WorldWideScience

Sample records for widespread methane rainfall

  1. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.

    Science.gov (United States)

    Karanjekar, Richa V; Bhatt, Arpita; Altouqui, Said; Jangikhatoonabad, Neda; Durai, Vennila; Sattler, Melanie L; Hossain, M D Sahadat; Chen, Victoria

    2015-12-01

    Accurately estimating landfill methane emissions is important for quantifying a landfill's greenhouse gas emissions and power generation potential. Current models, including LandGEM and IPCC, often greatly simplify treatment of factors like rainfall and ambient temperature, which can substantially impact gas production. The newly developed Capturing Landfill Emissions for Energy Needs (CLEEN) model aims to improve landfill methane generation estimates, but still require inputs that are fairly easy to obtain: waste composition, annual rainfall, and ambient temperature. To develop the model, methane generation was measured from 27 laboratory scale landfill reactors, with varying waste compositions (ranging from 0% to 100%); average rainfall rates of 2, 6, and 12 mm/day; and temperatures of 20, 30, and 37°C, according to a statistical experimental design. Refuse components considered were the major biodegradable wastes, food, paper, yard/wood, and textile, as well as inert inorganic waste. Based on the data collected, a multiple linear regression equation (R(2)=0.75) was developed to predict first-order methane generation rate constant values k as functions of waste composition, annual rainfall, and temperature. Because, laboratory methane generation rates exceed field rates, a second scale-up regression equation for k was developed using actual gas-recovery data from 11 landfills in high-income countries with conventional operation. The Capturing Landfill Emissions for Energy Needs (CLEEN) model was developed by incorporating both regression equations into the first-order decay based model for estimating methane generation rates from landfills. CLEEN model values were compared to actual field data from 6 US landfills, and to estimates from LandGEM and IPCC. For 4 of the 6 cases, CLEEN model estimates were the closest to actual. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Cryptic Methane Emissions from Upland Forest Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Megonigal, Patrick [Smithsonian Institution, Washington, DC (United States); Pitz, Scott [Johns Hopkins Univ., Baltimore, MD (United States); Smithsonian Institution, Washington, DC (United States)

    2016-04-19

    This exploratory research on Cryptic Methane Emissions from Upland Forest Ecosystems was motivated by evidence that upland ecosystems emit 36% as much methane to the atmosphere as global wetlands, yet we knew almost nothing about this source. The long-term objective was to refine Earth system models by quantifying methane emissions from upland forests, and elucidate the biogeochemical processes that govern upland methane emissions. The immediate objectives of the grant were to: (i) test the emerging paradigm that upland trees unexpectedly transpire methane, (ii) test the basic biogeochemical assumptions of an existing global model of upland methane emissions, and (iii) develop the suite of biogeochemical approaches that will be needed to advance research on upland methane emissions. We instrumented a temperate forest system in order to explore the processes that govern upland methane emissions. We demonstrated that methane is emitted from the stems of dominant tree species in temperate upland forests. Tree emissions occurred throughout the growing season, while soils adjacent to the trees consumed methane simultaneously, challenging the concept that forests are uniform sinks of methane. High frequency measurements revealed diurnal cycling in the rate of methane emissions, pointing to soils as the methane source and transpiration as the most likely pathway for methane transport. We propose the forests are smaller methane sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements. The methods we used can be effectively implemented in order to determine if the phenomenon is widespread.

  3. Widespread Methane Leakage from the Seafloor on the Northern US Atlantic Margin

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Methane emissions from the sea floor affect methane inputs into the atmosphere, ocean acidification and de-oxygenation, the distribution of chemosynthetic...

  4. Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes

    Science.gov (United States)

    Oswald, Kirsten; Milucka, Jana; Brand, Andreas; Littmann, Sten; Wehrli, Bernhard; Kuypers, Marcel M. M.; Schubert, Carsten J.

    2015-01-01

    Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere. PMID:26193458

  5. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  6. Discovery of Widespread Biogenic Methane Emissions and Authigenic Carbonate Mound-like Structures at the Aquitaine Shelf (Bay of Biscay)

    Science.gov (United States)

    Dupré, S.; Loubrieu, B.; Scalabrin, C.; Ehrhold, A.; Gautier, E.; Ruffine, L.; Pierre, C.; Battani, A.; Le Bouffant, N.; Berger, L.

    2014-12-01

    Fishery acoustic surveys conducted in the Bay of Biscay (1998-2012) and dedicated to monitoring and predicting pelagic ecosystem evolution reveal numerous active seeps on the Aquitaine Shelf, east of the shelf break (Dupré et al. 2014). Seafloor and water column acoustic investigation with the use of ship-borne multibeam echosounder in 2013 (Gazcogne1 marine expedition) confirmed the presence of numerous (> 3000) persistent and widespread gas emission sites at water depths ranging from ~140 to 180 m. These fluid emissions are associated at the seafloor with high backscatter subcircular small-scale mounds, on average less than 2 m high and a few meters in diameter. Near-bottom visual observations and samplings were conducted with the ROV (Remotely Operated Vehicle) Victor (Gazcogne2 expedition). The whole mounds cover an area of ~200 km2 of the seabed, and are by-products of gas seepage, i.e. methane-derived authigenic carbonates. The spatial distribution of the seeps and related structures, based on water column acoustic gas flares and high backscatter seabed patches, appears to be relatively broad, with a North-South extension of ~80 km across the Parentis Basin and the Landes High, and a West-East extension along a few kilometers wide on the shelf, up to 8 km. Gas bubbles sampled at in situ conditions are principally composed of biogenic methane, possibly originated from Late Pleistocene deposits. The volume of methane emitted into the water column is abundant i) with an average gas flux varying locally from 0.035 to 0.37 Ln/min and ii) with regard to the time needed for the precipitation of the authigenic carbonates identified both at the seabed and in the upper most sedimentary column. The GAZCOGNE study is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. ReferenceDupré, S., Berger, L., Le Bouffant, N., Scalabrin, C., and Bourillet, J.-F., 2014. Fluid emissions at the Aquitaine Shelf (Bay of

  7. What rainfall events trigger landslides on the West Coast US?

    Science.gov (United States)

    Biasutti, Michela; Seager, Richard; Kirschbaum, Dalia

    2016-04-01

    A dataset of landslide occurrences compiled by collating google news reports covers 9 full years of data. We show that, while this compilation cannot provide consistent and widespread monitoring everywhere, it is adequate to capture the distribution of events in the major urban areas of the West Coast US and it can be used to provide a quantitative relationship between landslides and rainfall events. The case of the Seattle metropolitan area is presented as an example. The landslide dataset shows a clear seasonality in landslide occurrence, corresponding to the seasonality of rainfall, modified by the accumulation of soil moisture as winter progresses. Interannual variability of landslide occurrences is also linked to interannual variability of monthly rainfall. In most instances, landslides are clustered on consecutive days or at least within the same pentad and correspond to days of large rainfall accumulation at the regional scale. A joint analysis of the landslide data and of the high-resolution PRISM daily rainfall accumulation shows that on days when landslides occurred, the distribution of rainfall was shifted, with rainfall accumulation higher than 10mm/day being more common. Accumulations above 50mm/day much increase the probability of landslides, including the possibility of a major landslide event (one with multiple landslides in a day). The synoptic meteorological conditions associated with these major events show a mid-tropospheric ridge to the south of the target area steering a surface low and bringing enhanced precipitable water towards the Pacific North West. The interaction of the low-level flow with the local orography results in instances of a strong Puget Sound Convergence Zone, with widespread rainfall accumulation above 30mm/day and localized maxima as high as 100mm/day or more.

  8. Reducing Open Cell Landfill Methane Emissions with a Bioactive Alternative Daily

    Energy Technology Data Exchange (ETDEWEB)

    Helene Hilger; James Oliver; Jean Bogner; David Jones

    2009-03-31

    made but prone to rapid desiccation. Bacterial adsorption onto foam padding, natural sponge, and geotextile was successful. The most important factor for success appeared to be water holding capacity. Prototype biotarps made with geotextiles plus adsorbed methane oxidizing bacteria were tested for their responses to temperature, intermittent starvation, and washing (to simulate rainfall). The prototypes were mesophilic, and methane oxidation activity remained strong after one cycle of starvation but then declined with repeated cycles. Many of the cells detached with vigorous washing, but at least 30% appeared resistant to sloughing. While laboratory landfill simulations showed that four-layer composite biotarps made with two different types of geotextile could remove up to 50% of influent methane introduced at a flux rate of 22 g m{sup -2} d{sup -1}, field experiments did not yield high activity levels. Tests revealed that there were high hour-to-hour flux variations in the field, which, together with frequent rainfall events, confounded the field testing. Overall, the findings suggest that a methanotroph embedded biotarp appears to be a feasible strategy to mitigate methane emission from landfill cells, although the performance of field-tested biotarps was not robust here. Tarps will likely be best suited for spring and summer use, although the methane oxidizer population may be able to shift and adapt to lower temperatures. The starvation cycling of the tarp may require the capacity for intermittent reinoculation of the cells, although it is also possible that a subpopulation will adapt to the cycling and become dominant. Rainfall is not expected to be a major factor, because a baseline biofilm will be present to repopulate the tarp. If strong performance can be achieved and documented, the biotarp concept could be extended to include interception of other compounds beyond methane, such as volatile aromatic hydrocarbons and chlorinated solvents.

  9. The Impact of Amazonian Deforestation on Dry-Season Rainfall

    Science.gov (United States)

    Negri, Andrew J.; Adler, Robert F.; Xu, Li-Ming; Surratt, Jason; Starr, David OC. (Technical Monitor)

    2002-01-01

    Many modeling studies have concluded that widespread deforestation of Amazonia would lead to decreased rainfall. We analyze geosynchronous infrared satellite data with respect percent cloudiness, and analyze rain estimates from microwave sensors aboard the Tropical Rainfall Measuring Mission satellite. We conclude that in the dry-season, when the effects of the surface are not overwhelmed by synoptic-scale weather disturbances, deep convective cloudiness, as well as rainfall occurrence, all increase over the deforested and non-forested (savanna) regions. This is in response to a local circulation initiated by the differential heating of the region's varying forestation. Analysis of the diurnal cycle of cloudiness reveals a shift toward afternoon hours in the deforested and savanna regions, compared to the forested regions. Analysis of 14 years of data from the Special Sensor Microwave/Imager data revealed that only in August did rainfall amounts increase over the deforested region.

  10. Probabilistic clustering of rainfall condition for landslide triggering

    Science.gov (United States)

    Rossi, Mauro; Luciani, Silvia; Cesare Mondini, Alessandro; Kirschbaum, Dalia; Valigi, Daniela; Guzzetti, Fausto

    2013-04-01

    Landslides are widespread natural and man made phenomena. They are triggered by earthquakes, rapid snow melting, human activities, but mostly by typhoons and intense or prolonged rainfall precipitations. In Italy mostly they are triggered by intense precipitation. The prediction of landslide triggered by rainfall precipitations over large areas is commonly based on the exploitation of empirical models. Empirical landslide rainfall thresholds are used to identify rainfall conditions for the possible landslide initiation. It's common practice to define rainfall thresholds by assuming a power law lower boundary in the rainfall intensity-duration or cumulative rainfall-duration space above which landslide can occur. The boundary is defined considering rainfall conditions associated to landslide phenomena using heuristic approaches, and doesn't consider rainfall events not causing landslides. Here we present a new fully automatic method to identify the probability of landslide occurrence associated to rainfall conditions characterized by measures of intensity or cumulative rainfall and rainfall duration. The method splits the rainfall events of the past in two groups: a group of events causing landslides and its complementary, then estimate their probabilistic distributions. Next, the probabilistic membership of the new event to one of the two clusters is estimated. The method doesn't assume a priori any threshold model, but simple exploits the real empirical distribution of rainfall events. The approach was applied in the Umbria region, Central Italy, where a catalogue of landslide timing, were obtained through the search of chronicles, blogs and other source of information in the period 2002-2012. The approach was tested using rain gauge measures and satellite rainfall estimates (NASA TRMM-v6), allowing in both cases the identification of the rainfall condition triggering landslides in the region. Compared to the other existing threshold definition methods, the prosed

  11. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

    Science.gov (United States)

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J

    2015-01-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  12. Spatio-temporal trends of rainfall across Indian river basins

    Science.gov (United States)

    Bisht, Deepak Singh; Chatterjee, Chandranath; Raghuwanshi, Narendra Singh; Sridhar, Venkataramana

    2018-04-01

    Daily gridded high-resolution rainfall data of India Meteorological Department at 0.25° spatial resolution (1901-2015) was analyzed to detect the trend in seasonal, annual, and maximum cumulative rainfall for 1, 2, 3, and 5 days. The present study was carried out for 85 river basins of India during 1901-2015 and pre- and post-urbanization era, i.e., 1901-1970 and 1971-2015, respectively. Mann-Kendall ( α = 0.05) and Theil-Sen's tests were employed for detecting the trend and percentage of change over the period of time, respectively. Daily extreme rainfall events, above 95 and 99 percentile threshold, were also analyzed to detect any trend in their magnitude and number of occurrences. The upward trend was found for the majority of the sub-basins for 1-, 2-, 3-, and 5-day maximum cumulative rainfall during the post-urbanization era. The magnitude of extreme threshold events is also found to be increasing in the majority of the river basins during the post-urbanization era. A 30-year moving window analysis further revealed a widespread upward trend in a number of extreme threshold rainfall events possibly due to urbanization and climatic factors. Overall trends studied against intra-basin trend across Ganga basin reveal the mixed pattern of trends due to inherent spatial heterogeneity of rainfall, therefore, highlighting the importance of scale for such studies.

  13. Constraining the relationships between anaerobic oxidation of methane and sulfate reduction under in situ methane concentrations

    Science.gov (United States)

    Zhuang, G.; Wegener, G.; Joye, S. B.

    2017-12-01

    . Collectively, our results provided evidence for the possible decoupling of AOM and SR under in situconditions. This decoupling appears to be widespread in methane-rich marine sediment, motivating a wide variety of future research endeavors.

  14. Gas hydrates: entrance to a methane age or climate threat?

    International Nuclear Information System (INIS)

    Krey, Volker; Nakicenovic, Nebojsa; Grubler, Arnulf; O'Neill, Brian; Riahi, Keywan; Canadell, Josep G; Abe, Yuichi; Andruleit, Harald; Archer, David; Hamilton, Neil T M; Johnson, Arthur; Kostov, Veselin; Lamarque, Jean-Francois; Langhorne, Nicholas; Nisbet, Euan G; Riedel, Michael; Wang Weihua; Yakushev, Vladimir

    2009-01-01

    Methane hydrates, ice-like compounds in which methane is held in crystalline cages formed by water molecules, are widespread in areas of permafrost such as the Arctic and in sediments on the continental margins. They are a potentially vast fossil fuel energy source but, at the same time, could be destabilized by changing pressure-temperature conditions due to climate change, potentially leading to strong positive carbon-climate feedbacks. To enhance our understanding of both the vulnerability of and the opportunity provided by methane hydrates, it is necessary (i) to conduct basic research that improves the highly uncertain estimates of hydrate occurrences and their response to changing environmental conditions, and (ii) to integrate the agendas of energy security and climate change which can provide an opportunity for methane hydrates-in particular if combined with carbon capture and storage-to be used as a 'bridge fuel' between carbon-intensive fossil energies and zero-emission energies. Taken one step further, exploitation of dissociating methane hydrates could even mitigate against escape of methane to the atmosphere. Despite these opportunities, so far, methane hydrates have been largely absent from energy and climate discussions, including global hydrocarbon assessments and the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

  15. The Impact of a Amazonian Deforestation on Dry-Season Rainfall

    Science.gov (United States)

    Negri, Andrew J.; Adler, Robert F.; Xu, Liming; Surratt, Jason

    2003-01-01

    Many modeling studies have concluded that widespread deforestation of Amazonia would lead to decreased rainfall. We analyze geosynchronous infrared satellite data with respect to percent cloudiness, and analyze rain estimates from microwave sensors aboard the Tropical Rainfall Measuring Mission satellite. We conclude that in the dry-season, when the effects of the surface are not overwhelmed by synoptic-scale weather disturbances, shallow cumulus cloudiness, deep convective cloudiness, and rainfall occurrence all are larger over the deforested and non-forested (savanna) regions than over areas of dense jungle. This difference is in response to a local circulation initiated by the differential heating of the region s varying forestation. Analysis of the diurnal cycle of cloudiness reveals a shift in the onset of convection toward afternoon hours in the deforested and towards the morning hours in the savanna regions when compared to the neighboring forested regions. Analysis of 14 years of monthly estimates from the Special Sensor Microwave/Imager data revealed that in only in August was there a pattern of higher monthly rainfall amounts over the deforested region.

  16. Protection from wintertime rainfall reduces nutrient losses and greenhouse gas emissions during the decomposition of poultry and horse manure-based amendments.

    Science.gov (United States)

    Maltais-Landry, Gabriel; Neufeld, Katarina; Poon, David; Grant, Nicholas; Nesic, Zoran; Smukler, Sean

    2018-04-01

    Manure-based soil amendments (herein "amendments") are important fertility sources, but differences among amendment types and management can significantly affect their nutrient value and environmental impacts. A 6-month in situ decomposition experiment was conducted to determine how protection from wintertime rainfall affected nutrient losses and greenhouse gas (GHG) emissions in poultry (broiler chicken and turkey) and horse amendments. Changes in total nutrient concentration were measured every 3 months, changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations every month, and GHG emissions of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) every 7-14 days. Poultry amendments maintained higher nutrient concentrations (except for K), higher emissions of CO 2 and N 2 O, and lower CH 4 emissions than horse amendments. Exposing amendments to rainfall increased total N and NH 4 + losses in poultry amendments, P losses in turkey and horse amendments, and K losses and cumulative N 2 O emissions for all amendments. However, it did not affect CO 2 or CH 4 emissions. Overall, rainfall exposure would decrease total N inputs by 37% (horse), 59% (broiler chicken), or 74% (turkey) for a given application rate (wet weight basis) after 6 months of decomposition, with similar losses for NH 4 + (69-96%), P (41-73%), and K (91-97%). This study confirms the benefits of facilities protected from rainfall to reduce nutrient losses and GHG emissions during amendment decomposition. The impact of rainfall protection on nutrient losses and GHG emissions was monitored during the decomposition of broiler chicken, turkey, and horse manure-based soil amendments. Amendments exposed to rainfall had large ammonium and potassium losses, resulting in a 37-74% decrease in N inputs when compared with amendments protected from rainfall. Nitrous oxide emissions were also higher with rainfall exposure, although it had no effect on carbon dioxide and methane emissions

  17. Large rainfall changes consistently projected over substantial areas of tropical land

    Science.gov (United States)

    Chadwick, Robin; Good, Peter; Martin, Gill; Rowell, David P.

    2016-02-01

    Many tropical countries are exceptionally vulnerable to changes in rainfall patterns, with floods or droughts often severely affecting human life and health, food and water supplies, ecosystems and infrastructure. There is widespread disagreement among climate model projections of how and where rainfall will change over tropical land at the regional scales relevant to impacts, with different models predicting the position of current tropical wet and dry regions to shift in different ways. Here we show that despite uncertainty in the location of future rainfall shifts, climate models consistently project that large rainfall changes will occur for a considerable proportion of tropical land over the twenty-first century. The area of semi-arid land affected by large changes under a higher emissions scenario is likely to be greater than during even the most extreme regional wet or dry periods of the twentieth century, such as the Sahel drought of the late 1960s to 1990s. Substantial changes are projected to occur by mid-century--earlier than previously expected--and to intensify in line with global temperature rise. Therefore, current climate projections contain quantitative, decision-relevant information on future regional rainfall changes, particularly with regard to climate change mitigation policy.

  18. Alternatives for methane emission mitigation in livestock systems

    OpenAIRE

    Lascano,Carlos E.; Cárdenas,Edgar

    2010-01-01

    Human activities are contributing to Global Climate Change through the production of Green House Gases (GHG), which result in increased air, land and ocean temperatures and extreme changes in precipitation in regions of low and high rainfall. The most important GHG's are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). It is estimated that 18 % of the annual GHG emissions come from different types of livestock and that 37% of CH4, with higher global warming potential (23) relative...

  19. The influence of seasonal rainfall upon Sahel vegetation

    DEFF Research Database (Denmark)

    Proud, Simon Richard; Rasmussen, Laura Vang

    2011-01-01

    Throughout the Sahelian region of Africa, vegetation growth displays substantial inter-annual variation, causing widespread concern in the region as rain-fed agriculture and pastoralism are a means of sustenance for the predominantly rural population. Previously proposed factors behind variations...... yields, carbon storage and landscape changes without the need to resort to rainfall estimates that are sometimes of low accuracy. In addition, it may be possible to apply the results to other dry land regions worldwide....

  20. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility

    Science.gov (United States)

    Reed, Sasha C.; Coe, Kirsten K.; Sparks, Jed P.; Housman, David C.; Zelikova, Tamara J.; Belnap, Jayne

    2012-01-01

    Arid and semi-arid ecosystems cover ~40% of Earth’s terrestrial surface, but we know little about how climate change will affect these widespread landscapes. Like many drylands, the Colorado Plateau in southwestern United States is predicted to experience elevated temperatures and alterations to the timing and amount of annual precipitation. We used a factorial warming and supplemental rainfall experiment on the Colorado Plateau to show that altered precipitation resulted in pronounced mortality of the widespread moss Syntrichia caninervis. Increased frequency of 1.2 mm summer rainfall events reduced moss cover from ~25% of total surface cover to fertility. Mosses are important members in many dryland ecosystems and the community changes observed here reveal how subtle modifications to climate can affect ecosystem structure and function on unexpectedly short timescales. Moreover, mortality resulted from increased precipitation through smaller, more frequent events, underscoring the importance of precipitation event size and timing, and highlighting our inadequate understanding of relationships between climate and ecosystem function in drylands.

  1. Global health benefits of mitigating ozone pollution with methane emission controls.

    Science.gov (United States)

    West, J Jason; Fiore, Arlene M; Horowitz, Larry W; Mauzerall, Denise L

    2006-03-14

    Methane (CH(4)) contributes to the growing global background concentration of tropospheric ozone (O(3)), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by approximately 1 part per billion by volume globally. By using epidemiologic ozone-mortality relationships, this ozone reduction is estimated to prevent approximately 30,000 premature all-cause mortalities globally in 2030, and approximately 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, approximately 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be approximately 420,000 US dollars per avoided mortality. If avoided mortalities are valued at 1 US dollars million each, the benefit is approximately 240 US dollars per tone of CH(4) ( approximately 12 US dollars per tone of CO(2) equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO(2). Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy.

  2. Options for cost-effectively reducing atmospheric methane concentrations from anthropogenic biomass sources

    International Nuclear Information System (INIS)

    Roos, K.F.; Jacobs, C.; Orlic, M.

    1993-01-01

    Methane is a major greenhouse gas, second only to carbon dioxide in its contribution to future global warming. Methane concentrations have more than doubled over the last two centuries and continue to rise annually. These increases are largely correlated with increasing human populations. Methane emissions from human related activities currently account for about 70 percent of annual emissions. Of these human related emissions, biomass sources account for about 75 percent and non-biomass sources about 25 percent. Because methane has a shorter lifetime than other major greenhouse gases, efforts to reduce methane emissions may fairly quickly be translated into lower atmospheric concentrations of methane and lower levels of radiative forcing. This fairly quick response would have the benefit of slowing the rate of climate change and hence allow natural ecosystems more time to adapt. Importantly, methane may be cost-effectively reduced from a number of biomass and non-biomass sources in the United States and worldwide. Methane is a valuable fuel, not just a waste by-product, and often systems may be reconfigured to reap the fuel value of the methane and more than justify the necessary expenditures. Such options for reducing methane emission from biomass sources exist for landfills, livestock manures, and ruminant livestock, and have been implemented to varying degrees in countries around the world. However, there are a number of barriers that hinder the more widespread use of technologies, including institutional, financial, regulatory, informational, and other barriers. This paper describes an array of available options that may be cost-effectively implemented to reduce methane emissions from biomass sources. This paper also discusses a number of programs that have been developed in the United States and internationally to promote the implementation of these methane reduction options and overcome existing barriers

  3. The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: The Role of Defects

    Energy Technology Data Exchange (ETDEWEB)

    Szilágyi, Petra Ágota, E-mail: p.a.szilagyi@greenwich.ac.uk [Department of Pharmaceutical, Chemical and Environmental Sciences, University of Greenwich, Chatham (United Kingdom); Serra-Crespo, Pablo [Department of Radiation Science and Technology, Delft University of Technology, Delft (Netherlands); Gascon, Jorge [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands); Geerlings, Hans [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands); Shell Technology Centre, Amsterdam (Netherlands); Dam, Bernard [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands)

    2016-03-29

    Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. However, its vehicular application will only be widespread if safe and high-capacity methane stores are developed. In this work, we report an over 33% increase in methane uptake on a post-synthetically modified metal–organic framework. The underlying mechanism for this dramatic increase is due to lattice defects formed upon post-synthetic modification. This method may open new approaches to natural gas storage.

  4. The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: The Role of Defects

    International Nuclear Information System (INIS)

    Szilágyi, Petra Ágota; Serra-Crespo, Pablo; Gascon, Jorge; Geerlings, Hans; Dam, Bernard

    2016-01-01

    Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. However, its vehicular application will only be widespread if safe and high-capacity methane stores are developed. In this work, we report an over 33% increase in methane uptake on a post-synthetically modified metal–organic framework. The underlying mechanism for this dramatic increase is due to lattice defects formed upon post-synthetic modification. This method may open new approaches to natural gas storage.

  5. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria : The Medinaut Shipboard Scientific Party

    NARCIS (Netherlands)

    Pancost, Richard D.; Sinninghe Damsté, Jaap S.; de Lint, Saskia; van der Maarel, Marc J.E.C.; Gottschal, JC

    Although abundant geochemical data indicate that anaerobic methane oxidation occurs in marine sediments, the linkage to specific microorganisms remains unclear, In order to examine processes of methane consumption and oxidation, sediment samples from mud volcanoes at two distinct sites on the

  6. Methylated silicates may explain the release of chlorinated methane from Martian soil

    Science.gov (United States)

    Bak, Ebbe N.; Jensen, Svend J. Knak; Nørnberg, Per; Finster, Kai

    2016-01-01

    The only organic compounds that have been detected in the Martian soil are simple chlorinated compounds released from heated surface material. However, the sources of the organic carbon are in dispute. Wind abraded silicates, which are widespread on the Martian surface, can sequester atmospheric methane which generates methylated silicates and thus could provide a mechanism for accumulation of reduced carbon in the surface soil. In this study we show that thermal volatilization of methylated silicates in the presence of perchlorate leads to the production of chlorinated methane. Thus, methylated silicates could be a source of the organic carbon released as chlorinated methane upon thermal volatilization of Martian soil samples. Further, our experiments show that the ratio of the different chlorinated compounds produced is dependent on the mass ratio of perchlorate to organic carbon in the soil.

  7. The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: the Role of Defects

    Directory of Open Access Journals (Sweden)

    Petra Agota Szilagyi

    2016-03-01

    Full Text Available Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. Its vehicular application however will only be widespread if safe and high-capacity methane stores are developed. In this work report an over 33% increase in methane uptake on a post-synthetically modified metal-organic framework. The underlying mechanism for this dramatic increase is due to lattice defects formed upon post-synthetic modification. This method may open new approaches to natural gas storage.

  8. Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatan, Mexico

    Science.gov (United States)

    Chuang, P. C.; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A.; Paytan, Adina

    2016-01-01

    Porewater profiles in sediment cores from mangrove-dominated coastal lagoons (Celestún and Chelem) on the Yucatán Peninsula, Mexico, reveal the widespread coexistence of dissolved methane and sulfate. This observation is interesting since dissolved methane in porewaters is typically oxidized anaerobically by sulfate. To explain the observations we used a numerical transport-reaction model that was constrained by the field observations. The model suggests that methane in the upper sediments is produced in the sulfate reduction zone at rates ranging between 0.012 and 31 mmol m−2 d−1, concurrent with sulfate reduction rates between 1.1 and 24 mmol SO42− m−2 d−1. These processes are supported by high organic matter content in the sediment and the use of non-competitive substrates by methanogenic microorganisms. Indeed sediment slurry incubation experiments show that non-competitive substrates such as trimethylamine (TMA) and methanol can be utilized for microbial methanogenesis at the study sites. The model also indicates that a significant fraction of methane is transported to the sulfate reduction zone from deeper zones within the sedimentary column by rising bubbles and gas dissolution. The shallow depths of methane production and the fast rising methane gas bubbles reduce the likelihood for oxidation, thereby allowing a large fraction of the methane formed in the sediments to escape to the overlying water column.

  9. The use of {sup 13}C labelling of bacterial lipids in the characterisation of ambient methane-oxidising bacteria in soils

    Energy Technology Data Exchange (ETDEWEB)

    Crossman, Z.M.; Evershed, R.P. [Bristol Univ., Organic Geochemistry Unit, Biogeochemistry Research Centre, Bristol (United Kingdom); Ineson, P. [York Univ., Dept. of Biology, York (United Kingdom)

    2005-05-15

    The occurrence of methane-oxidising bacteria in soils has received increasing attention because of their role as a sink for atmospheric methane. However, such bacteria are not amenable to modern culturing techniques and hence the widespread interest in the development of methods of cultivation-independent analysis. In the following investigation, a combination of stable isotope labelling with phospholipid fatty acid (PLFA) and bacteriohopanoid analysis was employed in an effort to characterise this functional group of bacteria. Results suggest a novel population of methane-oxidising bacteria related to type II culturable methanotrophs, in particular, the Methylocapsa and Methylocella genera of bacteria. (Author)

  10. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover.

    Science.gov (United States)

    Feng, S; Ng, C W W; Leung, A K; Liu, H W

    2017-10-01

    Microbial aerobic methane oxidation in unsaturated landfill cover involves coupled water, gas and heat reactive transfer. The coupled process is complex and its influence on methane oxidation efficiency is not clear, especially in steep covers where spatial variations of water, gas and heat are significant. In this study, two-dimensional finite element numerical simulations were carried out to evaluate the performance of unsaturated sloping cover. The numerical model was calibrated using a set of flume model test data, and was then subsequently used for parametric study. A new method that considers transient changes of methane concentration during the estimation of the methane oxidation efficiency was proposed and compared against existing methods. It was found that a steeper cover had a lower oxidation efficiency due to enhanced downslope water flow, during which desaturation of soil promoted gas transport and hence landfill gas emission. This effect was magnified as the cover angle and landfill gas generation rate at the bottom of the cover increased. Assuming the steady-state methane concentration in a cover would result in a non-conservative overestimation of oxidation efficiency, especially when a steep cover was subjected to rainfall infiltration. By considering the transient methane concentration, the newly-modified method can give a more accurate oxidation efficiency. Copyright © 2017. Published by Elsevier Ltd.

  11. Enhanced Orographic Tropical Rainfall: An Study of the Colombia's rainfall

    Science.gov (United States)

    Peñaranda, V. M.; Hoyos Ortiz, C. D.; Mesa, O. J.

    2015-12-01

    Convection in tropical regions may be enhanced by orographic barriers. The orographic enhancement is an intensification of rain rates caused by the forced lifting of air over a mountainous structure. Orographic heavy rainfall events, occasionally, comes along by flooding, debris flow and substantial amount of looses, either economics or human lives. Most of the heavy convective rainfall events, occurred in Colombia, have left a lot of victims and material damages by flash flooding. An urgent action is required by either scientific communities or society, helping to find preventive solutions against these kind of events. Various scientific literature reports address the feedback process between the convection and the local orographic structures. The orographic enhancement could arise by several physical mechanism: precipitation transport on leeward side, convection triggered by the forcing of air over topography, the seeder-feeder mechanism, among others. The identification of the physical mechanisms for orographic enhancement of rainfall has not been studied over Colombia. As far as we know, orographic convective tropical rainfall is just the main factor for the altitudinal belt of maximum precipitation, but the lack of detailed hydro-meteorological measurements have precluded a complete understanding of the tropical rainfall in Colombia and its complex terrain. The emergence of the multifractal theory for rainfall has opened a field of research which builds a framework for parsimonious modeling of physical process. Studies about the scaling behavior of orographic rainfall have found some modulating functions between the rainfall intensity probability distribution and the terrain elevation. The overall objective is to advance in the understanding of the orographic influence over the Colombian tropical rainfall based on observations and scaling-analysis techniques. We use rainfall maps, weather radars scans and ground-based rainfall data. The research strategy is

  12. Empirical rainfall thresholds for the triggering of landslides in Asturias (NW Spain)

    Science.gov (United States)

    Valenzuela, Pablo; Luís Zêzere, José; José Domínguez-Cuesta, María; Mora García, Manuel Antonio

    2017-04-01

    Rainfall-triggered landslides are common and widespread phenomena in Asturias, a mountainous region in the NW of Spain where the climate is characterized by average annual precipitation and temperature values of 960 mm and 13.3°C respectively. Different types of landslides (slides, flows and rockfalls) frequently occur during intense rainfall events, causing every year great economic losses and sometimes human injuries or fatalities. For this reason, its temporal forecast is of great interest. The main goal of the present research is the calculation of empirical rainfall thresholds for the triggering of landslides in the Asturian region, following the methodology described by Zêzere et al., 2015. For this purpose, data from 559 individual landslides collected from press archives during a period of eight hydrological years (October 2008-September 2016) and gathered within the BAPA landslide database (http://geol.uniovi.es/BAPA) were used. Precipitation data series of 37 years came from 6 weather stations representative of the main geographical and climatic conditions within the study area. Applied methodology includes: (i) the definition of landslide events, (ii) the reconstruction of the cumulative antecedent rainfall for each event from 1 to 90 consecutive days, (iii) the estimation of the return period for each cumulated rainfall-duration condition using Gumbel probability distribution, (iv) the definition of the critical cumulated rainfall-duration conditions taking into account the highest return period, (v) the calculation of the thresholds considering both the conditions for the occurrence and non-occurrence of landslides. References: Zêzere, J.L., Vaz, T., Pereira, S., Oliveira, S.C., Marqués, R., García, R.A.C. 2015. Rainfall thresholds for landslide activity in Portugal: a state of the art. Environmental Earth Sciences, 73, 2917-2936. doi: 10.1007/s12665-014-3672-0

  13. Dissolved methane in New York groundwater, 1999-2011

    Science.gov (United States)

    Kappel, William M.; Nystrom, Elizabeth A.

    2012-01-01

    New York State is underlain by numerous bedrock formations of Cambrian to Devonian age that produce natural gas and to a lesser extent oil. The first commercial gas well in the United States was dug in the early 1820s in Fredonia, south of Buffalo, New York, and produced methane from Devonian-age black shale. Methane naturally discharges to the land surface at some locations in New York. At Chestnut Ridge County Park in Erie County, just south of Buffalo, N.Y., several surface seeps of natural gas occur from Devonian black shale, including one behind a waterfall. Methane occurs locally in the groundwater of New York; as a result, it may be present in drinking-water wells, in the water produced from those wells, and in the associated water-supply systems (Eltschlager and others, 2001). The natural gas in low-permeability bedrock formations has not been accessible by traditional extraction techniques, which have been used to tap more permeable sandstone and carbonate bedrock reservoirs. However, newly developed techniques involving horizontal drilling and high-volume hydraulic fracturing have made it possible to extract previously inaccessible natural gas from low-permeability bedrock such as the Marcellus and Utica Shales. The use of hydraulic fracturing to release natural gas from these shale formations has raised concerns with water-well owners and water-resource managers across the Marcellus and Utica Shale region (West Virginia, Pennsylvania, New York and parts of several other adjoining States). Molofsky and others (2011) documented the widespread natural occurrence of methane in drinking-water wells in Susquehanna County, Pennsylvania. In the same county, Osborn and others (2011) identified elevated methane concentrations in selected drinking-water wells in the vicinity of Marcellus gas-development activities, although pre-development samples were not available for comparison. In order to manage water resources in areas of gas-well drilling and hydraulic

  14. Heterogeneity of Dutch rainfall

    NARCIS (Netherlands)

    Witter, J.V.

    1984-01-01

    Rainfall data for the Netherlands have been used in this study to investigate aspects of heterogeneity of rainfall, in particular local differences in rainfall levels, time trends in rainfall, and local differences in rainfall trend. The possible effect of urbanization and industrialization on the

  15. MethaneSat: Detecting Methane Emissions in the Barnett Shale Region

    Science.gov (United States)

    Propp, A. M.; Benmergui, J. S.; Turner, A. J.; Wofsy, S. C.

    2017-12-01

    In this study, we investigate the new information that will be provided by MethaneSat, a proposed satellite that will measure the total column dry-air mole fraction of methane at 1x1 km or 2x2 km spatial resolution with 0.1-0.2% random error. We run an atmospheric model to simulate MethaneSat's ability to characterize methane emissions from the Barnett Shale, a natural gas province in Texas. For comparison, we perform observation system simulation experiments (OSSEs) for MethaneSat, the National Oceanic and Atmospheric administration (NOAA) surface and aircraft network, and Greenhouse Gases Observing Satellite (GOSAT). The results demonstrate the added benefit that MethaneSat would provide in our efforts to monitor and report methane emissions. We find that MethaneSat successfully quantifies total methane emissions in the region, as well as their spatial distribution and steep gradients. Under the same test conditions, both the NOAA network and GOSAT fail to capture this information. Furthermore, we find that the results for MethaneSat depend far less on the prior emission estimate than do those for the other observing systems, demonstrating the benefit of high sampling density. The results suggest that MethaneSat would be an incredibly useful tool for obtaining detailed methane emission information from oil and gas provinces around the world.

  16. Rainfall Erosivity in Europe

    DEFF Research Database (Denmark)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale

    2015-01-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the Rfactor in the USLE model and its revised version, RUSLE. At national...... and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based...

  17. Simple Method for Assessing Spread of Flood Prone Areas under Historical and Future Rainfall in the Upper Citarum Watershed

    Directory of Open Access Journals (Sweden)

    Bambang Dwi Dasanto

    2014-06-01

    Full Text Available From 1931 to 2010 the flood frequency in Upper Citarum Watershed had increased sharply indicating the decline of the wateshed quality. With the change of climate, risk of the flood may get worse. This study aims to determine effective rainfall that caused flooding and to evaluate the impact of future rainfall changes on the flood prone areas. Effective rainfall which contributes to direct runoff (DRO and leads to flooding was determined using regression equation relating the DRO and cumulative rainfall of a number of consecutive days. Mapping the flood prone areas was developed using the GIS techniques. Results showed that the effective rainfall which caused flooding was the rainfall accumulation for four consecutive days before occurrence of peak of DRO. The percentage of accuracy between estimated and actual flood maps was about 76.9%. According to historical rainfall, the flood prone areas spreaded at right and left directions of the Upstream Citarum River. If this area experiences the climate change, the frequency and flood extents will increase. This study can only identify locations and possibility of flood occurrence but it cannot demonstrate widespread of flood inundation precisely. However, this simple approach can evaluate the flood frequency and intensity quite well.

  18. Drivers of methane uptake by montane forest soils in the Peruvian Andes

    Science.gov (United States)

    Jones, Sam; Diem, Torsten; Huaraca Quispe, Lidia; Cahuana, Adan; Meir, Patrick; Teh, Yit

    2016-04-01

    season, was only apparent in the upper montane forest. Differences in patterns of soil-atmosphere methane exchange and environmental conditions here and in previous studies of similar ecosystems allow us to speculate that the interaction between soil structure and rainfall regimes may help explain observed variability.

  19. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    Energy Technology Data Exchange (ETDEWEB)

    Kirchman, David L. [Univ. of Delaware, Lewes, DE (United States)

    2012-03-29

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (Methane in the Arctic Shelf or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (metagenomes ). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in

  20. Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region.

    Science.gov (United States)

    Frankenberg, C.

    2016-12-01

    Methane (CH4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ˜ 2 kg/h to 5 kg/h through ˜ 5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, natural seeps and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. We will summarize the campaign results and provide an overview of how airborne remote sensing can be used to detect and infer methane fluxes over widespread geographic areas and how new instrumentation could be used to perform similar observations from space.

  1. Spatiotemporal Interpolation of Rainfall by Combining BME Theory and Satellite Rainfall Estimates

    Directory of Open Access Journals (Sweden)

    Tingting Shi

    2015-09-01

    Full Text Available The accurate assessment of spatiotemporal rainfall variability is a crucial and challenging task in many hydrological applications, mainly due to the lack of a sufficient number of rain gauges. The purpose of the present study is to investigate the spatiotemporal variations of annual and monthly rainfall over Fujian province in China by combining the Bayesian maximum entropy (BME method and satellite rainfall estimates. Specifically, based on annual and monthly rainfall data at 20 meteorological stations from 2000 to 2012, (1 the BME method with Tropical Rainfall Measuring Mission (TRMM estimates considered as soft data, (2 ordinary kriging (OK and (3 cokriging (CK were employed to model the spatiotemporal variations of rainfall in Fujian province. Subsequently, the performance of these methods was evaluated using cross-validation statistics. The results demonstrated that BME with TRMM as soft data (BME-TRMM performed better than the other two methods, generating rainfall maps that represented the local rainfall disparities in a more realistic manner. Of the three interpolation (mapping methods, the mean absolute error (MAE and root mean square error (RMSE values of the BME-TRMM method were the smallest. In conclusion, the BME-TRMM method improved spatiotemporal rainfall modeling and mapping by integrating hard data and soft information. Lastly, the study identified new opportunities concerning the application of TRMM rainfall estimates.

  2. Methane Recycling During Burial of Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    You, K.; Flemings, P. B.

    2017-12-01

    We quantitatively investigate the integral processes of methane hydrate formation from local microbial methane generation, burial of methane hydrate with sedimentation, and methane recycling at the base of the hydrate stability zone (BHSZ) with a multiphase multicomponent numerical model. Methane recycling happens in cycles, and there is not a steady state. Each cycle starts with free gas accumulation from hydrate dissociation below the BHSZ. This free gas flows upward under buoyancy, elevates the hydrate saturation and capillary entry pressure at the BHSZ, and this prevents more free gas flowing in. Later as this layer with elevated hydrate saturation is buried and dissociated, the large amount of free gas newly released and accumulated below rapidly intrudes into the hydrate stability zone, drives rapid hydrate formation and creates three-phase (gas, liquid and hydrate) equilibrium above the BHSZ. The gas front retreats to below the BHSZ until all the free gas is depleted. The shallowest depth that the free gas reaches in one cycle moves toward seafloor as more and more methane is accumulated to the BHSZ with time. More methane is stored above the BHSZ in the form of concentrated hydrate in sediments with relatively uniform pore throat, and/or with greater compressibility. It is more difficult to initiate methane recycling in passive continental margins where the sedimentation rate is low, and in sediments with low organic matter content and/or methanogenesis reaction rate. The presence of a permeable layer can store methane for significant periods of time without recycling. In a 2D system where the seafloor dips rapidly, the updip gas flow along the BHSZ transports more methane toward topographic highs where methane gas and elevated hydrate saturation intrude deeper into the hydrate stability zone within one cycle. This could lead to intermittent gas venting at seafloor at the topographic highs. This study provides insights on many phenomenon associated with

  3. Rainfall over the African continent from the 19th through the 21st century

    Science.gov (United States)

    Nicholson, Sharon E.; Funk, Chris; Fink, Andreas H.

    2018-06-01

    Most of the African continent is semi-arid and hence prone to extreme variations in rainfall from year to year. The extreme droughts that have plagued the Sahel and eastern Africa are particularly well known. This article uses a markedly expanded and updated rainfall data set to examine rainfall variability in 13 sectors that cover most of the continent. Annual rainfall is presented for each sector; the March-to-May and October-November seasons are also examined for equatorial sectors. In each case, the article includes the longest and most comprehensive precipitation gauge series ever published. All time series cover at least a century and most cover roughly one and one-half centuries or more. Although towards the end of the 20th century there was a widespread trend towards more arid conditions, few significant trends are evident over the entire period of record. The largest were downward trends in the Sahel and western sectors of North Africa. In those regions, an abrupt reduction in rainfall occurred around 1968, but a synchronous change occurred many other parts of Africa. A recovery did occur in the Sahel, but to varying degrees across the east-west expanse of the region. Noteworthy is that the west-to-east rainfall gradient across the region appears to have weakened in recent decades. For the continent as a whole, another change began in the 1980s decade, with more arid conditions persisting at the continental scale until early in the twenty-first century. No other such period of dry conditions occurred within the roughly one and one-half centuries evaluated here. A notable change also occurred at the seasonal level. During the period 1980 to 1998 rainfall during March-to-May was well below the long-term mean throughout most of the area from 20° N to 35° S. At the same time rainfall was above the long-term mean in most of eastern sectors within this latitude span, indicating a change in the seasonality of rainfall of a large part of Africa.

  4. Assessing the Gap Between Top-down and Bottom-up Measured Methane Emissions in Indianapolis, IN.

    Science.gov (United States)

    Prasad, K.; Lamb, B. K.; Cambaliza, M. O. L.; Shepson, P. B.; Stirm, B. H.; Salmon, O. E.; Lavoie, T. N.; Lauvaux, T.; Ferrara, T.; Howard, T.; Edburg, S. L.; Whetstone, J. R.

    2014-12-01

    Releases of methane (CH4) from the natural gas supply chain in the United States account for approximately 30% of the total US CH4 emissions. However, there continues to be large questions regarding the accuracy of current emission inventories for methane emissions from natural gas usage. In this paper, we describe results from top-down and bottom-up measurements of methane emissions from the large isolated city of Indianapolis. The top-down results are based on aircraft mass balance and tower based inverse modeling methods, while the bottom-up results are based on direct component sampling at metering and regulating stations, surface enclosure measurements of surveyed pipeline leaks, and tracer/modeling methods for other urban sources. Mobile mapping of methane urban concentrations was also used to identify significant sources and to show an urban-wide low level enhancement of methane levels. The residual difference between top-down and bottom-up measured emissions is large and cannot be fully explained in terms of the uncertainties in top-down and bottom-up emission measurements and estimates. Thus, the residual appears to be, at least partly, attributed to a significant wide-spread diffusive source. Analyses are included to estimate the size and nature of this diffusive source.

  5. Widespread decline of Congo rainforest greenness in the past decade.

    Science.gov (United States)

    Zhou, Liming; Tian, Yuhong; Myneni, Ranga B; Ciais, Philippe; Saatchi, Sassan; Liu, Yi Y; Piao, Shilong; Chen, Haishan; Vermote, Eric F; Song, Conghe; Hwang, Taehee

    2014-05-01

    Tropical forests are global epicentres of biodiversity and important modulators of climate change, and are mainly constrained by rainfall patterns. The severe short-term droughts that occurred recently in Amazonia have drawn attention to the vulnerability of tropical forests to climatic disturbances. The central African rainforests, the second-largest on Earth, have experienced a long-term drying trend whose impacts on vegetation dynamics remain mostly unknown because in situ observations are very limited. The Congolese forest, with its drier conditions and higher percentage of semi-evergreen trees, may be more tolerant to short-term rainfall reduction than are wetter tropical forests, but for a long-term drought there may be critical thresholds of water availability below which higher-biomass, closed-canopy forests transition to more open, lower-biomass forests. Here we present observational evidence for a widespread decline in forest greenness over the past decade based on analyses of satellite data (optical, thermal, microwave and gravity) from several independent sensors over the Congo basin. This decline in vegetation greenness, particularly in the northern Congolese forest, is generally consistent with decreases in rainfall, terrestrial water storage, water content in aboveground woody and leaf biomass, and the canopy backscatter anomaly caused by changes in structure and moisture in upper forest layers. It is also consistent with increases in photosynthetically active radiation and land surface temperature. These multiple lines of evidence indicate that this large-scale vegetation browning, or loss of photosynthetic capacity, may be partially attributable to the long-term drying trend. Our results suggest that a continued gradual decline of photosynthetic capacity and moisture content driven by the persistent drying trend could alter the composition and structure of the Congolese forest to favour the spread of drought-tolerant species.

  6. Rainfall simulation in education

    Science.gov (United States)

    Peters, Piet; Baartman, Jantiene; Gooren, Harm; Keesstra, Saskia

    2016-04-01

    Rainfall simulation has become an important method for the assessment of soil erosion and soil hydrological processes. For students, rainfall simulation offers an year-round, attractive and active way of experiencing water erosion, while not being dependent on (outdoors) weather conditions. Moreover, using rainfall simulation devices, they can play around with different conditions, including rainfall duration, intensity, soil type, soil cover, soil and water conservation measures, etc. and evaluate their effect on erosion and sediment transport. Rainfall simulators differ in design and scale. At Wageningen University, both BSc and MSc student of the curriculum 'International Land and Water Management' work with different types of rainfall simulation devices in three courses: - A mini rainfall simulator (0.0625m2) is used in the BSc level course 'Introduction to Land Degradation and Remediation'. Groups of students take the mini rainfall simulator with them to a nearby field location and test it for different soil types, varying from clay to more sandy, slope angles and vegetation or litter cover. The groups decide among themselves which factors they want to test and they compare their results and discuss advantage and disadvantage of the mini-rainfall simulator. - A medium sized rainfall simulator (0.238 m2) is used in the MSc level course 'Sustainable Land and Water Management', which is a field practical in Eastern Spain. In this course, a group of students has to develop their own research project and design their field measurement campaign using the transportable rainfall simulator. - Wageningen University has its own large rainfall simulation laboratory, in which a 15 m2 rainfall simulation facility is available for research. In the BSc level course 'Land and Water Engineering' Student groups will build slopes in the rainfall simulator in specially prepared containers. Aim is to experience the behaviour of different soil types or slope angles when (heavy) rain

  7. Methane cycling. Nonequilibrium clumped isotope signals in microbial methane.

    Science.gov (United States)

    Wang, David T; Gruen, Danielle S; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C; Holden, James F; Hristov, Alexander N; Pohlman, John W; Morrill, Penny L; Könneke, Martin; Delwiche, Kyle B; Reeves, Eoghan P; Sutcliffe, Chelsea N; Ritter, Daniel J; Seewald, Jeffrey S; McIntosh, Jennifer C; Hemond, Harold F; Kubo, Michael D; Cardace, Dawn; Hoehler, Tori M; Ono, Shuhei

    2015-04-24

    Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, (13)CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on (13)CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters. Copyright © 2015, American Association for the Advancement of Science.

  8. Effects of land-use change and rainfall in Sudano-Sahelian West Africa on the diet and nestling growth rates of an avian predator

    NARCIS (Netherlands)

    Buij, R.; Folkertsma, I.; Kortekaas, K.; longh, De H.H.; Komdeur, J.

    2013-01-01

    Raptor populations in Sudano-Sahelian West Africa are being severely affected by widespread habitat alteration which depletes prey populations, potentially aggravated by changing rainfall patterns. We studied Grasshopper Buzzards Butastur rufipennis at nests in natural and transformed habitats in

  9. Effects of land-use change and rainfall in Sudano-Sahelian West Africa on the diet and nestling growth rates of an avian predator

    NARCIS (Netherlands)

    Buij, Ralph; Folkertsma, Ingrid; Kortekaas, Kim; De Iongh, Hans H.; Komdeur, Jan; Sergio, Fabrizio

    Raptor populations in Sudano-Sahelian West Africa are being severely affected by widespread habitat alteration which depletes prey populations, potentially aggravated by changing rainfall patterns. We studied Grasshopper Buzzards Butastur rufipennis at nests in natural and transformed habitats in

  10. Rainfall: State of the Science

    Science.gov (United States)

    Testik, Firat Y.; Gebremichael, Mekonnen

    Rainfall: State of the Science offers the most up-to-date knowledge on the fundamental and practical aspects of rainfall. Each chapter, self-contained and written by prominent scientists in their respective fields, provides three forms of information: fundamental principles, detailed overview of current knowledge and description of existing methods, and emerging techniques and future research directions. The book discusses • Rainfall microphysics: raindrop morphodynamics, interactions, size distribution, and evolution • Rainfall measurement and estimation: ground-based direct measurement (disdrometer and rain gauge), weather radar rainfall estimation, polarimetric radar rainfall estimation, and satellite rainfall estimation • Statistical analyses: intensity-duration-frequency curves, frequency analysis of extreme events, spatial analyses, simulation and disaggregation, ensemble approach for radar rainfall uncertainty, and uncertainty analysis of satellite rainfall products The book is tailored to be an indispensable reference for researchers, practitioners, and graduate students who study any aspect of rainfall or utilize rainfall information in various science and engineering disciplines.

  11. Trends in rainfall and rainfall-related extremes in the east coast of peninsular Malaysia

    Science.gov (United States)

    Mayowa, Olaniya Olusegun; Pour, Sahar Hadi; Shahid, Shamsuddin; Mohsenipour, Morteza; Harun, Sobri Bin; Heryansyah, Arien; Ismail, Tarmizi

    2015-12-01

    The coastlines have been identified as the most vulnerable regions with respect to hydrological hazards as a result of climate change and variability. The east of peninsular Malaysia is not an exception for this, considering the evidence of heavy rainfall resulting in floods as an annual phenomenon and also water scarcity due to long dry spells in the region. This study examines recent trends in rainfall and rainfall- related extremes such as, maximum daily rainfall, number of rainy days, average rainfall intensity, heavy rainfall days, extreme rainfall days, and precipitation concentration index in the east coast of peninsular Malaysia. Recent 40 years (1971-2010) rainfall records from 54 stations along the east coast of peninsular Malaysia have been analyzed using the non-parametric Mann-Kendall test and the Sen's slope method. The Monte Carlo simulation technique has been used to determine the field significance of the regional trends. The results showed that there was a substantial increase in the annual rainfall as well as the rainfall during the monsoon period. Also, there was an increase in the number of heavy rainfall days during the past four decades.

  12. Flux and energy dependence of methane production from graphite due to H+ impact

    International Nuclear Information System (INIS)

    Davis, J.W.; Haasz, A.A.; Stangeby, P.C.

    1986-06-01

    Carbon is in widespread use for limiter surfaces, as well as first wall coatings in current tokamaks. Chemical erosion via methane formation, due to energetic H + impact, is expected to contribute to the total erosion rate of carbon from these surfaces. Experimental results are presented for the methane yield from pyrolytic graphite due to H + exposure, using a mass analyzed ion beam. H + energies of 0.1-3 keV and flux densities of ∼ 5x10 13 to l0 16 H + /cm 2 s were used. The measured methane yield (CH 4 /H + ) initially increases with flux density, then reaches a maximum, which is followed by a gradual decrease. The magnitude of the maximum yield and the flux density at which it occurs depends on the graphite temperature. The yields obtained at temperatures corresponding to yield maxima at specific flux densities also show an initial increase, followed by a shallow maximum and a gradual decrease as a function of flux density; the maximum occurs at ∼10 15 H + /cm 2 s. Also presented are results on the methane production dependence on ion energy over the range 0.1 to 3 keV, and graphite temperature dependence measurements

  13. When immiscible becomes miscible-Methane in water at high pressures.

    Science.gov (United States)

    Pruteanu, Ciprian G; Ackland, Graeme J; Poon, Wilson C K; Loveday, John S

    2017-08-01

    At low pressures, the solubility of gases in liquids is governed by Henry's law, which states that the saturated solubility of a gas in a liquid is proportional to the partial pressure of the gas. As the pressure increases, most gases depart from this ideal behavior in a sublinear fashion, leveling off at pressures in the 1- to 5-kbar (0.1 to 0.5 GPa) range with solubilities of less than 1 mole percent (mol %). This contrasts strikingly with the well-known marked increase in solubility of simple gases in water at high temperature associated with the critical point (647 K and 212 bar). The solubility of the smallest hydrocarbon, the simple gas methane, in water under a range of pressure and temperature is of widespread importance, because it is a paradigmatic hydrophobe and occurs widely in terrestrial and extraterrestrial geology. We report measurements up to 3.5 GPa of the pressure dependence of the solubility of methane in water at 100°C-well below the latter's critical temperature. Our results reveal a marked increase in solubility between 1 and 2 GPa, leading to a state above 2 GPa where the maximum solubility of methane in water exceeds 35 mol %.

  14. [Effects of rainfall intensity on rainfall infiltration and redistribution in soil on Loess slope land].

    Science.gov (United States)

    Li, Yi; Shao, Ming'an

    2006-12-01

    With simulation test, this paper studied the patterns of rainfall infiltration and redistribution in soil on typical Loess slope land, and analyzed the quantitative relations between the infiltration and redistribution and the movement of soil water and mass, with rainfall intensity as the main affecting factor. The results showed that rainfall intensity had significant effects on the rainfall infiltration and water redistribution in soil, and the microcosmic movement of soil water. The larger the rainfall intensity, the deeper the wetting front of rainfall infiltration and redistribution was, and the wetting front of soil water redistribution had a slower increase velocity than that of rainfall infiltration. The power function of the wetting front with time, and also with rainfall intensity, was fitted well. There was also a quantitative relation between the wetting front of rainfall redistribution and the duration of rainfall. The larger the rainfall intensity, the higher the initial and steady infiltration rates were, and the cumulative infiltration increased faster with time. Moreover, the larger the rainfall intensity, the smaller the wetting front difference was at the top and the end of the slope. With the larger rainfall intensity, both the difference of soil water content and its descending trend between soil layers became more obvious during the redistribution process on slope land.

  15. Estimation of Rainfall Erosivity via 1-Minute to Hourly Rainfall Data from Taipei, Taiwan

    Science.gov (United States)

    Huang, Ting-Yin; Yang, Ssu-Yao; Jan, Chyan-Deng

    2017-04-01

    Soil erosion is a natural process on hillslopes that threats people's life and properties, having a considerable environmental and economic implications for soil degradation, agricultural activity and water quality. The rainfall erosivity factor (R-factor) in the Universal Soil Loss Equation (USLE), composed of total kinetic energy (E) and the maximum 30-min rainfall intensity (I30), is widely used as an indicator to measure the potential risks of soil loss caused by rainfall at a regional scale. This R factor can represent the detachment and entrainment involved in climate conditions on hillslopes, but lack of 30-min rainfall intensity data usually lead to apply this factor more difficult in many regions. In recent years, fixed-interval, hourly rainfall data is readily available and widely used due to the development of automatic weather stations. Here we assess the estimations of R, E, and I30 based on 1-, 5-, 10-, 15-, 30-, 60-minute rainfall data, and hourly rainfall data obtained from Taipei weather station during 2004 to 2010. Results show that there is a strong correlation among R-factors estimated from different interval rainfall data. Moreover, the shorter time-interval rainfall data (e.g., 1-min) yields larger value of R-factor. The conversion factors of rainfall erosivity (ratio of values estimated from the resolution lower than 30-min rainfall data to those estimated from 60-min and hourly rainfall data, respectively) range from 1.85 to 1.40 (resp. from 1.89 to 1.02) for 60-min (resp. hourly) rainfall data as the time resolution increasing from 30-min to 1-min. This paper provides useful information on estimating R-factor when hourly rainfall data is only available.

  16. Darfur: rainfall and conflict

    International Nuclear Information System (INIS)

    Kevane, Michael; Gray, Leslie

    2008-01-01

    Data on rainfall patterns only weakly corroborate the claim that climate change explains the Darfur conflict that began in 2003 and has claimed more than 200 000 lives and displaced more than two million persons. Rainfall in Darfur did not decline significantly in the years prior to the eruption of major conflict in 2003; rainfall exhibited a flat trend in the thirty years preceding the conflict (1972-2002). The rainfall evidence suggests instead a break around 1971. Rainfall is basically stationary over the pre- and post-1971 sub-periods. The break is larger for the more northerly rainfall stations, and is less noticeable for En Nahud. Rainfall in Darfur did indeed decline, but the decline happened over 30 years before the conflict erupted. Preliminary analysis suggests little merit to the proposition that a structural break several decades earlier is a reasonable predictor of the outbreak of large-scale civil conflict in Africa

  17. Darfur: rainfall and conflict

    Science.gov (United States)

    Kevane, Michael; Gray, Leslie

    2008-07-01

    Data on rainfall patterns only weakly corroborate the claim that climate change explains the Darfur conflict that began in 2003 and has claimed more than 200 000 lives and displaced more than two million persons. Rainfall in Darfur did not decline significantly in the years prior to the eruption of major conflict in 2003; rainfall exhibited a flat trend in the thirty years preceding the conflict (1972 2002). The rainfall evidence suggests instead a break around 1971. Rainfall is basically stationary over the pre- and post-1971 sub-periods. The break is larger for the more northerly rainfall stations, and is less noticeable for En Nahud. Rainfall in Darfur did indeed decline, but the decline happened over 30 years before the conflict erupted. Preliminary analysis suggests little merit to the proposition that a structural break several decades earlier is a reasonable predictor of the outbreak of large-scale civil conflict in Africa.

  18. The all-year rainfall region of South Africa: Satellite rainfall-estimate perspective

    CSIR Research Space (South Africa)

    Engelbrecht, CJ

    2012-09-01

    Full Text Available Climate predictability and variability studies over South Africa typically focus on the summer rainfall region and to a lesser extent on the winter rainfall region. The all-year rainfall region of South Africa, a narrow strip located along the Cape...

  19. Formation of methane and nitrous oxide in plants

    Science.gov (United States)

    Keppler, Frank; Lenhart, Katharina

    2017-04-01

    and mosses, so called cryptogamic covers, were recently identified to release substantial amounts of nitrous oxide (Lenhart et al. 2015). In this presentation we will give a brief overview of recent observations of aerobic methane formation and nitrous oxide emissions from terrestrial vegetation. Furthermore, we will present new results from laboratory incubation experiments that provide further insights into the formation of methane and nitrous oxide from plants. References: Bruhn, D. et al.: Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen. Plant Biology 16, 512-516, 2014. Chang, C. et al.: Nitrous Oxide Emission through Plants. Soil Science Society of America Journal 62, 35-38, 1998. Dean, J. V., Harper, J. E.: Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay. Plant Physiology 82, 718-723, 1986. Keppler, F., Boros, M., Frankenberg, C., Lelieveld, J., McLeod, A., Pirttilä, A. M., Röckmann, T., Schnitzler, J.: Methane formation in aerobic environments, Environmental Chemistry, 6, 459-465, 2009. Lenhart, K. et al.: Nitrous oxide and methane emissions from cryptogamic covers. Global Change Biology 21, 3889-3900, 2015. Pihlatie, M., Ambus, P., Rinne, J., Pilegaard, K., Vesala, T.: Plant-mediated nitrous oxide emissions from beech (Fagus sylvatica) leaves. New Phytologist 168, 93-98, 2005. Wang, Z.-P., Chang, S. X., Chen, H., Han, X.-G.: Widespread non-microbial methane production by organic compounds and the impact of environmental stresses, Earth-Science Reviews, 127, 193-202, 2013.

  20. Genome Analysis of a Limnobacter sp. Identified in an Anaerobic Methane-Consuming Cell Consortium

    OpenAIRE

    Chen, Ying; Feng, Xiaoyuan; He, Ying; Wang, Fengping

    2016-01-01

    Species of Limnobacter genus are widespread in a variety of environments, yet knowledges upon their metabolic potentials and mechanisms of environmental adaptation are limited. In this study, a cell aggregate containing Limnobacter and anaerobic methanotrophic archaea (ANME) was captured from an enriched anaerobic methane oxidizing (AOM) microbial community. A genomic bin of Limnobacter was obtained and analyzed, which provides the first metabolic insights into Limnobacter from an AOM environ...

  1. Genome analysis of a Limnobacter sp. identified in an anaerobic methane-consuming cell consortium

    OpenAIRE

    Ying Chen; Ying Chen; Ying Chen; Xiaoyuan Feng; Xiaoyuan Feng; Ying He; Ying He; Fengping Wang; Fengping Wang

    2016-01-01

    Species of Limnobacter genus are widespread in a variety of environments, yet knowledges upon their metabolic potentials and mechanisms of environmental adaptation are limited. In this study, a cell aggregate containing Limnobacter and anaerobic methanotrophic archaea (ANME) was captured from an enriched anaerobic methane oxidizing (AOM) microbial community. A genomic bin of Limnobacter was obtained and analyzed, which provides the first metabolic insights into Limnobacter from an AOM environ...

  2. Constraining relationships between rainfall and landsliding with satellite derived rainfall measurements and landslide inventories.

    Science.gov (United States)

    Marc, Odin; Malet, Jean-Philippe; Stumpf, Andre; Gosset, Marielle

    2017-04-01

    In mountainous and hilly regions, landslides are an important source of damage and fatalities. Landsliding correlates with extreme rainfall events and may increase with climate change. Still, how precipitation drives landsliding at regional scales is poorly understood quantitatively in part because constraining simultaneously landsliding and rainfall across large areas is challenging. By combining optical images acquired from satellite observation platforms and rainfall measurements from satellite constellations we are building a database of landslide events caused by with single storm events. We present results from storm-induced landslides from Brazil, Taiwan, Micronesia, Central America, Europe and the USA. We present scaling laws between rainfall metrics derived by satellites (total rainfall, mean intensity, antecedent rainfall, ...) and statistical descriptors of landslide events (total area and volume, size distribution, mean runout, ...). Total rainfall seems to be the most important parameter driving non-linearly the increase in total landslide number, and area and volume. The maximum size of bedrock landslides correlates with the total number of landslides, and thus with total rainfall, within the limits of available topographic relief. In contrast, the power-law scaling exponent of the size distribution, controlling the relative abundance of small and large landslides, appears rather independent of the rainfall metrics (intensity, duration and total rainfall). These scaling laws seem to explain both the intra-storm pattern of landsliding, at the scale of satellite rainfall measurements ( 25kmx25km), and the different impacts observed for various storms. Where possible, we evaluate the limits of standard rainfall products (TRMM, GPM, GSMaP) by comparing them to in-situ data. Then we discuss how slope distribution and other geomorphic factors (lithology, soil presence,...) modulate these scaling laws. Such scaling laws at the basin scale and based only on a

  3. Methane production and methane consumption: a review of processes underlying wetland methane fluxes.

    NARCIS (Netherlands)

    Segers, R.

    1998-01-01

    Potential rates of both methane production and methane consumption vary over three orders of magnitude and their distribution is skew. These rates are weakly correlated with ecosystem type, incubation temperature, in situ aeration, latitude, depth and distance to oxic/anoxic interface. Anaerobic

  4. Deforestation and rainfall recycling in Brazil: Is decreased forest cover connectivity associated with decreased rainfall connectivity?

    Science.gov (United States)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2017-12-01

    In the Brazilian rainforest-savanna transition zone, deforestation has the potential to significantly affect rainfall by disrupting rainfall recycling, the process by which regional evapotranspiration contributes to regional rainfall. Understanding rainfall recycling in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching, agriculture, hydropower generation, and drinking water management. Simulations in previous studies suggest complex, scale-dependent interactions between forest cover connectivity and rainfall. For example, the size and distribution of deforested patches has been found to affect rainfall quantity and spatial distribution. Here we take an empirical approach, using the spatial connectivity of rainfall as an indicator of rainfall recycling, to ask: as forest cover connectivity decreased from 1981 - 2015, how did the spatial connectivity of rainfall change in the Brazilian rainforest-savanna transition zone? We use satellite forest cover and rainfall data covering this period of intensive forest cover loss in the region (forest cover from the Hansen Global Forest Change dataset; rainfall from the Climate Hazards Infrared Precipitation with Stations dataset). Rainfall spatial connectivity is quantified using transfer entropy, a metric from information theory, and summarized using network statistics. Networks of connectivity are quantified for paired deforested and non-deforested regions before deforestation (1981-1995) and during/after deforestation (2001-2015). Analyses reveal a decline in spatial connectivity networks of rainfall following deforestation.

  5. Does δ18O of O2 record meridional shifts in tropical rainfall?

    Science.gov (United States)

    Seltzer, Alan M.; Buizert, Christo; Baggenstos, Daniel; Brook, Edward J.; Ahn, Jinho; Yang, Ji-Woong; Severinghaus, Jeffrey P.

    2017-10-01

    Marine sediments, speleothems, paleo-lake elevations, and ice core methane and δ18O of O2 (δ18Oatm) records provide ample evidence for repeated abrupt meridional shifts in tropical rainfall belts throughout the last glacial cycle. To improve understanding of the impact of abrupt events on the global terrestrial biosphere, we present composite records of δ18Oatm and inferred changes in fractionation by the global terrestrial biosphere (ΔɛLAND) from discrete gas measurements in the WAIS Divide (WD) and Siple Dome (SD) Antarctic ice cores. On the common WD timescale, it is evident that maxima in ΔɛLAND are synchronous with or shortly follow small-amplitude WD CH4 peaks that occur within Heinrich stadials 1, 2, 4, and 5 - periods of low atmospheric CH4 concentrations. These local CH4 maxima have been suggested as markers of abrupt climate responses to Heinrich events. Based on our analysis of the modern seasonal cycle of gross primary productivity (GPP)-weighted δ18O of terrestrial precipitation (the source water for atmospheric O2 production), we propose a simple mechanism by which ΔɛLAND tracks the centroid latitude of terrestrial oxygen production. As intense rainfall and oxygen production migrate northward, ΔɛLAND should decrease due to the underlying meridional gradient in rainfall δ18O. A southward shift should increase ΔɛLAND. Monsoon intensity also influences δ18O of precipitation, and although we cannot determine the relative contributions of the two mechanisms, both act in the same direction. Therefore, we suggest that abrupt increases in ΔɛLAND unambiguously imply a southward shift of tropical rainfall. The exact magnitude of this shift, however, remains under-constrained by ΔɛLAND.

  6. Does δ18O of O2 record meridional shifts in tropical rainfall?

    Directory of Open Access Journals (Sweden)

    A. M. Seltzer

    2017-10-01

    Full Text Available Marine sediments, speleothems, paleo-lake elevations, and ice core methane and δ18O of O2 (δ18Oatm records provide ample evidence for repeated abrupt meridional shifts in tropical rainfall belts throughout the last glacial cycle. To improve understanding of the impact of abrupt events on the global terrestrial biosphere, we present composite records of δ18Oatm and inferred changes in fractionation by the global terrestrial biosphere (ΔεLAND from discrete gas measurements in the WAIS Divide (WD and Siple Dome (SD Antarctic ice cores. On the common WD timescale, it is evident that maxima in ΔεLAND are synchronous with or shortly follow small-amplitude WD CH4 peaks that occur within Heinrich stadials 1, 2, 4, and 5 – periods of low atmospheric CH4 concentrations. These local CH4 maxima have been suggested as markers of abrupt climate responses to Heinrich events. Based on our analysis of the modern seasonal cycle of gross primary productivity (GPP-weighted δ18O of terrestrial precipitation (the source water for atmospheric O2 production, we propose a simple mechanism by which ΔεLAND tracks the centroid latitude of terrestrial oxygen production. As intense rainfall and oxygen production migrate northward, ΔεLAND should decrease due to the underlying meridional gradient in rainfall δ18O. A southward shift should increase ΔεLAND. Monsoon intensity also influences δ18O of precipitation, and although we cannot determine the relative contributions of the two mechanisms, both act in the same direction. Therefore, we suggest that abrupt increases in ΔεLAND unambiguously imply a southward shift of tropical rainfall. The exact magnitude of this shift, however, remains under-constrained by ΔεLAND.

  7. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials.

    Science.gov (United States)

    Ganendra, Giovanni; De Muynck, Willem; Ho, Adrian; Hoefman, Sven; De Vos, Paul; Boeckx, Pascal; Boon, Nico

    2014-04-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (~20 % (v/v)) and low (~100 ppmv) methane mixing ratios. Methylocystis parvus in autoclaved aerated concrete (AAC) exhibited the highest methane removal rate at high (28.5 ± 3.8 μg CH₄ g⁻¹ building material h⁻¹) and low (1.7 ± 0.4 μg CH₄ g⁻¹ building material h⁻¹) methane mixing ratio. Due to the higher volume of pores with diameter >5 μm compared to other materials tested, AAC was able to adsorb more bacteria which might explain for the higher methane removal observed. The total methane and carbon dioxide-carbon in the headspace was decreased for 65.2 ± 10.9 % when M. parvus in Ytong was incubated for 100 h. This study showed that immobilized MOB on building materials could be used to remove methane from the air and also act as carbon sink.

  8. Rain increases methane production and methane oxidation in a boreal thermokarst bog

    Science.gov (United States)

    Neumann, R. B.; Moorberg, C.; Turner, J.; Wong, A.; Waldrop, M. P.; Euskirchen, E. S.; Edgar, C.; Turetsky, M. R.

    2017-12-01

    Bottom-up biogeochemical models of wetland methane emissions simulate the response of methane production, oxidation and transport to wetland conditions and environmental forcings. One reason for mismatches between bottom-up and top-down estimates of emissions is incomplete knowledge of factors and processes that control microbial rates and methane transport. To advance mechanistic understanding of wetland methane emissions, we conducted a multi-year field investigation and plant manipulation experiment in a thermokarst bog located near Fairbanks, Alaska. The edge of the bog is experiencing active permafrost thaw, while the center of the bog thawed 50 to 100 years ago. Our study, which captured both an average year and two of the wettest years on record, revealed how rain interacts with vascular vegetation and recently thawed permafrost to affect methane emissions. In the floating bog, rain water warmed and oxygenated the subsurface, but did not alter soil saturation. The warmer peat temperatures increased both microbial methane production and plant productivity at the edge of the bog near the actively thawing margin, but minimally altered microbial and plant activity in the center of the bog. These responses indicate processes at the edge of the bog were temperature limited while those in the center were not. The compounding effect of increased microbial activity and plant productivity at the edge of the bog doubled methane emissions from treatments with vascular vegetation during rainy years. In contrast, methane emissions from vegetated treatments in the center of the bog did not change with rain. The oxygenating influence of rain facilitated greater methane oxidation in treatments without vascular vegetation, which offset warming-induced increases in methane production at the edge of the bog and decreased methane emissions in the center of the bog. These results elucidate the complex and spatially variable response of methane production and oxidation in

  9. Estimates of methane and ethane emissions from the Texas Barnett Shale

    Science.gov (United States)

    Karion, A.; Sweeney, C.; Yacovitch, T.; Petron, G.; Wolter, S.; Conley, S. A.; Hardesty, R. M.; Brewer, A.; Kofler, J.; Newberger, T.; Herndon, S.; Miller, B. R.; Montzka, S. A.; Rella, C.; Crosson, E.; Tsai, T.; Tans, P. P.

    2013-12-01

    The recent development of horizontal drilling technology by the oil and gas industry has dramatically increased onshore U.S. natural gas and oil production in the last several years. This production boom has led to wide-spread interest from the policy and scientific communities in quantifying the climate impact of the use of natural gas as a replacement for coal. Because the primary component of natural gas is methane, a powerful greenhouse gas, natural gas leakage into the atmosphere affects its climate impact. Several recent scientific field studies have focused on using atmospheric measurements to estimate this leakage in different producing basins. Methane can be measured precisely with commercial analyzers, and deployment of such analyzers on aircraft, coupled with meteorological measurements, can allow scientists to estimate emissions from regions of concentrated production. Ethane and other light hydrocarbons, also components of raw gas, can be used as tracers for differentiating natural gas emissions from those of other methane sources, such as agriculture or landfills, which do not contain any non-methane hydrocarbons such as ethane. Here we present results from one such field campaign in the Barnett Shale near Fort Worth, Texas, in March 2013. Several 4-hour flights were conducted over the natural gas and oil production region with a small single-engine aircraft instrumented with analyzers for measuring ambient methane, carbon monoxide, carbon dioxide, and ethane at high frequencies (0.3-1Hz). The aircraft also measured horizontal winds, temperature, humidity, and pressure, and collected whole air samples in flasks analyzed later for several light hydrocarbons. In addition to the aircraft, a ground-based High-Resolution Doppler Lidar was deployed in the basin to measure profiles of horizontal winds and estimate the boundary layer height 24 hours a day over the campaign period. The aircraft and lidar measurements are used together to estimate methane and

  10. Macroscopic biofilms in fracture-dominated sediment that anaerobically oxidize methane

    Science.gov (United States)

    Briggs, B.R.; Pohlman, J.W.; Torres, M.; Riedel, M.; Brodie, E.L.; Colwell, F.S.

    2011-01-01

    Methane release from seafloor sediments is moderated, in part, by the anaerobic oxidation of methane (AOM) performed by consortia of archaea and bacteria. These consortia occur as isolated cells and aggregates within the sulfate-methane transition (SMT) of diffusion and seep-dominant environments. Here we report on a new SMT setting where the AOM consortium occurs as macroscopic pink to orange biofilms within subseafloor fractures. Biofilm samples recovered from the Indian and northeast Pacific Oceans had a cellular abundance of 10 7 to 10 8 cells cm -3. This cell density is 2 to 3 orders of magnitude greater than that in the surrounding sediments. Sequencing of bacterial 16S rRNA genes indicated that the bacterial component is dominated by Deltaproteobacteria, candidate division WS3, and Chloroflexi, representing 46%, 15%, and 10% of clones, respectively. In addition, major archaeal taxa found in the biofilm were related to the ANME-1 clade, Thermoplasmatales, and Desulfurococcales, representing 73%, 11%, and 10% of archaeal clones, respectively. The sequences of all major taxa were similar to sequences previously reported from cold seep environments. PhyloChip microarray analysis detected all bacterial phyla identified by the clone library plus an additional 44 phyla. However, sequencing detected more archaea than the PhyloChip within the phyla of Methanosarcinales and Desulfurococcales. The stable carbon isotope composition of the biofilm from the SMT (-35 to-43%) suggests that the production of the biofilm is associated with AOM. These biofilms are a novel, but apparently widespread, aggregation of cells represented by the ANME-1 clade that occur in methane-rich marine sediments. ?? 2011, American Society for Microbiology.

  11. Characterizing spatial and temporal variability in methane gas-flux dynamics of subtropical wetlands in the Big Cypress National Preserve, Florida

    Science.gov (United States)

    Sirianni, M.; Comas, X.; Shoemaker, B.

    2017-12-01

    Wetland methane emissions are highly variable both in space and time, and are controlled by changes in certain biogeochemical controls (i.e. organic matter availability; redox potential) and/or other environmental factors (i.e. soil temperature; water level). Consequently, hot spots (areas with disproportionally high emissions) may develop where biogeochemical and environmental conditions are especially conducive for enhancing certain microbial processes such as methanogenesis. The Big Cypress National Preserve is a collection of subtropical wetlands in southwestern Florida, including extensive forested (cypress, pine, hardwood) and sawgrass ecosystems that dry and flood annually in response to rainfall. In addition to rainfall, hydroperiod, fire regime, elevation above mean sea level, dominant vegetation type and underlying geological controls contribute to the development and evolution of organic and calcitic soils found throughout the Preserve. Currently, the U.S. Geological Survey employs eddy covariance methods within the Preserve to quantify carbon and methane exchanges over several spatially extensive vegetation communities. While eddy covariance towers are a convenient tool for measuring gas exchanges at the ecosystem scale, their spatially extensive footprint (hundreds of meters) may mask smaller scale spatial variabilities that may be conducive to the development of hot spots. Similarly, temporal resolution (i.e. sampling effort) at scales smaller that the eddy covariance measurement footprint is important since low resolution data may overlook rapid emission events and the temporal variability of discrete hot spots. In this work, we intend to estimate small-scale contributions of organic and calcitic soils to gas exchanges measured by the eddy covariance towers using a unique combination of ground penetrating radar (GPR), capacitance probes, gas traps, and time-lapse photography. By using an array of methods that vary in spatio-temporal resolution, we

  12. Methane fluxes from the mound-building termite species of North Australian savannas

    Science.gov (United States)

    Jamali, H.; Livesely, S. J.; Arndt, S. K.; Dawes-Gromadzki, T.; Cook, G. D.; Hutley, L.

    2009-04-01

    Termites are estimated to contribute 3-19% to the global methane emissions. These estimates have large uncertainties because of the limited number of field-based studies and species studied, as well as issues of diel and seasonal variation. We measured methane fluxes from four common mound-building termite species (Microcerotermes nervosus, n=26; M. serratus, n=4; Tumulitermes pastinator, n=5; and Amitermes darwini, n=4) in tropical savannas near Darwin in the Northern Territory, Australia. Methane fluxes from replicated termite mounds were measured in the field using manual chambers with fluxes reported on a mound volume basis. Methane flux was measured in both wet and dry seasons and diel variation was investigated by measuring methane flux every 4 hours over a 24 hour period. Mound temperature was measured concurrently with flux to examine this relationship. In addition, five M. nervosus mounds removed from the field and incubated under controlled temperature conditions over a 24 hour period to remove the effect of varying temperature. During the observation campaigns, mean monthly minimum and maximum temperatures for February (wet season) were 24.7 and 30.8°C, respectively, and were 20.1 to 31.4 °C in June (dry season). Annual rainfall in 2008 for Darwin was 1970.1 mm, with a maximum of 670 mm falling in February and no rain in May and June. Methane fluxes were greatest in the wet season for all species, ranging from 265.1±101.1 (T. pastinator) to 2256.6±757.1 (M. serratus) µg CH4-C/m3/h. In the dry season, methane fluxes were at their lowest, ranging from 10.0±5.5 (T. pastinator) to 338.0±165.9 (M. serratus) µg CH4-C/m3/h. On a diel basis, methane fluxes were smallest at the coolest time of the day (~0700 hrs) and greatest at the warmest (~1400 hrs) for all species, and for both wet and dry seasons. Typical diel variation in flux from M. serratus dominated mounds ranged from 902.6±261.9 to 1392.1±408.1 µg CH4-C/m3/h in wet season and 99.6±57.4 to

  13. Prediction of rainfall-induced shallow landslides at national scale in Italy

    Science.gov (United States)

    Montrasio, Lorella; Valentino, Roberto; Rossi, Lauro; Rudari, Roberto; Terrone, Andrea

    2013-04-01

    In Italy, landslides are very frequent, widespread and dangerous phenomena. In the last decades, climate changes, which provoked weather conditions characterized by localized rainfall events of high intensity and short duration, together with modifications of land use and an increase of urban areas, have led to a progressive increase of the frequency and extent of rainfall-induced landslides. These phenomena caused, in turn, considerable damage to structures, infrastructure and crops, as well as casualties. These natural and anthropogenic factors determine a series of hydrogeological problems for both land resource and for inhabited areas, industrial areas and for the infrastructural network. The need for a continued monitoring activity that ensures the preservation of life and human activities, and for a real-time assessment of landslide risk, in close correlation with rainfall forecasts, is therefore increasing. The paper deals with the application, on national scale in the Italian territory, of the physically-based stability model SLIP (Shallow Landslides Instability Prediction). The SLIP model has been firstly developed at the Department of Civil Engineering at the University of Parma since 1997, in order to describe the triggering mechanism of rainfall-induced landslides. More recently, the SLIP model has been tested as a prototype early warning system for rainfall-induced landslides in Italy, using rainfall data and geospatial datasets. The model, which is based on the limit equilibrium method, is deliberately simplified, in order to evaluate the safety factor of a slope in function of the geotechnical characteristics of the soil, the geometrical features of the slope and the rainfall depth. A back analysis concerning the occurrence of some recent case-histories of rainfall-induced shallow landslides in the Italian territory is carried out and the main results are shown. The main features of the SLIP model are briefly recalled and particular attention is

  14. Utilization of coalbed methane

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, J.B. [Gustavson Associates Inc., Boulder, CO (United States)

    1996-02-01

    Substantial progress has been made in capturing coalbed methane (CBM gas), which constitutes a valuable source of clean burning energy. It is of importance to study the various potential uses of coalbed methane and to understand the various technologies required, as well as their economics and any institutional constraints. In industrialised countries, the uses of coalbed methane are almost solely dependent on microeconomics; coalbed methane must compete for a market against natural gas and other energy sources - and frequently, coalbed methane is not competitive against other energy sources. In developing countries, on the other hand, particularly where other sources of energy are in short supply, coalbed methane economics yield positive results. Here, constraints to development of CBM utilization are mainly lack of technology and investment capital. Sociological aspects such as attitude and cultural habits, may also have a strong negative influence. This paper outlines the economics of coalbed methane utilization, particularly its competition with natural gas, and touches upon the many different uses to which coalbed methane may be applied. 24 refs., 4 figs.

  15. Doses from radioactive methane

    International Nuclear Information System (INIS)

    Phipps, A.W.; Kendall, G.M.; Fell, T.P.; Harrison, J.D.

    1990-01-01

    A possible radiation hazard arises from exposure to methane labelled with either a 3 H or a 14 C nuclide. This radioactive methane could be released from a variety of sources, e.g. land burial sites containing radioactive waste. Standard assumptions adopted for vapours would not apply to an inert alkane like methane. This paper discusses mechanisms by which radioactive methane would irradiate tissues and provides estimates of doses. Data on skin thickness and metabolism of methane are discussed with reference to these mechanisms. It is found that doses are dominated by dose from the small fraction of methane which is inhaled and metabolised. This component of dose has been calculated under rather conservative assumptions. (author)

  16. Biogenic methane potential of marine sediments. Application of chemical thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Arning, E.T.; Schulz, H.M. [Helmholtz Centre Potsdam GFZ, Potsdam (Germany); Berk, W. van [Technical Univ. of Clausthal (Germany). Dept. of Hydrogeology

    2013-08-01

    Accumulations of biogenic methane-dominated gas are widespread and occur in a variety of depositional settings and rock types. However, the potential of biogenic methane remains underexplored. This is mainly due to the fact that quantitative assessments applying numerical modeling techniques for exploration purposes are generally lacking to date. Biogenic methane formation starts in relatively shallow marine sediments below the sulfate reduction zone. When sulfate is exhausted, methanogenesis via the CO{sub 2} reduction pathway is often the dominant biogenic methane formation process in marine sediments (Claypool and Kaplan, 1974). The process can be simplified by the reaction: 2CH{sub 2}O + Ca{sup 2+} + H{sub 2}O {yields} CH{sub 4} + CaCO{sub 3} + 2H{sup +}. The products of early diagenetic reactions initiate coupled equilibrium reactions that induce a new state of chemical equilibrium among minerals, pore water and gas. The driving force of the complex biogeochemical reactions in sedimentary environments during early diagenesis is the irreversible redox-conversion of organic matter. Early diagenetic formation of biogenic methane shortly after deposition ('early diagenesis') was retraced using PHREEQC computer code that is applied to calculate homogenous and heterogeneous mass-action equations in combination with one-dimensional diffusion driven transport (Parkhurst and Appelo, 1999). Our modeling approach incorporates interdependent diagenetic reactions evolving into a diffusive multi-component and multiphase system by means of thermodynamic equilibrium calculations of species distribution (Arning et al., 2011, 2012, 2013). Reaction kinetics of organic carbon conversion is integrated into the set of equilibrium reactions by defining type and amount of converted organic matter in a certain time step. It is the aim (1) to calculate quantitatively thermodynamic equilibrium conditions (composition of pore water, mineral phase and gas phase assemblage) in

  17. Martian methane plume models for defining Mars rover methane source search strategies

    Science.gov (United States)

    Nicol, Christopher; Ellery, Alex; Lynch, Brian; Cloutis, Ed

    2018-07-01

    The detection of atmospheric methane on Mars implies an active methane source. This introduces the possibility of a biotic source with the implied need to determine whether the methane is indeed biotic in nature or geologically generated. There is a clear need for robotic algorithms which are capable of manoeuvring a rover through a methane plume on Mars to locate its source. We explore aspects of Mars methane plume modelling to reveal complex dynamics characterized by advection and diffusion. A statistical analysis of the plume model has been performed and compared to analyses of terrestrial plume models. Finally, we consider a robotic search strategy to find a methane plume source. We find that gradient-based techniques are ineffective, but that more sophisticated model-based search strategies are unlikely to be available in near-term rover missions.

  18. Event-based stochastic point rainfall resampling for statistical replication and climate projection of historical rainfall series

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Korup Andersen, Aske; Larsen, Anders Badsberg

    2017-01-01

    Continuous and long rainfall series are a necessity in rural and urban hydrology for analysis and design purposes. Local historical point rainfall series often cover several decades, which makes it possible to estimate rainfall means at different timescales, and to assess return periods of extreme...... includes climate changes projected to a specific future period. This paper presents a framework for resampling of historical point rainfall series in order to generate synthetic rainfall series, which has the same statistical properties as an original series. Using a number of key target predictions...... for the future climate, such as winter and summer precipitation, and representation of extreme events, the resampled historical series are projected to represent rainfall properties in a future climate. Climate-projected rainfall series are simulated by brute force randomization of model parameters, which leads...

  19. Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann-Kendall test

    Science.gov (United States)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun

    2017-11-01

    This study assesses the spatial pattern of changes in rainfall extremes of Sarawak in recent years (1980-2014). The Mann-Kendall (MK) test along with modified Mann-Kendall (m-MK) test, which can discriminate multi-scale variability of unidirectional trend, was used to analyze the changes at 31 stations. Taking account of the scaling effect through eliminating the effect of autocorrelation, m-MK was employed to discriminate multi-scale variability of the unidirectional trends of the annual rainfall in Sarawak. It can confirm the significance of the MK test. The annual rainfall trend from MK test showed significant changes at 95% confidence level at five stations. The seasonal trends from MK test indicate an increasing rate of rainfall during the Northeast monsoon and a decreasing trend during the Southwest monsoon in some region of Sarawak. However, the m-MK test detected an increasing trend in annual rainfall only at one station and no significant trend in seasonal rainfall at any stations. The significant increasing trends of the 1-h maximum rainfall from the MK test are detected mainly at the stations located in the urban area giving concern to the occurrence of the flash flood. On the other hand, the m-MK test detected no significant trend in 1- and 3-h maximum rainfalls at any location. On the contrary, it detected significant trends in 6- and 72-h maximum rainfalls at a station located in the Lower Rajang basin area which is an extensive low-lying agricultural area and prone to stagnant flood. These results indicate that the trends in rainfall and rainfall extremes reported in Malaysia and surrounding region should be verified with m-MK test as most of the trends may result from scaling effect.

  20. Methane fluxes from a wet puna ecosystem in the Peruvian Andes

    Science.gov (United States)

    Jones, Sam; Diem, Torsten; Priscila Huaraca Quispe, Lidia; Quispe Ccahuana, Adan Julian; Meir, Patrick; Arn Teh, Yit

    2014-05-01

    Discrepancies exist between top-down and bottom-up estimates of the tropical South American atmospheric methane budget. This suggests that current source-sink inventories fail to adequately characterise the landscapes of the region. This may be particularly true of Andean environments where very few field observations have been made. The high tropical Andes, between tree and permanent snow-lines, is home to diverse grass, shrub and giant rosette dominated ecosystems known variously from Venezuela to northern Chile and Argentina as paramo, jalca and puna. In humid regions these are characterised by wet, organic-rich mineral soils, peat-forming wetlands and shallow lakes. Such conditions are likely to promote methane production and potentially represent a regionally significant source to the atmosphere that should be considered. We report on methane fluxes from a bunch-grass dominated puna habitat at 3500 m above sea level in south-eastern Peru. Mean annual temperature and precipitation are 11 °C and 2500 mm, respectively. Temperature is aseasonal but experiences considerable diurnal variations with overnight frosting common-place. In contrast, rainfall is intensely episodic and has a pronounced wet season between September and March. Sampling encompassed a range of topographic features, such as grassland on freely draining, gently inclined or steep slopes and depressions containing bogs, over a 3 ha ridge to basin transition. Monthly sampling was carried out between January 2011 and June 2013 to investigate seasonal variability in methane fluxes. Intensive sampling campaigns were conducted to investigate spatial and short-term variations on a daily basis in two nine-day campaigns during wet and dry season. The site was a net source of methane to the atmosphere during the period of study. Methane fluxes were dominated by emissions from bogs, whereas, freely draining grassland exhibited weak source or marginal sink activity. Temporal variations were most notable at

  1. Rainfall Downscaling Conditional on Upper-air Atmospheric Predictors: Improved Assessment of Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino

    2015-04-01

    To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a

  2. Deterministic Approach for Estimating Critical Rainfall Threshold of Rainfall-induced Landslide in Taiwan

    Science.gov (United States)

    Chung, Ming-Chien; Tan, Chih-Hao; Chen, Mien-Min; Su, Tai-Wei

    2013-04-01

    Taiwan is an active mountain belt created by the oblique collision between the northern Luzon arc and the Asian continental margin. The inherent complexities of geological nature create numerous discontinuities through rock masses and relatively steep hillside on the island. In recent years, the increase in the frequency and intensity of extreme natural events due to global warming or climate change brought significant landslides. The causes of landslides in these slopes are attributed to a number of factors. As is well known, rainfall is one of the most significant triggering factors for landslide occurrence. In general, the rainfall infiltration results in changing the suction and the moisture of soil, raising the unit weight of soil, and reducing the shear strength of soil in the colluvium of landslide. The stability of landslide is closely related to the groundwater pressure in response to rainfall infiltration, the geological and topographical conditions, and the physical and mechanical parameters. To assess the potential susceptibility to landslide, an effective modeling of rainfall-induced landslide is essential. In this paper, a deterministic approach is adopted to estimate the critical rainfall threshold of the rainfall-induced landslide. The critical rainfall threshold is defined as the accumulated rainfall while the safety factor of the slope is equal to 1.0. First, the process of deterministic approach establishes the hydrogeological conceptual model of the slope based on a series of in-situ investigations, including geological drilling, surface geological investigation, geophysical investigation, and borehole explorations. The material strength and hydraulic properties of the model were given by the field and laboratory tests. Second, the hydraulic and mechanical parameters of the model are calibrated with the long-term monitoring data. Furthermore, a two-dimensional numerical program, GeoStudio, was employed to perform the modelling practice. Finally

  3. Automatic Extraction of High-Resolution Rainfall Series from Rainfall Strip Charts

    Science.gov (United States)

    Saa-Requejo, Antonio; Valencia, Jose Luis; Garrido, Alberto; Tarquis, Ana M.

    2015-04-01

    Soil erosion is a complex phenomenon involving the detachment and transport of soil particles, storage and runoff of rainwater, and infiltration. The relative magnitude and importance of these processes depends on a host of factors, including climate, soil, topography, cropping and land management practices among others. Most models for soil erosion or hydrological processes need an accurate storm characterization. However, this data are not always available and in some cases indirect models are generated to fill this gap. In Spain, the rain intensity data known for time periods less than 24 hours back to 1924 and many studies are limited by it. In many cases this data is stored in rainfall strip charts in the meteorological stations but haven't been transfer in a numerical form. To overcome this deficiency in the raw data a process of information extraction from large amounts of rainfall strip charts is implemented by means of computer software. The method has been developed that largely automates the intensive-labour extraction work based on van Piggelen et al. (2011). The method consists of the following five basic steps: 1) scanning the charts to high-resolution digital images, 2) manually and visually registering relevant meta information from charts and pre-processing, 3) applying automatic curve extraction software in a batch process to determine the coordinates of cumulative rainfall lines on the images (main step), 4) post processing the curves that were not correctly determined in step 3, and 5) aggregating the cumulative rainfall in pixel coordinates to the desired time resolution. A colour detection procedure is introduced that automatically separates the background of the charts and rolls from the grid and subsequently the rainfall curve. The rainfall curve is detected by minimization of a cost function. Some utilities have been added to improve the previous work and automates some auxiliary processes: readjust the bands properly, merge bands when

  4. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials

    NARCIS (Netherlands)

    Ganendra, G; De Muynck, W; Ho, A.; Hoefman, S.; De Vos, P.; Boeckx, P.; Boon, N.

    2014-01-01

    Biological treatment using methane-oxidizing bacteria (MOB) immobilized on six porous carrier materials have been used to mitigate methane emission. Experiments were performed with different MOB inoculated in building materials at high (similar to 20 % (v/v)) and low (similar to 100 ppmv) methane

  5. Response of the Black Sea methane budget to massive short-term submarine inputs of methane

    DEFF Research Database (Denmark)

    Schmale, O.; Haeckel, M.; McGinnis, D. F.

    2011-01-01

    A steady state box model was developed to estimate the methane input into the Black Sea water column at various water depths. Our model results reveal a total input of methane of 4.7 Tg yr(-1). The model predicts that the input of methane is largest at water depths between 600 and 700 m (7......% of the total input), suggesting that the dissociation of methane gas hydrates at water depths equivalent to their upper stability limit may represent an important source of methane into the water column. In addition we discuss the effects of massive short-term methane inputs (e. g. through eruptions of deep......-water mud volcanoes or submarine landslides at intermediate water depths) on the water column methane distribution and the resulting methane emission to the atmosphere. Our non-steady state simulations predict that these inputs will be effectively buffered by intense microbial methane consumption...

  6. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    Science.gov (United States)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  7. Coalbed Methane Outreach Program

    Science.gov (United States)

    Coalbed Methane Outreach Program, voluntary program seeking to reduce methane emissions from coal mining activities. CMOP promotes profitable recovery/use of coal mine methane (CMM), addressing barriers to using CMM instead of emitting it to atmosphere.

  8. A modified risk evaluation method of slope failure in a heavy rain. For application to slopes in widespread area

    International Nuclear Information System (INIS)

    Suenaga, Hiroshi; Tanaka, Shiro; Kobayakawa, Hiroaki

    2015-01-01

    A risk evaluation method of slope failure has developed to combine gas-liquid two phase flow analysis as a rainfall infiltration analysis and elastic-plastic finite element analysis as a slope stability analysis and has applied to a slope field. This method, however, had a difficulty to apply to many slopes since it needed many parameters to calculate the risk of the slope failure. The method was simplified to lessen input parameters which included an inclination and length of a slope, a depth of bedrock and a rainfall pattern assuming that hydraulic properties and mechanical properties were similar for the same geological unit. The method was also modified to represent a water collection structure, a surface runoff, an existence of a forest road and a water level variation of a downward river / pond which could affect infiltration phenomena. Results of the simplification and the modification made it possible to enhance a prediction precision of the method and create a hazard map of slopes in widespread area. (author)

  9. Improved methane removal in exhaust gas from biogas upgrading process using immobilized methane-oxidizing bacteria.

    Science.gov (United States)

    Sun, Meng-Ting; Yang, Zhi-Man; Fu, Shan-Fei; Fan, Xiao-Lei; Guo, Rong-Bo

    2018-05-01

    Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Rainfall prediction with backpropagation method

    Science.gov (United States)

    Wahyuni, E. G.; Fauzan, L. M. F.; Abriyani, F.; Muchlis, N. F.; Ulfa, M.

    2018-03-01

    Rainfall is an important factor in many fields, such as aviation and agriculture. Although it has been assisted by technology but the accuracy can not reach 100% and there is still the possibility of error. Though current rainfall prediction information is needed in various fields, such as agriculture and aviation fields. In the field of agriculture, to obtain abundant and quality yields, farmers are very dependent on weather conditions, especially rainfall. Rainfall is one of the factors that affect the safety of aircraft. To overcome the problems above, then it’s required a system that can accurately predict rainfall. In predicting rainfall, artificial neural network modeling is applied in this research. The method used in modeling this artificial neural network is backpropagation method. Backpropagation methods can result in better performance in repetitive exercises. This means that the weight of the ANN interconnection can approach the weight it should be. Another advantage of this method is the ability in the learning process adaptively and multilayer owned on this method there is a process of weight changes so as to minimize error (fault tolerance). Therefore, this method can guarantee good system resilience and consistently work well. The network is designed using 4 input variables, namely air temperature, air humidity, wind speed, and sunshine duration and 3 output variables ie low rainfall, medium rainfall, and high rainfall. Based on the research that has been done, the network can be used properly, as evidenced by the results of the prediction of the system precipitation is the same as the results of manual calculations.

  11. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  12. Project identification for methane reduction options

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of the projects, and additional gains which come from the projects.

  13. Detecting Climate Variability in Tropical Rainfall

    Science.gov (United States)

    Berg, W.

    2004-05-01

    A number of satellite and merged satellite/in-situ rainfall products have been developed extending as far back as 1979. While the availability of global rainfall data covering over two decades and encompassing two major El Niño events is a valuable resource for a variety of climate studies, significant differences exist between many of these products. Unfortunately, issues such as availability often determine the use of a product for a given application instead of an understanding of the strengths and weaknesses of the various products. Significant efforts have been made to address the impact of sparse sampling by satellite sensors of variable rainfall processes by merging various satellite and in-situ rainfall products. These combine high spatial and temporal frequency satellite infrared data with higher quality passive microwave observations and rain gauge observations. Combining such an approach with spatial and temporal averaging of the data can reduce the large random errors inherent in satellite rainfall estimates to very small levels. Unfortunately, systematic biases can and do result in artificial climate signals due to the underconstrained nature of the rainfall retrieval problem. Because all satellite retrieval algorithms make assumptions regarding the cloud structure and microphysical properties, systematic changes in these assumed parameters between regions and/or times results in regional and/or temporal biases in the rainfall estimates. These biases tend to be relatively small compared to random errors in the retrieval, however, when random errors are reduced through spatial and temporal averaging for climate applications, they become the dominant source of error. Whether or not such biases impact the results for climate studies is very much dependent on the application. For example, all of the existing satellite rainfall products capture the increased rainfall in the east Pacific associated with El Niño, however, the resulting tropical response to

  14. Comparing Approaches to Deal With Non-Gaussianity of Rainfall Data in Kriging-Based Radar-Gauge Rainfall Merging

    Science.gov (United States)

    Cecinati, F.; Wani, O.; Rico-Ramirez, M. A.

    2017-11-01

    Merging radar and rain gauge rainfall data is a technique used to improve the quality of spatial rainfall estimates and in particular the use of Kriging with External Drift (KED) is a very effective radar-rain gauge rainfall merging technique. However, kriging interpolations assume Gaussianity of the process. Rainfall has a strongly skewed, positive, probability distribution, characterized by a discontinuity due to intermittency. In KED rainfall residuals are used, implicitly calculated as the difference between rain gauge data and a linear function of the radar estimates. Rainfall residuals are non-Gaussian as well. The aim of this work is to evaluate the impact of applying KED to non-Gaussian rainfall residuals, and to assess the best techniques to improve Gaussianity. We compare Box-Cox transformations with λ parameters equal to 0.5, 0.25, and 0.1, Box-Cox with time-variant optimization of λ, normal score transformation, and a singularity analysis technique. The results suggest that Box-Cox with λ = 0.1 and the singularity analysis is not suitable for KED. Normal score transformation and Box-Cox with optimized λ, or λ = 0.25 produce satisfactory results in terms of Gaussianity of the residuals, probability distribution of the merged rainfall products, and rainfall estimate quality, when validated through cross-validation. However, it is observed that Box-Cox transformations are strongly dependent on the temporal and spatial variability of rainfall and on the units used for the rainfall intensity. Overall, applying transformations results in a quantitative improvement of the rainfall estimates only if the correct transformations for the specific data set are used.

  15. Methane as a biomarker in the search for extraterrestrial life: Lessons learned from Mars analog hypersaline environments

    Science.gov (United States)

    Bebout, B.; Tazaz, A.; Kelley, C. A.; Poole, J. A.; Davila, A.; Chanton, J.

    2010-12-01

    Methane released from discrete regions on Mars, together with previous reports of methane determined with ground-based telescopes, has revived the possibility of past or even extant life near the surface on Mars, since 90% of the methane on Earth has a biological origin. This intriguing possibility is supported by the abundant evidence of large bodies of liquid water, and therefore of conditions conducive to the origin of life, early in the planet's history. The detection and analysis of methane is at the core of NASA’s strategies to search for life in the solar system, and on extrasolar planets. Because methane is also produced abiotically, it is important to generate criteria to unambiguously assess biogenicity. The stable carbon and hydrogen isotopic signature of methane, as well as its ratio to other low molecular weight hydrocarbons (the methane/(ethane + propane) ratio: C1/(C2 + C3)), has been suggested to be diagnostic for biogenic methane. We report measurements of the concentrations and stable isotopic signature of methane from hypersaline environments. We focus on hypersaline environments because spectrometers orbiting Mars have detected widespread chloride bearing deposits resembling salt flats. Other evaporitic minerals, e.g., sulfates, are also abundant in several regions, including those studied by the Mars Exploration Rovers. The presence of evaporitic minerals, together with the known evolution of the Martian climate, from warmer and wetter to cold and hyper-arid, suggest that evaporitic and hypersaline environments were common in the past. Hypersaline environments examined to date include salt ponds located in Baja California, the San Francisco Bay, and the Atacama Desert. Methane was found in gas produced both in the sediments, and in gypsum- and halite-hosted (endolithic) microbial communities. Maximum methane concentrations were as high as 40% by volume. The methane carbon isotopic (δ13C) composition showed a wide range of values, from about

  16. Rainfall erosivity map for Ghana

    International Nuclear Information System (INIS)

    Oduro Afriyie, K.

    1995-10-01

    Monthly rainfall data, spanning over a period of more than thirty years, were used to compute rainfall erosivity indices for various stations in Ghana, using the Fournier index, c, defined as p 2 /P, where p is the rainfall amount in the wettest month and P is the annual rainfall amount. Values of the rainfall erosivity indices ranged from 24.5 mm at Sunyani in the mid-portion of Ghana to 180.9 mm at Axim in the south western coastal portion. The indices were used to construct a rainfall erosivity map for the country. The map revealed that Ghana may be broadly divided into five major erosion risk zones. The middle sector of Ghana is generally in the low erosion risk zone; the northern sector is in the moderate to severe erosion risk zone, while the coastal sector is in the severe to extreme severe erosion risk zone. (author). 11 refs, 1 fig., 1 tab

  17. Spatial dependence of extreme rainfall

    Science.gov (United States)

    Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri

    2017-05-01

    This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.

  18. Rainfall erosivity in Europe.

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Tadić, Melita Perčec; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago; Alewell, Christine

    2015-04-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods

  19. Global Methane Initiative

    Science.gov (United States)

    The Global Methane Initiative promotes cost-effective, near-term methane recovery through partnerships between developed and developing countries, with participation from the private sector, development banks, and nongovernmental organizations.

  20. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    Science.gov (United States)

    Weinsten, A.; Navarrete, L; Ruppel, Carolyn D.; Weber, T.C.; Leonte, M.; Kellermann, M.; Arrington, E.; Valentine, D.L.; Scranton, M.L; Kessler, John D.

    2016-01-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern US Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady-state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6 – 24 kmol methane per day). These analyses suggest this methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH. This article is protected by copyright. All rights reserved.

  1. Uncertainty assessment of the breath methane concentration method to determine methane production of dairy cows

    NARCIS (Netherlands)

    Wu, Liansun; Groot Koerkamp, Peter W.G.; Ogink, Nico

    2018-01-01

    The breath methane concentration method uses the methane concentrations in the cow's breath during feed bin visits as a proxy for the methane production rate. The objective of this study was to assess the uncertainty of a breath methane concentration method in a feeder and its capability to measure

  2. Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries.

    Science.gov (United States)

    Hwang, In Yeub; Lee, Seung Hwan; Choi, Yoo Seong; Park, Si Jae; Na, Jeong Geol; Chang, In Seop; Kim, Choongik; Kim, Hyun Cheol; Kim, Yong Hwan; Lee, Jin Won; Lee, Eun Yeol

    2014-12-28

    Methane is considered as a next-generation carbon feedstock owing to the vast reserves of natural and shale gas. Methane can be converted to methanol by various methods, which in turn can be used as a starting chemical for the production of value-added chemicals using existing chemical conversion processes. Methane monooxygenase is the key enzyme that catalyzes the addition of oxygen to methane. Methanotrophic bacteria can transform methane to methanol by inhibiting methanol dehydrogenase. In this paper, we review the recent progress made on the biocatalytic conversion of methane to methanol as a key step for methane-based refinery systems and discuss future prospects for this technology.

  3. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient.

    Science.gov (United States)

    Mondal, Nandita; Sukumar, Raman

    2016-01-01

    The "varying constraints hypothesis" of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels-the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)-using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied-early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia.

  4. Mechanics of coalbed methane production

    Energy Technology Data Exchange (ETDEWEB)

    Creel, J C; Rollins, J B [Crawley, Gillespie and Associates, Inc. (United Kingdom)

    1994-12-31

    Understanding the behaviour of coalbed methane reservoirs and the mechanics of production is crucial to successful management of coalbed methane resources and projects. This paper discusses the effects of coal properties and coalbed methane reservoir characteristics on gas production rates and recoveries with a review of completion techniques for coalbed methane wells. 4 refs., 17 figs.

  5. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)

    International Nuclear Information System (INIS)

    Iversen, N.; Jorgensen, B.B.

    1985-01-01

    Concomitant radiotracer measurements were made of in situ rates of sulfate reduction and anaerobic methane oxidation in 2-3-m-long sediment cores. Methane accumulated to high concentrations (> 1 mM CH 4 ) only below the sulfate zone, at 1 m or deeper in the sediment. Sulfate reduction showed a broad maximum below the sediment surface and a smaller, narrow maximum at the sulfate-methane transition. Methane oxidation was low (0.002-0.1 nmol CH 4 cm -3 d -1 ) throughout the sulfate zone and showed a sharp maximum at the sulfate-methane transition, coinciding with the sulfate reduction maximum. Total anaerobic methane oxidation at two stations was 0.83 and 1.16 mmol CH 4 m -2 d -1 , of which 96% was confined to the sulfate-methane transition. All the methane that was calculated to diffuse up into the sulfate-methane transition was oxidized in this zone. The methane oxidation was equivalent to 10% of the electron donor requirement for the total measured sulfate reduction. A third station showed high sulfate concentrations at all depths sampled and the total methane oxidation was only 0.013 mmol m -2 d -1 . From direct measurements of rates, concentration gradients, and diffusion coefficients, simple calculations were made of sulfate and methane fluxes and of methane production rates

  6. Methane-fueled vehicles: A promising market for coalbed methane

    International Nuclear Information System (INIS)

    Deul, M.

    1993-01-01

    The most acceptable alternative fuel for motor vehicles is compressed natural gas (CNG). An important potential source of such gas is coalbed methane, much of which is now being wasted. Although there are no technological impediments to the use of CNG it has not been adequately promoted for a variety of reasons: structural, institutional and for coalbed gas, legal. The benefits of using CNG fuel are manifold: clean burning, low cost, abundant, and usable in any internal combustion engine. Even though more than 30,000 CNG vehicles are now in use in the U.S.A., they are not readily available, fueling stations are not easily accessible, and there is general apathy on the part of the public because of negligence by such agencies as the Department of Energy, the Department of Transportation and the Environmental Protection Agency. The economic benefits of using methane are significant: 100,000 cubic feet of methane is equivalent to 800 gallons of gasoline. Considering the many millions of cubic feet methane wasted from coal mines conservation and use of this resource is a worthy national goal

  7. Is methane a new therapeutic gas?

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2012-09-01

    Full Text Available Abstract Background Methane is an attractive fuel. Biologically, methanogens in the colon can use carbon dioxide and hydrogen to produce methane as a by-product. It was previously considered that methane is not utilized by humans. However, in a recent study, results demonstrated that methane could exert anti-inflammatory effects in a dog small intestinal ischemia-reperfusion model. Point of view Actually, the bioactivity of methane has been investigated in gastrointestinal diseases, but the exact mechanism underlying the anti-inflammatory effects is required to be further elucidated. Methane can cross the membrane and is easy to collect due to its abundance in natural gas. Although methane is flammable, saline rich in methane can be prepared for clinical use. These seem to be good news in application of methane as a therapeutic gas. Conclusion Several problems should be resolved before its wide application in clinical practice.

  8. Tropical Rainfall Measuring Mission (TRMM) and the Future of Rainfall Estimation from Space

    Science.gov (United States)

    Kakar, Ramesh; Adler, Robert; Smith, Eric; Starr, David OC. (Technical Monitor)

    2001-01-01

    Tropical rainfall is important in the hydrological cycle and to the lives and welfare of humans. Three-fourths of the energy that drives the atmospheric wind circulation comes from the latent heat released by tropical precipitation. Recognizing the importance of rain in the tropics, NASA for the U.S.A. and NASDA for Japan have partnered in the design, construction and flight of a satellite mission to measure tropical rainfall and calculate the associated latent heat release. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on November 27, 1997, and data from all the instruments first became available approximately 30 days after launch. Since then, much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms and applications of these results to areas such as Data Assimilation and model initialization. TRMM has reduced the uncertainty of climatological rainfall in tropics by over a factor of two, therefore establishing a standard for comparison with previous data sets and climatologies. It has documented the diurnal variation of precipitation over the oceans, showing a distinct early morning peak and this satellite mission has shown the utility of precipitation information for the improvement of numerical weather forecasts and climate modeling. This paper discusses some promising applications using TRMM data and introduces a measurement concept being discussed by NASA/NASDA and ESA for the future of rainfall estimation from space.

  9. Rainfall Downscaling Conditional on Upper-air Variables: Assessing Rainfall Statistics in a Changing Climate

    Science.gov (United States)

    Langousis, Andreas; Deidda, Roberto; Marrocu, Marino; Kaleris, Vassilios

    2014-05-01

    Due to its intermittent and highly variable character, and the modeling parameterizations used, precipitation is one of the least well reproduced hydrologic variables by both Global Climate Models (GCMs) and Regional Climate Models (RCMs). This is especially the case at a regional level (where hydrologic risks are assessed) and at small temporal scales (e.g. daily) used to run hydrologic models. In an effort to remedy those shortcomings and assess the effect of climate change on rainfall statistics at hydrologically relevant scales, Langousis and Kaleris (2013) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables. The developed downscaling scheme was tested using atmospheric data from the ERA-Interim archive (http://www.ecmwf.int/research/era/do/get/index), and daily rainfall measurements from western Greece, and was proved capable of reproducing several statistical properties of actual rainfall records, at both annual and seasonal levels. This was done solely by conditioning rainfall simulation on a vector of atmospheric predictors, properly selected to reflect the relative influence of upper-air variables on ground-level rainfall statistics. In this study, we apply the developed framework for conditional rainfall simulation using atmospheric data from different GCM/RCM combinations. This is done using atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com), and daily rainfall measurements for an intermediate-sized catchment in Italy; i.e. the Flumendosa catchment. Since GCM/RCM products are suited to reproduce the local climatology in a statistical sense (i.e. in terms of relative frequencies), rather than ensuring a one-to-one temporal correspondence between observed and simulated fields (i.e. as is the case for ERA-interim reanalysis data), we proceed in three steps: a) we use statistical tools to establish a linkage between ERA-Interim upper-air atmospheric forecasts and

  10. Multivariate Analysis of Erosivity Indices and Rainfall Physical Characteristics Associated with Rainfall Patterns in Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Roriz Luciano Machado

    2017-12-01

    Full Text Available ABSTRACT The identification of areas with greater erosive potential is important for planning soil and water conservation. The objective of this study was to evaluate the physical characteristics of rainfall events in the state of Rio de Janeiro, Brazil, and their interactions with rainfall patterns through multivariate statistical analysis. Rainfall depth, kinetic energy, 30-min intensity (I30, duration of rainfall events, and the erosivity indices KE >10, KE >25, and EI30 in 36 locations (stations were subjected to principal component analysis (PCA and canonical discriminant analysis (CDA. Based on evaluation of the respective historical series of hyetographs, it was found that the advanced pattern occurs with highest frequency (51.8 %, followed by the delayed pattern (26.1 %, and by the intermediate pattern (22.1 %. All the evaluated rainfall characteristics have high response capacity in describing localities and rainfall patterns through PCA and CDA. In CDA, the Tukey test (p<0.05 applied to the scores of the first canonical discriminant function (CDF1 allowed differentiation of the stations with respect to the rainfall and erosivity characteristics for the advanced and delayed patterns. In the delayed pattern, the localities of Angra dos Reis, Campos, Eletrobrás, Manuel Duarte, Santa Isabel do Rio Preto, Tanguá, Teresópolis, Vila Mambucaba, and Xerém had the highest CDF1 scores, indicating that they have rainfalls with higher depth, I30, and duration because the standardized canonical coefficient (SCC and the correlation coefficient (“r” of these characteristics were positive. The rainfall events in the state of Rio de Janeiro differ from one locality to another in relation to the advanced and delayed rainfall patterns, mainly due to the physical characteristics of rainfall depth, I30, and duration, indicating a higher risk of soil loss and runoff in the localities where rainfall events with the delayed pattern prevail.

  11. Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle.

    Science.gov (United States)

    Detman, Anna; Mielecki, Damian; Pleśniak, Łukasz; Bucha, Michał; Janiga, Marek; Matyasik, Irena; Chojnacka, Aleksandra; Jędrysek, Mariusz-Orion; Błaszczyk, Mieczysław K; Sikora, Anna

    2018-01-01

    Anaerobic digestion, whose final products are methane and carbon dioxide, ensures energy flow and circulation of matter in ecosystems. This naturally occurring process is used for the production of renewable energy from biomass. Lactate, a common product of acidic fermentation, is a key intermediate in anaerobic digestion of biomass in the environment and biogas plants. Effective utilization of lactate has been observed in many experimental approaches used to study anaerobic digestion. Interestingly, anaerobic lactate oxidation and lactate oxidizers as a physiological group in methane-yielding microbial communities have not received enough attention in the context of the acetogenic step of anaerobic digestion. This study focuses on metabolic transformation of lactate during the acetogenic and methanogenic steps of anaerobic digestion in methane-yielding bioreactors. Methane-yielding microbial communities instead of pure cultures of acetate producers were used to process artificial lactate-rich media to methane and carbon dioxide in up-flow anaerobic sludge blanket reactors. The media imitated the mixture of acidic products found in anaerobic environments/digesters where lactate fermentation dominates in acidogenesis. Effective utilization of lactate and biogas production was observed. 16S rRNA profiling was used to examine the selected methane-yielding communities. Among Archaea present in the bioreactors, the order Methanosarcinales predominated. The acetoclastic pathway of methane formation was further confirmed by analysis of the stable carbon isotope composition of methane and carbon dioxide. The domain Bacteria was represented by Bacteroidetes , Firmicutes , Proteobacteria , Synergistetes , Actinobacteria , Spirochaetes , Tenericutes , Caldithrix , Verrucomicrobia , Thermotogae , Chloroflexi , Nitrospirae, and Cyanobacteria. Available genome sequences of species and/or genera identified in the microbial communities were searched for genes encoding the lactate

  12. Determination of soil-entrapped methane

    Energy Technology Data Exchange (ETDEWEB)

    Alberto, M.C.R.; Neue, H.U.; Lantin, R.S.; Aduna, J.B. [Soil and Water Sciences Division, Manila (Philippines)

    1996-12-31

    A sampling method was developed and modified to sample soil from paddy fields for entrapped methane determination. A 25-cm long plexiglass tube (4.4-cm i.d.) fitted with gas bag was used to sample soil and entrapped gases to a depth of 15-cm. The sampling tube was shaken vigorously to release entrapped gases. Headspace gas in sampling tube and gas bag was analyzed for methane. The procedure was verified by doing field sampling weekly at an irrigated ricefield in the IRRI Research Farm on a Maahas clay soil. The modified sampling method gave higher methane concentration because it eliminated gas losses during sampling. The method gave 98% {+-} 5 recovery of soil-entrapped methane. Results of field sampling showed that the early growth stage of the rice plant, entrapped methane increased irrespective of treatment. This suggests that entrapped methane increased irrespective of treatment. This suggests that entrapped methane was primarily derived from fermentation of soil organic matter at the early growth stage. At the latter stage, the rice plant seems to be the major carbon source for methane production. 7 refs., 4 figs., 4 tabs.

  13. Simulation of infiltration and redistribution of intense rainfall using Land Surface Models

    Science.gov (United States)

    Mueller, Anna; Verhoef, Anne; Cloke, Hannah

    2016-04-01

    Flooding from intense rainfall (FFIR) can cause widespread damage and disruption. Numerical Weather Prediction (NWP) models provide distributed information about atmospheric conditions, such as precipitation, that can lead to a flooding event. Short duration, high intensity rainfall events are generally poorly predicted by NWP models, because of the high spatiotemporal resolution required and because of the way the convective rainfall is described in the model. The resolution of NWP models is ever increasing. Better understanding of complex hydrological processes and the effect of scale is important in order to improve the prediction of magnitude and duration of such events, in the context of disaster management. Working as part of the NERC SINATRA project, we evaluated how the Land Surface Model (LSM) components of NWP models cope with high intensity rainfall input and subsequent infiltration problems. Both in terms of the amount of water infiltrated in the soil store, as well as the timing and the amount of surface and subsurface runoff generated. The models investigated are SWAP (Soil Water Air Plant, Alterra, the Netherlands, van Dam 1997), JULES (Joint UK Land Environment Simulator a component of Unified Model in UK Met Office, Best et al. 2011) and CHTESSEL (Carbon and Hydrology- Tiled ECMWF Scheme for Surface Exchanges over Land, Balsamo et al. 2009) We analysed the numerical aspects arising from discontinuities (or sharp gradients) in forcing and/or the model solution. These types of infiltration configurations were tested in the laboratory (Vachaud 1971), for some there are semi-analytical solutions (Philip 1957, Parlange 1972, Vanderborght 2005) or reference numerical solutions (Haverkamp 1977, van Dam 2000, Vanderborght 2005). The maximum infiltration by the surface, Imax, is in general dependent on atmospheric conditions, surface type, soil type, soil moisture content θ, and surface orographic factor σ. The models used differ in their approach to

  14. Monsoon Rainfall and Landslides in Nepal

    Science.gov (United States)

    Dahal, R. K.; Hasegawa, S.; Bhandary, N. P.; Yatabe, R.

    2009-12-01

    A large number of human settlements on the Nepal Himalayas are situated either on old landslide mass or on landslide-prone areas. As a result, a great number of people are affected by large- and small-scale landslides all over the Himalayas especially during monsoon periods. In Nepal, only in the half monsoon period (June 10 to August 15), 70, 50 and 68 people were killed from landslides in 2007, 2008 and 2009, respectively. In this context, this paper highlights monsoon rainfall and their implications in the Nepal Himalaya. In Nepal, monsoon is major source of rainfall in summer and approximately 80% of the annual total rainfall occurs from June to September. The measured values of mean annual precipitation in Nepal range from a low of approximately 250 mm at area north of the Himalaya to many areas exceeding 6,000 mm. The mean annual rainfall varying between 1500 mm and 2500 mm predominate over most of the country. In Nepal, the daily distribution of precipitation during rainy season is also uneven. Sometime 10% of the total annual precipitation can occur in a single day. Similarly, 50% total annual rainfall also can occur within 10 days of monsoon. This type of uneven distribution plays an important role in triggering many landslides in Nepal. When spatial distribution of landslides was evaluated from record of more than 650 landslides, it is found that more landslides events were concentrated at central Nepal in the area of high mean annual rainfall. When monsoon rainfall and landslide relationship was taken into consideration, it was noticed that a considerable number of landslides were triggered in the Himalaya by continuous rainfall of 3 to 90 days. It has been noticed that continuous rainfall of few days (5 days or 7 days or 10 days) are usually responsible for landsliding in the Nepal Himalaya. Monsoon rains usually fall with interruptions of 2-3 days and are generally characterized by low intensity and long duration. Thus, there is a strong role of

  15. Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    Science.gov (United States)

    Socki, Richard A.; Niles, Paul B.; Gibson, Everett K., Jr.; Romanek, Christopher S.; Zhang, Chuanlun L.; Bissada, Kadry K.

    2008-01-01

    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere.

  16. Predicting watershed acidification under alternate rainfall conditions

    International Nuclear Information System (INIS)

    Huntington, T.G.

    1996-01-01

    The effect of alternate rainfall scenarios on acidification of a forested watershed subjected to chronic acidic deposition was assessed using the model of acidification of groundwater in catchments (MAGIC). The model was calibrated at the Panola Mountain Research Watershed, near Atlanta, Georgia, USA using measured soil properties, wet and dry deposition, and modeled hydrologic routing. Model forecast simulations were evaluated to compare alternate temporal averaging of rainfall inputs and variations in rainfall amount and seasonal distribution. Soil water alkalinity was predicted to decrease to substantially lower concentrations under lower rainfall compared with current or higher rainfall conditions. Soil water alkalinity was also predicted to decrease to lower levels when the majority of rainfall occurred during the growing season compared with other rainfall distributions. Changes in rainfall distribution that result in decreases in net soil water flux will temporarily delay acidification. Ultimately, however, decreased soilwater flux will result in larger increases in soil-adsorbed sulfur and soil-water sulfate concentrations and decreases in alkalinity when compared to higher water flux conditions. Potential climate change resulting in significant changes in rainfall amounts, seasonal distributions of rainfall, or evapotranspiration will change net soil water flux and, consequently, will affect the dynamics of the acidification response to continued sulfate loading. 29 refs., 7 figs., 4 tabs

  17. Application of seasonal rainfall forecasts and satellite rainfall observations to crop yield forecasting for Africa

    Science.gov (United States)

    Greatrex, H. L.; Grimes, D. I. F.; Wheeler, T. R.

    2009-04-01

    Rain-fed agriculture is of utmost importance in sub-Saharan Africa; the FAO estimates that over 90% of food consumed in the region is grown in rain-fed farming systems. As the climate in sub-Saharan Africa has a high interannual variability, this dependence on rainfall can leave communities extremely vulnerable to food shortages, especially when coupled with a lack of crop management options. The ability to make a regional forecast of crop yield on a timescale of months would be of enormous benefit; it would enable both governmental and non-governmental organisations to be alerted in advance to crop failure and could facilitate national and regional economic planning. Such a system would also enable individual communities to make more informed crop management decisions, increasing their resilience to climate variability and change. It should be noted that the majority of crops in the region are rainfall limited, therefore the ability to create a seasonal crop forecast depends on the ability to forecast rainfall at a monthly or seasonal timescale and to temporally downscale this to a daily time-series of rainfall. The aim of this project is to develop a regional-scale seasonal forecast for sub-Saharan crops, utilising the General Large Area Model for annual crops (GLAM). GLAM would initially be driven using both dynamical and statistical seasonal rainfall forecasts to provide an initial estimate of crop yield. The system would then be continuously updated throughout the season by replacing the seasonal rainfall forecast with daily weather observations. TAMSAT satellite rainfall estimates are used rather than rain-gauge data due to the scarcity of ground based observations. An important feature of the system is the use of the geo-statistical method of sequential simulation to create an ensemble of daily weather inputs from both the statistical seasonal rainfall forecasts and the satellite rainfall estimates. This allows a range of possible yield outputs to be

  18. Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change.

    Science.gov (United States)

    van der Pol, T D; van Ierland, E C; Gabbert, S; Weikard, H-P; Hendrix, E M T

    2015-05-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change given a predefined system performance target, for example a flood risk standard. Rainfall variability causes system performance estimates to be volatile. These estimates may be used to recurrently evaluate system performance. This paper presents a model for this setting, and develops a solution method to identify cost-effective investments in stormwater drainage adaptations. Runoff and water levels are simulated with rainfall from stationary rainfall distributions, and time series of annual rainfall maxima are simulated for a climate scenario. Cost-effective investment strategies are determined by dynamic programming. The method is applied to study the choice of volume for a storage basin in a Dutch polder. We find that 'white noise', i.e. trend-free variability of rainfall, might cause earlier re-investment than expected under projected changes in rainfall. The risk of early re-investment may be reduced by increasing initial investment. This can be cost-effective if the investment involves fixed costs. Increasing initial investments, therefore, not only increases water system robustness to structural changes in rainfall, but could also offer insurance against additional costs that would occur if system performance is underestimated and re-investment becomes inevitable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Reaction of methane with coal

    Energy Technology Data Exchange (ETDEWEB)

    Yang, K.; Batts, B.D.; Wilson, M.A.; Gorbaty, M.L.; Maa, P.S.; Long, M.A.; He, S.J.X.; Attala, M.I. [Macquarie University, Macquarie, NSW (Australia). School of Chemistry

    1997-10-01

    A study of the reactivities of Australian coals and one American coal with methane or methane-hydrogen mixtures, in the range 350-400{degree}C and a range of pressures (6.0-8.3 MPa, cold) is reported. The effects of aluminophosphates (AIPO) or zeolite catalysts, with and without exchanged metals, on reactivity have also been examined. Yields of dichloromethane extractable material are increased by using a methane rather than a nitrogen atmosphere and different catalysts assist dissolution to various extends. It appears that surface exchanged catalysts are effective, but incorporating metals during AIPO lattice formation is detrimental. Aluminium phosphate catalysts are unstable to water produced during coal conversion, but are still able to increase extraction yields. For the American coal, under methane-hydrogen and a copper exchanged zeolite, 51.5% conversion was obtained, with a product selectivity close to that obtained under hydrogen alone, and with only 2% hydrogen consumption. The conversion under methane-hydrogen was also to that obtained under hydrogen alone, while a linear dependence of conversion on proportion of methane would predict a 43% conversion under methane-hydrogen. This illustrates a synergistic effect of the methane-hydrogen atmosphere for coal liquefaction using this catalyst systems. 31 refs., 5 figs., 7 tabs.

  20. Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan.

    Science.gov (United States)

    Tsai, Kuang-Jung; Chiang, Jie-Lun; Lee, Ming-Hsi; Chen, Yie-Ruey

    2017-04-01

    Analysis on the Critical Rainfall Value For Predicting Large Scale Landslides Caused by Heavy Rainfall In Taiwan. Kuang-Jung Tsai 1, Jie-Lun Chiang 2,Ming-Hsi Lee 2, Yie-Ruey Chen 1, 1Department of Land Management and Development, Chang Jung Christian Universityt, Tainan, Taiwan. 2Department of Soil and Water Conservation, National Pingtung University of Science and Technology, Pingtung, Taiwan. ABSTRACT The accumulated rainfall amount was recorded more than 2,900mm that were brought by Morakot typhoon in August, 2009 within continuous 3 days. Very serious landslides, and sediment related disasters were induced by this heavy rainfall event. The satellite image analysis project conducted by Soil and Water Conservation Bureau after Morakot event indicated that more than 10,904 sites of landslide with total sliding area of 18,113ha were found by this project. At the same time, all severe sediment related disaster areas are also characterized based on their disaster type, scale, topography, major bedrock formations and geologic structures during the period of extremely heavy rainfall events occurred at the southern Taiwan. Characteristics and mechanism of large scale landslide are collected on the basis of the field investigation technology integrated with GPS/GIS/RS technique. In order to decrease the risk of large scale landslides on slope land, the strategy of slope land conservation, and critical rainfall database should be set up and executed as soon as possible. Meanwhile, study on the establishment of critical rainfall value used for predicting large scale landslides induced by heavy rainfall become an important issue which was seriously concerned by the government and all people live in Taiwan. The mechanism of large scale landslide, rainfall frequency analysis ,sediment budge estimation and river hydraulic analysis under the condition of extremely climate change during the past 10 years would be seriously concerned and recognized as a required issue by this

  1. Entropy of stable seasonal rainfall distribution in Kelantan

    Science.gov (United States)

    Azman, Muhammad Az-zuhri; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Radi, Noor Fadhilah Ahmad

    2017-05-01

    Investigating the rainfall variability is vital for any planning and management in many fields related to water resources. Climate change can gives an impact of water availability and may aggravate water scarcity in the future. Two statistics measurements which have been used by many researchers to measure the rainfall variability are variance and coefficient of variation. However, these two measurements are insufficient since rainfall distribution in Malaysia especially in the East Coast of Peninsular Malaysia is not symmetric instead it is positively skewed. In this study, the entropy concept is used as a tool to measure the seasonal rainfall variability in Kelantan and ten rainfall stations were selected. In previous studies, entropy of stable rainfall (ESR) and apportionment entropy (AE) were used to describe the rainfall amount variability during years for Australian rainfall data. In this study, the entropy of stable seasonal rainfall (ESSR) is suggested to model rainfall amount variability during northeast monsoon (NEM) and southwest monsoon (SWM) seasons in Kelantan. The ESSR is defined to measure the long-term average seasonal rainfall amount variability within a given year (1960-2012). On the other hand, the AE measures the rainfall amounts variability across the months. The results of ESSR and AE values show that stations in east coastline are more variable as compared to other stations inland for Kelantan rainfall. The contour maps of ESSR for Kelantan rainfall stations are also presented.

  2. Stochastic modelling of daily rainfall sequences

    NARCIS (Netherlands)

    Buishand, T.A.

    1977-01-01

    Rainfall series of different climatic regions were analysed with the aim of generating daily rainfall sequences. A survey of the data is given in I, 1. When analysing daily rainfall sequences one must be aware of the following points:
    a. Seasonality. Because of seasonal variation

  3. Characterization of Future Caribbean Rainfall and Temperature Extremes across Rainfall Zones

    Directory of Open Access Journals (Sweden)

    Natalie Melissa McLean

    2015-01-01

    Full Text Available End-of-century changes in Caribbean climate extremes are derived from the Providing Regional Climate for Impact Studies (PRECIS regional climate model (RCM under the A2 and B2 emission scenarios across five rainfall zones. Trends in rainfall, maximum temperature, and minimum temperature extremes from the RCM are validated against meteorological stations over 1979–1989. The model displays greater skill at representing trends in consecutive wet days (CWD and extreme rainfall (R95P than consecutive dry days (CDD, wet days (R10, and maximum 5-day precipitation (RX5. Trends in warm nights, cool days, and warm days were generally well reproduced. Projections for 2071–2099 relative to 1961–1989 are obtained from the ECHAM5 driven RCM. Northern and eastern zones are projected to experience more intense rainfall under A2 and B2. There is less consensus across scenarios with respect to changes in the dry and wet spell lengths. However, there is indication that a drying trend may be manifest over zone 5 (Trinidad and northern Guyana. Changes in the extreme temperature indices generally suggest a warmer Caribbean towards the end of century across both scenarios with the strongest changes over zone 4 (eastern Caribbean.

  4. Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall

    DEFF Research Database (Denmark)

    Doyle, Samuel H.; Hubbard, Alun; van de Wal, Roderik S.W.

    2015-01-01

    and meteorological variables from the western margin of the Greenland ice sheet during a week of warm, wet cyclonic weather in late August and early September 2011. We find that extreme surface runoff from melt and rainfall led to a widespread acceleration in ice flow that extended 140 km into the ice-sheet interior....... We suggest that the late-season timing was critical in promoting rapid runoff across an extensive bare ice surface that overwhelmed a subglacial hydrological system in transition to a less-efficient winter mode. Reanalysis data reveal that similar cyclonic weather conditions prevailed across southern...

  5. Investigation of Rainfall-Runoff Processes and Soil Moisture Dynamics in Grassland Plots under Simulated Rainfall Conditions

    Directory of Open Access Journals (Sweden)

    Nana Zhao

    2014-09-01

    Full Text Available The characteristics of rainfall-runoff are important aspects of hydrological processes. In this study, rainfall-runoff processes and soil moisture dynamics at different soil depths and slope positions of grassland with two different row spacings (5 cm and 10 cm, respectively, referred to as R5 and R10 were analyzed, by means of a solution of rainfall simulation experiments. Bare land was also considered as a comparison. The results showed that the mechanism of runoff generation was mainly excess infiltration overland flow. The surface runoff amount of R5 plot was greater than that of R10, while the interflow amount of R10 was larger than that of R5 plot, although the differences of the subsurface runoff processes between plots R5 and R10 were little. The effects of rainfall intensity on the surface runoff were significant, but not obvious on the interflow and recession curve, which can be described as a simple exponential equation, with a fitting degree of up to 0.854–0.996. The response of soil moisture to rainfall and evapotranspiration was mainly in the 0–20 cm layer, and the response at the 40 cm layer to rainfall was slower and generally occurred after the rainfall stopped. The upper slope generally responded fastest to rainfall, and the foot of the slope was the slowest. The results presented here could provide insights into understanding the surface and subsurface runoff processes and soil moisture dynamics for grasslands in semi-arid regions.

  6. Photocatalytic conversion of methane to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.E.; Noceti, R.P.; D`Este, J.R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    A long-term goal of our research group is the exploration of novel pathways for the direct oxidation of methane to liquid fuels, chemicals, and intermediates. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol is attractive. The products of reaction, methanol and hydrogen, are both commercially desirable, methanol being used as is or converted to a variety of other chemicals, and the hydrogen could be utilized in petroleum and/or chemical manufacturing. Methane is produced as a by-product of coal gasification. Depending upon reactor design and operating conditions, up to 18% of total gasifier product may be methane. In addition, there are vast proven reserves of geologic methane in the world. Unfortunately, a large fraction of these reserves are in regions where there is little local demand for methane and it is not economically feasible to transport it to a market. There is a global research effort under way in academia, industry, and government to find methods to convert methane to useful, more readily transportable and storable materials. Methanol, the initial product of methane oxidation, is a desirable product of conversion because it retains much of the original energy of the methane while satisfying transportation and storage requirements. Investigation of direct conversion of methane to transportation fuels has been an ongoing effort at PETC for over 10 years. One of the current areas of research is the conversion of methane to methanol, under mild conditions, using light, water, and a semiconductor photocatalyst. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol, is attractive. Research in the laboratory is directed toward applying the techniques developed for the photocatalytic splitting of the water and the photochemical conversion of methane.

  7. Rainfall Stochastic models

    Science.gov (United States)

    Campo, M. A.; Lopez, J. J.; Rebole, J. P.

    2012-04-01

    This work was carried out in north of Spain. San Sebastian A meteorological station, where there are available precipitation records every ten minutes was selected. Precipitation data covers from October of 1927 to September of 1997. Pulse models describe the temporal process of rainfall as a succession of rainy cells, main storm, whose origins are distributed in time according to a Poisson process and a secondary process that generates a random number of cells of rain within each storm. Among different pulse models, the Bartlett-Lewis was used. On the other hand, alternative renewal processes and Markov chains describe the way in which the process will evolve in the future depending only on the current state. Therefore they are nor dependant on past events. Two basic processes are considered when describing the occurrence of rain: the alternation of wet and dry periods and temporal distribution of rainfall in each rain event, which determines the rainwater collected in each of the intervals that make up the rain. This allows the introduction of alternative renewal processes and Markov chains of three states, where interstorm time is given by either of the two dry states, short or long. Thus, the stochastic model of Markov chains tries to reproduce the basis of pulse models: the succession of storms, each one composed for a series of rain, separated by a short interval of time without theoretical complexity of these. In a first step, we analyzed all variables involved in the sequential process of the rain: rain event duration, event duration of non-rain, average rainfall intensity in rain events, and finally, temporal distribution of rainfall within the rain event. Additionally, for pulse Bartlett-Lewis model calibration, main descriptive statistics were calculated for each month, considering the process of seasonal rainfall in each month. In a second step, both models were calibrated. Finally, synthetic series were simulated with calibration parameters; series

  8. A laboratory study of anaerobic oxidation of methane in the presence of methane hydrate

    Science.gov (United States)

    Solem, R.; Bartlett, D.; Kastner, M.; Valentine, D.

    2003-12-01

    In order to mimic and study the process of anaerobic methane oxidation in methane hydrate regions we developed four high-pressure anaerobic bioreactors, designed to incubate environmental sediment samples, and enrich for populations of microbes associated with anaerobic methane oxidation (AMO). We obtained sediment inocula from a bacterial mat at the southern Hydrate Ridge, Cascadia, having cell counts approaching 1010 cells/cc. Ultimately, our goal is to produce an enriched culture of these microbes for characterization of the biochemical processes and chemical fluxes involved, as well as the unique adaptations required for, AMO. Molecular phylogenetic information along with results from fluorescent in situ hybridization indicate that consortia of Archaea and Bacteria are present which are related to those previously described for marine sediment AMO environments. Using a medium of enriched seawater and sediment in a 3:1 ratio, the system was incubated at 4° C under 43 atm of methane pressure; the temperature and pressure were kept constant. We have followed the reactions for seven months, particularly the vigorous consumption rates of dissolved sulfate and alkalinity production, as well as increases in HS-, and decreases in Ca concentrations. We also monitored the dissolved inorganic C (DIC) δ 13C values. The data were reproduced, and indicated that the process is extremely sensitive to changes in methane pressure. The rates of decrease in sulfate and increase in alkalinity concentrations were complimentary and showed considerable linearity with time. When the pressure in the reactor was decreased below the methane hydrate stability field, following the methane hydrate dissociation, sulfate reduction abruptly decreased. When the pressure was restored all the reactions returned to their previous rates. Much of the methane oxidation activity in the reactor is believed to occur in association with the methane hydrate. Upon the completion of one of the experiments

  9. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate.

    Science.gov (United States)

    Kennedy, Martin; Mrofka, David; von der Borch, Chris

    2008-05-29

    The start of the Ediacaran period is defined by one of the most severe climate change events recorded in Earth history--the recovery from the Marinoan 'snowball' ice age, approximately 635 Myr ago (ref. 1). Marinoan glacial-marine deposits occur at equatorial palaeolatitudes, and are sharply overlain by a thin interval of carbonate that preserves marine carbon and sulphur isotopic excursions of about -5 and +15 parts per thousand, respectively; these deposits are thought to record widespread oceanic carbonate precipitation during postglacial sea level rise. This abrupt transition records a climate system in profound disequilibrium and contrasts sharply with the cyclical stratigraphic signal imparted by the balanced feedbacks modulating Phanerozoic deglaciation. Hypotheses accounting for the abruptness of deglaciation include ice albedo feedback, deep-ocean out-gassing during post-glacial oceanic overturn or methane hydrate destabilization. Here we report the broadest range of oxygen isotope values yet measured in marine sediments (-25 per thousand to +12 per thousand) in methane seeps in Marinoan deglacial sediments underlying the cap carbonate. This range of values is likely to be the result of mixing between ice-sheet-derived meteoric waters and clathrate-derived fluids during the flushing and destabilization of a clathrate field by glacial meltwater. The equatorial palaeolatitude implies a highly volatile shelf permafrost pool that is an order of magnitude larger than that of the present day. A pool of this size could have provided a massive biogeochemical feedback capable of triggering deglaciation and accounting for the global postglacial marine carbon and sulphur isotopic excursions, abrupt unidirectional warming, cap carbonate deposition, and a marine oxygen crisis. Our findings suggest that methane released from low-latitude permafrost clathrates therefore acted as a trigger and/or strong positive feedback for deglaciation and warming. Methane hydrate

  10. Methane clathrates in the solar system.

    Science.gov (United States)

    Mousis, Olivier; Chassefière, Eric; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-04-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate

  11. Genomic selection for methane emission

    DEFF Research Database (Denmark)

    de Haas, Yvette; Pryce, Jennie E; Wall, Eileen

    2016-01-01

    Climate change is a growing area of international concern, and it is well established that the release of greenhouse gases (GHG) is a contributing factor. Of the various GHG produced by ruminants, enteric methane (CH4 ) is the most important contributor. One mitigation strategy is to reduce methane...... emission through genetic selection. Our first attempt used beef cattle and a GWAS to identify genes associated with several CH4 traits in Angus beef cattle. The Angus population consisted of 1020 animals with phenotypes on methane production (MeP), dry matter intake (DMI), and weight (WT). Additionally......, two new methane traits: residual genetic methane (RGM) and residual phenotypic methane (RPM) were calculated by adjusting CH4 for DMI and WT. Animals were genotyped using the 800k Illumina Bovine HD Array. Estimated heritabilities were 0.30, 0.19 and 0.15 for MeP, RGM and RPM respectively...

  12. Analyses of the temporal and spatial structures of heavy rainfall from a catalog of high-resolution radar rainfall fields

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Smith, James A.; Baeck, Mary Lynn

    2014-01-01

    that relate to size, structure and evolution of heavy rainfall. Extreme rainfall is also linked with severe weather (tornados, large hail and damaging wind). The diurnal cycle of rainfall for heavy rain days is characterized by an early peak in the largest rainfall rates, an afternoon-evening peak in rain...

  13. Situation of methanization installations in Haute-Normandie. Phase 2: Assessment of the regional sector. Phase 3: Development perspectives for the methanization sector in Haute-Normandie. To understand methanization. Haute-Normandie Commission of expertise on methanization

    International Nuclear Information System (INIS)

    Convert, Mathilde

    2012-10-01

    A first report proposes an analysis of the situation of methanization installations in the Haute-Normandie region while recalling the national context. It briefly reports an analysis and assessment of waste flows, processed effluents, by-products and biomass displaying an energetic potential. It describes methanization installations by addressing the different steps of the methanization process, by presenting the different digestion indicators, by briefly evoking the issue of the return-to-soil of digestates, and by presenting various operational data. Financial aspects are then addressed (investments and subsidies, financial balance of farm-based and collective installations), and an overview of methanization projects in the region and development perspectives is proposed. The second report more precisely analyses development perspectives for the methanization sector in the region through a brief assessment of the methanizable organic substrate resource, a discussion of different associated challenges (energy, agronomic, environmental and societal), a discussion of development levers and brakes, and an analysis of competitions (related to the use of industrial by-products, between processing installations, and related to agricultural soils). Another document proposes an overview of various aspects of methanization: a tool for territorial development, regulatory framework, evolution of installations in the region, assets of methanization, and role of the regional commission of expertise on methanization

  14. Urban rainfall estimation employing commercial microwave links

    Science.gov (United States)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; ten Veldhuis, Marie-claire

    2015-04-01

    Urban areas often lack rainfall information. To increase the number of rainfall observations in cities, microwave links from operational cellular telecommunication networks may be employed. Although this new potential source of rainfall information has been shown to be promising, its quality needs to be demonstrated more extensively. In the Rain Sense kickstart project of the Amsterdam Institute for Advanced Metropolitan Solutions (AMS), sensors and citizens are preparing Amsterdam for future weather. Part of this project is rainfall estimation using new measurement techniques. Innovative sensing techniques will be utilized such as rainfall estimation from microwave links, umbrellas for weather sensing, low-cost sensors at lamp posts and in drainage pipes for water level observation. These will be combined with information provided by citizens in an active way through smartphone apps and in a passive way through social media posts (Twitter, Flickr etc.). Sensor information will be integrated, visualized and made accessible to citizens to help raise citizen awareness of urban water management challenges and promote resilience by providing information on how citizens can contribute in addressing these. Moreover, citizens and businesses can benefit from reliable weather information in planning their social and commercial activities. In the end city-wide high-resolution rainfall maps will be derived, blending rainfall information from microwave links and weather radars. This information will be used for urban water management. This presentation focuses on rainfall estimation from commercial microwave links. Received signal levels from tens of microwave links within the Amsterdam region (roughly 1 million inhabitants) in the Netherlands are utilized to estimate rainfall with high spatial and temporal resolution. Rainfall maps will be presented and compared to a gauge-adjusted radar rainfall data set. Rainfall time series from gauge(s), radars and links will be compared.

  15. Methanization in Burgundy-Franche-Comte - Figures and benchmarks. Agricultural methanization in Franche-Comte - Reflection guide for projects. Methanization development in Burgundy - Assessment 2014. Biogas sector in Burgundy. Methanization development in Burgundy - How to develop a project in Burgundy

    International Nuclear Information System (INIS)

    Aucordonnier, Bertrand; SIBUE, Lionel; Granger, Sylvie; Pervenchon, Frank; Forgue, Isabelle; Lirzin, Frank; Aucordonnier, Bertand; Abrahamse, Philippe; Dondaine, Regis; Rousseau, Christophe; Fevre, Jean-Michel; Carbonnier, Arnaud; Gontier, Thomas; Lemaire, Sylvie; Gallois, Vincent; Lachaize, M.

    2015-03-01

    A first document proposes graphs, figures and maps which illustrate various aspects of the situation and development of methanization in France and in the Burgundy-Franche-Comte region (number and location of installations, production evolution, biomass origins, biogas valorisation). A second document presents methanization (basic principles, process types, valorisation), describes agricultural methanization (substrate origin, use of final energy, use of digestates) and proposes elements of thought for methanization development regarding waste origin, project definition, various concerns (energy, environment, agriculture), digestate use and quantities, methane use, and installation sizing. A publication then proposes a synthetic overview of methanization development in Burgundy: number of supported projects, installations (evolution of their number, used materials, production), and support activities. The next publication proposes an assessment and an overview of the biogas sector in Burgundy: presentation and recommendations, assessment in terms of jobs, activities and expertise, professional education and training. The last document recalls some elements related to the methanization technique, outlines some important issues (materials, valorisation type for biogas and for digestate) to be addressed for an agricultural methanization project, and evokes benefits of methanization and some economic aspects. It also briefly describes how to start a project in the region

  16. Modeling of methane bubbles released from large sea-floor area: Condition required for methane emission to the atmosphere

    OpenAIRE

    Yamamoto, A.; Yamanaka, Y.; Tajika, E.

    2009-01-01

    Massive methane release from sea-floor sediments due to decomposition of methane hydrate, and thermal decomposition of organic matter by volcanic outgassing, is a potential contributor to global warming. However, the degree of global warming has not been estimated due to uncertainty over the proportion of methane flux from the sea-floor to reach the atmosphere. Massive methane release from a large sea-floor area would result in methane-saturated seawater, thus some methane would reach the atm...

  17. Source Attribution of Methane Emissions in Northeastern Colorado Using Ammonia to Methane Emission Ratios

    Science.gov (United States)

    Eilerman, S. J.; Neuman, J. A.; Peischl, J.; Aikin, K. C.; Ryerson, T. B.; Perring, A. E.; Robinson, E. S.; Holloway, M.; Trainer, M.

    2015-12-01

    Due to recent advances in extraction technology, oil and natural gas extraction and processing in the Denver-Julesburg basin has increased substantially in the past decade. Northeastern Colorado is also home to over 250 concentrated animal feeding operations (CAFOs), capable of hosting over 2 million head of ruminant livestock (cattle and sheep). Because of methane's high Global Warming Potential, quantification and attribution of methane emissions from oil and gas development and agricultural activity are important for guiding greenhouse gas emission policy. However, due to the co-location of these different sources, top-down measurements of methane are often unable to attribute emissions to a specific source or sector. In this work, we evaluate the ammonia:methane emission ratio directly downwind of CAFOs using a mobile laboratory. Several CAFOs were chosen for periodic study over a 12-month period to identify diurnal and seasonal variation in the emission ratio as well as differences due to livestock type. Using this knowledge of the agricultural ammonia:methane emission ratio, aircraft measurements of ammonia and methane over oil and gas basins in the western US during the Shale Oil and Natural Gas Nexus (SONGNEX) field campaign in March and April 2015 can be used for source attribution of methane emissions.

  18. Rainfall Erosivity Database on the European Scale (REDES): A product of a high temporal resolution rainfall data collection in Europe

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the (R)USLE model. The R-factor is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minutes rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years) which are not readily available at European scale. The European Commission's Joint Research Centre(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland in order to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,541 rainfall stations in 2014 and has been updated with 134 additional stations in 2015. The interpolation of those point R-factor values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511, 801-815). The intra-annual variability of rainfall erosivity is crucial for modelling soil erosion on a monthly and seasonal basis. The monthly feature of rainfall erosivity has been added in 2015 as an advancement of REDES and the respective mean annual R-factor map. Almost 19,000 monthly R-factor values of REDES contributed to the seasonal and monthly assessments of rainfall erosivity in Europe. According to the first results, more than 50% of the total rainfall erosivity in Europe takes place in the period from June to September. The spatial patterns of rainfall erosivity have significant differences between Northern and Southern Europe as summer is the most erosive period in Central and Northern Europe and autumn in the

  19. Methane emissions from natural wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J.L. [Georgia Univ., Athens, GA (United States); Burke, R.A. Jr. [Environmental Protection Agency, Athens, GA (United States). Environmental Research Lab.

    1993-09-01

    Analyses of air trapped in polar ice cores in conjunction with recent atmospheric measurements, indicate that the atmospheric methane concentration increased by about 250% during the past two or three hundred years (Rasmussen and Khalil, 1984). Because methane is a potent ``greenhouse`` gas, the increasing concentrations are expected to contribute to global warning (Dickinson and Cicerone, 1986). The timing of the methane increase suggests that it is related to the rapid growth of the human population and associated industrialization and agricultural development. The specific causes of the atmospheric methane concentration increase are not well known, but may relate to either increases in methane sources, decreases in the strengths of the sinks, or both.

  20. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    James Bauder

    2008-09-30

    Drake Process Unit (DPU) was developed and deployed for operation in the Powder River Basin. First year operation demonstrated an 84% sodium removal capacity. Greenhouse, laboratory and field research documented substantial likelihood of measurable alteration in soil chemistry, soil physical properties, and shallow alluvial aquifers in and below areas of sustained surface application through irrigation or water spreading or impoundment of coalbed methane product water in evaporation reservoirs within the Basin. Events of repeated wetting and drying of agricultural soils characteristic of the Powder River Basin with coalbed methane product water, followed by infrequent rainfall events, presents high probability circumstances of significant reductions in infiltration capacity and hydraulic conductivity of agricultural soils containing more than 34% smectite clay.

  1. Rainfall simulators - innovations seeking rainfall uniformity and automatic flow rate measurements

    Science.gov (United States)

    Bauer, Miroslav; Kavka, Petr; Strouhal, Luděk; Dostál, Tomáš; Krása, Josef

    2016-04-01

    Field rainfall simulators are used worldwide for many experimental purposes, such as runoff generation and soil erosion research. At CTU in Prague a laboratory simulator with swinging nozzles VeeJet has been operated since 2001. Since 2012 an additional terrain simulator is being used with 4 fixed FullJet 40WSQ nozzles with 2,4 m spacing and operating over two simultaneously sprinkled experimental plots sizing 8x2 and 1x1 m. In parallel to other research projects a specific problem was solved: improving rainfall spatial uniformity and overall intensity and surface runoff measurements. These fundamental variables significantly affect investigated processes as well as resulting water balance of the plot, therefore they need to be determined as accurately as possible. Although the original nozzles setting produced (commonly used) Christiansen uniformity index CU over 80 %, detailed measurements proved this index insufficient and showed many unrequired rainfall extremes within the plot. Moreover the number of rainfall intensity scenarios was limited and some of them required problematic multi-pressure operation of the water distribution system. Therefore the simulator was subjected to many substantial changes in 2015. Innovations ranged from pump intensification to control unit upgrade. As essential change was considered increase in number of nozzles to 9 in total and reducing their spacing to 1,2 m. However new uniformity measurements did not bring any significant improvement. Tested scenarios showed equal standard deviations of interpolated intensity rasters and equal or slightly lower CU index. Imperfections of sprinkling nozzles were found to be the limiting factor. Still many other benefits were brought with the new setup. Whole experimental plot 10x2 m is better covered with the rainfall while the water consumption is retained. Nozzles are triggered in triplets, which enables more rainfall intensity scenarios. Water distribution system is more stable due to

  2. Challenges related to methanization - Bibliographical synthesis by France Nature Environnement. Opinion of FNE on methanization: Which challenges and which desirable development? Methascope: assessment support tool for a methanization project

    International Nuclear Information System (INIS)

    Desaunay, Thomas; Mathien, Adeline; Dorioz, Camille; Saint-Aubin, Thibaud; Banaszuk, Agnes; Badereau, Benedicte de; Capiez, Nathalie; Zoffoli, Maxime

    2014-12-01

    A first document proposes a bibliographical synthesis on the various challenges related to methanization. It addresses the following issues: biogas and public policies, methanization as a natural process of transformation of organic matter, different installations for different territories, matters which can be used in methanization, biogas as a renewable and local energy which can be transformed according to needs, properties and uses of digestate, choice between composting and methanization, energetic crops, methanization and nitrates, regulation, potential risks and pollutions, economic profitability of projects. The second document states the FNE's opinion on methanization, its challenges and the associated desirable development. The third document is a guide which aims at providing knowledge on methanization, at easing dialogue between actors of a territory, and at elaborating a position and an opinion with respect to a specific methanization project on a territory

  3. Coalbed methane: new frontier

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, S.

    2003-02-01

    There are large numbers of stacked coal seams permeated with methane or natural gas in the Western Canadian Sedimentary Basin, and approximately 20 coalbed methane pilot projects are operating in the area, and brief descriptions of some of them were provided. Coalbed methane reserves have a long life cycle. A definition of coalbed methane can be a permeability challenged reservoir. It is not uncommon for coalbed methane wells to flow water for periods varying from 2 to 6 months after completion before the production of natural gas. A made-in-Canada technological solution is being developed by CDX Canada Inc., along with its American parent company. The techniques used by CDX are a marriage between coal mining techniques and oil and gas techniques. A brief description of coalification was provided. Nexen is participating in the production of gas from an Upper Mannville coal at 1 000-metres depth in a nine-well pilot project. The Alberta Foothills are considered prime exploration area since older coal is carried close to the surface by thrusting. CDX Canada uses cavitation completion in vertical wells. Cavitation consists in setting the casing above the coal seam and drilling ahead under balanced. The design of wells for coalbed methane gas is based on rock and fluid mechanics. Hydraulic fracturing completions is also used, as are tiltmeters. An enhanced coalbed methane recovery pilot project is being conducted by the Alberta Research Council at Fenn-Big Valley, located in central Alberta. It injects carbon dioxide, which shows great potential for the reduction of greenhouse gas emissions. 1 figs.

  4. Nitrogen-fixing methane-utilizing bacteria

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1976-01-01

    Methane occurs abundantly in nature. In the presence of oxygen this gas may be metabolized by bacteria that are able to use it as carbon and energy source. Several types of bacteria involved in the oxidation of methane have been described in literature. Methane-utilizing bacteria have in

  5. Variability of rainfall over small areas

    Science.gov (United States)

    Runnels, R. C.

    1983-01-01

    A preliminary investigation was made to determine estimates of the number of raingauges needed in order to measure the variability of rainfall in time and space over small areas (approximately 40 sq miles). The literature on rainfall variability was examined and the types of empirical relationships used to relate rainfall variations to meteorological and catchment-area characteristics were considered. Relations between the coefficient of variation and areal-mean rainfall and area have been used by several investigators. These parameters seemed reasonable ones to use in any future study of rainfall variations. From a knowledge of an appropriate coefficient of variation (determined by the above-mentioned relations) the number rain gauges needed for the precise determination of areal-mean rainfall may be calculated by statistical estimation theory. The number gauges needed to measure the coefficient of variation over a 40 sq miles area, with varying degrees of error, was found to range from 264 (10% error, mean precipitation = 0.1 in) to about 2 (100% error, mean precipitation = 0.1 in).

  6. Analysis of rainfall infiltration law in unsaturated soil slope.

    Science.gov (United States)

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  7. Global diffusive fluxes of methane in marine sediments

    Science.gov (United States)

    Egger, Matthias; Riedinger, Natascha; Mogollón, José M.; Jørgensen, Bo Barker

    2018-06-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of the methane oxidation barrier. Our new budget suggests that 45-61 Tg of methane are oxidized with sulfate annually, with approximately 80% of this oxidation occurring in continental shelf sediments (methane in steady-state diffusive sediments, we calculate that 3-4% of the global organic carbon flux to the seafloor is converted to methane. We further report a global imbalance of diffusive methane and sulfate fluxes into the sulfate-methane transition with no clear trend with respect to the corresponding depth of the methane oxidation barrier. The observed global mean net flux ratio between sulfate and methane of 1.4:1 indicates that, on average, the methane flux to the sulfate-methane transition accounts for only 70% of the sulfate consumption in the sulfate-methane transition zone of marine sediments.

  8. Effect of monthly areal rainfall uncertainty on streamflow simulation

    Science.gov (United States)

    Ndiritu, J. G.; Mkhize, N.

    2017-08-01

    Areal rainfall is mostly obtained from point rainfall measurements that are sparsely located and several studies have shown that this results in large areal rainfall uncertainties at the daily time step. However, water resources assessment is often carried out a monthly time step and streamflow simulation is usually an essential component of this assessment. This study set out to quantify monthly areal rainfall uncertainties and assess their effect on streamflow simulation. This was achieved by; i) quantifying areal rainfall uncertainties and using these to generate stochastic monthly areal rainfalls, and ii) finding out how the quality of monthly streamflow simulation and streamflow variability change if stochastic areal rainfalls are used instead of historic areal rainfalls. Tests on monthly rainfall uncertainty were carried out using data from two South African catchments while streamflow simulation was confined to one of them. A non-parametric model that had been applied at a daily time step was used for stochastic areal rainfall generation and the Pitman catchment model calibrated using the SCE-UA optimizer was used for streamflow simulation. 100 randomly-initialised calibration-validation runs using 100 stochastic areal rainfalls were compared with 100 runs obtained using the single historic areal rainfall series. By using 4 rain gauges alternately to obtain areal rainfall, the resulting differences in areal rainfall averaged to 20% of the mean monthly areal rainfall and rainfall uncertainty was therefore highly significant. Pitman model simulations obtained coefficient of efficiencies averaging 0.66 and 0.64 in calibration and validation using historic rainfalls while the respective values using stochastic areal rainfalls were 0.59 and 0.57. Average bias was less than 5% in all cases. The streamflow ranges using historic rainfalls averaged to 29% of the mean naturalised flow in calibration and validation and the respective average ranges using stochastic

  9. Methane monitoring from space

    Science.gov (United States)

    Stephan, C.; Alpers, M.; Millet, B.; Ehret, G.; Flamant, P.

    2017-11-01

    Methane is one of the strongest anthropogenic greenhouse gases. It contributes by its radiative forcing significantly to the global warming. For a better understanding of climate changes, it is necessary to apply precise space-based measurement techniques in order to obtain a global view on the complex processes that control the methane concentration in the atmosphere. The MERLIN mission is a joint French-German cooperation, on a micro satellite mission for space-based measurement of spatial and temporal gradients of atmospheric methane columns on a global scale. MERLIN will be the first Integrated Path Differential Absorption LIDAR for greenhouse gas monitoring from space. In contrast to passive methane missions, the LIDAR instrument allows measurements at alllatitudes, all-seasons and during night.

  10. A biomimetic methane-oxidising catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, H [Warwick Univ., Coventry (United Kingdom). Dept. of Biological Sciences

    1997-12-31

    The diminishing resources of petroleum oil has meant that there has been considerable efforts in recent years to find a suitable substitute for gasoline as a transportation fuel. Methanol has been identified as a suitable substitute since it is a readily combustible fuel which can be manufactured from a number of different sources. Methane is commonly used as a starting material for the production of synthesis gas (CO + H{sub 2}) and hence methanol. It is well known that the cleavage of the C-H bond of methane is extremely difficult (bond energy is around 104 kcal/mol) and that fairly drastic conditions are required to convert methane into methanol. Temperatures around 1200 deg C and pressures of up to 100 atmospheres over metal catalysts in a series of reactions are required to effect this process. Efforts have been made to reduce the temperature and the number of steps by using lanthanide ruthenium oxide catalyst but such reactions are still thermodynamically endothermic. An energetically more efficient reaction would be the direct conversion of methane to methanol using oxygen as the oxidant: CH{sub 4} + 1/2O{sub 2} -> CH{sub 3}OH {Delta}H deg = - 30.7 kcal/mol. Such a direct oxidation route is manifest in the bacterially-mediated oxidation of methane by methanotrophic bacteria. These organisms effect the direct oxidation of methane to methanol by the enzyme methane monooxygenase (MMO) as part of the reaction sequences to oxidize methane to carbon dioxide. (14 refs.)

  11. A biomimetic methane-oxidising catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, H. [Warwick Univ., Coventry (United Kingdom). Dept. of Biological Sciences

    1996-12-31

    The diminishing resources of petroleum oil has meant that there has been considerable efforts in recent years to find a suitable substitute for gasoline as a transportation fuel. Methanol has been identified as a suitable substitute since it is a readily combustible fuel which can be manufactured from a number of different sources. Methane is commonly used as a starting material for the production of synthesis gas (CO + H{sub 2}) and hence methanol. It is well known that the cleavage of the C-H bond of methane is extremely difficult (bond energy is around 104 kcal/mol) and that fairly drastic conditions are required to convert methane into methanol. Temperatures around 1200 deg C and pressures of up to 100 atmospheres over metal catalysts in a series of reactions are required to effect this process. Efforts have been made to reduce the temperature and the number of steps by using lanthanide ruthenium oxide catalyst but such reactions are still thermodynamically endothermic. An energetically more efficient reaction would be the direct conversion of methane to methanol using oxygen as the oxidant: CH{sub 4} + 1/2O{sub 2} -> CH{sub 3}OH {Delta}H deg = - 30.7 kcal/mol. Such a direct oxidation route is manifest in the bacterially-mediated oxidation of methane by methanotrophic bacteria. These organisms effect the direct oxidation of methane to methanol by the enzyme methane monooxygenase (MMO) as part of the reaction sequences to oxidize methane to carbon dioxide. (14 refs.)

  12. Methane in German hard coal mining

    International Nuclear Information System (INIS)

    Martens, P.N.; Den Drijver, J.

    1995-01-01

    Worldwide, hard coal mining is being carried out at ever increasing depth, and has, therefore, to cope with correspondingly increasing methane emissions are caused by coal mining. Beside carbon dioxide, chloro-fluoro-carbons (CFCs) and nitrogen oxides, methane is one of the most significant 'greenhouse' gases. It is mainly through the release of such trace gases that the greenhouse effect is brought about. Reducing methane emissions is therefore an important problem to be solved by the coal mining industry. This paper begins by highlighting some of the fundamental principles of methane in hard coal mining. The methane problem in German hard coal mining and the industry's efforts to reduce methane emissions are presented. The future development in German hard coal mining is illustrated by an example which shows how large methane volumes can be managed, while still maintaining high outputs at increasing depth. (author). 7 tabs., 10 figs., 20 refs

  13. Quantification of methane emissions from danish landfills

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Mønster, Jacob; Kjeldsen, Peter

    2013-01-01

    Whole-landfill methane emission was quantified using a tracer technique that combines controlled tracer gas release from the landfill with time-resolved concentration measurements downwind of the landfill using a mobile high-resolution analytical instrument. Methane emissions from 13 Danish...... landfills varied between 2.6 and 60.8 kg CH4 h–1. The highest methane emission was measured at the largest (in terms of disposed waste amounts) of the 13 landfills, whereas the lowest methane emissions (2.6-6.1 kgCH4 h–1) were measured at the older and smaller landfills. At two of the sites, which had gas...... collection, emission measurements showed that the gas collection systems only collected between 30-50% of the methane produced (assuming that the produced methane equalled the sum of the emitted methane and the collected methane). Significant methane emissions were observed from disposed shredder waste...

  14. Methane anomalies in seawaters of the Ragay Gulf, Philippines: methane cycling and contributions to atmospheric greenhouse gases

    International Nuclear Information System (INIS)

    Heggie, D.T.; Evans, D.; Bishop, J.H.

    1999-01-01

    The vertical distribution of methane has been measured in the water column of a semi-enclosed basin, the Ragay Gulf, in the Philippines archipelago. The methane distribution is characterised by unusual mid-water and bottom-water plumes, between 80 and 100 m thick. The plumes are confined to water depths between about 100 and 220 m. where the temperature-depth (a proxy for seawater density) gradient is steepest. Plumes of high methane are 'trapped' within the main thermocline; these are local features, persisting over kilometre-scale distances. Geochemical and geological evidence suggests that the elevated methane concentrations are thermogenic in origin (although an oxidised biogenic origin cannot be ruled out for some of the methane anomalies), and have migrated from the sea floor into the overlying water. The mid and bottom-water methane maxima support fluxes of methane from depth into surface waters and, subsequently, from the oceans to the atmosphere. The average supersaturation of methane in the top 5 m of the sea, at nine locations, was 206±16.5%; range 178-237%. The average estimated sea-air flux was 101 nmole.cm -2 .y -1 and probably represents a minimum flux, because of low wind speeds of <10 knots. These fluxes, we suggest, are supported by seepage from the sea floor and represent naturally occurring fluxes of mostly fossil methane (in contrast to anthropogenic fossil methane), from the sea to the atmosphere. The estimated minimum fluxes of naturally occurring fossil methane are comparable to those biogenic fluxes measured elsewhere in the surface oceans, but are less than those naturally occurring methane inputs from sediments of the Barents Sea. Ragay Gulf fluxes are also less than anthropogenic fluxes measured in areas of petroleum exploration and development, such as the Texas and Louisiana, USA shelf areas

  15. Influences of Appalachian orography on heavy rainfall and rainfall variability associated with the passage of hurricane Isabel by ensemble simulations

    Science.gov (United States)

    Oldaker, Guy; Liu, Liping; Lin, Yuh-Lang

    2017-12-01

    This study focuses on the heavy rainfall event associated with hurricane Isabel's (2003) passage over the Appalachian mountains of the eastern United States. Specifically, an ensemble consisting of two groups of simulations using the Weather Research and Forecasting model (WRF), with and without topography, is performed to investigate the orographic influences on heavy rainfall and rainfall variability. In general, the simulated ensemble mean with full terrain is able to reproduce the key observed 24-h rainfall amount and distribution, while the flat-terrain mean lacks in this respect. In fact, 30-h rainfall amounts are reduced by 75% with the removal of topography. Rainfall variability is also significantly increased with the presence of orography. Further analysis shows that the complex interaction between the hurricane and terrain along with contributions from varied microphysics, cumulus parametrization, and planetary boundary layer schemes have a pronounced effect on rainfall and rainfall variability. This study follows closely with a previous study, but for a different TC case of Isabel (2003). It is an important sensitivity test for a different TC in a very different environment. This study reveals that the rainfall variability behaves similarly, even with different settings of the environment.

  16. Analytical solutions to sampling effects in drop size distribution measurements during stationary rainfall: Estimation of bulk rainfall variables

    NARCIS (Netherlands)

    Uijlenhoet, R.; Porrà, J.M.; Sempere Torres, D.; Creutin, J.D.

    2006-01-01

    A stochastic model of the microstructure of rainfall is used to derive explicit expressions for the magnitude of the sampling fluctuations in rainfall properties estimated from raindrop size measurements in stationary rainfall. The model is a marked point process, in which the points represent the

  17. Uganda rainfall variability and prediction

    Science.gov (United States)

    Jury, Mark R.

    2018-05-01

    This study analyzes large-scale controls on Uganda's rainfall. Unlike past work, here, a May-October season is used because of the year-round nature of agricultural production, vegetation sensitivity to rainfall, and disease transmission. The Uganda rainfall record exhibits steady oscillations of ˜3 and 6 years over 1950-2013. Correlation maps at two-season lead time resolve the subtropical ridge over global oceans as an important feature. Multi-variate environmental predictors include Dec-May south Indian Ocean sea surface temperature, east African upper zonal wind, and South Atlantic wind streamfunction, providing a 33% fit to May-Oct rainfall time series. Composite analysis indicates that cool-phase El Niño Southern Oscillation supports increased May-Oct Uganda rainfall via a zonal overturning lower westerly/upper easterly atmospheric circulation. Sea temperature anomalies are positive in the east Atlantic and negative in the west Indian Ocean in respect of wet seasons. The northern Hadley Cell plays a role in limiting the northward march of the equatorial trough from May to October. An analysis of early season floods found that moist inflow from the west Indian Ocean converges over Uganda, generating diurnal thunderstorm clusters that drift southwestward producing high runoff.

  18. Quantification of the methane concentration using anaerobic oxidation of methane coupled to extracellular electron transfer

    Science.gov (United States)

    A biofilm anode acclimated with acetate, acetate+methane, and methane growth media for over three years produced a steady current density of 1.6-2.3 mA/m^2 in a microbial electrochemical cell (MxC) fed with methane as the sole electron donor. Geobacter was the dominant genus for...

  19. Assessing Climate Variability using Extreme Rainfall and ...

    African Journals Online (AJOL)

    user1

    extreme frequency); the average intensity of rainfall from extreme events ... frequency and extreme intensity indices, suggesting that extreme events are more frequent and intense during years with high rainfall. The proportion of total rainfall from ...

  20. Methane-bomb natural gas

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    About 50% of the so-called 'greenhouse-effect' is not caused by CO 2 , but by more dangerous gases, among them is methane. Natural gas consists to about 98% of methane. In Austria result about 15% of the methane emissions from offtake, storage, transport (pipelines) and distribution from natural gas. A research study of the Research Centre Seibersdorf points out that between 2.5% and 3.6% of the employed natural gas in Austria emits. The impact of this emitted methane is about 29 times worse than the impact of CO 2 (caused for examples by petroleum burning). Nevertheless the Austrian CO 2 -commission states that an increasing use of natural gas would decrease the CO 2 -emissions - but this statement is suspected to be based on wrong assumptions. (blahsl)

  1. Impacts of Rainfall Variability and Expected Rainfall Changes on Cost-Effective Adaptation of Water Systems to Climate Change

    NARCIS (Netherlands)

    Pol, van der T.D.; Ierland, van E.C.; Gabbert, S.G.M.; Weikard, H.P.; Hendrix, E.M.T.

    2015-01-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change

  2. Extreme value analysis of rainfall data for Kalpakkam

    International Nuclear Information System (INIS)

    Sharma, Pramod Kumar; John Arul, A.; Ramkrishnan, M.; Bhuvana, V.

    2016-01-01

    Flood hazard evaluation is an important safety study for a Nuclear Power Plant. In the present study flood hazard at PFBR site due to rainfall is evaluated. Hazard estimation is a statistical procedure by which rainfall intensity versus occurrence frequency is estimated from historical records of rainfall data and extrapolated with asymptotic extreme value distribution. Rainfall data needed for flood hazard assessment is daily annual maximum rainfall (24 hrs data). The observed data points have been fitted using Gumbel, power law, and exponential distribution and return period has been estimated. The predicted 100 yrs return period rainfall for Kalpakkam ranges from 240 mm to 365 mm in a day and 1000 yrs return period rainfall ranges from 320 mm to 790 min in a day. To study the stationarity of rainfall data a moving window estimate of the parameters (exponential distribution) have also been performed. (author)

  3. Methane hydrates in quaternary climate change

    International Nuclear Information System (INIS)

    Kennett, J. P.; Hill, T. M.; Behl, R. J.

    2005-01-01

    The hydrate reservoir in marine sediments is known to contain a large volume of exchangeable carbon stored as solid methane hydrate and associated free gas. This reservoir has been shown to be potentially unstable in response to changing intermediate water temperature and sea level (pressure). Evidence continues to grow for past episodes of major methane release at times of climatic warming. Yet few studies of late Quaternary climate change include methane hydrates as an integral part of the global climate system, in spite of the largest known oscillations at this time in sea level and upper ocean temperature changes for the Cenozoic or earlier, conditions that favor instability of the methane hydrate reservoir. Abrupt increases in atmospheric methane recorded in polar ice cores are widely believed to have resulted, not from ocean-floor methane degassing, but instead from continental wetland activation, a hypothesis thus far unsupported by geological data. Furthermore, as part of this Wetland Methane Hypothesis, the abrupt methane increases have been seen as a response to climatic warming rather than contributing significantly to the change. An alternative view (formulated as the Clathrate Gun Hypothesis) is that the speed, magnitude and timing of abrupt climate change in the recent geologic past are consistent with the process of major degassing of methane hydrates. We summarize aspects of this hypothesis here and needs to test this hypothesis. (Author)

  4. Simulations of atmospheric methane for Cape Grim, Tasmania, to constrain southeastern Australian methane emissions

    Directory of Open Access Journals (Sweden)

    Z. M. Loh

    2015-01-01

    Full Text Available This study uses two climate models and six scenarios of prescribed methane emissions to compare modelled and observed atmospheric methane between 1994 and 2007, for Cape Grim, Australia (40.7° S, 144.7° E. The model simulations follow the TransCom-CH4 protocol and use the Australian Community Climate and Earth System Simulator (ACCESS and the CSIRO Conformal-Cubic Atmospheric Model (CCAM. Radon is also simulated and used to reduce the impact of transport differences between the models and observations. Comparisons are made for air samples that have traversed the Australian continent. All six emission scenarios give modelled concentrations that are broadly consistent with those observed. There are three notable mismatches, however. Firstly, scenarios that incorporate interannually varying biomass burning emissions produce anomalously high methane concentrations at Cape Grim at times of large fire events in southeastern Australia, most likely due to the fire methane emissions being unrealistically input into the lowest model level. Secondly, scenarios with wetland methane emissions in the austral winter overestimate methane concentrations at Cape Grim during wintertime while scenarios without winter wetland emissions perform better. Finally, all scenarios fail to represent a~methane source in austral spring implied by the observations. It is possible that the timing of wetland emissions in the scenarios is incorrect with recent satellite measurements suggesting an austral spring (September–October–November, rather than winter, maximum for wetland emissions.

  5. Anaerobic Oxidization of Methane in a Minerotrophic Peatland: Enrichment of Nitrite-Dependent Methane-Oxidizing Bacteria

    Science.gov (United States)

    Zhu, Baoli; van Dijk, Gijs; Fritz, Christian; Smolders, Alfons J. P.; Pol, Arjan; Jetten, Mike S. M.

    2012-01-01

    The importance of anaerobic oxidation of methane (AOM) as a methane sink in freshwater systems is largely unexplored, particularly in peat ecosystems. Nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and reported to be catalyzed by the bacterium “Candidatus Methylomirabilis oxyfera,” which is affiliated with the NC10 phylum. So far, several “Ca. Methylomirabilis oxyfera” enrichment cultures have been obtained using a limited number of freshwater sediments or wastewater treatment sludge as the inoculum. In this study, using stable isotope measurements and porewater profiles, we investigated the potential of n-damo in a minerotrophic peatland in the south of the Netherlands that is infiltrated by nitrate-rich ground water. Methane and nitrate profiles suggested that all methane produced was oxidized before reaching the oxic layer, and NC10 bacteria could be active in the transition zone where countergradients of methane and nitrate occur. Quantitative PCR showed high NC10 bacterial cell numbers at this methane-nitrate transition zone. This soil section was used to enrich the prevalent NC10 bacteria in a continuous culture supplied with methane and nitrite at an in situ pH of 6.2. An enrichment of nitrite-reducing methanotrophic NC10 bacteria was successfully obtained. Phylogenetic analysis of retrieved 16S rRNA and pmoA genes showed that the enriched bacteria were very similar to the ones found in situ and constituted a new branch of NC10 bacteria with an identity of less than 96 and 90% to the 16S rRNA and pmoA genes of “Ca. Methylomirabilis oxyfera,” respectively. The results of this study expand our knowledge of the diversity and distribution of NC10 bacteria in the environment and highlight their potential contribution to nitrogen and methane cycles. PMID:23042166

  6. Methanization of industrial liquid effluents

    International Nuclear Information System (INIS)

    Frederic, S.; Lugardon, A.

    2007-01-01

    In a first part, this work deals with the theoretical aspects of the methanization of the industrial effluents; the associated reactional processes are detailed. The second part presents the technological criteria for choosing the methanization process in terms of the characteristics of the effluent to be treated. Some of the methanization processes are presented with their respective advantages and disadvantages. At last, is described the implementation of an industrial methanization unit. The size and the main choices are detailed: the anaerobic reactor, the control, the valorization aspects of the biogas produced. Some examples of industrial developments illustrate the different used options. (O.M.)

  7. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria.

    Science.gov (United States)

    Wu, Ya-Min; Yang, Jing; Fan, Xiao-Lei; Fu, Shan-Fei; Sun, Meng-Ting; Guo, Rong-Bo

    2017-05-01

    Biogas upgrading is essential for the comprehensive utilization of biogas as substitute of natural gas. However, the methane in the biogas can be fully recovered during the upgrading process of biogas, and the exhaust gas produced during biogas upgrading may contain a very low concentration of methane. If the exhaust gas with low concentration methane releases to atmosphere, it will be harmful to environment. In addition, the utilization of large amounts of digestate produced from biogas plant is another important issue for the development of biogas industry. In this study, solid digestate was used to produce active carbon, which was subsequently used as immobilized material for methane-oxidizing bacteria (MOB) in biofilter. Biofilter with MOB immobilized on active carbon was used to eliminate the methane in exhaust gas from biogas upgrading process. Results showed porous active carbon was successfully made from solid digestate. The final methane elimination capacity of immobilized MOB reached about 13molh -1 m -3 , which was more 4 times higher than that of MOB without immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Satellite-based estimation of rainfall erosivity for Africa

    NARCIS (Netherlands)

    Vrieling, A.; Sterk, G.; Jong, S.M. de

    2010-01-01

    Rainfall erosivity is a measure for the erosive force of rainfall. Rainfall kinetic energy determines the erosivity and is in turn greatly dependent on rainfall intensity. Attempts for its large-scale mapping are rare. Most are based on interpolation of erosivity values derived from rain gauge

  9. Temporal and spatial variability of rainfall distribution and ...

    African Journals Online (AJOL)

    Rainfall and evapotranspiration are the two major climatic factors affecting agricultural production. This study examined the extent and nature of rainfall variability from measured data while estimation of evapotranspiration was made from recorded weather data. Analysis of rainfall variability is made by the rainfall anomaly ...

  10. Topographic relationships for design rainfalls over Australia

    Science.gov (United States)

    Johnson, F.; Hutchinson, M. F.; The, C.; Beesley, C.; Green, J.

    2016-02-01

    Design rainfall statistics are the primary inputs used to assess flood risk across river catchments. These statistics normally take the form of Intensity-Duration-Frequency (IDF) curves that are derived from extreme value probability distributions fitted to observed daily, and sub-daily, rainfall data. The design rainfall relationships are often required for catchments where there are limited rainfall records, particularly catchments in remote areas with high topographic relief and hence some form of interpolation is required to provide estimates in these areas. This paper assesses the topographic dependence of rainfall extremes by using elevation-dependent thin plate smoothing splines to interpolate the mean annual maximum rainfall, for periods from one to seven days, across Australia. The analyses confirm the important impact of topography in explaining the spatial patterns of these extreme rainfall statistics. Continent-wide residual and cross validation statistics are used to demonstrate the 100-fold impact of elevation in relation to horizontal coordinates in explaining the spatial patterns, consistent with previous rainfall scaling studies and observational evidence. The impact of the complexity of the fitted spline surfaces, as defined by the number of knots, and the impact of applying variance stabilising transformations to the data, were also assessed. It was found that a relatively large number of 3570 knots, suitably chosen from 8619 gauge locations, was required to minimise the summary error statistics. Square root and log data transformations were found to deliver marginally superior continent-wide cross validation statistics, in comparison to applying no data transformation, but detailed assessments of residuals in complex high rainfall regions with high topographic relief showed that no data transformation gave superior performance in these regions. These results are consistent with the understanding that in areas with modest topographic relief, as

  11. Regionalization of monthly rainfall erosivity patternsin Switzerland

    Science.gov (United States)

    Schmidt, Simon; Alewell, Christine; Panagos, Panos; Meusburger, Katrin

    2016-10-01

    One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a regional characteristic and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10 min temporal resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression equation and the corresponding residues of the regression, which are interpolated by ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator data has been included such as snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have the lowest rainfall erosivity. A proportion of 62 % of

  12. Tropical intraseasonal rainfall variability in the CFSR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiande [I.M. System Group Inc. at NOAA/NCEP/EMC, Camp Springs, MD (United States); Wang, Wanqiu [NOAA/NCEP/CPC, Camp Springs, MD (United States); Fu, Xiouhua [University of Hawaii at Manoa, IPRC, SOEST, Honolulu, HI (United States); Seo, Kyong-Hwan [Pusan National University, Department of Atmospheric Sciences, Busan (Korea, Republic of)

    2012-06-15

    While large-scale circulation fields from atmospheric reanalyses have been widely used to study the tropical intraseasonal variability, rainfall variations from the reanalyses are less focused. Because of the sparseness of in situ observations available in the tropics and strong coupling between convection and large-scale circulation, the accuracy of tropical rainfall from the reanalyses not only measures the quality of reanalysis rainfall but is also to some extent indicative of the accuracy of the circulations fields. This study analyzes tropical intraseasonal rainfall variability in the recently completed NCEP Climate Forecast System Reanalysis (CFSR) and its comparison with the widely used NCEP/NCAR reanalysis (R1) and NCEP/DOE reanalysis (R2). The R1 produces too weak rainfall variability while the R2 generates too strong westward propagation. Compared with the R1 and R2, the CFSR produces greatly improved tropical intraseasonal rainfall variability with the dominance of eastward propagation and more realistic amplitude. An analysis of the relationship between rainfall and large-scale fields using composites based on Madden-Julian Oscillation (MJO) events shows that, in all three NCEP reanalyses, the moisture convergence leading the rainfall maximum is near the surface in the western Pacific but is above 925 hPa in the eastern Indian Ocean. However, the CFSR produces the strongest large-scale convergence and the rainfall from CFSR lags the column integrated precipitable water by 1 or 2 days while R1 and R2 rainfall tends to lead the respective precipitable water. Diabatic heating related to the MJO variability in the CFSR is analyzed and compared with that derived from large-scale fields. It is found that the amplitude of CFSR-produced total heating anomalies is smaller than that of the derived. Rainfall variability from the other two recently produced reanalyses, the ECMWF Re-Analysis Interim (ERAI), and the Modern Era Retrospective-analysis for Research and

  13. Woody Vegetation Die off and Regeneration in Response to Rainfall Variability in the West African Sahel

    Directory of Open Access Journals (Sweden)

    Martin Brandt

    2017-01-01

    Full Text Available The greening in the Senegalese Sahel has been linked to an increase in net primary productivity, with significant long-term trends being closely related to the woody strata. This study investigates woody plant growth and mortality within greening areas in the pastoral areas of Senegal, and how these dynamics are linked to species diversity, climate, soil and human management. We analyse woody cover dynamics by means of multi-temporal and multi-scale Earth Observation, satellite based rainfall and in situ data sets covering the period 1994 to 2015. We find that favourable conditions (forest reserves, low human population density, sufficient rainfall led to a rapid growth of Combretaceae and Balanites aegyptiaca between 2000 and 2013 with an average increase of 4% woody cover. However, the increasing dominance and low drought resistance of drought prone species bears the risk of substantial woody cover losses following drought years. This was observed in 2014–2015, with a die off of Guiera senegalensis in most places of the study area. We show that woody cover and woody cover trends are closely related to mean annual rainfall, but no clear relationship with rainfall trends was found over the entire study period. The observed spatial and temporal variation contrasts with the simplified labels of “greening” or “degradation”. While in principal a low woody plant diversity negatively impacts regional resilience, the Sahelian system is showing signs of resilience at decadal time scales through widespread increases in woody cover and high regeneration rates after periodic droughts. We have reaffirmed that the woody cover in Sahel responds to its inherent climatic variability and does not follow a linear trend.

  14. Woody vegetation die off and regeneration in response to rainfall variability in the west African Sahel

    Science.gov (United States)

    Brandt, Martin; Tappan, G. Gray; Aziz Diouf, Abdoul; Beye, Gora; Mbow, Cheikh; Fensholt, Rasmus

    2017-01-01

    The greening in the Senegalese Sahel has been linked to an increase in net primary productivity, with significant long-term trends being closely related to the woody strata. This study investigates woody plant growth and mortality within greening areas in the pastoral areas of Senegal, and how these dynamics are linked to species diversity, climate, soil and human management. We analyse woody cover dynamics by means of multi-temporal and multi-scale Earth Observation, satellite based rainfall and in situ data sets covering the period 1994 to 2015. We find that favourable conditions (forest reserves, low human population density, sufficient rainfall) led to a rapid growth of Combretaceae and Balanites aegyptiaca between 2000 and 2013 with an average increase of 4% woody cover. However, the increasing dominance and low drought resistance of drought prone species bears the risk of substantial woody cover losses following drought years. This was observed in 2014–2015, with a die off of Guiera senegalensis in most places of the study area. We show that woody cover and woody cover trends are closely related to mean annual rainfall, but no clear relationship with rainfall trends was found over the entire study period. The observed spatial and temporal variation contrasts with the simplified labels of “greening” or “degradation”. While in principal a low woody plant diversity negatively impacts regional resilience, the Sahelian system is showing signs of resilience at decadal time scales through widespread increases in woody cover and high regeneration rates after periodic droughts. We have reaffirmed that the woody cover in Sahel responds to its inherent climatic variability and does not follow a linear trend.

  15. Historical methane hydrate project review

    Science.gov (United States)

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-­‐lattice holds gas molecules in a cage-­‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated

  16. Evaluation of methane emissions from Taiwanese paddies

    International Nuclear Information System (INIS)

    Liu, C.-W.; Wu, C.-Y.

    2004-01-01

    The main greenhouse gases are carbon dioxide, methane and nitrous oxide. Methane is the most important because the warming effect of methane is 21 times greater than that of carbon dioxide. Methane emitted from rice paddy fields is a major source of atmospheric methane. In this work, a methane emission model (MEM), which integrates climate change, plant growth and degradation of soil organic matter, was applied to estimate the emission of methane from rice paddy fields in Taiwan. The estimated results indicate that much methane is emitted during the effective tillering and booting stages in the first crop season and during the transplanting stage in the second crop season in a year. Sensitivity analysis reveals that the temperature is the most important parameter that governs the methane emission rate. The order of the strengths of the effects of the other parameters is soil pH, soil water depth (SWD) and soil organic matter content. The masses of methane emitted from rice paddy fields of Taiwan in the first and second crop seasons are 28,507 and 350,231 tons, respectively. The amount of methane emitted during the second crop season is 12.5 times higher than that emitted in the first crop season. With a 12% reduction in planted area during the second crop season, methane emission could be reduced by 21%. In addition, removal of rice straw left from the first crop season and increasing the depth of flooding to 25 cm are also strategies that could help reduce annual emission by up to 18%

  17. Reducing methane emissions from ruminant animals

    Energy Technology Data Exchange (ETDEWEB)

    Mathison, G.W.; Okine, E.K.; McAllister, T.A.; Dong, Y.; Galbraith, J.; Dmytruk, O.I.N. [University of Alberta, Edmonton, AB (Canada). Dept. of Agriculture, Food and Nutrition Science

    1998-09-01

    In 1992 it was estimated that 30 x 10{sup 12}g more methane was emitted into the atmosphere than was removed, with animals being considered the largest single anthropogenic source. Ruminants produce 97% of the methane generated in enteric fermentation by animals. Estimates for methane emissions from animal wastes vary between 6 and 31% of that produced directly by the animal, with the most likely value being between 5 and 10% globally. Methane inhibitors can reduce methane emissions to zero in the short term but due to microbial adaptation the effects of these compounds are quickly neutralized and feed intake is often depressed. Methane emissions per unit of feed consumed from sheep and cattle fed hay diets appear to be quite similar but differences between other ruminants have been measured. The most practical way of influencing methane emissions per unit product is to increase productivity level since the proportion of feed energy required to just maintain the animal will be reduced, methane production falls with increased intake level, and the animal may go to market sooner. The most promising avenues for future research for reducing methanogenesis are the development of new products for reducing protozoal numbers in the rumen and the use of bacterocins or other compounds which specifically target methanogenic bacteria.

  18. Evolution of rainfall in the Sahel

    International Nuclear Information System (INIS)

    Diallo, M.A.

    1995-09-01

    In this note, a number of main meteorological stations has been chosen to analyse the rainfall during the last 30 years in the Sahel (1961 to 1990). Reliable climatological data have been used for this study. The concerned area is limited by the 200 mm isohyet in the north and 600 mm isohyet in the south in the Sahel countries (Senegal, Mauritania, Mali, Burkina Faso, Niger and Chad). The evolution of rainfall has pointed out some similar and significant aspects for all stations studied. Established criteria have been used to characterize the annual rainfall and to determine the years with good rainfall and years of drought in the Sahel. (author). 6 refs, 3 figs

  19. Characteristics of aggregation of daily rainfall in a middle-latitudes region during a climate variability in annual rainfall amount

    Science.gov (United States)

    Lucero, Omar A.; Rozas, Daniel

    Climate variability in annual rainfall occurs because the aggregation of daily rainfall changes. A topic open to debate is whether that change takes place because rainfall becomes more intense, or because it rains more often, or a combination of both. The answer to this question is of interest for water resources planning, hydrometeorological design, and agricultural management. Change in the number of rainy days can cause major disruptions in hydrological and ecological systems, with important economic and social effects. Furthermore, the characteristics of daily rainfall aggregation in ongoing climate variability provide a reference to evaluate the capability of GCM to simulate changes in the hydrologic cycle. In this research, we analyze changes in the aggregation of daily rainfall producing a climate positive trend in annual rainfall in central Argentina, in the southern middle-latitudes. This state-of-the-art agricultural region has a semiarid climate with dry and wet seasons. Weather effects in the region influence world-market prices of several crops. Results indicate that the strong positive trend in seasonal and annual rainfall amount is produced by an increase in number of rainy days. This increase takes place in the 3-month periods January-March (summer) and April-June (autumn). These are also the 3-month periods showing a positive trend in the mean of annual rainfall. The mean of the distribution of annual number of rainy day (ANRD) increased in 50% in a 36-year span (starting at 44 days/year). No statistically significant indications on time changes in the probability distribution of daily rainfall amount were found. Non-periodic fluctuations in the time series of annual rainfall were analyzed using an integral wavelet transform. Fluctuations with a time scale of about 10 and 20 years construct the trend in annual rainfall amount. These types of non-periodic fluctuations have been observed in other regions of the world. This suggests that results of

  20. Wave-induced release of methane : littoral zones as a source of methane in lakes

    OpenAIRE

    Hofmann, Hilmar; Federwisch, Luisa; Peeters, Frank

    2010-01-01

    This study investigates the role of surface waves and the associated disturbance of littoral sediments for the release and later distribution of dissolved methane in lakes. Surface wave field, wave-induced currents, acoustic backscatter strength, and the concentration and distribution of dissolved methane were measured simultaneously in Lake Constance, Germany. The data indicate that surface waves enhance the release of dissolved methane in the shallow littoral zone via burst-like releases of...

  1. Direct Activation Of Methane

    KAUST Repository

    Basset, Jean-Marie; Sun, Miao; Caps, Valerie; Pelletier, Jeremie; Abou-Hamad, Edy

    2013-01-01

    Heteropolyacids (HPAs) can activate methane at ambient temperature (e.g., 20.degree. C.) and atmospheric pressure, and transform methane to acetic acid, in the absence of any noble metal such as Pd). The HPAs can be, for example, those with Keggin

  2. Determining rainfall thresholds that trigger landslides in Colombia

    International Nuclear Information System (INIS)

    Mayorga Marquez, Ruth

    2003-01-01

    Considering that rainfall is the natural event that more often triggers landslides, it is important to study the relationship between this phenomenon and the occurrence of earth mass movements, by determining rainfall thresholds that trigger landslides in different zones of Colombia. The research presents a methodology that allows proposing rainfall thresholds that trigger landslides in Colombia, by means of a relationship between the accumulated rain in the soil (antecedent rainfall) and the rain that falls the day of the landslide occurrence (event rainfall)

  3. Methane emissions from coal mining

    International Nuclear Information System (INIS)

    Boyer, C.M.; Kelafant, J.R.; Kuuskraa, V.A.; Manger, K.C.; Kruger, D.

    1990-09-01

    The report estimates global methane emissions from coal mining on a country specific basis, evaluates the technologies available to degasify coal seams and assesses the economics of recovering methane liberated during mining. 33 to 64 million tonnes were liberated in 1987 from coal mining, 75 per cent of which came from China, the USSR, Poland and the USA. Methane emissions from coal mining are likely to increase. Emission levels vary between surface and underground mines. The methane currently removed from underground mines for safety reasons could be used in a number of ways, which may be economically attractive. 55 refs., 19 figs., 24 tabs

  4. Gas-liquid equilibrium in mixtures of methane + m-xylene, and methane + m-cresol

    Energy Technology Data Exchange (ETDEWEB)

    Simnick, J J; Sebastian, H M; Lin, H M; Chao, K C

    1979-01-01

    Compositions of saturated equilibrium liquid and vapor phases as determined in a flow apparatus for methane + m-xylene mixtures at 370/sup 0/, 450/sup 0/, 520/sup 0/, and 600/sup 0/F (190/sup 0/, 230/sup 0/, 270/sup 0/, and 310/sup 0/C) and up to 200 atm, and for methane + m-cresol at 370/sup 0/, 520/sup 0/, 660/sup 0/, and 730/sup 0/F (190/sup 0/, 270/sup 0/, 350/sup 0/, and 390/sup 0/C) and up to 250 atm. Compared with published data on its solubility in benzene, methane appears to be more soluble in m-xylene at similar conditions but substantially less soluble in m-cresol. This difference indicates that the functional groups CH/sub 3/ and OH play different roles in determining the solubility of methane.

  5. The development rainfall forecasting using kalman filter

    Science.gov (United States)

    Zulfi, Mohammad; Hasan, Moh.; Dwidja Purnomo, Kosala

    2018-04-01

    Rainfall forecasting is very interesting for agricultural planing. Rainfall information is useful to make decisions about the plan planting certain commodities. In this studies, the rainfall forecasting by ARIMA and Kalman Filter method. Kalman Filter method is used to declare a time series model of which is shown in the form of linear state space to determine the future forecast. This method used a recursive solution to minimize error. The rainfall data in this research clustered by K-means clustering. Implementation of Kalman Filter method is for modelling and forecasting rainfall in each cluster. We used ARIMA (p,d,q) to construct a state space for KalmanFilter model. So, we have four group of the data and one model in each group. In conclusions, Kalman Filter method is better than ARIMA model for rainfall forecasting in each group. It can be showed from error of Kalman Filter method that smaller than error of ARIMA model.

  6. Electrocatalytic oxidation of methane: investigations of new catalysts to be used in a solid polymer electrolyte methane fuel-cell; Oxydation electrocatalytique du methane: recherche de catalyseurs en vue d'une application a une pile au methane a electrolyte polymere solide

    Energy Technology Data Exchange (ETDEWEB)

    Berthelot, S

    1998-07-01

    This thesis evaluated the performances of many catalysts facing the methane oxidation which is a critical step in methane fuel cells development. In a first part the study of the methane electro-oxidation has been realized by classical electrochemical technics on many electrodes to determine the most active ones. In a second part the in situ reflection infra-red spectroscopy allowed to identify, during the methane oxidation, the adsorbed species on the electrode and the reaction products. These results also help the understanding of the part of the concerned materials mechanisms in the methane oxidation and then to optimize them for a whole oxidation of the methane in carbon dioxide. The final objective is the use of the methane in a PEMFC fuel cell type. A comparison with the methanol and C2 hydrocarbons behaviour, such as the ethane the ethylene and the acetylene, has been done to evaluate the performances. (A.L.B.)

  7. Effects of sludge inoculum and organic feedstock on active microbial communities and methane yield during anaerobic digestion

    Directory of Open Access Journals (Sweden)

    David eWilkins

    2015-10-01

    Full Text Available Anaerobic digestion (AD is a widespread microbial technology used to treat organic waste and recover energy in the form of methane (biogas. While most AD systems have been designed to treat a single input, mixtures of digester sludge and solid organic waste are emerging as a means to improve efficiency and methane yield. We examined laboratory anaerobic cultures of AD sludge from two sources amended with food waste, xylose, and xylan at mesophilic temperatures, and with cellulose at meso- and thermophilic temperatures, to determine whether and how the inoculum and substrate affect biogas yield and community composition. All substrate and inoculum combinations yielded methane, with food waste most productive by mass. Pyrosequencing of transcribed bacterial and archaeal 16S rRNA showed that community composition varied across substrates and inocula, with differing ratios of hydrogenotrophic/acetoclastic methanogenic archaea associated with syntrophic partners. While communities did not cluster by either inoculum or substrate, additional sequencing of the bacterial 16S rRNA gene in the source sludge revealed that the bacterial communities were influenced by their inoculum. These results suggest that complete and efficient AD systems could potentially be assembled from different microbial inocula and consist of taxonomically diverse communities that nevertheless perform similar functions.

  8. Ebullitive methane emissions from oxygenated wetland streams

    Science.gov (United States)

    Crawford, John T.; Stanley, Emily H.; Spawn, Seth A.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr−1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  9. Methane generated from graphite--tritium interaction

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    When hydrogen isotopes are separated by cryogenic distillation, as little as 1 ppM of methane will eventually plug the still as frost accumulates on the column packings. Elemental carbon exposed to tritium generates methane spontaneously, and yet some dry transfer pumps, otherwise compatible with tritium, convey the gas with graphite rotors. This study was to determine the methane production rate for graphite in tritium. A pump manufacturer supplied graphite samples that we exposed to tritium gas at 0.8 atm. After 137 days we measured a methane synthesis rate of 6 ng/h per cm 2 of graphite exposed. At this rate methane might grow to a concentration of 0.01 ppM when pure tritium is transferred once through a typical graphite--rotor transfer pump. Such a low methane level will not cause column blockage, even if the cryogenic still is operated continuously for many years

  10. Raingauge-Based Rainfall Nowcasting with Artificial Neural Network

    Science.gov (United States)

    Liong, Shie-Yui; He, Shan

    2010-05-01

    Rainfall forecasting and nowcasting are of great importance, for instance, in real-time flood early warning systems. Long term rainfall forecasting demands global climate, land, and sea data, thus, large computing power and storage capacity are required. Rainfall nowcasting's computing requirement, on the other hand, is much less. Rainfall nowcasting may use data captured by radar and/or weather stations. This paper presents the application of Artificial Neural Network (ANN) on rainfall nowcasting using data observed at weather and/or rainfall stations. The study focuses on the North-East monsoon period (December, January and February) in Singapore. Rainfall and weather data from ten stations, between 2000 and 2006, were selected and divided into three groups for training, over-fitting test and validation of the ANN. Several neural network architectures were tried in the study. Two architectures, Backpropagation ANN and Group Method of Data Handling ANN, yielded better rainfall nowcasting, up to two hours, than the other architectures. The obtained rainfall nowcasts were then used by a catchment model to forecast catchment runoff. The results of runoff forecast are encouraging and promising.With ANN's high computational speed, the proposed approach may be deliverable for creating the real-time flood early warning system.

  11. Censored rainfall modelling for estimation of fine-scale extremes

    Science.gov (United States)

    Cross, David; Onof, Christian; Winter, Hugo; Bernardara, Pietro

    2018-01-01

    Reliable estimation of rainfall extremes is essential for drainage system design, flood mitigation, and risk quantification. However, traditional techniques lack physical realism and extrapolation can be highly uncertain. In this study, we improve the physical basis for short-duration extreme rainfall estimation by simulating the heavy portion of the rainfall record mechanistically using the Bartlett-Lewis rectangular pulse (BLRP) model. Mechanistic rainfall models have had a tendency to underestimate rainfall extremes at fine temporal scales. Despite this, the simple process representation of rectangular pulse models is appealing in the context of extreme rainfall estimation because it emulates the known phenomenology of rainfall generation. A censored approach to Bartlett-Lewis model calibration is proposed and performed for single-site rainfall from two gauges in the UK and Germany. Extreme rainfall estimation is performed for each gauge at the 5, 15, and 60 min resolutions, and considerations for censor selection discussed.

  12. Methane hydrates in nature - Current knowledge and challenges

    Science.gov (United States)

    Collett, Timothy S.

    2014-01-01

    Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance

  13. The Spatial Scaling of Global Rainfall Extremes

    Science.gov (United States)

    Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.

    2013-12-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.

  14. Methane emissions from MBT landfills

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, K.-U., E-mail: heyer@ifas-hamburg.de; Hupe, K.; Stegmann, R.

    2013-09-15

    Highlights: • Compilation of methane generation potential of mechanical biological treated (MBT) municipal solid waste. • Impacts and kinetics of landfill gas production of MBT landfills, approach with differentiated half-lives. • Methane oxidation in the waste itself and in soil covers. • Estimation of methane emissions from MBT landfills in Germany. - Abstract: Within the scope of an investigation for the German Federal Environment Agency (“Umweltbundesamt”), the basics for the estimation of the methane emissions from the landfilling of mechanically and biologically treated waste (MBT) were developed. For this purpose, topical research including monitoring results regarding the gas balance at MBT landfills was evaluated. For waste treated to the required German standards, a methane formation potential of approximately 18–24 m{sup 3} CH{sub 4}/t of total dry solids may be expected. Monitoring results from MBT landfills show that a three-phase model with differentiated half-lives describes the degradation kinetics in the best way. This is due to the fact that during the first years of disposal, the anaerobic degradation processes still proceed relatively intensively. In addition in the long term (decades), a residual gas production at a low level is still to be expected. Most of the soils used in recultivation layer systems at German landfills show a relatively high methane oxidation capacity up to 5 l CH{sub 4}/(m{sup 2} h). However, measurements at MBT disposal sites indicate that the majority of the landfill gas (in particular at non-covered areas), leaves the landfill body via preferred gas emission zones (hot spots) without significant methane oxidation. Therefore, rather low methane oxidation factors are recommended for open and temporarily covered MBT landfills. Higher methane oxidation rates can be achieved when the soil/recultivation layer is adequately designed and operated. Based on the elaborated default values, the First Order Decay (FOD

  15. Derivation of critical rainfall thresholds for landslide in Sicily

    Science.gov (United States)

    Caracciolo, Domenico; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    Rainfall is the primary trigger of shallow landslides that can cause fatalities, damage to properties and economic losses in many areas of the world. For this reason, determining the rainfall amount/intensity responsible for landslide occurrence is important, and may contribute to mitigate the related risk and save lives. Efforts have been made in different countries to investigate triggering conditions in order to define landslide-triggering rainfall thresholds. The rainfall thresholds are generally described by a functional relationship of power in terms of cumulated or intensity event rainfall-duration, whose parameters are estimated empirically from the analysis of historical rainfall events that triggered landslides. The aim of this paper is the derivation of critical rainfall thresholds for landslide occurrence in Sicily, southern Italy, by focusing particularly on the role of the antecedent wet conditions. The creation of the appropriate landslide-rainfall database likely represents one of main efforts in this type of analysis. For this work, historical landslide events occurred in Sicily from 1919 to 2001 were selected from the archive of the Sistema Informativo sulle Catastrofi Idrogeologiche, developed under the project Aree Vulnerabili Italiane. The corresponding triggering precipitations were screened from the raingauges network in Sicily, maintained by the Osservatorio delle Acque - Agenzia Regionale per i Rifiuti e le Acque. In particular, a detailed analysis was carried out to identify and reconstruct the hourly rainfall events that caused the selected landslides. A bootstrapping statistical technique has been used to determine the uncertainties associated with the threshold parameters. The rainfall thresholds at different exceedance probability levels, from 1% to 10%, were defined in terms of cumulated event rainfall, E, and rainfall duration, D. The role of rainfall prior to the damaging events was taken into account by including in the analysis

  16. Methane Flux and Authigenic Carbonate in Shallow Sediments Overlying Methane Hydrate Bearing Strata in Alaminos Canyon, Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Joseph P. Smith

    2014-09-01

    Full Text Available In June 2007 sediment cores were collected in Alaminos Canyon, Gulf of Mexico across a series of seismic data profiles indicating rapid transitions between the presence of methane hydrates and vertical gas flux. Vertical profiles of dissolved sulfate, chloride, calcium, magnesium, and dissolved inorganic carbon (DIC concentrations in porewaters, headspace methane, and solid phase carbonate concentrations were measured at each core location to investigate the cycling of methane-derived carbon in shallow sediments overlying the hydrate bearing strata. When integrated with stable carbon isotope ratios of DIC, geochemical results suggest a significant fraction of the methane flux at this site is cycled into the inorganic carbon pool. The incorporation of methane-derived carbon into dissolved and solid inorganic carbon phases represents a significant sink in local carbon cycling and plays a role in regulating the flux of methane to the overlying water column at Alaminos Canyon. Targeted, high-resolution geochemical characterization of the biogeochemical cycling of methane-derived carbon in shallow sediments overlying hydrate bearing strata like those in Alaminos Canyon is critical to quantifying methane flux and estimating methane hydrate distributions in gas hydrate bearing marine sediments.

  17. Rainfall Distributions in Sri Lanka in Time and Space: An Analysis Based on Daily Rainfall Data

    Directory of Open Access Journals (Sweden)

    T. P. Burt

    2014-09-01

    Full Text Available Daily rainfall totals are analyzed for the main agro-climatic zones of Sri Lanka for the period 1976–2006. The emphasis is on daily rainfall rather than on longer-period totals, in particular the number of daily falls exceeding given threshold totals. For one station (Mapalana, where a complete daily series is available from 1950, a longer-term perspective on changes over half a century is provided. The focus here is particularly on rainfall in March and April, given the sensitivity of agricultural decisions to early southwest monsoon rainfall at the beginning of the Yala cultivation season but other seasons are also considered, in particular the northeast monsoon. Rainfall across Sri Lanka over three decades is investigated in relation to the main atmospheric drivers known to affect climate in the region: sea surface temperatures in the Pacific and Indian Oceans, of which the former are shown to be more important. The strong influence of El Niño and La Niña phases on various aspects of the daily rainfall distribution in Sri Lanka is confirmed: positive correlations with Pacific sea-surface temperatures during the north east monsoon and negative correlations at other times. It is emphasized in the discussion that Sri Lanka must be placed in its regional context and it is important to draw on regional-scale research across the Indian subcontinent and the Bay of Bengal.

  18. Thermodynamic Analysis on of Skid-Mounted Coal-bed Methane Liquefaction Device using Cryogenic Turbo-Expander

    Science.gov (United States)

    Chen, Shuangtao; Niu, Lu; Zeng, Qiang; Li, Xiaojiang; Lou, Fang; Chen, Liang; Hou, Yu

    2017-12-01

    Coal-bed methane (CBM) reserves are rich in Sinkiang of China, and liquefaction is a critical step for the CBM exploration and utilization. Different from other CBM gas fields in China, CBM distribution in Sinkiang is widespread but scattered, and the pressure, flow-rate and nitrogen content of CBM feed vary significantly. The skid-mounted liquefaction device is suggested as an efficient and economical way to recover methane. Turbo-expander is one of the most important parts which generates the cooling capacity for the cryogenic liquefaction system. Using turbo-expander, more cooling capacity and higher liquefied fraction can be achieved. In this study, skid-mounted CBM liquefaction processes based on Claude cycle are established. Cryogenic turbo-expander with high expansion ratio is employed to improve the efficiency of CBM liquefaction process. The unit power consumption per liquefaction mole flow-rate for CBM feed gas is used as the object function for process optimization, compressor discharge pressure, flow ratio of feed gas to turbo-expander and nitrogen friction are analyzed, and optimum operation range of the liquefaction processes are obtained.

  19. Analysis of rainfall distribution in Kelantan river basin, Malaysia

    Science.gov (United States)

    Che Ros, Faizah; Tosaka, Hiroyuki

    2018-03-01

    Using rainfall gauge on its own as input carries great uncertainties regarding runoff estimation, especially when the area is large and the rainfall is measured and recorded at irregular spaced gauging stations. Hence spatial interpolation is the key to obtain continuous and orderly rainfall distribution at unknown points to be the input to the rainfall runoff processes for distributed and semi-distributed numerical modelling. It is crucial to study and predict the behaviour of rainfall and river runoff to reduce flood damages of the affected area along the Kelantan river. Thus, a good knowledge on rainfall distribution is essential in early flood prediction studies. Forty six rainfall stations and their daily time-series were used to interpolate gridded rainfall surfaces using inverse-distance weighting (IDW), inverse-distance and elevation weighting (IDEW) methods and average rainfall distribution. Sensitivity analysis for distance and elevation parameters were conducted to see the variation produced. The accuracy of these interpolated datasets was examined using cross-validation assessment.

  20. Extreme Rainfall In A City

    Science.gov (United States)

    Nkemdirim, Lawrence

    Cities contain many structures and activities that are vulnerable to severe weather. Heavy precipitation cause floods which can damage structures, compromise transportation and water supply systems, and slow down economic and social activities. Rain induced flood patterns in cities must be well understood to enable effective placement of flood control and other regulatory measures. The planning goal is not to eliminate all floods but to reduce their frequency and resulting damage. Possible approaches to such planning include probability based extreme event analysis. Precipitation is normally the most variable hydrologic element over a given area. This variability results from the distribution of clouds and in cloud processes in the atmosphere, the storm path, and the distribution of topographical features on the ground along path. Some studies suggest that point rainfall patterns are also affected by urban industrial effects hence some agreement that cities are wetter than the country surrounding them. However, there are still questions regarding the intra- urban distribution of precipitation. The sealed surfaces, urban structures, and the urban heat anomaly increase convection in cities which may enhance the generation of clouds. Increased dust and gaseous aerosols loads are effective condensation and sublimation nuclei which may also enhance the generation of precipitation. Based on these associations, the greatest amount of convection type rainfall should occur at city center. A study of summer rainfall in Calgary showed that frequencies of trace amounts of rainfall and events under 0.2mm are highest downtown than elsewhere. For amounts greater than than 0.2 mm, downtown sites were not favored. The most compelling evidence for urban-industrial precipitation enhancement came from the Metromex project around St. Loius, Missouri where maximum increases of between 5 to 30 per cent in summer rainfall downwind of the city was linked to urbanization and

  1. Constraining continuous rainfall simulations for derived design flood estimation

    Science.gov (United States)

    Woldemeskel, F. M.; Sharma, A.; Mehrotra, R.; Westra, S.

    2016-11-01

    Stochastic rainfall generation is important for a range of hydrologic and water resources applications. Stochastic rainfall can be generated using a number of models; however, preserving relevant attributes of the observed rainfall-including rainfall occurrence, variability and the magnitude of extremes-continues to be difficult. This paper develops an approach to constrain stochastically generated rainfall with an aim of preserving the intensity-durationfrequency (IFD) relationships of the observed data. Two main steps are involved. First, the generated annual maximum rainfall is corrected recursively by matching the generated intensity-frequency relationships to the target (observed) relationships. Second, the remaining (non-annual maximum) rainfall is rescaled such that the mass balance of the generated rain before and after scaling is maintained. The recursive correction is performed at selected storm durations to minimise the dependence between annual maximum values of higher and lower durations for the same year. This ensures that the resulting sequences remain true to the observed rainfall as well as represent the design extremes that may have been developed separately and are needed for compliance reasons. The method is tested on simulated 6 min rainfall series across five Australian stations with different climatic characteristics. The results suggest that the annual maximum and the IFD relationships are well reproduced after constraining the simulated rainfall. While our presentation focusses on the representation of design rainfall attributes (IFDs), the proposed approach can also be easily extended to constrain other attributes of the generated rainfall, providing an effective platform for post-processing of stochastic rainfall generators.

  2. Evidence for methane in Martian meteorites.

    Science.gov (United States)

    Blamey, Nigel J F; Parnell, John; McMahon, Sean; Mark, Darren F; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R M; Banerjee, Neil R; Flemming, Roberta L

    2015-06-16

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.

  3. Isolation by distance and isolation by environment contribute to population differentiation in Protea repens (Proteaceae L.), a widespread South African species.

    Science.gov (United States)

    Prunier, Rachel; Akman, Melis; Kremer, Colin T; Aitken, Nicola; Chuah, Aaron; Borevitz, Justin; Holsinger, Kent E

    2017-05-01

    The Cape Floristic Region (CFR) of South Africa is renowned for its botanical diversity, but the evolutionary origins of this diversity remain controversial. Both neutral and adaptive processes have been implicated in driving diversification, but population-level studies of plants in the CFR are rare. Here, we investigate the limits to gene flow and potential environmental drivers of selection in Protea repens L. (Proteaceae L.), a widespread CFR species. We sampled 19 populations across the range of P. repens and used genotyping by sequencing to identify 2066 polymorphic loci in 663 individuals. We used a Bayesian F ST outlier analysis to identify single-nucleotide polymorphisms (SNPs) marking genomic regions that may be under selection; we used those SNPs to identify potential drivers of selection and excluded them from analyses of gene flow and genetic structure. A pattern of isolation by distance suggested limited gene flow between nearby populations. The populations of P. repens fell naturally into two or three groupings, which corresponded to an east-west split. Differences in rainfall seasonality contributed to diversification in highly divergent loci, as do barriers to gene flow that have been identified in other species. The strong pattern of isolation by distance is in contrast to the findings in the only other widespread species in the CFR that has been similarly studied, while the effects of rainfall seasonality are consistent with well-known patterns. Assessing the generality of these results will require investigations of other CFR species. © 2017 Prunier et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY-NC).

  4. Simulation of daily rainfall through markov chain modeling

    International Nuclear Information System (INIS)

    Sadiq, N.

    2015-01-01

    Being an agricultural country, the inhabitants of dry land in cultivated areas mainly rely on the daily rainfall for watering their fields. A stochastic model based on first order Markov Chain was developed to simulate daily rainfall data for Multan, D. I. Khan, Nawabshah, Chilas and Barkhan for the period 1981-2010. Transitional probability matrices of first order Markov Chain was utilized to generate the daily rainfall occurrence while gamma distribution was used to generate the daily rainfall amount. In order to achieve the parametric values of mentioned cities, method of moments is used to estimate the shape and scale parameters which lead to synthetic sequence generation as per gamma distribution. In this study, unconditional and conditional probabilities of wet and dry days in sum with means and standard deviations are considered as the essential parameters for the simulated stochastic generation of daily rainfalls. It has been found that the computerized synthetic rainfall series concurred pretty well with the actual observed rainfall series. (author)

  5. Weather radar rainfall data in urban hydrology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick

    2017-01-01

    Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology...... necessitate an updated review of the state of the art in such radar rainfall data and applications. Three key areas with significant advances over the past decade have been identified: (1) temporal and spatial resolution of rainfall data required for different types of hydrological applications, (2) rainfall...... estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological...

  6. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    Science.gov (United States)

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin; Schink, Bernhard

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660–4,890 µmol CH4⋅m−2⋅d−1) and actual rates calculated from microsensor profiles (31–437 µmol CH4⋅m−2⋅d−1) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones. PMID:25472842

  7. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake.

    Science.gov (United States)

    Deutzmann, Joerg S; Stief, Peter; Brandes, Josephin; Schink, Bernhard

    2014-12-23

    Anaerobic methane oxidation coupled to denitrification, also known as "nitrate/nitrite-dependent anaerobic methane oxidation" (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were very abundant at deep-water sites (profundal sediment). In profundal sediment, the vertical distribution of M. oxyfera-like bacteria showed a distinct peak in anoxic layers that coincided with the zone of methane oxidation and nitrate consumption, a strong indication for n-damo carried out by M. oxyfera-like bacteria. Both potential n-damo rates calculated from cell densities (660-4,890 µmol CH4⋅m(-2)⋅d(-1)) and actual rates calculated from microsensor profiles (31-437 µmol CH4⋅m(-2)⋅d(-1)) were sufficiently high to prevent methane release from profundal sediment solely by this process. Additionally, when nitrate was added to sediment cores exposed to anoxic conditions, the n-damo zone reestablished well below the sediment surface, completely preventing methane release from the sediment. We conclude that the previously overlooked n-damo process can be the major methane sink in stable freshwater environments if nitrate is available in anoxic zones.

  8. 46 CFR 154.703 - Methane (LNG).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Methane (LNG). 154.703 Section 154.703 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... and Temperature Control § 154.703 Methane (LNG). Unless a cargo tank carrying methane (LNG) can...

  9. Rainfall thresholds for the activation of shallow landslides in the Italian Alps: the role of environmental conditioning factors

    Science.gov (United States)

    Palladino, M. R.; Viero, A.; Turconi, L.; Brunetti, M. T.; Peruccacci, S.; Melillo, M.; Luino, F.; Deganutti, A. M.; Guzzetti, F.

    2018-02-01

    The aim of the present work is to investigate the role exerted by selected environmental factors in the activation of rainfall-triggered shallow landslides and to identify site-specific rainfall thresholds. The study concerns the Italian Alps. The region is exposed to widespread slope instability phenomena due to its geological, morphological and climatic features. Furthermore, the high level of anthropization that characterizes wide portions of the territory increases the associated risk. Hence, the analysis of potential predisposing factors influencing landslides triggering is worthwhile to improve the current prediction skills and to enhance the preparedness and the response to these natural hazards. During the last years, the Italian National Research Council's Research Institute for Hydro-geological Protection (CNR-IRPI) has contributed to the analysis of triggering conditions for rainfall-induced landslides in the framework of a national project. The project, funded by the National Department for Civil Protection (DPC), focuses on the identification of the empirical rainfall thresholds for the activation of shallow landslides in Italy. The first outcomes of the project reveal a certain variability of the pluviometric conditions responsible for the mass movements activation, when different environmental settings are compared. This variability is probably related to the action of local environmental factors, such as lithology, climatic regime or soil characteristics. Based on this hypothesis, the present study aims to identify separated domains within the Italian Alps, where different triggering conditions exist and different countermeasures are needed for risk prevention. For this purpose, we collected information concerning 511 landslides activated in the period 2000-2012 and reconstructed 453 rainfall events supposed to be responsible for the activations. Then, we selected a set of thematic maps to represent the hypothesised landslide conditioning factors

  10. Fitting monthly Peninsula Malaysian rainfall using Tweedie distribution

    Science.gov (United States)

    Yunus, R. M.; Hasan, M. M.; Zubairi, Y. Z.

    2017-09-01

    In this study, the Tweedie distribution was used to fit the monthly rainfall data from 24 monitoring stations of Peninsula Malaysia for the period from January, 2008 to April, 2015. The aim of the study is to determine whether the distributions within the Tweedie family fit well the monthly Malaysian rainfall data. Within the Tweedie family, the gamma distribution is generally used for fitting the rainfall totals, however the Poisson-gamma distribution is more useful to describe two important features of rainfall pattern, which are the occurrences (dry months) and the amount (wet months). First, the appropriate distribution of the monthly rainfall was identified within the Tweedie family for each station. Then, the Tweedie Generalised Linear Model (GLM) with no explanatory variable was used to model the monthly rainfall data. Graphical representation was used to assess model appropriateness. The QQ plots of quantile residuals show that the Tweedie models fit the monthly rainfall data better for majority of the stations in the west coast and mid land than those in the east coast of Peninsula. This significant finding suggests that the best fitted distribution depends on the geographical location of the monitoring station. In this paper, a simple model is developed for generating synthetic rainfall data for use in various areas, including agriculture and irrigation. We have showed that the data that were simulated using the Tweedie distribution have fairly similar frequency histogram to that of the actual data. Both the mean number of rainfall events and mean amount of rain for a month were estimated simultaneously for the case that the Poisson gamma distribution fits the data reasonably well. Thus, this work complements previous studies that fit the rainfall amount and the occurrence of rainfall events separately, each to a different distribution.

  11. Fugitive Methane Emission Identification and Source Attribution: Ethane-to-Methane Analysis Using a Portable Cavity Ring-Down Spectroscopy Analyzer

    Science.gov (United States)

    Kim-Hak, D.; Fleck, D.

    2017-12-01

    Natural gas analysis and methane specifically have become increasingly important by virtue of methane's 28-36x greenhouse warming potential compared to CO2 and accounting for 10% of total greenhouse gas emissions in the US alone. Additionally, large uncontrolled leaks, such as the recent one from Aliso Canyon in Southern California, originating from uncapped wells, storage facilities and coal mines have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources by quantifying the ethane to methane (C2:C1) ratios provides us with means to understand processes yielding methane and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic or thermogenic, oil vs. gas vs. coal gas-related. Here we present data obtained using a portable cavity ring-down spectrometry analyzer weighing less than 25 lbs and consuming less than 35W that simultaneously measures methane and ethane in real-time with a raw 1-σ precision of plane gas propagation.

  12. Rainfall model investigation and scenario analyses of the effect of government reforestation policy on seasonal rainfalls: A case study from Northern Thailand

    Science.gov (United States)

    Duangdai, Eakkapong; Likasiri, Chulin

    2017-03-01

    In this work, 4 models for predicting rainfall amounts are investigated and compared using Northern Thailand's seasonal rainfall data for 1973-2008. Two models, global temperature, forest area and seasonal rainfall (TFR) and modified TFR based on a system of differential equations, give the relationships between global temperature, Northern Thailand's forest cover and seasonal rainfalls in the region. The other two models studied are time series and Autoregressive Moving Average (ARMA) models. All models are validated using the k-fold cross validation method with the resulting errors being 0.971233, 0.740891, 2.376415 and 2.430891 for time series, ARMA, TFR and modified TFR models, respectively. Under Business as Usual (BaU) scenario, seasonal rainfalls in Northern Thailand are projected through the year 2020 using all 4 models. TFR and modified TFR models are also used to further analyze how global temperature rise and government reforestation policy affect seasonal rainfalls in the region. Rainfall projections obtained via the two models are also compared with those from the International Panel on Climate Change (IPCC) under IS92a scenario. Results obtained through a mathematical model for global temperature, forest area and seasonal rainfall show that the higher the forest cover, the less fluctuation there is between rainy-season and summer rainfalls. Moreover, growth in forest cover also correlates with an increase in summer rainfalls. An investigation into the relationship between main crop productions and rainfalls in dry and rainy seasons indicates that if the rainy-season rainfall is high, that year's main-crop rice production will decrease but the second-crop rice, maize, sugarcane and soybean productions will increase in the following year.

  13. Mechanistic insights into heterogeneous methane activation

    International Nuclear Information System (INIS)

    Latimer, Allegra A.; Aljama, Hassan; Kakekhani, Arvin; Yoo, Jong Suk; Kulkarni, Ambarish

    2017-01-01

    While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model to aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. Here, this model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.

  14. Contribution to atmospheric methane by natural seepages on the Bulgarian continental shelf

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrov, L. [Bulgarian Academy of Science, Varna (Bulgaria). Inst. of Oceanology

    2002-07-01

    This paper provides an estimation of the atmospheric methane flux from Bulgarian Black Sea continental shelf. Potential gas source rocks include Holocene gas-charged sediments, Quaternary peats and sapropels, and deep-lying Palaeocene and Neogene clays, Cretaceous coals, and other sediments of late Jurassic to early Cretaceous age. These cover almost the whole continental shelf and slope and, together with irregularly developed seal rocks and widespread active and conducting faults, provide good conditions for upward gas migration. A total of 5 100 line kilometers of shallow seismic (boomer) and echo-sounder records acquired during the Institute of Oceanology's regional surveys, and several detailed side-scan sonar lines, have been reviewed for water column targets. Four hundred and eighty-two targets were assigned as gas seepage plumes. It is estimated that a total of 19,735 individual seeps exists on the open shelf. The number of seeps in coastal waters was estimated to be 6020; this is based on available public-domain data, specific research, and results of a specially made questionnaire which was distributed to a range of 'seamen'. More than 150 measurements of the seabed flux rates were made in the 'Golden sands' and 'Zelenka' seepage areas between 1976 and 1991. Indirect estimations of flux rates from video and photo materials, and a review of published data have also been undertaken. Based on these data, three types of seepages were identified as the most representative of Bulgarian coastal waters. These have flux rates of 0.4, 1.8, and 3.51/min. The contribution to atmospheric methane is calculated by multiplying the flux rates with the number of seepages, and entering corrections for methane concentration and the survival of gas bubbles as they ascend through seawater of the corresponding water depth. The estimation indicates that between 45,100,000 (0.03 Tg) and 210,650,000 m{sup 3} (0. 15 Tg) methane yr{sup -1} come

  15. Supported Catalysts for CO2 Methanation: A Review

    Directory of Open Access Journals (Sweden)

    Patrizia Frontera

    2017-02-01

    Full Text Available CO2 methanation is a well-known reaction that is of interest as a capture and storage (CCS process and as a renewable energy storage system based on a power-to-gas conversion process by substitute or synthetic natural gas (SNG production. Integrating water electrolysis and CO2 methanation is a highly effective way to store energy produced by renewables sources. The conversion of electricity into methane takes place via two steps: hydrogen is produced by electrolysis and converted to methane by CO2 methanation. The effectiveness and efficiency of power-to-gas plants strongly depend on the CO2 methanation process. For this reason, research on CO2 methanation has intensified over the last 10 years. The rise of active, selective, and stable catalysts is the core of the CO2 methanation process. Novel, heterogeneous catalysts have been tested and tuned such that the CO2 methanation process increases their productivity. The present work aims to give a critical overview of CO2 methanation catalyst production and research carried out in the last 50 years. The fundamentals of reaction mechanism, catalyst deactivation, and catalyst promoters, as well as a discussion of current and future developments in CO2 methanation, are also included.

  16. Methane flux from boreal peatlands

    International Nuclear Information System (INIS)

    Crill, P.; Bartlett, K.; Roulet, N.

    1992-01-01

    The peatlands in the boreal zone (roughly 45 deg - 60 degN) store a significant reservoir of carbon, much of which is potentially available for exchange with the atmosphere. The anaerobic conditions that cause these soils to accumulate carbon also makes wet, boreal peatlands significant sources of methane to the global troposphere. It is estimated that boreal wetlands contribute approximately 19.5 Tg methane per year. The data available on the magnitude of boreal methane emissions have rapidly accumulated in the past twenty years. This paper offers a short review of the flux measured (with range roughly 1 - 2000 mg methane/m2d), considers environmental controls of the flux and briefly discusses how climate change might affect future fluxes

  17. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  18. Methane and Climate Change

    NARCIS (Netherlands)

    Reay, D.; Smith, P.; Amstel, van A.R.

    2010-01-01

    Methane is a powerful greenhouse gas and is estimated to be responsible for approximately one-fifth of man-made global warming. Per kilogram, it is 25 times more powerful than carbon dioxide over a 100-year time horizon -- and global warming is likely to enhance methane release from a number of

  19. Landslides in the northern Colorado Front Range caused by rainfall, September 11-13, 2013

    Science.gov (United States)

    Godt, Jonathan W.; Coe, Jeffrey A.; Kean, Jason W.; Baum, Rex L.; Jones, Eric S.; Harp, Edwin L.; Staley, Dennis M.; Barnhart, William D.

    2014-01-01

    During the second week of September 2013, nearly continuous rainfall caused widespread landslides and flooding in the northern Colorado Front Range. The combination of landslides and flooding was responsible for eight fatalities and caused extensive damage to buildings, highways, and infrastructure. Three fatalities were attributed to a fast moving type of landslide called debris flow. One fatality occurred in Jamestown, and two occurred in the community of Pinebrook Hills immediately west of the City of Boulder. All major canyon roads in the northern Front Range were periodically closed between September 11 and 13, 2013. Some canyon closures were caused by undercutting of roads by landslides and flooding, and some were caused by debris flows and rock slides that deposited material on road surfaces. Most of the canyon roads, with the exceptions of U.S. Highway 6 (Clear Creek Canyon), State Highway 46/Jefferson Co. Rd. 70 (Golden Gate Canyon), and Sunshine Canyon in Boulder County, remained closed at the end of September 2013. A review of historical records in Colorado indicates that this type of event, with widespread landslides and flooding occurring over a very large region, in such a short period of time, is rare.

  20. Small Molecule Catalysts for Harvesting Methane Gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ceron-Hernandez, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oakdale, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lau, E. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-06

    As the average temperature of the earth increases the impact of these changes are becoming apparent. One of the most dramatic changes to the environment is the melting of arctic permafrost. The disappearance of the permafrost has resulted in release of streams of methane that was trapped in remote areas as gas hydrates in ice. Additionally, the use of fracking has also increased emission of methane. Currently, the methane is either lost to the atmosphere or flared. If these streams of methane could be brought to market, this would be an abundant source of revenue. A cheap conversion of gaseous methane to a more convenient form for transport would be necessary to economical. Conversion of methane is a difficult reaction since the C-H bond is very stable (104 kcal/mole). At the industrial scale, the Fischer-Tropsch reaction can be used to convert gaseous methane to liquid methanol but is this method is impractical for these streams that have low pressures and are located in remote areas. Additionally, the Fischer-Tropsch reaction results in over oxidation of the methane leading to many products that would need to be separated.

  1. Methane-induced Activation Mechanism of Fused Ferric Oxide-Alumina Catalysts during Methane Decomposition

    KAUST Repository

    Reddy Enakonda, Linga; Zhou, Lu; Saih, Youssef; Ould-Chikh, Samy; Lopatin, Sergei; Gary, Daniel; Del-Gallo, Pascal; Basset, Jean-Marie

    2016-01-01

    Activation of Fe2O3-Al2O3 with CH4 (instead of H2) is a meaningful method to achieve catalytic methane decomposition (CMD). This reaction of CMD is more economic and simple against commercial methane steam reforming (MSR) as it produces COx-free H2

  2. Contribution of tropical cyclones to global rainfall

    Science.gov (United States)

    Khouakhi, Abdou; Villarini, Gabriele; Vecchi, Gabriel; Smith, James

    2016-04-01

    Rainfall associated with tropical cyclones (TCs) can have both devastating and beneficial impacts in different parts of the world. In this work, daily precipitation and historical six-hour best track TC datasets are used to quantify the contribution of TCs to global rainfall. We select 18607 rain gauge stations with at least 25 complete (at least 330 measurements per year) years between 1970 and 2014. We consider rainfall associated with TCs if the center of circulation of the storm passed within a given distance from the rain gauge and within a given time window. Spatial and temporal sensitivity analyses are performed with varying time windows (same day, ±1 day) and buffer radii (400 km and 500 km) around each rain gauge. Results highlight regional differences in TC-induced rainfall. The highest TC-induced precipitation totals (400 to 600+ mm/year) are prevalent along eastern Asia, western and northeastern Australia, and in the western Pacific islands. Stations along the southeast of the U.S. coast and surrounding the Gulf of Mexico receive up to 200 mm/year of TC rainfall. The highest annual fractional contributions of TCs to total rainfall (from 35 to 50%) are recorded in stations located in northwestern Australia, southeastern China, the northern Philippines and the southern Mexico peninsula. Seasonally, the highest proportions (40 to 50%) are recorded along eastern Australia and Mauritius in winter, and in eastern Asia and Mexico in summer and autumn. Analyses of the relative contribution of TCs to extreme rainfall using annual maximum (AM) and peaks-over-threshold (POT) approaches indicate notable differences among regions. The highest TC-AM rainfall proportions (45 to 60%) are found in stations located in Japan, eastern China, the Philippines, eastern and western Australia. Substantial contributions (25 to 40% of extreme rainfall) are also recorded in stations located along the U.S. East Coast, the Gulf of Mexico, and the Mexico peninsula. We find similar

  3. Two-Dimensional Layered Double Hydroxides for Reactions of Methanation and Methane Reforming in C1 Chemistry.

    Science.gov (United States)

    Li, Panpan; Yu, Feng; Altaf, Naveed; Zhu, Mingyuan; Li, Jiangbing; Dai, Bin; Wang, Qiang

    2018-01-31

    CH₄ as the paramount ingredient of natural gas plays an eminent role in C1 chemistry. CH₄ catalytically converted to syngas is a significant route to transmute methane into high value-added chemicals. Moreover, the CO/CO₂ methanation reaction is one of the potent technologies for CO₂ valorization and the coal-derived natural gas production process. Due to the high thermal stability and high extent of dispersion of metallic particles, two-dimensional mixed metal oxides through calcined layered double hydroxides (LDHs) precursors are considered as the suitable supports or catalysts for both the reaction of methanation and methane reforming. The LDHs displayed compositional flexibility, small crystal sizes, high surface area and excellent basic properties. In this paper, we review previous works of LDHs applied in the reaction of both methanation and methane reforming, focus on the LDH-derived catalysts, which exhibit better catalytic performance and thermal stability than conventional catalysts prepared by impregnation method and also discuss the anti-coke ability and anti-sintering ability of LDH-derived catalysts. We believe that LDH-derived catalysts are promising materials in the heterogeneous catalytic field and provide new insight for the design of advance LDH-derived catalysts worthy of future research.

  4. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    DEFF Research Database (Denmark)

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments......, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques...... in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were...

  5. Monthly Rainfall Erosivity Assessment for Switzerland

    Science.gov (United States)

    Schmidt, Simon; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation

  6. Commercial application of rainfall simulation

    Science.gov (United States)

    Loch, Rob J.

    2010-05-01

    Landloch Pty Ltd is a commercial consulting firm, providing advice on a range of land management issues to the mining and construction industries in Australia. As part of the company's day-to-day operations, rainfall simulation is used to assess material erodibility and to investigate a range of site attributes. (Landloch does carry out research projects, though such are not its core business.) When treated as an everyday working tool, several aspects of rainfall simulation practice are distinctively modified. Firstly, the equipment used is regularly maintained, and regularly upgraded with a primary focus on ease, safety, and efficiency of use and on reliability of function. As well, trained and experienced technical support is considered essential. Landloch's chief technician has over 10 years experience in running rainfall simulators at locations across Australia and in Africa and the Pacific. Secondly, the specific experimental conditions established for each set of rainfall simulator runs are carefully considered to ensure that they accurately represent the field conditions to which the data will be subsequently applied. Considerations here include: • wetting and drying cycles to ensure material consolidation and/or cementation if appropriate; • careful attention to water quality if dealing with clay soils or with amendments such as gypsum; • strong focus on ensuring that the erosion processes considered are those of greatest importance to the field situation of concern; and • detailed description of both material and plot properties, to increase the potential for data to be applicable to a wider range of projects and investigations. Other important company procedures include: • For each project, the scientist or engineer responsible for analysing and reporting rainfall simulator data is present during the running of all field plots, as it is essential that they be aware of any specific conditions that may have developed when the plots were subjected

  7. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    OpenAIRE

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering t...

  8. The impact of Amazonian deforestation on Amazon basin rainfall

    Science.gov (United States)

    Spracklen, D. V.; Garcia-Carreras, L.

    2015-11-01

    We completed a meta-analysis of regional and global climate model simulations (n = 96) of the impact of Amazonian deforestation on Amazon basin rainfall. Across all simulations, mean (±1σ) change in annual mean Amazon basin rainfall was -12 ± 11%. Variability in simulated rainfall was not explained by differences in model resolution or surface parameters. Across all simulations we find a negative linear relationship between rainfall and deforestation extent, although individual studies often simulate a nonlinear response. Using the linear relationship, we estimate that deforestation in 2010 has reduced annual mean rainfall across the Amazon basin by 1.8 ± 0.3%, less than the interannual variability in observed rainfall. This may explain why a reduction in Amazon rainfall has not consistently been observed. We estimate that business-as-usual deforestation (based on deforestation rates prior to 2004) would lead to an 8.1 ± 1.4% reduction in annual mean Amazon basin rainfall by 2050, greater than natural variability.

  9. Enteric Methane Emission from Pigs

    DEFF Research Database (Denmark)

    Jørgensen, Henry; Theil, Peter Kappel; Knudsen, Knud Erik Bach

    2011-01-01

    per kg meat produced is increased (Fernández et al. 1983; Lekule et al. 1990). The present chapter will summarise our current knowledge concerning dietary and enteric fermentation that may influence the methane (CH4) emission in pigs. Enteric fermentation is the digestive process by which.......3 % of the worlds pig population. The main number of pigs is in Asia (59.6 %) where the main pig population stay in China (47.8 % of the worlds pig population). The objective of the chapter is therefore: To obtain a general overview of the pigs’ contribution to methane emission. Where is the pigs’ enteric gas...... produced and how is it measured. The variation in methane emission and factors affecting the emission. Possibility for reducing the enteric methane emission and the consequences....

  10. Catalytic aromatization of methane.

    Science.gov (United States)

    Spivey, James J; Hutchings, Graham

    2014-02-07

    Recent developments in natural gas production technology have led to lower prices for methane and renewed interest in converting methane to higher value products. Processes such as those based on syngas from methane reforming are being investigated. Another option is methane aromatization, which produces benzene and hydrogen: 6CH4(g) → C6H6(g) + 9H2(g) ΔG°(r) = +433 kJ mol(-1) ΔH°(r) = +531 kJ mol(-1). Thermodynamic calculations for this reaction show that benzene formation is insignificant below ∼600 °C, and that the formation of solid carbon [C(s)] is thermodynamically favored at temperatures above ∼300 °C. Benzene formation is insignificant at all temperatures up to 1000 °C when C(s) is included in the calculation of equilibrium composition. Interestingly, the thermodynamic limitation on benzene formation can be minimized by the addition of alkanes/alkenes to the methane feed. By far the most widely studied catalysts for this reaction are Mo/HZSM-5 and Mo/MCM-22. Benzene selectivities are generally between 60 and 80% at methane conversions of ∼10%, corresponding to net benzene yields of less than 10%. Major byproducts include lower molecular weight hydrocarbons and higher molecular weight substituted aromatics. However, carbon formation is inevitable, but the experimental findings show this can be kinetically limited by the use of H2 or oxidants in the feed, including CO2 or steam. A number of reactor configurations involving regeneration of the carbon-containing catalyst have been developed with the goal of minimizing the cost of regeneration of the catalyst once deactivated by carbon deposition. In this tutorial review we discuss the thermodynamics of this process, the catalysts used and the potential reactor configurations that can be applied.

  11. Rainfall variation and child health: effect of rainfall on diarrhea among under 5 children in Rwanda, 2010.

    Science.gov (United States)

    Mukabutera, Assumpta; Thomson, Dana; Murray, Megan; Basinga, Paulin; Nyirazinyoye, Laetitia; Atwood, Sidney; Savage, Kevin P; Ngirimana, Aimable; Hedt-Gauthier, Bethany L

    2016-08-05

    Diarrhea among children under 5 years of age has long been a major public health concern. Previous studies have suggested an association between rainfall and diarrhea. Here, we examined the association between Rwandan rainfall patterns and childhood diarrhea and the impact of household sanitation variables on this relationship. We derived a series of rain-related variables in Rwanda based on daily rainfall measurements and hydrological models built from daily precipitation measurements collected between 2009 and 2011. Using these data and the 2010 Rwanda Demographic and Health Survey database, we measured the association between total monthly rainfall, monthly rainfall intensity, runoff water and anomalous rainfall and the occurrence of diarrhea in children under 5 years of age. Among the 8601 children under 5 years of age included in the survey, 13.2 % reported having diarrhea within the 2 weeks prior to the survey. We found that higher levels of runoff were protective against diarrhea compared to low levels among children who lived in households with unimproved toilet facilities (OR = 0.54, 95 % CI: [0.34, 0.87] for moderate runoff and OR = 0.50, 95 % CI: [0.29, 0.86] for high runoff) but had no impact among children in household with improved toilets. Our finding that children in households with unimproved toilets were less likely to report diarrhea during periods of high runoff highlights the vulnerabilities of those living without adequate sanitation to the negative health impacts of environmental events.

  12. Heavy daily-rainfall characteristics over the Gauteng Province

    African Journals Online (AJOL)

    2009-02-09

    Feb 9, 2009 ... the lowest number of heavy and very heavy rainfall days. The highest 24-h ... With regard to seasonal rainfall, the 1995/96 summer rainfall season had ..... The Gauteng Province is approximately 16 500 km2 in size. When the ...

  13. Direct Aromaization of Methane

    Energy Technology Data Exchange (ETDEWEB)

    George Marcelin

    1997-01-15

    The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

  14. Agricultural methanization

    International Nuclear Information System (INIS)

    2011-01-01

    After having briefly outlined the interest of the development of methanization of agricultural by-products in the context of struggle against climate change, and noticed that France is only now developing this sector as some other countries already did, this publication describes the methanization process also called anaerobic digestion, which produces a digestate and biogas. Advantages for the agriculture sector are outlined, as well as drawbacks and recommendations (required specific technical abilities, an attention to the use of energetic crops, an improved economic balance which still depends on public subsidies, competition in the field of waste processing). Actions undertaken by the ADEME are briefly evoked

  15. Low-Altitude Aerial Methane Concentration Mapping

    Directory of Open Access Journals (Sweden)

    Bara J. Emran

    2017-08-01

    Full Text Available Detection of leaks of fugitive greenhouse gases (GHGs from landfills and natural gas infrastructure is critical for not only their safe operation but also for protecting the environment. Current inspection practices involve moving a methane detector within the target area by a person or vehicle. This procedure is dangerous, time consuming, labor intensive and above all unavailable when access to the desired area is limited. Remote sensing by an unmanned aerial vehicle (UAV equipped with a methane detector is a cost-effective and fast method for methane detection and monitoring, especially for vast and remote areas. This paper describes the integration of an off-the-shelf laser-based methane detector into a multi-rotor UAV and demonstrates its efficacy in generating an aerial methane concentration map of a landfill. The UAV flies a preset flight path measuring methane concentrations in a vertical air column between the UAV and the ground surface. Measurements were taken at 10 Hz giving a typical distance between measurements of 0.2 m when flying at 2 m/s. The UAV was set to fly at 25 to 30 m above the ground. We conclude that besides its utility in landfill monitoring, the proposed method is ready for other environmental applications as well as the inspection of natural gas infrastructure that can release methane with much higher concentrations.

  16. Hydrological Effects of Historic Rainfall on the Waccamaw River

    Science.gov (United States)

    Jolly, J.; Bao, S.

    2017-12-01

    This study focuses on the overall water budget of the Waccamaw River during and after a historic rainfall event related to Hurricane Joaquin, producing a 1000-year rainfall event. While rainfall is the only input, it enters the basin through various means. Some rainwater enters the soil as soil moisture while rainfall also goes underground and enters the river channels from underground, which is defined as bucket in. Over time, the rainfall was removed from the river site through various natural processes. Those processes, including evaporation, soil storage as soil moisture, discharge runoff through the river channel, among others, were modeled and validated against the USGS gauge stations. The validated model results were then used to estimate the hydrological response of the Waccamaw River to the rainfall event and determine the overall water budget. The experiment was completed using a WRF-Hydro modeling system for the purposes of weather forecasting and meteorological analysis. Upon completion of the data analysis, the WRF-Hydro model result showed that large amounts of rainfall were variously dispersed through the aforementioned areas. It was determined that after entering the soil rainfall predominantly left the river basin by discharge, while evaporation accounted for the second most common destination of rainfall. Base flow also accounted for a destination of rainfall, though not as much as those previously mentioned.

  17. Heavy rainfall equations for Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Álvaro José Back

    2011-12-01

    Full Text Available Knowledge of intensity-duration-frequency (IDF relationships of rainfall events is extremely important to determine the dimensions of surface drainage structures and soil erosion control. The purpose of this study was to obtain IDF equations of 13 rain gauge stations in the state of Santa Catarina in Brazil: Chapecó, Urussanga, Campos Novos, Florianópolis, Lages, Caçador, Itajaí, Itá, Ponte Serrada, Porto União, Videira, Laguna and São Joaquim. The daily rainfall data charts of each station were digitized and then the annual maximum rainfall series were determined for durations ranging from 5 to 1440 min. Based on these, with the Gumbel-Chow distribution, the maximum rainfall was estimated for durations ranging from 5 min to 24 h, considering return periods of 2, 5, 10, 20, 25, 50, and 100 years,. Data agreement with the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test, at 5 % significance level. For each rain gauge station, two IDF equations of rainfall events were adjusted, one for durations from 5 to 120 min and the other from 120 to 1440 min. The results show a high variability in maximum intensity of rainfall events among the studied stations. Highest values of coefficients of variation in the annual maximum series of rainfall were observed for durations of over 600 min at the stations of the coastal region of Santa Catarina.

  18. Temporal rainfall estimation using input data reduction and model inversion

    Science.gov (United States)

    Wright, A. J.; Vrugt, J. A.; Walker, J. P.; Pauwels, V. R. N.

    2016-12-01

    Floods are devastating natural hazards. To provide accurate, precise and timely flood forecasts there is a need to understand the uncertainties associated with temporal rainfall and model parameters. The estimation of temporal rainfall and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of rainfall input to be considered when estimating model parameters and provides the ability to estimate rainfall from poorly gauged catchments. Current methods to estimate temporal rainfall distributions from streamflow are unable to adequately explain and invert complex non-linear hydrologic systems. This study uses the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia. The reduction of rainfall to DWT coefficients allows the input rainfall time series to be simultaneously estimated along with model parameters. The estimation process is conducted using multi-chain Markov chain Monte Carlo simulation with the DREAMZS algorithm. The use of a likelihood function that considers both rainfall and streamflow error allows for model parameter and temporal rainfall distributions to be estimated. Estimation of the wavelet approximation coefficients of lower order decomposition structures was able to estimate the most realistic temporal rainfall distributions. These rainfall estimates were all able to simulate streamflow that was superior to the results of a traditional calibration approach. It is shown that the choice of wavelet has a considerable impact on the robustness of the inversion. The results demonstrate that streamflow data contains sufficient information to estimate temporal rainfall and model parameter distributions. The extent and variance of rainfall time series that are able to simulate streamflow that is superior to that simulated by a traditional calibration approach is a

  19. Recent advances in methane activation

    Energy Technology Data Exchange (ETDEWEB)

    Huuska, M; Kataja, K [VTT Chemical Technology, Espoo (Finland)

    1997-12-31

    Considerable work has been done in the research and development of methane conversion technologies. Although some promising conversion processes have been demonstrated, further advances in engineering and also in the chemistry are needed before these technologies become commercial. High-temperature processes, e.g. the oxidative coupling of methane, studied thoroughly during the last 15 years, suffer from severe theoretical yield limits and poor economics. In the long term, the most promising approaches seem to be the organometallic and, especially, the biomimetic activation of methane. (author) (22 refs.)

  20. Recent advances in methane activation

    Energy Technology Data Exchange (ETDEWEB)

    Huuska, M.; Kataja, K. [VTT Chemical Technology, Espoo (Finland)

    1996-12-31

    Considerable work has been done in the research and development of methane conversion technologies. Although some promising conversion processes have been demonstrated, further advances in engineering and also in the chemistry are needed before these technologies become commercial. High-temperature processes, e.g. the oxidative coupling of methane, studied thoroughly during the last 15 years, suffer from severe theoretical yield limits and poor economics. In the long term, the most promising approaches seem to be the organometallic and, especially, the biomimetic activation of methane. (author) (22 refs.)

  1. Methane hydroxylation: a biomimetic approach

    International Nuclear Information System (INIS)

    Shilov, Aleksandr E; Shteinman, Al'bert A

    2012-01-01

    The review addresses direct methane oxidation — an important fundamental problem, which has attracted much attention of researchers in recent years. Analysis of the available results on biomimetic and bio-inspired methane oxygenation has demonstrated that assimilating of the experience of Nature on oxidation of methane and other alkanes significantly enriches the arsenal of chemistry and can radically change the character of the entire chemical production, as well as enables the solution of many material, energetic and environmental problems. The bibliography includes 310 references.

  2. Rainfall interception of three trees in Oakland, California

    Science.gov (United States)

    Qingfu Xiao; E. Gregory McPherson

    2011-01-01

    A rainfall interception study was conducted in Oakland, California to determine the partitioning of rainfall and the chemical composition of precipitation, throughfall, and stemflow. Rainfall interception measurements were conducted on a gingko (Ginkgo biloba) (13.5 m tall deciduous tree), sweet gum (Liquidambar styraciflua) (8...

  3. Raman studies of methane-ethane hydrate metastability.

    Science.gov (United States)

    Ohno, Hiroshi; Strobel, Timothy A; Dec, Steven F; Sloan, E Dendy; Koh, Carolyn A

    2009-03-05

    The interconversion of methane-ethane hydrate from metastable to stable structures was studied using Raman spectroscopy. sI and sII hydrates were synthesized from methane-ethane gas mixtures of 65% or 93% methane in ethane and water, both with and without the kinetic hydrate inhibitor, poly(N-vinylcaprolactam). The observed faster structural conversion rate in the higher methane concentration atmosphere can be explained in terms of the differences in driving force (difference in chemical potential of water in sI and sII hydrates) and kinetics (mass transfer of gas and water rearrangement). The kinetic hydrate inhibitor increased the conversion rate at 65% methane in ethane (sI is thermodynamically stable) but retards the rate at 93% methane in ethane (sII is thermodynamically stable), implying there is a complex interaction between the polymer, water, and hydrate guests at crystal surfaces.

  4. Top-down constraints on methane and non-methane hydrocarbon emissions in the US Four Corners

    Science.gov (United States)

    Petron, G.; Miller, B. R.; Vaughn, B. H.; Kofler, J.; Mielke-Maday, I.; Sherwood, O.; Schwietzke, S.; Conley, S.; Sweeney, C.; Dlugokencky, E. J.; White, A. B.; Tans, P. P.; Schnell, R. C.

    2017-12-01

    A NASA and NOAA supported field campaign took place in the US Four Corners in April 2015 to further investigate a regional "methane hotspot" detected from space. The Four Corners region is home to the fossil fuel rich San Juan Basin, which extends between SE Colorado and NE New Mexico. The area has been extracting coal, oil and natural gas for decades. Degassing from the Fruitland coal outcrop on the Colorado side has also been reported. Instrumented aircraft, vans and ground based wind profilers were deployed for the campaign with the goal to quantify and attribute methane and non-methane hydrocarbon emissions in the region. A new comprehensive analysis of the campaign data sets will be presented and top-down emission estimates for methane and ozone precursors will be compared with available bottom-up estimates.

  5. Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Greg [Consortium for Ocean Leadership, Washington, DC (United States)

    2014-02-01

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report: Historical Methane Hydrate Project Review Report; Methane Hydrate Workshop Report; Topical Report: Marine Methane Hydrate Field Research Plan; and Final Scientific/Technical Report.

  6. The analysis of the possibility of using 10-minute rainfall series to determine the maximum rainfall amount with 5 minutes duration

    Science.gov (United States)

    Kaźmierczak, Bartosz; Wartalska, Katarzyna; Wdowikowski, Marcin; Kotowski, Andrzej

    2017-11-01

    Modern scientific research in the area of heavy rainfall analysis regarding to the sewerage design indicates the need to develop and use probabilistic rain models. One of the issues that remains to be resolved is the length of the shortest amount of rain to be analyzed. It is commonly believed that the best time is 5 minutes, while the least rain duration measured by the national services is often 10 or even 15 minutes. Main aim of this paper is to present the difference between probabilistic rainfall models results given from rainfall time series including and excluding 5 minutes rainfall duration. Analysis were made for long-time period from 1961-2010 on polish meteorological station Legnica. To develop best fitted to measurement rainfall data probabilistic model 4 probabilistic distributions were used. Results clearly indicates that models including 5 minutes rainfall duration remains more appropriate to use.

  7. Methane production from cheese whey

    Energy Technology Data Exchange (ETDEWEB)

    Yan, J Q; Liao, P H; Lo, K V

    1988-01-01

    Cheese whey was treated in a 17.5-litre laboratory-scale up-flow anaerobic sludge blanket reactor operated over a range of hydraulic retention times and organic loading rates. The reactor performance was determined in terms of methane production, volatile fatty acids conversion and chemical oxygen demand (COD) reduction. At a constant influent strength, the methane production rate decreased with decreasing hydraulic retention time. At constant hydraulic retention time the methane production rate increased as the influent strength was increased up to a concentration of 28.8 g COD litre/sup -1/. The methane production rate was similar for two influent concentrations studied at hydraulic retention times longer than 10 days. The effect of short hydraulic retention times on methane production rate was more pronounced for the higher influent concentration than for the lower influent concentration. The highest methane production rate of 9.57 litres CH/sub 4/ litre/sup -1/ feed day/sup -1/ was obtained at a loading rate of 5.96 g/sup -1/ COD litre/sup -1/ and an influent concentration of 28.8 g COD litre/sup -1/. A high treatment efficiency in terms of chemical oxygen demand reduction was obtained. In general, over 98% removal of chemical oxygen demand was achieved. The results indicated that anaerobic digestion of cheese whey using an upflow sludge blanket reactor could reduce pollution strength and produce energy for a cheese plant.

  8. The California Baseline Methane Survey

    Science.gov (United States)

    Duren, R. M.; Thorpe, A. K.; Hopkins, F. M.; Rafiq, T.; Bue, B. D.; Prasad, K.; Mccubbin, I.; Miller, C. E.

    2017-12-01

    The California Baseline Methane Survey is the first systematic, statewide assessment of methane point source emissions. The objectives are to reduce uncertainty in the state's methane budget and to identify emission mitigation priorities for state and local agencies, utilities and facility owners. The project combines remote sensing of large areas with airborne imaging spectroscopy and spatially resolved bottom-up data sets to detect, quantify and attribute emissions from diverse sectors including agriculture, waste management, oil and gas production and the natural gas supply chain. Phase 1 of the project surveyed nearly 180,000 individual facilities and infrastructure components across California in 2016 - achieving completeness rates ranging from 20% to 100% per emission sector at < 5 meters spatial resolution. Additionally, intensive studies of key areas and sectors were performed to assess source persistence and variability at times scales ranging from minutes to months. Phase 2 of the project continues with additional data collection in Spring and Fall 2017. We describe the survey design and measurement, modeling and analysis methods. We present initial findings regarding the spatial, temporal and sectoral distribution of methane point source emissions in California and their estimated contribution to the state's total methane budget. We provide case-studies and lessons learned about key sectors including examples where super-emitters were identified and mitigated. We summarize challenges and recommendations for future methane research, inventories and mitigation guidance within and beyond California.

  9. Satellite and gauge rainfall merging using geographically weighted regression

    Directory of Open Access Journals (Sweden)

    Q. Hu

    2015-05-01

    Full Text Available A residual-based rainfall merging scheme using geographically weighted regression (GWR has been proposed. This method is capable of simultaneously blending various satellite rainfall data with gauge measurements and could describe the non-stationary influences of geographical and terrain factors on rainfall spatial distribution. Using this new method, an experimental study on merging daily rainfall from the Climate Prediction Center Morphing dataset (CMOROH and gauge measurements was conducted for the Ganjiang River basin, in Southeast China. We investigated the capability of the merging scheme for daily rainfall estimation under different gauge density. Results showed that under the condition of sparse gauge density the merging rainfall scheme is remarkably superior to the interpolation using just gauge data.

  10. Crenothrix are major methane consumers in stratified lakes.

    Science.gov (United States)

    Oswald, Kirsten; Graf, Jon S; Littmann, Sten; Tienken, Daniela; Brand, Andreas; Wehrli, Bernhard; Albertsen, Mads; Daims, Holger; Wagner, Michael; Kuypers, Marcel Mm; Schubert, Carsten J; Milucka, Jana

    2017-09-01

    Methane-oxidizing bacteria represent a major biological sink for methane and are thus Earth's natural protection against this potent greenhouse gas. Here we show that in two stratified freshwater lakes a substantial part of upward-diffusing methane was oxidized by filamentous gamma-proteobacteria related to Crenothrix polyspora. These filamentous bacteria have been known as contaminants of drinking water supplies since 1870, but their role in the environmental methane removal has remained unclear. While oxidizing methane, these organisms were assigned an 'unusual' methane monooxygenase (MMO), which was only distantly related to 'classical' MMO of gamma-proteobacterial methanotrophs. We now correct this assignment and show that Crenothrix encode a typical gamma-proteobacterial PmoA. Stable isotope labeling in combination swith single-cell imaging mass spectrometry revealed methane-dependent growth of the lacustrine Crenothrix with oxygen as well as under oxygen-deficient conditions. Crenothrix genomes encoded pathways for the respiration of oxygen as well as for the reduction of nitrate to N 2 O. The observed abundance and planktonic growth of Crenothrix suggest that these methanotrophs can act as a relevant biological sink for methane in stratified lakes and should be considered in the context of environmental removal of methane.

  11. Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog.

    Science.gov (United States)

    Reumer, Max; Harnisz, Monika; Lee, Hyo Jung; Reim, Andreas; Grunert, Oliver; Putkinen, Anuliina; Fritze, Hannu; Bodelier, Paul L E; Ho, Adrian

    2018-02-01

    Ombrotrophic peatlands are a recognized global carbon reservoir. Without restoration and peat regrowth, harvested peatlands are dramatically altered, impairing their carbon sink function, with consequences for methane turnover. Previous studies determined the impact of commercial mining on the physicochemical properties of peat and the effects on methane turnover. However, the response of the underlying microbial communities catalyzing methane production and oxidation have so far received little attention. We hypothesize that with the return of Sphagnum spp. postharvest, methane turnover potential and the corresponding microbial communities will converge in a natural and restored peatland. To address our hypothesis, we determined the potential methane production and oxidation rates in natural (as a reference), actively mined, abandoned, and restored peatlands over two consecutive years. In all sites, the methanogenic and methanotrophic population sizes were enumerated using quantitative PCR (qPCR) assays targeting the mcrA and pmoA genes, respectively. Shifts in the community composition were determined using Illumina MiSeq sequencing of the mcrA gene and a pmoA -based terminal restriction fragment length polymorphism (t-RFLP) analysis, complemented by cloning and sequence analysis of the mmoX gene. Peat mining adversely affected methane turnover potential, but the rates recovered in the restored site. The recovery in potential activity was reflected in the methanogenic and methanotrophic abundances. However, the microbial community composition was altered, being more pronounced for the methanotrophs. Overall, we observed a lag between the recovery of the methanogenic/methanotrophic activity and the return of the corresponding microbial communities, suggesting that a longer duration (>15 years) is needed to reverse mining-induced effects on the methane-cycling microbial communities. IMPORTANCE Ombrotrophic peatlands are a crucial carbon sink, but this environment

  12. Automated reconstruction of rainfall events responsible for shallow landslides

    Science.gov (United States)

    Vessia, G.; Parise, M.; Brunetti, M. T.; Peruccacci, S.; Rossi, M.; Vennari, C.; Guzzetti, F.

    2014-04-01

    Over the last 40 years, many contributions have been devoted to identifying the empirical rainfall thresholds (e.g. intensity vs. duration ID, cumulated rainfall vs. duration ED, cumulated rainfall vs. intensity EI) for the initiation of shallow landslides, based on local as well as worldwide inventories. Although different methods to trace the threshold curves have been proposed and discussed in literature, a systematic study to develop an automated procedure to select the rainfall event responsible for the landslide occurrence has rarely been addressed. Nonetheless, objective criteria for estimating the rainfall responsible for the landslide occurrence (effective rainfall) play a prominent role on the threshold values. In this paper, two criteria for the identification of the effective rainfall events are presented: (1) the first is based on the analysis of the time series of rainfall mean intensity values over one month preceding the landslide occurrence, and (2) the second on the analysis of the trend in the time function of the cumulated mean intensity series calculated from the rainfall records measured through rain gauges. The two criteria have been implemented in an automated procedure written in R language. A sample of 100 shallow landslides collected in Italy by the CNR-IRPI research group from 2002 to 2012 has been used to calibrate the proposed procedure. The cumulated rainfall E and duration D of rainfall events that triggered the documented landslides are calculated through the new procedure and are fitted with power law in the (D,E) diagram. The results are discussed by comparing the (D,E) pairs calculated by the automated procedure and the ones by the expert method.

  13. Rainfall variation and child health: effect of rainfall on diarrhea among under 5 children in Rwanda, 2010

    Directory of Open Access Journals (Sweden)

    Assumpta Mukabutera

    2016-08-01

    Full Text Available Abstract Background Diarrhea among children under 5 years of age has long been a major public health concern. Previous studies have suggested an association between rainfall and diarrhea. Here, we examined the association between Rwandan rainfall patterns and childhood diarrhea and the impact of household sanitation variables on this relationship. Methods We derived a series of rain-related variables in Rwanda based on daily rainfall measurements and hydrological models built from daily precipitation measurements collected between 2009 and 2011. Using these data and the 2010 Rwanda Demographic and Health Survey database, we measured the association between total monthly rainfall, monthly rainfall intensity, runoff water and anomalous rainfall and the occurrence of diarrhea in children under 5 years of age. Results Among the 8601 children under 5 years of age included in the survey, 13.2 % reported having diarrhea within the 2 weeks prior to the survey. We found that higher levels of runoff were protective against diarrhea compared to low levels among children who lived in households with unimproved toilet facilities (OR = 0.54, 95 % CI: [0.34, 0.87] for moderate runoff and OR = 0.50, 95 % CI: [0.29, 0.86] for high runoff but had no impact among children in household with improved toilets. Conclusion Our finding that children in households with unimproved toilets were less likely to report diarrhea during periods of high runoff highlights the vulnerabilities of those living without adequate sanitation to the negative health impacts of environmental events.

  14. Differentiation of pre-existing trapped methane from thermogenic methane in an igneous-intruded coal by hydrous pyrolysis

    Science.gov (United States)

    Dias, Robert F.; Lewan, Michael D.; Birdwell, Justin E.; Kotarba, Maciej J.

    2014-01-01

    So as to better understand how the gas generation potential of coal changes with increasing rank, same-seam samples of bituminous coal from the Illinois Basin that were naturally matured to varying degrees by the intrusion of an igneous dike were subjected to hydrous pyrolysis (HP) conditions of 360 °C for 72 h. The accumulated methane in the reactor headspace was analyzed for δ13C and δ2H, and mol percent composition. Maximum methane production (9.7 mg/g TOC) occurred in the most immature samples (0.5 %Ro), waning to minimal methane values at 2.44 %Ro (0.67 mg/g TOC), and rebounding to 3.6 mg/g TOC methane in the most mature sample (6.76 %Ro). Methane from coal with the highest initial thermal maturity (6.76 %Ro) shows no isotopic dependence on the reactor water and has a microbial δ13C value of −61‰. However, methane from coal of minimal initial thermal maturity (0.5 %Ro) shows hydrogen isotopic dependence on the reaction water and has a δ13C value of −37‰. The gas released from coals under hydrous pyrolysis conditions represents a quantifiable mixture of ancient (270 Ma) methane (likely microbial) that was generated in situ and trapped within the rock during the rapid heating by the dike, and modern (laboratory) thermogenic methane that was generated from the indigenous organic matter due to thermal maturation induced by hydrous pyrolysis conditions. These findings provide an analytical framework for better assessment of natural gas sources and for differentiating generated gas from pre-existing trapped gas in coals of various ranks.

  15. Status and potential of bio-methane fuel

    International Nuclear Information System (INIS)

    2008-01-01

    This document first indicates and describes the various bio-methane production processes which can be implemented on a short term (use of organic wastes or effluents), on a medium term (from energetic crops) and on a longer term (gasification). It discusses and assesses the potential production of bio-methane fuel from different sources and processes. It describes the steps of the production of bio-methane fuel from biogas, with notably biogas refinement to produce bio-methane through three processes (de-carbonation, desulfurization, dehydration). Cost productions are assessed. Expected technology advances are evoked. Finally, the authors outline the contribution of bio-methane in the limitation of greenhouse gas emissions in the transport sector

  16. SAES St 909 pilot scale methane cracking tests

    International Nuclear Information System (INIS)

    Klein, J. E.; Sessions, H. T.

    2008-01-01

    Pilot scale (0.5 kg) SAES St 909 methane cracking tests were conducted for potential tritium process applications. Up to 1400 hours tests were done at 700 deg.C, 202.7 kPa (1520 torr) with a 0.03 sLPM feed of methane plus impurities, in a 20 vol% hydrogen, balance helium, stream. Carbon dioxide gettered by St 909 can be equated to an equivalent amount of methane gettered, but equating nitrogen to an equivalent amount of methane was nitrogen feed composition dependent. A decreased hydrogen feed increased methane getter rates while a 30 deg.C drop in one furnace zone increased methane emissions by over a factor of 30. The impact of gettered nitrogen can be somewhat minimized if nitrogen feed to the bed has been stopped and sufficient time given to recover the methane cracking rate. (authors)

  17. Methane Hydrate Field Program. Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    Collett, Tim [U.S. Geological Survey, Boulder, CO (United States); Bahk, Jang-Jun [Korea Inst. of Geoscience and Mineral Resources, Daejeon (Korea); Frye, Matt [U.S. Bureau of Ocean Energy Management, Sterling, VA (United States); Goldberg, Dave [Lamont-Doherty Earth Observatory, Palisades, NY (United States); Husebo, Jarle [Statoil ASA, Stavenger (Norway); Koh, Carolyn [Colorado School of Mines, Golden, CO (United States); Malone, Mitch [Texas A & M Univ., College Station, TX (United States); Shipp, Craig [Shell International Exploration and Production Inc., Anchorage, AK (United States); Torres, Marta [Oregon State Univ., Corvallis, OR (United States); Myers, Greg [Consortium For Ocean Leadership Inc., Washington, DC (United States); Divins, David [Consortium For Ocean Leadership Inc., Washington, DC (United States); Morell, Margo [Consortium For Ocean Leadership Inc., Washington, DC (United States)

    2013-12-31

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these efforts have been episodic in nature. To further our understanding, these efforts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and offers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.

  18. 75 FR 9886 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2010-03-04

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Department of Energy, Office of Fossil Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... the Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  19. Methane emission reduction: an application of FUND

    NARCIS (Netherlands)

    Tol, R.S.J.; Heintz, R.J.; Lammers, P.E.M.

    2003-01-01

    Methane is, after carbon dioxide, the most important anthropogenic greenhouse gas. Governments plan to abate methane emissions. A crude set of estimates of reduction costs is included in FUND, an integrated assessment model of climate change. In a cost-benefit analysis, methane emission reduction is

  20. Bio-methane via fast pyrolysis of biomass

    International Nuclear Information System (INIS)

    Görling, Martin; Larsson, Mårten; Alvfors, Per

    2013-01-01

    Highlights: ► Pyrolysis gases can efficiently be upgraded to bio-methane. ► The integration can increase energy efficiency and provide a renewable vehicle fuel. ► The biomass to bio-methane conversion efficiency is 83% (HHV). ► The efficiency is higher compared to bio-methane produced via gasification. ► Competitive alternative to other alternatives of bio-oil upgrading. - Abstract: Bio-methane, a renewable vehicle fuel, is today produced by anaerobic digestion and a 2nd generation production route via gasification is under development. This paper proposes a poly-generation plant that produces bio-methane, bio-char and heat via fast pyrolysis of biomass. The energy and material flows for the fuel synthesis are calculated by process simulation in Aspen Plus®. The production of bio-methane and bio-char amounts to 15.5 MW and 3.7 MW, when the total inputs are 23 MW raw biomass and 1.39 MW electricity respectively (HHV basis). The results indicate an overall efficiency of 84% including high-temperature heat and the biomass to bio-methane yield amounts to 83% after allocation of the biomass input to the final products (HHV basis). The overall energy efficiency is higher for the suggested plant than for the gasification production route and is therefore a competitive route for bio-methane production

  1. Paradox reconsidered: Methane oversaturation in well-oxygenated lake waters

    DEFF Research Database (Denmark)

    Tang, Kam W.; McGinnis, Daniel F.; Frindte, Katharina

    2014-01-01

    The widely reported paradox of methane oversaturation in oxygenated water challenges the prevailing paradigm that microbial methanogenesis only occurs under anoxic conditions. Using a combination of field sampling, incubation experiments, and modeling, we show that the recurring mid-water methane...... peak in Lake Stechlin, northeast Germany, was not dependent on methane input from the littoral zone or bottom sediment or on the presence of known micro-anoxic zones. The methane peak repeatedly overlapped with oxygen oversaturation in the seasonal thermocline. Incubation experiments and isotope...... analysis indicated active methane production, which was likely linked to photosynthesis and/or nitrogen fixation within the oxygenated water, whereas lessening of methane oxidation by light allowed accumulation of methane in the oxygen-rich upper layer. Estimated methane efflux from the surface water...

  2. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: a 10-year observation in the Tengger Desert.

    Science.gov (United States)

    Zhang, Zhi-Shan; Zhao, Yang; Li, Xin-Rong; Huang, Lei; Tan, Hui-Juan

    2016-05-17

    In water-limited regions, rainfall interception is influenced by rainfall properties and crown characteristics. Rainfall properties, aside from gross rainfall amount and duration (GR and RD), maximum rainfall intensity and rainless gap (RG), within rain events may heavily affect throughfall and interception by plants. From 2004 to 2014 (except for 2007), individual shrubs of Caragana korshinskii and Artemisia ordosica were selected to measure throughfall during 210 rain events. Various rainfall properties were auto-measured and crown characteristics, i.e., height, branch and leaf area index, crown area and volume of two shrubs were also measured. The relative interceptions of C. korshinskii and A. ordosica were 29.1% and 17.1%, respectively. Rainfall properties have more contributions than crown characteristics to throughfall and interception of shrubs. Throughfall and interception of shrubs can be explained by GR, RI60 (maximum rainfall intensities during 60 min), RD and RG in deceasing importance. However, relative throughfall and interception of two shrubs have different responses to rainfall properties and crown characteristics, those of C. korshinskii were closely related to rainfall properties, while those of A. ordosica were more dependent on crown characteristics. We highlight long-term monitoring is very necessary to determine the relationships between throughfall and interception with crown characteristics.

  3. The determination of methane resources from liquidated coal mines

    Science.gov (United States)

    Trenczek, Stanisław

    2017-11-01

    The article refers to methane presented in hard coal seams, which may pose a serious risk to workers, as evidenced by examples of incidents, and may also be a high energy source. That second issue concerns the possibility of obtaining methane from liquidated coal mines. There is discussed the current methodology for determination of methane resources from hard coal deposits. Methods of assessing methane emissions from hard coal deposits are given, including the degree of rock mass fracture, which is affected and not affected by mining. Additional criteria for methane recovery from the methane deposit are discussed by one example (of many types) of methane power generation equipment in the context of the estimation of potential viable resources. Finally, the concept of “methane resource exploitation from coal mine” refers to the potential for exploitation of the resource and the acquisition of methane for business purposes.

  4. 30 CFR 75.323 - Actions for excessive methane.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Actions for excessive methane. 75.323 Section... excessive methane. (a) Location of tests. Tests for methane concentrations under this section shall be made.... (1) When 1.0 percent or more methane is present in a working place or an intake air course, including...

  5. A Poisson Cluster Stochastic Rainfall Generator That Accounts for the Interannual Variability of Rainfall Statistics: Validation at Various Geographic Locations across the United States

    Directory of Open Access Journals (Sweden)

    Dongkyun Kim

    2014-01-01

    Full Text Available A novel approach for a Poisson cluster stochastic rainfall generator was validated in its ability to reproduce important rainfall and watershed response characteristics at 104 locations in the United States. The suggested novel approach, The Hybrid Model (THM, as compared to the traditional Poisson cluster rainfall modeling approaches, has an additional capability to account for the interannual variability of rainfall statistics. THM and a traditional approach of Poisson cluster rainfall model (modified Bartlett-Lewis rectangular pulse model were compared in their ability to reproduce the characteristics of extreme rainfall and watershed response variables such as runoff and peak flow. The results of the comparison indicate that THM generally outperforms the traditional approach in reproducing the distributions of peak rainfall, peak flow, and runoff volume. In addition, THM significantly outperformed the traditional approach in reproducing extreme rainfall by 2.3% to 66% and extreme flow values by 32% to 71%.

  6. methanization of organic matters. Guide for project developers

    International Nuclear Information System (INIS)

    2015-02-01

    This document aims at informing potential project developers (farmers, local communities, industrials) all along the creation of a methanization unit. It precisely indicates administrative procedures required to complete a project. It first presents some generalities about methanization (matters and their performance, methanization cycle, biogas), describes methanization processes (dry and humid), and valorisation processes (co-generation, hot water production, gas injection into the public network), presents digestate characteristics, and discusses benefits and drawbacks of methanization. The different steps of a project management are then analysed. Additional procedures are indicated, and risks and traps of methanization projects are highlighted. The document comes along with a large number of appendices which can be documents released by professional or public bodies

  7. International Methane Partnership Fighting Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Due to the growth of international attention on the problem of climate change combined with the attractiveness of methane mitigation technologies, the capture and use of methane in agriculture, coal mines, landfills, and the oil and gas sector has increasingly become popular over the past few years. Highlighting this, several countries hosted the international 'Methane to Market' Partnership Conference and Exposition in October 2007 in Beijing, China.

  8. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    Science.gov (United States)

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. Copyright © 2015. Published by Elsevier Ltd.

  9. Runoff Analysis Considering Orographical Features Using Dual Polarization Radar Rainfall

    Science.gov (United States)

    Noh, Hui-seong; Shin, Hyun-seok; Kang, Na-rae; Lee, Choong-Ke; Kim, Hung-soo

    2013-04-01

    Recently, the necessity for rainfall estimation and forecasting using the radar is being highlighted, due to the frequent occurrence of torrential rainfall resulting from abnormal changes of weather. Radar rainfall data represents temporal and spatial distributions properly and replace the existing rain gauge networks. It is also frequently applied in many hydrologic field researches. However, the radar rainfall data has an accuracy limitation since it estimates rainfall, by monitoring clouds and precipitation particles formed around the surface of the earth(1.5-3km above the surface) or the atmosphere. In a condition like Korea where nearly 70% of the land is covered by mountainous areas, there are lots of restrictions to use rainfall radar, because of the occurrence of beam blocking areas by topography. This study is aiming at analyzing runoff and examining the applicability of (R(Z), R(ZDR) and R(KDP)) provided by the Han River Flood Control Office(HRFCO) based on the basin elevation of Nakdong river watershed. For this purpose, the amount of radar rainfall of each rainfall event was estimated according to three sub-basins of Nakdong river watershed with the average basin elevation above 400m which are Namgang dam, Andong dam and Hapcheon dam and also another three sub-basins with the average basin elevation below 150m which are Waegwan, Changryeong and Goryeong. After runoff analysis using a distribution model, Vflo model, the results were reviewed and compared with the observed runoff. This study estimated the rainfall by using the radar-rainfall transform formulas, (R(Z), R(Z,ZDR) and R(Z,ZDR,KDP) for four stormwater events and compared the results with the point rainfall of the rain gauge. As the result, it was overestimated or underestimated, depending on rainfall events. Also, calculation indicates that the values from R(Z,ZDR) and R(Z,ZDR,KDP) relatively showed the most similar results. Moreover the runoff analysis using the estimated radar rainfall is

  10. Methane yield enhancement via electroporation of organic waste.

    Science.gov (United States)

    Safavi, Seyedeh Masoumeh; Unnthorsson, Runar

    2017-08-01

    An experimental study with pulsed electric field (PEF) pre-treatment was conducted to investigate its effect on methane production. PEF pre-treatment converts organic solids into soluble and colloidal forms, increasing bioavailability for anaerobic microorganisms participating in methane generation process. The substrates tested were landfill leachate and fruit/vegetable. Three treatment intensities of 15, 30, and 50kWh/m 3 were applied to investigate the influence of pre-treatment on methane production via biochemical methane potential test. Threshold treatment intensity was found to be around 30kWh/m 3 for landfill leachate beyond which the methane production enhanced linearly with increase in intensity. Methane production of the landfill leachate significantly increased up to 44% with the highest intensity. The result of pulsed electric field pre-treatment on fruit/vegetable showed that 15kWh/m 3 was the intensity by which the highest amount of methane (up to 7%) was achieved. Beyond this intensity, the methane production decreased. Chemical oxygen demand removals were increased up to 100% for landfill leachate and 17% for fruit/vegetable, compared to the untreated slurries. Results indicate that the treatment intensity has a significant effect on the methane production and biosolid removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea.

    Science.gov (United States)

    Niu, Mingyang; Fan, Xibei; Zhuang, Guangchao; Liang, Qianyong; Wang, Fengping

    2017-09-01

    Cold seeps are widespread chemosynthetic ecosystems in the deep-sea environment, and cold seep microbial communities of the South China Sea are poorly constrained. Here we report on the archaeal communities, particularly those involved in methane metabolization, in sediments of a newly discovered cold seep (named 'Haima') on the northwest slope of the South China Sea. Archaeal diversity, abundance and distribution were investigated in two piston cores collected from a seep area (QDN-14B) and a non-seep control site (QDN-31B). Geochemical investigation of the QDN-14B core identified an estimated sulfate-methane transition zone (Estimated SMTZ) at 300-400 cm below sea floor (cmbsf), where a high abundance of anaerobic methane-oxidizing archaea (ANME) occurred, as revealed by analysis of the 16S rRNA gene and the gene (mcrA) encoding the α-subunit of the key enzyme methyl-coenzyme M reductase. ANME-2a/b was predominant in the upper and middle layers of the estimated SMTZ, whereas ANME-1b outcompeted ANME-2 in the sulfate-depleted bottom layers of the estimated SMTZ and the methanogenic zone. Fine-scale phylogenetic analysis further divided the ANME-1b group into three subgroups with different distribution patterns: ANME-1bI, ANME-1bII and ANME-1bIII. Multivariate analyses indicated that dissolved inorganic carbon and sulfate may be important factors controlling the composition of the methane-metabolizing community. Our study on ANME niche separation and interactions with other archaeal groups improves our understanding of the metabolic diversity and flexibility of ANME, and the findings further suggest that ANME subgroups may have evolved diversified/specified metabolic capabilities other than syntrophic anaerobic oxidation of methane coupled with sulfate reduction in marine sediments. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Accuracy of rainfall measurement for scales of hydrological interest

    Directory of Open Access Journals (Sweden)

    S. J. Wood

    2000-01-01

    Full Text Available The dense network of 49 raingauges over the 135 km2 Brue catchment in Somerset, England is used to examine the accuracy of rainfall estimates obtained from raingauges and from weather radar. Methods for data quality control and classification of precipitation types are first described. A super-dense network comprising eight gauges within a 2 km grid square is employed to obtain a 'true value' of rainfall against which the 2 km radar grid and a single 'typical gauge' estimate can be compared. Accuracy is assessed as a function of rainfall intensity, for different periods of time-integration (15 minutes, 1 hour and 1 day and for two 8-gauge networks in areas of low and high relief. In a similar way, the catchment gauge network is used to provide the 'true catchment rainfall' and the accuracy of a radar estimate (an area-weighted average of radar pixel values and a single 'typical gauge' estimate of catchment rainfall evaluated as a function of rainfall intensity. A single gauge gives a standard error of estimate for rainfall in a 2 km square and over the catchment of 33% and 65% respectively, at rain rates of 4 mm in 15 minutes. Radar data at 2 km resolution give corresponding errors of 50% and 55%. This illustrates the benefit of using radar when estimating catchment scale rainfall. A companion paper (Wood et al., 2000 considers the accuracy of rainfall estimates obtained using raingauge and radar in combination. Keywords: rainfall, accuracy, raingauge, radar

  13. Potential of deterministic and geostatistical rainfall interpolation under high rainfall variability and dry spells: case of Kenya's Central Highlands

    Science.gov (United States)

    Kisaka, M. Oscar; Mucheru-Muna, M.; Ngetich, F. K.; Mugwe, J.; Mugendi, D.; Mairura, F.; Shisanya, C.; Makokha, G. L.

    2016-04-01

    Drier parts of Kenya's Central Highlands endure persistent crop failure and declining agricultural productivity. These have, in part, attributed to high temperatures, prolonged dry spells and erratic rainfall. Understanding spatial-temporal variability of climatic indices such as rainfall at seasonal level is critical for optimal rain-fed agricultural productivity and natural resource management in the study area. However, the predominant setbacks in analysing hydro-meteorological events are occasioned by either lack, inadequate, or inconsistent meteorological data. Like in most other places, the sole sources of climatic data in the study region are scarce and only limited to single stations, yet with persistent missing/unrecorded data making their utilization a challenge. This study examined seasonal anomalies and variability in rainfall, drought occurrence and the efficacy of interpolation techniques in the drier regions of eastern Kenyan. Rainfall data from five stations (Machang'a, Kiritiri, Kiambere and Kindaruma and Embu) were sourced from both the Kenya Meteorology Department and on-site primary recording. Owing to some experimental work ongoing, automated recording for primary dailies in Machang'a have been ongoing since the year 2000 to date; thus, Machang'a was treated as reference (for period of record) station for selection of other stations in the region. The other stations had data sets of over 15 years with missing data of less than 10 % as required by the world meteorological organization whose quality check is subject to the Centre for Climate Systems Modeling (C2SM) through MeteoSwiss and EMPA bodies. The dailies were also subjected to homogeneity testing to evaluate whether they came from the same population. Rainfall anomaly index, coefficients of variance and probability were utilized in the analyses of rainfall variability. Spline, kriging and inverse distance weighting interpolation techniques were assessed using daily rainfall data and

  14. Bayesian estimation of extreme flood quantiles using a rainfall-runoff model and a stochastic daily rainfall generator

    Science.gov (United States)

    Costa, Veber; Fernandes, Wilson

    2017-11-01

    Extreme flood estimation has been a key research topic in hydrological sciences. Reliable estimates of such events are necessary as structures for flood conveyance are continuously evolving in size and complexity and, as a result, their failure-associated hazards become more and more pronounced. Due to this fact, several estimation techniques intended to improve flood frequency analysis and reducing uncertainty in extreme quantile estimation have been addressed in the literature in the last decades. In this paper, we develop a Bayesian framework for the indirect estimation of extreme flood quantiles from rainfall-runoff models. In the proposed approach, an ensemble of long daily rainfall series is simulated with a stochastic generator, which models extreme rainfall amounts with an upper-bounded distribution function, namely, the 4-parameter lognormal model. The rationale behind the generation model is that physical limits for rainfall amounts, and consequently for floods, exist and, by imposing an appropriate upper bound for the probabilistic model, more plausible estimates can be obtained for those rainfall quantiles with very low exceedance probabilities. Daily rainfall time series are converted into streamflows by routing each realization of the synthetic ensemble through a conceptual hydrologic model, the Rio Grande rainfall-runoff model. Calibration of parameters is performed through a nonlinear regression model, by means of the specification of a statistical model for the residuals that is able to accommodate autocorrelation, heteroscedasticity and nonnormality. By combining the outlined steps in a Bayesian structure of analysis, one is able to properly summarize the resulting uncertainty and estimating more accurate credible intervals for a set of flood quantiles of interest. The method for extreme flood indirect estimation was applied to the American river catchment, at the Folsom dam, in the state of California, USA. Results show that most floods

  15. Rainfall erosivity factor estimation in Republic of Moldova

    Science.gov (United States)

    Castraveš, Tudor; Kuhn, Nikolaus

    2017-04-01

    Rainfall erosivity represents a measure of the erosive force of rainfall. Typically, it is expressed as variable such as the R factor in the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1965, 1978) or its derivates. The rainfall erosivity index for a rainfall event (EI30) is calculated from the total kinetic energy and maximum 30 minutes intensity of individual events. However, these data are often unavailable for wide regions and countries. Usually, there are three issues regarding precipitation data: low temporal resolution, low spatial density and limited access to the data. This is especially true for some of postsoviet countries from Eastern Europe, such as Republic of Moldova, where soil erosion is a real and persistent problem (Summer, 2003) and where soils represents the main natural resource of the country. Consequently, researching and managing soil erosion is particularly important. The purpose of this study is to develop a model based on commonly available rainfall data, such as event, daily or monthly amounts, to calculate rainfall erosivity for the territory of Republic of Moldova. Rainfall data collected during 1994-2015 period at 15 meteorological stations in the Republic of Moldova, with 10 minutes temporal resolution, were used to develop and calibrate a model to generate an erosivity map of Moldova. References 1. Summer, W., (2003). Soil erosion in the Republic of Moldova — the importance of institutional arrangements. Erosion Prediction in Ungauged Basins: Integrating Methods and Techniques (Proceedings of symposium HS01 held during IUGG2003 at Sapporo. July 2003). IAHS Publ. no. 279. 2. Wischmeier, W.H., and Smith, D.D. (1965). Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agr. Handbook No. 282, U.S. Dept. Agr., Washington, DC 3. Wischmeier, W.H., and Smith, D.D. (1978). Predicting rainfall erosion losses. Agr. handbook No. 537, U.S. Dept. of Agr., Science and Education Administration.

  16. Investigations of Methane Production in Hypersaline Environments

    Science.gov (United States)

    Bebout, Brad M.

    2015-01-01

    The recent reports of methane in the atmosphere of Mars, as well as the findings of hypersaline paleo-environments on that planet, have underscored the need to evaluate the importance of biological (as opposed to geological) trace gas production and consumption. Methane in the atmosphere of Mars may be an indication of life but might also be a consequence of geologic activity and/or the thermal alteration of ancient organic matter. Hypersaline environments have now been reported to be extremely likely in several locations in our solar system, including: Mars, Europa, and Enceladus. Modern hypersaline microbial mat communities, (thought to be analogous to those present on the early Earth at a period of time when Mars was experiencing very similar environmental conditions), have been shown to produce methane. However, very little is known about the physical and/or biological controls imposed upon the rates at which methane, and other important trace gases, are produced and consumed in these environments. We describe here the results of our investigations of methane production in hypersaline environments, including field sites in Chile, Baja California Mexico, California, USA and the United Arab Emirates. We have measured high concentrations of methane in bubbles of gas produced both in the sediments underlying microbial mats, as well as in areas not colonized by microbial mats in the Guerrero Negro hypersaline ecosystem, Baja California Mexico, in Chile, and in salt ponds on the San Francisco Bay. The carbon isotopic (d13C) composition of the methane in the bubbles exhibited an extremely wide range of values, (ca. -75 per mille ca. -25 per mille). The hydrogen isotopic composition of the methane (d2H) ranged from -60 to -30per mille and -450 to -350per mille. These isotopic values are outside of the range of values normally considered to be biogenic, however incubations of the sediments in contact with these gas bubbles reveals that the methane is indeed being

  17. Rainfall reliability, drought and flood vulnerability in Botswana ...

    African Journals Online (AJOL)

    Rainfall data from 14 stations (cities, towns and major villages) spanning 26 years (1970 to 1995) were used to calculate reliability and vulnerability of rainfall in Botswana. Time series data for 72 years were generated from the long-term rainfall gauging stations and the number of wet and dry years determined. Apart from ...

  18. Projected changes of rainfall event characteristics for the Czech Republic

    Directory of Open Access Journals (Sweden)

    Svoboda Vojtěch

    2016-12-01

    Full Text Available Projected changes of warm season (May–September rainfall events in an ensemble of 30 regional climate model (RCM simulations are assessed for the Czech Republic. Individual rainfall events are identified using the concept of minimum inter-event time and only heavy events are considered. The changes of rainfall event characteristics are evaluated between the control (1981–2000 and two scenario (2020–2049 and 2070–2099 periods. Despite a consistent decrease in the number of heavy rainfall events, there is a large uncertainty in projected changes in seasonal precipitation total due to heavy events. Most considered characteristics (rainfall event depth, mean rainfall rate, maximum 60-min rainfall intensity and indicators of rainfall event erosivity are projected to increase and larger increases appear for more extreme values. Only rainfall event duration slightly decreases in the more distant scenario period according to the RCM simulations. As a consequence, the number of less extreme heavy rainfall events as well as the number of long events decreases in majority of the RCM simulations. Changes in most event characteristics (and especially in characteristics related to the rainfall intensity depend on changes in radiative forcing and temperature for the future periods. Only changes in the number of events and seasonal total due to heavy events depend significantly on altitude.

  19. Temporal and spatial variations of rainfall erosivity in Southern Taiwan

    Science.gov (United States)

    Lee, Ming-Hsi; Lin, Huan-Hsuan; Chu, Chun-Kuang

    2014-05-01

    Soil erosion models are essential in developing effective soil and water resource conservation strategies. Soil erosion is generally evaluated using the Universal Soil Loss Equation (USLE) with an appropriate regional scale description. Among factors in the USLE model, the rainfall erosivity index (R) provides one of the clearest indications of the effects of climate change. Accurate estimation of rainfall erosivity requires continuous rainfall data; however, such data rarely demonstrate good spatial and temporal coverage. The data set consisted of 9240 storm events for the period 1993 to 2011, monitored by 27 rainfall stations of the Central Weather Bureau (CWB) in southern Taiwan, was used to analyze the temporal-spatial variations of rainfall erosivity. The spatial distribution map was plotted based on rainfall erosivity by the Kriging interpolation method. Results indicated that rainfall erosivity is mainly concentrated in rainy season from June to November typically contributed 90% of the yearly R factor. The temporal variations of monthly rainfall erosivity during June to November and annual rainfall erosivity have increasing trend from 1993 to 2011. There is an increasing trend from southwest to northeast in spatial distribution of rainfall erosivity in southern Taiwan. The results further indicated that there is a higher relationship between elevation and rainfall erosivity. The method developed in this study may also be useful for sediment disasters on Climate Change.

  20. Performance of bias corrected MPEG rainfall estimate for rainfall-runoff simulation in the upper Blue Nile Basin, Ethiopia

    Science.gov (United States)

    Worqlul, Abeyou W.; Ayana, Essayas K.; Maathuis, Ben H. P.; MacAlister, Charlotte; Philpot, William D.; Osorio Leyton, Javier M.; Steenhuis, Tammo S.

    2018-01-01

    In many developing countries and remote areas of important ecosystems, good quality precipitation data are neither available nor readily accessible. Satellite observations and processing algorithms are being extensively used to produce satellite rainfall products (SREs). Nevertheless, these products are prone to systematic errors and need extensive validation before to be usable for streamflow simulations. In this study, we investigated and corrected the bias of Multi-Sensor Precipitation Estimate-Geostationary (MPEG) data. The corrected MPEG dataset was used as input to a semi-distributed hydrological model Hydrologiska Byråns Vattenbalansavdelning (HBV) for simulation of discharge of the Gilgel Abay and Gumara watersheds in the Upper Blue Nile basin, Ethiopia. The result indicated that the MPEG satellite rainfall captured 81% and 78% of the gauged rainfall variability with a consistent bias of underestimating the gauged rainfall by 60%. A linear bias correction applied significantly reduced the bias while maintaining the coefficient of correlation. The simulated flow using bias corrected MPEG SRE resulted in a simulated flow comparable to the gauge rainfall for both watersheds. The study indicated the potential of MPEG SRE in water budget studies after applying a linear bias correction.

  1. Drought's legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk.

    Science.gov (United States)

    Anderegg, William R L; Plavcová, Lenka; Anderegg, Leander D L; Hacke, Uwe G; Berry, Joseph A; Field, Christopher B

    2013-04-01

    Forest mortality constitutes a major uncertainty in projections of climate impacts on terrestrial ecosystems and carbon-cycle feedbacks. Recent drought-induced, widespread forest die-offs highlight that climate change could accelerate forest mortality with its diverse and potentially severe consequences for the global carbon cycle, ecosystem services, and biodiversity. How trees die during drought over multiple years remains largely unknown and precludes mechanistic modeling and prediction of forest die-off with climate change. Here, we examine the physiological basis of a recent multiyear widespread die-off of trembling aspen (Populus tremuloides) across much of western North America. Using observations from both native trees while they are dying and a rainfall exclusion experiment on mature trees, we measure hydraulic performance over multiple seasons and years and assess pathways of accumulated hydraulic damage. We test whether accumulated hydraulic damage can predict the probability of tree survival over 2 years. We find that hydraulic damage persisted and increased in dying trees over multiple years and exhibited few signs of repair. This accumulated hydraulic deterioration is largely mediated by increased vulnerability to cavitation, a process known as cavitation fatigue. Furthermore, this hydraulic damage predicts the probability of interyear stem mortality. Contrary to the expectation that surviving trees have weathered severe drought, the hydraulic deterioration demonstrated here reveals that surviving regions of these forests are actually more vulnerable to future droughts due to accumulated xylem damage. As the most widespread tree species in North America, increasing vulnerability to drought in these forests has important ramifications for ecosystem stability, biodiversity, and ecosystem carbon balance. Our results provide a foundation for incorporating accumulated drought impacts into climate-vegetation models. Finally, our findings highlight the

  2. Methanation of hydrogen and carbon dioxide

    International Nuclear Information System (INIS)

    Burkhardt, Marko; Busch, Günter

    2013-01-01

    Highlights: • The biologic methanation of exclusively gases like hydrogen and carbon dioxide is feasible. • Electrical energy can be stored in the established gas grid by conversion to methane. • The quality of produced biogas is very high (c CH4 = 98 vol%). • The conversion rate is depending on H 2 -flow rate. - Abstract: A new method for the methanation of hydrogen and carbon dioxide is presented. In a novel anaerobic trickle-bed reactor, biochemical catalyzed methanation at mesophilic temperatures and ambient pressure can be realized. The conversion of gaseous substrates by immobilized hydrogenotrophic methanogens is a unique feature of this reactor type. The already patented reactor produces biogas which has a very high quality (c CH4 = 97.9 vol%). Therefore, the storage of biogas in the existing natural gas grid is possible without extensive purification. The specific methane production was measured with P = 1.17 Nm CH4 3 /(m R 3 d). It is conceivable to realize the process at sites that generate solar or wind energy and sites subject to the conditions for hydrogen electrolysis (or other methods of hydrogen production). The combination with conventional biogas plants under hydrogen addition to methane enrichment is possible as well. The process enables the coupling of various renewable energy sources

  3. Methane as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Karlsdottir, S.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Methane is a key component in the atmosphere where its concentration has increased rapidly since pre-industrial time. About 2/3 of it is caused by human activities. Changes in methane will affect the concentrations of other gases, and a model is a very important tool to study sensitivity due to changes in concentration of gases. The author used a three-dimensional global chemistry transport model to study the effect of changes in methane concentration on other trace gases. The model includes natural and anthropogenic emissions of NOx, CO, CH{sub 4} and non-methane hydrocarbons. Wet and dry deposition are also included. The chemical scheme in the model includes 49 compounds, 101 reactions, and 16 photolytic reactions. The trace gas concentrations are calculated every 30 min, using a quasi steady state approximation. Model calculations of three cases are reported and compared. Enhanced methane concentration will have strongest effect in remote regions. In polluted areas local chemistry will have remarked effect. The feedback was always positive. Average atmospheric lifetime calculated in the model was 7.6 years, which agrees with recent estimates based on observations. 8 refs.

  4. Methane emissions from different coastal wetlands in New England, US

    Science.gov (United States)

    Wang, F.; Tang, J.; Kroeger, K. D.; Gonneea, M. E.

    2017-12-01

    According to the IPCC, methane have 25 times warming effect than CO2, and natural wetlands contribute 20-39 % to the global emission of methane. Although most of these methane was from inland wetlands, there was still large uncertain in the methane emissions in coastal wetlands. In the past three years, we have investigated methane emissions in coastal wetlands in MA, USA. Contrary to previous assumptions, we have observed relative larger methane flux in some salt marshes than freshwater wetlands. We further detect the methane source, and found that plant activities played an important role in methane flux, for example, the growth of S. aterniflora, the dominate plants in salt marsh, could enhance methane emission, while in an fresh water wetland that was dominated by cattail, plant activity oxided methane and reduced total flux. Phragmite, an invasive plant at brackish marsh, have the highest methane flux among all coastal wetland investigated. This study indicated that coastal wetland could still emit relatively high amount of methane even under high water salinity condiations, and plant activity played an important role in methane flux, and this role was highly species-specific.

  5. Temporal characteristics of rainfall events under three climate types in Slovenia

    Science.gov (United States)

    Dolšak, Domen; Bezak, Nejc; Šraj, Mojca

    2016-10-01

    Temporal rainfall distribution can often have significant influence on other hydrological processes such as runoff generation or rainfall interception. High-frequency rainfall data from 30 stations in Slovenia were analysed in order to improve the knowledge about the temporal rainfall distribution within a rainfall event. Using the pre-processed rainfall data Huff curves were determined and the binary shape code (BSC) methodology was applied. Although Slovenia covers only about 20,000 km2, results indicate large temporal and spatial variability in the precipitation pattern of the analysed stations, which is in agreement with the different Slovenian climate types: sub-Mediterranean, temperate continental, and mountain climate. Statistically significant correlation was identified between the most frequent BSC types, mean annual precipitation, and rainfall erosivity for individual rainfall stations. Moreover, different temporal rainfall distributions were observed for rainfall events with shorter duration (less than 12 h) than those with longer duration (more than 24 h). Using the analysis of the Huff curves it was shown that the variability in the Huff curves decreases with increasing rainfall duration. Thus, it seems that for shorter duration convective storms a more diverse temporal rainfall distribution can be expected than for the longer duration frontal precipitation where temporal rainfall distribution shows less variability.

  6. Australian methane fluxes

    International Nuclear Information System (INIS)

    Williams, D.J.

    1990-01-01

    Estimates are provided for the amount of methane emitted annually into the atmosphere in Australia for a variety of sources. The sources considered are coal mining, landfill, motor vehicles, natural gas suply system, rice paddies, bushfires, termites, wetland and animals. This assessment indicates that the major sources of methane are natural or agricultural in nature and therefore offer little scope for reduction. Nevertheless the remainder are not trival and reduction of these fluxes could play a significant part in any Australian action on the greenhouse problem. 19 refs., 7 tabs., 1 fig

  7. Abiotic production of methane in terrestrial planets.

    Science.gov (United States)

    Guzmán-Marmolejo, Andrés; Segura, Antígona; Escobar-Briones, Elva

    2013-06-01

    On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×10(8) and 1.3×10(9) molecules cm(-2) s(-1) for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life.

  8. Methane of the coal

    International Nuclear Information System (INIS)

    Vasquez, H.

    1997-01-01

    In the transformation process of the vegetable material to the coal (Carbonization), the products that are generated include CH 4, CO2, N2 and H2. The methane is generated by two mechanisms: below 50 centigrade degree, as product of microbial decomposition, the methanogenic is generated; and above 50 centigrade degree, due to the effects of the buried and increase of the range of the coal, the thermogenic methane is detachment, as a result of the catagenic. The generated methane is stored in the internal surfaces of the coal, macro and micro pores and in the natural fractures. The presence of accumulations of gas of the coal has been known in the entire world by many years, but only as something undesirable for its danger in the mining exploitation of the coal

  9. Evaluation of short-period rainfall estimates from Kalpana-1 satellite

    Indian Academy of Sciences (India)

    The INSAT Multispectral Rainfall Algorithm (IMSRA) technique for rainfall estimation, has recently been developed to meet the shortcomings of the Global Precipitation Index (GPI) technique of rainfall estimation from the data of geostationary satellites; especially for accurate short period rainfall estimates. This study ...

  10. Demonstration of an ethane spectrometer for methane source identification.

    Science.gov (United States)

    Yacovitch, Tara I; Herndon, Scott C; Roscioli, Joseph R; Floerchinger, Cody; McGovern, Ryan M; Agnese, Michael; Pétron, Gabrielle; Kofler, Jonathan; Sweeney, Colm; Karion, Anna; Conley, Stephen A; Kort, Eric A; Nähle, Lars; Fischer, Marc; Hildebrandt, Lars; Koeth, Johannes; McManus, J Barry; Nelson, David D; Zahniser, Mark S; Kolb, Charles E

    2014-07-15

    Methane is an important greenhouse gas and tropospheric ozone precursor. Simultaneous observation of ethane with methane can help identify specific methane source types. Aerodyne Ethane-Mini spectrometers, employing recently available mid-infrared distributed feedback tunable diode lasers (DFB-TDL), provide 1 s ethane measurements with sub-ppb precision. In this work, an Ethane-Mini spectrometer has been integrated into two mobile sampling platforms, a ground vehicle and a small airplane, and used to measure ethane/methane enhancement ratios downwind of methane sources. Methane emissions with precisely known sources are shown to have ethane/methane enhancement ratios that differ greatly depending on the source type. Large differences between biogenic and thermogenic sources are observed. Variation within thermogenic sources are detected and tabulated. Methane emitters are classified by their expected ethane content. Categories include the following: biogenic (6%), pipeline grade natural gas (30%). Regional scale observations in the Dallas/Fort Worth area of Texas show two distinct ethane/methane enhancement ratios bridged by a transitional region. These results demonstrate the usefulness of continuous and fast ethane measurements in experimental studies of methane emissions, particularly in the oil and natural gas sector.

  11. Methane emission by bubbling from Gatun Lake, Panama

    Science.gov (United States)

    Keller, Michael; Stallard, Robert F.

    1994-01-01

    We studied methane emission by bubbling from Gatun Lake, Panama, at water depths of less than 1 m to about 10 m. Gas bubbles were collected in floating traps deployed during 12- to 60-hour observation periods. Comparison of floating traps and floating chambers showed that about 98% of methane emission occurred by bubbling and only 2% occurred by diffusion. Average methane concentration of bubbles at our sites varied from 67% to 77%. Methane emission by bubbling occurred episodically, with greatest rates primarily between the hours of 0800 and 1400 LT. Events appear to be triggered by wind. The flux of methane associated with bubbling was strongly anticorrelated with water depth. Seasonal changes in water depth caused seasonal variation of methane emission. Bubble methane fluxes through the lake surface into the atmosphere measured during 24-hour intervals were least (10-200 mg/m2/d) at deeper sites (greater than 7 m) and greatest (300-2000 mg/m2/d) at shallow sites (less than 2 m).

  12. Regional rainfall thresholds for landslide occurrence using a centenary database

    Science.gov (United States)

    Vaz, Teresa; Luís Zêzere, José; Pereira, Susana; Cruz Oliveira, Sérgio; Garcia, Ricardo A. C.; Quaresma, Ivânia

    2018-04-01

    This work proposes a comprehensive method to assess rainfall thresholds for landslide initiation using a centenary landslide database associated with a single centenary daily rainfall data set. The method is applied to the Lisbon region and includes the rainfall return period analysis that was used to identify the critical rainfall combination (cumulated rainfall duration) related to each landslide event. The spatial representativeness of the reference rain gauge is evaluated and the rainfall thresholds are assessed and calibrated using the receiver operating characteristic (ROC) metrics. Results show that landslide events located up to 10 km from the rain gauge can be used to calculate the rainfall thresholds in the study area; however, these thresholds may be used with acceptable confidence up to 50 km from the rain gauge. The rainfall thresholds obtained using linear and potential regression perform well in ROC metrics. However, the intermediate thresholds based on the probability of landslide events established in the zone between the lower-limit threshold and the upper-limit threshold are much more informative as they indicate the probability of landslide event occurrence given rainfall exceeding the threshold. This information can be easily included in landslide early warning systems, especially when combined with the probability of rainfall above each threshold.

  13. Extreme Rainfall Mechanisms Exhibited by Typhoon Morakot (2009

    Directory of Open Access Journals (Sweden)

    Ching-Yuang Huang

    2011-01-01

    Full Text Available Moderate Typhoon Morakot (2009 became the most catastrophic typhoon in Taiwan on record. The MM5 numerical experiments with and without bogus data assimilation (BDA were used to investigate the extreme rainfall mechanisms in Taiwan associated with the westbound typhoon. The BDA, based on 4DVAR, helps MM5 to maintain a more consolidated typhoon vortex and better predict the observed track after landfall, thus producing realistic extreme rainfall (about 2400 mm at the southern and Central Mountain Range (CMR of Taiwan. Severe rainfall in Taiwan is dominated by the CMR that hence modulates rainfall predictability.

  14. Sensitivity of point scale surface runoff predictions to rainfall resolution

    Directory of Open Access Journals (Sweden)

    A. J. Hearman

    2007-01-01

    Full Text Available This paper investigates the effects of using non-linear, high resolution rainfall, compared to time averaged rainfall on the triggering of hydrologic thresholds and therefore model predictions of infiltration excess and saturation excess runoff at the point scale. The bounded random cascade model, parameterized to three locations in Western Australia, was used to scale rainfall intensities at various time resolutions ranging from 1.875 min to 2 h. A one dimensional, conceptual rainfall partitioning model was used that instantaneously partitioned water into infiltration excess, infiltration, storage, deep drainage, saturation excess and surface runoff, where the fluxes into and out of the soil store were controlled by thresholds. The results of the numerical modelling were scaled by relating soil infiltration properties to soil draining properties, and in turn, relating these to average storm intensities. For all soil types, we related maximum infiltration capacities to average storm intensities (k* and were able to show where model predictions of infiltration excess were most sensitive to rainfall resolution (ln k*=0.4 and where using time averaged rainfall data can lead to an under prediction of infiltration excess and an over prediction of the amount of water entering the soil (ln k*>2 for all three rainfall locations tested. For soils susceptible to both infiltration excess and saturation excess, total runoff sensitivity was scaled by relating drainage coefficients to average storm intensities (g* and parameter ranges where predicted runoff was dominated by infiltration excess or saturation excess depending on the resolution of rainfall data were determined (ln g*<2. Infiltration excess predicted from high resolution rainfall was short and intense, whereas saturation excess produced from low resolution rainfall was more constant and less intense. This has important implications for the accuracy of current hydrological models that use time

  15. Rainfall and Development of Zika Virus

    African Journals Online (AJOL)

    2017-11-01

    Nov 1, 2017 ... between rainfall and incidence of arbovirus disease such as dengue is well demonstrated (2). For Zika virus an infection, a similar observation can be expected. A recent report from Thailand can also show the expected pattern of the prevalence of Zika virus infection in the areas with high rainfall (3).

  16. Composite hydrogen-solid methane moderators

    International Nuclear Information System (INIS)

    Picton, D.; Bennington, S.; Ansell, S.; Fernandez-Garcia, J.; Broome, T.

    2004-01-01

    This paper describes the results of Monte-Carlo calculations for a coupled moderator on a low-power pulsed neutron spallation source and is part of the design study for a second target station for the ISIS spallation source. Various options were compared including hydrogen, solid methane, grooving the solid methane and compound moderators made of hydrogen in front of solid methane. To maximise the neutron current at low energies two strategies appear to emerge from the calculations. For instruments that view a large area of moderator surface a layer of hydrogen in front of a thin solid-methane moderator is optimum, giving a gain of about a factor 10 relative to the current liquid hydrogen moderator on the existing ISIS tantalum target. For instruments that only view a restricted area higher flux, corresponding to a gain of 13.5, can be achieved with the use of a single groove or re-entrant hole in the moderator. (orig.)

  17. Coprecipitated nickel-alumina methanation catalysts

    International Nuclear Information System (INIS)

    Kruissink, E.C.

    1981-01-01

    In the last few years there has been a renewed interest in the methanation reaction CO+3H 2 =CH 4 +H 2 O. The investigations described in this thesis were performed in relation to the application of this reaction, within the framework of the so-called 'NFE' project, also called 'ADAM' and 'EVA' project. This project, which has been under investigation in West Germany for some years, aims at the investigation of the feasibility of transporting heat from a nuclear high temperature reactor by means of a chemical cycle. A promising possibility to realize such a cycle exists in applying the combination of the endothermic steam reforming of methane and the exothermic methanation reaction. This thesis describes the investigations into a certain type of methanation catalyst, viz. a coprecipitated nickel-alumina catalyst, with the aim to give more insight into the interrelationship between the preparation conditions on the one hand and catalyst properties such as activity and stability on the other hand. (Auth.)

  18. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  19. A comprehensive continent-wide regionalisation investigation for daily design rainfall

    OpenAIRE

    F. Johnson; J. Green

    2018-01-01

    Study region: Australia. Study focus: Design rainfalls, in the form of Intensity Duration Frequency curves, are the standard input for most flood studies. Methods to combine rainfall data across space are required to provide optimal estimates of design rainfalls and constrain their uncertainty. This paper robustly investigates the use of a variety of regionalization methods to provide Australia wide design rainfall estimates using 8619 high quality rainfall stations. The influence of an indiv...

  20. Methane distribution and methane oxidation in the water column of the Elbe estuary, Germany

    Czech Academy of Sciences Publication Activity Database

    Matoušů, Anna; Osudar, R.; Šimek, Karel; Bussmann, I.

    2017-01-01

    Roč. 79, č. 3 (2017), s. 443-458 ISSN 1015-1621 R&D Projects: GA ČR(CZ) GA13-00243S Institutional support: RVO:60077344 Keywords : estuary * methane * methane budget * ethane oxidation * River Elbe Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Marine biology, freshwater biology, limnology Impact factor: 2.821, year: 2016

  1. Termites facilitate methane oxidation and shape the methanotrophic community

    NARCIS (Netherlands)

    Ho, A.; Erens, H.; Mujinya, B.B.; Boeckx, P.; Baert, G.; Schneider, B.; Frenzel, P.; Boon, N.; Van Ranst, E.

    2013-01-01

    Termite-derived methane contributes 3-4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of methane produced can be consumed by methanotrophs that inhabit the mound material. Yet, methanotroph

  2. Bio-methane. Challenges and technical solutions

    International Nuclear Information System (INIS)

    Blaisonneau, Laurent; Carlu, Elieta; Feuillette, Vincent

    2012-06-01

    Among the new energy sectors in development, biogas has many benefits: several valorization possibilities (bio-methane, electricity and heat), continuous production, easy storage. In Europe, and particularly in France, the bio-methane market will be in the next years a driver for the improvement of the economic, environmental and social performance of the actors of the value chain of biogas. ENEA releases a report on the current state of the bio-methane market in Europe. This publication mainly describes: An outlook of the market evolution and the corresponding stakes for the actors of this sector, the technical and economic characteristics, maturity level and specificities of each biogas upgrading process, An analysis of the French regulatory framework for bio-methane injection into the grid

  3. Exploiting coalbed methane and protecting the global environment

    Energy Technology Data Exchange (ETDEWEB)

    Yuheng, Gao

    1996-12-31

    The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

  4. Remote Sensing and Sea-Truth Measurements of Methane Flux to the Atmosphere (HYFLUX project)

    Energy Technology Data Exchange (ETDEWEB)

    Ian MacDonald

    2011-05-31

    , respectively. Based on the contemporaneous wind speeds at this site, contemporary estimates of the diffusive fluxes from the mixed layer to the atmosphere for methane, ethane, and propane are 26.5, 2.10, and 2.78 {micro}mol/m{sup 2}d, respectively. Continuous measurements of air and sea surface concentrations of methane were made to obtain high spatial and temporal resolution of the diffusive net sea-to-air fluxes. The atmospheric methane fluctuated between 1.70 ppm and 2.40 ppm during the entire cruise except for high concentrations (up to 4.01 ppm) sampled during the end of the occupation of GC600 and the transit between GC600 and GC185. Results from interpolations within the survey areas show the daily methane fluxes to the atmosphere at the three sites range from 0.744 to 300 mol d-1. Considering that the majority of seeps in the GOM are deep (>500 m), elevated CH{sub 4} concentrations in near-surface waters resulting from bubble-mediated CH4 transport in the water column are expected to be widespread in the Gulf of Mexico.

  5. Interannual rainfall variability over the Cape south coast of South Africa linked to cut-off low associated rainfall

    CSIR Research Space (South Africa)

    Engelbrecht, CJ

    2014-10-01

    Full Text Available The influence of cut-off low (COL) associated rainfall on interannual rainfall variability over the Cape south coast region of South Africa for the period 1979-2011 is investigated. COLs are objectively identified and tracked on daily average 500 h...

  6. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature...... the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  7. prediction of rainfall in the southern highlands of tanzania

    African Journals Online (AJOL)

    User

    distribution at different places in the world. A study to ... climate indices influence rainfall. It has been observed .... Table 4: Summary of Predictors entered MLR and PCR models for MAM and OND rainfalls. .... from the cumulus clouds; rainfall is.

  8. Methane adsorption on activated carbon

    NARCIS (Netherlands)

    Perl, Andras; Koopman, Folkert; Jansen, Peter; de Rooij, Marietta; van Gemert, Wim

    2014-01-01

    Methane storage in adsorbed form is a promising way to effectively and safely store fuel for vehicular transportation or for any other potential application. In a solid adsorbent, nanometer wide pores can trap methane by van der Waals forces as high density fluid at low pressure and room

  9. Spatial Interpolation of Historical Seasonal Rainfall Indices over Peninsular Malaysia

    Science.gov (United States)

    Hassan, Zulkarnain; Haidir, Ahmad; Saad, Farah Naemah Mohd; Ayob, Afizah; Rahim, Mustaqqim Abdul; Ghazaly, Zuhayr Md.

    2018-03-01

    The inconsistency in inter-seasonal rainfall due to climate change will cause a different pattern in the rainfall characteristics and distribution. Peninsular Malaysia is not an exception for this inconsistency, in which it is resulting extreme events such as flood and water scarcity. This study evaluates the seasonal patterns in rainfall indices such as total amount of rainfall, the frequency of wet days, rainfall intensity, extreme frequency, and extreme intensity in Peninsular Malaysia. 40 years (1975-2015) data records have been interpolated using Inverse Distance Weighted method. The results show that the formation of rainfall characteristics are significance during the Northeast monsoon (NEM), as compared to Southwest monsoon (SWM). Also, there is a high rainfall intensity and frequency related to extreme over eastern coasts of Peninsula during the NEM season.

  10. Spatial Interpolation of Historical Seasonal Rainfall Indices over Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Hassan Zulkarnain

    2018-01-01

    Full Text Available The inconsistency in inter-seasonal rainfall due to climate change will cause a different pattern in the rainfall characteristics and distribution. Peninsular Malaysia is not an exception for this inconsistency, in which it is resulting extreme events such as flood and water scarcity. This study evaluates the seasonal patterns in rainfall indices such as total amount of rainfall, the frequency of wet days, rainfall intensity, extreme frequency, and extreme intensity in Peninsular Malaysia. 40 years (1975-2015 data records have been interpolated using Inverse Distance Weighted method. The results show that the formation of rainfall characteristics are significance during the Northeast monsoon (NEM, as compared to Southwest monsoon (SWM. Also, there is a high rainfall intensity and frequency related to extreme over eastern coasts of Peninsula during the NEM season.

  11. Exhaled methane concentration profiles during exercise on an ergometer

    Science.gov (United States)

    Szabó, A; Ruzsanyi, V; Unterkofler, K; Mohácsi, Á; Tuboly, E; Boros, M; Szabó, G; Hinterhuber, H; Amann, A

    2016-01-01

    Exhaled methane concentration measurements are extensively used in medical investigation of certain gastrointestinal conditions. However, the dynamics of endogenous methane release is largely unknown. Breath methane profiles during ergometer tests were measured by means of a photoacoustic spectroscopy based sensor. Five methane-producing volunteers (with exhaled methane level being at least 1 ppm higher than room air) were measured. The experimental protocol consisted of 5 min rest—15 min pedalling (at a workload of 75 W)—5 min rest. In addition, hemodynamic and respiratory parameters were determined and compared to the estimated alveolar methane concentration. The alveolar breath methane level decreased considerably, by a factor of 3–4 within 1.5 min, while the estimated ventilation-perfusion ratio increased by a factor of 2–3. Mean pre-exercise and exercise methane concentrations were 11.4 ppm (SD:7.3) and 2.8 ppm (SD:1.9), respectively. The changes can be described by the high sensitivity of exhaled methane to ventilationperfusion ratio and are in line with the Farhi equation. PMID:25749807

  12. Methane: a new stake for negotiations on climate?

    International Nuclear Information System (INIS)

    2008-01-01

    After having outlined that the issue of methane emissions could be, after the reduction of emissions from deforestation and degradation and the reduction of greenhouse gas emissions, an additional matter of discussion for the struggle against climate change, this article comments some data concerning methane emissions in six African countries. Generally, the main source of methane is agriculture (often more than 90 per cent) except in Gambia where wastes represent 77.8 per cent of methane emissions. This high level of methane emissions by agriculture could be a problem for these countries, whereas perspectives of waste valuation already exist

  13. Comparison of Adaline and Multiple Linear Regression Methods for Rainfall Forecasting

    Science.gov (United States)

    Sutawinaya, IP; Astawa, INGA; Hariyanti, NKD

    2018-01-01

    Heavy rainfall can cause disaster, therefore need a forecast to predict rainfall intensity. Main factor that cause flooding is there is a high rainfall intensity and it makes the river become overcapacity. This will cause flooding around the area. Rainfall factor is a dynamic factor, so rainfall is very interesting to be studied. In order to support the rainfall forecasting, there are methods that can be used from Artificial Intelligence (AI) to statistic. In this research, we used Adaline for AI method and Regression for statistic method. The more accurate forecast result shows the method that used is good for forecasting the rainfall. Through those methods, we expected which is the best method for rainfall forecasting here.

  14. Atmospheric Ozone and Methane in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Ivar S. A. Isaksen

    2014-07-01

    Full Text Available Ozone and methane are chemically active climate-forcing agents affected by climate–chemistry interactions in the atmosphere. Key chemical reactions and processes affecting ozone and methane are presented. It is shown that climate-chemistry interactions have a significant impact on the two compounds. Ozone, which is a secondary compound in the atmosphere, produced and broken down mainly in the troposphere and stratosphre through chemical reactions involving atomic oxygen (O, NOx compounds (NO, NO2, CO, hydrogen radicals (OH, HO2, volatile organic compounds (VOC and chlorine (Cl, ClO and bromine (Br, BrO. Ozone is broken down through changes in the atmospheric distribution of the afore mentioned compounds. Methane is a primary compound emitted from different sources (wetlands, rice production, livestock, mining, oil and gas production and landfills.Methane is broken down by the hydroxyl radical (OH. OH is significantly affected by methane emissions, defined by the feedback factor, currently estimated to be in the range 1.3 to 1.5, and increasing with increasing methane emission. Ozone and methane changes are affected by NOx emissions. While ozone in general increase with increases in NOx emission, methane is reduced, due to increases in OH. Several processes where current and future changes have implications for climate-chemistry interactions are identified. It is also shown that climatic changes through dynamic processes could have significant impact on the atmospheric chemical distribution of ozone and methane, as we can see through the impact of Quasi Biennial Oscillation (QBO. Modeling studies indicate that increases in ozone could be more pronounced toward the end of this century. Thawing permafrost could lead to important positive feedbacks in the climate system. Large amounts of organic material are stored in the upper layers of the permafrost in the yedoma deposits in Siberia, where 2 to 5% of the deposits could be organic material

  15. Martian Methane From a Cometary Source: A Hypothesis

    Science.gov (United States)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.; hide

    2016-01-01

    In recent years, methane in the martian atmosphere has been detected by Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. An additional potential source exists: meteor showers from the emission of large comet dust particles could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, generating methane via UV photolysis.

  16. Methane to bioproducts: the future of the bioeconomy?

    Science.gov (United States)

    Pieja, Allison J; Morse, Molly C; Cal, Andrew J

    2017-12-01

    Methanotrophs have been studied since the 1970s, but interest has increased tremendously in recent years due to their potential to transform methane into valuable bioproducts. The vast quantity of available methane and the low price of methane as natural gas have helped to spur this interest. The most well-studied, biologically-derived products from methane include methanol, polyhydroxyalkanoates, and single cell protein. However, many other high-interest chemicals such as biofuels or high-value products such as ectoine could be made industrially relevant through metabolic engineering. Although challenges must be overcome to achieve commercialization of biologically manufactured methane-to-products, taking a holistic view of the production process or radically re-imagining pathways could lead to a future bioeconomy with methane as the primary feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Duration-frequency relationships of heavy rainfall in Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Álvaro José Back

    2012-06-01

    Full Text Available The purpose of this study was to adjust equations that establish relationships between rainfall events with different duration and data from weather stations in the state of Santa Catarina, Brazil. In this study, the relationships between different duration heavy rainfalls from 13 weather stations of Santa Catarina were analyzed. From series of maximum annual rainfalls, and using the Gumbel-Chow distribution, the maximum rainfall for durations between 5 min and 24 h were estimated considering return periods from 2 to 100 years. The data fit to the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test at 5 % significance. The coefficients of Bell's equation were adjusted to estimate the relationship between rainfall duration t (min and the return period T (y in relation to the maximum rainfall with a duration of 1 hour and a 10 year return period. Likewise, the coefficients of Bell's equation were adjusted based on the maximum rainfall with a duration of 1 day and a 10 year return period. The results showed that these relationships are viable to estimate short-duration rainfall events at locations where there are no rainfall records.

  18. An Aerial ``Sniffer Dog'' for Methane

    Science.gov (United States)

    Nathan, Brian; Schaefer, Dave; Zondlo, Mark; Khan, Amir; Lary, David

    2012-10-01

    The Earth's surface and its atmosphere maintain a ``Radiation Balance.'' Any factor which influences this balance is labeled as a mechanism of ``Radiative Forcing'' (RF). Greenhouse Gas (GHG) concentrations are among the most important forcing mechanisms. Methane, the second-most-abundant noncondensing greenhouse gas, is over 25 times more effective per molecule at radiating heat than the most abundant, Carbon Dioxide. Methane is also the principal component of Natural Gas, and gas leaks can cause explosions. Additionally, massive quantities of methane reside (in the form of natural gas) in underground shale basins. Recent technological advancements--specifically the combination of horizontal drilling and hydraulic fracturing--have allowed drillers access to portions of these ``plays'' which were previously unreachable, leading to an exponential growth in the shale gas industry. Presently, very little is known about the amount of methane which escapes into the global atmosphere from the extraction process. By using remote-controlled robotic helicopters equipped with specially developed trace gas laser sensors, we can get a 3-D profile of where and how methane is being released into the global atmosphere.

  19. Convective Mode and Mesoscale Heavy Rainfall Forecast Challenges during a High-Impact Weather Period along the Gulf Coast and Florida from 17-20 May 2016

    Science.gov (United States)

    Bosart, L. F.; Wallace, B. C.

    2017-12-01

    Two high-impact convective storm forecast challenges occurred between 17-20 May 2016 during NOAA's Hazardous Weather Testbed Spring Forecast Experiment (SFE) at the Storm Prediction Center. The first forecast challenge was 286 mm of unexpected record-breaking rain that fell on Vero Beach (VRB), Florida, between 1500 UTC 17 May and 0600 UTC 18 May, more than doubling the previous May daily rainfall record. The record rains in VRB occurred subsequent to the formation of a massive MCS over the central Gulf of Mexico between 0900-1000 UTC 17 May. This MCS, linked to the earlier convection associated with an anomalously strong subtropical jet (STJ) over the Gulf of Mexico, moved east-northeastward toward Florida. The second forecast challenge was a large MCS that formed over the Mexican mountains near the Texas-Mexican border, moved eastward and grew upscale prior to 1200 UTC 19 May. This MCS further strengthened offshore after 1800 UTC 19 May beneath the STJ. SPC SFE participants expected this MCS to move east-northeastward and bring heavy rain due to training echoes along the Gulf coast as far eastward as the Florida panhandle. Instead, this MCS transitioned into a bowing MCS that resembled a low-end derecho and produced a 4-6 hPa cold pool with widespread surface wind gusts between 35-50 kt. Both MCS events occurred in a large-scale baroclinic environment along the northern Gulf coast. Both MCS events responded to antecedent convection within this favorable large-scale environment. Rainfall amounts with the first heavy rain-producing MCS were severely underestimated by models and forecasters alike. The second MCS produced the greatest forecaster angst because rainfall totals were forecast too high (MCS propagated too fast) and severe wind reports were much more widespread than anticipated (because of cold pool formation). This presentation will attempt to untangle what happened and why it happened.

  20. What drove the methane cycle in the past - evidence from carbon isotopic data of methane enclosed in polar ice cores

    OpenAIRE

    Möller, Lars

    2013-01-01

    During the last glacial cycle, greenhouse gas concentrations fluctuated on decadal and longer timescales. Concentrations of methane, as measured in polar ice cores, show a close connection with Northern Hemisphere temperature variability, but the contribution of the various methane sources and sinks to changes in concentration is still a matter of debate. This thesis assess changes in methane cycling over the past 160,000 years by measurements of the carbon isotopic composition d13C of methan...

  1. Rainfall-threshold conditions for landslides in a humid-tropical system

    Science.gov (United States)

    Larsen, Matthew C.; Simon, Andrew

    1993-01-01

    Landslides are triggered by factors such as heavy rainfall, seismic activity, and construction on hillslopes. The leading cause of landslides in Puerto Rico is intense and/or prolonged rainfall. A rainfall threshold for rainfall-triggered landsliding is delimited by 256 storms that occurred between 1959 and 1991 in the central mountains of Puerto Rico, where mean annual rainfall is close to or in excess of 2,000 mm. Forty one of the 256 storms produced intense and/or prolonged rainfall that resulted in tens to hundreds of landslides. A threshold fitted to the lower boundary of the field defined by landslide-triggering storms is expressed as

  2. METHANE INCORPORATION BY PROCARYOTIC PHOTOSYNTHETICMICROORGANISMS

    Energy Technology Data Exchange (ETDEWEB)

    Norton, Charles J.; Kirk, Martha; Calvin, Melvin

    1970-08-01

    The procaryotic photosynthetic microorganisms Anacystis nidulans, Nostoc and Rhodospirillum rubrum have cell walls and membranes that are resistant to the solution of methane in their lipid components and intracellular fluids. But Anacystis nidulans, possesses a limited bioxidant system, a portion of which may be extracellularly secreted, which rapidly oxidizes methane to carbon dioxide. Small C{sup 14} activities derived from CH{sub 4} in excess of experimental error are detected in all the major biochemical fractions of Anacystis nidulans and Nostoc. This limited capacity to metabolize methane appears to be a vestigial potentiality that originated over two billion years ago in the early evolution of photosynthetic bacteria and blue-green algae.

  3. The rainfall plot: its motivation, characteristics and pitfalls.

    Science.gov (United States)

    Domanska, Diana; Vodák, Daniel; Lund-Andersen, Christin; Salvatore, Stefania; Hovig, Eivind; Sandve, Geir Kjetil

    2017-05-18

    A visualization referred to as rainfall plot has recently gained popularity in genome data analysis. The plot is mostly used for illustrating the distribution of somatic cancer mutations along a reference genome, typically aiming to identify mutation hotspots. In general terms, the rainfall plot can be seen as a scatter plot showing the location of events on the x-axis versus the distance between consecutive events on the y-axis. Despite its frequent use, the motivation for applying this particular visualization and the appropriateness of its usage have never been critically addressed in detail. We show that the rainfall plot allows visual detection even for events occurring at high frequency over very short distances. In addition, event clustering at multiple scales may be detected as distinct horizontal bands in rainfall plots. At the same time, due to the limited size of standard figures, rainfall plots might suffer from inability to distinguish overlapping events, especially when multiple datasets are plotted in the same figure. We demonstrate the consequences of plot congestion, which results in obscured visual data interpretations. This work provides the first comprehensive survey of the characteristics and proper usage of rainfall plots. We find that the rainfall plot is able to convey a large amount of information without any need for parameterization or tuning. However, we also demonstrate how plot congestion and the use of a logarithmic y-axis may result in obscured visual data interpretations. To aid the productive utilization of rainfall plots, we demonstrate their characteristics and potential pitfalls using both simulated and real data, and provide a set of practical guidelines for their proper interpretation and usage.

  4. Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines

    Science.gov (United States)

    Borowski, Marek; Kuczera, Zbigniew

    2018-03-01

    Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows that methane released from the rock mass to the longwall area was responsible for numerous mining disasters. The main source of methane are coal deposits because it is autochthonous gas and is closely related with carbonification and forming of coal deposits. Degree of methane saturation in coal deposits depends on numerous factors; mainly on presence or lack of insulating layers in cover deposit that allow or do not on degasification and easily methane outflow into surroundings. Hence in coal mining there are coal deposits that contain only low degree of methane saturation in places where is lack of insulating layers till high in methane coal deposits occurring in insulating claystones or in shales. Conducting mining works in coal deposits of high methane hazard without using of special measures to combat (ventilation, methane drainage) could be impossible. Control of methane hazard depends also on other co-occuring natural dangers for which used preventive actions eliminate methane hazard. Safety in mines excavating coal deposits saturated with methane depends on the correct estimation of methane hazard, drawn up forecasts, conducted observations, hazard control as well as undertaken prevention measures. Methane risk prevention includes identification and control methods of methane hazards as well as means of combating the explosive accumulation of methane in longwall workings. The main preventive actions in underground coal mines are: effective ventilation that prevents forming of methane fuses or placed methane accumulation in headings ventilated by airflow created by main fans and in headings with auxiliary ventilation, methane drainage using drain holes that are drilled from underground headings or from the surface, methanometry control of methane concentration in the air; location

  5. Comparison of Methane Control Methods in Polish and Vietnamese Coal Mines

    Directory of Open Access Journals (Sweden)

    Borowski Marek

    2018-01-01

    Full Text Available Methane hazard often occurs in hard coal mines and causes very serious accidents and can be the reason of methane or methane and coal dust explosions. History of coal mining shows that methane released from the rock mass to the longwall area was responsible for numerous mining disasters. The main source of methane are coal deposits because it is autochthonous gas and is closely related with carbonification and forming of coal deposits. Degree of methane saturation in coal deposits depends on numerous factors; mainly on presence or lack of insulating layers in cover deposit that allow or do not on degasification and easily methane outflow into surroundings. Hence in coal mining there are coal deposits that contain only low degree of methane saturation in places where is lack of insulating layers till high in methane coal deposits occurring in insulating claystones or in shales. Conducting mining works in coal deposits of high methane hazard without using of special measures to combat (ventilation, methane drainage could be impossible. Control of methane hazard depends also on other co-occuring natural dangers for which used preventive actions eliminate methane hazard. Safety in mines excavating coal deposits saturated with methane depends on the correct estimation of methane hazard, drawn up forecasts, conducted observations, hazard control as well as undertaken prevention measures. Methane risk prevention includes identification and control methods of methane hazards as well as means of combating the explosive accumulation of methane in longwall workings. The main preventive actions in underground coal mines are: effective ventilation that prevents forming of methane fuses or placed methane accumulation in headings ventilated by airflow created by main fans and in headings with auxiliary ventilation, methane drainage using drain holes that are drilled from underground headings or from the surface, methanometry control of methane concentration in

  6. Abiotic Production of Methane in Terrestrial Planets

    Science.gov (United States)

    Guzmán-Marmolejo, Andrés; Escobar-Briones, Elva

    2013-01-01

    Abstract On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×108 and 1.3×109 molecules cm−2 s−1 for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life. Key Words: Serpentinization—Exoplanets—Biosignatures—Planetary atmospheres. Astrobiology 13, 550–559. PMID:23742231

  7. Statistical Analysis of 30 Years Rainfall Data: A Case Study

    Science.gov (United States)

    Arvind, G.; Ashok Kumar, P.; Girish Karthi, S.; Suribabu, C. R.

    2017-07-01

    Rainfall is a prime input for various engineering design such as hydraulic structures, bridges and culverts, canals, storm water sewer and road drainage system. The detailed statistical analysis of each region is essential to estimate the relevant input value for design and analysis of engineering structures and also for crop planning. A rain gauge station located closely in Trichy district is selected for statistical analysis where agriculture is the prime occupation. The daily rainfall data for a period of 30 years is used to understand normal rainfall, deficit rainfall, Excess rainfall and Seasonal rainfall of the selected circle headquarters. Further various plotting position formulae available is used to evaluate return period of monthly, seasonally and annual rainfall. This analysis will provide useful information for water resources planner, farmers and urban engineers to assess the availability of water and create the storage accordingly. The mean, standard deviation and coefficient of variation of monthly and annual rainfall was calculated to check the rainfall variability. From the calculated results, the rainfall pattern is found to be erratic. The best fit probability distribution was identified based on the minimum deviation between actual and estimated values. The scientific results and the analysis paved the way to determine the proper onset and withdrawal of monsoon results which were used for land preparation and sowing.

  8. Methane-oxidizing seawater microbial communities from an Arctic shelf

    Science.gov (United States)

    Uhlig, Christiane; Kirkpatrick, John B.; D'Hondt, Steven; Loose, Brice

    2018-06-01

    Marine microbial communities can consume dissolved methane before it can escape to the atmosphere and contribute to global warming. Seawater over the shallow Arctic shelf is characterized by excess methane compared to atmospheric equilibrium. This methane originates in sediment, permafrost, and hydrate. Particularly high concentrations are found beneath sea ice. We studied the structure and methane oxidation potential of the microbial communities from seawater collected close to Utqiagvik, Alaska, in April 2016. The in situ methane concentrations were 16.3 ± 7.2 nmol L-1, approximately 4.8 times oversaturated relative to atmospheric equilibrium. The group of methane-oxidizing bacteria (MOB) in the natural seawater and incubated seawater was > 97 % dominated by Methylococcales (γ-Proteobacteria). Incubations of seawater under a range of methane concentrations led to loss of diversity in the bacterial community. The abundance of MOB was low with maximal fractions of 2.5 % at 200 times elevated methane concentration, while sequence reads of non-MOB methylotrophs were 4 times more abundant than MOB in most incubations. The abundances of MOB as well as non-MOB methylotroph sequences correlated tightly with the rate constant (kox) for methane oxidation, indicating that non-MOB methylotrophs might be coupled to MOB and involved in community methane oxidation. In sea ice, where methane concentrations of 82 ± 35.8 nmol kg-1 were found, Methylobacterium (α-Proteobacteria) was the dominant MOB with a relative abundance of 80 %. Total MOB abundances were very low in sea ice, with maximal fractions found at the ice-snow interface (0.1 %), while non-MOB methylotrophs were present in abundances similar to natural seawater communities. The dissimilarities in MOB taxa, methane concentrations, and stable isotope ratios between the sea ice and water column point toward different methane dynamics in the two environments.

  9. Non-parametric characterization of long-term rainfall time series

    Science.gov (United States)

    Tiwari, Harinarayan; Pandey, Brij Kishor

    2018-03-01

    The statistical study of rainfall time series is one of the approaches for efficient hydrological system design. Identifying, and characterizing long-term rainfall time series could aid in improving hydrological systems forecasting. In the present study, eventual statistics was applied for the long-term (1851-2006) rainfall time series under seven meteorological regions of India. Linear trend analysis was carried out using Mann-Kendall test for the observed rainfall series. The observed trend using the above-mentioned approach has been ascertained using the innovative trend analysis method. Innovative trend analysis has been found to be a strong tool to detect the general trend of rainfall time series. Sequential Mann-Kendall test has also been carried out to examine nonlinear trends of the series. The partial sum of cumulative deviation test is also found to be suitable to detect the nonlinear trend. Innovative trend analysis, sequential Mann-Kendall test and partial cumulative deviation test have potential to detect the general as well as nonlinear trend for the rainfall time series. Annual rainfall analysis suggests that the maximum changes in mean rainfall is 11.53% for West Peninsular India, whereas the maximum fall in mean rainfall is 7.8% for the North Mountainous Indian region. The innovative trend analysis method is also capable of finding the number of change point available in the time series. Additionally, we have performed von Neumann ratio test and cumulative deviation test to estimate the departure from homogeneity. Singular spectrum analysis has been applied in this study to evaluate the order of departure from homogeneity in the rainfall time series. Monsoon season (JS) of North Mountainous India and West Peninsular India zones has higher departure from homogeneity and singular spectrum analysis shows the results to be in coherence with the same.

  10. Turbulent burning rates of methane and methane-hydrogen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Fairweather, M. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Ormsby, M.P.; Sheppard, C.G.W. [School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Woolley, R. [Department of Mechanical Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2009-04-15

    Methane and methane-hydrogen (10%, 20% and 50% hydrogen by volume) mixtures have been ignited in a fan stirred bomb in turbulence and filmed using high speed cine schlieren imaging. Measurements were performed at 0.1 MPa (absolute) and 360 K. A turbulent burning velocity was determined for a range of turbulence velocities and equivalence ratios. Experimental laminar burning velocities and Markstein numbers were also derived. For all fuels the turbulent burning velocity increased with turbulence velocity. The addition of hydrogen generally resulted in increased turbulent and laminar burning velocity and decreased Markstein number. Those flames that were less sensitive to stretch (lower Markstein number) burned faster under turbulent conditions, especially as the turbulence levels were increased, compared to stretch-sensitive (high Markstein number) flames. (author)

  11. Could Methane Oxidation in Lakes Be Enhanced by Eutrophication?

    Science.gov (United States)

    Van Grinsven, S.; Villanueva, L.; Harrison, J.; S Sinninghe Damsté, J.

    2017-12-01

    Climate change and eutrophication both affect aquatic ecosystems. Eutrophication is caused by high nutrient inputs, leading to algal blooms, oxygen depletion and disturbances of the natural balances in aquatic systems. Methane, a potent greenhouse gas produced biologically by anaerobic degradation of organic matter, is often released from the sediments of lakes and marine systems to overlying water and the atmosphere. Methane oxidation, a microbial methane consumption process, can limit methane emission from lakes and reservoirs by 50-80%. Here, we studied methane oxidation in a seasonally stratified reservoir: Lacamas Lake in Washington, USA. We found this lake has a large summer storage capacity of methane in its deep water layer, with a very active microbial community capable of oxidizing exceptionally high amounts of methane. The natural presence of terminal electron acceptors is, however, too low to support these high potential rates. Addition of eutrophication-related nutrients such as nitrate and sulfate increased the methane removal rates by 4 to 7-fold. The microbial community was studied using 16S rRNA gene amplicon sequencing and preliminary results indicate the presence of a relatively unknown facultative anaerobic methane oxidizer of the genus Methylomonas, capable of using nitrate as an electron donor. Experiments in which anoxic and oxic conditions were rapidly interchanged showed this facultative anaerobic methane oxidizer has an impressive flexibility towards large, rapid changes in environmental conditions and this feature might be key to the unexpectedly high methane removal rates in eutrophied and anoxic watersheds.

  12. Nonequilibrium clumped isotope signals in microbial methane

    Science.gov (United States)

    Wang, David T.; Gruen, Danielle S.; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C.; Holden, James F.; Hristov, Alexander N.; Pohlman, John W.; Morrill, Penny L.; Könneke, Martin; Delwiche, Kyle B.; Reeves, Eoghan P.; Sutcliffe, Chelsea N.; Ritter, Daniel J.; Seewald, Jeffrey S.; McIntosh, Jennifer C.; Hemond, Harold F.; Kubo, Michael D.; Cardace, Dawn; Hoehler, Tori M.; Ono, Shuhei

    2015-01-01

    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply-substituted “clumped” isotopologues, e.g., 13CH3D, has recently emerged as a proxy for determining methane-formation temperatures; however, the impact of biological processes on methane’s clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.

  13. Methanization - Technical sheet

    International Nuclear Information System (INIS)

    Bastide, Guillaume

    2015-02-01

    This document explains fundamentals of methanization such as biological reactions and conditions suitable for biogas production (temperature, pH, anaerobic medium, and so on). It also proposes an overview of available techniques, of the present regulation, of environmental impacts, and of costs and profitability of methanization installations. Examples of installations are provided, as well as a set of questions and answers. Perspectives of development are finally discussed in terms of sector development potential, of regulatory evolution, of new perspectives for gas valorisation, of need of acquisition of reference data due to the relatively low number of existing installations, and of research and development

  14. Regional rainfall thresholds for landslide occurrence using a centenary database

    Science.gov (United States)

    Vaz, Teresa; Luís Zêzere, José; Pereira, Susana; Cruz Oliveira, Sérgio; Quaresma, Ivânia

    2017-04-01

    Rainfall is one of the most important triggering factors for landslides occurrence worldwide. The relation between rainfall and landslide occurrence is complex and some approaches have been focus on the rainfall thresholds identification, i.e., rainfall critical values that when exceeded can initiate landslide activity. In line with these approaches, this work proposes and validates rainfall thresholds for the Lisbon region (Portugal), using a centenary landslide database associated with a centenary daily rainfall database. The main objectives of the work are the following: i) to compute antecedent rainfall thresholds using linear and potential regression; ii) to define lower limit and upper limit rainfall thresholds; iii) to estimate the probability of critical rainfall conditions associated with landslide events; and iv) to assess the thresholds performance using receiver operating characteristic (ROC) metrics. In this study we consider the DISASTER database, which lists landslides that caused fatalities, injuries, missing people, evacuated and homeless people occurred in Portugal from 1865 to 2010. The DISASTER database was carried out exploring several Portuguese daily and weekly newspapers. Using the same newspaper sources, the DISASTER database was recently updated to include also the landslides that did not caused any human damage, which were also considered for this study. The daily rainfall data were collected at the Lisboa-Geofísico meteorological station. This station was selected considering the quality and completeness of the rainfall data, with records that started in 1864. The methodology adopted included the computation, for each landslide event, of the cumulative antecedent rainfall for different durations (1 to 90 consecutive days). In a second step, for each combination of rainfall quantity-duration, the return period was estimated using the Gumbel probability distribution. The pair (quantity-duration) with the highest return period was

  15. Phytoremediation of Atmospheric Methane

    Science.gov (United States)

    2013-04-15

    REPORT Phytoremediation of Atmospheric Methane 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have transformed a plant, Arabidopsis thaliana, with the...298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 31-Mar-2012 Phytoremediation of Atmospheric Methane Report Title ABSTRACT We have transformed a...DD882) Scientific Progress See attachment Technology Transfer 1    Final Report for DARPA project W911NF1010027  Phytoremediation  of Atmospheric

  16. Sources of atmospheric methane from coastal marine wetlands

    International Nuclear Information System (INIS)

    Harriss, R.C.; Sebacher, D.I.; Bartlett, K.B.; Bartlett, D.S.

    1982-01-01

    Biological methanogenesis in wetlands is believed to be one of the major sources of global tropospheric methane. The present paper reports measurements of methane distribution in the soils, sediments, water and vegetation of coastal marine wetlands. Measurements, carried out in the salt marshes Bay Tree Creek in Virginia and Panacea in northwest Florida, reveal methane concentrations in soils and sediments to vary with depth below the surface and with soil temperature. The fluxes of methane from marsh soils to the atmosphere at the soil-air interface are estimated to range from -0.00067 g CH 4 /sq m per day (methane sink) to 0.024 g CH 4 /sq m per day, with an average value of 0.0066 g CH 4 /sq m per day. Data also demonstrate the important role of tidal waters percolating through marsh soils in removing methane from the soils and releasing it to the atmosphere. The information obtained, together with previous studies, provides a framework for the design of a program based on in situ and remote sensing measurements to study the global methane cycle

  17. A Metastatistical Approach to Satellite Estimates of Extreme Rainfall Events

    Science.gov (United States)

    Zorzetto, E.; Marani, M.

    2017-12-01

    The estimation of the average recurrence interval of intense rainfall events is a central issue for both hydrologic modeling and engineering design. These estimates require the inference of the properties of the right tail of the statistical distribution of precipitation, a task often performed using the Generalized Extreme Value (GEV) distribution, estimated either from a samples of annual maxima (AM) or with a peaks over threshold (POT) approach. However, these approaches require long and homogeneous rainfall records, which often are not available, especially in the case of remote-sensed rainfall datasets. We use here, and tailor it to remotely-sensed rainfall estimates, an alternative approach, based on the metastatistical extreme value distribution (MEVD), which produces estimates of rainfall extreme values based on the probability distribution function (pdf) of all measured `ordinary' rainfall event. This methodology also accounts for the interannual variations observed in the pdf of daily rainfall by integrating over the sample space of its random parameters. We illustrate the application of this framework to the TRMM Multi-satellite Precipitation Analysis rainfall dataset, where MEVD optimally exploits the relatively short datasets of satellite-sensed rainfall, while taking full advantage of its high spatial resolution and quasi-global coverage. Accuracy of TRMM precipitation estimates and scale issues are here investigated for a case study located in the Little Washita watershed, Oklahoma, using a dense network of rain gauges for independent ground validation. The methodology contributes to our understanding of the risk of extreme rainfall events, as it allows i) an optimal use of the TRMM datasets in estimating the tail of the probability distribution of daily rainfall, and ii) a global mapping of daily rainfall extremes and distributional tail properties, bridging the existing gaps in rain gauges networks.

  18. Determination of Areas Susceptible to Landsliding Using Spatial Patterns of Rainfall from Tropical Rainfall Measuring Mission Data, Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Renato Fontes Guimarães

    2017-10-01

    Full Text Available Spatial patterns of shallow landslide initiation reflect both spatial patterns of heavy rainfall and areas susceptible to mass movements. We determine the areas most susceptible to shallow landslide occurrence through the calculation of critical soil cohesion and spatial patterns of rainfall derived from TRMM (Tropical Rainfall Measuring Mission data for Paraty County, State of Rio de Janeiro, Brazil. Our methodology involved: (a creating the digital elevation model (DEM and deriving attributes such as slope and contributing area; (b incorporating spatial patterns of rainfall derived from TRMM into the shallow slope stability model SHALSTAB; and (c quantitative assessment of the correspondence of mapped landslide scars to areas predicted to be most prone to shallow landsliding. We found that around 70% of the landslide scars occurred in less than 10% of the study area identified as potentially unstable. The greatest concentration of landslides occurred in areas where the root strength of vegetation is an important contribution to slope stability in regions of orographically-enhanced rainfall on the coastal topographic flank. This approach helps quantify landslide hazards in areas with similar geomorphological characteristics, but different spatial patterns of rainfall.

  19. A space-time rainfall generator for highly convective Mediterranean rainstorms

    Directory of Open Access Journals (Sweden)

    S. Salsón

    2003-01-01

    Full Text Available Distributed hydrological models require fine resolution rainfall inputs, enhancing the practical interest of space-time rainfall models, capable of generating through numerical simulation realistic space-time rainfall intensity fields. Among different mathematical approaches, those based on point processes and built upon a convenient analytical description of the raincell as the fundamental unit, have shown to be particularly suitable and well adapted when extreme rainfall events of convective nature are considered. Starting from previous formulations, some analytical refinements have been considered, allowing practical generation of space-time rainfall intensity fields for that type of rainstorm events. Special attention is placed on the analytical description of the spatial and temporal evolution of the rainfall intensities produced by the raincells. After deriving the necessary analytical results, the seven parameters of the model have been estimated by the method of moments, for each of the 30 selected rainfall events in the Jucar River Basin (ValenciaSpain – period 1991 to 2000, using 5-min aggregated rainfall data series from an automatic raingauge network.

  20. Apply data mining to analyze the rainfall of landslide

    Directory of Open Access Journals (Sweden)

    Lee Chou-Yuan

    2018-01-01

    Full Text Available Taiwan is listed as extremely dangerous country which suffers from many disasters. The disasters from the landslide result in the loss of agricultural productions, life and property and so on. Many researchers concern about the disasters of landslide, but there are few discussions for the threshold of rainfall for landslide. In this paper, data mining is applied to establish rules and the threshold of rainfall for landslide in Huafan University, Taiwan. These used variables include rainfall, insolation, insolation rate, averaged humidity, averaged temperature, wind speed, and the tilt of inclinometer. The inclinometer is an important instrument for measuring tilt, elevation or depression of an object with respect to gravity. There are 26 inclinometers in Talun mountain area of Huafan University. In this research, the used data were collected from January 2008 to July 2014. In the proposed approach, the regression analysis is used to predict rainfall first. Then, decision tree is used to obtain decision rules and set the threshold of rainfall for landslide. The output of this approach can provide more information for understanding the change of rainfall. The threshold of rainfall could also provide useful information to maintain the security for Huafan University.

  1. Template-Assisted Wet-Combustion Synthesis of Fibrous Nickel-Based Catalyst for Carbon Dioxide Methanation and Methane Steam Reforming.

    Science.gov (United States)

    Aghayan, M; Potemkin, D I; Rubio-Marcos, F; Uskov, S I; Snytnikov, P V; Hussainova, I

    2017-12-20

    Efficient capture and recycling of CO 2 enable not only prevention of global warming but also the supply of useful low-carbon fuels. The catalytic conversion of CO 2 into an organic compound is a promising recycling approach which opens new concepts and opportunities for catalytic and industrial development. Here we report about template-assisted wet-combustion synthesis of a one-dimensional nickel-based catalyst for carbon dioxide methanation and methane steam reforming. Because of a high temperature achieved in a short time during reaction and a large amount of evolved gases, the wet-combustion synthesis yields homogeneously precipitated nanoparticles of NiO with average particle size of 4 nm on alumina nanofibers covered with a NiAl 2 O 4 nanolayer. The as-synthesized core-shell structured fibers exhibit outstanding activity in steam reforming of methane and sufficient activity in carbon dioxide methanation with 100% selectivity toward methane formation. The as-synthesized catalyst shows stable operation under the reaction conditions for at least 50 h.

  2. Predicting rainfall erosivity by momentum and kinetic energy in Mediterranean environment

    Science.gov (United States)

    Carollo, Francesco G.; Ferro, Vito; Serio, Maria A.

    2018-05-01

    Rainfall erosivity is an index that describes the power of rainfall to cause soil erosion and it is used around the world for assessing and predicting soil loss on agricultural lands. Erosivity can be represented in terms of both rainfall momentum and kinetic energy, both calculated per unit time and area. Contrasting results on the representativeness of these two variables are available: some authors stated that momentum and kinetic energy are practically interchangeable in soil loss estimation while other found that kinetic energy is the most suitable expression of rainfall erosivity. The direct and continuous measurements of momentum and kinetic energy by a disdrometer allow also to establish a relationship with rainfall intensity at the study site. At first in this paper a comparison between the momentum-rainfall intensity relationships measured at Palermo and El Teularet by an optical disdrometer is presented. For a fixed rainfall intensity the measurements showed that the rainfall momentum values measured at the two experimental sites are not coincident. However both datasets presented a threshold value of rainfall intensity over which the rainfall momentum assumes a quasi-constant value. Then the reliability of a theoretically deduced relationship, linking momentum, rainfall intensity and median volume diameter, is positively verified using measured raindrop size distributions. An analysis to assess which variable, momentum or kinetic energy per unit area and time, is the best predictor of erosivity in Italy and Spain was also carried out. This investigation highlighted that the rainfall kinetic energy per unit area and time can be substituted by rainfall momentum as index for estimating the rainfall erosivity, and this result does not depend on the site where precipitation occurs. Finally, rainfall intensity measurements and soil loss data collected from the bare plots equipped at Sparacia experimental area were used to verify the reliability of some

  3. Experimental study of methanic fermentation of straw

    Energy Technology Data Exchange (ETDEWEB)

    Dopter, P; Beerens, H

    1952-12-03

    The amount of liquid manure obtainable was a limiting factor in methanic fermentation of wheat straw. An equal volume of 0.2% aqueous solution of Na formate could be substituted for 90% of the normal requirements of liquid manure. This shortened the preliminary stages of cellulosic fermentation when no methane was produced and slightly increased the subsequent yield of methane.

  4. Distributional changes in rainfall and river flow in Sarawak, Malaysia

    Science.gov (United States)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun

    2017-11-01

    Climate change may not change the rainfall mean, but the variability and extremes. Therefore, it is required to explore the possible distributional changes of rainfall characteristics over time. The objective of present study is to assess the distributional changes in annual and northeast monsoon rainfall (November-January) and river flow in Sarawak where small changes in rainfall or river flow variability/distribution may have severe implications on ecology and agriculture. A quantile regression-based approach was used to assess the changes of scale and location of empirical probability density function over the period 1980-2014 at 31 observational stations. The results indicate that diverse variation patterns exist at all stations for annual rainfall but mainly increasing quantile trend at the lowers, and higher quantiles for the month of January and December. The significant increase in annual rainfall is found mostly in the north and central-coastal region and monsoon month rainfalls in the interior and north of Sarawak. Trends in river flow data show that changes in rainfall distribution have affected higher quantiles of river flow in monsoon months at some of the basins and therefore more flooding. The study reveals that quantile trend can provide more information of rainfall change which may be useful for climate change mitigation and adaptation planning.

  5. Rainfall simulation experiments in the southwestern USA using the Walnut Gulch Rainfall Simulator

    Science.gov (United States)

    Polyakov, Viktor; Stone, Jeffry; Holifield Collins, Chandra; Nearing, Mark A.; Paige, Ginger; Buono, Jared; Gomez-Pond, Rae-Landa

    2018-01-01

    This dataset contains hydrological, erosion, vegetation, ground cover, and other supplementary information from 272 rainfall simulation experiments conducted on 23 semiarid rangeland locations in Arizona and Nevada between 2002 and 2013. On 30 % of the plots, simulations were conducted up to five times during the decade of study. The rainfall was generated using the Walnut Gulch Rainfall Simulator on 2 m by 6 m plots. Simulation sites included brush and grassland areas with various degrees of disturbance by grazing, wildfire, or brush removal. This dataset advances our understanding of basic hydrological and biological processes that drive soil erosion on arid rangelands. It can be used to estimate runoff, infiltration, and erosion rates at a variety of ecological sites in the Southwestern USA. The inclusion of wildfire and brush treatment locations combined with long-term observations makes it important for studying vegetation recovery, ecological transitions, and the effect of management. It is also a valuable resource for erosion model parameterization and validation. The dataset is available from the National Agricultural Library at https://data.nal.usda.gov/search/type/dataset (DOI: https://doi.org/10.15482/USDA.ADC/1358583).

  6. Clumped isotope effects during OH and Cl oxidation of methane

    DEFF Research Database (Denmark)

    Whitehill, Andrew R.; Joelsson, Lars Magnus T.; Schmidt, Johan Albrecht

    2017-01-01

    A series of experiments were carried out to determine the clumped (13CH3D) methane kinetic isotope effects during oxidation of methane by OH and Cl radicals, the major sink reactions for atmospheric methane. Experiments were performed in a 100 L quartz photochemical reactor, in which OH was produ......A series of experiments were carried out to determine the clumped (13CH3D) methane kinetic isotope effects during oxidation of methane by OH and Cl radicals, the major sink reactions for atmospheric methane. Experiments were performed in a 100 L quartz photochemical reactor, in which OH...... effects for singly substituted species were consistent with previous experimental studies. For doubly substituted methane, 13CH3D, the observed kinetic isotope effects closely follow the product of the kinetic isotope effects for the 13C and deuterium substituted species (i.e., 13,2KIE = 13KIE × 2KIE...... reactions. In a closed system, however, this effect is overtaken by the large D/H isotope effect, which causes the residual methane to become anti-clumped relative to the initial methane. Based on these results, we demonstrate that oxidation of methane by OH, the predominant oxidant for tropospheric methane...

  7. Risk factors of methane hydrate resource development in the concentrated zones distributed in the eastern Nankai Trough

    Science.gov (United States)

    Yamamoto, K.; Nagakubo, S.

    2009-04-01

    , low pressure. Deformation and subsidence of the sea floor may be unavoidable but does not cause serious concern on the safety. Some have argued that hydrate dissociations in wide area may cause landslide due to weakened formation by dissociation. To manage the concern, the test site should be chosen carefully and formation property alternation should be well known. One common misunderstanding widespread in public is that methane hydrate is "unstable material." Indeed, the hydrate is stable in the original temperature and pressure conditions, and the endothermic process of hydrate dissociation leads negative feedback to the formation conditions from the altered states by artificial depressurization. Also the hydrate dissociation in the sandy sediments is governed by relatively slow heat and fluid transport phenomena in porous media, so the process is gradual. Therefore, a catastrophic chain reaction which many people imagine is surely unlikely. As mentioned above, at present, risks of methane hydrate resource development in the concentrated zones distributed in the eastern Nankai trough are not significant, and comparable or less serious than conventional oil and gas production, we concluded. Of course, this evaluation should be verified with offshore production tests in the future, and new knowledge should be reflected to the safe and environmentally friendly production system designs. The nature of unconsolidated formation after the hydrate dissociation is key issue of such investigation. MH21 consortium has studied the issue in many aspects, and will continue the investigation.

  8. Validation of landfill methane measurements from an unmanned aerial system

    DEFF Research Database (Denmark)

    Allen, Grant; Williams, Paul; Ricketts, hugo

    Landfill gas is made up of roughly equal amounts of methane and carbon dioxide. Modern UK landfills capture and use much of the methane gas as a fuel. But some methane escapes and is emitted to the atmosphere. Methane is an important greenhouse gas and controls on methane emissions are a part...... of international and national strategies to limit climate change. Better estimates of methane emissions from landfills and other similar sources would allow the UK to improve the quantification and control of greenhouse gas emissions. This project tested the accuracy of methane measurement using an unmanned aerial...

  9. Handbook methane potential; Handbok metanpotential

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, My (AnoxKaldnes AB (Sweden)); Schnurer, Anna (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden))

    2011-07-15

    Before using a organic material for biogas production it is essential to evaluate the methane production potential. The methane potential is one important tool possible to use during planning of new plants but also when new materials are considered for already running biogas plants. The chemical composition of different organic material varies extensively and this will have an impact on both the degradability and the methane potential. Information about the methane potential of a specific material can sometimes be found in the literature or can be calculated after a chemical/ physical or biological characterization. Here, the BMP test (Biochemical Methane Potential) is a commonly used method. Today the BMP test is a commonly used method to determine the methane potential. Many national and international research groups, consultants as well as personal at biogas plants are using this method and there is a lot of data available in the literature from such tests. In addition there are several protocols giving guidelines on how to execute a BMP-test. The BMP-test is performed in many different ways, not always under optimized conditions, and there is a lack of information on how to interpret the obtained data. This report summarizes knowledge from the literature and the experience from a Swedish referee group, consisting of persons being active performers of BMP-tests. The report does not include a standardized protocol as the procedure can be performed in different ways depending on available equipment and on the type of material to be tested. Instead the report discusses different factors of great importance for a successful test giving reliable results. The report also summarizes important information concerning the interpretation and how to present results in order to allow comparison of data from different test.

  10. Sensitivity of Rainfall Extremes Under Warming Climate in Urban India

    Science.gov (United States)

    Ali, H.; Mishra, V.

    2017-12-01

    Extreme rainfall events in urban India halted transportation, damaged infrastructure, and affected human lives. Rainfall extremes are projected to increase under the future climate. We evaluated the relationship (scaling) between rainfall extremes at different temporal resolutions (daily, 3-hourly, and 30 minutes), daily dewpoint temperature (DPT) and daily air temperature at 850 hPa (T850) for 23 urban areas in India. Daily rainfall extremes obtained from Global Surface Summary of Day Data (GSOD) showed positive regression slopes for most of the cities with median of 14%/K for the period of 1979-2013 for DPT and T850, which is higher than Clausius-Clapeyron (C-C) rate ( 7%). Moreover, sub-daily rainfall extremes are more sensitive to both DPT and T850. For instance, 3-hourly rainfall extremes obtained from Tropical Rainfall Measurement Mission (TRMM 3B42 V7) showed regression slopes more than 16%/K aginst DPT and T850 for the period of 1998-2015. Half-hourly rainfall extremes from the Integrated Multi-satellitE Retrievals (IMERGE) of Global precipitation mission (GPM) also showed higher sensitivity against changes in DPT and T850. The super scaling of rainfall extremes against changes in DPT and T850 can be attributed to convective nature of precipitation in India. Our results show that urban India may witness non-stationary rainfall extremes, which, in turn will affect stromwater designs and frequency and magniture of urban flooding.

  11. Feasibility of atmospheric methane removal using methanotrophic biotrickling filters.

    Science.gov (United States)

    Yoon, Sukhwan; Carey, Jeffrey N; Semrau, Jeremy D

    2009-07-01

    Methane is a potent greenhouse gas with a global warming potential ~23 times that of carbon dioxide. Here, we describe the modeling of a biotrickling filtration system composed of methane-consuming bacteria, i.e., methanotrophs, to assess the utility of these systems in removing methane from the atmosphere. Model results indicate that assuming the global average atmospheric concentration of methane, 1.7 ppmv, methane removal is ineffective using these methanotrophic biofilters as the methane concentration is too low to enable cell survival. If the concentration is increased to 500-6,000 ppmv, however, similar to that found above landfills and in concentrated animal feeding operations (factory farms), 4.98-35.7 tons of methane can be removed per biofilter per year assuming biotrickling filters of typical size (3.66 m in diameter and 11.5 m in height). Using reported ranges of capital, operational, and maintenance costs, the cost of the equivalent ton of CO(2) removal using these systems is $90-$910 ($2,070-$20,900 per ton of methane), depending on the influent concentration of methane and if heating is required. The use of methanotrophic biofilters for controlling methane emissions is technically feasible and, provided that either the costs of biofilter construction and operation are reduced or the value of CO(2) credits is increased, can also be economically attractive.

  12. Mathematical and physical modeling of rainfall in centrifuge

    OpenAIRE

    CAICEDO, Bernardo; THOREL, Luc; TRISTANCHO, Julian

    2015-01-01

    Rainfall simulation in centrifuge models is important for modelling soil-atmosphere interactions. However, the presence of Coriolis force, drag forces, evaporation and wind within the centrifuge may affect the distribution of rainfall over the model. As a result, development of appropriate centrifuge rain simulators requires a demanding process of experimental trial and error. This paper highlights the key factors involved in controlling rainfall in centrifuge simulations, develops a mathemat...

  13. Impact of Rainfall on Multilane Roundabout Flowrate Contraction

    Science.gov (United States)

    PARKSHIR, Amir; BEN-EDIGBE, Johnnie

    2017-08-01

    In this study, roundabouts at two sites in the Malaysia were investigated under rainy and dry weather conditions. Two automatic traffic counters per roundabout arm as well as two rain gauge stations were used to collect data at each surveyed site. Nearly one million vehicles were investigated at four sites. Vehicle volume, speeds and headways for entry and circulating flows were collected continuously at each roundabout about arm for six weeks between November 2013 and January 2014. Empirical regression technique and gap-acceptance models were modified and used to analyze roundabout capacity. Good fits to the data were obtained; the results also fit models developed in other countries. It was assumed that entry capacity depends on the geometric characteristics of the roundabout, particularly the diameter of the outside circle of the intersection. It was also postulated that geometric characteristics determine the speed of vehicles around the central island and, therefore, have an impact on the gap-acceptance process and consequently the capacity. Only off-peak traffic data per light, moderate or heavy rainfall were analysed. Peak traffic data were not used because of the presence of peak traffic flow. Passenger car equivalent values being an instrument of conversion from traffic volume to flow were modified. Results show that, average entry capacity loss is about 22.6% under light rainfall, about 18.1% under moderate rainfall and about 5.6% under heavy rainfall. Significant entry capacity loss would result from rainfall irrespective of their intensity. It can be postulated that entry capacity loss under heavy rainfall is lowest because the advantage enjoyed by circulating flow would be greatly reduced with increased rainfall intensity. The paper concluded that rainfall has significant impact of flowrate contraction at roundabouts.

  14. Potential for reduction of methane emissions from dairy cows

    DEFF Research Database (Denmark)

    Johannes, Maike; Hellwing, Anne Louise Frydendahl; Lund, Peter

    2010-01-01

    Methane is a gas cows naturally produce in the rumen. However, it is also a potential greenhouse gas. Therefore, there is a certain interest from an environmental point of view to reduce methane emissions from dairy cows. Estimates from earlier studies indicate that there is a potential to reduce...... methane production by 10 to 25% by changing the feeding strategies. Several feedstuffs influence methane production, such as additional fat. The increase of the concentrate proportion can potentially decrease methane by decreasing the rumen degradability of the diet or by changing the rumen fermentation......, while fibre and sugar enhance methane emissions. Fat can be regarded as the most promising feed additive at the moment. At AU, respiration chambers have been installed to enable methane measurements from dairy cows combined with digestibility trials, and at present studies are being conducted concerning...

  15. Characterizing rainfall parameters which influence erosivity in southeastern Nigeria

    International Nuclear Information System (INIS)

    Obi, M.E.; Salako, F.K.

    1993-12-01

    An investigation was carried out to characterize some selected parameters which influence rainfall erosivity in southeastern Nigeria. Rainfall amount, distribution, duration, intensity, storm types, energy loads and frequency of rain events in the region were studied using data from stations located in three major agroecological zones. Raindrop size and detaching capacity were evaluated in one of the stations for two months. The mean annual rainfall erosivity values for southeastern Nigeria point to the fact that rainfall tend to be highly erosive. 25 refs, 6 figs, 8 tabs

  16. Methanation of Carbon Dioxide

    OpenAIRE

    Goodman, Daniel Jacob

    2013-01-01

    The emission of greenhouse gases into the atmosphere has been linked to global warming. Carbon dioxide's (CO2) one of the most abundant greenhouse gases. Natural gas, mainly methane, is the cleanest fossil fuel for electricity production helping meet the United States ever growing energy needs. The methanation of CO2 has the potential to address both of these problems if a catalyst can be developed that meets the activity, economic and environmental requirements to industrialize the process. ...

  17. Rainfall simulation for environmental application

    Energy Technology Data Exchange (ETDEWEB)

    Shriner, D.S.; Abner, C.H.; Mann, L.K.

    1977-08-01

    Rain simulation systems have been designed for field and greenhouse studies which have the capability of reproducing the physical and chemical characteristics of natural rainfall. The systems permit the simulation of variations in rainfall and droplet size similar to that of natural precipitation. The systems are completely automatic and programmable, allowing unattended operation for periods of up to one week, and have been used to expose not only vegetation but also soils and engineering materials, making them versatile tools for studies involving simulated precipitation.

  18. Bivariate Rainfall and Runoff Analysis Using Shannon Entropy Theory

    Science.gov (United States)

    Rahimi, A.; Zhang, L.

    2012-12-01

    Rainfall-Runoff analysis is the key component for many hydrological and hydraulic designs in which the dependence of rainfall and runoff needs to be studied. It is known that the convenient bivariate distribution are often unable to model the rainfall-runoff variables due to that they either have constraints on the range of the dependence or fixed form for the marginal distributions. Thus, this paper presents an approach to derive the entropy-based joint rainfall-runoff distribution using Shannon entropy theory. The distribution derived can model the full range of dependence and allow different specified marginals. The modeling and estimation can be proceeded as: (i) univariate analysis of marginal distributions which includes two steps, (a) using the nonparametric statistics approach to detect modes and underlying probability density, and (b) fitting the appropriate parametric probability density functions; (ii) define the constraints based on the univariate analysis and the dependence structure; (iii) derive and validate the entropy-based joint distribution. As to validate the method, the rainfall-runoff data are collected from the small agricultural experimental watersheds located in semi-arid region near Riesel (Waco), Texas, maintained by the USDA. The results of unviariate analysis show that the rainfall variables follow the gamma distribution, whereas the runoff variables have mixed structure and follow the mixed-gamma distribution. With this information, the entropy-based joint distribution is derived using the first moments, the first moments of logarithm transformed rainfall and runoff, and the covariance between rainfall and runoff. The results of entropy-based joint distribution indicate: (1) the joint distribution derived successfully preserves the dependence between rainfall and runoff, and (2) the K-S goodness of fit statistical tests confirm the marginal distributions re-derived reveal the underlying univariate probability densities which further

  19. High-pressure raman study on single crystalline methane hydrate surrounded by methane in a diamond anvil cell

    International Nuclear Information System (INIS)

    Ohno, Y; Sasaki, S; Kume, T; Shimizu, H

    2008-01-01

    High-pressure Raman measurements have been performed for single crystalline methane hydrate (MH) surrounded by fluid or solid methane in a diamond anvil cell. We successfully obtained the pure O-H stretching and lattice vibration spectra in MH-sI and MH-II phases. In these Raman spectra, there is no Raman band from water or ice-VI. The observed pressure of phase transformation from MH-sI to MH-II is 0.9 GPa, which is the same result as methane hydrate surrounded by water

  20. Enteric methane emissions from German pigs

    DEFF Research Database (Denmark)

    Dämmgen, Ulrich; Schulz, Joachim; Klausing, Heinrich Kleine

    2012-01-01

    Methane emissions from enteric fermentation of pigs are object of emission reporting. Hitherto they were treated as part of the energy balance of pigs, in accordance with IPCC guidance documents. They were calculated from the gross energy intake rate and a constant methane conversion ratio....... Meanwhile numerous experimental data on methane emissions from enteric fermentation is available in Germany and abroad; the results are compiled in this work. These results also allow for a description of transformation processes in the hind gut and a subsequent establishment of models that relate emissions...... to feed and performance data. The model by Kirchgeßner et al. (1995) is based on German experimental data and reflects typical national diet compositions. It is used to quantify typical emissions and methane conversion ratios. The results agree with other experimental findings at home and abroad...

  1. Characterizing rainfall in the Tenerife island

    Science.gov (United States)

    Díez-Sierra, Javier; del Jesus, Manuel; Losada Rodriguez, Inigo

    2017-04-01

    In many locations, rainfall data are collected through networks of meteorological stations. The data collection process is nowadays automated in many places, leading to the development of big databases of rainfall data covering extensive areas of territory. However, managers, decision makers and engineering consultants tend not to extract most of the information contained in these databases due to the lack of specific software tools for their exploitation. Here we present the modeling and development effort put in place in the Tenerife island in order to develop MENSEI-L, a software tool capable of automatically analyzing a complete rainfall database to simplify the extraction of information from observations. MENSEI-L makes use of weather type information derived from atmospheric conditions to separate the complete time series into homogeneous groups where statistical distributions are fitted. Normal and extreme regimes are obtained in this manner. MENSEI-L is also able to complete missing data in the time series and to generate synthetic stations by using Kriging techniques. These techniques also serve to generate the spatial regimes of precipitation, both normal and extreme ones. MENSEI-L makes use of weather type information to also provide a stochastic three-day probability forecast for rainfall.

  2. Bioelectrochemical approach for control of methane emission from wetlands.

    Science.gov (United States)

    Liu, Shentan; Feng, Xiaojuan; Li, Xianning

    2017-10-01

    To harvest electricity and mitigate methane emissions from wetlands, a novel microbial fuel cell coupled constructed wetland (MFC-CW) was assembled with an anode placing in the rhizosphere and a cathode on the water surface. Plant-mediated methane accounted for 71-82% of the total methane fluxes. The bioanode served as an inexhaustible source of electron acceptors and resulted in reduced substantial methane emissions owing to electricigens outcompeting methanogens for carbon and electrons when substrate was deficient. However, when supplying sufficient organic carbon, both electricity and methane increased, indicating that electrogenesis and methanogenesis could co-exist in harmony. Direct methane emission (diffusion/ebullition) and plant-mediated methane emission were affected by operating conditions. Methanogenesis was significantly suppressed (∼98%) at HRT of 96h and with external resistance of 200Ω, accompanied with improved coulombic efficiency of 14.9% and current density of 187mA/m 2 . Contrarily, change of electrode polarity in the rhizosphere led to more methane efflux. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Rainfall intensity characteristics at coastal and high altitude stations ...

    Indian Academy of Sciences (India)

    a given amount of rain occurs is important because heavier rainfall leads to greater runoff, greater soil erosion and less infiltration into the water table. A knowledge of rainfall intensity therefore becomes. Keywords. Rainfall intensity; Kerala; cumulative distribution. J. Earth Syst. Sci. 116, No. 5, October 2007, pp. 451–463.

  4. Trace methane oxidation studied in several Euryarchaeota under diverse conditions

    Directory of Open Access Journals (Sweden)

    James J. Moran

    2005-01-01

    Full Text Available We used 13C-labeled methane to document the extent of trace methane oxidation by Archaeoglobus fulgidus, Archaeoglobus lithotrophicus, Archaeoglobus profundus, Methanobacterium thermoautotrophicum, Methanosarcina barkeri and Methanosarcina acetivorans. The results indicate trace methane oxidation during growth varied among different species and among methanogen cultures grown on different substrates. The extent of trace methane oxidation by Mb. thermoautotrophicum (0.05 ± 0.04%, ± 2 standard deviations of the methane produced during growth was less than that by M. barkeri (0.15 ± 0.04%, grown under similar conditions with H2 and CO2. Methanosarcina acetivorans oxidized more methane during growth on trimethylamine (0.36 ± 0.05% than during growth on methanol (0.07 ± 0.03%. This may indicate that, in M. acetivorans, either a methyltransferase related to growth on trimethylamine plays a role in methane oxidation, or that methanol is an intermediate of methane oxidation. Addition of possible electron acceptors (O2, NO3–, SO22–, SO32– or H2 to the headspace did not substantially enhance or diminish methane oxidation in M. acetivorans cultures. Separate growth experiments with FAD and NAD+ showed that inclusion of these electron carriers also did not enhance methane oxidation. Our results suggest trace methane oxidized during methanogenesis cannot be coupled to the reduction of these electron acceptors in pure cultures, and that the mechanism by which methane is oxidized in methanogens is independent of H2 concentration. In contrast to the methanogens, species of the sulfate-reducing genus Archaeoglobus did not significantly oxidize methane during growth (oxidizing 0.003 ± 0.01% of the methane provided to A. fulgidus, 0.002 ± 0.009% to A. lithotrophicus and 0.003 ± 0.02% to A. profundus. Lack of observable methane oxidation in the three Archaeoglobus species examined may indicate that methyl-coenzyme M reductase, which is not present in

  5. Performance of Sorghum Varieties under Variable Rainfall in Central Tanzania.

    Science.gov (United States)

    Msongaleli, Barnabas M; Tumbo, S D; Kihupi, N I; Rwehumbiza, Filbert B

    2017-01-01

    Rainfall variability has a significant impact on crop production with manifestations in frequent crop failure in semiarid areas. This study used the parameterized APSIM crop model to investigate how rainfall variability may affect yields of improved sorghum varieties based on long-term historical rainfall and projected climate. Analyses of historical rainfall indicate a mix of nonsignificant and significant trends on the onset, cessation, and length of the growing season. The study confirmed that rainfall variability indeed affects yields of improved sorghum varieties. Further analyses of simulated sorghum yields based on seasonal rainfall distribution indicate the concurrence of lower grain yields with the 10-day dry spells during the cropping season. Simulation results for future sorghum response, however, show that impacts of rainfall variability on sorghum will be overridden by temperature increase. We conclude that, in the event where harms imposed by moisture stress in the study area are not abated, even improved sorghum varieties are likely to perform poorly.

  6. A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards

    Science.gov (United States)

    Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.

    2018-01-01

    RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions. PMID:29657544

  7. CYANOBACTERIA FOR MITIGATING METHANE EMISSION FROM SUBMERGED PADDY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Upasana Mishra; Shalini Anand [Department of Environmental Studies, Inderprastha Engineering College, Sahibabad, Ghaziabad (India)

    2008-09-30

    Atmospheric methane, a potent greenhouse gas with high absorption potential for infrared radiation, is responsible for one forth of the total anticipated warming. It is forming a major part of green house gases, next after carbon dioxide. Its concentration has been increasing alarmingly on an average at the rate of one percent per year. Atmospheric methane, originating mainly from biogenic sources such as paddy fields, natural wetlands and landfills, accounts for 15-20% of the world's total anthropogenic methane emission. With intensification of rice cultivation in coming future, methane emissions from paddy fields are anticipated to increase. India's share in world's rice production is next after to China and likewise total methane emission from paddy fields also. Methane oxidation through planktophytes, particularly microalgae which are autotrophic and abundant in rice rhizospheres, hold promise in controlling methane emission from submerged paddy fields. The present study is focused on the role of nitrogen fixing, heterocystous cyanobacteria and Azolla (a water fern harboring a cyanobacterium Anabaena azollae) as biological sink for headspace concentration of methane in flooded soils. In this laboratory study, soil samples containing five potent nitrogen fixer cyanobacterial strains from paddy fields, were examined for their methane reducing potential. Soil sample without cyanobacterial strain was tested and taken as control. Anabaena sp. was found most effective in inhibiting methane concentration by 5-6 folds over the control. Moist soil cores treated with chemical nitrogen, urea, in combination with cyanobacteria mixture, Azolla microphylla or cyanobacteria mixture plus Azolla microphylla exhibited significance reduction in the headspace concentration of methane than the soil cores treated with urea alone. Contrary to other reports, this study also demonstrates that methane oxidation in soil core samples from paddy fields was stimulated by

  8. How is rainfall interception in urban area affected by meteorological parameters?

    Science.gov (United States)

    Zabret, Katarina; Rakovec, Jože; Mikoš, Matjaž; Šraj, Mojca

    2017-04-01

    Rainfall interception is part of the hydrological cycle. Precipitation, which hits vegetation, is retained on the leaves and branches, from which it eventually evaporates into the atmosphere (interception) or reaches the ground by dripping from the canopy, falling through the gaps (throughfall) and running down the stems (stemflow). The amount of rainfall reaching the ground depends on various meteorological and vegetation parameters. Rainfall, throughfall and stemflow have been measured in the city of Ljubljana, Slovenia since the beginning of 2014. Manual and automatic measurements are performed regularly under Betula pendula and Pinus nigra trees in urban area. In 2014, there were detected 178 rainfall events with total amount of 1672.1 mm. In average B. pendula intercepted 44% of rainfall and P. nigra intercepted 72% of rainfall. In 2015 we have detected 117 events with 1047.4 mm of rainfall, of which 37% was intercepted by B. pendula and 60% by P. nigra. The effect of various meteorological parameters on the rainfall interception was analysed in the study. The parameters included in the analysis were rainfall rate, rainfall duration, drop size distribution (average drop velocity and diameter), average wind speed, and average temperature. The results demonstrate decreasing rainfall interception with longer rainfall duration and higher rainfall intensity although the impact of the latter one is not statistically significant. In the case of very fast or very slow rainfall drops, the interception is higher than for the mean rain drop velocity values. In the case of P. nigra the impact of the rain drop diameter on interception is similar to the one of rain drop velocity while for B. pendula increasing of drop diameter also increases the interception. As expected, interception is higher for warmer events. This trend is more evident for P. nigra than for B. pendula. Furthermore, the amount of intercepted rainfall also increases with wind although it could be

  9. Climate Change Impact on Rainfall: How will Threaten Wheat Yield?

    Science.gov (United States)

    Tafoughalti, K.; El Faleh, E. M.; Moujahid, Y.; Ouargaga, F.

    2018-05-01

    Climate change has a significant impact on the environmental condition of the agricultural region. Meknes has an agrarian economy and wheat production is of paramount importance. As most arable area are under rainfed system, Meknes is one of the sensitive regions to rainfall variability and consequently to climate change. Therefore, the use of changes in rainfall is vital for detecting the influence of climate system on agricultural productivity. This article identifies rainfall temporal variability and its impact on wheat yields. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model. The analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that wheat yields are strongly correlated with rainfall of the period January to March. This investigation concluded that climate change is altering wheat yield and it is crucial to adept the necessary adaptation to challenge the risk.

  10. Carbon and hydrogen isotope composition and C-14 concentration in methane from sources and from the atmosphere: Implications for a global methane budget

    Science.gov (United States)

    Wahlen, Martin

    1994-01-01

    The topics covered include the following: biogenic methane studies; forest soil methane uptake; rice field methane sources; atmospheric measurements; stratospheric samples; Antarctica; California; and Germany.

  11. Soil erosion under multiple time-varying rainfall events

    Science.gov (United States)

    Heng, B. C. Peter; Barry, D. Andrew; Jomaa, Seifeddine; Sander, Graham C.

    2010-05-01

    Soil erosion is a function of many factors and process interactions. An erosion event produces changes in surface soil properties such as texture and hydraulic conductivity. These changes in turn alter the erosion response to subsequent events. Laboratory-scale soil erosion studies have typically focused on single independent rainfall events with constant rainfall intensities. This study investigates the effect of multiple time-varying rainfall events on soil erosion using the EPFL erosion flume. The rainfall simulator comprises ten Veejet nozzles mounted on oscillating bars 3 m above a 6 m × 2 m flume. Spray from the nozzles is applied onto the soil surface in sweeps; rainfall intensity is thus controlled by varying the sweeping frequency. Freshly-prepared soil with a uniform slope was subjected to five rainfall events at daily intervals. In each 3-h event, rainfall intensity was ramped up linearly to a maximum of 60 mm/h and then stepped down to zero. Runoff samples were collected and analysed for particle size distribution (PSD) as well as total sediment concentration. We investigate whether there is a hysteretic relationship between sediment concentration and discharge within each event and how this relationship changes from event to event. Trends in the PSD of the eroded sediment are discussed and correlated with changes in sediment concentration. Close-up imagery of the soil surface following each event highlight changes in surface soil structure with time. This study enhances our understanding of erosion processes in the field, with corresponding implications for soil erosion modelling.

  12. Are termite mounds biofilters for methane? - Challenges and new approaches to quantify methane oxidation in termite mounds

    Science.gov (United States)

    Nauer, Philipp A.; Hutley, Lindsay B.; Bristow, Mila; Arndt, Stefan K.

    2015-04-01

    Methane emissions from termites contribute around 3% to global methane in the atmosphere, although the total source estimate for termites is the most uncertain among all sources. In tropical regions, the relative source contribution of termites can be far higher due to the high biomass and relative importance of termites in plant decomposition. Past research focused on net emission measurements and their variability, but little is known about underlying processes governing these emissions. In particular, microbial oxidation of methane (MOX) within termite mounds has rarely been investigated. In well-studied ecosystems featuring an oxic matrix above an anoxic methane-producing habitat (e.g. landfills or sediments), the fraction of oxidized methane (fox) can reach up to 90% of gross production. However, conventional mass-balance approaches to apportion production and consumption processes can be challenging to apply in the complex-structured and almost inaccessible environment of a termite mound. In effect, all field-based data on termite-mound MOX is based on one study that measured isotopic shifts in produced and emitted methane. In this study a closed-system isotope fractionation model was applied and estimated fox ranged from 10% to almost 100%. However, it is shown here that by applying an open-system isotope-pool model, the measured isotopic shifts can also be explained by physical transport of methane alone. Different field-based methods to quantify MOX in termite mounds are proposed which do not rely on assumptions of physical gas transport. A simple approach is the use of specific inhibitors for MOX, e.g. difluoromethane (CH2F2), combined with chamber-based flux measurements before and after their application. Data is presented on the suitability of different inhibitors and first results of their application in the field. Alternatively, gas-tracer methods allow the quantification of methane oxidation and reaction kinetics without knowledge of physical gas

  13. Widespread pain: is an improved classification possible?

    Science.gov (United States)

    MacFarlane, G J; Croft, P R; Schollum, J; Silman, A J

    1996-09-01

    The classification of widespread pain, proposed by the American College of Rheumatology (ACR) for use in the clinic as a screen for fibromyalgia, as described, does not require truly widespread pain. Studies considering the epidemiology of widespread pain per se may therefore require a definition with greater face validity, which might also show enhanced associations with other physical and psychological measures. We aimed to develop a more coherent definition of widespread pain for use in epidemiological studies and to compare performance in identifying individuals with significant morbidity. A group of 172 subjects who had participated in a community based study on the occurrence of pain were identified and categorized by their pain experience as indicated on line drawings of the body according to ACR definition and to a new, more stringent definition that required the presence of more diffuse limb pain. A number of other clinical and psychological measures were recorded for these individuals and the association between their pain status measures and these other variables was assessed and compared. Persons satisfying the newly proposed definition for chronic widespread pain, in comparison with those who satisfied only the present ACR definition, had a significantly higher score on the General Health Questionnaire [median difference (MD) 7.95% CI 1.13], a higher score on the Health and Fatigue Questionnaire (MD 10.95% CI 0.15), and greater problems with sleep (sleep problem score MD 4.95% CI 0.9). Those satisfying the new definition also had a greater number of tender points on examination (MD 3.95% CI -1.7). The morbidity of those satisfying only the present ACR definition was closer to persons who had regional pain. A redefinition of widespread pain has produced a group of subjects whose pain is (a) likely to be more "widespread" and (b) is associated more strongly with factors such as psychological disturbance, fatigue, sleep problems, and tender points, and

  14. Global diffusive fluxes of methane in marine sediments

    NARCIS (Netherlands)

    Egger, M.; Riedinger, N.; Mogollón, J.M.; Jørgensen, B.B.

    2018-01-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of

  15. Estimating historical landfill quantities to predict methane emissions

    NARCIS (Netherlands)

    Lyons, S.; Murphy, L.; Tol, R.S.J.

    2010-01-01

    There are no observations for methane emissions from landfill waste in Ireland. Methane emissions are imputed from waste data. There are intermittent data on waste sent to landfill. We compare two alternative ways to impute the missing waste " data" and evaluate the impact on methane emissions. We

  16. Mapping monthly rainfall erosivity in Europe.

    Science.gov (United States)

    Ballabio, Cristiano; Borrelli, Pasquale; Spinoni, Jonathan; Meusburger, Katrin; Michaelides, Silas; Beguería, Santiago; Klik, Andreas; Petan, Sašo; Janeček, Miloslav; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Tadić, Melita Perčec; Diodato, Nazzareno; Kostalova, Julia; Rousseva, Svetla; Banasik, Kazimierz; Alewell, Christine; Panagos, Panos

    2017-02-01

    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha -1 h -1 ) compared to winter (87MJmmha -1 h -1 ). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R 2 values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be

  17. Persistence Characteristics of Australian Rainfall Anomalies

    Science.gov (United States)

    Simmonds, Ian; Hope, Pandora

    1997-05-01

    Using 79 years (1913-1991) of Australian monthly precipitation data we examined the nature of the persistence of rainfall anomalies. Analyses were performed for four climate regions covering the country, as well as for the entire Australian continent. We show that rainfall over these regions has high temporal variability and that annual rainfall amounts over all five sectors vary in phase and are, with the exception of the north-west region, significantly correlated with the Southern Oscillation Index (SOI). These relationships were particularly strong during the spring season.It is demonstrated that Australian rainfall exhibits statistically significant persistence on monthly, seasonal, and (to a limited extent) annual time-scales, up to lags of 3 months and one season and 1 year. The persistence showed strong seasonal dependence, with each of the five regions showing memory out to 4 or 5 months from winter and spring. Many aspects of climate in the Australasian region are known to have undergone considerable changes about 1950. We show this to be true for persistence also; its characteristics identified for the entire record were present during the 1951--1980 period, but virtually disappeared in the previous 30-year period.Much of the seasonal distribution of rainfall persistence on monthly time-scales, particularly in the east, is due to the influence of the SOI. However, most of the persistence identified in winter and spring in the north-west is independent of the ENSO phenomenon.Rainfall anomalies following extreme dry and wet months, seasons and years (lowest and highest two deciles) persisted more than would be expected by chance. For monthly extreme events this was more marked in the winter semester for the wet events, except in the south-east region. In general, less persistence was found for the extreme seasons. Although the persistence of dry years was less than would have been expected by chance, the wet years appear to display persistence.

  18. Relationship between rainfall and microbiological contamination of ...

    African Journals Online (AJOL)

    Outbreaks of contamination events in many developing countries occur during periods of peak rainfall. This study presents evidence of direct pulse response of shallow groundwater contamination events to rainfall in Northern Mozambique. The objective of the paper is to establish both a statistical relationship between ...

  19. Developing empirical relationship between interrill erosion, rainfall ...

    African Journals Online (AJOL)

    In order to develop an empirical relationship for interrill erosion based on rainfall intensity, slope steepness and soil types, an interrill erosion experiment was conducted using laboratory rainfall simulator on three soil types (Vertisols, Cambisols and Leptosols) for the highlands of North Shewa Zone of Oromia Region.

  20. Statistical Modelling of Extreme Rainfall in Taiwan

    NARCIS (Netherlands)

    L-F. Chu (Lan-Fen); M.J. McAleer (Michael); C-C. Chang (Ching-Chung)

    2012-01-01

    textabstractIn this paper, the annual maximum daily rainfall data from 1961 to 2010 are modelled for 18 stations in Taiwan. We fit the rainfall data with stationary and non-stationary generalized extreme value distributions (GEV), and estimate their future behaviour based on the best fitting model.

  1. Statistical Modelling of Extreme Rainfall in Taiwan

    NARCIS (Netherlands)

    L. Chu (LanFen); M.J. McAleer (Michael); C-H. Chang (Chu-Hsiang)

    2013-01-01

    textabstractIn this paper, the annual maximum daily rainfall data from 1961 to 2010 are modelled for 18 stations in Taiwan. We fit the rainfall data with stationary and non-stationary generalized extreme value distributions (GEV), and estimate their future behaviour based on the best fitting model.

  2. Rainfall thresholds for the possible occurrence of landslides in Italy

    Directory of Open Access Journals (Sweden)

    M. T. Brunetti

    2010-03-01

    Full Text Available In Italy, rainfall is the primary trigger of landslides that frequently cause fatalities and large economic damage. Using a variety of information sources, we have compiled a catalogue listing 753 rainfall events that have resulted in landslides in Italy. For each event in the catalogue, the exact or approximate location of the landslide and the time or period of initiation of the slope failure is known, together with information on the rainfall duration D, and the rainfall mean intensity I, that have resulted in the slope failure. The catalogue represents the single largest collection of information on rainfall-induced landslides in Italy, and was exploited to determine the minimum rainfall conditions necessary for landslide occurrence in Italy, and in the Abruzzo Region, central Italy. For the purpose, new national rainfall thresholds for Italy and new regional rainfall thresholds for the Abruzzo Region were established, using two independent statistical methods, including a Bayesian inference method and a new Frequentist approach. The two methods proved complementary, with the Bayesian method more suited to analyze small data sets, and the Frequentist method performing better when applied to large data sets. The new regional thresholds for the Abruzzo Region are lower than the new national thresholds for Italy, and lower than the regional thresholds proposed in the literature for the Piedmont and Lombardy Regions in northern Italy, and for the Campania Region in southern Italy. This is important, because it shows that landslides in Italy can be triggered by less severe rainfall conditions than previously recognized. The Frequentist method experimented in this work allows for the definition of multiple minimum rainfall thresholds, each based on a different exceedance probability level. This makes the thresholds suited for the design of probabilistic schemes for the prediction of rainfall-induced landslides. A scheme based on four

  3. Ostrich recruitment dynamics in relation to rainfall in the Mara ...

    African Journals Online (AJOL)

    Ostrich recruitment dynamics in relation to rainfall in the Mara–Serengeti ... To understand how rainfall influences ostriches, we related changes in ostrich recruitment in the Mara–Serengeti ecosystem to rainfall. ... AJOL African Journals Online.

  4. Enteric methane emissions from German dairy cows

    DEFF Research Database (Denmark)

    Dammgen, U; Rosemann, C; Haenel, H D

    2012-01-01

    Up to now, the German agricultural emission inventory used a model for the assessment of methane emissions from enteric fermentation that combined an estimate of the energy and feed requirements as a function of performance parameters and diet composition, with the constant methane conversion rate......, as stated by IPCC. A methane emission model was selected here that is based on German feed data. It was combined with the hitherto applied model describing energy requirements. The emission rates thus calculated deviate from those previously obtained. In the new model, the methane conversion rate is back......-calculated from emission rates and gross energy intake rates. For German conditions of animal performance and diet composition, the national means of methane conversion rates range between 71 kJ MJ(-1) and 61 kJ MJ(-1) for low and high performances (4700 kg animal(-1) a(-1) in 1990 to 7200 kg animal(-1) a(-1...

  5. Greenhouse effect contributions of US landfill methane

    International Nuclear Information System (INIS)

    Augenstein, D.

    1991-01-01

    The greenhouse effect has recently been receiving a great deal of scientific and popular attention. The term refers to a cause-and-effect relationship in which ''heat blanketing'' of the earth, due to trace gas increases in the atmosphere, is expected to result in global warming. The trace gases are increasing as the result of human activities. Carbon dioxide (CO 2 ) is the trace gas contributing most importantly to the ''heat blanketing'' and currently receives the most attention. Less widely recognized has been the high importance of methane (CH 4 ). Methane's contribution to the increased heat blanketing occurring since 1980 is estimated to be over a third as much as that of carbon dioxide. Gas from landfills has in turn been recognized to be a source of methane to the atmospheric buildup. However the magnitude of the landfill methane contribution, and the overall significance of landfill methane to the greenhouse phenomenon has been uncertain and the subject of some debate. (Author)

  6. Decarbonisation of fossil energy via methane pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kreysa, G.; Agar, D.W.; Schultz, I. [Technische Univ. Dortmund (Germany)

    2010-12-30

    Despite the rising consumption of energy over the last few decades, the proven reserves of fossil fuels have steadily increased. Additionally, there are potentially tremendous reserves of methane hydrates available, which remain to be exploited. The use of fossil energy sources is thus increasingly being dictated less by supply than by the environmental concerns raised by climate change. In the context of the decarbonisation of the global energy system that this has stimulated, new means must be explored for using methane as energy source. Noncatalytic thermal pyrolysis of methane is proposed here as a promising concept for utilising methane with low to zero carbon dioxide emissions. Following cracking, only the energy content of the hydrogen is used, while the carbon can be stored safely and retrievably in disused coal mines. The thermodynamics and different process engineering concepts for the technical realisation of such a carbon moratorium technology are discussed. The possible contribution of methane pyrolysis to carbon negative geoengineering is also addressed. (orig.)

  7. Geologic Emissions of Methane and C2 - C5 Alkanes at the La Brea Tar Pits, Los Angeles, CA

    Science.gov (United States)

    Doezema, L. A.; Etiope, G.; Pacheco, C.

    2017-12-01

    Natural hydrocarbon (oil and gas) seeps are widespread in Los Angeles due to gas migration, along faults, from numerous subsurface petroleum fields. These seeps may represent important natural contributors of methane (CH4) and heavier alkanes (C2-C4) for the atmosphere. Methane flux measurements were made from various locations at the La Brea Tar Pits in Los Angeles, CA. Measurements were made using a closed-chamber method and spectroscopic sensors for CH4 and CO2, at 26 oil-asphalt seeps and 188 other sites, without gas manifestations, homogeneously distributed throughout the park. The molecular C1 - C5 composition of gas released from seeps and soil was also analyzed using either FTIR spectroscopy or gas chromatography (GC-FID). Methane emissions from seeps varied from approximately 7 to 54,000 g m-2 day-1, while emissions from soil degassing were between 0 and 9,000 g m-2 day-1. Total emissions were estimated to be in the order of 103 kg day-1 for methane, and at least 10 and 5 kg day-1 for ethane and propane, respectively. The seeping gas exhibited high C1/(C2 + C3) ratios, likely due to molecular fractionation during gas migration from a subsurface petroleum reservoir. Evidence for biodegredation in certain samples was indicated by large i-butane to n-butane ratios. These molecular alterations can be important tracers of natural seepage and should be considered in the atmospheric modelling of the relative contribution of fossil fuel (anthropogenic fugitive emission and natural geologic sources) vs biogenic sources, on local and global scales.

  8. Projected rainfall and temperature changes over Malaysia at the end of the 21st century based on PRECIS modelling system

    Science.gov (United States)

    Loh, Jui Le; Tangang, Fredolin; Juneng, Liew; Hein, David; Lee, Dong-In

    2016-05-01

    This study investigates projected changes in rainfall and temperature over Malaysia by the end of the 21st century based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2, A1B and B2 emission scenarios using the Providing Regional Climates for Impacts Studies (PRECIS). The PRECIS regional climate model (HadRM3P) is configured in 0.22° × 0.22° horizontal grid resolution and is forced at the lateral boundaries by the UKMO-HadAM3P and UKMOHadCM3Q0 global models. The model performance in simulating the present-day climate was assessed by comparing the modelsimulated results to the Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) dataset. Generally, the HadAM3P/PRECIS and HadCM3Q0/PRECIS simulated the spatio-temporal variability structure of both temperature and rainfall reasonably well, albeit with the presence of cold biases. The cold biases appear to be associated with the systematic error in the HadRM3P. The future projection of temperature indicates widespread warming over the entire country by the end of the 21st century. The projected temperature increment ranges from 2.5 to 3.9°C, 2.7 to 4.2°C and 1.7 to 3.1°C for A2, A1B and B2 scenarios, respectively. However, the projection of rainfall at the end of the 21st century indicates substantial spatio-temporal variation with a tendency for drier condition in boreal winter and spring seasons while wetter condition in summer and fall seasons. During the months of December to May, ~20-40% decrease of rainfall is projected over Peninsular Malaysia and Borneo, particularly for the A2 and B2 emission scenarios. During the summer months, rainfall is projected to increase by ~20-40% across most regions in Malaysia, especially for A2 and A1B scenarios. The spatio-temporal variations in the projected rainfall can be related to the changes in the weakening monsoon circulations, which in turn alter the patterns of

  9. Effect of bubble size and density on methane conversion to hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Leske, J.; Taylor, C.E.; Ladner, E.P.

    2007-03-01

    Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methane–water solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.

  10. Methane emissions from the natural gas industry

    International Nuclear Information System (INIS)

    Harrison, M.R.; Cowgill, R.M.; Campbell, L.M.; Lott, R.A.

    1993-01-01

    The U.S. EPA and the United Nation's Intergovernmental Panel on Climate Change (IPCC) have suggested that global warming could be reduced if more energy was generated using natural gas rather than fuels such as coal. An increased use of natural gas instead of coal would decrease global warming since methane emits less carbon dioxide (CO 2 ) than any fossil fuel. However, methane is a more potent as a greenhouse gas than CO 2 , and leakage from the gas system could reduce or eliminate the inherent advantage of natural gas. For this reason, methane emissions must be quantified before a national policy on preferred fuels is developed. Therefore, GRI and EPA have developed this confunded program to quantify methane emissions from the U.S. gas industry. This paper presents, for general industry review, the approach and methodology that the project is using to determine the emissions. The study will measure or calculate all gas industry methane emissions - from production at the wellhead, through the system, to the customer's meter. When these data are combined with data from other studies, a definitive comparison of the relative environmental impact of using methane versus other fuels will be possible. The study will also provide data that can be used by the industry to identify cost-effective mitigation techniques to reduce losses. The methane emissions project is being conducted in three phases: the first two phases have identified and ranked all known potential methane-emitting sources and established methods for measuring, calculating, and extrapolating emissions from those sources. The third phase, which is currently in progress, will gather sufficient data to achieve the accuracy goal. This paper briefly summarizes the methodology being used for the completion of the third phase

  11. Personality disparity in chronic regional and widespread pain.

    Science.gov (United States)

    Chang, Mei-Chung; Chen, Po-Fei; Lung, For-Wey

    2017-08-01

    Chronic pain has high comorbidity with psychiatric disorders, therefore, better understanding of the relationship between chronic pain and mental illness is needed. This study aimed to investigate the pathway relationships among parental attachment, personality characteristics, alexithymic trait and mental health in patients with chronic widespread pain, those with chronic regional pain, and controls. Two hundred and thirty participants were recruited. The parental Bonding Inventory, Eysenck Personality Inventory (EPI), 20-item Toronto Alexithymia Scale (TAS-20), Chinese Health Questionnaire, and Short-Form 36 were filled out. The pathway relationships revealed that patients of mothers who were more protective were more neurotic, had more difficulty identifying feelings (DIF), worse mental health, and a higher association with chronic widespread pain. No differences were found between patients with chronic regional pain and the controls. The predisposing factors for chronic widespread pain, when compared with chronic regional pain, may be more closely related to psychiatric disorders. The pathways to chronic regional pain and chronic widespread pain differ, with neuroticism and the alexithymic DIF trait being the main factors defining chronic widespread pain. Therefore, besides therapies targeting pain symptoms, psychiatric consultation, medication and psychotherapy are also recommended for those with chronic widespread pain to alleviate their mental health conditions. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  12. How El-Nino affects Ethiopian summer rainfall

    Science.gov (United States)

    Gleixner, Stephanie; Keenlyside, Noel; Viste, Ellen

    2016-04-01

    Ethiopian economy and society are strongly dependent on agriculture and therefore rainfall. Reliable forecasts for the rainy seasons are important to allow for agricultural planning and drought preparations. The operational seasonal forecasts for Ethiopia are based on analogue methods relying mainly on sea surface temperature (SST) indices. A better understanding of the physical links between Ethiopian rainfall and SST may help to improve forecasts. The highest rainfall rates are observed in the Kiremt season (defined as JJAS), which is the rainy season in Central and Northwestern Ethiopia. Kiremt rainfall shows clear negative correlation with Central Pacific SST, linking dry Ethiopian summers with ENSO-like warm SST anomalies. We use the atmosphere general circulation model Echam5.3 to investigate the physical link between Pacific SST anomalies and Kiremt rainfall. We compare a historical simulation with a T106 horizontal resolution (~ 1.125°), forced with reconstructed SST data, to gauge-based rainfall observations for the time period of 1961 to 2009. Composite analysis for model and observations show warm SST anomalies in the Central Pacific and a corresponding large-scale circulation anomaly with subsidence over Ethiopia in dry Kiremt seasons. Horizontal wind fields show a slow-down of the whole Indian monsoon system with a weaker Tropical Easterly Jet (TEJ) and a weaker East African Low-Level Jet (EALLJ) in these summers. We conducted a sensitivity experiment with El Nino like SST anomalies in the Central Pacific with the same Echam version. Its results show that warm Pacific SST anomalies cause dry summer conditions over Ethiopia. While the large-scale subsidence over East Africa is present in the experiment, there is no significant weakening of the Indian monsoon system. We rather find an anomalous circulation cell over Northern Africa with westerlies at 100-200 hPa and easterlies below 500 hPa. The anomalous easterly flow in the lower and middle

  13. Removal of methane from compressed natural gas fueled vehicle exhaust

    International Nuclear Information System (INIS)

    Subramanian, S.; Kudla, R.J.; Chattha, M.S.

    1992-01-01

    The objective of this paper is to investigate the modes of methane (CH 4 ) removal from simulated compressed natural gas (CNG) fueled vehicle exhaust under net oxidizing, net reducing, and stoichiometric conditions. Model reaction studies were conducted. The results suggest that the oxidation of methane with oxygen contributes to the removal of methane under net oxidizing conditions. In contrast, the oxidation of methane with oxygen as well as nitric oxide contributes to its removal under net reducing conditions. The steam reforming reaction does not significantly contribute to the removal of methane. The methane conversions under net reducing conditions are higher than those observed under net oxidizing conditions. The study shows that the presence of carbon monoxide in the feed gas leads to a gradual decrease in the methane conversion with increasing redox ratio, under net oxidizing conditions. a minimum in methane conversion is observed at a redox ratio of 0. 8. The higher activity for the methane-oxygen reaction resulting from a lowering in the overall oxidation state of palladium and the contribution of the methane-nitric oxide reaction toward the removal of CH 4 appear to account for the higher CH 4 conversions observed under net reducing conditions

  14. Evaluate Hydrologic Response on Spatiotemporal Characteristics of Rainfall Using High Resolution Radar Rainfall Data and WRF-Hydro Model

    Science.gov (United States)

    Gao, S.; Fang, N. Z.

    2017-12-01

    A previously developed Dynamic Moving Storm (DMS) generator is a multivariate rainfall model simulating the complex nature of precipitation field: spatial variability, temporal variability, and storm movement. Previous effort by the authors has investigated the sensitivity of DMS parameters on corresponding hydrologic responses by using synthetic storms. In this study, the DMS generator has been upgraded to generate more realistic precipitation field. The dependence of hydrologic responses on rainfall features was investigated by dissecting the precipitation field into rain cells and modifying their spatio-temporal specification individually. To retrieve DMS parameters from radar rainfall data, rain cell segmentation and tracking algorithms were respectively developed and applied on high resolution radar rainfall data (1) to spatially determine the rain cells within individual radar image and (2) to temporally analyze their dynamic behavior. Statistics of DMS parameters were established by processing a long record of rainfall data (10 years) to keep the modification on real storms within the limit of regional climatology. Empirical distributions of the DMS parameters were calculated to reveal any preferential pattern and seasonality. Subsequently, the WRF-Hydro model forced by the remodeled and modified precipitation was used for hydrologic simulation. The study area was the Upper Trinity River Basin (UTRB) watershed, Texas; and two kinds of high resolution radar data i.e. the Next-Generation Radar (NEXRAD) level III Digital Hybrid Reflectivity (DHR) product and Multi-Radar Multi-Sensor (MRMS) precipitation rate product, were utilized to establish parameter statistics and to recreate/remodel historical events respectively. The results demonstrated that rainfall duration is a significant linkage between DMS parameters and their hydrologic impacts—any combination of spatiotemporal characteristics that keep rain cells longer over the catchment will produce higher

  15. methanization development in Ile-de-France - Ile-de-France region. Synthesis. The Regional Council strategy for methanization development

    International Nuclear Information System (INIS)

    2013-06-01

    A first document reports the study of methanization development in the Ile-de-France region by addressing biomass produced on the region territory. It aimed at identifying and assessing the existing and potential physical resource while introducing mobilisation rates in order to define different scenarios. A situational analysis of operated and projected methanization installations has also been performed. These projects have been classified according to a typology, and analysed according to the proposed scenarios. The position of methanization with respect to other biomass valorisation sectors, as well as the impact of mobilisation with respect to a return-to-soil of organic matters have also been discussed. A second document proposes a synthetic version of this study. The third document presents the Regional Council's policy and strategy regarding methanization development: challenges and prospective scenarios, importance of a sustainable methanization at the service of territory development, regulation for a call for projects, project assessment and selection, project footprint, inputs qualities and supplies, energetic and agronomic valorisation, and grid for project analysis. An appendix contains a synthetic version of the first document

  16. Methane storage capacity of the early martian cryosphere

    Science.gov (United States)

    Lasue, Jeremie; Quesnel, Yoann; Langlais, Benoit; Chassefière, Eric

    2015-11-01

    Methane is a key molecule to understand the habitability of Mars due to its possible biological origin and short atmospheric lifetime. Recent methane detections on Mars present a large variability that is probably due to relatively localized sources and sink processes yet unknown. In this study, we determine how much methane could have been abiotically produced by early Mars serpentinization processes that could also explain the observed martian remanent magnetic field. Under the assumption of a cold early Mars environment, a cryosphere could trap such methane as clathrates in stable form at depth. The extent and spatial distribution of these methane reservoirs have been calculated with respect to the magnetization distribution and other factors. We calculate that the maximum storage capacity of such a clathrate cryosphere is about 2.1 × 1019-2.2 × 1020 moles of CH4, which can explain sporadic releases of methane that have been observed on the surface of the planet during the past decade (∼1.2 × 109 moles). This amount of trapped methane is sufficient for similar sized releases to have happened yearly during the history of the planet. While the stability of such reservoirs depends on many factors that are poorly constrained, it is possible that they have remained trapped at depth until the present day. Due to the possible implications of methane detection for life and its influence on the atmospheric and climate processes on the planet, confirming the sporadic release of methane on Mars and the global distribution of its sources is one of the major goals of the current and next space missions to Mars.

  17. Radar rainfall estimation for the identification of debris-flow precipitation thresholds

    Science.gov (United States)

    Marra, Francesco; Nikolopoulos, Efthymios I.; Creutin, Jean-Dominique; Borga, Marco

    2014-05-01

    Identification of rainfall thresholds for the prediction of debris-flow occurrence is a common approach for warning procedures. Traditionally the debris-flow triggering rainfall is derived from the closest available raingauge. However, the spatial and temporal variability of intense rainfall on mountainous areas, where debris flows take place, may lead to large uncertainty in point-based estimates. Nikolopoulos et al. (2014) have shown that this uncertainty translates into a systematic underestimation of the rainfall thresholds, leading to a step degradation of the performances of the rainfall threshold for identification of debris flows occurrence under operational conditions. A potential solution to this limitation lies on use of rainfall estimates from weather radar. Thanks to their high spatial and temporal resolutions, these estimates offer the advantage of providing rainfall information over the actual debris flow location. The aim of this study is to analyze the value of radar precipitation estimations for the identification of debris flow precipitation thresholds. Seven rainfall events that triggered debris flows in the Adige river basin (Eastern Italian Alps) are analyzed using data from a dense raingauge network and a C-Band weather radar. Radar data are elaborated by using a set of correction algorithms specifically developed for weather radar rainfall application in mountainous areas. Rainfall thresholds for the triggering of debris flows are identified in the form of average intensity-duration power law curves using a frequentist approach by using both radar rainfall estimates and raingauge data. Sampling uncertainty associated to the derivation of the thresholds is assessed by using a bootstrap technique (Peruccacci et al. 2012). Results show that radar-based rainfall thresholds are largely exceeding those obtained by using raingauge data. Moreover, the differences between the two thresholds may be related to the spatial characteristics (i.e., spatial

  18. Methane emission from wetland rice fields

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.

    1996-01-01


    Methane (CH 4 ) is an important greenhouse gas and plays a key role in tropospheric and stratospheric chemistry. Wetland rice fields are an important source of methane, accounting for approximately 20% of the global anthropogenic

  19. Reaction between infusion water and methane

    Energy Technology Data Exchange (ETDEWEB)

    Ettinger, I L

    1977-09-01

    This paper discusses the effect of infused water on the initial gas emission rate and on the pore structure of the coal. Water traps methane in micro-pores, so that lengthy periods are needed for the methane to penetrate large voids and cavities.

  20. Formation temperatures of thermogenic and biogenic methane

    Science.gov (United States)

    Stolper, D.A.; Lawson, M.; Davis, C.L.; Ferreira, A.A.; Santos Neto, E. V.; Ellis, G.S.; Lewan, M.D.; Martini, Anna M.; Tang, Y.; Schoell, M.; Sessions, A.L.; Eiler, J.M.

    2014-01-01

    Methane is an important greenhouse gas and energy resource generated dominantly by methanogens at low temperatures and through the breakdown of organic molecules at high temperatures. However, methane-formation temperatures in nature are often poorly constrained. We measured formation temperatures of thermogenic and biogenic methane using a “clumped isotope” technique. Thermogenic gases yield formation temperatures between 157° and 221°C, within the nominal gas window, and biogenic gases yield formation temperatures consistent with their comparatively lower-temperature formational environments (<50°C). In systems where gases have migrated and other proxies for gas-generation temperature yield ambiguous results, methane clumped-isotope temperatures distinguish among and allow for independent tests of possible gas-formation models.

  1. Simulation of Tropical Rainfall Variability

    Science.gov (United States)

    Bader, J.; Latif, M.

    2002-12-01

    The impact of sea surface temperature (SST) - especially the role of the tropical Atlantic meridional SST gradient and the El Nino-Southern Oscillation - on precipitation is investigated with the atmospheric general circulation model ECHAM4/T42. Ensemble experiments - driven with observed SST - show that Atlantic SST has a significant influence on precipitation over West Africa and northeast Brazil. SST sensitivity experiments were performed in which the climatological SST was enhanced or decreased by one Kelvin in certain ocean areas. Changing SST in the eastern tropical Atlantic caused only significant changes along the Guinea Coast, with a positive anomaly (SSTA) increasing rainfall and a negative SSTA reducing it. The response was nearly linear. Changing SST in other ocean areas caused significant changes over West Africa, especially in the Sahel area. The response is found to be non linear, with only negative SSTA leading to significant reduction in Sahel rainfall. Also, the impact of the SSTAs from the different ocean regions was not additive with respect to the rainfall. The influence of SST on precipitation over northeast Brazil (Nordeste) was also investigated. Three experiments were performed in which the climatological SST was enhanced/decreased or decreased/enhanced by one Kelvin in the North/South Atlantic and increased by two Kelvin in the Nino3 ocean area. All experiments caused significant changes over Nordeste, with an enhanced/reduced SST gradient in the Atlantic increasing/reducing rainfall. The response was nearly linear. The main effect of the Atlantic SST gradient was a shift of the ITCZ, caused by trade wind changes. The ''El Nino'' event generates a significant reduction in Nordeste rainfall. A significant positive SLP anomaly occurs in northeast Brazil which may be associated with the descending branch of the Walker circulation. Also a significant positive SLP over the Atlantic from 30S to 10N north occurs. This results in a reduced SLP

  2. Bacterial overgrowth and methane production in children with encopresis.

    Science.gov (United States)

    Leiby, Alycia; Mehta, Devendra; Gopalareddy, Vani; Jackson-Walker, Susan; Horvath, Karoly

    2010-05-01

    To assess the prevalence of small intestinal bacterial overgrowth (SIBO) and methane production in children with encopresis. Radiographic fecal impaction (FI) scores were assessed in children with secondary, retentive encopresis and compared with the breath test results. Breath tests with hypoosmotic lactulose solution were performed in both the study patients (n = 50) and gastrointestinal control subjects (n = 39) groups. The FI scores were significantly higher in the patients with encopresis who were methane producers (P encopresis and 9 of 39 (23%) of control subjects (P = .06). Methane was produced in 56% of the patients with encopresis versus 23.1% of the control subjects in the gastrointestinal group (P encopresis had a higher prevalence of SIBO, elevated basal methane levels, and higher methane production. Methane production was associated with more severe colonic impaction. Further study is needed to determine whether methane production is a primary or secondary factor in the pathogenesis of SIBO and encopresis.

  3. FY1995 molecular control technology for mining of methane-gas-hydrate; 1995 nendo methane hydrate no bunshi seigyo mining

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The objectives of the investigation are as follows: 1) developing a method to control formation/dissociation of methane-gas-hydrate, 2) developing a technology to displace methane gas by CO{sub 2} in methane-gas-hydrate deposit, 3) developing a technology to produce methane gas from the deposit efficiently. The final purpose of the project is to create new mining industry that solves both the problems of energy and global environment. 1) Clustering of water molecules is found to play the key role in the methane gas hydrate formation. 2) Equilibrium properties and kinetics of gas hydrates formation and dissociation in bulk-scale gas-hydrate are clarified in the practical environmental conditions. 3) Particle size of hydrate deposit influences the formation and dissociation of bulk-scale gas-hydrate crystal. 4) Mass transfer between gas and liquid phase in turbulent bubbly flow is a function of bubble diameter. The mass transfer depends on interfacial dynamics. (NEDO)

  4. RAINFALL AGGRESSIVENESS EVALUATION IN REGHIN HILLS USING FOURNIER INDEX

    Directory of Open Access Journals (Sweden)

    J. SZILAGYI

    2016-03-01

    Full Text Available Aggressiveness erosive force of rainfall is the express of kinetic energy and potential energy of rain water runoff on slopes. In the absence of a database for the analysis of parameters that define the torrencial rainfall, the rainfall erosivity factor was calculated by Fournier Index, Modified Fournier Index based on the monthly and annual precipitation.

  5. Dynamic Hydrological Modeling in Drylands with TRMM Based Rainfall

    Directory of Open Access Journals (Sweden)

    Elena Tarnavsky

    2013-12-01

    Full Text Available This paper introduces and evaluates DryMOD, a dynamic water balance model of the key hydrological process in drylands that is based on free, public-domain datasets. The rainfall model of DryMOD makes optimal use of spatially disaggregated Tropical Rainfall Measuring Mission (TRMM datasets to simulate hourly rainfall intensities at a spatial resolution of 1-km. Regional-scale applications of the model in seasonal catchments in Tunisia and Senegal characterize runoff and soil moisture distribution and dynamics in response to varying rainfall data inputs and soil properties. The results highlight the need for hourly-based rainfall simulation and for correcting TRMM 3B42 rainfall intensities for the fractional cover of rainfall (FCR. Without FCR correction and disaggregation to 1 km, TRMM 3B42 based rainfall intensities are too low to generate surface runoff and to induce substantial changes to soil moisture storage. The outcomes from the sensitivity analysis show that topsoil porosity is the most important soil property for simulation of runoff and soil moisture. Thus, we demonstrate the benefit of hydrological investigations at a scale, for which reliable information on soil profile characteristics exists and which is sufficiently fine to account for the heterogeneities of these. Where such information is available, application of DryMOD can assist in the spatial and temporal planning of water harvesting according to runoff-generating areas and the runoff ratio, as well as in the optimization of agricultural activities based on realistic representation of soil moisture conditions.

  6. Heterogeneous Nucleation of Methane Hydrate in a Water-Decane-Methane Emulsion

    Science.gov (United States)

    Shestakov, V. A.; Kosyakov, V. I.; Manakov, A. Yu.; Stoporev, A. S.; Grachev, E. V.

    2018-07-01

    Heterogeneous nucleation in disperse systems with metastable disperse phases plays an important role in the mechanisms of environmental and technological processes. The effect the concentration and activity of particles that initiate the formation of a new phase have on nucleation processes in such systems is considered. An approach is proposed that allows construction of a spectrum of particle activity characterizing the features of nucleation in a sample, based on the fraction of crystallized droplets depending on the level of supercooling and the use of Weibull's distribution. The proposed method is used to describe experimental data on the heterogeneous nucleation of methane hydrate in an emulsion in a water-decane-methane system.

  7. Factors Controlling Methane in Arctic Lakes of Southwest Greenland.

    Science.gov (United States)

    Northington, Robert M; Saros, Jasmine E

    2016-01-01

    We surveyed 15 lakes during the growing season of 2014 in Arctic lakes of southwest Greenland to determine which factors influence methane concentrations in these systems. Methane averaged 2.5 μmol L-1 in lakes, but varied a great deal across the landscape with lakes on older landscapes farther from the ice sheet margin having some of the highest values of methane reported in lakes in the northern hemisphere (125 μmol L-1). The most important factors influencing methane in Greenland lakes included ionic composition (SO4, Na, Cl) and chlorophyll a in the water column. DOC concentrations were also related to methane, but the short length of the study likely underestimated the influence and timing of DOC on methane concentrations in the region. Atmospheric methane concentrations are increasing globally, with freshwater ecosystems in northern latitudes continuing to serve as potentially large sources in the future. Much less is known about how freshwater lakes in Greenland fit in the global methane budget compared to other, more well-studied areas of the Arctic, hence our work provides essential data for a more complete view of this rapidly changing region.

  8. Rainfall estimation in the context of post-event flash flood analysis

    Science.gov (United States)

    Delrieu, Guy; Boudevillain, Brice; Bouilloud, Ludovic

    2010-05-01

    Due to their spatial coverage and space-time resolution, operational weather radar networks offer unprecedented opportunities for the observation of flash flood generating storms. However, the radar rainfall estimation quality highly depends on the relative locations of the event and the radar(s). A mountainous environment obviously adds to the complexity of the radar quantitative precipitation estimation (QPE). A pragmatic methodology was developed within the EC-funded HYDRATE project to take the best benefit of the existing rainfall observations (radar and raingauge data) for given flash-flood cases: 1) A precise documentation of the radar characteristics (location, parameters, operating protocol, data archives and processing) needs first to be established. The radar(s) detection domain(s) can then be characterized using the "hydrologic visibility" concepts (Pellarin et al. J Hydrometeor 3(5) 539-555 2002). 2) Rather dense raingauge observations (operational, amateur) are usually available at the event time scale while few raingauge time series exist at the hydrologic time steps. Such raingauge datasets need to be critically analysed; a geostatistical approach is proposed for this task. 3) A number of identifications can be implemented prior to the radar data re-processing: a) Special care needs to be paid to (residual) ground clutter which has a dramatic impact of radar QPE. Dry-weather maps and rainfall accumulation maps may help in this task. b) Various sources of power losses such as screening, wet radome, attenuation in rain need to be identified and quantified. It will be shown that mountain returns can be used to quantify attenuation effects at C-band. c) Radar volume data is required to characterize the vertical profile of reflectivity (VPR), eventually conditioned on rain type (convective, widespread). When such data is not available, knowledge of the 0°C isotherm and the scanning protocol may help detecting bright-band contaminations that critically

  9. River catchment rainfall series analysis using additive Holt-Winters method

    Science.gov (United States)

    Puah, Yan Jun; Huang, Yuk Feng; Chua, Kuan Chin; Lee, Teang Shui

    2016-03-01

    Climate change is receiving more attention from researchers as the frequency of occurrence of severe natural disasters is getting higher. Tropical countries like Malaysia have no distinct four seasons; rainfall has become the popular parameter to assess climate change. Conventional ways that determine rainfall trends can only provide a general result in single direction for the whole study period. In this study, rainfall series were modelled using additive Holt-Winters method to examine the rainfall pattern in Langat River Basin, Malaysia. Nine homogeneous series of more than 25 years data and less than 10% missing data were selected. Goodness of fit of the forecasted models was measured. It was found that seasonal rainfall model forecasts are generally better than the monthly rainfall model forecasts. Three stations in the western region exhibited increasing trend. Rainfall in southern region showed fluctuation. Increasing trends were discovered at stations in the south-eastern region except the seasonal analysis at station 45253. Decreasing trend was found at station 2818110 in the east, while increasing trend was shown at station 44320 that represents the north-eastern region. The accuracies of both rainfall model forecasts were tested using the recorded data of years 2010-2012. Most of the forecasts are acceptable.

  10. Methane storage in porous activated carbons

    NARCIS (Netherlands)

    András Perl; prof. dr. Wim van Gemert

    2014-01-01

    Locally produced methane, - either as biomethane or power-to-gas product, has to be stored to provide a reliable gas source for the fluctuating demand of any local gas distribution network. Additionally, methane is a prominent transportation fuel but its suitability for vehicular application depends

  11. Molecular dynamics study of methane hydrate formation at a water/methane interface.

    Science.gov (United States)

    Zhang, Junfang; Hawtin, R W; Yang, Ye; Nakagava, Edson; Rivero, M; Choi, S K; Rodger, P M

    2008-08-28

    We present molecular dynamics simulation results of a liquid water/methane interface, with and without an oligomer of poly(methylaminoethylmethacrylate), PMAEMA. PMAEMA is an active component of a commercial low dosage hydrate inhibitor (LDHI). Simulations were performed in the constant NPT ensemble at temperatures of 220, 235, 240, 245, and 250 K and a pressure of 300 bar. The simulations show the onset of methane hydrate growth within 30 ns for temperatures below 245 K in the methane/water systems; at 240 K there is an induction period of ca. 20 ns, but at lower temperatures growth commences immediately. The simulations were analyzed to calculate hydrate content, the propensity for hydrogen bond formation, and how these were affected by both temperature and the presence of the LDHI. As expected, both the hydrogen bond number and hydrate content decreased with increasing temperature, though little difference was observed between the lowest two temperatures considered. In the presence of PMAEMA, the temperature below which sustained hydrate growth occurred was observed to decrease. Some of the implications for the role of PMAEMA in LDHIs are discussed.

  12. Engineering of an Extreme Rainfall Detection System using Grid Computing

    Directory of Open Access Journals (Sweden)

    Olivier Terzo

    2012-10-01

    Full Text Available This paper describes a new approach for intensive rainfall data analysis. ITHACA's Extreme Rainfall Detection System (ERDS is conceived to provide near real-time alerts related to potential exceptional rainfalls worldwide, which can be used by WFP or other humanitarian assistance organizations to evaluate the event and understand the potentially floodable areas where their assistance is needed. This system is based on precipitation analysis and it uses rainfall data from satellite at worldwide extent. This project uses the Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis dataset, a NASA-delivered near real-time product for current rainfall condition monitoring over the world. Considering the great deal of data to process, this paper presents an architectural solution based on Grid Computing techniques. Our focus is on the advantages of using a distributed architecture in terms of performances for this specific purpose.

  13. Fluvial signatures of modern and paleo orographic rainfall gradients

    Science.gov (United States)

    Schildgen, Taylor; Strecker, Manfred

    2016-04-01

    The morphology of river profiles is intimately linked to both climate and tectonic forcing. While much interest recently has focused on how river profiles can be inverted to derive uplift histories, here we show how in regions of strong orographic rainfall gradients, rivers may primarily record spatial patterns of precipitation. As a case study, we examine the eastern margin of the Andean plateau in NW Argentina, where the outward (eastward) growth of a broken foreland has led to a eastward shift in the main orographic rainfall gradient over the last several million years. Rivers influenced by the modern rainfall gradient are characterized by normalized river steepness values in tributary valleys that closely track spatial variations in rainfall, with higher steepness values in drier areas and lower steepness values in wetter areas. The same river steepness pattern has been predicted in landscape evolution models that apply a spatial gradient in rainfall to a region of uniform erosivity and uplift rate (e.g., Han et al., 2015). Also, chi plots from river networks on individual ranges affected by the modern orographic rainfall reveal patterns consistent with assymmetric precipitation across the range: the largest channels on the windward slopes are characterized by capture, while the longest channels on the leeward slopes are dominated by beheadings. Because basins on the windward side both lengthen and widen, tributary channels in the lengthening basins are characterized by capture, while tributary channels from neighboring basins on the windward side are dominated by beheadings. These patterns from the rivers influenced by the modern orographic rainfall gradient provide a guide for identifying river morphometric signatures of paleo orographic rainfall gradients. Mountain ranges to the west of the modern orographic rainfall have been interpreted to mark the location of orographic rainfall in the past, but these ranges are now in spatially near-uniform semi-arid to

  14. Methane storage in metal-organic frameworks.

    Science.gov (United States)

    He, Yabing; Zhou, Wei; Qian, Guodong; Chen, Banglin

    2014-08-21

    Natural gas (NG), whose main component is methane, is an attractive fuel for vehicular applications. Realization of safe, cheap and convenient means and materials for high-capacity methane storage can significantly facilitate the implementation of natural gas fuelled vehicles. The physisorption based process involving porous materials offers an efficient storage methodology and the emerging porous metal-organic frameworks have been explored as potential candidates because of their extraordinarily high porosities, tunable pore/cage sizes and easily immobilized functional sites. In this view, we provide an overview of the current status of metal-organic frameworks for methane storage.

  15. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands

    Science.gov (United States)

    Hu, Bao-lan; Shen, Li-dong; Lian, Xu; Zhu, Qun; Liu, Shuai; Huang, Qian; He, Zhan-fei; Geng, Sha; Cheng, Dong-qing; Lou, Li-ping; Xu, Xiang-yang; Zheng, Ping; He, Yun-feng

    2014-01-01

    The process of nitrite-dependent anaerobic methane oxidation (n-damo) was recently discovered and shown to be mediated by “Candidatus Methylomirabilis oxyfera” (M. oxyfera). Here, evidence for n-damo in three different freshwater wetlands located in southeastern China was obtained using stable isotope measurements, quantitative PCR assays, and 16S rRNA and particulate methane monooxygenase gene clone library analyses. Stable isotope experiments confirmed the occurrence of n-damo in the examined wetlands, and the potential n-damo rates ranged from 0.31 to 5.43 nmol CO2 per gram of dry soil per day at different depths of soil cores. A combined analysis of 16S rRNA and particulate methane monooxygenase genes demonstrated that M. oxyfera-like bacteria were mainly present in the deep soil with a maximum abundance of 3.2 × 107 gene copies per gram of dry soil. It is estimated that ∼0.51 g of CH4 m−2 per year could be linked to the n-damo process in the examined wetlands based on the measured potential n-damo rates. This study presents previously unidentified confirmation that the n-damo process is a previously overlooked microbial methane sink in wetlands, and n-damo has the potential to be a globally important methane sink due to increasing nitrogen pollution. PMID:24616523

  16. Building a better methane generation model: Validating models with methane recovery rates from 35 Canadian landfills.

    Science.gov (United States)

    Thompson, Shirley; Sawyer, Jennifer; Bonam, Rathan; Valdivia, J E

    2009-07-01

    The German EPER, TNO, Belgium, LandGEM, and Scholl Canyon models for estimating methane production were compared to methane recovery rates for 35 Canadian landfills, assuming that 20% of emissions were not recovered. Two different fractions of degradable organic carbon (DOC(f)) were applied in all models. Most models performed better when the DOC(f) was 0.5 compared to 0.77. The Belgium, Scholl Canyon, and LandGEM version 2.01 models produced the best results of the existing models with respective mean absolute errors compared to methane generation rates (recovery rates + 20%) of 91%, 71%, and 89% at 0.50 DOC(f) and 171%, 115%, and 81% at 0.77 DOC(f). The Scholl Canyon model typically overestimated methane recovery rates and the LandGEM version 2.01 model, which modifies the Scholl Canyon model by dividing waste by 10, consistently underestimated methane recovery rates; this comparison suggested that modifying the divisor for waste in the Scholl Canyon model between one and ten could improve its accuracy. At 0.50 DOC(f) and 0.77 DOC(f) the modified model had the lowest absolute mean error when divided by 1.5 yielding 63 +/- 45% and 2.3 yielding 57 +/- 47%, respectively. These modified models reduced error and variability substantially and both have a strong correlation of r = 0.92.

  17. Direct Activation Of Methane

    KAUST Repository

    Basset, Jean-Marie

    2013-07-15

    Heteropolyacids (HPAs) can activate methane at ambient temperature (e.g., 20.degree. C.) and atmospheric pressure, and transform methane to acetic acid, in the absence of any noble metal such as Pd). The HPAs can be, for example, those with Keggin structure: H.sub.4SiW.sub.12O.sub.40, H.sub.3PW.sub.12O.sub.40, H.sub.4SiMo.sub.12O.sub.40, or H.sub.3PMo.sub.12O.sub.40, can be when supported on silica.

  18. Working group report: methane emissions from coal mining

    International Nuclear Information System (INIS)

    Kruger, D.

    1993-01-01

    The process of coalification inherently generates methane and other byproducts. The amount of methane released during coal mining is a function of coal rank and depth, gas content, and mining methods, as well as other factors such as moisture. In most underground mines, methane is removed by drawing large quantities of air through the mine releasing the air into the atmosphere. In surface mines, exposed coal faces and surfaces, as well as areas of coal rubble created by blasting operations are believed to be the major sources of methane. A portion of the methane emitted from coal mining comes from post-mining activities such as coal processing, transportation, and utilisation. Some methane is also released from coal waste piles and abandoned mines. This paper highlights difficulties with previous methane emission studies namely: absence of data on which to base estimates; use of national data to develop global estimates; failure to include all possible emission sources; overreliance on statistical estimation methodologies. It recommends a 'tiered' approach for the estimation of emissions from underground mines, surface mines and post-mining activities. For each source, two or more approaches (or 'tiers') are presented, with the first tier requiring basic and readily available data and higher tiers requiring additional data. 29 refs., 3 tabs

  19. On-line monitoring of methane in sewer air.

    Science.gov (United States)

    Liu, Yiwen; Sharma, Keshab R; Murthy, Sudhir; Johnson, Ian; Evans, Ted; Yuan, Zhiguo

    2014-10-16

    Methane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers, and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R(2) > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions, and revealed substantial and highly dynamic methane concentrations in sewer air.

  20. The Interdependence between Rainfall and Temperature: Copula Analyses

    DEFF Research Database (Denmark)

    Cong, Ronggang; Brady, Mark

    2012-01-01

    possible approach to this problem, five families of copula models are employed to model the interdependence between rainfall and temperature. Scania is a leading agricultural province in Sweden and is affected by a maritime climate. Historical climatic data for Scania is used to demonstrate the modeling...... process. Heteroscedasticity and autocorrelation of sample data are also considered to eliminate the possibility of observation error. The results indicate that for Scania there are negative correlations between rainfall and temperature for the months from April to July and September. The student copula...... is found to be most suitable to model the bivariate distribution of rainfall and temperature based on the Akaike information criterion (AIC) and Bayesian information criterion (BIC). Using the student copula, we simulate temperature and rainfall simultaneously. The resulting models can be integrated...

  1. Technical Note: Methionine, a precursor of methane in living plants

    Science.gov (United States)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2015-03-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued not only about their contribution to the global methane budget but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds to be identified. We made use of stable isotope techniques to verify the in vivo formation of methane, and, in order to identify the carbon precursor, 13C positionally labeled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labeled methionine clearly identified the sulfur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  2. Rainfall: Features and Variations over Saudi Arabia, A Review

    Directory of Open Access Journals (Sweden)

    Hosny Hasanean

    2015-08-01

    Full Text Available The Saudi Arabia (SA climate varies greatly, depending on the geography and the season. According to K ppen and Geiger, the climates of SA is “desert climate”. The analysis of the seasonal rainfall detects that spring and winter seasons have the highestrainfall incidence, respectively. Through the summer,small quantities of precipitation are observed, while autumn received more precipitation more than summer season considering the total annual rainfall. In all seasons, the SW area receives rainfall, with a maximum in spring, whereas in the summer season, the NE and NW areas receive very little quantities of precipitation. The Rub Al-Khali (the SE region is almost totally dry. The maximum amount of annual rainfall does not always happen at the highest elevation. Therefore, the elevation is not the only factor in rainfall distribution.A great inter-annual change in the rainfall over the SA for the period (1978–2009 is observed. In addition, in the same period, a linear decreasing trend is found in the observed rainfall, whilst in the recent past (1994–2009 a statistically significant negative trend is observed. In the Southern part of the Arabian Peninsula (AP and along the coast of the Red Sea, it is interesting to note that rainfall increased, whilst it decreased over most areas of SA during the 2000–2009 decade, compared to 1980–1989.Statistical and numerical models are used to predict rainfall over Saudi Arabia (SA. The statistical models based on stochastic models of ARIMA and numerical models based on Providing Regional Climates for Impact Studies of Hadley Centre (PRECIS. Climate and its qualitative character and quantified range of possible future changes are investigated. The annual total rainfall decreases in most regions of the SA and only increases in the south. The summertime precipitation will be the highest between other seasons over the southern, the southwestern provinces and Asir mountains, while the wintertime

  3. The use of geostationary satellite based rainfall estimation and rainfall-runoff modelling for regional flash flood assessment

    OpenAIRE

    Suseno, Dwi Prabowo Yuga

    2013-01-01

    The availability of rainfall triggered hazard information such as flash flood is crucial in the flood disaster management and mitigation. However, providing that information is mainly hampered by the shortage of data because of the sparse, uneven or absence the hydrological or meteorological observation. Remote sensing techniques that make frequent observations with continuous spatial coverage provide useful information for detecting the hydrometeorological phenomena such as rainfall and floo...

  4. Inter-Annual Variability Of Rainfall In Some States Of Southern Nigeria

    Directory of Open Access Journals (Sweden)

    Egor

    2015-08-01

    Full Text Available Abstract The study inter-annual variability of rainfall in some states in Southern Nigeria focuses on analyzing the trends and fluctuations in annual rainfall over six states in Southern Nigeria covering a period of 1972 2012. In order to ascertain the variabilitys and to model the annual rainfall for future prediction to enhance policy implementation the quantitative and descriptive analysis techniques was employed. The rainfall series were analyzed for fluctuations using Standardized Anomaly Index SAI whereas the trends were examined using Statistical Package for Social Science Software SPSS 17.0. At 95 percent confidence level observations in the stations may be signals that the wetter period dominates the drier periods in this study. Each of the series contains two distinct periods when the rainfall anomalies negative and positive of a particular type were most significant. The period where the annual rainfall is above one standard deviation from the mean annual rainfall is considered Wet and the period below one standard deviation from the mean annual rainfall is considered Dry for each station. The results of the linear trend lines revealed an increase in rainfall supply over the period of study especially of recent. The annual rate of increase in rainfall over the period of investigation 1972 - 2012 were 15.21mmyear for Calabar 2.18mmyear for Port Harcourt 22.23mmyear for Owerri 3.25mmyear for Benin City 5.08mmyear for Enugu and 16.29mmyear for Uyo respectively. The variability in amount of annual rainfall revealed that in 2012 Calabar received the highest amount of rainfall of about 4062.70mm and the least value of 2099.4mm in 1973. In Porthacourt the highest amount of rainfall occurred in 1993 with a value of 3911.70mm and the least value in 1983 with a value of 1816.4mm. Owerri recorded the highest amount of rainfall of about 3064.0mm in 2011 and the least value occurred in 1986 with a value of 1228.4mm. In 1976 Benin received the

  5. Global climate: Methane contribution to greenhouse effect

    International Nuclear Information System (INIS)

    Metalli, P.

    1992-01-01

    The global atmospheric concentration of methane greatly contributes to the severity of the greenhouse effect. It has been estimated that this concentration, due mainly to human activities, is growing at the rate of roughly 1.1% per year. Environmental scientists suggest that a reduction, even as small as 10%, in global methane emissions would be enough to curtail the hypothetical global warning scenarios forecasted for the up-coming century. Through the recovery of methane from municipal and farm wastes, as well as, through the control of methane leaks and dispersions in coal mining and petrochemical processes, substantial progress towards the abatement of greenhouse gas effects could be achieved without having to resort to economically detrimental limitations on the use of fossil fuels

  6. Spatial variability and rainfall characteristics of Kerala

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Geographical regions of covariability in precipitation over the Kerala state are exposed using factor analysis. The results suggest that Kerala can be divided into three unique rainfall regions, each region having a similar covariance structure of annual rainfall. Stations north of 10◦N (north. Kerala) fall into one group and they ...

  7. Methane leakage in natural gas operations

    International Nuclear Information System (INIS)

    Jennervik, A.

    1992-01-01

    The world gas industry is efficient in conservation of natural gas within its systems. As the influence of methane as an infra-red absorbent gas has been more widely recognized, the considerations of methane's greenhouse effect has become vitally important to gas companies around the world. The industry is universally environmentally conscious. natural gas transmission and distribution companies want to maintain their image as suppliers of clean fuel. Further reductions in methane leakage --- particularly in older distribution systems --- can, should and will be pursued. Unfortunately, there has been little exchange of views on methane leakages between commentators on environmental matters and gas companies and organizations. There is absolutely no need for the industry to avoid the issue of greenhouse gases. Without industry involvement, the environmental debate concerning fossil fuels could lead to selective interpretation of scientific views and available evidence. Companies and authorities would be presented with confusing, contradictory evidence on which to base policy approaches and regulations

  8. Where do forests influence rainfall?

    Science.gov (United States)

    Wang-Erlandsson, Lan; van der Ent, Ruud; Fetzer, Ingo; Keys, Patrick; Savenije, Hubert; Gordon, Line

    2017-04-01

    Forests play a major role in hydrology. Not only by immediate control of soil moisture and streamflow, but also by regulating climate through evaporation (i.e., transpiration, interception, and soil evaporation). The process of evaporation travelling through the atmosphere and returning as precipitation on land is known as moisture recycling. Whether evaporation is recycled depends on wind direction and geography. Moisture recycling and forest change studies have primarily focused on either one region (e.g. the Amazon), or one biome type (e.g. tropical humid forests). We will advance this via a systematic global inter-comparison of forest change impacts on precipitation depending on both biome type and geographic location. The rainfall effects are studied for three contemporary forest changes: afforestation, deforestation, and replacement of mature forest by forest plantations. Furthermore, as there are indications in the literature that moisture recycling in some places intensifies during dry years, we will also compare the rainfall impacts of forest change between wet and dry years. We model forest change effects on evaporation using the global hydrological model STEAM and trace precipitation changes using the atmospheric moisture tracking scheme WAM-2layers. This research elucidates the role of geographical location of forest change driven modifications on rainfall as a function of the type of forest change and climatic conditions. These knowledge gains are important at a time of both rapid forest and climate change. Our conclusions nuance our understanding of how forests regulate climate and pinpoint hotspot regions for forest-rainfall coupling.

  9. Multiparametric methane sensor for environmental monitoring

    Science.gov (United States)

    Borecki, M.; Duk, M.; Kociubiński, A.; Korwin-Pawlowski, M. L.

    2016-12-01

    Today, methane sensors find applications mostly in safety alarm installations, gas parameters detection and air pollution classification. Such sensors and sensors elements exists for industry and home use. Under development area of methane sensors application is dedicated to ground gases monitoring. Proper monitoring of soil gases requires reliable and maintenance-free semi-constant and longtime examination at relatively low cost of equipment. The sensors for soil monitoring have to work on soil probe. Therefore, sensor is exposed to environment conditions, as a wide range of temperatures and a full scale of humidity changes, as well as rain, snow and wind, that are not specified for classical methane sensors. Development of such sensor is presented in this paper. The presented sensor construction consists of five commercial non dispersive infra-red (NDIR) methane sensing units, a set of temperature and humidity sensing units, a gas chamber equipped with a micro-fan, automated gas valves and also a microcontroller that controls the measuring procedure. The electronics part of sensor was installed into customized 3D printed housing equipped with self-developed gas valves. The main development of proposed sensor is on the side of experimental evaluation of construction reliability and results of data processing included safety procedures and function for hardware error correction. Redundant methane sensor units are used providing measurement error correction as well as improved measurement accuracy. The humidity and temperature sensors are used for internal compensation of methane measurements as well as for cutting-off the sensor from the environment when the conditions exceed allowable parameters. Results obtained during environment sensing prove that the gas concentration readings are not sensitive to gas chamber vertical or horizontal position. It is important as vertical sensor installation on soil probe is simpler that horizontal one. Data acquired during six

  10. Methane Emissions from Bangladesh: Bridging the Gap Between Ground-based and Space-borne Estimates

    Science.gov (United States)

    Peters, C.; Bennartz, R.; Hornberger, G. M.

    2015-12-01

    Gaining an understanding of methane (CH4) emission sources and atmospheric dispersion is an essential part of climate change research. Large-scale and global studies often rely on satellite observations of column CH4 mixing ratio whereas high-spatial resolution estimates rely on ground-based measurements. Extrapolation of ground-based measurements on, for example, rice paddies to broad region scales is highly uncertain because of spatio-temporal variability. We explore the use of ground-based river stage measurements and independent satellite observations of flooded area along with satellite measurements of CH4 mixing ratio to estimate the extent of methane emissions. Bangladesh, which comprises most of the Ganges Brahmaputra Meghna (GBM) delta, is a region of particular interest for studying spatio-temporal variation of methane emissions due to (1) broadscale rice cultivation and (2) seasonal flooding and atmospheric convection during the monsoon. Bangladesh and its deltaic landscape exhibit a broad range of environmental, economic, and social circumstances that are relevant to many nations in South and Southeast Asia. We explore the seasonal enhancement of CH4 in Bangladesh using passive remote sensing spectrometer CH4 products from the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) and the Atmospheric Infrared Sounder (AIRS). The seasonal variation of CH4 is compared to independent estimates of seasonal flooding from water gauge stations and space-based passive microwave water-to-land fractions from the Tropical Rainfall Measuring Mission Microwave Imager (TRMM-TMI). Annual cycles in inundation (natural and anthropogenic) and atmospheric CH4 concentrations show highly correlated seasonal signals. NOAA's HYSPLIT model is used to determine atmospheric residence time of ground CH4 fluxes. Using the satellite observations, we can narrow the large uncertainty in extrapolation of ground-based CH4 emission estimates from rice paddies

  11. Estimation of Surface Runoff in the Jucar River Basin from Rainfall Data and SMOS Soil Moisture

    Science.gov (United States)

    Garcia Leal, Julio A.; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Gonzalez Robles, Maura; Herrera Daza, Eddy; Khodayar, Samiro; Lopez-Baeza, Ernesto

    2013-04-01

    Surface runoff is the water that flows after soil is infiltrated to full capacity and excess water from rain, meltwater, or other sources flows over the land. When the soil is saturated and the depression storage filled, and rain continues to fall, the rainfall will immediately produce surface runoff. The Soil Conservation Service Curve Number (SCS-CN) method is widely used for determining the approximate direct runoff volume for a given rainfall event in a particular area. The advantage of the method is its simplicity and widespread inclusion in existing computer models. It was originally developed by the US Department of Agriculture, Soil Conservation Service, and documented in detail in the National Engineering Handbook, Sect. 4: Hydrology (NEH-4) (USDA-SCS, 1985). Although the SCS-CN method was originally developed in the United States and mainly for the evaluation of storm runoff in small agricultural watersheds, it soon evolved well beyond its original objective and was adopted for various land uses and became an integral part of more complex, long-term, simulation models. The basic assumption of the SCS-CN method is that, for a single storm, the ratio of actual soil retention after runoff begins to potential maximum retention is equal to the ratio of direct runoff to available rainfall. This relationship, after algebraic manipulation and inclusion of simplifying assumptions, results in the following equation given in USDA-SCS (1985): (P--0,2S)2 Q = (P + 0,8S) where Q is the average runoff (mm), P the effective precipitation (mm) and S is potential maximum retention (mm) after the rainfall event. The study has been applied to the Jucar River Basin area, East of Spain. A selection of recent significant rainfall events has been made corresponding to the periods around 22nd November, 2011 and 28-29 September and 10 October, 2012, from Jucar River Basin Authority rain gauge data. Potential maximum retention values for each point have been assumed as the first

  12. IPNS grooved, solid methane moderator

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Schulke, A.W.; Scott, T.L.; Wozniak, D.G.; Benson, B.E.; Leyda, B.D.

    1985-01-01

    There are two motives for using cold moderators in pulsed neutron sources, to provide higher fluxes of long-wavelength neutrons, and to extend the epithermal range with its short pulse structure to lower energies. For both these purposes solid methane, operated at the lowest possible temperatures, is the best material we know of. Two problems accompany the use of solid methane in high power sources, namely heat transport in view of the low thermal conductivity of solid methane, and deterioration due to radiation damage. We have designed a system suitable to operate in IPNS, subject to nuclear heating of about 25 W, which incorporates an aluminum foam matrix to conduct the heat from within the moderator. We report the results of the first few months' operation and of a few tests that we have performed

  13. Giant seafloor craters formed by hydrate-controlled large-scale methane expulsion from the Arctic seafloor after ice sheet retreat

    Science.gov (United States)

    Andreassen, K.; Hubbard, A.; Patton, H.; Vadakkepuliyambatta, S.; Winsborrow, M.; Plaza-Faverola, A. A.; Serov, P.

    2017-12-01

    Large-scale methane releases from thawing Arctic gas hydrates is a major concern, yet the processes and fluxes involved remain elusive. We present geophysical data indicating two contrasting processes of natural methane emissions from the seafloor of the northern Barents Sea, Polar North Atlantic. Abundant gas flares, acoustically imaged in the water column reveal slow, gradual release of methane bubbles, a process that is commonly documented from nearby areas, elsewhere in the Arctic and along continental margins worldwide. Conversely, giant craters across the study area indicate a very different process. We propose that these are blow-out craters, formed through large-scale, abrupt methane expulsion induced when gas hydrates destabilized after the Barents Sea Ice Sheet retreated from the area. The data reveal over 100 giant seafloor craters within an area of 440 km2. These are up to 1000 m in diameter, 30 m deep and with a semi-circular to elliptical shape. We also identified numerous large seafloor mounds, which we infer to have formed by the expansion of gas hydrate accumulations within the shallow subsurface, so-called gas hydrate pingos. These are up to 1100 m wide and 20 m high. Smaller craters and mounds < 200 m wide and with varying relief are abundant across the study site. The empirical observations and analyses are combined with numerical modelling of ice sheet, isostatic and gas hydrate evolution and indicate that during glaciation, natural gas migrating from underlying hydrocarbon reservoirs was stored as subglacial gas hydrates. On ice sheet retreat, methane from these hydrate reservoirs and underlying free gas built up and abruptly released, forming the giant mounds and craters observed in the study area today. Petroleum basins are abundant beneath formerly and presently glaciated regions. We infer that episodes of subglacial sequestration of gas hydrates and underlying free gas and subsequent abrupt expulsions were common and widespread throughout

  14. Effect of variations in rainfall intensity on slope stability in Singapore

    Directory of Open Access Journals (Sweden)

    Christofer Kristo

    2017-12-01

    Full Text Available Numerous scientific evidence has given credence to the true existence and deleterious impacts of climate change. One aspect of climate change is the variations in rainfall patterns, which affect the flux boundary condition across ground surface. A possible disastrous consequence of this change is the occurrence of rainfall-induced slope failures. This paper aims to investigate the variations in rainfall patterns in Singapore and its effect on slope stability. Singapore's historical rainfall data from Seletar and Paya Lebar weather stations for the period of 1985–2009 were obtained and analysed by duration using linear regression. A general increasing trend was observed in both weather stations, with a possible shift to longer duration rainfall events, despite being statistically insignificant according to the Mann-Kendall test. Using the derived trends, projected rainfall intensities in 2050 and 2100 were used in the seepage and slope stability analyses performed on a typical residual soil slope in Singapore. A significant reduction in factor of safety was observed in the next 50 years, with only a marginal decrease in factor of safety in the subsequent 50 years. This indicates a possible detrimental effect of variations in rainfall patterns on slope stability in Singapore, especially in the next 50 years. The statistical analyses on rainfall data from Seletar and Paya Lebar weather stations for the period of 1985–2009 indicated that rainfall intensity tend to increase over the years, with a possible shift to longer duration rainfall events in the future. The stability analyses showed a significant decrease in factor of safety from 2003 to 2050 due to increase in rainfall intensity, suggesting that a climate change might have existed beyond 2009 with possibly detrimental effects to slope stability. Keywords: Climate change, Rainfall, Seepage, Slope stability

  15. Energy sector methane recovery and use: the importance of policy

    Energy Technology Data Exchange (ETDEWEB)

    Tom Kerr; Michelle Hershman

    2009-08-15

    To raise awareness about appropriate policy options to advance methane recovery and use in the energy sector, the IEA has conducted a series of analyses and studies over the past few years. This report continues IEA efforts by providing policy makers with examples and best practices in methane mitigation policy design and implementation. This report offers an overview of four types of methane mitigation projects that have the strongest links to the energy sector: oil and gas methane recovery and reduction of leaks and losses; coal mine methane; landfill methane; and manure methane recovery and use. It identifies successful policies that have been used to advance these important projects. This information is intended to guide policy makers as they search for low-cost, near-term solutions to climate change. 38 refs., 10 figs., 1 app.

  16. 30 CFR 75.1106-1 - Test for methane.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test for methane. 75.1106-1 Section 75.1106-1... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Fire Protection § 75.1106-1 Test for methane. Until December 31, 1970, a permissible flame safety lamp may be used to make tests for methane required by the...

  17. A protocol for conducting rainfall simulation to study soil runoff.

    Science.gov (United States)

    Kibet, Leonard C; Saporito, Louis S; Allen, Arthur L; May, Eric B; Kleinman, Peter J A; Hashem, Fawzy M; Bryant, Ray B

    2014-04-03

    Rainfall is a driving force for the transport of environmental contaminants from agricultural soils to surficial water bodies via surface runoff. The objective of this study was to characterize the effects of antecedent soil moisture content on the fate and transport of surface applied commercial urea, a common form of nitrogen (N) fertilizer, following a rainfall event that occurs within 24 hr after fertilizer application. Although urea is assumed to be readily hydrolyzed to ammonium and therefore not often available for transport, recent studies suggest that urea can be transported from agricultural soils to coastal waters where it is implicated in harmful algal blooms. A rainfall simulator was used to apply a consistent rate of uniform rainfall across packed soil boxes that had been prewetted to different soil moisture contents. By controlling rainfall and soil physical characteristics, the effects of antecedent soil moisture on urea loss were isolated. Wetter soils exhibited shorter time from rainfall initiation to runoff initiation, greater total volume of runoff, higher urea concentrations in runoff, and greater mass loadings of urea in runoff. These results also demonstrate the importance of controlling for antecedent soil moisture content in studies designed to isolate other variables, such as soil physical or chemical characteristics, slope, soil cover, management, or rainfall characteristics. Because rainfall simulators are designed to deliver raindrops of similar size and velocity as natural rainfall, studies conducted under a standardized protocol can yield valuable data that, in turn, can be used to develop models for predicting the fate and transport of pollutants in runoff.

  18. Biogenic coal-to-methane conversion efficiency decreases after repeated organic amendment

    Science.gov (United States)

    Davis, Katherine J.; Barnhart, Elliott P.; Fields, Matthew W.; Gerlach, Robin

    2018-01-01

    Addition of organic amendments to coal-containing systems can increase the rate and extent of biogenic methane production for 60–80 days before production slows or stops. Understanding the effect of repeated amendment additions on the rate and extent of enhanced coal-dependent methane production is important if biological coal-to-methane conversion is to be enhanced on a commercial scale. Microalgal biomass was added at a concentration of 0.1 g/L to microcosms with and without coal on days 0, 76, and 117. Rates of methane production were enhanced after the initial amendment but coal-containing treatments produced successively decreasing amounts of methane with each amendment. During the first amendment period, 113% of carbon added as amendment was recovered as methane, whereas in the second and third amendment periods, 39% and 32% of carbon added as amendment was recovered as methane, respectively. Additionally, algae-amended coal treatments produced ∼38% more methane than unamended coal treatments and ∼180% more methane than amended coal-free treatments after one amendment. However, a second amendment addition resulted in only an ∼25% increase in methane production for coal versus noncoal treatments and a third amendment addition resulted in similar methane production in both coal and noncoal treatments. Successive amendment additions appeared to result in a shift from coal-to-methane conversion to amendment-to-methane conversion. The reported results indicate that a better understanding is needed of the potential impacts and efficiencies of repeated stimulation for enhanced coal-to-methane conversion.

  19. Methane fluxes and inventories in the accretionary prism of southwestern Taiwan

    Science.gov (United States)

    Lin, L. H.; Chen, N. C.; Yang, T. F.; Hong, W. L.; Chen, H. W.; Chen, H. C.; Hu, C. Y.; Huang, Y. C.; Lin, S.; Su, C. C.; Liao, W. Z.; Sun, C. H.; Wang, P. L.; Yang, T.; Jiang, S. Y.; Liu, C. S.; Wang, Y.; Chung, S. H.

    2017-12-01

    Sediments distributed across marine and terrestrial realms represent the largest methane reservoir on Earth. The degassing of methane facilitated through either geological structures or perturbation would contribute significantly to global climatic fluctuation and elemental cycling. The exact fluxes and processes governing methane production, consumption and transport in a geological system remain largely unknown in part due to the limited coverage and access of samples. In this study, more than 200 sediment cores were collected from offshore and onshore southwestern Taiwan and analyzed for their gas and aqueous geochemistry. These data combined with published data and existing parameters of subduction system were used to calculate methane fluxes across different geochemical transitions and to develop scenarios of mass balance to constrain deep microbial and thermogenic methane production rates within the Taiwanese accretionary prism. The results showed that high methane fluxes tend to be associated with structural features, suggesting a strong structural control on methane transport. A significant portion of ascending methane (>50%) was consumed by anaerobic oxidation of methane at most sites. Gas compositions and isotopes revealed a transition from the predominance of microbial methane in the passive margin to thermogenic methane at the upper slope of the active margin and onshore mud volcanoes. Methane production and consumption at shallow depths were nearly offset with a small fraction of residual methane discharged into seawater or the atmosphere. The flux imbalance arose primarily from the deep microbial and thermogenic production and could be likely accounted for by the sequestration of methane into hydrate forms, and clay absorption.

  20. Modern proposal of methodology for retrieval of characteristic synthetic rainfall hyetographs

    Science.gov (United States)

    Licznar, Paweł; Burszta-Adamiak, Ewa; Łomotowski, Janusz; Stańczyk, Justyna

    2017-11-01

    Modern engineering workshop of designing and modelling complex drainage systems is based on hydrodynamic modelling and has a probabilistic character. Its practical application requires a change regarding rainfall models accepted at the input. Previously used artificial rainfall models of simplified form, e.g. block precipitation or Euler's type II model rainfall are no longer sufficient. It is noticeable that urgent clarification is needed as regards the methodology of standardized rainfall hyetographs that would take into consideration the specifics of local storm rainfall temporal dynamics. The aim of the paper is to present a proposal for innovative methodology for determining standardized rainfall hyetographs, based on statistical processing of the collection of actual local precipitation characteristics. Proposed methodology is based on the classification of standardized rainfall hyetographs with the use of cluster analysis. Its application is presented on the example of selected rain gauges localized in Poland. Synthetic rainfall hyetographs achieved as a final result may be used for hydrodynamic modelling of sewerage systems, including probabilistic detection of necessary capacity of retention reservoirs.

  1. Reconstruction of past methane availability in an Arctic Alaska wetland indicates climate influenced methane release during the past ~12,000 years

    Science.gov (United States)

    Wooller, Matthew J.; Pohlman, John W.; Gaglioti, Benjamin V.; Langdon, Peter; Jones, Miriam; Anthony, Katey M. Walter; Becker, Kevin W.; Hinrichs, Kai-Uwe; Elvert, Marcus

    2012-01-01

    Atmospheric contributions of methane from Arctic wetlands during the Holocene are dynamic and linked to climate oscillations. However, long-term records linking climate variability to methane availability in Arctic wetlands are lacking. We present a multi-proxy ~12,000 year paleoecological reconstruction of intermittent methane availability from a radiocarbon-dated sediment core (LQ-West) taken from a shallow tundra lake (Qalluuraq Lake) in Arctic Alaska. Specifically, stable carbon isotopic values of photosynthetic biomarkers and methane are utilized to estimate the proportional contribution of methane-derived carbon to lake-sediment-preserved benthic (chironomids) and pelagic (cladocerans) components over the last ~12,000 years. These results were compared to temperature, hydrologic, and habitat reconstructions from the same site using chironomid assemblage data, oxygen isotopes of chironomid head capsules, and radiocarbon ages of plant macrofossils. Cladoceran ephippia from ~4,000 cal year BP sediments have δ13C values that range from ~−39 to −31‰, suggesting peak methane carbon assimilation at that time. These low δ13C values coincide with an apparent decrease in effective moisture and development of a wetland that included Sphagnum subsecundum. Incorporation of methane-derived carbon by chironomids and cladocerans decreased from ~2,500 to 1,500 cal year BP, coinciding with a temperature decrease. Live-collected chironomids with a radiocarbon age of 1,640 cal year BP, and fossil chironomids from 1,500 cal year BP in the core illustrate that ‘old’ carbon has also contributed to the development of the aquatic ecosystem since ~1,500 cal year BP. The relatively low δ13C values of aquatic invertebrates (as low as −40.5‰) provide evidence of methane incorporation by lake invertebrates, and suggest intermittent climate-linked methane release from the lake throughout the Holocene.

  2. Interference-free mid-IR laser absorption detection of methane

    International Nuclear Information System (INIS)

    Pyun, Sung Hyun; Cho, Jungwan; Davidson, David F; Hanson, Ronald K

    2011-01-01

    A novel, mid-IR scanned-wavelength laser absorption diagnostic was developed for time-resolved, interference-free, absorption measurement of methane concentration. A differential absorption (peak minus valley) scheme was used that takes advantage of the structural differences of the absorption spectrum of methane and other hydrocarbons. A peak and valley wavelength pair was selected to maximize the differential cross-section (σ peak minus valley ) of methane for the maximum signal-to-noise ratio, and to minimize that of the interfering absorbers. Methane cross-sections at the peak and valley wavelengths were measured over a range of temperatures, 1000 to 2000 K, and pressures 1.3 to 5.4 atm. The cross-sections of the interfering absorbers were assumed constant over the small wavelength interval between the methane peak and valley features. Using this diagnostic, methane concentration time histories during n-heptane pyrolysis were measured behind reflected shock waves in a shock tube. The differential absorption scheme efficiently rejected the absorption interference and successfully recovered the vapor-phase methane concentration. These measurements allowed the comparison with methane concentration time-history simulations derived from a current n-heptane reaction mechanism (Sirjean et al 2009 A high-temperature chemical kinetic model of n-alkane oxidation JetSurF version 1.0)

  3. Termites facilitate methane oxidation and shape the methanotrophic community.

    Science.gov (United States)

    Ho, Adrian; Erens, Hans; Mujinya, Basile Bazirake; Boeckx, Pascal; Baert, Geert; Schneider, Bellinda; Frenzel, Peter; Boon, Nico; Van Ranst, Eric

    2013-12-01

    Termite-derived methane contributes 3 to 4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of the methane produced can be consumed by methanotrophs that inhabit the mound material, yet the methanotroph ecology in these environments is virtually unknown. The potential for methane oxidation was determined using slurry incubations under conditions with high (12%) and in situ (∼0.004%) methane concentrations through a vertical profile of a termite (Macrotermes falciger) mound and a reference soil. Interestingly, the mound material showed higher methanotrophic activity. The methanotroph community structure was determined by means of a pmoA-based diagnostic microarray. Although the methanotrophs in the mound were derived from populations in the reference soil, it appears that termite activity selected for a distinct community. Applying an indicator species analysis revealed that putative atmospheric methane oxidizers (high-indicator-value probes specific for the JR3 cluster) were indicative of the active nest area, whereas methanotrophs belonging to both type I and type II were indicative of the reference soil. We conclude that termites modify their environment, resulting in higher methane oxidation and selecting and/or enriching for a distinct methanotroph population.

  4. Investigation into increasing short-duration rainfall intensities in ...

    African Journals Online (AJOL)

    2015-04-03

    Apr 3, 2015 ... This study explores this expectation by using historical short-duration ... weather station 5-min rainfall data were combined to extend the effective ... evidence was found of trends or indications of changes in rainfall intensities.

  5. Development and governance of renewable methane use in transport

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, Ari

    2013-10-15

    Renewable methane is promoted in many countries as a sustainable alternative to fossil fuels in all types of transport applications. This article examines development, governance and motives for the use of biogas, synthetic biogas, wind methane and other types of renewable methane in transport. Fossil methane fuels, such as natural gas, shale gas and synthetic natural gas, are included as a comparison. Compressed town gas played an important role in the adoption of methane for traffic use, so its history is also examined. Three waves of development in the use of traffic biogas are identified: the Second World War, the 1970s oil crises, and the present day quest for sustainability. While biogas has been used in transport since the 1930s, the other renewable methane fuels are now emerging in the commercial market with only a few years of history. The article looks at the use of renewable methane in a global perspective, although most of the examples are from Europe, as the majority of the technological and political advances have been European.

  6. Methane Fluxes in West Siberia: 3-D Regional Model Simulation

    International Nuclear Information System (INIS)

    Jagovkina, S. V.; Karol, I. L.; Zubov, V. A.; Lagun, V. E.; Reshetnikov, A. I.; Rozanov, E. V.

    2001-01-01

    The West Siberian region is one of the main contributors of the atmospheric greenhouse gas methane due to the large areas of wetlands, rivers, lakes and numerous gas deposits situated there.But there are no reliable estimations of integral methane flux from this area into the atmosphere. For assessment of methane fluxes in West Siberia the specially constructed 3-D regional chemical transport model was applied. The 3-D distribution of methane is calculated on the basis of the current meteorological data fields(wind, temperature, geopotential) updated 4 times a day. The methane concentrations measured near the main gas fields of West Siberia in the summer season of 1999, were used for correction of methane flux intensity estimates obtained previously by comparison of measurements carried out in summer 1993 and 1996 with modelled methane mixing ratio distribution. This set of field and model experiments confirmed the preliminary conclusion about low leakage intensity: anthropogenic methane flux does not exceed 5-15% of total summer methane flux, estimated as 11-12 Mt CH 4 in summer from this region, in spite of the large areas of gas deposits located there

  7. LANDFILL OPERATION FOR CARBON SEQUESTRATION AND MAXIMUM METHANE EMISSION CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Don Augenstein

    1999-01-11

    ''Conventional'' waste landfills emit methane, a potent greenhouse gas, in quantities such that landfill methane is a major factor in global climate change. Controlled landfilling is a novel approach to manage landfills for rapid completion of total gas generation, maximizing gas capture and minimizing emissions of methane to the atmosphere. With controlled landfilling, methane generation is accelerated and brought to much earlier completion by improving conditions for biological processes (principally moisture levels) in the landfill. Gas recovery efficiency approaches 100% through use of surface membrane cover over porous gas recovery layers operated at slight vacuum. A field demonstration project's results at the Yolo County Central Landfill near Davis, California are, to date, highly encouraging. Two major controlled landfilling benefits would be the reduction of landfill methane emissions to minuscule levels, and the recovery of greater amounts of landfill methane energy in much shorter times than with conventional landfill practice. With the large amount of US landfill methane generated, and greenhouse potency of methane, better landfill methane control can play a substantial role in reduction of US greenhouse gas emissions.

  8. Potential for biohydrogen and methane production from olive pulp

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2005-01-01

    The present study investigates the potential for thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp, b) anaerobic bio-production of hydrogen...... from the olive pulp, and c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane. Both continuous and batch experiments were performed. The hydrogen potential of the olive pulp amounted to 1.6 mmole H-2 per g TS. The methane potential of the raw olive pulp...... and hydrogen-effluent was as high as 19 mmole CH4 per g TS. This suggests that olive pulp is an ideal substrate for methane production and it shows that biohydrogen production can be very efficiently coupled with a subsequent step for methane production....

  9. Analysis of the sensitivity to rainfall spatio-temporal variability of an operational urban rainfall-runoff model in a multifractal framework

    Science.gov (United States)

    Gires, A.; Tchiguirinskaia, I.; Schertzer, D. J.; Lovejoy, S.

    2011-12-01

    In large urban areas, storm water management is a challenge with enlarging impervious areas. Many cities have implemented real time control (RTC) of their urban drainage system to either reduce overflow or limit urban contamination. A basic component of RTC is hydraulic/hydrologic model. In this paper we use the multifractal framework to suggest an innovative way to test the sensitivity of such a model to the spatio-temporal variability of its rainfall input. Indeed the rainfall variability is often neglected in urban context, being considered as a non-relevant issue at the scales involve. Our results show that on the contrary the rainfall variability should be taken into account. Universal multifractals (UM) rely on the concept of multiplicative cascade and are a standard tool to analyze and simulate with a reduced number of parameters geophysical processes that are extremely variable over a wide range of scales. This study is conducted on a 3 400 ha urban area located in Seine-Saint-Denis, in the North of Paris (France). We use the operational semi-distributed model that was calibrated by the local authority (Direction Eau et Assainnissement du 93) that is in charge of urban drainage. The rainfall data comes from the C-Band radar of Trappes operated by Météo-France. The rainfall event of February 9th, 2009 was used. A stochastic ensemble approach was implemented to quantify the uncertainty on discharge associated to the rainfall variability occurring at scales smaller than 1 km x 1 km x 5 min that is usually available with C-band radar networks. An analysis of the quantiles of the simulated peak flow showed that the uncertainty exceeds 20 % for upstream links. To evaluate a potential gain from a direct use of the rainfall data available at the resolution of X-band radar, we performed similar analysis of the rainfall fields of the degraded resolution of 9 km x 9 km x 20 min. The results show a clear decrease in uncertainty when the original resolution of C

  10. Modelling rainfall amounts using mixed-gamma model for Kuantan district

    Science.gov (United States)

    Zakaria, Roslinazairimah; Moslim, Nor Hafizah

    2017-05-01

    An efficient design of flood mitigation and construction of crop growth models depend upon good understanding of the rainfall process and characteristics. Gamma distribution is usually used to model nonzero rainfall amounts. In this study, the mixed-gamma model is applied to accommodate both zero and nonzero rainfall amounts. The mixed-gamma model presented is for the independent case. The formulae of mean and variance are derived for the sum of two and three independent mixed-gamma variables, respectively. Firstly, the gamma distribution is used to model the nonzero rainfall amounts and the parameters of the distribution (shape and scale) are estimated using the maximum likelihood estimation method. Then, the mixed-gamma model is defined for both zero and nonzero rainfall amounts simultaneously. The formulae of mean and variance for the sum of two and three independent mixed-gamma variables derived are tested using the monthly rainfall amounts from rainfall stations within Kuantan district in Pahang Malaysia. Based on the Kolmogorov-Smirnov goodness of fit test, the results demonstrate that the descriptive statistics of the observed sum of rainfall amounts is not significantly different at 5% significance level from the generated sum of independent mixed-gamma variables. The methodology and formulae demonstrated can be applied to find the sum of more than three independent mixed-gamma variables.

  11. The Effect of Rainfall Patterns on the Mechanisms of Shallow Slope Failure

    Directory of Open Access Journals (Sweden)

    Muhammad Suradi

    2014-04-01

    Full Text Available This paper examines how rainfall patterns affect the mechanisms of shallow slope failure. Numerical modelling, utilising the commercial software SVFlux and SVSlope, was carried out for a coupled analysis of rainfall-induced slope seepage and instability, with reference to a shallow landslide took place in Jabiru, Northern Territory (NT Australia in 2007. Rainfall events were varied in terms of pattern in this analysis. The results revealed that slopes are sensitive to rainfall pattern when the rainfall intensity has a high degree of fluctuation at around the same value as that of saturated hydraulic conductivity. Average rainfall intensity at the beginning of a rainfall period plays a primary role in determining the rate of decrease in initial factor of safety (Fi towards minimum factor of safety (Fmin. The effect of rainfall events on the slope instability is attributed to the amount of rainwater infiltration into slope associated with rainfall pattern.

  12. Methane emissions and climate compatibility of fossil fuels

    International Nuclear Information System (INIS)

    Meier, B.

    1992-01-01

    Methane contributes directly and indirectly to the additional greenhouse effect caused by human activities. The vast majority of the anthropogenic methane release occurs worldwide in non-fossil sources such as rice cultivation, livestock operations, sanitary landfills and combustion of bio-mass. Methane emissions also occur during production, distribution and utilisation of fossil fuels. Also when considering the methane release and CO 2 -emissions of processes upstream of combustion, the ranking of environmental compatibility of natural gas, fuel oil and cool remains unchanged. Of all fossil fuels, natural gas contributes the least to the greenhouse effect. (orig.) [de

  13. Raman and FTIR spectroscopy of methane in olivine

    Science.gov (United States)

    Smith, A.; Oze, C.; Rossman, G. R.; Celestian, A. J.

    2017-12-01

    Olivine has been proposed to be a direct source of methane (CH4) in serpentinization systems and experiments. Here, Raman and Fourier Transform Infrared (FTIR) spectroscopy were used to verify the presence and abundance of CH4 in olivine samples from nine localities, including the San Carlos olivine. Raman analyses did not identify any methane in the olivine samples. As olivine is orthorhombic, three polarized FTIR spectra were obtained for the olivine samples. No methane was detected in any of the olivine samples using FTIR. Overall, olivine investigated in this study does not appear to be a primary source of methane.

  14. GOSAT-2014 methane spectral line list

    International Nuclear Information System (INIS)

    Nikitin, A.V.; Lyulin, O.M.; Mikhailenko, S.N.; Perevalov, V.I.; Filippov, N.N.; Grigoriev, I.M.; Morino, I.; Yoshida, Y.; Matsunaga, T.

    2015-01-01

    The updated methane spectral line list GOSAT-2014 for the 5550–6240 cm −1 region with the intensity cutoff of 5×10 –25 cm/molecule at 296 K is presented. The line list is based on the extensive measurements of the methane spectral line parameters performed at different temperatures and pressures of methane without and with buffer gases N 2 , O 2 and air. It contains the following spectral line parameters of about 12150 transitions: line position, line intensity, energy of lower state, air-induced and self-pressure-induced broadening and shift coefficients and temperature exponent of air-broadening coefficient. The accuracy of the line positions and intensities are considerably improved in comparison with the previous version GOSAT-2009. The improvement of the line list is done mainly due to the involving to the line position and intensity retrieval of six new spectra recorded with short path way (8.75 cm). The air-broadening and air-shift coefficients for the J-manifolds of the 2ν 3 (F 2 ) band are refitted using the new more precise values of the line positions and intensities. The line assignment is considerably extended. The lower state J-value was assigned to 6397 lines representing 94.4% of integrated intensity of the considering wavenumber region. The complete assignment was done for 2750 lines. - Highlights: • The upgrade of the GOSAT methane line list in the 5550–6240 cm −1 region is done. • 12,146 experimental methane line positions and intensities are retrieved. • 6376 lower energy levels for methane lines are determined

  15. Assessing dissolved methane patterns in central New York groundwater

    Directory of Open Access Journals (Sweden)

    Lauren E. McPhillips

    2014-07-01

    New hydrological insights for this region: There was no significant difference between methane concentrations in valleys versus upslope locations, in water wells less than or greater than 1 km from a conventional gas well, and across different geohydrologic units. Methane concentrations were significantly higher in groundwater dominated by sodium chloride or sodium bicarbonate compared with groundwater dominated by calcium bicarbonate, indicating bedrock interactions and lengthy residence times as controls. A multivariate regression model of dissolved methane using only three variables (sodium, hardness, and barium explained 77% of methane variability, further emphasizing the dominance of geochemistry and hydrogeology as controls on baseline methane patterns.

  16. Methane emission by adult ostriches (Struthio camelus).

    Science.gov (United States)

    Frei, Samuel; Dittmann, Marie T; Reutlinger, Christoph; Ortmann, Sylvia; Hatt, Jean-Michel; Kreuzer, Michael; Clauss, Marcus

    2015-02-01

    Ostriches (Struthio camelus) are herbivorous birds with a digestive physiology that shares several similarities with that of herbivorous mammals. Previous reports, however, claimed a very low methane emission from ostriches, which would be clearly different from mammals. If this could be confirmed, ostrich meat would represent a very attractive alternative to ruminant-and generally mammalian-meat by representing a particularly low-emission agricultural form of production. We individually measured, by chamber respirometry, the amount of oxygen consumed as well as carbon dioxide and methane emitted from six adult ostriches (body mass 108.3±8.3 kg) during a 24-hour period when fed a pelleted lucerne diet. While oxygen consumption was in the range of values previously reported for ostriches, supporting the validity of our experimental setup, methane production was, at 17.5±3.2 L d(-1), much higher than previously reported for this species, and was of the magnitude expected for similar-sized, nonruminant mammalian herbivores. These results suggest that methane emission is similar between ostriches and nonruminant mammalian herbivores and that the environmental burden of these animals is comparable. The findings furthermore indicate that it appears justified to use currently available scaling equations for methane production of nonruminant mammals in paleo-reconstructions of methane production of herbivorous dinosaurs. Copyright © 2014. Published by Elsevier Inc.

  17. Impact of climate change on extreme rainfall events and flood risk

    Indian Academy of Sciences (India)

    The analysis of the frequency of rainy days, rain days and heavy rainfall days as well as one-day extreme rainfall and return period has been carried out in this study to observe the impact of climate change on extreme rainfall events and flood risk in India. The frequency of heavy rainfall events are decreasing in major parts ...

  18. Mars methane rises and falls with the seasons

    Science.gov (United States)

    Hand, Eric

    2018-01-01

    On Earth, atmospheric methane is a prominent sign of life. On Mars, the story is more complicated. Trace detections of methane, alongside glimpses of larger spikes, have fueled debates about biological and nonbiological sources of the gas. Now, NASA scientists have announced a new twist in the tale: Methane regularly rises to a peak in late northern summer in a seasonal pattern. The swings are larger than can be explained by the planet's seasonal freeze-thaw cycles. The wiggles are a mystery within a larger mystery: claims of methane spikes an order of magnitude or two higher than the background. Some scientists say meteor showers could be responsible, by depositing carbonaceous material in the atmosphere that reacts to form methane. A close encounter on 24 January with debris from a comet could provide a chance to test the hypothesis.

  19. Spatial Scaling of Global Rainfall and Flood Extremes

    Science.gov (United States)

    Devineni, Naresh; Lall, Upmanu; Xi, Chen; Ward, Philip

    2014-05-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration and spatial extent of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (up to 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances and floods. We present the first ever results on a global analysis of the scaling characteristics of extreme rainfall and flood event duration, volumes and contiguous flooded areas as a result of large scale organization of long duration rainfall events. Results are organized by latitude and with reference to the phases of ENSO, and reveal surprising invariance across latitude. Speculation as to the potential relation to the dynamical factors is presented

  20. What aspects of future rainfall changes matter for crop yields in West Africa?

    Science.gov (United States)

    Guan, Kaiyu; Sultan, Benjamin; Biasutti, Michela; Baron, Christian; Lobell, David B.

    2015-10-01

    How rainfall arrives, in terms of its frequency, intensity, the timing and duration of rainy season, may have a large influence on rainfed agriculture. However, a thorough assessment of these effects is largely missing. This study combines a new synthetic rainfall model and two independently validated crop models (APSIM and SARRA-H) to assess sorghum yield response to possible shifts in seasonal rainfall characteristics in West Africa. We find that shifts in total rainfall amount primarily drive the rainfall-related crop yield change, with less relevance to intraseasonal rainfall features. However, dry regions (total annual rainfall below 500 mm/yr) have a high sensitivity to rainfall frequency and intensity, and more intense rainfall events have greater benefits for crop yield than more frequent rainfall. Delayed monsoon onset may negatively impact yields. Our study implies that future changes in seasonal rainfall characteristics should be considered in designing specific crop adaptations in West Africa.

  1. Significance of dissolved methane in effluents of anaerobically ...

    Science.gov (United States)

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10–30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11–100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Micro

  2. Designing and implementing science-based methane policies

    Science.gov (United States)

    George, F.

    2017-12-01

    The phenomenal growth in shale gas production across the U.S. has significantly improved the energy security and economic prospects of the country. Natural gas is a "versatile" fuel that has application in every major end-use sector of the economy, both as a fuel and a feedstock. Natural gas has also played a significant role in reducing CO2 emissions from the power sector by displacing more carbon intensive fossil fuels. However, emissions of natural gas (predominantly methane) from the wellhead to the burner tip can erode this environmental benefit. Preserving the many benefits of America's natural gas resources requires smart, science-based policies to optimize the energy delivery efficiency of the natural gas supply chain and ensure that natural gas remains a key pillar in our transition to a low-carbon economy. Southwestern Energy (SWN) is the third largest natural gas producer in the United States. Over the last several years, SWN has participated in a number of scientific studies with regulatory agencies, academia and non-governmental entities that have led to over a dozen peer-reviewed papers on methane emissions from oil and gas operations. This presentation will review how our participation in these studies has informed our internal policies and procedures, as well as our external programs, including the ONE Future coalition (ONE Future). In particular, the presentation will highlight the impact of such studies on our Leak Detection and Repair (LDAR) program, designing new methane research and on the ONE Future initiatives - all with the focus of improving the delivery efficiency of oil and gas operations. Our experience supports continued research in the detection and mitigation of methane emissions, with emphasis on longer duration characterization of methane emissions from oil and gas facilities and further development of cost-effective methane detection and mitigation techniques. We conclude from our scientific and operational experiences that a

  3. Development of methane conversion improvement method by recycling of residual methane for steam reforming as a part of R and D of HTGR-hydrogen production system

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Haga, Katsuhiro; Aita, Hideki; Sekita, Kenji; Hino, Ryutaro; Koiso, Hiroshi.

    1998-01-01

    The purpose of the present study is to improve methane conversion for an HTGR-steam reforming system by recycling of residual methane. The residual methane in a product gas after steam reforming was recycled with a gas separator of polyimide membrane. Gas separation characteristics of the separator were investigated experimentally and numerically, and an experimental study on recycling system was carried out. The results showed that the recycling system improves apparent methane conversion, ratio of methane conversion to methane supply from a cylinder, from 20 to 32% compared with those without recycling. (author)

  4. METHOD FOR PRODUCING ISOTOPIC METHANES AND PARTIALLY HALOGENATED DERIVATIVES THEROF

    Science.gov (United States)

    Frazer, J.W.

    1959-08-18

    A method is given for producing isotopic methanes and/ or partially halogenated derivatives. Lithium hydride, deuteride, or tritide is reacted with a halogenated methane or with a halogenated methane in combination with free halogen. The process is conveniently carried out by passing a halogenated methane preferably at low pressures or in an admixture with an inert gas through a fixed bed of finely divided lithium hydride heated initially to temperatures of 100 to 200 deg C depending upon the halogenated methane used.

  5. Meteorology Assessment of Historic Rainfall for Los Alamos During September 2013

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, David Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dewart, Jean Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-12

    DOE Order 420.1, Facility Safety, requires that site natural phenomena hazards be evaluated every 10 years to support the design of nuclear facilities. The evaluation requires calculating return period rainfall to determine roof loading requirements and flooding potential based on our on-site rainfall measurements. The return period rainfall calculations are done based on statistical techniques and not site-specific meteorology. This and future studies analyze the meteorological factors that produce the significant rainfall events. These studies provide the meteorology context of the return period rainfall events.

  6. Critical Phenomena of Rainfall in Ecuador

    Science.gov (United States)

    Serrano, Sh.; Vasquez, N.; Jacome, P.; Basile, L.

    2014-02-01

    Self-organized criticality (SOC) is characterized by a power law behavior over complex systems like earthquakes and avalanches. We study rainfall using data of one day, 3 hours and 10 min temporal resolution from INAMHI (Instituto Nacional de Meteorologia e Hidrologia) station at Izobamba, DMQ (Metropolitan District of Quito), satellite data over Ecuador from Tropical Rainfall Measure Mission (TRMM,) and REMMAQ (Red Metropolitana de Monitoreo Atmosferico de Quito) meteorological stations over, respectively. Our results show a power law behavior of the number of rain events versus mm of rainfall measured for the high resolution case (10 min), and as the resolution decreases this behavior gets lost. This statistical property is the fingerprint of a self-organized critical process (Peter and Christensen, 2002) and may serve as a benchmark for models of precipitation based in phase transitions between water vapor and precipitation (Peter and Neeling, 2006).

  7. An Atlantic influence on Amazon rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jin-Ho [University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States); Zeng, Ning [University of Maryland, Earth System Science Interdisciplinary Center, College Park, MD (United States); University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD (United States)

    2010-02-15

    Rainfall variability over the Amazon basin has often been linked to variations in Pacific sea surface temperature (SST), and in particular, to the El Nino/Southern Oscillation (ENSO). However, only a fraction of Amazon rainfall variability can be explained by ENSO. Building upon the recent work of Zeng (Environ Res Lett 3:014002, 2008), here we provide further evidence for an influence on Amazon rainfall from the tropical Atlantic Ocean. The strength of the North Atlantic influence is found to be comparable to the better-known Pacific ENSO connection. The tropical South Atlantic Ocean also shows some influence during the wet-to-dry season transition period. The Atlantic influence is through changes in the north-south divergent circulation and the movement of the ITCZ following warm SST. Therefore, it is strongest in the southern part of the Amazon basin during the Amazon's dry season (July-October). In contrast, the ENSO related teleconnection is through anomalous east-west Walker circulation with largely concentrated in the eastern (lower) Amazon. This ENSO connection is seasonally locked to boreal winter. A complication due to the influence of ENSO on Atlantic SST causes an apparent North Atlantic SST lag of Amazon rainfall. Removing ENSO from North Atlantic SST via linear regression resolves this causality problem in that the residual Atlantic variability correlates well and is in phase with the Amazon rainfall. A strong Atlantic influence during boreal summer and autumn is particularly significant in terms of the impact on the hydro-ecosystem which is most vulnerable during the dry season, as highlighted by the severe 2005 Amazon drought. Such findings have implications for both seasonal-interannual climate prediction and understanding the longer-term changes of the Amazon rainforest. (orig.)

  8. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Bogner, J.E.

    2009-01-01

    Landfill gas containing methane is produced by anaerobic degradation of organic waste. Methane is a strong greenhouse gas and landfills are one of the major anthropogenic sources of atmospheric methane. Landfill methane may be oxidized by methanotrophic microorganisms in soils or waste materials...... to predict methane emissions from landfills. Additional research and technology development is needed before methane mitigation technologies utilizing microbial methane oxidation processes can become commercially viable and widely deployed....

  9. Aquatic herbivores facilitate the emission of methane from wetlands

    NARCIS (Netherlands)

    Dingemans, B.J.J.; Bakker, E.S.; Bodelier, P.L.E.

    2011-01-01

    Wetlands are significant sources of atmospheric methane. Methane produced by microbes enters roots and escapes to the atmosphere through the shoots of emergent wetland plants. Herbivorous birds graze on helophytes, but their effect on methane emission remains unknown. We hypothesized that grazing on

  10. Methane Seepage on Mars: Where to Look and Why.

    Science.gov (United States)

    Oehler, Dorothy Z; Etiope, Giuseppe

    2017-12-01

    Methane on Mars is a topic of special interest because of its potential association with microbial life. The variable detections of methane by the Curiosity rover, orbiters, and terrestrial telescopes, coupled with methane's short lifetime in the martian atmosphere, may imply an active gas source in the planet's subsurface, with migration and surface emission processes similar to those known on Earth as "gas seepage." Here, we review the variety of subsurface processes that could result in methane seepage on Mars. Such methane could originate from abiotic chemical reactions, thermogenic alteration of abiotic or biotic organic matter, and ancient or extant microbial metabolism. These processes can occur over a wide range of temperatures, in both sedimentary and igneous rocks, and together they enhance the possibility that significant amounts of methane could have formed on early Mars. Methane seepage to the surface would occur preferentially along faults and fractures, through focused macro-seeps and/or diffuse microseepage exhalations. Our work highlights the types of features on Mars that could be associated with methane release, including mud-volcano-like mounds in Acidalia or Utopia; proposed ancient springs in Gusev Crater, Arabia Terra, and Valles Marineris; and rims of large impact craters. These could have been locations of past macro-seeps and may still emit methane today. Microseepage could occur through faults along the dichotomy or fractures such as those at Nili Fossae, Cerberus Fossae, the Argyre impact, and those produced in serpentinized rocks. Martian microseepage would be extremely difficult to detect remotely yet could constitute a significant gas source. We emphasize that the most definitive detection of methane seepage from different release candidates would be best provided by measurements performed in the ground or at the ground-atmosphere interface by landers or rovers and that the technology for such detection is currently available. Key

  11. Toward an operational tool to simulate green roof hydrological impact at the basin scale: a new version of the distributed rainfall-runoff model Multi-Hydro.

    Science.gov (United States)

    Versini, Pierre-Antoine; Gires, Auguste; Tchinguirinskaia, Ioulia; Schertzer, Daniel

    2016-10-01

    Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building scale: decrease and slow-down of the peak discharge, and decrease of runoff volume. The present work aims to study their possible impact at the catchment scale, more compatible with stormwater management issues. For this purpose, a specific module dedicated to simulating the hydrological behaviour of a green roof has been developed in the distributed rainfall-runoff model (Multi-Hydro). It has been applied on a French urban catchment where most of the building roofs are flat and assumed to accept the implementation of a green roof. Catchment responses to several rainfall events covering a wide range of meteorological situations have been simulated. The simulation results show green roofs can significantly reduce runoff volume and the magnitude of peak discharge (up to 80%) depending on the rainfall event and initial saturation of the substrate. Additional tests have been made to assess the susceptibility of this response regarding both spatial distributions of green roofs and precipitation. It appears that the total area of greened roofs is more important than their locations. On the other hand, peak discharge reduction seems to be clearly dependent on spatial distribution of precipitation.

  12. Methanization, new opportunities for territories. National technical day - 13 May 2014, Paris. Collection of interventions. The Methanization Autonomy Nitrogen energy plan

    International Nuclear Information System (INIS)

    Bastide, Guillaume; Guilet, Marie; Banville, Sandrine; Rocher, Franck; Brosset, Denis; Chapelat, Nicolas; Le Roy, Philippe; Leboucher, Anne; Boucher, Sophie; Bolduan, Rainer; Pislor, Emilie; Desbles, Matthieu; Garoche, David; Decoopman, Bertrand; Deshayes, Odile; Mazzenga, Anthony; Quaak, Mauritz; Berthelot, Corinne

    2014-05-01

    This publication contains proceedings of a conference on methanization projects and techniques, notably in rural areas (there were 140 rural installations in France in 2014 and 20 centralised ones). Contributions thus give an overview of the present development of this sector, and of its perspectives over the medium to long term. A first set of contributions addressed the performance of a panel of farm-based and centralised methanization installations with technical, energy, environmental, agronomic and social assessments for 8 units (lessons learned from installation follow-up, recommendations for operation optimisation of 2 units), and a profitability study performed on 21 installations (lessons learned, profitability evolution for 2 installations). The second set of contributions addressed development perspectives of the methanization sector over the medium to long term. Contributions addressed the following issues: how to mobilise and process bio-wastes from big producers, other possible sources (energetic crops, intermediate crops for energy purposes or CIVE or crop residues), the use of digestate to reduce the use of mineral fertilizers, and emerging energetic valorisations of biogas. A last part presents the Methanization Autonomy Nitrogen Energy Plan (the EMAA plan) which aims at managing and valorising nitrogen (notably from breeding effluents), at developing a French model of agricultural methanization. The stakes of methanization for energy transition are outlined, and the operation of a methanization installation is described

  13. Methane source identification in Boston, Massachusetts using isotopic and ethane measurements

    Science.gov (United States)

    Down, A.; Jackson, R. B.; Plata, D.; McKain, K.; Wofsy, S. C.; Rella, C.; Crosson, E.; Phillips, N. G.

    2012-12-01

    Methane has substantial greenhouse warming potential and is the principle component of natural gas. Fugitive natural gas emissions could be a significant source of methane to the atmosphere. However, the cumulative magnitude of natural gas leaks is not yet well constrained. We used a combination of point source measurements and ambient monitoring to characterize the methane sources in the Boston urban area. We developed distinct fingerprints for natural gas and multiple biogenic methane sources based on hydrocarbon concentration and isotopic composition. We combine these data with periodic measurements of atmospheric methane and ethane concentration to estimate the fractional contribution of natural gas and biogenic methane sources to the cumulative urban methane flux in Boston. These results are used to inform an inverse model of urban methane concentration and emissions.

  14. Validation of Satellite Estimates (Tropical Rainfall Measuring Mission, TRMM for Rainfall Variability over the Pacific Slope and Coast of Ecuador

    Directory of Open Access Journals (Sweden)

    Bolívar Erazo

    2018-02-01

    Full Text Available A dense rain-gauge network within continental Ecuador was used to evaluate the quality of various products of rainfall data over the Pacific slope and coast of Ecuador (EPSC. A cokriging interpolation method is applied to the rain-gauge data yielding a gridded product at 5-km resolution covering the period 1965–2015. This product is compared with the Global Precipitation Climatology Centre (GPCC dataset, the Climatic Research Unit–University of East Anglia (CRU dataset, the Tropical Rainfall Measuring Mission (TRMM/TMPA 3B43 Version 7 dataset and the ERA-Interim Reanalysis. The analysis reveals that TRMM data show the most realistic features. The relative bias index (Rbias indicates that TRMM data is closer to the observations, mainly over lowlands (mean Rbias of 7% but have more limitations in reproducing the rainfall variability over the Andes (mean Rbias of −28%. The average RMSE and Rbias of 68.7 and −2.8% of TRMM are comparable with the GPCC (69.8 and 5.7% and CRU (102.3 and −2.3% products. This study also focuses on the rainfall inter-annual variability over the study region which experiences floods that have caused high economic losses during extreme El Niño events. Finally, our analysis evaluates the ability of TRMM data to reproduce rainfall events during El Niño years over the study area and the large basins of Esmeraldas and Guayas rivers. The results show that TRMM estimates report reasonable levels of heavy rainfall detection (for the extreme 1998 El Niño event over the EPSC and specifically towards the center-south of the EPSC (Guayas basin but present underestimations for the moderate El Niño of 2002–2003 event and the weak 2009–2010 event. Generally, the rainfall seasonal features, quantity and long-term climatology patterns are relatively well estimated by TRMM.

  15. Market research on biogas valorizations and methanization. Final report

    International Nuclear Information System (INIS)

    2010-09-01

    This market research aims at giving an overview of the existing methanization installations and of their dynamics in France, at assessing biogas production and use, at analyzing the methanization market, and at defining development perspectives for this sector by 2020. Based on a survey of methanization installations, on interviews with many actors of this sector, and on a seminar organized on this topic, this report presents and comments market data for biogas valorization and methanization in different sectors: household, agricultural, and industrial and waste water processing plants. It comments evolution trends by 2020 for these sectors, and the role that the emerging sector of centralized methanization could have in the years to come

  16. Effect of hemicellulolytic enzymes on mesophilic methane fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Oi, S; Matsui, Y; Iizuka, M; Yamamoto, T

    1977-01-01

    Mesophilic methane fermentation was examined using soybean seed coat, a waste from soybean processing for oil manufacture, with or without treatment with hemicellulolytic enzymes of Aspergillus niger, and the following results were obtained: (1) The methane fermentation bacteria acclimated to soybean seed coat medium were shown to consume monosaccharides and evolve methane in the following decreasing order: glucose, fructose, mannose > xylose, galactose, glucosamine, galacturonic acid > arabinose. The bacteria were also shown to form methane from a gas mixture of hydrogen and carbon dioxide. (2) In fermentation of soybean seed coat treated with the fungal enzyme, about 70% of the total sugar content as consumed in four weeks, and the gas evolution was about twice that without the fungal enzyme. The gas evolved was composed of 60% methane and 36% carbon dioxide. In general, vigorous evolution of hydrogen and carbon dioxide occurred at a very early stage of fermentation, and was followed by formation of methane. The maximum gas evolution of the enzyme-treated mash took place in 6 days while that of untreated mash occurred one week later. Chemical oxygen demand of the supernatant of the former mash was decreased by fermentation to 7.0% of the initial level.

  17. Working group report: methane emissions from biomass burning

    International Nuclear Information System (INIS)

    Delmas, R.A.; Ahuja, D.

    1993-01-01

    Biomass burning is a significant source of atmospheric methane. Like most other sources of methane, it has both natural and anthropogenic causes, although anthropogenic causes now predominate. Most of the estimates of methane emissions from biomass burning in the past have relied on a uniform emission factor for all types of burning. This results in the share of trace gas emissions for different types of burning being the same as the amounts of biomass burned in those types. The Working Group endorsed the extension of an approach followed for Africa by Delmas et al. (1991) to use different emission factors for different types of biomass burning to estimate national emissions of methane. This is really critical as emission factors present important variations. While the focus of discussions of the Working Group was on methane emissions from biomass burning, the Group endorsed the IPCC-OECD methodology of estimating all greenhouse related trace gases from biomass burning. Neither the IPCC-OECD nor the methodology suggested here applies to estimation of trace gas emissions from the processing of biomass to upgraded fuels. They must be estimated separately. The Group also discussed technical options for controlling methane emissions from biomass. 12 refs

  18. Fine-tuning satellite-based rainfall estimates

    Science.gov (United States)

    Harsa, Hastuadi; Buono, Agus; Hidayat, Rahmat; Achyar, Jaumil; Noviati, Sri; Kurniawan, Roni; Praja, Alfan S.

    2018-05-01

    Rainfall datasets are available from various sources, including satellite estimates and ground observation. The locations of ground observation scatter sparsely. Therefore, the use of satellite estimates is advantageous, because satellite estimates can provide data on places where the ground observations do not present. However, in general, the satellite estimates data contain bias, since they are product of algorithms that transform the sensors response into rainfall values. Another cause may come from the number of ground observations used by the algorithms as the reference in determining the rainfall values. This paper describe the application of bias correction method to modify the satellite-based dataset by adding a number of ground observation locations that have not been used before by the algorithm. The bias correction was performed by utilizing Quantile Mapping procedure between ground observation data and satellite estimates data. Since Quantile Mapping required mean and standard deviation of both the reference and the being-corrected data, thus the Inverse Distance Weighting scheme was applied beforehand to the mean and standard deviation of the observation data in order to provide a spatial composition of them, which were originally scattered. Therefore, it was possible to provide a reference data point at the same location with that of the satellite estimates. The results show that the new dataset have statistically better representation of the rainfall values recorded by the ground observation than the previous dataset.

  19. Evidence for methane production by the marine algae Emiliania huxleyi

    Science.gov (United States)

    Lenhart, Katharina; Klintzsch, Thomas; Langer, Gerald; Nehrke, Gernot; Bunge, Michael; Schnell, Sylvia; Keppler, Frank

    2016-06-01

    Methane (CH4), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH4 to the atmosphere, although the biogeochemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH4 production in oxic marine and freshwaters, but its source is still a topic of debate. Studies of CH4 dynamics in surface waters of oceans and large lakes have concluded that pelagic CH4 supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, regional and temporal oversaturation of surface waters occurs frequently. This comprises the observation of a CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox". In this study we considered marine algae as a possible direct source of CH4. Therefore, the coccolithophore Emiliania huxleyi was grown under controlled laboratory conditions and supplemented with two 13C-labeled carbon substrates, namely bicarbonate and a position-specific 13C-labeled methionine (R-S-13CH3). The CH4 production was 0.7 µg particular organic carbon (POC) g-1 d-1, or 30 ng g-1 POC h-1. After supplementation of the cultures with the 13C-labeled substrate, the isotope label was observed in headspace CH4. Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH4 formation suggest that the widespread marine algae Emiliania huxleyi might contribute to the observed spatially and temporally restricted CH4 oversaturation in ocean surface waters.

  20. Cometary origin of atmospheric methane variations on Mars unlikely

    Science.gov (United States)

    Roos-Serote, M.; Atreya, S. K.; Webster, C. R.; Mahaffy, P. R.

    2016-10-01

    The detection of methane in the atmosphere of Mars was first reported in 2004. Since then a number of independent observations of methane have been reported, all showing temporal variability. Up until recently, the origin of methane was attributed to sources either indigenous to Mars or exogenous, where methane is a UV degradation byproduct of organics falling on to the surface. Most recently, a new hypothesis has been proposed that argues that the appearance and variation of methane are correlated with specific meteor events at Mars. Indeed, extraplanetary material can be brought to a planet when it passes through a meteoroid stream left behind by cometary bodies orbiting the Sun. This occurs repeatedly at specific times in a planet's year as streams tend to be fairly stable in space. In this paper, we revisit this latest hypothesis by carrying out a complete analysis of all available data on Mars atmospheric methane, including the very recent data not previously published, together with all published predicted meteor events for Mars. Whether we consider the collection of individual data points and predicted meteor events, whether we apply statistical analysis, or whether we consider different time spans between high methane measurements and the occurrence of meteor events, we find no compelling evidence for any correlation between atmospheric methane and predicted meteor events.

  1. Rainfall spatiotemporal variability relation to wetlands hydroperiods

    Science.gov (United States)

    Serrano-Hidalgo, Carmen; Guardiola-Albert, Carolina; Fernandez-Naranjo, Nuria

    2017-04-01

    Doñana natural space (Southwestern Spain) is one of the largest protected wetlands in Europe. The wide marshes present in this natural space have such ecological value that this wetland has been declared a Ramsar reserve in 1982. Apart from the extensive marsh, there are also small lagoons and seasonally flooded areas which are likewise essential to maintain a wide variety of valuable habitats. Hydroperiod, the length of time each point remains flooded along an annual cycle, is a critical ecological parameter that shapes aquatic plants and animals distribution and determines available habitat for many of the living organisms in the marshes. Recently, there have been published two different works estimating the hydroperiod of Doñana lagoons with Landsat Time Series images (Cifuentes et al., 2015; Díaz-Delgado et al., 2016). In both works the flooding cycle hydroperiod in Doñana marshes reveals a flooding regime mainly driven by rainfall, evapotranspiration, topography and local hydrological management actions. The correlation found between rainfall and hydroperiod is studied differently in both works. While in one the rainfall is taken from one raingauge (Cifuentes et al., 2015), the one performed by Díaz-Delgado (2016) uses annual rainfall maps interpolated with the inverse of the distance method. The rainfall spatiotemporal variability in this area can be highly significant; however the amount of this importance has not been quantified at the moment. In the present work the geostatistical tool known as spatiotemporal variogram is used to study the rainfall spatiotemporal variability. The spacetime package implemented in R (Pebesma, 2012) facilities its computation from a high rainfall data base of more than 100 raingauges from 1950 to 2016. With the aid of these variograms the rainfall spatiotemporal variability is quantified. The principal aim of the present work is the study of the relation between the rainfall spatiotemporal variability and the

  2. Effects of Rainfall Characteristics on the Stability of Tropical Residual Soil Slope

    Directory of Open Access Journals (Sweden)

    Rahardjo Harianto

    2016-01-01

    Full Text Available Global climate change has a significant impact on rainfall characteristics, sea water level and groundwater table. Changes in rainfall characteristics may affect stability of slopes and have severe impacts on sustainable urban living. Information on the intensity, frequency and duration of rainfall is often required by geotechnical engineers for performing slope stability analyses. Many seepage analyses are commonly performed using the most extreme rainfall possible which is uneconomical in designing a slope repair or slope failure preventive measure. In this study, the historical rainfall data were analyzed and investigated to understand the characteristics of rainfall in Singapore. The frequency distribution method was used to estimate future rainfall characteristics in Singapore. New intensity-duration-frequency (IDF curves for rainfall in Singapore were developed for six different durations (10, 20, 30 min and 1, 2 and 24 h and six frequencies (2, 5, 10, 25, 50 and 100 years. The new IDF curves were used in the seepage and slope stability analyses to determine the variation of factor of safety of residual soil slopes under different rainfall intensities in Singapore.

  3. Methane gas from cow dung

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The Khadi and Village Industries Commission offers a gobar gas (methane gas) production scheme. The gas plant, available in sizes of 60 to 3000 cu ft, requires only low maintenance expenditures. The cow dung, which is at present being wasted or burned as domestic fuel, can be used for manufacturing methane for fuel gas. The residue will be a good fertilizer for increasing food production. There are now about 4000 gobar gas plants in India.

  4. ANALYSIS OF EFFECTIVE RAINFALL INTENSITY AND WORKING RAINFALL FOR BASIC WARNING CRITERIA DEVELOPMENT ON LAHAR FLOW EVENT

    Directory of Open Access Journals (Sweden)

    Fitriyadi Fitriyadi

    2015-05-01

    The research results showed that the number of reviewed serial rain with total value ≥ 80 mm is 9.28% of the whole serial rain, and 12.5% of them caused lahar flow in Gendol River. Debris flow occurrence probability on total rainfall amount of ≥ 80 mm that may occur on Gendol River amounted to 1.89%. This value represents less possibility of debris flow in Gendol River, this is due to the rain conditions in the Gendol Watershed different from the situation in Japan as well as the limitations of the available data. It is recommended for further research on the limitation of total rainfall in accordance with the conditions in Gendol Watershed by considering other parameters becoming the lahar flow controller factor. Further, it is necessary to perform the analysis using rain catchment method by averaging rainfall values on each of serial rain.

  5. Rainfall estimation for hydrology using volumetric weather radar

    NARCIS (Netherlands)

    Hazenberg, P.

    2013-01-01

    This thesis focuses specifically on weather radar rainfall measurements in strati form precipitation. In North-Western Europe this type of precipitation is most dominant in winter and leads to the largest hydro logical response of catchments. Unfortunately, the quality of uncorrected radar rainfall

  6. Urban rainfall estimation employing commercial microwave links (poster)

    NARCIS (Netherlands)

    Overeem, A.; Leijnse, H.; Uijlenhoet, R.; Ten Veldhuis, J.A.E.

    2015-01-01

    In the Rain Sense kickstart project of the Amsterdam Institute for Advanced Metropolitan Solutions (AMS), sensors and citizens are preparing Amsterdam for future weather. Urban areas often lack rainfall information. Hence, new rainfall measurement techniques are important. E.g., the number of

  7. A Possible Sink for Methane on Mars

    NARCIS (Netherlands)

    Nørnberg, P.; Jensen, S. J. K.; Skibsted, J.; Jakobsen, H. J.; ten Kate, I. L.; Gunnlaugsson, H. P.; Merrison, J. P.; Finster, K.; Bak, E.; Iversen, J. J.; Kondrup, J. C.

    2014-01-01

    Mechanical simulated wind activation of mineral surfaces act as a trap for Methane through formation of covalent Si-C bonds stable up to temperatures above 250 C. This mechanism is proposed as a Methane sink on Mars.

  8. Annual Rainfall Forecasting by Using Mamdani Fuzzy Inference System

    Science.gov (United States)

    Fallah-Ghalhary, G.-A.; Habibi Nokhandan, M.; Mousavi Baygi, M.

    2009-04-01

    Long-term rainfall prediction is very important to countries thriving on agro-based economy. In general, climate and rainfall are highly non-linear phenomena in nature giving rise to what is known as "butterfly effect". The parameters that are required to predict the rainfall are enormous even for a short period. Soft computing is an innovative approach to construct computationally intelligent systems that are supposed to possess humanlike expertise within a specific domain, adapt themselves and learn to do better in changing environments, and explain how they make decisions. Unlike conventional artificial intelligence techniques the guiding principle of soft computing is to exploit tolerance for imprecision, uncertainty, robustness, partial truth to achieve tractability, and better rapport with reality. In this paper, 33 years of rainfall data analyzed in khorasan state, the northeastern part of Iran situated at latitude-longitude pairs (31°-38°N, 74°- 80°E). this research attempted to train Fuzzy Inference System (FIS) based prediction models with 33 years of rainfall data. For performance evaluation, the model predicted outputs were compared with the actual rainfall data. Simulation results reveal that soft computing techniques are promising and efficient. The test results using by FIS model showed that the RMSE was obtained 52 millimeter.

  9. Prediction of meteorological parameters - 3: Rainfall and droughts

    International Nuclear Information System (INIS)

    Njau, E.C.

    1990-11-01

    We describe two new methods by which rainfall and hence meteorological droughts at any location on the earth may be predicted. The first method is based upon well supported observations that rainfall distribution at a given location during any local sunspot-related temperature/heat cycle is approximately similar to the distribution during another cycle associated with approximately similar sunspot cycle provided that the two temperature/heat cycles involved are immediately preceded by approximately similar sunspot cycles. The second method is based upon the fact that rainfall belts or patterns seem to be closely related to certain spatial and time-dependent temperature/heat patterns in the earth-atmosphere system. Reasonable predictions of these temperature/heat patterns may be made, and hence the associated rainfall patterns or belts may correspondingly be predicted. Specific examples are given to illustrate the two prediction methods. (author). 12 refs, 11 figs, 1 tab

  10. Monsoon rainfall behaviour in recent times on local/regional scale in India

    International Nuclear Information System (INIS)

    Singh, Surender; Rao, V.U.M.; Singh, Diwan

    2002-08-01

    An attempt has been made here to investigate the local/regional monsoon rainfall behaviour in the meteorological sub-division no. 13 comprising the areas of Haryana, Delhi and Chandigarh in India. The monthly monsoon rainfall data of 30 years (1970-99) of different locations in the region were used for the investigation. All locations except Delhi received more rainfall in monsoon season during the decade (1990-99) showing general increasing trend in the rainfall behaviour in recent times. The mean monsoon rainfall at various locations ranged between 324.8 mm at Sirsa and 974.9 mm at Chandigarh. The major amount of monsoon rainfall occurred during the month of July and August in the entire region. Monthly mean rainfall ranged between 37.5 to 144.9 mm (June), 130.6 to 298.2 mm (July), 92.6 to 313.6 mm (August) and 44.0 to 149.4mm (September) at different locations. All the locations in the region exhibited overall increasing trend in monsoon rainfall over the period under study. All locations in the region received their lowest monsoon rainfall in the year 1987 which was a drought year and the season's rainfall ranged between 56.1 mm (Sirsa) and 290.0 mm (Delhi) during this year. Many of the locations observed clusters of fluctuations in their respective monsoon rainfall. The statistical summaries of historical data series (1970-99) gave rainfall information on various time scale. Such information acquires value through its influence on the decision making of the ultimate users. (author)

  11. Using Conditional Analysis to Investigate Spatial and Temporal patterns in Upland Rainfall

    Science.gov (United States)

    Sakamoto Ferranti, Emma Jayne; Whyatt, James Duncan; Timmis, Roger James

    2010-05-01

    The seasonality and characteristics of rainfall in the UK are altering under a changing climate. Summer rainfall is generally decreasing whereas winter rainfall is increasing, particularly in northern and western areas (Maraun et al., 2008) and recent research suggests these rainfall increases are amplified in upland areas (Burt and Ferranti, 2010). Conditional analysis has been used to investigate these rainfall patterns in Cumbria, an upland area in northwest England. Cumbria was selected as an example of a topographically diverse mid-latitude region that has a predominately maritime and westerly-defined climate. Moreover it has a dense network of more than 400 rain gauges that have operated for periods between 1900 and present day. Cumbria has experienced unprecedented flooding in the past decade and understanding the spatial and temporal changes in this and other upland regions is important for water resource and ecosystem management. The conditional analysis method examines the spatial and temporal variations in rainfall under different synoptic conditions and in different geographic sub-regions (Ferranti et al., 2009). A daily synoptic typing scheme, the Lamb Weather Catalogue, was applied to classify rainfall into different weather types, for example: south-westerly, westerly, easterly or cyclonic. Topographic descriptors developed using GIS were used to classify rain gauges into 6 directionally-dependant geographic sub-regions: coastal, windward-lowland, windward-upland, leeward-upland, leeward-lowland, secondary upland. Combining these classification methods enabled seasonal rainfall climatologies to be produced for specific weather types and sub-regions. Winter rainfall climatologies were constructed for all 6 sub-regions for 3 weather types - south-westerly (SW), westerly (W), and cyclonic (C); these weather types contribute more than 50% of total winter rainfall. The frequency of wet-days (>0.3mm), the total winter rainfall and the average wet day

  12. Upward revision of global fossil fuel methane emissions based on isotope database.

    Science.gov (United States)

    Schwietzke, Stefan; Sherwood, Owen A; Bruhwiler, Lori M P; Miller, John B; Etiope, Giuseppe; Dlugokencky, Edward J; Michel, Sylvia Englund; Arling, Victoria A; Vaughn, Bruce H; White, James W C; Tans, Pieter P

    2016-10-06

    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

  13. Methane layering in bord and pillar workings.

    CSIR Research Space (South Africa)

    Creedy, DP

    1997-08-01

    Full Text Available This report reviews the state of knowledge on the occurrence, investigation, detection, monitoring, prevention and dispensation of methane layers in coal mines. Mining practice throughout the world in respect of methane layering is generally reliant...

  14. High-Resolution Discharge Forecasting for Snowmelt and Rainfall Mixed Events

    Directory of Open Access Journals (Sweden)

    Tomasz Berezowski

    2018-01-01

    Full Text Available Discharge events induced by mixture of snowmelt and rainfall are strongly nonlinear due to consequences of rain-on-snow phenomena and snowmelt dependence on energy balance. However, they received relatively little attention, especially in high-resolution discharge forecasting. In this study, we use Random Forests models for 24 h discharge forecasting in 1 h resolution in a 105.9 km 2 urbanized catchment in NE Poland: Biala River. The forcing data are delivered by Weather Research and Forecasting (WRF model in 1 h temporal and 4 × 4 km spatial resolutions. The discharge forecasting models are set in two scenarios with snowmelt and rainfall and rainfall only predictors in order to highlight the effect of snowmelt on the results (both scenarios use also pre-forecast discharge based predictors. We show that inclusion of snowmelt decrease the forecast errors for longer forecasts’ lead times. Moreover, importance of discharge based predictors is higher in the rainfall only models then in the snowmelt and rainfall models. We conclude that the role of snowmelt for discharge forecasting in mixed snowmelt and rainfall environments is in accounting for nonlinear physical processes, such as initial wetting and rain on snow, which cannot be properly modelled by rainfall only.

  15. Observed magnified runoff response to rainfall intensification under global warming

    International Nuclear Information System (INIS)

    Huang, Jr-Chuan; Lee, Tsung-Yu; Lee, Jun-Yi

    2014-01-01

    Runoff response to rainfall intensification under global warming is crucial, but is poorly discussed due to the limited data length and human alteration. Historical rainfall and runoff records in pristine catchments in Taiwan were investigated through trend analysis and cross temperature difference analysis. Trend analysis showed that both rainfall and runoff in the 99.9-percentile have been significantly increasing in terms of frequency and intensity over the past four decades. Cross temperature difference analysis quantified that the rainfall and runoff extremes (including the 99.0–99.9-percentiles) may increase by 69.5% and 99.8%, respectively, under a future scenario of 1  ° C increase in temperature. This increase in intensity resembles the increase in intensity observed between 1971–1990 and 1991–2010. The amplified runoff response can be related to the limited catchment storage capacity being preoccupied by rainfall extremes. The quantified temperature effect on rainfall and runoff intensification can be a strong basis for designing scenarios, confirming and fusing GCMs’ results. In addition, the runoff amplification should be a warning for other regions with significant rainfall intensification. Appropriate strategies are indispensable and urgently needed to maintain and protect the development of societies. (paper)

  16. 14C measurements in aquifers with methane

    International Nuclear Information System (INIS)

    Barker, J.F.; Fritz, P.; Brown, R.M.

    1978-01-01

    A survey of various groundwater systems indicates that methane is a common trace constituent and occasionally a major carbon species in groundwaters. Thermocatalytic methane had delta 13 CCH 4 > -45% 0 and microbially-produced or biogenic methane had delta 13 CCH 4 0 . Groundwaters containing significant biogenic methane had abnormally heavy delta 13 C values for the inorganic carbon. Thermocatalytic methane had no apparent effect on the inorganic carbon. Because methanogenesis seriously affects the carbon isotope geochemistry of groundwaters, the correction of raw 14 C ages of affected groundwaters must consider these effects. Conceptual models are developed which adjust the 14 C activity of the groundwater for the effects of methanogenesis and for the dilution of carbon present during infiltration by simple dissolution of rock carbonate. These preliminary models are applied to groundwaters from the Alliston sand aquifer where methanogenesis has affected most samples. In this system, methanogenic bacteria using organic matter present in the aquifer matrix as substrate, have added inorganic carbon to the groundwater which has initiated further carbonate rock dissolution. These processes have diluted the inorganic carbon 14 C activity. (orig.) [de

  17. Urban Run-off Volumes Dependency on Rainfall Measurement Method

    DEFF Research Database (Denmark)

    Pedersen, L.; Jensen, N. E.; Rasmussen, Michael R.

    2005-01-01

    Urban run-off is characterized with fast response since the large surface run-off in the catchments responds immediately to variations in the rainfall. Modeling such type of catchments is most often done with the input from very few rain gauges, but the large variation in rainfall over small areas...... resolutions and single gauge rainfall was fed to a MOUSE run-off model. The flow and total volume over the event is evaluated....

  18. Methane oxidation and degradation of organic compounds in landfill soil covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2002-01-01

    High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero-order kin......High rates of methane oxidation and degradation of the lowed halogenated methanes (TCM and DCM) and HCFCs (HCFC-21 and HCFC-22) were found in an investigation of the oxidation of methane and halogenated organic compunds (HOCs) in landfill gas affected soil. The degradation followed zero...

  19. Error threshold inference from Global Precipitation Measurement (GPM) satellite rainfall data and interpolated ground-based rainfall measurements in Metro Manila

    Science.gov (United States)

    Ampil, L. J. Y.; Yao, J. G.; Lagrosas, N.; Lorenzo, G. R. H.; Simpas, J.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission is a group of satellites that provides global observations of precipitation. Satellite-based observations act as an alternative if ground-based measurements are inadequate or unavailable. Data provided by satellites however must be validated for this data to be reliable and used effectively. In this study, the Integrated Multisatellite Retrievals for GPM (IMERG) Final Run v3 half-hourly product is validated by comparing against interpolated ground measurements derived from sixteen ground stations in Metro Manila. The area considered in this study is the region 14.4° - 14.8° latitude and 120.9° - 121.2° longitude, subdivided into twelve 0.1° x 0.1° grid squares. Satellite data from June 1 - August 31, 2014 with the data aggregated to 1-day temporal resolution are used in this study. The satellite data is directly compared to measurements from individual ground stations to determine the effect of the interpolation by contrast against the comparison of satellite data and interpolated measurements. The comparisons are calculated by taking a fractional root-mean-square error (F-RMSE) between two datasets. The results show that interpolation improves errors compared to using raw station data except during days with very small amounts of rainfall. F-RMSE reaches extreme values of up to 654 without a rainfall threshold. A rainfall threshold is inferred to remove extreme error values and make the distribution of F-RMSE more consistent. Results show that the rainfall threshold varies slightly per month. The threshold for June is inferred to be 0.5 mm, reducing the maximum F-RMSE to 9.78, while the threshold for July and August is inferred to be 0.1 mm, reducing the maximum F-RMSE to 4.8 and 10.7, respectively. The maximum F-RMSE is reduced further as the threshold is increased. Maximum F-RMSE is reduced to 3.06 when a rainfall threshold of 10 mm is applied over the entire duration of JJA. These results indicate that

  20. Seasonal variation and climate change impact in Rainfall Erosivity across Europe

    Science.gov (United States)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine; Ballabio, Cristiano

    2017-04-01

    Rainfall erosivity quantifies the climatic effect on water erosion and is of high importance for soil scientists, land use planners, agronomists, hydrologists and environmental scientists in general. The rainfall erosivity combines the influence of rainfall duration, magnitude, frequency and intensity. Rainfall erosivity is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minute rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years). The European Commission's Joint Research Centr(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,675 stations. The interpolation of those point erosivity values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511: 801-815). In 2016, REDES extended with a monthly component, which allowed developing monthly and seasonal erosivity maps and assessing rainfall erosivity both spatially and temporally for European Union and Switzerland. The monthly erosivity maps have been used to develop composite indicators that map both intra-annual variability and concentration of erosive events (Science of the Total Environment, 579: 1298-1315). Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year. Finally, the identification of the most erosive month allows recommending certain agricultural management practices (crop