spacecraft (United States)

    Fränz, M.; Echer, E.; Marques de Souza, A.; Dubinin, E.; Zhang, T. L.


    The generation of waves with low frequencies (below 100 mHz) has been observed in the environment of most bodies in the solar system and well studied at Earth. These waves can be generated either upstream of the body in the solar wind by ionization of planetary exospheres or ions reflected from a bow shock or in the magnetosheath closer to the magnetic barrier. For Mars and Venus the waves may have special importance since they can contribute to the erosion of the ionopause and by that enhance atmospheric escape. While over the past years many case studies on wave phenomena observed at Venus have been published most statistical studies have been based on magnetic observations only. On the other hand the generation mechanisms and transport of these waves through the magnetosphere can only be quantified using both magnetic and particle observations. We use the long time observations of Venus Express (2006-2014) to determine the predominant processes and transport parameters. First we demonstrate the analysis methods in four case studies, then we present a statistical analysis by determining transport ratios from the complete Venus Express dataset. We find that Alfvenic waves are very dominant (>80%) in the solar wind and in the core magnetosheath. Fast waves are observed mainly at the bow shock (around 40%) but also at the magnetic barrier where they may be most important for the energy transfer into the ionosphere. Their occurrence in the magnetotail may be an artifact of the detection of individual plasma jets in this region. Slow mode waves are rarely dominating but occur with probability of about 10% at the bow shock and in the pile-up-region. Mirror mode waves have probability <20% in the magnetosheath slightly increasing towards the pile-up-boundary.

  9. Compact pulse width modulation circuitry for silicon photomultiplier readout. (United States)

    Bieniosek, M F; Olcott, P D; Levin, C S


    The adoption of solid-state photodetectors for positron emission tomography (PET) system design and the interest in 3D interaction information from PET detectors has lead to an increasing number of readout channels in PET systems. To handle these additional readout channels, PET readout electronics should be simplified to reduce the power consumption, cost, and size of the electronics for a single channel. Pulse-width modulation (PWM), where detector pulses are converted to digital pulses with width proportional to the detected photon energy, promises to simplify PET readout by converting the signals to digital form at the beginning of the processing chain, and allowing a single time-to-digital converter to perform the data acquisition for many channels rather than routing many analogue channels and digitizing in the back end. Integrator based PWM systems, also known as charge-to-time converters (QTCs), are especially compact, reducing the front-end electronics to an op-amp integrator with a resistor discharge, and a comparator. QTCs, however, have a long dead-time during which dark count noise is integrated, reducing the output signal-to-noise ratio. This work presents a QTC based PWM circuit with a gated integrator that shows performance improvements over existing QTC based PWM. By opening and closing an analogue switch on the input of the integrator, the circuit can be controlled to integrate only the portions of the signal with a high signal-to-noise ratio. It also allows for multiplexing different detectors into the same PWM circuit while avoiding uncorrelated noise propagation between photodetector channels. Four gated integrator PWM circuits were built to readout the spatial channels of two position sensitive solid-state photomultiplier (PS-SSPM). Results show a 4 × 4 array 0.9 mm × 0.9 mm × 15 mm of LYSO crystals being identified on the 5 mm × 5 mm PS-SSPM at room temperature with no degradation for twofold multiplexing. In principle, much larger

  10. Nonlinear Waves. (United States)


    19), (12), (17) imply that (xi a constant, Yj(t) - 2Yjt + Yj(O)$:lA(Xt ) - O(X,o)e iA t , f(.X,t) = f(.X,o)e -i0 2t I (2i) We conclude this seccion by...our variable Wr3 3r, _ to be ri, then we would have A0’(r,-ro)’/s where s, is the resonance width and rio is the for the rate of growth of A3. We shall

  11. Beyond beach width: Steps toward identifying and integrating ecological envelopes with geomorphic features and datums for sandy beach ecosystems (United States)

    Dugan, Jenifer E.; Hubbard, David M.; Quigley, Brenna J.


    Our understanding of ecological responses to climatic and anthropogenic forcing lags far behind that of physical or geomorphic responses for beach ecosystems. Reconciling geomorphic features of beaches with ecological features, such as intertidal zones and mobile biota that are not described by beach width alone, could help address this issue. First, although intertidal zones characterized by distinct groups of mobile burrowing animals are described for beaches, the locations and elevations of these zones do not coincide with standard shoreline datums. Second, intertidal zonation on beaches is extremely dynamic due to the combination of unstable sandy substrate and a highly mobile biota; shifting strongly with tides, waves, storms, and beach conditions. We propose that beach biota use ecological "envelopes" of cross-shore habitat to cope with constantly changing beach conditions. We estimated the extent of these "envelopes" for a variety of taxa on tidal to daily, semi-lunar and seasonal to annual time scales, using literature values on cross-shore animal movements and a field study of the positions of intertidal beds of two species of typical mid and upper shore beach invertebrates. Daily or tidal cross-shore movement varied most (1 m to 100 m) with daily "envelopes" covering 7% to 85% of the available beach width. Semi-lunar movement (12 m) and envelopes (28%) were relatively small, while estimated annual "envelopes" were large, averaging 61% of beach width. The large scope of annual ecological envelopes relative to beach widths reflects how intertidal animals escape seasonally extreme or episodically harsh conditions. Intertidal bed positions of a talitrid amphipod and an opheliid polychaete correlated well with selected beach features in our field study suggesting that incorporation of ecological envelopes in models of shoreline evolution may be feasible. Describing ecological zones in terms of more dynamic shoreline features, such as total water level (TWL

  12. Efficient Wave Energy Amplification with Wave Reflectors


    Kramer, Morten Mejlhede; Frigaard, Peter Bak


    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified ...

  13. Effect of mangrove forest structures on wave attenuation in coastal Vietnam

    Directory of Open Access Journals (Sweden)

    Tran Quang Bao


    Full Text Available This paper analyses wave attenuation in coastal mangrove forests in Vietnam. Data from 32 mangrove plots of six species located in 2 coastal regions are used for this study. In each plot, mangrove forest structures and wave height at different cross-shore distances are measured. Wave height closely relates to cross-shore distances. 92 exponential regression equations are highly significant with R2 > 0.95 and P val. < 0.001. Wave height reduction depends on initial wave height, cross-shore distances, and mangrove forest structures. This relationship is used to define minimum mangrove band width for coastal protection from waves in Vietnam.

  14. Red blood cell distribution width: A simple parameter in preeclampsia. (United States)

    Yılmaz, Zehra Vural; Yılmaz, Elif; Küçüközkan, Tuncay


    Preeclampsia is a serious disease and a leading cause of maternal and perinatal mortality and morbidity. Red blood cell distribution width (RDW), a measure of anisocytosis, is used as an inflammation marker in hypertension and cardiovascular diseases. Although the relationship between RDW and hypertension has been well documented, the association between preeclampsia and RDW is not clear. We aimed to investigate the relationship between RDW and preeclampsia and its severity. One hundred eighteen pregnant women with preeclampsia and one hundred twenty uncomplicated pregnant women were included in the study. Blood samples for routine CBC and RDW levels were analyzed. The RDW values were significantly higher in preeclampsia group compared with the control group (15.23±1.96 vs 14.48±1.70, pblood cell count, can be used as a significant diagnostic and prognostic marker in patient with preeclampsia like the other cardiovascular diseases. Copyright © 2016 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  15. Width of gene expression profile drives alternative splicing.

    Directory of Open Access Journals (Sweden)

    Daniel Wegmann

    Full Text Available Alternative splicing generates an enormous amount of functional and proteomic diversity in metazoan organisms. This process is probably central to the macromolecular and cellular complexity of higher eukaryotes. While most studies have focused on the molecular mechanism triggering and controlling alternative splicing, as well as on its incidence in different species, its maintenance and evolution within populations has been little investigated. Here, we propose to address these questions by comparing the structural characteristics as well as the functional and transcriptional profiles of genes with monomorphic or polymorphic splicing, referred to as MS and PS genes, respectively. We find that MS and PS genes differ particularly in the number of tissues and cell types where they are expressed.We find a striking deficit of PS genes on the sex chromosomes, particularly on the Y chromosome where it is shown not to be due to the observed lower breadth of expression of genes on that chromosome. The development of a simple model of evolution of cis-regulated alternative splicing leads to predictions in agreement with these observations. It further predicts the conditions for the emergence and the maintenance of cis-regulated alternative splicing, which are both favored by the tissue specific expression of splicing variants. We finally propose that the width of the gene expression profile is an essential factor for the acquisition of new transcript isoforms that could later be maintained by a new form of balancing selection.

  16. A microfluidic diluter based on pulse width flow modulation. (United States)

    Ainla, Alar; Gözen, Irep; Orwar, Owe; Jesorka, Aldo


    We demonstrate that pulse width flow modulation (PWFM) can be used to design fast, accurate, and precise multistage dilution modules for microfluidic devices. The PWFM stage unit presented here yields 10-fold dilution, but several PWFM stages can be connected in series to yield higher-order dilutions. We have combined two stages in a device thus capable of diluting up to 100-fold, and we have experimentally determined a set of rules that can be conveniently utilized to design multistage diluters. Microfabrication with resist-based molds yielded geometrical channel height variances of 7% (22.9(16) microm) with corresponding hydraulic resistance variances of approximately 20%. Pulsing frequencies, channel lengths, and flow pressures can be chosen within a wide range to establish the desired diluter properties. Finally, we illustrate the benefits of on-chip dilution in an example application where we investigate the effect of the Ca(2+) concentration on a phospholipid bilayer spreading from a membrane reservoir onto a SiO(2) surface. This is one of many possible applications where flexible concentration control is desirable.

  17. Programming microbes using pulse width modulation of optical signals. (United States)

    Davidson, Eric A; Basu, Amar S; Bayer, Travis S


    Cells transmit and receive information via signalling pathways. A number of studies have revealed that information is encoded in the temporal dynamics of these pathways and has highlighted how pathway architecture can influence the propagation of signals in time and space. The functional properties of pathway architecture can also be exploited by synthetic biologists to enable precise control of cellular physiology. Here, we characterised the response of a bacterial light-responsive, two-component system to oscillating signals of varying frequencies. We found that the system acted as a low-pass filter, able to respond to low-frequency oscillations and unable to respond to high-frequency oscillations. We then demonstrate that the low-pass filtering behavior can be exploited to enable precise control of gene expression using a strategy termed pulse width modulation (PWM). PWM is a common strategy used in electronics for information encoding that converts a series of digital input signals to an analog response. We further show how the PWM strategy extends the utility of bacterial optogenetic control, allowing the fine-tuning of expression levels, programming of temporal dynamics, and control of microbial physiology via manipulation of a metabolic enzyme. © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Segmentation and determination of joint space width in foot radiographs (United States)

    Schenk, O.; de Muinck Keizer, D. M.; Bernelot Moens, H. J.; Slump, C. H.


    Joint damage in rheumatoid arthritis is frequently assessed using radiographs of hands and feet. Evaluation includes measurements of the joint space width (JSW) and detection of erosions. Current visual scoring methods are timeconsuming and subject to inter- and intra-observer variability. Automated measurement methods avoid these limitations and have been fairly successful in hand radiographs. This contribution aims at foot radiographs. Starting from an earlier proposed automated segmentation method we have developed a novel model based image analysis algorithm for JSW measurements. This method uses active appearance and active shape models to identify individual bones. The model compiles ten submodels, each representing a specific bone of the foot (metatarsals 1-5, proximal phalanges 1-5). We have performed segmentation experiments using 24 foot radiographs, randomly selected from a large database from the rheumatology department of a local hospital: 10 for training and 14 for testing. Segmentation was considered successful if the joint locations are correctly determined. Segmentation was successful in only 14%. To improve results a step-by-step analysis will be performed. We performed JSW measurements on 14 randomly selected radiographs. JSW was successfully measured in 75%, mean and standard deviation are 2.30+/-0.36mm. This is a first step towards automated determination of progression of RA and therapy response in feet using radiographs.

  19. Finite Amplitude Ocean Waves

    Indian Academy of Sciences (India)

    IAS Admin

    (2). Hence, small amplitude waves are also called linear waves. Most of the aspects of the ocean waves can be explained by the small amplitude wave theory. Let us now see the water particle motion due to waves. While wave energy is carried by the wave as it progresses forward, the water particles oscillate up and down.

  20. Investigation of Mean Platelet Volume, Platelet Distribution Width and Erythrocyte Distribution Width in Patients with Hepatitis B Virus Infection

    Directory of Open Access Journals (Sweden)

    Kazım KIRATLI


    Full Text Available Objective: Hepatitis B virus (HBV infection is an important public health issue all over the world, and it has a high morbidity and mortality rates caused by chronic liver disease. Liver biopsy is the primary procedure for evaluating the fibrosis grade. Recently, non-invasive methods are used to predict liver histology. Complete blood count (CBC is one of the most needed and used laboratory tests in clinics. CBC parameters have been used in various studies to estimate the severity of the disease and the risk of mortality. In the present study, we aimed to determine the relationship of HBV infection with mean platelet volume (MPV, platelet distribution width (PDW and red cell distribution width (RDW. Materials and Methods: Two hundred fifty-nine hepatitis B surface antigen (HBsAg-positive patients, who attended the Infectious Diseases outpatient Clinic at Van Military Hospital between October 2013 and December 2014, were included in the study group. A total of 245 food handlers with similar socio-demographic characteristics with the study group, who applied at the same period, formed the control group. HBsAg-positive patients were studied in two groups as chronic active hepatitis and inactive carriers according to their follow-up. CBC results of the patients and the healthy controls were screened from the hospital information system and they were evaluated retrospectively. Results: The average platelet count in HBsAg-positive patients and controls was 262.59±62.13x103/mm3 and 245.28±60.78x103/mm3, respectively and the difference between the groups was statistically significant (p=0.002. There was also statistically significant difference in RDW values between the two groups. The average RDW was 12.14±1.05 in HBV group, while it was 12.49±1.28 in control group (p=0.001. On the other hand, no significant difference was observed in PDW and MPV between the groups. Conclusion: It is thought that simple, inexpensive and routinely used platelet and

  1. Positive amplitude electron acoustic solitary waves in auroral plasma (United States)

    Ghosh, S. S.; Lakhina, G. S.

    Rapidly moving positive potential pulses have been observed by FAST and POLAR satellites in downward current region of auroral plasma. They are characterized by their high velocities (> 1000 km/s) which are of the order of the electron drift velocities and are found to be associated with electron beams. Interestingly, it is observed that the width of such electron mode solitary waves increases with the amplitude [Ergun et al. (1998)]. Theoretically, they are interpreted as BGK electron phase space holes. However, Berthomier et al. (2000) have shown that a positive amplitude solitary wave may well exist for an electron acoustic mode. According to a weakly nonlinear theory, the width of such an electron acoustic solitary wave is expected to decrease with increasing amplitude which contradicts the observation. On the other hand, in our previous work, we have shown that the width of a large amplitude rarefactive ion acoustic solitary wave increases with an increasing amplitude [Ghosh et al. (2004)]. In the present work, we have extended our analysis to an electron acoustic solitary wave. A fully nonlinear solution of positive amplitude electron acoustic solitary waves (electron acoustic solitary holes) has been obtained by adopting the Sagdeev pseudopotetial technique. The plasma is assumed to be magnetized and traversed by the electron beam. The existence domain of such electron acoustic solitary holes is studied in detail. It is found that the width of electron acoustic solitary holes increases with increasing amplitude. Theoretically estimated width-amplitude variation profiles have been compared with recent satellite observations. It is proposed that a model based on electron acoustic mode may well interpret the fast moving solitary holes for an appropriate parameter space. References:Berthomier et al., Phys. Plasma, 7, 2987 (2000).Ergun et al., Phys. Rev. Lett., 81, 826, (1998).Ghosh and Lakhina,, Nonlin. Process. Geophys, (2004), (to be appeared).

  2. Shallow Water Waves and Solitary Waves


    Hereman, Willy


    Encyclopedic article covering shallow water wave models used in oceanography and atmospheric science. Sections: Definition of the Subject; Introduction and Historical Perspective; Completely Integrable Shallow Water Wave Equations; Shallow Water Wave Equations of Geophysical Fluid Dynamics; Computation of Solitary Wave Solutions; Numerical Methods; Water Wave Experiments and Observations; Future Directions, and Bibliography.

  3. Wave groups in unidirectional surface wave models

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.


    Uni-directional wave models are used to study wave groups that appear in wave tanks of hydrodynamic laboratories; characteristic for waves in such tanks is that the wave length is rather small, comparable to the depth of the layer. In second-order theory, the resulting Nonlinear Schrödinger (NLS)

  4. Wave Dragon

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    På foranledning af Löwenmark F.R.I, er der udført numeriske beregninger af Wave Dragons (herefter WD) armes effektivitet for forskellige geometriske udformninger. 5 geometriske modeller, hvor WD's arme er forkortet/forlænget er undersøgt for 3 forskellige drejninger af armene. I alt er 15...

  5. Parameterizing the Effects of Finite Crested Wave Breaking in Wave-Averaged Models (United States)

    Kumar, N.; Suanda, S. H.; Feddersen, F.


    Finite crested breaking waves generate a rotational body force that creates two-dimensional turbulent eddies with strong rotational velocities, capable of tracer exchange (sediment, pathogens, contaminants) between the surfzone and the inner shelf. This eddy generation mechanism is strongly tied to the wave directional spread. Wave-resolving Boussinesq models like funwaveC include finite crest length breaking and accurately simulate surfzone eddy generation. However, this surfzone eddy generation mechanism is not included in existing wave-averaged models (e.g., Coupled Ocean Atmosphere Wave Sediment Transport Modeling System, COAWST), leading to an incomplete representation of exchange between the surf zone and the inner shelf. In this study 250 funwaveC simulations with random, directionally spread waves spanning a range of beach slopes and wave conditions are used to simulate surfzone eddies. With these simulations, the stream function associated with breaking wave eddy forcing is isolated and quantified in the form of intensity, cross- and alongshore widths and propagation rates, followed by parameterization as a function of wave parameters and the beach slope. Parameterized stream function is implemented into COAWST as a stochastic surf zone eddy module which is used to study vorticity evolution from the surfzone to the inner-shelf, interaction between stratified water column and surfzone eddies, and overall provides a more complete representation of surfzone eddy induced cross-shore exchange. Funded by the Office of Naval Research.

  6. Wave production in an ultrarelativistic electron-positron plasma. [in pulsar polar caps (United States)

    Hardee, P. E.; Rose, W. K.


    In this paper we calculate the eigenmodes associated with an ultrarelativistic electron-positron beam traversing a low-energy electron-positron plasma under physical conditions that may exist along open magnetic field lines above pulsar polar caps. We assume that both beam and plasma are cold and charge neutral, and that magnetic field strength and particle density decrease as the cube of (1/R). In the superstrong magnetic fields near the stellar surface where cyclotron frequencies exceed plasma frequencies, electrostatic waves and associated transverse low-frequency waves are driven unstable by the two-stream type particle distribution. At larger distances above the stellar surface the slow beam cyclotron wave is driven unstable. At even greater radial distance (approximately when particle energy density exceeds magnetic energy density) both the Ordinary and Alfven modes become unstable. All of these instabilities can lead to generation of radiation. If the particle distribution as generated at the stellar surface, assumed to consist of two streams, is modified only by plasma effects, then electrostatic and associated transverse waves may only be unstable near the stellar surface. The beam cyclotron mode which is driven by a two-stream or an inverted particle distribution may be stable.

  7. Kinetic Evidence of Magnetic Reconnection Due to Kelvin-Helmholtz Waves (United States)

    Li, W.; Andre, M.; Khotainstev, Yu. V.; Vaivads, A.; Graham, D. B.; Toledo-Redondo, S.; Norgren, C.; Henri, P.; Wang, C.; Tang, B. B.; hide


    The Kelvin-Helmholtz (ICH) instability at the Earth's magnetopause is predominantly excited during northward interplanetary magnetic field (IMF). Magnetic reconnection due to KH waves has been suggested as one of the mechanisms to transfer solar wind plasma into the magnetosphere. We investigate KH waves observed at the magnetopause by the Magnetospheric Multlscale (MMS) mission; in particular, we study the trailing edges of KH waves with Alfvenic ion jets. We observe gradual mixing of magnetospheric and magnetosheath ions at the boundary layer. The magnetospheric electrons with energy up to 80 keV are observed on the magnetosheath side of the jets, which indicates that they escape into the magnetosheath through reconnected magnetic field lines. At the same time, the low-energy (below 100eV) magnetosheath electrons enter the magnetosphere and are heated in the field-aligned direction at the high-density edge of the jets. Our observations provide unambiguous kinetic evidence for ongoing reconnection due to KH waves.

  8. Nonlinear Interaction of Langmuir and Whistler Waves Observed with Incoherent Scatter Radar (United States)

    Akbari, H.; Semeter, J. L.


    High-latitude ionosphere is characterized by particle precipitations of different origins. Among these are electron precipitation caused by quasi-static parallel electric fields and Alfven wave-particle interactions. In-situ measurements of fields and particles have commonly detected various plasma modes, such as Langmuir and whistler, enhanced by these precipitating electrons. The waves have been shown to undergo various nonlinear wave-wave and wave-particle interaction including parametric type instabilities. Detecting such processes with in-situ instruments however is not always straightforward and certain processes may remain undetected. We present new incoherent scatter radar data from the auroral F-region where strong echoes simultaneously appear in the ion- and both up- and down-shifted plasma lines channels. While aspects of these observations have been previously discussed in detail in terms of electron beam-generated Langmuir turbulence, some new aspects, namely the presence of two peaks separated by 300 kHz in both the up- and down-shifted plasma line channels are discussed in this paper. The unique and asymmetric displacement of the peaks with respect to the radar transmitting frequency suggests that the anomalous spectra are produced as a result of the existence of non-resonant waves generated by nonlinear beating between intense Langmuir and whistler modes. The results suggest that such nonlinear interactions contribute to the appearance of wave activities close to the plasma frequency as observed by in-situ electric field spectral measurements and that not all these wave activities are directly generated by the initial electron beam. The anomalous plasma lines spectra are often observed just above the altitude where Langmuir turbulence is observed. This altitudinal morphology and its implications are also discussed is this paper.

  9. Stark widths and shifts for spectral lines of Sn IV (United States)

    de Andrés-García, I.; Alonso-Medina, A.; Colón, C.


    In this paper, we present theoretical Stark widths and shifts calculated corresponding to 66 spectral lines of Sn IV. We use the Griem semi-empirical approach and the COWAN computer code. For the intermediate coupling calculations, the standard method of least-squares fitting from experimental energy levels was used. Data are presented for an electron density of 1017 cm-3 and temperatures T = 1.1-5.0 (104 K). The matrix elements used in these calculations have been determined from 34 configurations of Sn IV: 4d10ns(n = 5-10), 4d10nd(n = 5-8), 4d95s2, 4d95p2, 4d95s5d, 4d85s5p2 and 4d105g for even parity and 4d10np(n = 5-8), 4d10nf (n = 4-6), 4d95snp(n = 5-8), 4d85s25p and 4d95snf (n = 4-10) for odd parity. Also, in order to test the matrix elements used in our calculations, we present calculated values of radiative lifetimes of 14 levels of Sn IV. There is good agreement between our calculations and the experimental radiative lifetimes obtained from the bibliography. The spectral lines of Sn IV are observed in UV spectra of HD 149499 B obtained with the Far Ultraviolet Spectroscopic Explorer, the Goddard High Resolution Spectrograph and the International Ultraviolet Explorer. Theoretical trends of the Stark broadening parameter versus the temperature for relevant lines are presented. Also our values of Stark broadening parameters have been compared with the data available in the bibliography.

  10. Perception of Length to Width Relations of City Squares

    Directory of Open Access Journals (Sweden)

    Harold T. Nefs


    Full Text Available In this paper, we focus on how people perceive the aspect ratio of city squares. Earlier research has focused on distance perception but not so much on the perceived aspect ratio of the surrounding space. Furthermore, those studies have focused on “open” spaces rather than urban areas enclosed by walls, houses and filled with people, cars, etc. In two experiments, we therefore measured, using a direct and an indirect method, the perceived aspect ratio of five city squares in the historic city center of Delft, the Netherlands. We also evaluated whether the perceived aspect ratio of city squares was affected by the position of the observer on the square. In the first experiment, participants were asked to set the aspect ratio of a small rectangle such that it matched the perceived aspect ratio of the city square. In the second experiment, participants were asked to estimate the length and width of the city square separately. In the first experiment, we found that the perceived aspect ratio was in general lower than the physical aspect ratio. However, in the second experiment, we found that the calculated ratios were close to veridical except for the most elongated city square. We conclude therefore that the outcome depends on how the measurements are performed. Furthermore, although indirect measurements are nearly veridical, the perceived aspect ratio is an underestimation of the physical aspect ratio when measured in a direct way. Moreover, the perceived aspect ratio also depends on the location of the observer. These results may be beneficial to the design of large open urban environments, and in particular to rectangular city squares.

  11. Pulse Width Modulation Applied to Olfactory Stimulation for Intensity Tuning. (United States)

    Andrieu, Patrice; Billot, Pierre-Édouard; Millot, Jean-Louis; Gharbi, Tijani


    For most olfactometers described in the literature, adjusting olfactory stimulation intensity involves modifying the dilution of the odorant in a neutral solution (water, mineral, oil, etc.), the dilution of the odorant air in neutral airflow, or the surface of the odorant in contact with airflow. But, for most of these above-mentioned devices, manual intervention is necessary for adjusting concentration. We present in this article a method of controlling odorant concentration via a computer which can be implemented on even the most dynamic olfactometers. We used Pulse Width Modulation (PWM), a technique commonly used in electronic or electrical engineering, and we have applied it to odor delivery. PWM, when applied to odor delivery, comprises an alternative presentation of odorant air and clean air at a high frequency. The cycle period (odor presentation and rest) is 200 ms. In order to modify odorant concentration, the ratio between the odorant period and clean air presentation during a cycle is modified. This ratio is named duty cycle. Gas chromatography measurements show that this method offers a range of mixing factors from 33% to 100% (continuous presentation of odor). Proof of principle is provided via a psychophysical experiment. Three odors (isoamyl acetate, butanol and pyridine) were presented to twenty subjects. Each odor was delivered three times with five values of duty cycles. After each stimulation, the subjects were asked to estimate the intensity of the stimulus on a 10 point scale, ranging from 0 (undetectable) to 9 (very strong). Results show a main effect of the duty cycles on the intensity ratings for all tested odors.

  12. Pulse Width Modulation Applied to Olfactory Stimulation for Intensity Tuning.

    Directory of Open Access Journals (Sweden)

    Patrice Andrieu

    Full Text Available For most olfactometers described in the literature, adjusting olfactory stimulation intensity involves modifying the dilution of the odorant in a neutral solution (water, mineral, oil, etc., the dilution of the odorant air in neutral airflow, or the surface of the odorant in contact with airflow. But, for most of these above-mentioned devices, manual intervention is necessary for adjusting concentration. We present in this article a method of controlling odorant concentration via a computer which can be implemented on even the most dynamic olfactometers. We used Pulse Width Modulation (PWM, a technique commonly used in electronic or electrical engineering, and we have applied it to odor delivery. PWM, when applied to odor delivery, comprises an alternative presentation of odorant air and clean air at a high frequency. The cycle period (odor presentation and rest is 200 ms. In order to modify odorant concentration, the ratio between the odorant period and clean air presentation during a cycle is modified. This ratio is named duty cycle. Gas chromatography measurements show that this method offers a range of mixing factors from 33% to 100% (continuous presentation of odor. Proof of principle is provided via a psychophysical experiment. Three odors (isoamyl acetate, butanol and pyridine were presented to twenty subjects. Each odor was delivered three times with five values of duty cycles. After each stimulation, the subjects were asked to estimate the intensity of the stimulus on a 10 point scale, ranging from 0 (undetectable to 9 (very strong. Results show a main effect of the duty cycles on the intensity ratings for all tested odors.

  13. Interannual and seasonal variations in nearshore wave characteristics off Honnavar, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sanjiv, P.C.; SanilKumar, V.; Johnson, G.; Dora, G.U.; Vinayaraj, P.

    height up to 4.3 m was observed during the summer monsoon with an average value of 1.7 m. Predominant wave spectral energy density was within 0.05 - 0.25 Hz and directional spreading was narrow (directional width less than 20 degrees) for high waves...

  14. The classification of the single travelling wave solutions to the ...

    Indian Academy of Sciences (India)


    Sep 21, 2016 ... For example,. Fan used Liu's method [11,12] to invest the generalized equal width equation and Pochhammer–Chree equa- tion, and she obtained all the possible travelling wave solutions including elliptic functions and hyperelliptic functions. In this paper, we consider the variant Boussinesq equations [13].

  15. Dependence of equilibrium stacking fault width on thickness of Cu thin films: A molecular dynamics study (United States)

    Rohith, P.; Sainath, G.; Choudhary, B. K.


    In face centered cubic systems, due to decrease in energy all perfect dislocations dissociates into two Shockley partials separated by stacking fault width. The stacking fault width, which influences the deformation behavior depends on many factors such as composition, stacking fault energy, temperature, surface energy and applied stress. Additionally in thin films, thickness also influences the stacking fault width of dissociated dislocations. In this paper, we investigate the effect of thin film thickness on stacking fault width in Cu using molecular dynamics simulations. The results indicate that with increase in film thickness from 1.25 nm to 11 nm, the stacking fault width increases from 1.6 nm to 3.12 nm. A bi-linear behavior has been observed. Above 11 nm thickness, the width of stacking fault has attained a saturation at higher thickness. This thickness dependent dissociation has been explained using the concept of image dislocations and associated image forces.

  16. Effect of hydraulic and structural parameters on the wave run-up over the berm breakwaters

    Directory of Open Access Journals (Sweden)

    Farzad Milanian


    Full Text Available The main aim of this study is to investigate the effect of berm breakwater on wave run-up. A total of 200 numerical analysis tests have been carried out in this paper to investigate the effect of berm width, wave height, and wave period on the wave run-up, using an integrating technique of Computer-Aided Design (CAD and Computational Fluid Dynamics (CFD. Direct application of Navier Stokes equations within the berm width has been used to provide a more reliable approach for studying the wave run-up over berm breakwaters. A well tested Reynolds-averaged Navier–Stokes (RANS code with the Volume of Fluid (VOF scheme was adopted for numerical computations. The computational results were compared with theoretical data to validate the model outputs. Numerical results showed that the simulation method can provide accurate estimations for wave run-up over berm breakwaters. It was found that the wave run-up may be decreased by increasing the berm width up to about 36 percent. Furthermore, the wave run-up may increase by increasing the wave height and wave period up to about 53 and 36 percent, respectively. These results may convince the engineers to use this model for design of berm breakwater in actual scale by calculating the Reynolds numbers.

  17. Self-Oscillating Fluxgate Current Sensor with Pulse Width Modulated Feedback


    Milan Ponjavić; Radivoje Đurić


    A self-oscillating fluxgate current sensor with pulse-width modulated feedback is discussed in the paper. The current feedback creates additional dissipation in the circuit which could be reduced by applying the method of pulse-width modulation. For simplicity, the pulse-width modulator is realized as a selfoscillating structure whosefrequency is adjusted by means of the hysteresis of a regenerative comparator, and the feedback is realized with no additional winding.

  18. Single-stage surgical procedure for increasing depth of vestibule and the width of attached gingiva

    Directory of Open Access Journals (Sweden)

    Mohammad Arif Khan


    Full Text Available Shallow vestibule along with the inadequate width of attached gingiva is a common cause of the gingival recession. Multiple techniques have been developed, separately, to increase the depth of vestibule and the width of attached gingival but this case report present a single stage surgical procedure for increasing both depth of vestibule and the width of attached gingiva by vestibular deepening procedure.

  19. Mechanical and metabolic determinants of the preferred step width in human walking.


    Donelan, J. M.; Kram, R.; Kuo, A. D.


    We studied the selection of preferred step width in human walking by measuring mechanical and metabolic costs as a function of experimentally manipulated step width (0.00-0.45L, as a fraction of leg length L). We estimated mechanical costs from individual limb external mechanical work and metabolic costs using open circuit respirometry. The mechanical and metabolic costs both increased substantially (54 and 45%, respectively) for widths greater than the preferred value (0.15-0.45L) and with s...

  20. Comparison of tibiofemoral joint space width measurements from standing CT and fixed flexion radiography. (United States)

    Segal, Neil A; Frick, Eric; Duryea, Jeffrey; Nevitt, Michael C; Niu, Jingbo; Torner, James C; Felson, David T; Anderson, Donald D


    The objective of this project was to determine the relationship between medial tibiofemoral joint space width measured on fixed-flexion radiographs and the three-dimensional joint space width distribution on low-dose, standing CT (SCT) imaging. At the 84-month visit of the Multicenter Osteoarthritis Study, 20 participants were recruited. A commercial SCT scanner for the foot and ankle was modified to image knees while standing. Medial tibiofemoral joint space width was assessed on radiographs at fixed locations from 15% to 30% of compartment width using validated software and on SCT by mapping the distances between three-dimensional subchondral bone surfaces. Individual joint space width values from radiographs were compared with three-dimensional joint space width values from corresponding sagittal plane locations using paired t-tests and correlation coefficients. For the four medial-most tibiofemoral locations, radiographic joint space width values exceeded the minimal joint space width on SCT by a mean of 2.0 mm and were approximately equal to the 61st percentile value of the joint space width distribution at each respective sagittal-plane location. Correlation coefficients at these locations were 0.91-0.97 and the offsets between joint space width values from radiographs and SCT measurements were consistent. There were greater offsets and variability in the offsets between modalities closer to the tibial spine. Joint space width measurements on fixed-flexion radiographs are highly correlated with three-dimensional joint space width from SCT. In addition to avoiding bony overlap obscuring the joint, a limitation of radiographs, the current study supports a role for SCT in the evaluation of tibiofemoral OA. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1388-1395, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Morphological development of coasts at very oblique wave incidence

    DEFF Research Database (Denmark)

    Petersen, Dorthe Pia; Deigaard, Rolf; Fredsøe, Jørgen


    that such a spit grows without changing its shape i.e. an equilibrium form emerge if the coast is exposed to a constant wave climate. During experiments conducted in a wave tank where a uniform stretch of coast was exposed to waves approaching at a very oblique angle an accumulating spit was formed at the down...... stretch of coast, along the spit as the coast curves away from the approaching waves towards the tip of the spit. A one-line model for the coastline development predicts that accumulating spits can exist on coasts exposed to waves approaching at angles larger than 45 degree only. It is suggested......-drift end of the coast. The spits approached equilibrium forms when constant wave climates were applied. The sediment transport around the spit has been investigated by two-dimensional models. The characteristic length scale for the equilibrium form depends linearly on the width of the surf zone...

  2. Red cell distribution width in type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Nada AM


    Full Text Available Aml Mohamed Nada Department of Internal Medicine, Unit of Endocrinology, Diabetes and Metabolism, Faculty of Medicine, Mansoura University, Mansoura, Egypt Objective: To study the indices of some elements of the complete blood count, in type 2 diabetic patients, in comparison with nondiabetic healthy controls; and to find out the effects of glycemic control and different medications on these indices. To the best of our knowledge, this study is novel in our environment and will serve as a foundation for other researchers in this field. Methods: This retrospective study included 260 type 2 diabetic patients on treatment and 44 healthy control subjects. Sex, age, weight, height, blood pressure, complete blood count, fasting plasma glucose, hemoglobin A1c (HbA1c, and lipid profile data, were available for all of the study population. For diabetic patients, data on duration of diabetes and all medications were also available. Results: Red cell distribution width (RDW was significantly higher in diabetic patients than in control subjects (P=0.008. It was also higher in patients with uncontrolled glycemia (HbA1c >7% than those with good control (HbA1c ≤7%; P=0.035. Mean platelet volume (MPV was comparable in both diabetic patients and healthy controls (P=0.238. RDW and MPV did not significantly correlate with fasting plasma glucose, HbA1c, or duration of diabetes. Both aspirin and clopidogrel did not show a significant effect on MPV. Both insulin and oral hypoglycemic agents did not show a significant effect on RDW, mean corpuscular volume, MPV, platelet count, or white blood cell count. Diabetic patients treated with indapamide or the combined thiazides and angiotensin receptor blockers showed no significant difference in RDW when compared with the control subjects. Conclusion: RDW, which is recently considered as an inflammatory marker with a significant predictive value of mortality in diseased and healthy populations, is significantly higher in

  3. Gravitational waves

    CERN Document Server

    Ciufolini, I; Moschella, U; Fre, P


    Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.

  4. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  5. Wavelength-tunable and pulse-width variable Fourier domain mode-locking lasers. (United States)

    Lee, Eung Je; Kim, Yong Pyung


    In this study, wavelength-tunable and pulse-width variable Fourier domain mode-locking lasers were developed with a repetition rate of 60.9 kHz. A spectral laser tuning range of over 100 nm was achieved by tuning the offset voltage to a fiber Fabry-Perot tunable filter (FFP-TF). The pulse width variation was achieved with amplitude modulation of the driving voltage to the FFP-TF. The pulse width ranged from 6.2 μs to 55 ns. The linewidth of the laser changed, from 0.109 to 0.083 nm, according to the pulse width variation.

  6. Wave Propagation

    CERN Document Server

    Ferrarese, Giorgio


    Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics

  7. Shock Waves

    CERN Document Server

    Jiang, Z


    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  8. Temperature dependence of NGR Cu(2) line width in YBa sub 2 Cu sub 3 O sub 7 sub - sub y

    CERN Document Server

    Duglav, A V; Sakhratov, Y A; Savinkov, A V


    One conducted systematic measurements of sup 6 sup 3 Cu(2) NGR line width using underdoped YBa sub 2 Cu sub 3 O sub 7 sub - sub y specimens within 4.2 K < T < 300 K temperature range. It is shown that as temperature drops below the critical one the width of copper NGR line becomes wider monotonically which temperature dependence resembles behavior of superconducting slit. The observed behavior is associated with energy dependence of condensate of moving current-charge states like waves of charged density on phase of order parameter which according to the calculations occurs at T < T sub c only. The obtained quantitative evaluations of line winding at T< T sub c conform to the measurement results

  9. Measurements of the mass and width of the η(c) using the decay ψ(3686)→γη(c). (United States)

    Ablikim, M; Achasov, M N; Alberto, D; Ambrose, D J; An, F F; An, Q; An, Z H; Bai, J Z; Ferroli, R B; Ban, Y; Becker, J; Berger, N; Bertani, M B; Bian, J M; Boger, E; Bondarenko, O; Boyko, I; Briere, R A; Bytev, V; Cai, X; Calcaterra, A C; Cao, G F; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H X; Chen, J C; Chen, M L; Chen, S J; Chen, Y; Chen, Y B; Cheng, H P; Chu, Y P; Cronin-Hennessy, D; Dai, H L; Dai, J P; Dedovich, D; Deng, Z Y; Denysenko, I; Destefanis, M; Ding, W L; Ding, Y; Dong, L Y; Dong, M Y; Du, S X; Fang, J; Fang, S S; Feng, C Q; Fu, C D; Fu, J L; Gao, Y; Geng, C; Goetzen, K; Gong, W X; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, Y P; Han, Y L; Hao, X Q; Harris, F A; He, K L; He, M; He, Z Y; Heng, Y K; Hou, Z L; Hu, H M; Hu, J F; Hu, T; Huang, B; Huang, G M; Huang, J S; Huang, X T; Huang, Y P; Hussain, T; Ji, C S; Ji, Q; Ji, X B; Ji, X L; Jia, L K; Jiang, L L; Jiang, X S; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Jing, F F; Kalantar-Nayestanaki, N; Kavatsyuk, M; Kuehn, W; Lai, W; Lange, J S; Leung, J K C; Li, C H; Li, Cheng; Li, Cui; Li, D M; Li, F; Li, G; Li, H B; Li, J C; Li, K; Li, Lei; Li, N B; Li, Q J; Li, S L; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, X R; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Liao, X T; Liu, B J; Liu, C L; Liu, C X; Liu, C Y; Liu, F H; Liu, Fang; Liu, Feng; Liu, H; Liu, H B; Liu, H H; Liu, H M; Liu, H W; Liu, J P; Liu, K; Liu, K; Liu, K Y; Liu, Q; Liu, S B; Liu, X; Liu, X H; Liu, Y B; Liu, Yong; Liu, Z A; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H; Lu, G R; Lu, H J; Lu, J G; Lu, Q W; Lu, X R; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lv, M; Ma, C L; Ma, F C; Ma, H L; Ma, Q M; Ma, S; Ma, T; Ma, X Y; Maggiora, M; Malik, Q A; Mao, H; Mao, Y J; Mao, Z P; Messchendorp, J G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Muchnoi, N Yu; Nefedov, Y; Nikolaev, I B; Ning, Z; Olsen, S L; Ouyang, Q; Pacetti, S P; Park, J W; Pelizaeus, M; Peters, K; Ping, J L; Ping, R G; Poling, R; Pun, C S J; Qi, M; Qian, S; Qiao, C F; Qin, X S; Qiu, J F; Rashid, K H; Rong, G; Ruan, X D; Sarantsev, A; Schulze, J; Shao, M; Shen, C P; Shen, X Y; Sheng, H Y; Shepherd, M R; Song, X Y; Spataro, S; Spruck, B; Sun, D H; Sun, G X; Sun, J F; Sun, S S; Sun, X D; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Thorndike, E H; Tian, H L; Toth, D; Varner, G S; Wang, B; Wang, B Q; Wang, K; Wang, L L; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, Q; Wang, Q J; Wang, S G; Wang, X F; Wang, X L; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z Y; Wei, D H; Wen, Q G; Wen, S P; Wiedner, U; Wu, L H; Wu, N; Wu, W; Wu, Z; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, G M; Xu, H; Xu, Q J; Xu, X P; Xu, Y; Xu, Z R; Xue, Z; Yan, L; Yan, W B; Yan, Y H; Yang, H X; Yang, T; Yang, Y; Yang, Y X; Ye, H; Ye, M; Ye, M H; Yu, B X; Yu, C X; Yu, S P; Yuan, C Z; Yuan, W L; Yuan, Y; Zafar, A A; Zallo, A Z; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, L; Zhang, S H; Zhang, T R; Zhang, X J; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y S; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, H S; Zhao, Jingwei; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, S J; Zhao, T C; Zhao, X H; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, Y H; Zheng, Z P; Zhong, B; Zhong, J; Zhou, L; Zhou, X K; Zhou, X R; Zhu, C; Zhu, K; Zhu, K J; Zhu, S H; Zhu, X L; Zhu, X W; Zhu, Y S; Zhu, Z A; Zhuang, J; Zou, B S; Zou, J H; Zuo, J X


    The mass and width of the lowest-lying S-wave spin singlet charmonium state, the η(c), are measured using a data sample of 1.06×10(8) ψ(3686) decays collected with the BESIII detector at the BEPCII storage ring. We use a model that incorporates full interference between the signal reaction, ψ(3686)→γη(c), and a nonresonant radiative background to describe the line shape of the η(c) successfully. We measure the η(c) mass to be 2984.3±0.6±0.6 MeV/c(2) and the total width to be 32.0±1.2±1.0 MeV, where the first errors are statistical and the second are systematic.

  10. Intercanine width as a tool in two dimensional reconstruction of face: An aid in forensic dentistry. (United States)

    Shivhare, Peeyush; Shankarnarayan, Lata; Basavaraju, Sowbhagya Malligere; Gupta, Ashish; Vasan, Vinitra; Jambunath, Usha


    Dental evidence is a valuable tool in identifying individuals, especially when disasters befall. Reference points in faciomaxillary region such as interpupillary distance, intercanthal distance, interalar distance and bizygomatic width can significantly contribute toward reconstruction of two-dimensional (2D) facial profiles. This study was researched upon to determine the relationship between the maxillary intercanine width and the different reference points of the face. The aim of the following study is to ascertain whether maxillary intercanine width can be used to detect interpupillary distance, intercanthal distance, interalar distance and bizygomatic distance and to evaluate the role of maxillary intercanine width in the 2D reconstruction of the face. The study was carried out by consent and involved 90 subjects-45 males and 45 females who satisfied the inclusion criteria. Subjects were divided into three age groups, i.e. 18-24, 25-28, 29-35. Four parameters were measured- intercanine width, interpupillary distance, intercanthal distance and interalar distance. All the measurements were carried out with a digital Vernier caliper. The bizygomatic width was measured from posterior-anterior view. Two empiricists were assigned for the task. Each test was carried out twice to validate the soundness of the findings and to reduce bias. Analysis of variance and Pearson correlation was established. Regression analysis was performed to predict the study variables by intercanine width. Intercanine width showed a significant relationship with different points. The width varied with age and gender. Inter canine width can be used as a valuable parameter in the reconstruction of face in two dimensional as it shows significant relationship with faciomaxillary reference point such as interpupillary distance, intercanthal distance, interalar distance and bizygomatic width.

  11. Modulation instability of wave packets propagating in inhomogeneous nonlinear fiber (United States)

    Lapin, V. A.; Fotiadi, A. A.


    The formation conditions and the effective gain of frequency-modulated soliton wave packets in a non-uniform along the length of active optical fibers were investigated. For packets modulated wave propagating in the nonlinear dependence of the fibers with the dispersion of the fiber length, the power of the generated pulses can be considerably increased in comparison with the homogeneous fibers. Due to the constant growth of the spectral width of the generated pulse sequence can no longer return to the state of the modulated continuous wave. As a result, the pulse duration with some fluctuations steadily declining. The amplitude and period of these oscillations are also reduced.


    The reflection of electromagnetic waves normally incident on the wavefronts of a semi-infinite standing sound wave is discussed. By analogy with the...with the sound frequency. An experiment is described in which the Bragg reflection of 3 cm electromagnetic waves from a standing sound wave beneath a water surface is observed.

  13. Impact of Wave Dragon on Wave Climate

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Tedd, James; Kramer, Morten

    This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator....

  14. A test-bed modeling study for wave resource assessment (United States)

    Yang, Z.; Neary, V. S.; Wang, T.; Gunawan, B.; Dallman, A.


    Hindcasts from phase-averaged wave models are commonly used to estimate standard statistics used in wave energy resource assessments. However, the research community and wave energy converter industry is lacking a well-documented and consistent modeling approach for conducting these resource assessments at different phases of WEC project development, and at different spatial scales, e.g., from small-scale pilot study to large-scale commercial deployment. Therefore, it is necessary to evaluate current wave model codes, as well as limitations and knowledge gaps for predicting sea states, in order to establish best wave modeling practices, and to identify future research needs to improve wave prediction for resource assessment. This paper presents the first phase of an on-going modeling study to address these concerns. The modeling study is being conducted at a test-bed site off the Central Oregon Coast using two of the most widely-used third-generation wave models - WaveWatchIII and SWAN. A nested-grid modeling approach, with domain dimension ranging from global to regional scales, was used to provide wave spectral boundary condition to a local scale model domain, which has a spatial dimension around 60km by 60km and a grid resolution of 250m - 300m. Model results simulated by WaveWatchIII and SWAN in a structured-grid framework are compared to NOAA wave buoy data for the six wave parameters, including omnidirectional wave power, significant wave height, energy period, spectral width, direction of maximum directionally resolved wave power, and directionality coefficient. Model performance and computational efficiency are evaluated, and the best practices for wave resource assessments are discussed, based on a set of standard error statistics and model run times.

  15. The Concept of a New Wave Energy Converter - the CECO

    Directory of Open Access Journals (Sweden)

    Paulo Jorge Rosa Santos


    The proof of concept of this patented WEC was carried out at the Hydraulics Laboratory of the Faculty of Engineering of the University of Porto, on a geometrical scale of 1:20. The paper presents some results of those tests and analyses the CECO response for different wave conditions and modes of operation (power take-off damping level and WEC inclination. Two different techniques were used to evaluate the power absorbed. The analysis is based on the measured motion, velocity and acceleration time series, the mean absorbed power and corresponding relative capture widths. The potential of this new concept was confirmed, as relative capture widths of up to 30% were obtained. In addition, these results are expected to improve after optimizing some components of this WEC. Figure 1. Representation of CECO (a and its mode of operation: (b upward motion - the wave crest passes by the LMM; (c downward motion - the wave trough passes by LMM.

  16. Analytical model for double split ring resonators with arbitrary ring width

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Jensen, Thomas; Krozer, Viktor


    For the first time, the analytical model for a double split ring resonator with unequal width rings is developed. The proposed models for the resonators with equal and unequal widths are based on an impedance matrix representation and provide the prediction of performance in a wide frequency range...

  17. Temperature dependence of the in situ widths of a rotating condensate in one dimensional optical potential

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Ahmed S., E-mail:; Soliman, Shemi S.M.


    In this paper, a conventional method of quantum statistical mechanics is used to study the temperature dependence of the in situ widths of a rotating condensate bosons in 1D optical potential. We trace the experimentally accessible parameters for which the temperature dependence of the in situ widths becomes perceivable. The calculated results showed that the temperature dependence of the in situ widths is completely different from that of a rotating condensate or trapped bosons in the optical lattice separately. The z-width shows distinct behavior from x- and y-widths due to the rotation effect. The obtained results provide useful qualitative theoretical results for future Bose Einstein condensation experiments in such traps. - Highlights: • The temperature dependence of the in situ widths of a rotating condensate boson in 1D optical potential is investigated. • We trace the experimentally accessible parameters for which the in situ widths become perceivable. • The above mentioned parameters exhibit a characteristic rotation rate and optical potential depth dependence. • Characteristic dependence of the effective widths on temperature is investigated. • Our results provide useful qualitatively and quantitative theoretical results for experiments in various traps.

  18. Design of a Compact UWB Antenna with Triple Notched Bands Using Nonuniform Width Slots

    National Research Council Canada - National Science Library

    Chen, Xu; Xu, Feng; Tan, Xu


    .... Instead of conventional uniform width slots, two pairs of quarter-wavelength length nonuniform width slots are embedded into the radiating patch and the ground plane to achieve triple notched bands at 3.5, 5.5, and 8.1 GHz...

  19. Width variations and mid-channel bar inception in meanders: River Bollin (UK) (United States)

    Luchi, R.; Hooke, J. M.; Zolezzi, G.; Bertoldi, W.


    The extent and pattern of width variations along a meandering channel and its association with variation in bed topography and development of mid-channel bars have been examined through field survey evidence for a reach of the River Bollin in NW England. The wet width has been quantified along the reach by applying a hydraulic model to surveyed cross sections under a range of discharges between low flow and defined bankfull conditions. This approach allows an objective, modelling-based method to compute channel width. The high spatial resolution of the topographical survey allows capture of significant variations in the cross-sectional morphology at the meander wavelength scale. Results disclose some features of longitudinal and stage-dependent width variability in meanders. Width variation is shown to be highly correlated with curvature: at bankfull conditions width peaks in bend apex sections exceed those at inflection sections and can be up to twice greater. The width-curvature behavior is correlated with the pattern of bed and banks morphology, which is different in bend apices and in meander inflections. The survey shows that the bedform morphology can be characterized by a mid-channel bar pattern that is initiated at the inflection section and that the bedform dynamics can be closely associated with channel width variations.

  20. The effect of interaural-time-difference fluctuations on apparent source width

    DEFF Research Database (Denmark)

    Käsbach, Johannes; May, Tobias; Oskarsdottir, Gudrun


    For the perception of spaciousness, the temporal fluctuations of the interaural time differences (ITDs) and interaural level differences (ILDs) provide important binaural cues. One major characteristic of spatial perception is apparent source width (ASW), which describes the perceived width of a ...

  1. Suppression of high-frequency perturbations in pulse-width modulation

    DEFF Research Database (Denmark)


    A method suppresses high-frequency perturbations in a pulse-width modulated signal. The pulse-width modulation may superpose a carrier signal onto an input signal having a predetermined modulation frequency. The carrier signals may be phase-shifted. The resulting modulated signals may...

  2. Optimal pulse-width modulation for sinusoidal fringe generation with projector defocusing: comment. (United States)

    Ayubi, Gastón A; Ferrari, José A


    We comment on a recent Letter [Opt. Lett. 35, 4121 (2010)], in which the authors discuss an optimal pulse-width modulation (OPWM) method for sinusoidal fringe generation. We consider that the comparison of the squared binary method (SBM) and the sinusoidal pulse-width modulation (SPWM) method has considerable deficiencies.

  3. A New Selective Harmonic Elimination Pulse- Width and Amplitude Modulation (SHEPWAM) for Drive Applications

    DEFF Research Database (Denmark)

    Ghoreishy, Hoda; Varjani, Ali Yazdian; Mohamadian, Mustafa


    Compared to the conventional selective harmonic elimination-pulse width modulation (SHE-PWM), the selective harmonic elimination-pulse width and amplitude modulation (SHE-PWAM) control strategy results in significant improvements in the performance of CHB inverters. This fact is due to considering...

  4. Suppression of high-frequency perturbations in pulse-width modulation


    Knott, Arnold


    A method suppresses high-frequency perturbations in a pulse-width modulated signal. The pulse-width modulation may superpose a carrier signal onto an input signal having a predetermined modulation frequency. The carrier signals may be phase-shifted. The resulting modulated signals may then be filtered and combined.

  5. Determination of level widths in 15N using nuclear resonance fluorescence

    Directory of Open Access Journals (Sweden)

    Szücs T.


    Full Text Available Level widths in 15N have been measured with the nuclear resonance fluorescence (NRF technique. Solid nitrogen compounds, bremsstrahlung, and HPGe detectors have been used as target, beam, and detectors, respectively. The preliminarily level widths are in agreement with the literature values, but more precise.

  6. Case study: Equivalent widths of the Middle Rio Grande, New Mexico (United States)

    Claudia Leon; Pierre Y. Julien; Drew C. Baird


    Successive reaches of the Rio Grande have maintained equivalent channel widths of 50 and 250 m, respectively, over long periods of time. It is hypothesized that alluvial channels adjust bed slope to match the long-term changes in channel width. Analytical relationships show that wider river reaches develop steeper slopes. A modeling approach using daily water and...

  7. Mechanical and metabolic determinants of the preferred step width in human walking. (United States)

    Donelan, J M; Kram, R; Kuo, A D


    We studied the selection of preferred step width in human walking by measuring mechanical and metabolic costs as a function of experimentally manipulated step width (0.00-0.45L, as a fraction of leg length L). We estimated mechanical costs from individual limb external mechanical work and metabolic costs using open circuit respirometry. The mechanical and metabolic costs both increased substantially (54 and 45%, respectively) for widths greater than the preferred value (0.15-0.45L) and with step width squared (R(2) = 0.91 and 0.83, respectively). As predicted by a three-dimensional model of walking mechanics, the increases in these costs appear to be a result of the mechanical work required for redirecting the centre of mass velocity during the transition between single stance phases (step-to-step transition costs). The metabolic cost for steps narrower than preferred (0.10-0.00L) increased by 8%, which was probably as a result of the added cost of moving the swing leg laterally in order to avoid the stance leg (lateral limb swing cost). Trade-offs between the step-to-step transition and lateral limb swing costs resulted in a minimum metabolic cost at a step width of 0.12L, which is not significantly different from foot width (0.11L) or the preferred step width (0.13L). Humans appear to prefer a step width that minimizes metabolic cost.

  8. Spectral width of SuperDARN echoes: measurement, use and physical interpretation

    Directory of Open Access Journals (Sweden)

    P. V. Ponomarenko


    Full Text Available The Doppler velocity and spectral width are two important parameters derived from coherent scatter radar systems. The Super Dual Auroral Radar Network (SuperDARN is capable of monitoring most of the high latitude region where different boundaries of the magnetosphere map to the ionosphere. In the past, the spectral width, calculated from SuperDARN data, has been used to identify the ionosphere footprints of various magnetosphere boundaries. In this paper we examine the way the spectral width is presently estimated from the radar data and describe several recommendations for improving the algorithm. Using the improved algorithm, we show that typical spectral width values reported in the literature are most probably overestimated. The physical interpretation of the cause of various magnitudes of the spectral width is explored in terms of the diffusion and dynamics of ionospheric plasma irregularities.

  9. Wave Energy, Lever Operated Pivoting Float LOPF Study

    DEFF Research Database (Denmark)

    Margheritini, Lucia

    for maximum energy output in regular as well as irregular waves. During storms the buoy pivots and streamlines itself to minimize loads on the mooring line. A conservative estimate shows that a full scale system for North Sea conditions has a float size width of 15 m that will, with 60% generator efficiency......The fully instrumented Resen Waves Lever Operated Pivoting Float LOPF wave energy buoy model has gone through the first stage of testing in regular waves in scale 1:25 of the North Sea wave conditions, in the 3D deep wave basin at the Hydraulic and Coastal Engineering Laboratory of Aalborg...... University in Denmark. The model size was 60cm W x 90cm L x 21cm H. The 60 cm width pointed towards the wave front. The LOPF buoy is characterized by a simple mechanical design with few moving parts and direct electrical output and it is taut moored to the sea bed, so all forces are referenced to the seabed...

  10. Reliability of permanent mandibular first molars and incisors widths as predictor for the width of permanent mandibular and maxillary canines and premolars

    Directory of Open Access Journals (Sweden)

    Madhulika Mittar


    Full Text Available Aim: Preventive measures are necessary to prevent a potential irregularity from progressing into a more severe malocclusion. The determination of the tooth size-arch length discrepancy in mixed dentition requires an accurate prediction of the mesiodistal widths of the unerupted permanent teeth. Materials and Methods: For the study, 200 subjects in the age group of 16-25 years were selected from various colleges of M. M. University. The mesiodistal width of permanent mandibular incisors, first molars, canines and premolars of both arches were measured on the subject cast using an electronic digital caliper. Statistical analysis showed a significant difference between mesiodistal tooth widths of males and females. Linear regression equation was determined to predict the sum of mandibular and maxillary permanent canines and premolars using mandibular first molars plus the four mandibular incisors as predictors. Results: There was no significant difference between the actual and predicted width of sum of permanent canines and premolars using regression equations. The predicted widths of both arches using Tanaka and Johnston equations showed significant differences. Determined regression equations for males were accurate in male samples and determined regression equation for females were accurate in female samples for both arches.

  11. Computer simulations of cosmic-ray diffusion near supernova remnant shock waves (United States)

    Max, C. E.; Zachary, A. L.; Arons, J.


    A plasma simulation model was used to study the resonant interactions between streaming cosmic-ray ions and a self-consistent spectrum of Alfven waves, such as might exist in the interstellar medium upstream of a supernova remnant shock wave. The computational model is a hybrid one, in which the background interstellar medium is an MHD fluid and the cosmic-rays are discrete kinetic particles. The particle sources for the electromagnetic fields are obtained by averaging over the fast cyclotron motions. When the perturbed magnetic field is larger than 10 percent of the background field, the macro- and microphysics are no longer correctly predicted by quasi-linear theory. The particles are trapped by the waves and show sharp jumps in their pitch-angles relative to the background magnetic field, and the effective ninety-degree scattering time for diffusion parallel to the background magnetic field is reduced to between 5 and 30 cyclotron periods. Simulation results suggest that Type 1 supernova remnants may be the principal sites of cosmic ray acceleration.

  12. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak


    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benifit...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....


    DEFF Research Database (Denmark)


    Broadband travelling wave semiconductor optical amplifier (100, 200, 300, 400, 800) for amplification of light, wherein the amplifier (100, 200, 300, 400, 800) comprises a waveguide region (101, 201, 301, 401, 801) for providing confinement of the light in transverse directions and adapted...... for propagation of the light in at least a first mode along a longitudinal axis (102, 202, 302) of the amplifier (100, 200, 300, 400, 800) in a propagation direction (103, 203, 303), and wherein the waveguide region (101, 201, 301, 401, 801) comprises a gain region (104, 204, 304, 404, 804) for amplifying......, 301, 401, 801) increases along the longitudinal axis (102, 202, 302), and wherein the ratio between the width (106, 206, 306) of the waveguide region (101, 201, 301, 401, 801) and the width (107, 207, 307) of the gain region (104, 204, 304, 404, 804) increases along the longitudinal axis (102, 202...

  14. Compressional wave events in the dawn plasma sheet observed by Interball-1

    Directory of Open Access Journals (Sweden)

    O. Verkhoglyadova


    Full Text Available Compressional waves with periods greater than 2 min (about 10-30 min at low geomagnetic latitudes, namely compressional Pc5 waves, are studied. The data set obtained with magnetometer MIF-M and plasma analyzer instrument CORALL on board the Interball-1 are analyzed. Measurements performed in October 1995 and October 1996 in the dawn plasma sheet at -30 RE ≤ XGSM and |ZGSM| ≤ 10 RE are considered. Anti-phase variations of magnetic field and ion plasma pressures are analyzed by searching for morphological similarities in the two time series. It is found that longitudinal and transverse magnetic field variations with respect to the background magnetic field are of the same order of magnitude. Plasma velocities are processed for each time period of the local dissimilarity in the pressure time series. Velocity disturbances occur mainly transversely to the local field line. The data reveal the rotation of the velocity vector. Because of the field line curvature, there is no fixed position of the rotational plane in the space. These vortices are localized in the regions of anti-phase variations of the magnetic field and plasma pressures, and the vortical flows are associated with the compressional Pc5 wave process. A theoretical model is proposed to explain the main features of the nonlinear wave processes. Our main goal is to study coupling of drift Alfven wave and magnetosonic wave in a warm inhomogeneous plasma. A vortex is the partial solution of the set of the equations when the compression is neglected. A compression effect gives rise to a nonlinear soliton-like solution.Key words. Magnetosphere physics (magnetotail · Space plasma physics (kinetic and MHD theory; non-linear phenomena

  15. a Simple Line Wave Generator Using Commercial Explosives (United States)

    Morris, John S.; Jackson, Scott I.; Hill, Larry G.


    We present a simple and inexpensive explosive line wave generator which has been designed using commercial sheet explosive and plane wave lens concepts. The line wave generator is constructed using PETN- and RDX-based sheet explosive for the slow and fast components, respectively, and permits the creation of any desired line width. A series of experiments were performed on a 100-mm design, measuring the detonation arrival time at the output of the generator using a streak camera. An iterative technique was used to adjust the line wave generator's slow and fast components, so as to minimize the arrival time deviation. Preliminary tests achieved a wavefront simultaneity of 100 ns with a 7.0 mm/μs detonation wave. Designs, test results, and concepts for improvements are discussed.

  16. Exact traveling wave solutions of some nonlinear evolution equations (United States)

    Kumar, Hitender; Chand, Fakir


    Using a traveling wave reduction technique, we have shown that Maccari equation, (2+1)-dimensional nonlinear Schrödinger equation, medium equal width equation, (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation, (2+1)-dimensional long wave-short wave resonance interaction equation, perturbed nonlinear Schrödinger equation can be reduced to the same family of auxiliary elliptic-like equations. Then using extended F-expansion and projective Riccati equation methods, many types of exact traveling wave solutions are obtained. With the aid of solutions of the elliptic-like equation, more explicit traveling wave solutions expressed by the hyperbolic functions, trigonometric functions and rational functions are found out. It is shown that these methods provide a powerful mathematical tool for solving nonlinear evolution equations in mathematical physics. A variety of structures of the exact solutions of the elliptic-like equation are illustrated.

  17. Computer-aided system for measuring the mandibular cortical width on panoramic radiographs in osteoporosis diagnosis (United States)

    Arifin, Agus Zainal; Asano, Akira; Taguchi, Akira; Nakamoto, Takashi; Ohtsuka, Masahiko; Tanimoto, Keiji


    Osteoporotic fractures are associated with substantial morbidity, increased medical cost and high mortality risk. Several equipments of bone assessment have been developed to identify individuals, especially postmenopausal women, with high risk of osteoporotic fracture; however, a large segment of women with low skeletal bone mineral density (BMD), namely women with high risk of osteoporotic fractures, cannot be identified sufficiently because osteoporosis is asymptomatic. Recent studies have been demonstrating that mandibular inferior cortical width manually measured on panoramic radiographs may be useful for the identification of women with low BMD. Automatic measurement of cortical width may enable us to identify a large number of asymptomatic women with low BMD. The purpose of this study was to develop a computer-aided system for measuring the mandibular cortical width on panoramic radiographs. Initially, oral radiologists determined the region of interest based on the position of mental foramen. Some enhancing image techniques were applied so as to measure the cortical width at the best point. Panoramic radiographs of 100 women who had BMD assessments of the lumbar spine and femoral neck were used to confirm the efficacy of our new system. Cortical width measured with our system was compared with skeletal BMD. There were significant correlation between cortical width measured with our system and skeletal BMD. These correlations were similar with those between cortical width manually measured by the dentist and skeletal BMD. Our results suggest that our new system may be useful for mass screening of osteoporosis.

  18. Relationship between width and length ratios of upper anterior teeth in young Chilean population.

    Directory of Open Access Journals (Sweden)

    Jorge Troncoso-Pazos


    Full Text Available Introduction: Knowledge about the size and proportion of upper anterior teeth allows dental rehabilitation taking into consideration the local parameters of a population. The aim of this research is to determine the width, length and the relationship between width and length of central incisor, lateral incisor and canine teeth in both sexes in young Chilean population. Methodology: A cross-sectional study was performed. Study subjects included 187 dentistry students from two Chilean cities (mean age 21.35±2.7 years, 52.9% men. The teeth width and height were measured and the width/height ratio was calculated. Differences in measurements according to sex was analyzed (p<0.05; STATA v.10.0. Results: The width and height of the teeth were statistically and proportionally larger in men (p<0.05. The width/height ratio of lateral and canine incisors was significantly higher in women (p<0.05. Conclusion: In a sample of young Chileans, upper anterior teeth were longer and wider in men. However, the width/height ratio of teeth was found to be significantly higher in women.

  19. Elevated red blood cell distribution width is associated with intrahepatic cholestasis of pregnancy. (United States)

    Vural Yilmaz, Zehra; Gencosmanoglu Turkmen, Gulenay; Daglar, Korkut; Yılmaz, Elif; Kara, Ozgur; Uygur, Dilek


    Intrahepatic cholestasis of pregnancy is the most common pregnancy specific liver disease and related with adverse maternal and perinatal outcome. Red blood cell distribution width, an anisocytosis marker in a complete blood count, has been used as an inflammation marker in various diseases. However the association of red blood cell distribution width with intrahepatic cholestasis of pregnancy is unknown. We aimed to evaluate the relationship between red blood cell distribution width and intrahepatic cholestasis of pregnancy. Ninety pregnant women with intrahepatic cholestasis of pregnancy and ninety healthy pregnant women were included in the study. Their clinical and laboratory characteristics including red blood cell distribution width, liver function tests, fasting and postprandial bile acid concentrations were analyzed. Serum red blood cell distribution width cell levels were significantly higher in pregnants with intrahepatic cholestasis of pregnancy than healthy pregnants. We also demonstrated that red blood cell distribution Width levels were higher in severe disease than mild disease and was significantly correlated with fasting and postprandial bile acid concentration in intrahepatic cholestasis of pregnancy group. Our study showed that red blood cell distribution width, an easy and inexpensive marker; were associated with intrahepatic cholestasis of pregnancy and can be used as a diagnostic and prognostic marker in intrahepatic cholestasis of pregnancy.

  20. Smith-Purcell radiation from a charge moving above a grating of finite length and width

    Directory of Open Access Journals (Sweden)

    Amit S. Kesar


    Full Text Available Smith-Purcell radiation (SPR, emitted when a charge passes above a periodic grating, is important for applications such as terahertz production and nondestructive bunch-length diagnostics. The grating width is shown to become an important parameter for accurately predicting the radiation, and especially in the highly relativistic regime where the charge wakefield considerably stretches in the transverse direction. The SPR radiation is rigorously calculated by the electric-field integral equation (EFIE method for a grating of finite width and length. The integral equation is arranged as a multilevel block-Toeplitz matrix by using symmetry under translation with respect to the grating period and width directions. Following Barrowes et al. [Microw. Opt. Technol. Lett. 31, 28 (2001MOTLEO0895-247710.1002/mop.1348] enhanced computational efficiency can be achieved by matrix to vector projection of the essential matrix elements. A numerical example is calculated for a relativistic (γ=36, 1-mm long, bunch traveling 0.6-mm above a ten-period grating with a period of 2.0 mm and width of 10 mm. The SPR resonance relationship and its broadening due to the finite number of grooves are consistent with the closed-form formulations. The surface current was shown to be concentrated along the center of the grating and decreasing towards its edges. The surface current, power spectrum, and radiated energy were compared to the EFIE formulation in which an infinitely wide grating was assumed. The above parameters resulted in considerable difference of up to a factor of 2.5 between the finite width and the infinitely wide grating assumption, which means that for accurate calculations the grating width should be taken into consideration. A general rule for the required grating width to achieve an accurate SPR radiation result relative to the infinite width result, and the expected accuracy by the infinite width assumption for most radiation angles, is provided.

  1. Wave-induced stress and breaking of sea ice in a coupled hydrodynamic discrete-element wave-ice model (United States)

    Herman, Agnieszka


    In this paper, a coupled sea ice-wave model is developed and used to analyze wave-induced stress and breaking in sea ice for a range of wave and ice conditions. The sea ice module is a discrete-element bonded-particle model, in which ice is represented as cuboid grains floating on the water surface that can be connected to their neighbors by elastic joints. The joints may break if instantaneous stresses acting on them exceed their strength. The wave module is based on an open-source version of the Non-Hydrostatic WAVE model (NHWAVE). The two modules are coupled with proper boundary conditions for pressure and velocity, exchanged at every wave model time step. In the present version, the model operates in two dimensions (one vertical and one horizontal) and is suitable for simulating compact ice in which heave and pitch motion dominates over surge. In a series of simulations with varying sea ice properties and incoming wavelength it is shown that wave-induced stress reaches maximum values at a certain distance from the ice edge. The value of maximum stress depends on both ice properties and characteristics of incoming waves, but, crucially for ice breaking, the location at which the maximum occurs does not change with the incoming wavelength. Consequently, both regular and random (Jonswap spectrum) waves break the ice into floes with almost identical sizes. The width of the zone of broken ice depends on ice strength and wave attenuation rates in the ice.

  2. Barrier discharges driven by sub-microsecond pulses at atmospheric pressure: Breakdown manipulation by pulse width

    Energy Technology Data Exchange (ETDEWEB)

    Hoder, Tomas; Hoeft, Hans; Kettlitz, Manfred; Weltmann, Klaus-Dieter; Brandenburg, Ronny [Leibniz Institute for Plasma Science and Technology, INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)


    Barrier discharges at atmospheric pressure in nitrogen-oxygen mixture powered by high voltage pulses of widths between 10 {mu}s and 200 ns were investigated. The development of the microdischarges on rising and falling slopes was recorded by streak and intensified CCD cameras simultaneously. The breakdown on the falling slope strongly depends on the pulse width. As a result of pulse width variation the starting point of ignition changes and positive and negative streamers occur simultaneously in the falling slope. The observed effect is caused by the electric field rearrangement in the gap due to the different positive ion densities related to their gap crossing times.

  3. Attentional focus and grip width influences on bench press resistance training

    DEFF Research Database (Denmark)

    Calatayud, Joaquin; Vinstrup, Jonas; Jakobsen, Markus D.


    This study evaluated the influence of different attentional foci for varied grip widths in the bench press. Eighteen resistance-trained men were familiarized with the procedure and performed a one-repetition maximum (1RM) test during Session 1. In Session 2, they used three different standardized...... grip widths (100%, 150%, and 200% of biacromial width distance) in random order at 50% of 1RM while also engaged in three different attention focus conditions (external focus on the bench press, internal focus on pectoralis major muscles, and internal focus on triceps brachii muscles). Surface...

  4. The determination of shock ramp width using the noncoplanar magnetic field component


    Newbury, J. A.; Russell, C. T.; Gedalin, M.


    We determine a simple expression for the ramp width of a collisionless fast shock, based upon the relationship between the noncoplanar and main magnetic field components. By comparing this predicted width with that measured during an observation of a shock, the shock velocity can be determined from a single spacecraft. For a range of low-Mach, low-beta bow shock observations made by the ISEE-1 and -2 spacecraft, ramp widths determined from two-spacecraft comparison and from this noncoplanar c...

  5. Visible and characteristic new physics effects on the total and partial Z widths (United States)

    Renard, F. M.; Verzegnassi, C.


    We show that a class of models predicting a new vector boson Z‧ of extended gauge E 6 origin has the rather characteristic property of being able to produce visible and negative shifts, with respect to the MSM predictions, both in the total width and in the leptonic width of the Z. This feature is not shared by other models of extended gauge symmetry. We also show that a certain combination of hadronic and leptonic widths is “blind” with respect to the considered Z-Z‧ mixing could, therefore, be used to reveal in an unbiased way different signals of new physics.

  6. Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs

    Directory of Open Access Journals (Sweden)

    Zhi-Bin Wang


    Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.

  7. The physics of waves

    CERN Document Server

    Georgi, Howard


    The first complete introduction to waves and wave phenomena by a renowned theorist. Covers damping, forced oscillations and resonance; normal modes; symmetries; traveling waves; signals and Fourier analysis; polarization; diffraction.

  8. Generation of a chirp-free optical pulse train with tunable pulse width based on a polarization modulator and an intensity modulator. (United States)

    Pan, Shilong; Yao, Jianping


    A simple method for the generation of a chirp-free optical pulse train with tunable pulse width using a polarization modulator (PolM) and a zero-chirp intensity modulator (IM) is proposed and demonstrated. In the proposed system, a light wave with its polarization direction oriented at an angle of 45 degrees with respect to the principal axis of the PolM is polarization modulated by a sinusoidal drive signal. An optical polarizer is connected after the PolM to convert the polarization-modulated signals to a pulse train with the main peaks having a narrow pulse width. Then, the main peaks are selected by the IM, leading to the generation of a short optical pulse train with a repetition rate that is identical to or twice the frequency of the sinusoidal drive signal, depending on the dc bias of the IM. The pulse width of the generated pulse is easily tuned by adjusting the phase modulation index of the PolM. An experiment is carried out, and a pulse train with a duty cycle as small as 8.16% is generated.

  9. Measurement of radiative widths of a{sub 2}(1320) and π{sub 2}(1670)

    Energy Technology Data Exchange (ETDEWEB)

    Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Schmidt, A. [Physikalisches Institut, Universitaet Erlangen-Nuernberg, Erlangen (Germany); Akhunzyanov, R.; Alexeev, G.D.; Anosov, V.; Efremov, A.; Gavrichtchouk, O.P.; Guskov, A.; Ivanov, A.; Ivanshin, Yu.; Kisselev, Yu.; Kouznetsov, O.; Kroumchtein, Z.V.; Kuchinski, N.; Meshcheryakov, G.; Nagaytsev, A.; Orlov, I.; Olshevsky, A.G.; Rossiyskaya, N.S.; Savin, I.A.; Shevchenko, O.Yu.; Slunecka, M.; Zemlyanichkina, E. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Alexeev, M.G.; Birsa, R.; Dalla Torre, S.; Dasgupta, S.; Gobbo, B.; Levorato, S.; Sozzi, F.; Steiger, L.; Tessaro, S.; Tessarotto, F. [Trieste Section of INFN, Trieste (Italy); Amoroso, A.; Balestra, F.; Chiosso, M.; Gnesi, I.; Grasso, A.; Kotzinian, A.M.; Parsamyan, B.; Sosio, S. [Department of Physics, University of Turin, Turin (Italy); Torino Section of INFN, Turin (Italy); Andrieux, V.; Bedfer, Y.; Boer, M.; Burtin, E.; Capozza, L.; Curiel, Q.; Ferrero, A.; Hose, N. d' ; Kunne, F.; Magnon, A.; Marchand, C.; Neyret, D.; Platchkov, S.; Thibaud, F.; Vandenbroucke, M.; Wollny, H. [CEA IRFU/SPhN Saclay, Gif-sur-Yvette (France); Austregesilo, A.; Bicker, K. [CERN, Geneva 23 (Switzerland); Physik Department, Technische Universitaet Muenchen, Garching (Germany); Badelek, B. [Faculty of Physics, University of Warsaw, Warsaw (Poland); Barth, J.; Bieling, J.; Goertz, S.; Hahne, D.; Klein, F.; Panknin, R.; Pretz, J.; Schmieden, H.; Windmolders, R. [Physikalisches Institut, Universitaet Bonn, Bonn (Germany); Baum, G. [Fakultaet fuer Physik, Universitaet Bielefeld, Bielefeld (Germany); Beck, R.; Bisplinghoff, J.; Eversheim, P.D.; Hinterberger, F.; Jahn, R.; Joosten, R. [Helmholtz-Institut fuer Strahlen- und Kernphysik, Universitaet Bonn, Bonn (Germany); Berlin, A.; Gautheron, F.; Koivuniemi, J.H.; Meyer, W.; Reicherz, G.; Wang, L. [Institut fuer Experimentalphysik, Universitaet Bochum, Bochum (Germany); Bernhard, J.; Harrach, D. von; Jasinski, P.; Kabuss, E.; Nerling, F.; Ostrick, M.; Pochodzalla, J.; Weisrock, T.; Wilfert, M. [Institut fuer Kernphysik, Universitaet Mainz, Mainz (Germany); Bodlak, M.; Finger, M.; Finger, M.; Matousek, J.; Pesek, M. [Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Bordalo, P.; Franco, C.; Nunes, A.S.; Quaresma, M.; Quintans, C.; Ramos, S.; Silva, L.; Stolarski, M. [LIP, Lisbon (Portugal); Bradamante, F. [CERN, Geneva 23 (Switzerland); Department of Physics, University of Trieste, Trieste (Italy); Bressan, A.; Elia, C.; Makke, N.; Martin, A.; Sbrizzai, G.; Schiavon, P. [Trieste Section of INFN, Trieste (Italy); Department of Physics, University of Trieste, Trieste (Italy); Buechele, M.; Fischer, H.; Gorzellik, M.; Guthoerl, T.; Heinsius, F.H.; Herrmann, F.; Joerg, P.; Koenigsmann, K.; Nowak, W.D.; Schill, C.; Schmidt, K.; Schopferer, S.; Sirtl, S.; Szameitat, T.; Ter Wolbeek, J. [Physikalisches Institut, Universitaet Freiburg, Freiburg (Germany); Chung, S.U.; Friedrich, J.M.; Grabmueller, S.; Grube, B.; Haas, F.; Hoeppner, C.; Huber, S.; Ketzer, B.; Kraemer, M.; Nagel, T.; Neubert, S.; Paul, S.; Uhl, S. [Physik Department, Technische Universitaet Muenchen, Garching (Germany); Cicuttin, A.; Crespo, M.L. [Trieste Section of INFN, Trieste (Italy); Abdus Salam ICTP, Trieste (Italy); Dasgupta, S.S.; Sarkar, S.; Sinha, L. [Matrivani Institute of Experimental Research and Education, Calcutta (India); Denisov, O.Yu.; Maggiora, A.; Takekawa, S. [Torino Section of INFN, Turin (Italy); Donskov, S.V.; Filin, A.; Khaustov, G.V.; Khokhlov, Yu.A.; Kolosov, V.N.; Konstantinov, V.F.; Lednev, A.A.; Mikhailov, Yu.V.; Nikolaenko, V.I.; Polyakov, V.A.; Ryabchikov, D.I.; Samoylenko, V.D. [State Scientific Center Institute for High Energy Physics of National Research Center ' ' Kurchatov Institute' ' , Protvino (Russian Federation); Doshita, N.; Hashimoto, R.; Ishimoto, S.; Iwata, T.; Kondo, K.; Matsuda, H.; Michigami, T.; Miyachi, Y.; Suzuki, H. [Yamagata University, Yamagata (Japan); Duic, V. [Department of Physics, University of Trieste, Trieste (Italy); Duennweber, W.; Faessler, M.; Geyer, R.; Schlueter, T.; Uman, I. [Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Munich (Germany); Dziewiecki, M.; Kurjata, R.P.; Marzec, J.; Rychter, A.; Zaremba, K.; Ziembicki, M. [Institute of Radioelectronics, Warsaw University of Technology, Warsaw (Poland); Fresne von Hohenesche, N. du [CERN, Geneva 23 (Switzerland); Institut fuer Kernphysik, Universitaet Mainz, Mainz (Germany); Frolov, V.; Mallot, G.K.; Rocco, E.; Schoenning, K.; Schott, M. [CERN, Geneva 23 (Switzerland); Gerassimov, S.; Konorov, I. [Lebedev Physical Institute, Moscow (Russian Federation); Physik Department, Technische Universitaet Muenchen, Garching (Germany); Horikawa, N. [Nagoya University, Nagoya (Japan); Jary, V.; Kral, Z.; Novy, J.; Virius, M.; Vondra, J. [Czech Technical University in Prague, Prague (Czech Republic); Klimaszewski, K.; Kurek, K.; Sandacz, A.; Sulej, R.; Szabelski, A.; Sznajder, P. [National Centre for Nuclear Research, Warsaw (PL); Panzieri, D. [Torino Section of INFN, Turin (IT); University of Eastern Piedmont, Alessandria (IT); Srnka, A. [Institute of Scientific Instruments, AS CR, Brno (CZ); Sulc, M. [Technical University in Liberec, Liberec (CZ); Zavertyaev, M. [Lebedev Physical Institute, Moscow (RU); Matsuda, T. [University of Miyazaki, Miyazaki (JP); Lichtenstadt, J. [School of Physics and Astronomy, Tel Aviv University, Tel Aviv (IL)


    The COMPASS Collaboration at CERN has investigated the reaction π{sup -}γ → π{sup -}π{sup -}π{sup +} embedded in the Primakoff reaction of 190 GeV pions scattering in the Coulomb field of a lead target, π{sup -}Pb → π{sup -}π{sup -}π{sup +} Pb. Exchange of quasi-real photons is selected by isolating the sharp Coulomb peak observed at momentum transfer below 0.001 (GeV/c){sup 2}. Using a partial-wave analysis the amplitudes and relative phases of the a{sub 2}(1320) and π{sub 2}(1670) mesons have been extracted, and the Coulomb and the diffractive contributions have been disentangled. Measuring absolute production cross sections we have determined the radiative width of the a{sub 2}(1320) to be Γ{sub 0}(a{sub 2}(1320) → πγ) = (358 ± 6{sub stat} ± 42{sub syst}) keV. As the first measurement, Γ{sub 0}(π{sub 2}(1670) → πγ) = (181 ± 11{sub stat} ± 27{sub syst}) keV . (BR{sup PDG}{sub f{sub 2π}}/BR{sub f{sub 2π}}) is obtained for the radiative width of the π{sub 2}(1670), where in this analysis the branching ratio BR{sup PDG}{sub f{sub 2π}} = 0.56 has been used. We compare these values to previous measurements and theoretical predictions. (orig.)

  10. Effects of trail width on the densities of four species of breeding birds in chaparral (United States)

    Aaron L. Holmes; Geoffrey R. Geupel


    We investigated densities of four common species, Wrentit (Chamaea fasciata), Spotted Towhee (Piplio erythrophthalmus), Bewick’s Wren (Thryomanes bewickii), and Orange-crowned Warbler (Vermivora celata) in relation to trail width in chaparral habitats of Mt. Tamalpais, Marin...

  11. VizieR Online Data Catalog: 6 giants atomic data and equivalent widths (Mucciarelli+, 2017) (United States)

    Mucciarelli, A.; Monaco, L.; Bonifacio, P.; Saviane, I.


    Atomic data (wavelength, oscillator strength, excitation potential and measured equivalent width) for all the measured spectral lines in six giant stars of the stellar cluster Gaia1 are provided. (2 data files).

  12. Total Ionizing Dose Test Report for the UC1823A Pulse Width Modulator (United States)

    Chen, Dakai; Forney, James


    The purpose of this study is to examine the total ionizing dose susceptibility for the UC1823A pulse width modulator manufactured by Texas Instruments, Inc. The part is suspected to be vulnerable to enhanced low dose rate sensitivity (ELDRS).

  13. Photoluminescence study of InGaN/GaN double quantum wells with varying barrier widths

    CERN Document Server

    Ryu, M Y; Shin, E J; Lee, J I; Yu, S K; Oh, E S; Park, Y J; Park, H S; Kim, T I


    We report the results of photoluminescence (PL) and time-resolved PL studies on InGaN/GaN double quantum well (DQW) samples with different barrier widths. The barrier-width dependence of the PL emission energy and intensity are discussed. The PL as a function of excitation density can be well explained in terms of the quantum-confined Stark effect (QCSE). The temporal behavior of the PL was also studied. As the barrier width increases, the decay times tau sub 1 and tau sub 2 , decrease from 1.02 ns and 6.99 ns to 0.32 ns and 1.09 ns, respectively. The PL efficiency and the decay lifetime depend on the barrier width.

  14. Fringe structures and tunable bandgap width of 2D boron nitride nanosheets

    Directory of Open Access Journals (Sweden)

    Peter Feng


    Full Text Available We report studies of the surface fringe structures and tunable bandgap width of atomic-thin boron nitride nanosheets (BNNSs. BNNSs are synthesized by using digitally controlled pulse deposition techniques. The nanoscale morphologies of BNNSs are characterized by using scanning electron microscope (SEM, and transmission electron microscopy (TEM. In general, the BNNSs appear microscopically flat in the case of low temperature synthesis, whereas at high temperature conditions, it yields various curved structures. Experimental data reveal the evolutions of fringe structures. Functionalization of the BNNSs is completed with hydrogen plasma beam source in order to efficiently control bandgap width. The characterizations are based on Raman scattering spectroscopy, X-ray diffraction (XRD, and FTIR transmittance spectra. Red shifts of spectral lines are clearly visible after the functionalization, indicating the bandgap width of the BNNSs has been changed. However, simple treatments with hydrogen gas do not affect the bandgap width of the BNNSs.

  15. Effect of Expansion of Fertilization Width on Nitrogen Recovery Rate in Tea Plants (United States)

    Nonaka, Kunihiko; Hirono, Yuhei; Watanabe, Iriki

    In cultivation of tea plants, large amounts of nitrogen, compared to amounts used for other crops, have been used for fertilization, resulting in degradation of the soil environment between hedges and an increase in concentrations of nitrate nitrogen in surrounding water systems. To reduce the environmental load, new methods of fertilizer application are needed. This report deals with the effect of expansion of fertilization width on nitrogen recovery rate in tea plants. In the test field, 15 N-labeled ammonium sulfate had been applied over custom fertilization by between-hedges fertilization (fertilization width of 15cm) and wide fertilization (fertilization width of 40cm), nitrogen recovery rates were compared. Expansion of fertilization width resulted in an approximately 30% increase in nitrogen recovery rate compared to that in the case of fertilization between hedges. Increases in nitrogen recovery rates were observed with fallapplied fertilization, spring-applied fertilization, pop-up fertilizer application, and summerapplied fertilization.

  16. The relationship of arch length to alterations in dental arch width. (United States)

    Hnat, W P; Braun, S; Chinhara, A; Legan, H L


    An accurate method is presented for forecasting alterations in arch length related to various width increases in each dental arch. It is based on combined beta and hyperbolic cosine functions which express the expanded dental arches with correlation coefficients of r = 0.98, between measured data and representations of the dental arch. When the midpalatal suture is expanded, canine width and molar width alterations are not equal because the line of action of the expanding force is anterior to the center of resistance of the dentomaxillary complex. Therefore, canine to molar width ratio alterations of 1:1, 1.25:1, and 1.5:1 are examined, and simple linear functions are presented for purposes of predicting changes in arch length.

  17. Ab initio calculation of ICD widths in photoexcited HeNe

    Energy Technology Data Exchange (ETDEWEB)

    Jabbari, G.; Klaiman, S.; Chiang, Y.-C.; Gokhberg, K., E-mail: [Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Trinter, F.; Jahnke, T. [Institut für Kernphysik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, D-60438 Frankfurt (Germany)


    Excitation of HeNe by synchrotron light just below the frequency of the 1s → 3p transition of isolated He has been recently shown to be followed by resonant interatomic Coulombic decay (ICD). The vibrationally resolved widths of the ICD states were extracted with high precision from the photoion spectra. In this paper, we report the results of ab initio calculations of these widths. We show that interaction between electronic states at about the equilibrium distance of HeNe makes dark states of He accessible for the photoexcitation and subsequent electronic decay. Moreover, the values of the calculated widths are shown to be strongly sensitive to the presence of the non-adiabatic coupling between the electronic states participating in the decay. Therefore, only by considering the complete manifold of interacting decaying electronic states a good agreement between the measured and computed ICD widths can be achieved.

  18. Criteria for implementing full-width/depth shoulders to accommodate hard shoulder running. (United States)


    "WisDOT is considering constructing full-width/depth shoulders along certain freeway segments to carry traffic : during future freeway resurfacing or construction projects. The goal of this measure is to minimize lane closures and : congestion. WisDO...

  19. Measurment of the masses and widths of [ital L]=1 charmed mesons

    Energy Technology Data Exchange (ETDEWEB)

    Frabetti, P.L.; Cheung, H.W.K.; Cumalat, J.P.; Dallapiccola, C.; Ginkel, J.F.; Greene, S.V.; Johns, W.E.; Nehring, M.S.; Butler, J.N.; Cihangir, S.; Gaines, I.; Garbincius, P.H.; Garren, L.; Gourlay, S.A.; Harding, D.J.; Kasper, P.; Kreymer, A.; Lebrun, P.; Shukla, S.; Vittone, M.; Bianco, S.; Fabbri, F.L.; Sarwar, S.; Zallo, A.; Culbertson, R.; Gardner, R.W.; Greene, R.; Wiss, J.; Alimonti, G.; Bellini, G.; Caccianiga, B.; Cinquini, L.; Di Corato, M.; Giammarchi, M.; Inzani, P.; Leveraro, F.; Malvezzi, S.; Menasce, D.; Meroni, E.; Moroni, L.; Pedrini, D.; Perasso, L.; Sala, A.; Sala, S.; Torretta, D.; Buchholz, D.; Claes, D.; Gobbi, B.; O' Reilly, B.; Bishop, J.M.; Cason, N.M.; Kennedy, C.J.; Kim, G.N.; Lin, T.F.; Puseljic, D.L.; Ruchti, R.C.; Shephard, W.D.; Swiatek, J.A.; Wu, Z.Y.; Arena, V.; Boca, G.; Castoldi, C.; Gianini, G.; Ratti, S.P.; Riccardi, C.; Vitulo, P.; Lopez, A.; Grim, G.P.; Paolone, V.S.; Yager, P.M.; Wilson, J.R.; Sheldon, P.D.; Davenport, F.; Filaseta, J.F.; Blacket; (E687 Collaboration)


    We report the measurement of masses and widths of the following [ital L]=1 charm mesons by the E687 Collaboration at Fermilab: a [ital D][sub 2][sup *0] state of mass (width) 2453[plus minus]3[plus minus]2 (25[plus minus]10[plus minus]5) MeV/[ital c][sup 2] decaying to [ital D][sup +][pi][sup [minus

  20. Use of the Acoustic Shadow Width to Determine Kidney Stone Size with Ultrasound. (United States)

    Dunmire, Barbrina; Harper, Jonathan D; Cunitz, Bryan W; Lee, Franklin C; Hsi, Ryan; Liu, Ziyue; Bailey, Michael R; Sorensen, Mathew D


    Ultrasound is known to overestimate kidney stone size. We explored measuring the acoustic shadow behind kidney stones combined with different ultrasound imaging modalities to improve stone sizing accuracy. A total of 45 calcium oxalate monohydrate stones were imaged in vitro at 3 different depths with the 3 different ultrasound imaging modalities of conventional ray line, spatial compound and harmonic imaging. The width of the stone and the width of the acoustic shadow were measured by 4 operators blinded to the true size of the stone. Average error between the measured and true stone width was 1.4 ± 0.8 mm, 1.7 ± 0.9 mm, 0.9 ± 0.8 mm for ray line, spatial compound and harmonic imaging, respectively. Average error between the shadow width and true stone width was 0.2 ± 0.7 mm, 0.4 ± 0.7 mm and 0.0 ± 0.8 mm for ray line, spatial compound and harmonic imaging, respectively. Sizing error based on the stone width worsened with greater depth (p <0.001) while the sizing error based on the shadow width was independent of depth. Shadow width was a more accurate measure of true stone size than a direct measurement of the stone in the ultrasound image (p <0.0001). The ultrasound imaging modality also impacted the measurement accuracy. All methods performed similarly for shadow size while harmonic imaging was the most accurate stone size modality. Overall 78% of the shadow sizes were accurate to within 1 mm, which is similar to the resolution obtained with clinical computerized tomography. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Effect of Anode Pulse-Width on the Microstructure and Wear Resistance of Microarc Oxidation Coatings


    Zhen-Wei Li; Shi-Chun Di


    Microarc oxidation (MAO) coatings were prepared on 2024-T4 aluminum alloys using a pulsed bipolar power supply at different anode pulse-widths. After the MAO coatings were formed, the micropores and microcracks on the surface of the MAO coatings were filled with Fluorinated ethylene propylene (FEP) dispersion for preparing MAO self-lubricating composite coatings containing FEP. The effect of the anode pulse-width on the microstructure and wear resistance of the microarc oxidation coatings was...

  2. Ag contact properties according to the front grid width and firing temperature for silicon solar cells. (United States)

    Kim, Seongtak; Park, Sungeun; Kim, Young Do; Bae, Soohyun; Boo, Hyunpil; Kim, Hyunho; Lee, Kyung Dong; Tark, Sung Ju; Kim, Donghwan


    The effect of peak firing temperature and grid width on the contact properties between Ag metal and silicon (n+ emitter) was investigated for screen-printed silicon solar cells. We confirmed the factors that control the specific contact resistance as follows: (1) the Ag coverage fraction on the silicon surface, d(2) the thickness of the glass layer and (3) the etching depth on the n+ emitter region. The lowest specific contact resistance (8.27 mΩ x cm2) was obtained at the optimum firing temperature (720 degrees C). We also found that the grid width affected the contact quality of Ag paste because the contact width related to the absorbed heat of samples in RTP system. For this reason, when the grid width was further reduced, meaning more heat absorption, more Ag crystallites grew and the glass layer thickened. Light I-V results of a 6-inch silicon solar cell with minimum busbar width were similar to the PC1D simulation results. The efficiency was improved by 0.2% with the reduction of the busbar width.

  3. [Effects of urban river width on the temperature and humidity of nearby green belts in summer]. (United States)

    Ji, Peng; Zhu, Chun-Yang; Li, Shu-Hua


    As an important part of urban ecosystem, urban river plays a vital role in improving urban ecological environment. By the methods of small scale quantitative measurement, this paper analyzed the effects of seven urban rivers with different widths along the Third to Fifth Ring in Beijing on the air temperature and relative humidity of nearby green belts. The results showed that urban river width was the main factor affecting the temperature and humidity of nearby green belts. When the river had a width of 8 m, it had no effects in decreasing temperature but definite effects in increasing humidity; when the river width was 14-33 m, obvious effects were observed in decreasing temperature and increasing humidity; when the river had a width larger than 40 m, the effects in decreasing temperature and increasing humidity were significant and tended to be stable. There existed significant differences in the temperature and humidity between the green belts near the seven rivers and the corresponding controls. The critical width of urban river for the obvious effects in decreasing temperature and increasing humidity was 44 m. The regression equation of the temperature (x) and humidity (y) for the seven green belts nearby the urban rivers in summer was y = 173.191-3.247x, with the relative humidity increased by 1.0% when the air temperature decreased by about 0.3 degrees C.

  4. Occlusal Classification in Relation to Original Cleft Width in Patients With Unilateral Cleft Lip and Palate. (United States)

    Huang, Andrew H; Patel, Kamlesh B; Maschhoff, Clayton W; Huebener, Donald V; Skolnick, Gary B; Naidoo, Sybill D; Woo, Albert S


    To determine a correlation between the width of the cleft palate measured at the time of lip adhesion, definitive lip repair, and palatoplasty and the subsequent occlusal classification of patients born with unilateral cleft lip and palate. Retrospective, observational study. Referral, urban, children's hospital Participants : Dental models and records of 270 patients were analyzed. None. Angle occlusion classification. The mean age at which occlusal classification was determined was 11 ± 0.3 years. Of the children studies, 84 were diagnosed with Class I or II occlusion, 67 were diagnosed with Class III occlusion, and 119 were lost to follow up or transferred care. Mean cleft widths were significantly larger in subjects with Class III occlusion for all measures at time of lip adhesion and definitive lip repair (P < .02). At time of palatoplasty, cleft widths were significantly greater at the alveolus (P = .025) but not at the midportion of the hard palate (P = .35) or posterior hard palate (P = .10). Cleft widths from the lip through to the posterior hard palate are generally greater in children who are diagnosed with Class III occlusion later in life. Notably, the alveolar cleft width is significantly greater at each time point for patients who went on to develop Class III occlusion. There were no significant differences in cleft widths between patients diagnosed later with Class I and Class II occlusions.

  5. Mass constraint for a planet in a protoplanetary disk from the gap width (United States)

    Kanagawa, Kazuhiro D.; Muto, Takayuki; Tanaka, Hidekazu; Tanigawa, Takayuki; Takeuchi, Taku; Tsukagoshi, Takashi; Momose, Munetake


    A giant planet creates a gap in a protoplanetary disk, which might explain the observed gaps in protoplanetary disks. The width and depth of the gaps depend on the planet mass and disk properties. We have performed two-dimensional hydrodynamic simulations for various planet masses, disk aspect ratios, and viscosities, to obtain an empirical formula for the gap width. The gap width is proportional to the square root of the planet mass, -3/4 the power of the disk aspect ratio and -1/4 the power of the viscosity. This empirical formula enables us to estimate the mass of a planet embedded in the disk from the width of an observed gap. We have applied the empirical formula for the gap width to the disk around HL Tau, assuming that each gap observed by the Atacama Large Millimeter/submillimeter Array (ALMA) observations is produced by planets, and discussed the planet masses within the gaps. The estimate of planet masses from the gap widths is less affected by the observational resolution and dust filtration than that by the gap depth.

  6. Gap Width Study and Fixture Design in Laser Butt-Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    This paper discusses some practical consideration for design of a mechanical fixture, which enables to accurately measure the width of a gap between two stainless steel workpieces and to steadfastly clamp the workpieces for butt-welding with a high power CO2 laser.With such a fixture, a series...... of butt-welding experiment is successfully carried out in order to find the maximum allowable gap width in laser butt-welding. The gap width study (GWS) is performed on the material of SST of W1.4401 (AISI 316) under various welding conditions, which are the gap width : 0.00-0.50 mm, the welding speed : 0.......5-2.0 m/min, the laser power : 2 and 2.6 kW and the focal point position : 0 and -1.2 mm. Quality of all the butt welds are destructively tested according to ISO 13919-1.Influences of the variable process parameters to the maximum allowable gap width are observed as (1) the maximum gap width is inversely...

  7. Intraoperative Assessment of Facial Nerve Trunk Width in Early Childhood With Cervicofacial Lymphatic Malformation. (United States)

    Kim, Ara; Seo, Jeong-Meen; Lim, So Young


    Facial nerve damage during head and neck surgery has long been an important issue. However, few publications on the gross anatomy of the facial nerve are available in the young population. The aim of this study was to provide in vivo measurements of the facial nerve trunk during lymphatic malformation (LM) resection and to determine the association between the trunk width and patient- and disease-related variables. We conducted a retrospective analysis of 11 consecutive pediatric patients (11 facial nerve trunks) who underwent cervicofacial LM resection. The facial nerve of the affected side was dissected, and its trunk width at bifurcation was measured using calipers under a microscope during the operation. Eleven patients younger than 6 years were enrolled. The median width of the facial nerve in patients younger than 1 year was 1.15 mm; it was 2.5 mm in those older than 1 year. Trunk width was significantly greater in patients older than 1 year than those younger than 1 year, whereas no statistical significance was found when comparing other age groups. Patient weight was positively correlated with trunk width, whereas LM grade and diameter showed no significant correlation. The significantly greater width of the facial nerve trunk in LM patients older than 1 year than those younger than 1 year suggests that the age of 1 may be a threshold for facial nerve hypertrophy and growth acceleration. This study provides informative in vivo data to help understand facial nerve characteristics in young patients.

  8. Human Mesiodistal Tooth Width Measurements and Comparison with Dental Cast in a Bangladeshi Population. (United States)

    Alam, Mohammad Khursheed; Shahid, Fazal; Purmal, Kathiravan; Sikder, M A; Saifuddin, Mohammed


    This analysis was aimed to determine the mesiodistal tooth width of human teeth and to compare with the measurements on plaster model in a Bangladeshi population. The samples of 2,892 teeth of Bangladeshi subjects were collected for this purpose. This article presents mesiodistal tooth width measurements made on all types of teeth and compares with the mesiodistal tooth width measurements of dental cast collected from Bangladeshi subjects between the ages of 18 and 24 years. The mesiodistal dimension was recorded, involving the maximum mesiodistal dimension of each tooth when measurement was rendered parallel to the occlusal and labial surfaces. Descriptive and comparative statistics were applied. The mean, standard deviation and 95% confidence interval of mesiodistal tooth width measurements were determined and have been with the mesiodistal tooth width measurements of dent al cast. Significant differences have been observed between mesiodistal tooth size of direct measurement on tooth (DMT) and measurement on plaster model (MPM) for the maxillary first molar (p < 0.001) and mandibular incisors to first premolar (p < 0.001). These data should prove to be helpful to the practitioner for performing successful orthodontic treatment in Bangladeshi population. Direct measurement of mesiodistal tooth width and individual variation of maxillary and mandibular permanent central incisor to first molar of the Bangladeshi individuals showed some distinguishable features, which will certainly help an orthodontist for diagnosis and treatment plan of an orthodontic case.

  9. Statistical evaluation of metal fill widths for emulated metal fill in parasitic extraction methodology (United States)

    J-Me, Teh; Noh, Norlaili Mohd.; Aziz, Zalina Abdul


    In the chip industry today, the key goal of a chip development organization is to develop and market chips within a short time frame to gain foothold on market share. This paper proposes a design flow around the area of parasitic extraction to improve the design cycle time. The proposed design flow utilizes the usage of metal fill emulation as opposed to the current flow which performs metal fill insertion directly. By replacing metal fill structures with an emulation methodology in earlier iterations of the design flow, this is targeted to help reduce runtime in fill insertion stage. Statistical design of experiments methodology utilizing the randomized complete block design was used to select an appropriate emulated metal fill width to improve emulation accuracy. The experiment was conducted on test cases of different sizes, ranging from 1000 gates to 21000 gates. The metal width was varied from 1 x minimum metal width to 6 x minimum metal width. Two-way analysis of variance and Fisher's least significant difference test were used to analyze the interconnect net capacitance values of the different test cases. This paper presents the results of the statistical analysis for the 45 nm process technology. The recommended emulated metal fill width was found to be 4 x the minimum metal width.

  10. Determination by transfer reaction of alpha widths in fluorine for astrophysical interest; Determination par reaction de transfert de largeurs alpha dans le fluor 19. Applications a l'astrophysique

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Santos, F. de


    The nucleosynthesis of fluorine is not known. Several astrophysical models predict the alpha radiative capture onto N{sup 15} as the main fluorine production reaction. In the expression of the reaction rate, one parameter is missing: the alpha width of the resonance on the E = 4.377 MeV level in fluorine. A direct measurement is excluded due to the very low cross-section expected. We have determined this alpha width using a transfer reaction followed by analyses with FR-DWBA (Finite Range Distorted Wave Born Approximation) in a simple cluster alpha model. This experiment was carried out with a Li{sup 7} beam with E = 28 MeV onto a N{sup 15} gas target. The 16 first levels were studied. Spectroscopic factors were extracted for most of them. Alpha widths for unbound levels were determined. Many alpha width were compared with known values from direct reaction and the differences lie within the uncertainty range (factor 2). The alpha width for the E = 4.377 MeV level was determined ({gamma}{sub {alpha}} = 1.5*10{sup -15} MeV), its value is about 60 times weaker than the used value. The influence of our new rate was studied in AGB (Asymptotic Giant Branch) stars during thermal pulses. In this model the alteration is sensitive. (author)

  11. Fiber-solid, hybrid, single-frequency laser (100 W) with a 100 MHz repetition rate and 1 ns pulse width from a spherical aberration compensated four-stage Nd:YVO₄ amplifier. (United States)

    Zhang, Xiang; Wang, Yi; Liu, Bin; Wang, Chunhua; Xiang, Zhen; Liu, Chong


    A pulsed laser for laser guide stars with a 100 MHz repetition rate and 1 ns pulse width was achieved by external modulation of a continuous wave (CW) laser with a 70 kHz spectrum width. The laser is amplified first by two fiber pre-amplifiers and then by four solid-state power amplifiers. The laser achieves gains as high as 36 dB in the fiber pre-amplifiers due to the long gain medium length. The output power from the fiber amplifiers is 2.1 W. The laser receives further amplification in the solid-state amplifiers and retains good beam quality by aberration compensation. The final output average power is 102.9 W, and the beam quality factor M² is 1.46. The laser reaches high power without spectrum width and pulse width broadening at the 100 MHz repetition rate. The spectrum width of the pulsed laser is less than 0.8 GHz, which is close to the Fourier transform limit. Such a laser with single-frequency, high-repetition, and high-power features along with good beam quality will be valuable for many research areas.

  12. Correlations of leaf area with length and width measurements of leaves of black oak, white oak, and sugar maple (United States)

    Philip M. Wargo


    Correlations of leaf area with length, width, and length times width of leaves of black oak, white oak, and sugar maple were determined to see if length and/or width could be used as accurate estimators of leaf area. The correlation of length times width with leaf area was high (r > + .95) for all three species. The linear equation Y = a + bX, where X = length times...

  13. Wave Pipelining Using Self Reset Logic

    Directory of Open Access Journals (Sweden)

    Miguel E. Litvin


    Full Text Available This study presents a novel design approach combining wave pipelining and self reset logic, which provides an elegant solution at high-speed data throughput with significant savings in power and area as compared with other dynamic CMOS logic implementations. To overcome some limitations in SRL art, we employ a new SRL family, namely, dual-rail self reset logic with input disable (DRSRL-ID. These gates depict fairly constant timing parameters, specially the width of the output pulse, for varying fan-out and logic depth, helping accommodate process, supply voltage, and temperature variations (PVT. These properties simplify the implementation of wave pipelined circuits. General timing analysis is provided and compared with previous implementations. Results of circuit implementation are presented together with conclusions and future work.

  14. Does the schock wave in a highly ionized non-isothermal plasma really exist ?

    CERN Document Server

    Rukhadze, A A; Samkharadze, T


    Here we study the structure of a highly ionizing shock wave in a gas of high atmospheric pressure. We take into account the gas ionization when the gas temperature reaches few orders of an ionization potential. It is shown that after gasdynamic temperature-raising shock and formation of a highly-ionized nonisothermal plasma $T_e>>T_i$ only the solitary ion-sound wave (soliton) can propagate in this plasma. In such a wave the charge separation occurs: electrons and ions form the double electric layer with the electric field. The shock wave form, its amplitude and front width are obtained.

  15. Quantum ion acoustic solitary waves in electron-ion plasmas: A Sagdeev potential approach

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, S. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)], E-mail:; Mushtaq, A. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)


    Linear and nonlinear ion acoustic waves are studied in unmagnetized electron-ion quantum plasmas. Sagdeev potential approach is employed to describe the nonlinear quantum ion acoustic waves. It is found that density dips structures are formed in the subsonic region in a electron-ion quantum plasma case. The amplitude of the nonlinear structures remains constant and the width is broadened with the increase in the quantization of the system. However, the nonlinear wave amplitude is reduced with the increase in the wave Mach number. The numerical results are also presented.

  16. Stability of Low-Crested Breakwaters in Shallow Water Short Crested Waves

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Burcharth, Hans Falk


    The paper presents results of 3D laboratory experiments on low-crested breakwaters. Two typical structural layouts were tested at model scale in a wave basin at Aalborg University, Denmark, to identify and quantify the influence of various hydrodynamic conditions (obliquity of short crested waves......, wave hight and wave steepness) and structural geometries (crest width and freeboard) on the stability of low-crested breakwaters. Results are given in terms of recommendations for design guidelines for structure stability. Damage parameters for the trunk and the roundhead are proposed based on analysis...

  17. Does the shock wave in a highly ionized non-isothermal plasma really exist? (United States)

    Rukhadze, A. A.; Sadykova, S. P.; Samkharadze, T. G.


    Here, we study the structure of a highly ionizing shock wave in a gas of high atmospheric pressure. We take into account the gas ionization when the gas temperature reaches few orders above ionization potential. It is shown that after gasdynamic temperature-raising shock and formation of a highly-ionized nonisothermal collisionless plasma Te≫Ti , only the solitary ion-sound wave (soliton) can propagate in this plasma. In such a wave, the charge separation occurs: electrons and ions form the double electric layer with the electric field. The shock wave form, its amplitude, and front width are derived.


    NARCIS (Netherlands)

    Westerhof, E.


    This lecture gives an overview of heating and current drive with electron cyclotron waves. We present the main theoretical aspects of wave propagation, wave absorption, and non-inductive current drive, as well as important technical aspects for the application of high power electron cyclotron waves,

  19. Electron cyclotron waves

    NARCIS (Netherlands)

    Westerhof, E.


    This lecture gives an overview of heating and current drive with electron cyclotron waves. We present the main theoretical aspects of wave propagation, wave absorption, and non-inductive current drive, as well as important technical aspects for the application of high power electron cyclotron waves,

  20. Electron cyclotron waves

    NARCIS (Netherlands)

    Westerhof, E.


    This lecture gives an overview of heating and current drive with electron cyclotron waves. We present the main theoretical aspects of wave propagation, wave absorption, and non-inductive current drive, as well as important technical aspects for the application of high power electron cyclotron waves,

  1. Waves in inhomogeneous media

    NARCIS (Netherlands)

    Gerritsen, S.


    In this thesis we study wave propagation in inhomogeneous media. Examples of the classical (massless) waves we consider are acoustic waves (sound) and electromagnetic waves (light, for example). Interaction with inhomogeneities embedded in a reference medium alter the propagation direction, velocity

  2. The critical role associated with beach slope and its width in ...

    African Journals Online (AJOL)

    AbstractUsing perturbation method, the shallow water wave equation is investigated. We are, however, interested in the case in which the incident wave train propagate in the radial direction towards the shoreline. This is rather more general than the case in which the trains of progressive waves propagate strictly in ...

  3. Evaluation of Maxillary Interpremolar, Molar Width by DRNA Indices and Arch Dimension, Arch Form in Maratha Population

    Directory of Open Access Journals (Sweden)

    Nitin Dungarwal


    Conclusion: Significant correlation was found between the sum of maxillary incisors and interpremolar width but not with the intermolar width while sum of mandibular incisors showed significant correlation with the interpremolar and intermolar arch width. There is no single arch form unique to any of the ethnic groups. A new formula is proposed to determine the premolar and molar index.

  4. Wave Data Analysis

    DEFF Research Database (Denmark)

    Alikhani, Amir; Frigaard, Peter; Burcharth, Hans F.


    The data collected over the course of the experiment must be analysed and converted into a form suitable for its intended use. Type of analyses range from simple to sophisticated. Depending on the particular experiment and the needs of the researcher. In this study three main part of irregular wave...... data analyses are presented e.g. Time Domain (Statistical) Analyses, Frequency Domain (Spectral) Analyses and Wave Reflection Analyses. Random wave profile and definitions of representative waves, distributions of individual wave height and wave periods and spectra of sea waves are presented....

  5. Comparison of the squared binary, sinusoidal pulse width modulation, and optimal pulse width modulation methods for three-dimensional shape measurement with projector defocusing. (United States)

    Wang, Yajun; Zhang, Song


    This paper presents a comparative study on three sinusoidal fringe pattern generation techniques with projector defocusing: the squared binary defocusing method (SBM), the sinusoidal pulse width modulation (SPWM) technique, and the optimal pulse width modulation (OPWM) technique. Because the phase error will directly affect the measurement accuracy, the comparisons are all performed in the phase domain. We found that the OPWM almost always performs the best, and SPWM outperforms SBM to a great extent, while these three methods generate similar results under certain conditions. We will briefly explain the principle of each technique, describe the optimization procedures for each technique, and finally compare their performances through simulations and experiments. © 2012 Optical Society of America

  6. Comparative study of dental arch width in plaster models, photocopies and digitized images

    Directory of Open Access Journals (Sweden)

    Maria Cristina Rosseto


    Full Text Available The aim of this study was to comparatively assess dental arch width, in the canine and molar regions, by means of direct measurements from plaster models, photocopies and digitized images of the models. The sample consisted of 130 pairs of plaster models, photocopies and digitized images of the models of white patients (n = 65, both genders, with Class I and Class II Division 1 malocclusions, treated by standard Edgewise mechanics and extraction of the four first premolars. Maxillary and mandibular intercanine and intermolar widths were measured by a calibrated examiner, prior to and after orthodontic treatment, using the three modes of reproduction of the dental arches. Dispersion of the data relative to pre- and posttreatment intra-arch linear measurements (mm was represented as box plots. The three measuring methods were compared by one-way ANOVA for repeated measurements (α = 0.05. Initial / final mean values varied as follows: 33.94 to 34.29 mm / 34.49 to 34.66 mm (maxillary intercanine width; 26.23 to 26.26 mm / 26.77 to 26.84 mm (mandibular intercanine width; 49.55 to 49.66 mm / 47.28 to 47.45 mm (maxillary intermolar width and 43.28 to 43.41 mm / 40.29 to 40.46 mm (mandibular intermolar width. There were no statistically significant differences between mean dental arch widths estimated by the three studied methods, prior to and after orthodontic treatment. It may be concluded that photocopies and digitized images of the plaster models provided reliable reproductions of the dental arches for obtaining transversal intra-arch measurements.

  7. Ageing effects on medio-lateral balance during walking with increased and decreased step width. (United States)

    Nagano, H; Begg, R; Sparrow, W A


    The current study used falls direction to categorize falls and explore age-related effects on the biomechanics of medio-lateral balance control. Minimum lateral margin (MLM) was defined as the critical swing phase event where the medio-lateral length between center of mass (CoM) and stance heel became minimum and accordingly, any lateral balance perturbation at MLM was considered to increase the risk of balance loss lateral to the stance foot. Lateral center of pressure (CoP) displacement from toe-off to MLM was also monitored to assess the risk of medio-lateral balance perturbation. Gait testing involving 30 young and 26 older male subjects was conducted under the three step width conditions: preferred and ± 50% wider and narrower. For an overall description of gait, spatio-temporal parameters were also obtained. Typical ageing effects on spatio-temporal parameters such as lower step velocity, shorter step length and prolonged double support time were found, emerging most clearly in narrower, followed by wider and least in preferred width walking. MLM and CoP lateral displacement were not differentiated between the two age groups, but older adults demonstrated significantly more variable MLM and CoP in their non-dominant limb when walking with non-preferred widths. Variability of step width reduced in increased and decreased step width conditions while MLM and CoP variability increased, suggesting less consistent medio-lateral CoM control despite consistent foot control in altered width conditions. In summary, older adults were found to have less consistent control of CoM with respect to the non-dominant stance foot when walking with narrower and wider widths possibly due to more variable medio-lateral CoP control.

  8. Feedback control of electrically stimulated muscle using simultaneous pulse width and stimulus period modulation. (United States)

    Chizeck, H J; Lan, N; Palmieri, L S; Crago, P E


    This paper considers the closed-loop control of electrically stimulated muscle using simultaneous pulse width and frequency modulation. Previous work has experimentally demonstrated good feedback regulation of muscle force using fixed parameter and an adaptive controller modulating pulse width. In this work, it is shown how the addition of pulse frequency modulation to pulse width modulation can improve controller performance. This combination controller has been developed for both single muscle activation and for costimulation of antagonists. This is accomplished using a single command input. In single muscle operation, the combination of pulse width and stimulus pulse frequency modulation results in better control of transient responses than with pulse width modulation alone; the total number of stimulus pulses is increased, however, when compared with pulse width-only modulation at the muscle fusion frequency. In the case of costimulation, the controller modulates the pulse stimulus periods of the antagonists in a reciprocal manner, to ensure stable and fast responses. That is, the frequency of stimulation of the antagonist is increased when that of the agonist is decreased. This results in better control performance with generally fewer stimulus pulses than those generated by costimulation using only pulse width modulation. This feedback controller was evaluated in animal experiments. Step responses with rapid rise times but without overshoot were obtained by the combined modulation. Good steady-state and transient performance were obtained over a wide range of static lengths and commands, under different loading conditions and in different animals. This controller is a promising potential component of neural prostheses to restore functional movement in paralyzed individuals.

  9. Influence of lip closure on alveolar cleft width in patients with cleft lip and palate

    Directory of Open Access Journals (Sweden)

    Schmelzle Rainer


    Full Text Available Abstract Background The influence of surgery on growth and stability after treatment in patients with cleft lip and palate are topics still under discussion. The aim of the present study was to investigate the influence of early lip closure on the width of the alveolar cleft using dental casts. Methods A total of 44 clefts were investigated using plaster casts, 30 unilateral and 7 bilateral clefts. All infants received a passive molding plate a few days after birth. The age at the time of closure of the lip was 2.1 month in average (range 1-6 months. Plaster casts were obtained at the following stages: shortly after birth, prior to lip closure, prior to soft palate closure. We determined the width of the alveolar cleft before lip closure and prior to soft palate closure measuring the alveolar cleft width from the most lateral point of the premaxilla/anterior segment to the most medial point of the smaller segment. Results After lip closure 15 clefts presented with a width of 0 mm, meaning that the mucosa of the segments was almost touching one another. 19 clefts showed a width of up to 2 mm and 10 clefts were still over 2 mm wide. This means a reduction of 0% in 5 clefts, of 1-50% in 6 clefts, of 51-99% in 19 clefts, and of 100% in 14 clefts. Conclusions Early lip closure reduces alveolar cleft width. In most cases our aim of a remaining cleft width of 2 mm or less can be achieved. These are promising conditions for primary alveolar bone grafting to restore the dental bony arch.

  10. Red cell distribution width as a novel predictor of postoperative respiratory adverse events after adenotonsillectomy. (United States)

    Kozanhan, Betul; Iyisoy, Mehmet S


    Respiratory adverse events are commonly observed after adenotonsillectomy in children with sleep-disordered breathing. Preoperative prediction of these events enhances quality of care and resource management in facilities while encouraging precautions against them. Red cell distribution width, a measure of erythrocyte size variability, has recently been linked to adverse outcomes in a variety of disorders. Red cell distribution width has also been found to be associated with severity of obstructive sleep apnea in adults due to hypoxia-mediated inflammation. The objective of this study was to evaluate whether elevated red cell distribution width is associated with postoperative respiratory adverse events in children with symptoms of sleep-disordered breathing. A prospective, observational, assessor-blinded study was conducted with consecutive children undergoing elective adenotonsillectomy for treatment of sleep-disordered breathing. Under general anesthesia, adenoidectomy was performed by curettage, and tonsillectomy was carried out by dissection. The primary outcome was the occurrence of an adverse event during emergence or in the postanesthesia care unit (PACU). Among 287 patients, with mean ± sd age 7.49 ± 3.21, the frequency of respiratory complications during emergence was 62 (22.30%) and in PACU was 56 (20.14%). Mean ± sd red cell distribution width was 14.36 ± 1.06 in patients with complications and higher than that in those without complications 13.53 ± 0.59. Red cell distribution width had an adjusted odds ratio 7.28 (95% CI: 4.30-13.28) and area under the curve value 0.74 (95% CI: 0.67-0.81) to predict postoperative complications. A cutoff value for red cell distribution width was found to be 14.7. Our study showed that preoperative elevated red cell distribution width is associated with an increased risk of respiratory adverse events in children undergoing adenotonsillectomy for sleep-disordered breathing. © 2017 John Wiley & Sons Ltd.

  11. Balance performance and step width in noninstitutionalized, elderly, female fallers and nonfallers. (United States)

    Heitmann, D K; Gossman, M R; Shaddeau, S A; Jackson, J R


    The purposes of this study were to compare age, static balance performance, and step-width variables between elderly noninstitutionalized women with and without a history of falls and to determine the relationship between balance performance and step width. Each subject performed a maximum of three timed trials on the sharpened Romberg and one-legged stance tests with eyes open and with eyes closed. The first and best trial measurements were used for analysis. Each subject walked on paper walkways making ink prints for step-width measurements. The mean and the variability of each subject's step-width measurements were used for analysis. Data from 110 women, aged 60 to 89 years, were analyzed. The fallers (n = 26) had significantly lower values than the nonfallers (n = 84) on the best trial of the sharpened Romberg test in the eyes-open condition (t = 1.98, df = 108, p less than .05). No significant differences between fallers and nonfallers were revealed in age, the mean and variability of step width, the first trials of the balance tests, and the best trials on the other balance tests. For the total group, the mean measurements on the first trials were significantly lower than those on the best trials for each balance test. Small, but statistically significant (p less than .05), negative relationships existed between balance performance and the mean and variability of step width. The results of this study indicate that the methods of measuring balance and step width are clinically applicable, and the data of patients from a similar population sample may be compared with the data established in this study.

  12. Some peculiarities of spin-wave propagation in magnonic waveguides

    Directory of Open Access Journals (Sweden)

    Kalinikos B.


    Full Text Available A normal-mode theory for the dipole-exchange spin-wave spectrum in the finite-width ferromagnetic waveguide is presented. The theory takes into account a nonuniform character of the demagnetizing field in the waveguide cross section and, therefore, can be applied to any infinitely long, rectangular rod, even with square cross section. The inhomogeneity of static and dynamic dipole fields is taken into account using the same tensorial Green’s function, obtained from Maxwell equations, this fact allows to simplify the spectrum calculation procedure. According to the elaborated theory the spin-wave spectrum in the finite-width ferromagnetic waveguide can be calculated with simultaneous account of the dipole-dipole and exchange interaction, surface anisotropy, arbitrary direction of the external bias magnetic field and for any possible width-thickness aspect ratio of the magnonic waveguide. It is shown that the previously used analytical methods of the accounting of the finite width of the magnetic waveguides give unsuitable results for nanometer-size waveguides.

  13. Wave disc engine apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Norbert; Piechna, Janusz; Sun, Guangwei; Parraga, Pablo-Francisco


    A wave disc engine apparatus is provided. A further aspect employs a constricted nozzle in a wave rotor channel. A further aspect provides a sharp bend between an inlet and an outlet in a fluid pathway of a wave rotor, with the bend being spaced away from a peripheral edge of the wave rotor. A radial wave rotor for generating electricity in an automotive vehicle is disclosed in yet another aspect.

  14. A simple line wave generator using commercial explosives

    Energy Technology Data Exchange (ETDEWEB)

    Morris, John S [Los Alamos National Laboratory; Jackson, Scott I [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory


    We present a simple and inexpensive explosive line wave generator has been designed using commercial sheet explosive and plane wave lens concepts. The line wave generator is constructed using PETN and RDX based sheet explosive for the slow and fast components respectively. The design permits the creation of any desired line width. A series of experiments were performed on a 100 mm design, measuring the detonation arrival time at the output of the generator using a streak camera. An iterative technique was used to adjust the line wave generator's slow and fast components, so as to minimize the arrival time deviation. Designs, test results, and concepts for improvements will be discussed.

  15. Rotatable illusion media for manipulating terahertz electromagnetic waves. (United States)

    Zang, XiaoFei; Li, Zhou; Shi, Cheng; Chen, Lin; Cai, Bin; Zhu, YiMing; Li, Li; Wang, XiaoBin


    Based on composite optical transformation, we propose a rotatable illusion media with positive permittivity and permeability to manipulate terahertz waves, and a new way to realize singular parameter-independent cloaks when the incident wave with a certain width propagates from specific incident directions. The fundamental mechanism of this kind of cloak is that the illusion media can be able to avoid the incident wave interacting with the objects. Comparing with traditional transformation-coordinate-based cloaks such as cylindrical-shaped cloaks, our cloaks are independent of singular material parameters. Furthermore, this type of rotatable illusion media can be applied to design tunable miniaturized high-directivity antenna (a small antenna array covered with the rotatable illusion media appears like a large one and meanwhile, the radiation directions of the small antenna array is tunable via this rotatable illusion media). Full wave simulations are performed to confirm these points.

  16. C5 palsy after cervical laminectomy and fusion: does width of laminectomy matter? (United States)

    Klement, Mitchell R; Kleeman, Lindsay T; Blizzard, Daniel J; Gallizzi, Michael A; Eure, Megan; Brown, Christopher R


    A common complication of cervical laminectomy and fusion with instrumentation (CLFI) is development of postoperative C5 nerve palsy. A proposed etiology is excess nerve tension from posterior drift of the spinal cord after decompression. We hypothesize that laminectomy width will be significantly increased in patients with C5 palsy and will correlate with palsy severity. The purposes of this study were to evaluate laminectomy width as a risk factor for C5 palsy and to assess correlation with palsy severity. This is a retrospective, single-institution clinical study. Patient population included all patients with cervical spondylotic myelopathy who underwent CLFI between 2007 and 2014 by a single surgeon. Patients who underwent CLFI for trauma, infection, or tumor or had previous or circumferential cervical surgery were excluded. All patients with a new C5 palsy received a postoperative magnetic resonance imaging. An additional computed tomography (CT) scan was ordered to assess hardware. All control patients received a CT scan at 6 months postoperatively to evaluate fusion. The association between width of laminectomy and development of postopeative C5 palsy was measured. Patient comorbidities including obesity, smoking history, and diabetes were recorded in addition to preopertaive and postoperative deltoid and biceps motor strength. Sagittal alignment was measured with C2-C7 Cobb angle preopertaive and postoperative radiographs. The width of laminectomy was measured in a blinded fashion on the postoperative CT scan by two observers. Seventeen patients with C5 nerve palsy and 12 controls were identified. There were no baseline differences in age, sex, diabetes, smoking history, number of surgical levels, or sagittal alignment. Body mass index was significantly higher in the control cohort. There was no significant increase in the C3-C7 laminectomy width in patients with postoperative C5 palsy. The width of laminectomy measurments were highly similar between the two

  17. Traveling wave deflector design for femtosecond streak camera (United States)

    Pei, Chengquan; Wu, Shengli; Luo, Duan; Wen, Wenlong; Xu, Junkai; Tian, Jinshou; Zhang, Minrui; Chen, Pin; Chen, Jianzhong; Liu, Rong


    In this paper, a traveling wave deflection deflector (TWD) with a slow-wave property induced by a microstrip transmission line is proposed for femtosecond streak cameras. The pass width and dispersion properties were simulated. In addition, the dynamic temporal resolution of the femtosecond camera was simulated by CST software. The results showed that with the proposed TWD a femtosecond streak camera can achieve a dynamic temporal resolution of less than 600 fs. Experiments were done to test the femtosecond streak camera, and an 800 fs dynamic temporal resolution was obtained. Guidance is provided for optimizing a femtosecond streak camera to obtain higher temporal resolution.

  18. Investigation of Ion Acoustic Waves in Collisionless Plasmas

    DEFF Research Database (Denmark)

    Christoffersen, G. B.; Jensen, Vagn Orla; Michelsen, Poul


    The Green's functions for the linearized ion Vlasov equation with a given boundary value are derived. The propagation properties of ion acoustic waves are calculated by performing convolution integrals over the Green's functions. For Te/Ti less than about 3 it is concluded that the collective...... interaction is very weak and that the propagation properties are determined almost completely by freely streaming ions. The wave damping, being due to phase mixing, is determined by the width of the perturbed distribution function rather than by the slope of the undisturbed distribution function at the phase...

  19. Traveling wave deflector design for femtosecond streak camera

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Chengquan; Wu, Shengli [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Luo, Duan [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wen, Wenlong [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Xu, Junkai [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Tian, Jinshou, E-mail: [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China); Zhang, Minrui; Chen, Pin [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Jianzhong [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Liu, Rong [Xi' an Technological University, Xi' an 710021 (China)


    In this paper, a traveling wave deflection deflector (TWD) with a slow-wave property induced by a microstrip transmission line is proposed for femtosecond streak cameras. The pass width and dispersion properties were simulated. In addition, the dynamic temporal resolution of the femtosecond camera was simulated by CST software. The results showed that with the proposed TWD a femtosecond streak camera can achieve a dynamic temporal resolution of less than 600 fs. Experiments were done to test the femtosecond streak camera, and an 800 fs dynamic temporal resolution was obtained. Guidance is provided for optimizing a femtosecond streak camera to obtain higher temporal resolution.

  20. Waves off Puducherry, Bay of Bengal, during cyclone THANE

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Johnson, G.; Dubhashi, K.K.; Nair, T.M.B.

    to carry out the study. Also thank Mr. Jai Singh and Mr.R.Gowthaman for the help during the wave data collection. We thank Pondicherry Multipurpose Social Service Society, Pudicherry.for the help provided during the measurement. This work forms part... and Arabian Sea: the problem and its prediction. Mausam 48, 283–304. Goda Y, Kudaka M (2007) On the role of spectral width and shape parameters in control of individual wave height distribution, J Coastal Eng 49, 311–335. Goda Y (1970) Numerical...

  1. Stochastic Mixed-Effects Parameters Bertalanffy Process, with Applications to Tree Crown Width Modeling

    Directory of Open Access Journals (Sweden)

    Petras Rupšys


    Full Text Available A stochastic modeling approach based on the Bertalanffy law gained interest due to its ability to produce more accurate results than the deterministic approaches. We examine tree crown width dynamic with the Bertalanffy type stochastic differential equation (SDE and mixed-effects parameters. In this study, we demonstrate how this simple model can be used to calculate predictions of crown width. We propose a parameter estimation method and computational guidelines. The primary goal of the study was to estimate the parameters by considering discrete sampling of the diameter at breast height and crown width and by using maximum likelihood procedure. Performance statistics for the crown width equation include statistical indexes and analysis of residuals. We use data provided by the Lithuanian National Forest Inventory from Scots pine trees to illustrate issues of our modeling technique. Comparison of the predicted crown width values of mixed-effects parameters model with those obtained using fixed-effects parameters model demonstrates the predictive power of the stochastic differential equations model with mixed-effects parameters. All results were implemented in a symbolic algebra system MAPLE.

  2. Controlling ρ width effects for a precise value of α in B → ρρ (United States)

    Gronau, Michael; Rosner, Jonathan L.


    It has been pointed out that the currently most precise determination of the weak phase ϕ2 = α of the Cabibbo-Kobayashi-Maskawa (CKM) matrix achieved in B → ρρ decays is susceptible to a small correction at a level of (Γρ /mρ)2 due to an I = 1 amplitude caused by the ρ width. Using Breit-Wigner distributions for the two pairs of pions forming ρ mesons, we study the I = 1 contribution to B → ρρ decay rates as function of the width and location of the ρ band. We find that in the absence of a particular enhancement of the I = 1 amplitude reducing a single band to a width Γρ at SuperKEKB leads to results which are completely insensitive to the ρ width. If the I = 1 amplitude is dynamically enhanced relative to the I = 0 , 2 amplitude one could subject its contribution to a ;magnifying glass; measurement using two separated ρ bands of width Γρ. Subtraction of the I = 1 contribution from the measured decay rate would lead to a very precise determination of the I = 0 , 2 amplitude needed for performing the isospin analysis.

  3. Controlling ρ width effects for a precise value of α in B→ρρ

    Directory of Open Access Journals (Sweden)

    Michael Gronau


    Full Text Available It has been pointed out that the currently most precise determination of the weak phase ϕ2=α of the Cabibbo–Kobayashi–Maskawa (CKM matrix achieved in B→ρρ decays is susceptible to a small correction at a level of (Γρ/mρ2 due to an I=1 amplitude caused by the ρ width. Using Breit–Wigner distributions for the two pairs of pions forming ρ mesons, we study the I=1 contribution to B→ρρ decay rates as function of the width and location of the ρ band. We find that in the absence of a particular enhancement of the I=1 amplitude reducing a single band to a width Γρ at SuperKEKB leads to results which are completely insensitive to the ρ width. If the I=1 amplitude is dynamically enhanced relative to the I=0,2 amplitude one could subject its contribution to a “magnifying glass” measurement using two separated ρ bands of width Γρ. Subtraction of the I=1 contribution from the measured decay rate would lead to a very precise determination of the I=0,2 amplitude needed for performing the isospin analysis.

  4. Scale orientated analysis of river width changes due to extreme flood hazards

    Directory of Open Access Journals (Sweden)

    G. Krapesch


    Full Text Available This paper analyses the morphological effects of extreme floods (recurrence interval >100 years and examines which parameters best describe the width changes due to erosion based on 5 affected alpine gravel bed rivers in Austria. The research was based on vertical aerial photos of the rivers before and after extreme floods, hydrodynamic numerical models and cross sectional measurements supported by LiDAR data of the rivers. Average width ratios (width after/before the flood were calculated and correlated with different hydraulic parameters (specific stream power, shear stress, flow area, specific discharge. Depending on the geomorphological boundary conditions of the different rivers, a mean width ratio between 1.12 (Lech River and 3.45 (Trisanna River was determined on the reach scale. The specific stream power (SSP best predicted the mean width ratios of the rivers especially on the reach scale and sub reach scale. On the local scale more parameters have to be considered to define the "minimum morphological spatial demand of rivers", which is a crucial parameter for addressing and managing flood hazards and should be used in hazard zone plans and spatial planning.

  5. Assessment of Upper and Lower Pharyngeal Airway Width in Skeletal Class I, II and III Malocclusions

    Directory of Open Access Journals (Sweden)

    Shalu Jain


    Full Text Available Introduction: There is a close relationship between the dimensions of airway and the sagittal skeletal malocclusion which makes it reasonable to expect that width of airway is a reflection of determining patency of airway in different skeletal malocclusion groups. So, aim of this study was to assess the upper and lower pharyngeal airway width in skeletal Class I, II and III malocclusion groups and also to evaluate sexual dimorphism in western Uttar Pradesh population. Materials and methods: A sample of 150 subjects in the age group of 18 to 25 years, from Western Uttar Pradesh adult population was selected on the basis of skeletal Class I, II and III malocclusion. Digital lateral cephalograms were taken in natural head position. Nine variables were selected which included four upper and five lower pharyngeal airway variables. Results: Upper and lower pharynx showed statistical significant difference among the skeletal Class I, II and III malocclusion and also between males and females. Conclusion: Wider upper and lower pharyngeal airway width was seen in males than in females in both skeletal Class I as well as Class III malocclusion groups respectively. Skeletal Class III malocclusion subjects had the widest airway width as compared to skeletal Class I malocclusion group. Skeletal Class II malocclusion, airway width was found to be narrowest.

  6. Laser cutting of various materials: Kerf width size analysis and life cycle assessment of cutting process (United States)

    Yilbas, Bekir Sami; Shaukat, Mian Mobeen; Ashraf, Farhan


    Laser cutting of various materials including Ti-6Al-4V alloy, steel 304, Inconel 625, and alumina is carried out to assess the kerf width size variation along the cut section. The life cycle assessment is carried out to determine the environmental impact of the laser cutting in terms of the material waste during the cutting process. The kerf width size is formulated and predicted using the lump parameter analysis and it is measured from the experiments. The influence of laser output power and laser cutting speed on the kerf width size variation is analyzed using the analytical tools including scanning electron and optical microscopes. In the experiments, high pressure nitrogen assisting gas is used to prevent oxidation reactions in the cutting section. It is found that the kerf width size predicted from the lump parameter analysis agrees well with the experimental data. The kerf width size variation increases with increasing laser output power. However, this behavior reverses with increasing laser cutting speed. The life cycle assessment reveals that material selection for laser cutting is critical for the environmental protection point of view. Inconel 625 contributes the most to the environmental damages; however, recycling of the waste of the laser cutting reduces this contribution.

  7. Is there any relation between distal parameters of the femur and its height and width? (United States)

    Yazar, Fatih; Imre, Nurcan; Battal, Bilal; Bilgic, Serkan; Tayfun, Cem


    The purpose of this study was to reveal the association whether the distal morphometry of femur had a relation with femur height or width. Sixty-six adult (35 right and 31 left) dry femurs from Caucasians were used in this study. Computed tomography (CT) imaging was applied to obtain measurement values of the femur. Femur height (413.29 ± 28.40 mm) and width (29.86 ± 2.72 mm) were all checked one by one to determine the correlation with the parameters obtained. Both values exposed high rates of correlation with height (26 ± 2.34 mm) and width (20.85 ± 2.76 mm) of femur notch; also, measures of epicondylar, bicondylar and condylar diameters of femur were obtained. Measures were checked if there was a correlation with femur height and width. Differences displayed in distal morphometry of femur according to race and sex are due to other morphometric measures of femur rather than race and sex. We believe that displaying the high rates of correlation of distal morphometry of femur with femur height and width will be the factor which determines the selection and production of prosthesis among the long or short individuals of folks.

  8. The dynamics of growth of width in distance, velocity and acceleration. (United States)

    Gasser, T; Kneip, A; Ziegler, P; Largo, R; Molinari, L; Prader, A


    In this paper the dynamics and intensity of the growth of bihumeral and biiliac width and of humerus and femur bicondylar diameter are studied and compared, and sex differences are established. The analysis is based on a newly introduced statistical tool, the structural average curve for distance, velocity and acceleration. It accounts for individual developmental tempo and allows pooling data for a sample of subjects. In all four variables studied, a sharp decline in velocity after birth is followed by a more gradual decline in infancy and childhood. A mid-growth spurt (MS) at about age 7 can be found in all variables, of about equal timing and intensity for the two sexes. The pubertal spurt (PS) is earlier for girls, and less intense except for biiliac width. The study shows a characteristic pattern across variables of width regarding the intensity of growth in different periods. The accentuated MS and PS for bihumeral width, contrasting with relatively early and small PS for the bicondylar width of femur, are remarkable.

  9. Limits on the Higgs boson lifetime and width from its decay to four charged leptons

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Mora Herrera, Clemencia; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; El-khateeb, Esraa; Elkafrawy, Tamer; Mohamed, Amr; Salama, Elsayed; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Davignon, Olivier; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Lisniak, Stanislav; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schulte, Jan-Frederik; Verlage, Tobias; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behnke, Olaf; Behrens, Ulf; Bell, Alan James; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Trippkewitz, Karim Damun; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schwandt, Joern; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Akbiyik, Melike; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Fink, Simon; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hazi, Andras; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Mal, Prolay; Mandal, Koushik; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Kumar, Arun; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutta, Suchandra; Jain, Sandhya; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukherjee, Swagata; Mukhopadhyay, Supratik; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Mahakud, Bibhuprasad; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sarkar, Tanmay; Sudhakar, Katta; Sur, Nairit; Sutar, Bajrang; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Branca, Antonio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Sakharov, Alexandre; Son, Dong-Chul; Brochero Cifuentes, Javier Andres; Kim, Hyunsoo; Kim, Tae Jeong; Ryu, Min Sang; Song, Sanghyeon; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Leonardo, Nuno; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Myagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; De Castro Manzano, Pablo; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Berruti, Gaia Maria; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Du Pree, Tristan; Dupont, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Nemallapudi, Mythra Varun; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Piparo, Danilo; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrozzi, Luca; Peruzzi, Marco; Quittnat, Milena; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Salerno, Daniel; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Doan, Thi Hien; Ferro, Cristina; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Bartek, Rachel; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Dozen, Candan; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Yetkin, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Sen, Sercan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Thomas, Laurent; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Gastler, Daniel; Lawson, Philip; Rankin, Dylan; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Cutts, David; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Sagir, Sinan; Sinthuprasith, Tutanon; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova PANEVA, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; Suarez, Indara; To, Wing; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Sun, Werner; Tan, Shao Min; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Wittich, Peter; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Hu, Zhen; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Jung, Andreas Werner; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Yang, Fan; Yin, Hang; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Low, Jia Fu; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rank, Douglas; Rossin, Roberto; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Bhopatkar, Vallary; Hohlmann, Marcus; Kalakhety, Himali; Mareskas-palcek, Darren; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Osherson, Marc; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Svintradze, Irakli; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Mcginn, Christopher; Mironov, Camelia; Niu, Xinmei; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Dahmes, Bryan; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Monroy, Jose; Ratnikov, Fedor; Siado, Joaquin Emilo; Snow, Gregory R; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Dev, Nabarun; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Malik, Sudhir; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Miller, David Harry; Neumeister, Norbert; Primavera, Federica; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Zablocki, Jakub; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Petrillo, Gianluca; Verzetti, Mauro; Demortier, Luc; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Nash, Kevin; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Riley, Grant; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Krutelyov, Vyacheslav; Montalvo, Roy; Mueller, Ryan; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wolfe, Evan; Wood, John; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Christian, Allison; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Gomber, Bhawna; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Ruggles, Tyler; Sarangi, Tapas; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel


    Constraints on the lifetime and width of the Higgs boson are obtained from $\\mathrm{H} \\to \\mathrm{ZZ} \\to 4\\ell$ events using data recorded by the CMS experiment during the LHC run 1 with an integrated luminosity of 5.1 and 19.7 fb$^{-1}$ at a center-of-mass energy of 7 and 8 TeV, respectively. The measurement of the Higgs boson lifetime is derived from its flight distance in the CMS detector with an upper bound of $\\tau_{\\mathrm{H}} $ lower than $ 1.9 \\times 10^{-13}$ s at the 95% confidence level (CL), corresponding to a lower bound on the width of $\\Gamma_{\\mathrm{H}} $ larger than $ 3.5 \\times 10^{-9} $ MeV. The measurement of the width is obtained from an off-shell production technique, generalized to include anomalous couplings of the Higgs boson to two electroweak bosons. From this measurement, a joint constraint is set on the Higgs boson width and a parameter $f_{\\Lambda Q}$ that expresses an anomalous coupling contribution as an on-shell cross-section fraction. The limit on the Higgs boson width is ...

  10. Sexual dimorphism in permanent maxillary and mandibular canines and intermolar arch width: Endemic study

    Directory of Open Access Journals (Sweden)

    Mohammed Asif Syed


    Full Text Available Aims and Objectives: The purpose of this study was to investigate whether dimorphism of permanent mandibular and maxillary canine teeth as well as intercanine and intermolar distance plays a role in establishing sex identity. Materials and Methods: Four hundred volunteers comprising 200 males and 200 females, with age ranging from 18 to 50 years, were selected. The greatest mesiodistal width of the canine teeth and the distance between the tips of canines of both arches and intermolar arch width were measured using vernier caliper with 0.02 mm resolution. All data were tabulated and analysis done by "t" test. Results: The widths of the mandibular and maxillary right and left canine teeth were almost bilaterally symmetrical in females and males. The mean values for left and right mandibular and maxillary canine widths were less in females than in males and the differences were statistically significant. The mean values for mandibular and maxillary intercanine and intermolar distances were less in females than in males and the differences were statistically significant (P < 0.001. Conclusion: The present study establishes a statistically significant sexual dimorphism in maxillary and mandibular canines and intermolar arch width. It can be concluded that standard canine index is a quick and easy method for sex determination.

  11. Rectangular distribution whose width is not exactly known: isocurvilinear trapezoidal distribution (United States)

    Kacker, Raghu N.; Lawrence, James F.


    After the Gaussian distribution, the probability distribution most commonly used in evaluation of uncertainty in measurement is the rectangular distribution. If the half-width of a rectangular distribution is specified, the mid-point is uncertain, and the probability distribution of the mid-point may be represented by another (narrower) rectangular distribution then the resulting distribution is an isosceles trapezoidal distribution. However, in metrological applications, it is more common that the mid-point is specified but the half-width is uncertain. If the probability distribution of the half-width may be represented by another (narrower) rectangular distribution, then the resulting distribution looks like an isosceles trapezoid whose sloping sides are curved. We can refer to such a probability distribution as an isocurvilinear trapezoidal distribution. We describe the main characteristics of an isocurvilinear trapezoidal distribution which arises when the half-width is uncertain. When the uncertainty in specification of the half-width is not excessive, the isocurvilinear trapezoidal distribution can be approximated by an isosceles trapezoidal distribution.

  12. Relationship between red cell distribution width and early renal injury in patients with gestational diabetes mellitus. (United States)

    Cheng, Dong; Zhao, Jiangtao; Jian, Liguo; Ding, Tongbin; Liu, Shichao


    Previous studies found that red cell distribution width was related to adverse cardiovascular events. However, few studies reported the relationship between red cell distribution width and early-stage renal injury in pregnant women with gestational diabetes mellitus. Using a cross-sectional design, 334 pregnant women with gestational diabetes mellitus were enrolled according to the criterion of inclusion and exclusion. Demographic and clinical examination data were collected. Depended on the urine albumin, study population were divided into case group (n = 118) and control group (n = 216). Compared with control group, the case group tend to be higher red cell distribution width level (13.6 ± 0.9 vs.12.5 ± 0.6, p gestational diabetes mellitus patients. The elevated red cell distribution width level might be a predictor of early-stage renal injury in pregnant women with gestational diabetes mellitus. As an easy and routine examination index, red cell distribution width may provide better clinical guidance when combined with other important indices.

  13. Propagation of a cylindrical shock wave in a rotational axisymmetric isothermal flow of a non-ideal gas in magnetogasdynamics

    Directory of Open Access Journals (Sweden)

    G. Nath


    Full Text Available Self-similar solutions are obtained for unsteady, one-dimensional isothermal flow behind a shock wave in a rotational axisymmetric non-ideal gas in the presence of an azimuthal magnetic field. The shock wave is driven out by a piston moving with time according to power law. The fluid velocities and the azimuthal magnetic field in the ambient medium are assumed to be varying and obeying a power law. The density of the ambient medium is assumed to be constant. The gas is assumed to be non-ideal having infinite electrical conductivity and the angular velocity of the ambient medium is assumed to be decreasing as the distance from the axis increases. It is expected that such an angular velocity may occur in the atmospheres of rotating planets and stars. The effects of the non-idealness of the gas and the Alfven-Mach number on the flow-field are obtained. It is shown that the presence of azimuthal magnetic field and the rotation of the medium has decaying effect on the shock wave. Also, a comparison is made between rotating and non-rotating cases.

  14. Modelling and analysis of a high-performance Class D audio amplifier using unipolar pulse-width-modulation (United States)

    Zhou, Zekun; Shi, Yue; Ming, Xin; Zhang, Bo; Li, Zhaoji; Chen, Zao


    A high-performance class D audio amplifier using unipolar pulse-width-modulation (PWM) with double-sided natural sampling is presented in this article. In order to comprehend and design the system properly, the class D audio amplifier is modelled and analysed. A wide range triangle-wave signal with good linearity and magnitude proportional to supply voltage is embedded in the proposed class D audio amplifier for maximum output power, high power supply rejection ratio (PSRR) and low total harmonic distortion (THD). Design results based on CSMC 0.5-µm 5-V complementary metal-oxide-semiconductor process demonstrate that the proposed class D audio amplifier can operate with supply voltage in the range 2.4-5.5 V and supports 2.8 W output power from a 5.5 V supply; the maximum efficiency is above 95%, the PSRR is -82 dB, the signal-to-noise ratio (SNR) is 97 dB and the total harmonic distortion plus noise (THD+N) is less than 0.1% between 20 and 20 kHz with output power 0.4 W; the quiescent current without load is 1.8 mA, and the shutdown current is 0.01 µA. The active area of the class-D audio power amplifier is 1.5 mm × 1.5 mm.

  15. Spontaneous Wave Generation from Submesoscale Fronts and Filaments (United States)

    Shakespeare, C. J.; Hogg, A.


    Submesoscale features such as eddies, fronts, jets and filaments can be significant sources of spontaneous wave generation at the ocean surface. Unlike near-inertial waves forced by winds, these spontaneous waves are typically of higher frequency and can propagate through the thermocline, whereupon they break and drive mixing in the ocean interior. Here we investigate the spontaneous generation, propagation and subsequent breaking of these waves using a combination of theory and submesoscale resolving numerical models. The mechanism of generation is nearly identical to that of lee waves where flow is deflected over a rigid obstacle on the sea floor. Here, very sharp fronts and filaments of order 100m width moving in the submesoscale surface flow generate "surface lee waves" by presenting an obstacle to the surrounding stratified fluid. Using our numerical model we quantify the net downward wave energy flux from the surface, and where it is dissipated in the water column. Our results suggest an alternative to the classical paradigm where the energy associated with mixing in the ocean interior is sourced from bottom-generated lee waves.

  16. Focusing of shock waves induced by optical breakdown in water. (United States)

    Sankin, Georgy N; Zhou, Yufeng; Zhong, Pei


    The focusing of laser-generated shock waves by a truncated ellipsoidal reflector was experimentally and numerically investigated. Pressure waveform and distribution around the first (F(1)) and second foci (F(2)) of the ellipsoidal reflector were measured. A neodymium doped yttrium aluminum garnet laser of 1046 nm wavelength and 5 ns pulse duration was used to create an optical breakdown at F(1), which generates a spherically diverging shock wave with a peak pressure of 2.1-5.9 MPa at 1.1 mm stand-off distance and a pulse width at half maximum of 36-65 ns. Upon reflection, a converging shock wave is produced which, upon arriving at F(2), has a leading compressive wave with a peak pressure of 26 MPa and a zero-crossing pulse duration of 0.1 mus, followed by a trailing tensile wave of -3.3 MPa peak pressure and 0.2 mus pulse duration. The -6 dB beam size of the focused shock wave field is 1.6 x 0.2 mm(2) along and transverse to the shock wave propagation direction. Formation of elongated plasmas at high laser energy levels limits the increase in the peak pressure at F(2). General features in the waveform profile of the converging shock wave are in qualitative agreement with numerical simulations based on the Hamilton model.

  17. Robust Wave Resource Estimation

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter


    An assessment of the wave energy resource at the location of the Danish Wave Energy test Centre (DanWEC) is presented in this paper. The Wave Energy Converter (WEC) test centre is located at Hanstholm in the of North West Denmark. Information about the long term wave statistics of the resource...... is necessary for WEC developers, both to optimise the WEC for the site, and to estimate its average yearly power production using a power matrix. The wave height and wave period sea states parameters are commonly characterized with a bivariate histogram. This paper presents bivariate histograms and kernel...... density estimates of the PDF as a function both of Hm0 and Tp, and Hm0 and T0;2, together with the mean wave power per unit crest length, Pw, as a function of Hm0 and T0;2. The wave elevation parameters, from which the wave parameters are calculated, are filtered to correct or remove spurious data...

  18. Nano-scaled graphene platelets with a high length-to-width aspect ratio (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.


    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  19. Nuclear fission and the widths of the isoscalar giant multipole resonances

    CERN Document Server

    Radyionov, S V


    The dissipative collective motion in nuclei is investigated within the Fermi-liquid model. In the case of large-amplitude collective motion, the macroscopic equations for the nuclear shape parameter are derived from the pressure tensor, the velocity field, and the requisition of motion for the nuclear density. The approach is used both for the description of induced symmetric nuclear fission and isoscalar giant multipole resonances in nuclei. The widths of giant quadrupole resonances are calculated with the obtained value of the viscosity coefficient. The calculated widths are about two times smaller than the experimental values. Therefore, the width of a giant multipole resonance is formed not only by ordinary two-body viscosity but also by a nondissipative contribution that absents on the definition of the dissipative energy during the nuclear descent from the fission barrier.

  20. Optimal Channel Width Adaptation, Logical Topology Design, and Routing in Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Li Li


    Full Text Available Radio frequency spectrum is a finite and scarce resource. How to efficiently use the spectrum resource is one of the fundamental issues for multi-radio multi-channel wireless mesh networks. However, past research efforts that attempt to exploit multiple channels always assume channels of fixed predetermined width, which prohibits the further effective use of the spectrum resource. In this paper, we address how to optimally adapt channel width to more efficiently utilize the spectrum in IEEE802.11-based multi-radio multi-channel mesh networks. We mathematically formulate the channel width adaptation, logical topology design, and routing as a joint mixed 0-1 integer linear optimization problem, and we also propose our heuristic assignment algorithm. Simulation results show that our method can significantly improve spectrum use efficiency and network performance.