WorldWideScience

Sample records for wideband spectrum sensing

  1. Efficient Wideband Spectrum Sensing with Maximal Spectral Efficiency for LEO Mobile Satellite Systems

    Directory of Open Access Journals (Sweden)

    Feilong Li

    2017-01-01

    Full Text Available The usable satellite spectrum is becoming scarce due to static spectrum allocation policies. Cognitive radio approaches have already demonstrated their potential towards spectral efficiency for providing more spectrum access opportunities to secondary user (SU with sufficient protection to licensed primary user (PU. Hence, recent scientific literature has been focused on the tradeoff between spectrum reuse and PU protection within narrowband spectrum sensing (SS in terrestrial wireless sensing networks. However, those narrowband SS techniques investigated in the context of terrestrial CR may not be applicable for detecting wideband satellite signals. In this paper, we mainly investigate the problem of joint designing sensing time and hard fusion scheme to maximize SU spectral efficiency in the scenario of low earth orbit (LEO mobile satellite services based on wideband spectrum sensing. Compressed detection model is established to prove that there indeed exists one optimal sensing time achieving maximal spectral efficiency. Moreover, we propose novel wideband cooperative spectrum sensing (CSS framework where each SU reporting duration can be utilized for its following SU sensing. The sensing performance benefits from the novel CSS framework because the equivalent sensing time is extended by making full use of reporting slot. Furthermore, in respect of time-varying channel, the spatiotemporal CSS (ST-CSS is presented to attain space and time diversity gain simultaneously under hard decision fusion rule. Computer simulations show that the optimal sensing settings algorithm of joint optimization of sensing time, hard fusion rule and scheduling strategy achieves significant improvement in spectral efficiency. Additionally, the novel ST-CSS scheme performs much higher spectral efficiency than that of general CSS framework.

  2. PERFORMANCE OPTIMIZATION OF COGNITIVE RADIO WITH WIDEBAND SPECTRUM SENSING

    Directory of Open Access Journals (Sweden)

    E. Saraniya

    2014-09-01

    Full Text Available Cognitive radio (CR technology allows the unlicensed user to access the licensed spectrum bands. Spectrum sensing is an essential function in cognitive radio to detect the spectrum holes and opportunistically use the underutilized frequency bands without causing interference to primary user (PU. In this paper we are maximizing the throughput capacity of cognitive radio user and hence the performance of spectrum sensing and protection to licensed user improves over a wideband spectrum sensing band. The simulation of cognitive radio is done by analyzing the performance of energy detector spectrum sensing technique to detect primary user and to formulate the optimization using multiband joint detection method (MJD to achieve suitable trade- off between secondary user access and primary user network. The main aim of this paper is to maximize the probability of detection and to decrease the probabilities of miss detection and false alarm. To maximize the throughput it requires minimizing the throughput loss caused by miss detection and the significant reduction in probability of false alarm helps in achieving the spectral efficiency from the secondary user’s perspective. The simulation results show that the performance increases with the MJD method.

  3. A localized cooperative wideband spectrum sensing for dynamic access of TV bands using RF sensor networks

    KAUST Repository

    Mirza, Mohammed

    2011-07-01

    In this paper we address and simulate a Radio Frequency (RF) sensor network for a cooperative spectrum sensing and localization scheme. The proposed method integrates a Wavelet based Multi-Resolution Spectrum Sensing (MRSS), an N-bit hard combination technique for cooperative decision making and a Received Signal Strength (RSS) based localization algorithm to detect the availability of frequency bands and the location of the usable base station. We develop an N-bit hard combination technique and compare its performance to a traditionally used 2-bit hard combination for cooperative sensing. The key idea is to design a novel RF sensor network based cooperative wideband spectrum sensing and localization scheme by using a wavelet based Multi-Resolution Spectrum Sensing (MRSS) and Received Signal Strength (RSS) Localization techniques which were originally proposed for cognitive radio applications. The performance evaluations are also done to show the different detection accuracies for varying parameters such as number of sensor nodes, Signal to Noise Ratios (SNR) and number of averaged Power Spectral Densities (PSD). The proposed scheme improves the problems of shadowing, fading and noise. In addition, the RSS based localization technique was shown to be an acceptable means of estimating the position of the available transmitter. © 2011 IEEE.

  4. Cognitive Radio Transceivers: RF, Spectrum Sensing, and Learning Algorithms Review

    Directory of Open Access Journals (Sweden)

    Lise Safatly

    2014-01-01

    reconfigurable radio frequency (RF parts, enhanced spectrum sensing algorithms, and sophisticated machine learning techniques. In this paper, we present a review of the recent advances in CR transceivers hardware design and algorithms. For the RF part, three types of antennas are presented: UWB antennas, frequency-reconfigurable/tunable antennas, and UWB antennas with reconfigurable band notches. The main challenges faced by the design of the other RF blocks are also discussed. Sophisticated spectrum sensing algorithms that overcome main sensing challenges such as model uncertainty, hardware impairments, and wideband sensing are highlighted. The cognitive engine features are discussed. Moreover, we study unsupervised classification algorithms and a reinforcement learning (RL algorithm that has been proposed to perform decision-making in CR networks.

  5. Elaborate analysis and design of filter-bank-based sensing for wideband cognitive radios

    Science.gov (United States)

    Maliatsos, Konstantinos; Adamis, Athanasios; Kanatas, Athanasios G.

    2014-12-01

    The successful operation of a cognitive radio system strongly depends on its ability to sense the radio environment. With the use of spectrum sensing algorithms, the cognitive radio is required to detect co-existing licensed primary transmissions and to protect them from interference. This paper focuses on filter-bank-based sensing and provides a solid theoretical background for the design of these detectors. Optimum detectors based on the Neyman-Pearson theorem are developed for uniform discrete Fourier transform (DFT) and modified DFT filter banks with root-Nyquist filters. The proposed sensing framework does not require frequency alignment between the filter bank of the sensor and the primary signal. Each wideband primary channel is spanned and monitored by several sensor subchannels that analyse it in narrowband signals. Filter-bank-based sensing is proved to be robust and efficient under coloured noise. Moreover, the performance of the weighted energy detector as a sensing technique is evaluated. Finally, based on the Locally Most Powerful and the Generalized Likelihood Ratio test, real-world sensing algorithms that do not require a priori knowledge are proposed and tested.

  6. Wideband Autonomous Cognitive Radios for Networked Satellites Communications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Wideband Autonomous Cognitive Radios (WACRs) are advanced radios that have the ability to sense state of the RF spectrum and the network and self-optimize its...

  7. A localized cooperative wideband spectrum sensing for dynamic access of TV bands using RF sensor networks

    KAUST Repository

    Mirza, Mohammed; Alouini, Mohamed-Slim

    2011-01-01

    In this paper we address and simulate a Radio Frequency (RF) sensor network for a cooperative spectrum sensing and localization scheme. The proposed method integrates a Wavelet based Multi-Resolution Spectrum Sensing (MRSS), an N-bit hard

  8. Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling

    Science.gov (United States)

    Zhang, Jingdong; Zheng, Hua; Zhu, Tao; Yin, Guolu; Liu, Min; Bai, Yongzhong; Qu, Dingrong; Qiu, Feng; Huang, Xianbing

    2018-05-01

    The round trip time of the light pulse limits the maximum detectable vibration frequency response range of phase-sensitive optical time domain reflectometry ({\\phi}-OTDR). Unlike the uniform laser pulse interval in conventional {\\phi}-OTDR, we randomly modulate the pulse interval, so that an equivalent sub-Nyquist additive random sampling (sNARS) is realized for every sensing point of the long interrogation fiber. For an {\\phi}-OTDR system with 10 km sensing length, the sNARS method is optimized by theoretical analysis and Monte Carlo simulation, and the experimental results verify that a wide-band spars signal can be identified and reconstructed. Such a method can broaden the vibration frequency response range of {\\phi}-OTDR, which is of great significance in sparse-wideband-frequency vibration signal detection, such as rail track monitoring and metal defect detection.

  9. The Spectrum Analysis Solution (SAS) System: Theoretical Analysis, Hardware Design and Implementation.

    Science.gov (United States)

    Narayanan, Ram M; Pooler, Richard K; Martone, Anthony F; Gallagher, Kyle A; Sherbondy, Kelly D

    2018-02-22

    This paper describes a multichannel super-heterodyne signal analyzer, called the Spectrum Analysis Solution (SAS), which performs multi-purpose spectrum sensing to support spectrally adaptive and cognitive radar applications. The SAS operates from ultrahigh frequency (UHF) to the S-band and features a wideband channel with eight narrowband channels. The wideband channel acts as a monitoring channel that can be used to tune the instantaneous band of the narrowband channels to areas of interest in the spectrum. The data collected from the SAS has been utilized to develop spectrum sensing algorithms for the budding field of spectrum sharing (SS) radar. Bandwidth (BW), average total power, percent occupancy (PO), signal-to-interference-plus-noise ratio (SINR), and power spectral entropy (PSE) have been examined as metrics for the characterization of the spectrum. These metrics are utilized to determine a contiguous optimal sub-band (OSB) for a SS radar transmission in a given spectrum for different modalities. Three OSB algorithms are presented and evaluated: the spectrum sensing multi objective (SS-MO), the spectrum sensing with brute force PSE (SS-BFE), and the spectrum sensing multi-objective with brute force PSE (SS-MO-BFE).

  10. Ultra-Wideband Radiometry Remote Sensing of Polar Ice Sheet Temperature Profile, Sea Ice and Terrestrial Snow Thickness: Forward Modeling and Data Analysis

    Science.gov (United States)

    Tsang, L.; Tan, S.; Sanamzadeh, M.; Johnson, J. T.; Jezek, K. C.; Durand, M. T.

    2017-12-01

    The recent development of an ultra-wideband software defined radiometer (UWBRAD) operating over the unprotected spectrum of 0.5 2.0 GHz using radio-frequency interference suppression techniques offers new methodologies for remote sensing of the polar ice sheets, sea ice, and terrestrial snow. The instrument was initially designed for remote sensing of the intragalcial temperature profile of the ice sheet, where a frequency dependent penetration depth yields a frequency dependent brightness temperature (Tb) spectrum that can be linked back to the temperature profile of the ice sheet. The instrument was tested during a short flight over Northwest Greenland in September, 2016. Measurements were successfully made over the different snow facies characteristic of Greenland including the ablation, wet snow and percolation facies, and ended just west of Camp Century during the approach to the dry snow zone. Wide-band emission spectra collected during the flight have been processed and analyzed. Results show that the spectra are highly sensitive to the facies type with scattering from ice lenses being the dominant reason for low Tbs in the percolation zone. Inversion of Tb to physical temperature at depth was conducted on the measurements near Camp Century, achieving a -1.7K ten-meter error compared to borehole measurements. However, there is a relatively large uncertainty in the lower part possibly due to the large scattering near the surface. Wideband radiometry may also be applicable to sea ice and terrestrial snow thickness retrieval. Modeling studies suggest that the UWBRAD spectra reduce ambiguities inherent in other sea ice thickness retrievals by utilizing coherent wave interferences that appear in the Tb spectrum. When applied to a lossless medium such as terrestrial snow, this coherent oscillation turns out to be the single key signature that can be used to link back to snow thickness. In this paper, we report our forward modeling findings in support of instrument

  11. Spectrally-Precoded OFDM for 5G Wideband Operation in Fragmented sub-6GHz Spectrum

    OpenAIRE

    Pitaval, Renaud-Alexandre; Popović, Branislav M.; Mohamad, Medhat; Nilsson, Rickard; van de Beek, Jaap

    2016-01-01

    We consider spectrally-precoded OFDM waveforms for 5G wideband transmission in sub-6GHz band. In this densely packed spectrum, a low out-of-band (OOB) waveform is a critical 5G component to achieve the promised high spectral efficiency. By precoding data symbols before OFDM modulation, it is possible to achieve extremely low out-of-band emission with very sharp spectrum transition enabling an efficient and flexible usage of frequency resources. Spectrally-precoded OFDM shows promising results...

  12. Novel wideband MIMO antennas that can cover the whole LTE spectrum in handsets and portable computers.

    Science.gov (United States)

    Sanad, Mohamed; Hassan, Noha

    2014-01-01

    A dual resonant antenna configuration is developed for multistandard multifunction mobile handsets and portable computers. Only two wideband resonant antennas can cover most of the LTE spectrums in portable communication equipment. The bandwidth that can be covered by each antenna exceeds 70% without using any matching or tuning circuits, with efficiencies that reach 80%. Thus, a dual configuration of them is capable of covering up to 39 LTE (4G) bands besides the existing 2G and 3G bands. 2×2 MIMO configurations have been also developed for the two wideband antennas with a maximum isolation and a minimum correlation coefficient between the primary and the diversity antennas.

  13. Novel Wideband MIMO Antennas That Can Cover the Whole LTE Spectrum in Handsets and Portable Computers

    Directory of Open Access Journals (Sweden)

    Mohamed Sanad

    2014-01-01

    Full Text Available A dual resonant antenna configuration is developed for multistandard multifunction mobile handsets and portable computers. Only two wideband resonant antennas can cover most of the LTE spectrums in portable communication equipment. The bandwidth that can be covered by each antenna exceeds 70% without using any matching or tuning circuits, with efficiencies that reach 80%. Thus, a dual configuration of them is capable of covering up to 39 LTE (4G bands besides the existing 2G and 3G bands. 2×2 MIMO configurations have been also developed for the two wideband antennas with a maximum isolation and a minimum correlation coefficient between the primary and the diversity antennas.

  14. Wideband spectrum sensing order for cognitive radios with sensing errors and channel SNR probing uncertainty

    KAUST Repository

    Hamza, Doha R.

    2013-04-01

    A secondary user (SU) seeks to transmit by sequentially sensing statistically independent primary user (PU) channels. If a channel is sensed free, it is probed to estimate the signal-to-noise ratio between the SU transmitter-receiver pair over the channel. We jointly optimize the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order under imperfect synchronization between the PU and the SU. The sensing and probing times and the decision threshold are assumed to be the same for all channels. We maximize a utility function related to the SU throughput under the constraint that the collision probability with the PU is kept below a certain value and taking sensing errors into account. We illustrate the optimal policy and the variation of SU throughput with various system parameters. © 2012 IEEE.

  15. Wideband spectrum sensing order for cognitive radios with sensing errors and channel SNR probing uncertainty

    KAUST Repository

    Hamza, Doha R.; Aï ssa, Sonia

    2013-01-01

    A secondary user (SU) seeks to transmit by sequentially sensing statistically independent primary user (PU) channels. If a channel is sensed free, it is probed to estimate the signal-to-noise ratio between the SU transmitter-receiver pair over the channel. We jointly optimize the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order under imperfect synchronization between the PU and the SU. The sensing and probing times and the decision threshold are assumed to be the same for all channels. We maximize a utility function related to the SU throughput under the constraint that the collision probability with the PU is kept below a certain value and taking sensing errors into account. We illustrate the optimal policy and the variation of SU throughput with various system parameters. © 2012 IEEE.

  16. Conformal and Spectrally Agile Ultra Wideband Phased Array Antenna for Communication and Sensing

    Science.gov (United States)

    Novak, M.; Alwan, Elias; Miranda, Felix; Volakis, John

    2015-01-01

    There is a continuing need for reducing size and weight of satellite systems, and is also strong interest to increase the functional role of small- and nano-satellites (for instance SmallSats and CubeSats). To this end, a family of arrays is presented, demonstrating ultra-wideband operation across the numerous satellite communications and sensing frequencies up to the Ku-, Ka-, and Millimeter-Wave bands. An example design is demonstrated to operate from 3.5-18.5 GHz with VSWR2 at broadside, and validated through fabrication of an 8 x 8 prototype. This design is optimized for low cost, using Printed Circuit Board (PCB) fabrication. With the same fabrication technology, scaling is shown to be feasible up to a 9-49 GHz band. Further designs are discussed, which extend this wideband operation beyond the Ka-band, for instance from 20-80 GHz. Finally we will discuss recent efforts in the direct integration of such arrays with digital beamforming back-ends. It will be shown that using a novel on-site coding architecture, orders of magnitude reduction in hardware size, power, and cost is accomplished in this transceiver.

  17. Generalized eigenvalue based spectrum sensing

    KAUST Repository

    Shakir, Muhammad

    2012-01-01

    Spectrum sensing is one of the fundamental components in cognitive radio networks. In this chapter, a generalized spectrum sensing framework which is referred to as Generalized Mean Detector (GMD) has been introduced. In this context, we generalize the detectors based on the eigenvalues of the received signal covariance matrix and transform the eigenvalue based spectrum sensing detectors namely: (i) the Eigenvalue Ratio Detector (ERD) and two newly proposed detectors which are referred to as (ii) the GEometric Mean Detector (GEMD) and (iii) the ARithmetic Mean Detector (ARMD) into an unified framework of generalize spectrum sensing. The foundation of the proposed framework is based on the calculation of exact analytical moments of the random variables of the decision threshold of the respective detectors. The decision threshold has been calculated in a closed form which is based on the approximation of Cumulative Distribution Functions (CDFs) of the respective test statistics. In this context, we exchange the analytical moments of the two random variables of the respective test statistics with the moments of the Gaussian (or Gamma) distribution function. The performance of the eigenvalue based detectors is compared with the several traditional detectors including the energy detector (ED) to validate the importance of the eigenvalue based detectors and the performance of the GEMD and the ARMD particularly in realistic wireless cognitive radio network. Analytical and simulation results show that the newly proposed detectors yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, the presented results based on proposed approximation approaches are in perfect agreement with the empirical results. © 2012 Springer Science+Business Media Dordrecht.

  18. Ultra-wideband MMICs for remote sensing applications

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2003-01-01

    This paper presents an overview of the current activity at the Technical University of Denmark in the field of ultra-wideband monolitic microwave integrated circuits (MMICs) for next-generation high-resolution synthetic aperature radar (SAR) systems. The transfer function requirements for MMIC co...

  19. S – C – L triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, H; Zulkifli, M Z; Hassan, N A; Muhammad, F D; Harun, S W [Photonics Research Center (Department of Physics), University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2013-10-31

    We propose and demonstrate a wide-band semiconductor optical amplifier (SOA) based triple-wavelength superluminescent source with the output in the S-, C- and L-band regions. The proposed systems uses an ultra-wideband SOA with an amplification range from 1440 to 1620 nm as the linear gain medium. Three fibre Bragg gratings (FBGs) with centre wavelengths of 1500, 1540 and 1580 nm are used to generate the lasing wavelengths in the S-, Cand L-bands respectively, while a variable optical attenuator is used to finely balance the optical powers of the lasing wavelengths. The ultra-wideband SOA generates an amplified spontaneous emission (ASE) spectrum with a peak power of -33 dBm at the highest SOA drive current, and also demonstrates a down-shift in the centre wavelength of the generated spectrum due to the spatial distribution of the carrier densities. The S-band wavelength is the dominant wavelength at high drive currents, with an output power of -6 dBm as compared to the C- and L-bands, which only have powers of -11 and -10 dBm, respectively. All wavelengths have a high average signal-to-noise ratio more than 60 dB at the highest drive current of 390 mA, and the system also shows a high degree of stability, with power fluctuations of less than 3 dB within 70 min. The proposed system can find many applications where a wide-band and stable laser source is crucial, such as in communications and sensing. (control of laser radiation parameters)

  20. S – C – L triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs

    International Nuclear Information System (INIS)

    Ahmad, H; Zulkifli, M Z; Hassan, N A; Muhammad, F D; Harun, S W

    2013-01-01

    We propose and demonstrate a wide-band semiconductor optical amplifier (SOA) based triple-wavelength superluminescent source with the output in the S-, C- and L-band regions. The proposed systems uses an ultra-wideband SOA with an amplification range from 1440 to 1620 nm as the linear gain medium. Three fibre Bragg gratings (FBGs) with centre wavelengths of 1500, 1540 and 1580 nm are used to generate the lasing wavelengths in the S-, Cand L-bands respectively, while a variable optical attenuator is used to finely balance the optical powers of the lasing wavelengths. The ultra-wideband SOA generates an amplified spontaneous emission (ASE) spectrum with a peak power of -33 dBm at the highest SOA drive current, and also demonstrates a down-shift in the centre wavelength of the generated spectrum due to the spatial distribution of the carrier densities. The S-band wavelength is the dominant wavelength at high drive currents, with an output power of -6 dBm as compared to the C- and L-bands, which only have powers of -11 and -10 dBm, respectively. All wavelengths have a high average signal-to-noise ratio more than 60 dB at the highest drive current of 390 mA, and the system also shows a high degree of stability, with power fluctuations of less than 3 dB within 70 min. The proposed system can find many applications where a wide-band and stable laser source is crucial, such as in communications and sensing. (control of laser radiation parameters)

  1. Cooperative Spectrum Sensing over Non-Identical Nakagami Fading Channels

    KAUST Repository

    Rao, Anlei

    2012-09-08

    Previous works in cooperative spectrum sensing assumed that the channels for sensing and reporting are independent identical distributed (i.i.d). A more practical and appropriate assumption, however, should be that the sensing channels and reporting channels are independent but not necessarily identically distributed (i.n.i.d). In this paper, we derive the false-alarm probability and the detection probability of cooperative spectrum sensing with energy fusion over i.n.i.d Nakagami fading channels. Selected numerical results show that cooperative spectrum sensing still gives considerably better performance results even over i.n.i.d fading channels.

  2. Compact super-wideband optical antenna

    Science.gov (United States)

    Wang, Wen C.; Forber, Richard; Bui, Kenneth

    2009-05-01

    We present progress on advanced optical antennas, which are compact, small size-weight-power units capable to receive super wideband radiated RF signals from 30 MHz to over 3 GHz. Based on electro-optical modulation of fiber-coupled guided wave light, these dielectric E-field sensors exhibit dipole-like azimuthal omni directionality, and combine small size (channels, and high EO sensing materials. The antenna system photonic link consists of a 1550 nm PM fiber-pigtailed laser, a specialized optical modulator antenna in channel waveguide format, a wideband photoreceiver, and optical phase stabilizing components. The optical modulator antenna design employs a dielectric (no electrode) Mach-Zehnder interferometer (MZI) arranged so that sensing RF bandwidth is not limited by optical transit time effects, and MZI phase drift is bias stabilized. For a prototype optical antenna system that is < 100 in3, < 10 W, < 5 lbs, we present test data on sensitivity (< 20 mV/m-Hz1/2), RF bandwidth, and antenna directionality, and show good agreement with theoretical predictions.

  3. A Review on Spectrum Sensing for Cognitive Radio: Challenges and Solutions

    Directory of Open Access Journals (Sweden)

    Yonghong Zeng

    2010-01-01

    Full Text Available Cognitive radio is widely expected to be the next Big Bang in wireless communications. Spectrum sensing, that is, detecting the presence of the primary users in a licensed spectrum, is a fundamental problem for cognitive radio. As a result, spectrum sensing has reborn as a very active research area in recent years despite its long history. In this paper, spectrum sensing techniques from the optimal likelihood ratio test to energy detection, matched filtering detection, cyclostationary detection, eigenvalue-based sensing, joint space-time sensing, and robust sensing methods are reviewed. Cooperative spectrum sensing with multiple receivers is also discussed. Special attention is paid to sensing methods that need little prior information on the source signal and the propagation channel. Practical challenges such as noise power uncertainty are discussed and possible solutions are provided. Theoretical analysis on the test statistic distribution and threshold setting is also investigated.

  4. Partial Discharge Detection Using Low Cost RTL-SDR Model for Wideband Spectrum Sensing

    DEFF Research Database (Denmark)

    Mohamed, H.; Lazaridis, Pavlos; Upton, D.

    2016-01-01

    an optimal approach for PD signal analysis, and are very costly. In this paper an RTLSDR (Software Defined Radio) based spectrum analyser has been proposed in order to provide a potentially low cost solution for PD detection and monitoring. Initially, a portable spectrum analyser has been used for PD...

  5. Sensing RF signals with the optical wideband converter

    Science.gov (United States)

    Valley, George C.; Sefler, George A.; Shaw, T. J.

    2013-01-01

    The optical wideband converter (OWC) is a system for measuring properties of RF signals in the GHz band without use of high speed electronics. In the OWC the RF signal is modulated on a repetitively pulsed optical field with a large wavelength chirp, the optical field is diffracted onto a spatial light modulator (SLM) whose pixels are modulated with a pseudo-random bit sequences (PRBSs), and finally the optical field is directed to a photodiode and the resulting current integrated for each PRBS. When the number of PRBSs and measurements equals the number of SLM pixels, the RF signal can be obtained in principle by multiplying the measurement vector by the inverse of the square matrix given by the PRBSs and the properties of the optics. When the number of measurements is smaller than the number of pixels, a compressive sensing (CS) measurement can be performed, and sparse RF signals can be obtained using one of the standard CS recovery algorithms such as the penalized l1 norm (also known as basis pursuit) or one of the variants of matching pursuit. Accurate reconstruction of RF signals requires good calibration of the OWC. In this paper, we present results using the OWC for RF signals consisting of 2 sinusoids recovered using 3 techniques (matrix inversion, basis pursuit, and matching pursuit). We compare results obtained with orthogonal matching pursuit with nonlinear least squares to basis pursuit with an over-complete dictionary.

  6. Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station.

    Science.gov (United States)

    Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua

    2014-03-10

    A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.

  7. A compressive sensing-based computational method for the inversion of wide-band ground penetrating radar data

    Science.gov (United States)

    Gelmini, A.; Gottardi, G.; Moriyama, T.

    2017-10-01

    This work presents an innovative computational approach for the inversion of wideband ground penetrating radar (GPR) data. The retrieval of the dielectric characteristics of sparse scatterers buried in a lossy soil is performed by combining a multi-task Bayesian compressive sensing (MT-BCS) solver and a frequency hopping (FH) strategy. The developed methodology is able to benefit from the regularization capabilities of the MT-BCS as well as to exploit the multi-chromatic informative content of GPR measurements. A set of numerical results is reported in order to assess the effectiveness of the proposed GPR inverse scattering technique, as well as to compare it to a simpler single-task implementation.

  8. Multislot Simultaneous Spectrum Sensing and Energy Harvesting in Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2016-07-01

    Full Text Available In cognitive radio (CR, the spectrum sensing of the primary user (PU may consume some electrical power from the battery capacity of the secondary user (SU, resulting in a decrease in the transmission power of the SU. In this paper, a multislot simultaneous spectrum sensing and energy harvesting model is proposed, which uses the harvested radio frequency (RF energy of the PU signal to supply the spectrum sensing. In the proposed model, the sensing duration is divided into multiple sensing slots consisting of one local-sensing subslot and one energy-harvesting subslot. If the PU is detected to be present in the local-sensing subslot, the SU will harvest RF energy of the PU signal in the energy-harvesting slot, otherwise, the SU will continue spectrum sensing. The global decision on the presence of the PU is obtained through combining local sensing results from all the sensing slots by adopting “Or-logic Rule”. A joint optimization problem of sensing time and time splitter factor is proposed to maximize the throughput of the SU under the constraints of probabilities of false alarm and detection and energy harvesting. The simulation results have shown that the proposed model can clearly improve the maximal throughput of the SU compared to the traditional sensing-throughput tradeoff model.

  9. Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

    KAUST Repository

    Hussain, Rifaqat

    2015-06-18

    © The Institution of Engineering and Technology 2015. A compact, novel multi-mode, multi-band frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system, integrated with ultra-wideband (UWB) sensing antenna, is presented. The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm2. The proposed sensing antenna is used to cover a wide range of frequency bands from 710 to 3600 MHz. The frequency reconfigurable dual-element MIMO antenna is integrated with P-type, intrinsic, N-type (PIN) diodes for frequency agility. Different modes of selection are used for the MIMO antenna system reconfigurability to support different wireless system standards. The proposed MIMO antenna configuration is used to cover various frequency bands from 755 to 3450 MHz. The complete system comprising the multi-band reconfigurable MIMO antennas and UWB sensing antenna for cognitive radio applications is proposed with a compact form factor.

  10. Sum Utilization of Spectrum with Spectrum Handoff and Imperfect Sensing in Interweave Multi-Channel Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Waqas Khalid

    2018-05-01

    Full Text Available Fifth-generation (5G heterogeneous network deployment poses new challenges for 5G-based cognitive radio networks (5G-CRNs as the primary user (PU is required to be more active because of the small cells, random user arrival, and spectrum handoff. Interweave CRNs (I-CRNs improve spectrum utilization by allowing opportunistic spectrum access (OSA for secondary users (SUs. The sum utilization of spectrum, i.e., joint utilization of spectrum by the SU and PU, depends on the spatial and temporal variations of PU activities, sensing outcomes, transmitting conditions, and spectrum handoff. In this study, we formulate and analyze the sum utilization of spectrum with different sets of channels under different PU and SU co-existing network topologies. We consider realistic multi-channel scenarios for the SU, with each channel licensed to a PU. The SU, aided by spectrum handoff, is authorized to utilize the channels on the basis of sensing outcomes and PU interruptions. The numerical evaluation of the proposed work is presented under different network and sensing parameters. Moreover, the sum utilization gain is investigated to analyze the sensitivities of different sensing parameters. It is demonstrated that different sets of channels, PU activities, and sensing outcomes have a significant impact on the sum utilization of spectrum associated with a specific network topology.

  11. A new method for wideband characterization of resonator-based sensing platforms

    International Nuclear Information System (INIS)

    Munir, Farasat; Wathen, Adam; Hunt, William D.

    2011-01-01

    A new approach to the electronic instrumentation for extracting data from resonator-based sensing devices (e.g., microelectromechanical, piezoelectric, electrochemical, and acoustic) is suggested and demonstrated here. Traditionally, oscillator-based circuitry is employed to monitor shift in the resonance frequency of the resonator. These circuits give a single point measurement at the frequency where the oscillation criterion is met. However, the resonator response itself is broadband and contains much more information than a single point measurement. Here, we present a method for the broadband characterization of a resonator using white noise as an excitation signal. The resonator is used in a two-port filter configuration, and the resonator output is subjected to frequency spectrum analysis. The result is a wideband spectral map analogous to the magnitude of the S21 parameters of a conventional filter. Compared to other sources for broadband excitation (e.g., frequency chirp, multisine, or narrow time domain pulse), the white noise source requires no design of the input signal and is readily available for very wide bandwidths (1 MHz-3 GHz). Moreover, it offers simplicity in circuit design as it does not require precise impedance matching; whereas such requirements are very strict for oscillator-based circuit systems, and can be difficult to fulfill. This results in a measurement system that does not require calibration, which is a significant advantage over oscillator circuits. Simulation results are first presented for verification of the proposed system, followed by measurement results with a prototype implementation. A 434 MHz surface acoustic wave (SAW) resonator and a 5 MHz quartz crystal microbalance (QCM) are measured using the proposed method, and the results are compared to measurements taken by a conventional bench-top network analyzer. Maximum relative differences in the measured resonance frequencies of the SAW and QCM resonators are 0.0004% and 0

  12. Using an interference spectrum as a short-range absolute rangefinder with fiber and wideband source

    Science.gov (United States)

    Hsieh, Tsung-Han; Han, Pin

    2018-06-01

    Recently, a new type of displacement instrument using spectral-interference has been found, which utilizes fiber and a wideband light source to produce an interference spectrum. In this work, we develop a method that measures the absolute air-gap distance by taking wavelengths at two interference spectra minima. The experimental results agree with the theoretical calculations. It is also utilized to produce and control the spectral switch, which is much easier than other previous methods using other control mechanisms. A scanning mode of this scheme for stepped surface measurement is suggested, which is verified by a standard thickness gauge test. Our scheme is different to one available on the market that may use a curve-fitting method, and some comparisons are made between our scheme and that one.

  13. Spectrum Sensing and Primary User Localization in Cognitive Radio Networks via Sparsity

    Directory of Open Access Journals (Sweden)

    Lanchao Liu

    2016-01-01

    Full Text Available The theory of compressive sensing (CS has been employed to detect available spectrum resource in cognitive radio (CR networks recently. Capitalizing on the spectrum resource underutilization and spatial sparsity of primary user (PU locations, CS enables the identification of the unused spectrum bands and PU locations at a low sampling rate. Although CS has been studied in the cooperative spectrum sensing mechanism in which CR nodes work collaboratively to accomplish the spectrum sensing and PU localization task, many important issues remain unsettled. Does the designed compressive spectrum sensing mechanism satisfy the Restricted Isometry Property, which guarantees a successful recovery of the original sparse signal? Can the spectrum sensing results help the localization of PUs? What are the characteristics of localization errors? To answer those questions, we try to justify the applicability of the CS theory to the compressive spectrum sensing framework in this paper, and propose a design of PU localization utilizing the spectrum usage information. The localization error is analyzed by the Cramér-Rao lower bound, which can be exploited to improve the localization performance. Detail analysis and simulations are presented to support the claims and demonstrate the efficacy and efficiency of the proposed mechanism.

  14. Centralized cooperative spectrum sensing for ad-hoc disaster relief network clusters

    DEFF Research Database (Denmark)

    Pratas, Nuno; Marchetti, Nicola; Prasad, Neeli R.

    2010-01-01

    Disaster relief networks have to be highly adaptable and resilient. Cognitive radio enhanced ad-hoc architecture have been put forward as a candidate to enable such networks. Spectrum sensing is the cornerstone of the cognitive radio paradigm, and it has been the target of intensive research....... The main common conclusion was that the achievable spectrum sensing accuracy can be greatly enhanced through the use of cooperative sensing schemes. When considering applying Cognitive Radio to ad-hoc disaster relief networks, spectrum sensing cooperative schemes are paramount. A centralized cluster...

  15. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    International Nuclear Information System (INIS)

    Qi Pei-Han; Li Zan; Si Jiang-Bo; Gao Rui

    2014-01-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds. (interdisciplinary physics and related areas of science and technology)

  16. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    Science.gov (United States)

    Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Gao, Rui

    2014-12-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.

  17. Spectrum Sensing Experimentation for LTE and WiFi Unlicensed Band Operation

    Directory of Open Access Journals (Sweden)

    N. Milošević

    2016-11-01

    Full Text Available If several different systems operate in the same frequency band, a coordination between them is needed for effective use of the available spectrum. The coordination is especially important if the systems are not designed to operate in such an environment. The very important initial phase of the coordination process is acquiring of the spectrum usage map or spectrum sensing. The paper describes the spectrum sensing experimentation in the unlicensed 5 GHz band during the WiFi or LTE transmission. It describes the experiment workflow and depicts the obtained results. The experiments were performed at NITOS testbed at the University of Thessaly, Greece, and show that it is possible to determine whether WiFi or LTE transmission is sensed. Therefore, based on spectrum sensing it will be possible to coordinate a shared access of WiFi and LTE users in the unlicensed 5 GHz band.

  18. DATA QUALITY EVALUATION AND APPLICATION POTENTIAL ANALYSIS OF TIANGONG-2 WIDE-BAND IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    B. Qin

    2018-04-01

    Full Text Available Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  19. Data Quality Evaluation and Application Potential Analysis of TIANGONG-2 Wide-Band Imaging Spectrometer

    Science.gov (United States)

    Qin, B.; Li, L.; Li, S.

    2018-04-01

    Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  20. Novel Spectrum Sensing Algorithms for OFDM Cognitive Radio Networks.

    Science.gov (United States)

    Shi, Zhenguo; Wu, Zhilu; Yin, Zhendong; Cheng, Qingqing

    2015-06-15

    Spectrum sensing technology plays an increasingly important role in cognitive radio networks. Consequently, several spectrum sensing algorithms have been proposed in the literature. In this paper, we present a new spectrum sensing algorithm "Differential Characteristics-Based OFDM (DC-OFDM)" for detecting OFDM signal on account of differential characteristics. We put the primary value on channel gain θ around zero to detect the presence of primary user. Furthermore, utilizing the same method of differential operation, we improve two traditional OFDM sensing algorithms (cyclic prefix and pilot tones detecting algorithms), and propose a "Differential Characteristics-Based Cyclic Prefix (DC-CP)" detector and a "Differential Characteristics-Based Pilot Tones (DC-PT)" detector, respectively. DC-CP detector is based on auto-correlation vector to sense the spectrum, while the DC-PT detector takes the frequency-domain cross-correlation of PT as the test statistic to detect the primary user. Moreover, the distributions of the test statistics of the three proposed methods have been derived. Simulation results illustrate that all of the three proposed methods can achieve good performance under low signal to noise ratio (SNR) with the presence of timing delay. Specifically, the DC-OFDM detector gets the best performance among the presented detectors. Moreover, both of the DC-CP and DC-PT detector achieve significant improvements compared with their corresponding original detectors.

  1. Performance of Cooperative Spectrum Sensing over Non-Identical Fading Environments

    KAUST Repository

    Rao, Anlei; Alouini, Mohamed-Slim

    2012-01-01

    Different from previous works in cooperative spec- trum sensing that assumed the sensing channels independent identically distributed (i.i.d.), we investigate in this paper the independent but not identically distributed (i.n.i.d.) situations. In particular, we derive the false-alarm probability and the detection probability of cooperative spectrum sensing with the scheme of energy fusion over i.n.i.d. Rayleigh, Nakagami, and Rician fading channels. From the selected numerical results, we can see that cooperative spectrum sensing still gives considerably better performance even over i.n.i.d. fading environments.

  2. Performance of Cooperative Spectrum Sensing over Non-Identical Fading Environments

    KAUST Repository

    Rao, Anlei

    2012-09-08

    Different from previous works in cooperative spec- trum sensing that assumed the sensing channels independent identically distributed (i.i.d.), we investigate in this paper the independent but not identically distributed (i.n.i.d.) situations. In particular, we derive the false-alarm probability and the detection probability of cooperative spectrum sensing with the scheme of energy fusion over i.n.i.d. Rayleigh, Nakagami, and Rician fading channels. From the selected numerical results, we can see that cooperative spectrum sensing still gives considerably better performance even over i.n.i.d. fading environments.

  3. TESTBED IMPLEMENTATION OF MULTI DIMENSIONAL SPECTRUM SENSING SCHEMES FOR COGNITIVE RADIO

    Directory of Open Access Journals (Sweden)

    Deepa N Reddy

    2016-06-01

    Full Text Available Cognitive Radio (CR is a promising technology to exploit the underutilized spectrum. Spectrum sensing is one of the most important components for the establishment of cognitive radio system. Spectrum sensing allows the secondary users (SUs to detect the presence of the primary users (PUs. The aim of this work is to create a CR environment to study the spectrum sensing methods using Universal software radio Peripheral (USRP boards. In this paper a novel method of estimation of spectrum opportunities in multiple dimensions especially the space and the angle dimensions are carried out on USRP boards. This paper typically provides the experimental results carried out in an indoor wireless environment. To enhance the sensing performance the space dimension is firstly studied using spatial diversity of the cooperative SUs. Secondly the receiver diversity is analyzed using multiple antennas to enhance the error performance of the wireless system. The spectrum usage is also determined in the angle dimension by investigating the direction of the dominant signals using MUSIC algorithm.

  4. Remote sensing with laser spectrum radar

    Science.gov (United States)

    Wang, Tianhe; Zhou, Tao; Jia, Xiaodong

    2016-10-01

    The unmanned airborne (UAV) laser spectrum radar has played a leading role in remote sensing because the transmitter and the receiver are together at laser spectrum radar. The advantages of the integrated transceiver laser spectrum radar is that it can be used in the oil and gas pipeline leak detection patrol line which needs the non-contact reflective detection. The UAV laser spectrum radar can patrol the line and specially detect the swept the area are now in no man's land because most of the oil and gas pipelines are in no man's land. It can save labor costs compared to the manned aircraft and ensure the safety of the pilots. The UAV laser spectrum radar can be also applied in the post disaster relief which detects the gas composition before the firefighters entering the scene of the rescue.

  5. Achieving Efficient Spectrum Usage in Passive and Active Sensing

    Science.gov (United States)

    Wang, Huaiyi

    Increasing demand for supporting more wireless services with higher performance and reliability within the frequency bands that are most conducive to operating cost-effective cellular and mobile broadband is aggravating current electromagnetic spectrum congestion. This situation motivates technology and management innovation to increase the efficiency of spectral use. If primary-secondary spectrum sharing can be shown possible without compromising (or while even improving) performance in an existing application, opportunities for efficiency may be realizable by making the freed spectrum available for commercial use. While both active and passive sensing systems are vitally important for many public good applications, opportunities for increasing the efficiency of spectrum use can be shown to exist for both systems. This dissertation explores methods and technologies for remote sensing systems that enhance spectral efficiency and enable dynamic spectrum access both within and outside traditionally allocated bands.

  6. Upper bounds for Neyman-Pearson cooperative spectrum sensing

    KAUST Repository

    Zahabi, Sayed Jalal; Tadaion, Ali Akbar; Aissa, Sonia

    2011-01-01

    We consider a cooperative spectrum sensing scenario where the local sensors at the secondary users are viewed as one-level quantizers, and the quantized data are to be fused under Neyman-Pearson (N-P) criterion. We demonstrate how the N-P fusion results in a randomized test, which represents the total performance of our spectrum sensing scheme. We further introduce an upper performance bound for the overall primary user signal detection. An analytical procedure towards the upper bound and its relevant quantization setup at the local sensors are proposed and examined through simulations. © 2011 IEEE.

  7. Upper bounds for Neyman-Pearson cooperative spectrum sensing

    KAUST Repository

    Zahabi, Sayed Jalal

    2011-06-01

    We consider a cooperative spectrum sensing scenario where the local sensors at the secondary users are viewed as one-level quantizers, and the quantized data are to be fused under Neyman-Pearson (N-P) criterion. We demonstrate how the N-P fusion results in a randomized test, which represents the total performance of our spectrum sensing scheme. We further introduce an upper performance bound for the overall primary user signal detection. An analytical procedure towards the upper bound and its relevant quantization setup at the local sensors are proposed and examined through simulations. © 2011 IEEE.

  8. Hard Fusion Based Spectrum Sensing over Mobile Fading Channels in Cognitive Vehicular Networks.

    Science.gov (United States)

    Qian, Xiaomin; Hao, Li; Ni, Dadong; Tran, Quang Thanh

    2018-02-06

    An explosive growth in vehicular wireless applications gives rise to spectrum resource starvation. Cognitive radio has been used in vehicular networks to mitigate the impending spectrum starvation problem by allowing vehicles to fully exploit spectrum opportunities unoccupied by licensed users. Efficient and effective detection of licensed user is a critical issue to realize cognitive radio applications. However, spectrum sensing in vehicular environments is a very challenging task due to vehicle mobility. For instance, vehicle mobility has a large effect on the wireless channel, thereby impacting the detection performance of spectrum sensing. Thus, gargantuan efforts have been made in order to analyze the fading properties of mobile radio channel in vehicular environments. Indeed, numerous studies have demonstrated that the wireless channel in vehicular environments can be characterized by a temporally correlated Rayleigh fading. In this paper, we focus on energy detection for spectrum sensing and a counting rule for cooperative sensing based on Neyman-Pearson criteria. Further, we go into the effect of the sensing and reporting channel conditions on the sensing performance under the temporally correlated Rayleigh channel. For local and cooperative sensing, we derive some alternative expressions for the average probability of misdetection. The pertinent numerical and simulating results are provided to further validate our theoretical analyses under a variety of scenarios.

  9. Spectrum sensing using single-radio switched-beam antenna systems

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki; Wilcox, David; De Carvalho, Elisabeth

    2012-01-01

    of the reactive loads rotate the narrowband beampattern to different angular positions dividing the whole space around the cognitive receiver into several angular subspaces. The beampattern directionality leverages the performance of spectrum sensing algorithms like the energy detection by enhancing the receive......The paper describes spectrum sensing using single-radio switched-beam arrays with reactance-loaded parasitic elements. At a given frequency, the antenna's loading conditions (reactive loads) are optimized for maximum average beamforming gain in the beampattern look direction. Circular permutations...

  10. Compact Microwave Fourier Spectrum Analyzer

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  11. Digital FMCW for ultrawideband spectrum sensing

    Science.gov (United States)

    Cheema, A. A.; Salous, S.

    2016-08-01

    An ultrawideband digital frequency-modulated continuous wave sensing engine is proposed as an alternative technique for cognitive radio applications. A dual-band demonstrator capable of sensing 750 MHz bandwidth in 204.8 µs is presented. Its performance is illustrated from both bench tests and from real-time measurements of the GSM 900 band and the 2.4 GHz wireless local area network (WLAN) band. The measured sensitivity and noise figure values are -90 dBm for a signal-to-noise ratio margin of at least 10 dB and ~13-14 dB, respectively. Data were collected over 24 h and were analyzed by using the energy detection method. The obtained results show the time variability of occupancy, and considerable sections of the spectrum are unoccupied. In addition, unlike the cyclic temporal variations of spectrum occupancy in the GSM 900 band, the detected variations in the 2.4 GHz WLAN band have an impulsive nature.

  12. Wideband two-port beam splitter of a binary fused-silica phase grating.

    Science.gov (United States)

    Wang, Bo; Zhou, Changhe; Feng, Jijun; Ru, Huayi; Zheng, Jiangjun

    2008-08-01

    The usual beam splitter of multilayer-coated film with a wideband spectrum is not easy to achieve. We describe the realization of a wideband transmission two-port beam splitter based on a binary fused-silica phase grating. To achieve high efficiency and equality in the diffracted 0th and -1st orders, the grating profile parameters are optimized using rigorous coupled-wave analysis at a wavelength of 1550 nm. Holographic recording and the inductively coupled plasma dry etching technique are used to fabricate the fused-silica beam splitter grating. The measured efficiency of (45% x 2) = 90% diffracted into the both orders can be obtained with the fabricated grating under Littrow mounting. The physical mechanism of such a wideband two-port beam splitter grating can be well explained by the modal method based on two-beam interference of the modes excited by the incident wave. With the high damage threshold, low coefficient of thermal expansion, and wideband high efficiency, the presented beam splitter etched in fused silica should be a useful optical element for a variety of practical applications.

  13. Efficient Error Detection in Soft Data Fusion for Cooperative Spectrum Sensing

    KAUST Repository

    Saqib Bhatti, Dost Muhammad

    2018-03-18

    The primary objective of cooperative spectrum sensing (CSS) is to determine whether a particular spectrum is occupied by a licensed user or not, so that unlicensed users called secondary users (SUs) can utilize that spectrum, if it is not occupied. For CSS, all SUs report their sensing information through reporting channel to the central base station called fusion center (FC). During transmission, some of the SUs are subjected to fading and shadowing, due to which the overall performance of CSS is degraded. We have proposed an algorithm which uses error detection technique on sensing measurement of all SUs. Each SU is required to re-transmit the sensing data to the FC, if error is detected on it. Our proposed algorithm combines the sensing measurement of limited number of SUs. Using Proposed algorithm, we have achieved the improved probability of detection (PD) and throughput. The simulation results compare the proposed algorithm with conventional scheme.

  14. Spectrum sensing algorithm based on autocorrelation energy in cognitive radio networks

    Science.gov (United States)

    Ren, Shengwei; Zhang, Li; Zhang, Shibing

    2016-10-01

    Cognitive radio networks have wide applications in the smart home, personal communications and other wireless communication. Spectrum sensing is the main challenge in cognitive radios. This paper proposes a new spectrum sensing algorithm which is based on the autocorrelation energy of signal received. By taking the autocorrelation energy of the received signal as the statistics of spectrum sensing, the effect of the channel noise on the detection performance is reduced. Simulation results show that the algorithm is effective and performs well in low signal-to-noise ratio. Compared with the maximum generalized eigenvalue detection (MGED) algorithm, function of covariance matrix based detection (FMD) algorithm and autocorrelation-based detection (AD) algorithm, the proposed algorithm has 2 11 dB advantage.

  15. Cluster-based spectrum sensing for cognitive radios with imperfect channel to cluster-head

    KAUST Repository

    Ben Ghorbel, Mahdi

    2012-04-01

    Spectrum sensing is considered as the first and main step for cognitive radio systems to achieve an efficient use of spectrum. Cooperation and clustering among cognitive radio users are two techniques that can be employed with spectrum sensing in order to improve the sensing performance by reducing miss-detection and false alarm. In this paper, within the framework of a clustering-based cooperative spectrum sensing scheme, we study the effect of errors in transmitting the local decisions from the secondary users to the cluster heads (or the fusion center), while considering non-identical channel conditions between the secondary users. Closed-form expressions for the global probabilities of detection and false alarm at the cluster head are derived. © 2012 IEEE.

  16. Cluster-based spectrum sensing for cognitive radios with imperfect channel to cluster-head

    KAUST Repository

    Ben Ghorbel, Mahdi; Nam, Haewoon; Alouini, Mohamed-Slim

    2012-01-01

    Spectrum sensing is considered as the first and main step for cognitive radio systems to achieve an efficient use of spectrum. Cooperation and clustering among cognitive radio users are two techniques that can be employed with spectrum sensing in order to improve the sensing performance by reducing miss-detection and false alarm. In this paper, within the framework of a clustering-based cooperative spectrum sensing scheme, we study the effect of errors in transmitting the local decisions from the secondary users to the cluster heads (or the fusion center), while considering non-identical channel conditions between the secondary users. Closed-form expressions for the global probabilities of detection and false alarm at the cluster head are derived. © 2012 IEEE.

  17. Analysis of Practical Implementation for Secure Spectrum Sensing in Cognitive Radio Networks

    DEFF Research Database (Denmark)

    Ivanov, Antoni; Mihovska, Albena Dimitrova; Tonchev, Krasimir

    2017-01-01

    Spectrum sensing is vitally important functionality for the cognitive radio (CR) device because it allows for assessing, which part of the spectrum is unoccupied and suitable for temporal use. Most of the proposed research efforts until now have been based on theoretical findings about the perfor......Spectrum sensing is vitally important functionality for the cognitive radio (CR) device because it allows for assessing, which part of the spectrum is unoccupied and suitable for temporal use. Most of the proposed research efforts until now have been based on theoretical findings about...

  18. Soft cooperative spectrum sensing performance under imperfect and non identical reporting channels

    KAUST Repository

    Ben Ghorbel, Mahdi

    2015-02-01

    Cooperation among cognitive radio users improves the spectrum sensing performance by combining local decisions measured over independent sensing channels, allowing reduction of miss-detection and false alarm probabilities. While most of the works in cooperative spectrum sensing techniques assume perfect channels between the cooperating users, this paper studies the effect of imperfect channels when local users report their sensed information to the fusion center. Cooperative detection and false-alarm probabilities are derived for a general scheme of imperfect reporting channels under non necessarily identical sensing and reporting channels. Numerical simulations show that imperfect reporting channels should be considered to optimize the cooperative sensing in terms of consumed energy and probability of error.

  19. User Classification in Crowdsourcing-Based Cooperative Spectrum Sensing

    Directory of Open Access Journals (Sweden)

    Linbo Zhai

    2017-07-01

    Full Text Available This paper studies cooperative spectrum sensing based on crowdsourcing in cognitive radio networks. Since intelligent mobile users such as smartphones and tablets can sense the wireless spectrum, channel sensing tasks can be assigned to these mobile users. This is referred to as the crowdsourcing method. However, there may be some malicious mobile users that send false sensing reports deliberately, for their own purposes. False sensing reports will influence decisions about channel state. Therefore, it is necessary to classify mobile users in order to distinguish malicious users. According to the sensing reports, mobile users should not just be divided into two classes (honest and malicious. There are two reasons for this: on the one hand, honest users in different positions may have different sensing outcomes, as shadowing, multi-path fading, and other issues may influence the sensing results; on the other hand, there may be more than one type of malicious users, acting differently in the network. Therefore, it is necessary to classify mobile users into more than two classes. Due to the lack of prior information of the number of user classes, this paper casts the problem of mobile user classification as a dynamic clustering problem that is NP-hard. The paper uses the interdistance-to-intradistance ratio of clusters as the fitness function, and aims to maximize the fitness function. To cast this optimization problem, this paper proposes a distributed algorithm for user classification in order to obtain bounded close-to-optimal solutions, and analyzes the approximation ratio of the proposed algorithm. Simulations show the distributed algorithm achieves higher performance than other algorithms.

  20. Wideband laser locking to an atomic reference with modulation transfer spectroscopy.

    Science.gov (United States)

    Negnevitsky, V; Turner, L D

    2013-02-11

    We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.

  1. Green Cooperative Spectrum Sensing and Scheduling in Heterogeneous Cognitive Radio Networks

    KAUST Repository

    Celik, Abdulkadir

    2016-09-12

    In this paper, we consider heterogeneous cognitive radio networks (CRNs) comprising primary channels (PCs) with heterogeneous characteristics and secondary users (SUs) with various sensing and reporting qualities for different PCs. We first define the opportunity as the achievable total data rate and its cost as the energy consumption caused from sensing, reporting, and channel switching operations and formulate a joint spectrum discovery and energy efficiency objective to minimize the energy spent per unit of data rate. Then, a mixed integer nonlinear programming problem is formulated to determine: 1) the optimal subset of PCs to be scheduled for sensing; 2) the SU assignment set for each scheduled PC; and 3) sensing durations and detection thresholds of each SU on PCs it is assigned to sense. Thereafter, an equivalent convex framework is developed for specific instances of the above combinatorial problem. For comparison, optimal detection and sensing thresholds are also derived analytically under the homogeneity assumption. Based on these, a prioritized ordering heuristic is developed to order channels under the spectrum, energy, and spectrum-energy limited regimes. After that, a scheduling and assignment heuristic is proposed and is shown to perform very close to the exhaustive optimal solution. Finally, the behavior of the CRN is numerically analyzed under these regimes with respect to different numbers of SUs, PCs, and sensing qualities.

  2. Enhancing Sensing and Channel Access in Cognitive Radio Networks

    KAUST Repository

    Hamza, Doha R.

    2014-06-18

    Cognitive radio technology is a promising technology to solve the wireless spectrum scarcity problem by intelligently allowing secondary, or unlicensed, users access to the primary, licensed, users\\' frequency bands. Cognitive technology involves two main tasks: 1) sensing the wireless medium to assess the presence of the primary users and 2) designing secondary spectrum access techniques that maximize the secondary users\\' benefits while maintaining the primary users\\' privileged status. On the spectrum sensing side, we make two contributions. First, we maximize a utility function representing the secondary throughput while constraining the collision probability with the primary below a certain value. We optimize therein the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order for wideband primary channels. Second, we design a cooperative spectrum sensing technique termed sensing with equal gain combining whereby cognitive radios simultaneously transmit their sensing results to the fusion center over multipath fading reporting channels. The proposed scheme is shown to outperform orthogonal reporting systems in terms of achievable secondary throughput and to be robust against phase and synchronization errors. On the spectrum access side, we make four contributions. First, we design a secondary scheduling scheme with the goal of minimizing the secondary queueing delay under constraints on the average secondary transmit power and the maximum tolerable primary outage probability. Second, we design another secondary scheduling scheme based on the spectrum sensing results and the primary automatic repeat request feedback. The optimal medium access probabilities are obtained via maximizing the secondary throughput subject to constraints that guarantee quality of service parameters for the primary. Third, we propose a three-message superposition coding scheme to maximize the secondary throughput without

  3. A Collaborative Approach for Monitoring Nodes Behavior during Spectrum Sensing to Mitigate Multiple Attacks in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Mahmoud Khasawneh

    2017-01-01

    Full Text Available Spectrum sensing is the first step to overcome the spectrum scarcity problem in Cognitive Radio Networks (CRNs wherein all unutilized subbands in the radio environment are explored for better spectrum utilization. Adversary nodes can threaten these spectrum sensing results by launching passive and active attacks that prevent legitimate nodes from using the spectrum efficiently. Securing the spectrum sensing process has become an important issue in CRNs in order to ensure reliable and secure spectrum sensing and fair management of resources. In this paper, a novel collaborative approach during spectrum sensing process is proposed. It monitors the behavior of sensing nodes and identifies the malicious and misbehaving sensing nodes. The proposed approach measures the node’s sensing reliability using a value called belief level. All the sensing nodes are grouped into a specific number of clusters. In each cluster, a sensing node is selected as a cluster head that is responsible for collecting sensing-reputation reports from different cognitive nodes about each node in the same cluster. The cluster head analyzes information to monitor and judge the nodes’ behavior. By simulating the proposed approach, we showed its importance and its efficiency for achieving better spectrum security by mitigating multiple passive and active attacks.

  4. Decentralized cooperative spectrum sensing for ad-hoc disaster relief network clusters

    DEFF Research Database (Denmark)

    Pratas, Nuno; Marchetti, Nicola; Prasad, Neeli R.

    2010-01-01

    cooperative schemes becomes essential. A cluster based decentralized orchestration cooperative sensing scheme is proposed, where each node in the cluster decides which spectrum it should monitor, according to the past sensing decisions of all the cluster nodes. The proposed scheme performance is evaluated...... through a framework, which allows gauging the accuracy of multi narrow-band spectrum sensing cooperative schemes as well as to gauge the error in the estimation of each of the channels un-occupancy. Through that evaluation it is shown that the proposed decentralized scheme performance reaches...... the performance of the correspondent centralized scheme while outperforming the Round Robin scheme....

  5. Capacity limits introduced by data fusion on cooperative spectrum sensing under correlated environments

    DEFF Research Database (Denmark)

    Pratas, Nuno; Marchetti, Nicola; Rodrigues, Antonio

    2010-01-01

    spectrum sensing scheme, by measuring the perceived capacity limits introduced by the use of data fusion on cooperative sensing schemes. The analysis is supported by evaluation metrics which account for the perceived capacity limits. The analysis is performed along the data fusion chain, comparing several...... scenarios encompassing different degree of environment correlation between the cluster nodes, number of cluster nodes and sensed channel occupation statistics. Through this study we motivate that to maximize the perceived capacity by the cooperative spectrum sensing, the use of data fusion needs...

  6. Wideband 4-diode sampling circuit

    Science.gov (United States)

    Wojtulewicz, Andrzej; Radtke, Maciej

    2016-09-01

    The objective of this work was to develop a wide-band sampling circuit. The device should have the ability to collect samples of a very fast signal applied to its input, strengthen it and prepare for further processing. The study emphasizes the method of sampling pulse shaping. The use of ultrafast pulse generator allows sampling signals with a wide frequency spectrum, reaching several gigahertzes. The device uses a pulse transformer to prepare symmetrical pulses. Their final shape is formed with the help of the step recovery diode, two coplanar strips and Schottky diode. Made device can be used in the sampling oscilloscope, as well as other measurement system.

  7. A Robust FLOM Based Spectrum Sensing Scheme under Middleton Class A Noise in IoT

    Directory of Open Access Journals (Sweden)

    Enwei Xu

    2017-01-01

    Full Text Available Accessibility to remote users in dynamic environment, high spectrum utilization, and no spectrum purchase make Cognitive Radio (CR a feasible solution of wireless communications in the Internet of Things (IoT. Reliable spectrum sensing becomes the prerequisite for the establishment of communication between IoT-capable objects. Considering the application environment, spectrum sensing not only has to cope with man-made impulsive noises but also needs to overcome noise fluctuations. In this paper, we study the Fractional Lower Order Moments (FLOM based spectrum sensing method under Middleton Class A noise and incorporate a Noise Power Estimation (NPE module into the sensing system to deal with the issue of noise uncertainty. Moreover, the NPE process does not need noise-only samples. The analytical expressions of the probabilities of detection and the probability of false alarm are derived. The impact on sensing performance of the parameters of the NPE module is also analyzed. The theoretical analysis and simulation results show that our proposed sensing method achieves a satisfactory performance at low SNR.

  8. Securing Collaborative Spectrum Sensing against Untrustworthy Secondary Users in Cognitive Radio Networks

    Science.gov (United States)

    Wang, Wenkai; Li, Husheng; Sun, Yan(Lindsay); Han, Zhu

    2009-12-01

    Cognitive radio is a revolutionary paradigm to migrate the spectrum scarcity problem in wireless networks. In cognitive radio networks, collaborative spectrum sensing is considered as an effective method to improve the performance of primary user detection. For current collaborative spectrum sensing schemes, secondary users are usually assumed to report their sensing information honestly. However, compromised nodes can send false sensing information to mislead the system. In this paper, we study the detection of untrustworthy secondary users in cognitive radio networks. We first analyze the case when there is only one compromised node in collaborative spectrum sensing schemes. Then we investigate the scenario that there are multiple compromised nodes. Defense schemes are proposed to detect malicious nodes according to their reporting histories. We calculate the suspicious level of all nodes based on their reports. The reports from nodes with high suspicious levels will be excluded in decision-making. Compared with existing defense methods, the proposed scheme can effectively differentiate malicious nodes and honest nodes. As a result, it can significantly improve the performance of collaborative sensing. For example, when there are 10 secondary users, with the primary user detection rate being equal to 0.99, one malicious user can make the false alarm rate [InlineEquation not available: see fulltext.] increase to 72%. The proposed scheme can reduce it to 5%. Two malicious users can make [InlineEquation not available: see fulltext.] increase to 85% and the proposed scheme reduces it to 8%.

  9. Hard Decision Fusion based Cooperative Spectrum Sensing in Cognitive Radio System

    Directory of Open Access Journals (Sweden)

    N. Armi N.M. Saad

    2013-09-01

    Full Text Available Cooperative spectrum sensing was proposed to combat fading, noise uncertainty, shadowing, and even hidden node problem due to primary users (PUs activity that is not spatially localized. It improves the probability of detection by collaborating to detect PUs signal in cognitive radio (CR system as well. This paper studies cooperative spectrum sensing and signal detection in CR system by implementing hard decision combining in data fusion centre. Through computer simulation, we evaluate the performances of cooperative spectrum sensing and signal detection by employing OR and AND rules as decision combining. Energy detector is used to observe the presence of primary user (PU signal. Those results are compared to non-cooperative signal detection for evaluation. They show that cooperative technique has better performance than non-cooperative. Moreover, signal to noise ratio (SNR with greater than or equal 10 dB and 15 collaborated users in CR system has optimal value for probability of detection.

  10. Secure Cooperative Spectrum Sensing for the Cognitive Radio Network Using Nonuniform Reliability

    Directory of Open Access Journals (Sweden)

    Muhammad Usman

    2014-01-01

    Full Text Available Both reliable detection of the primary signal in a noisy and fading environment and nullifying the effect of unauthorized users are important tasks in cognitive radio networks. To address these issues, we consider a cooperative spectrum sensing approach where each user is assigned nonuniform reliability based on the sensing performance. Users with poor channel or faulty sensor are assigned low reliability. The nonuniform reliabilities serve as identification tags and are used to isolate users with malicious behavior. We consider a link layer attack similar to the Byzantine attack, which falsifies the spectrum sensing data. Three different strategies are presented in this paper to ignore unreliable and malicious users in the network. Considering only reliable users for global decision improves sensing time and decreases collisions in the control channel. The fusion center uses the degree of reliability as a weighting factor to determine the global decision in scheme I. Schemes II and III consider the unreliability of users, which makes the computations even simpler. The proposed schemes reduce the number of sensing reports and increase the inference accuracy. The advantages of our proposed schemes over conventional cooperative spectrum sensing and the Chair-Varshney optimum rule are demonstrated through simulations.

  11. A Wideband Autonomous Cognitive Radio Development and Prototyping System

    Science.gov (United States)

    2017-11-14

    three infrastructure modules (a Network Spectrum Analyzer, a Vector Signal Generator and a Rapid Printed Circuit Board (PCB) Fabrication Unit) and a...Antennas for Mobile Platforms”, 02/01/17-12/31/17 ($100K), Honeywell FM&T. 3. S. K. Jayaweera (Principal Investigator) and C. G. Christodoulou “Wideband...Signal Generator and a Rapid Printed Circuit Board (PCB) Fabrication Unit) and a Software Defined Radio (SDR) testbed made of several USRP SDR

  12. Coalition Formation and Spectrum Sharing of Cooperative Spectrum Sensing Participants.

    Science.gov (United States)

    Zhensheng Jiang; Wei Yuan; Leung, Henry; Xinge You; Qi Zheng

    2017-05-01

    In cognitive radio networks, self-interested secondary users (SUs) desire to maximize their own throughput. They compete with each other for transmit time once the absence of primary users (PUs) is detected. To satisfy the requirement of PU protection, on the other hand, they have to form some coalitions and cooperate to conduct spectrum sensing. Such dilemma of SUs between competition and cooperation motivates us to study two interesting issues: 1) how to appropriately form some coalitions for cooperative spectrum sensing (CSS) and 2) how to share transmit time among SUs. We jointly consider these two issues, and propose a noncooperative game model with 2-D strategies. The first dimension determines coalition formation, and the second indicates transmit time allocation. Considering the complexity of solving this game, we decompose the game into two more tractable ones: one deals with the formation of CSS coalitions, and the other focuses on the allocation of transmit time. We characterize the Nash equilibria (NEs) of both games, and show that the combination of these two NEs corresponds to the NE of the original game. We also develop a distributed algorithm to achieve a desirable NE of the original game. When this NE is achieved, the SUs obtain a Dhp-stable coalition structure and a fair transmit time allocation. Numerical results verify our analyses, and demonstrate the effectiveness of our algorithm.

  13. A combined spectrum sensing and OFDM demodulation scheme

    NARCIS (Netherlands)

    Heskamp, M.; Slump, Cornelis H.

    2009-01-01

    In this paper we propose a combined signaling and spectrum sensing scheme for cognitive radio that can detect in-band primary users while the networks own signal is active. The signaling scheme uses OFDM with phase shift keying modulated sub-carriers, and the detection scheme measures the deviation

  14. Soft cooperative spectrum sensing performance under imperfect and non identical reporting channels

    KAUST Repository

    Ben Ghorbel, Mahdi; Nam, Haewoon; Alouini, Mohamed-Slim

    2015-01-01

    in cooperative spectrum sensing techniques assume perfect channels between the cooperating users, this paper studies the effect of imperfect channels when local users report their sensed information to the fusion center. Cooperative detection and false

  15. Ultra-wideband spectral analysis using S2 technology

    International Nuclear Information System (INIS)

    Krishna Mohan, R.; Chang, T.; Tian, M.; Bekker, S.; Olson, A.; Ostrander, C.; Khallaayoun, A.; Dollinger, C.; Babbitt, W.R.; Cole, Z.; Reibel, R.R.; Merkel, K.D.; Sun, Y.; Cone, R.; Schlottau, F.; Wagner, K.H.

    2007-01-01

    This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution (∼25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 μs) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed

  16. Ultra-wideband spectral analysis using S2 technology

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Mohan, R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)]. E-mail: krishna@spectrum.montana.edu; Chang, T. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Tian, M. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Bekker, S. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Olson, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Ostrander, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Khallaayoun, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Dollinger, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cole, Z. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Reibel, R.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Merkel, K.D. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Sun, Y. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cone, R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Schlottau, F. [University of Colorado, Boulder, CO 80309 (United States); Wagner, K.H. [University of Colorado, Boulder, CO 80309 (United States)

    2007-11-15

    This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution ({approx}25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 {mu}s) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed.

  17. A Novel Wireless Power Transfer-Based Weighed Clustering Cooperative Spectrum Sensing Method for Cognitive Sensor Networks.

    Science.gov (United States)

    Liu, Xin

    2015-10-30

    In a cognitive sensor network (CSN), the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs) becomes very large. In this paper, a novel wireless power transfer (WPT)-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF) energy of the primary node (PN) to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.

  18. A Novel Wireless Power Transfer-Based Weighed Clustering Cooperative Spectrum Sensing Method for Cognitive Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2015-10-01

    Full Text Available In a cognitive sensor network (CSN, the wastage of sensing time and energy is a challenge to cooperative spectrum sensing, when the number of cooperative cognitive nodes (CNs becomes very large. In this paper, a novel wireless power transfer (WPT-based weighed clustering cooperative spectrum sensing model is proposed, which divides all the CNs into several clusters, and then selects the most favorable CNs as the cluster heads and allows the common CNs to transfer the received radio frequency (RF energy of the primary node (PN to the cluster heads, in order to supply the electrical energy needed for sensing and cooperation. A joint resource optimization is formulated to maximize the spectrum access probability of the CSN, through jointly allocating sensing time and clustering number. According to the resource optimization results, a clustering algorithm is proposed. The simulation results have shown that compared to the traditional model, the cluster heads of the proposed model can achieve more transmission power and there exists optimal sensing time and clustering number to maximize the spectrum access probability.

  19. Optical networks for wideband sensor array

    Science.gov (United States)

    Sheng, Lin Horng

    2011-12-01

    This thesis presents the realization of novel systems for optical sensing networks with an array of long-period grating (LPG) sensors. As a launching point of the thesis, the motivation to implement optical sensing network in precisely catering LPG sensors is presented. It highlights the flexibility of the sensing network to act as the foundation in order to boost the application of the various LPG sensor design in biological and chemical sensing. After the thorough study on the various optical sensing networks, sub-carrier multiplexing (SCM) and optical time division multiplexing (OTDM) schemes are adopted in conjunction with tunable laser source (TLS) to facilitate simultaneous interrogation of the LPG sensors array. In fact, these systems are distinct to have the capability to accommodate wideband optical sensors. Specifically, the LPG sensors which is in 20nm bandwidth are identified to operate in these systems. The working principles of the systems are comprehensively elucidated in this thesis. It highlights the mathematical approach to quantify the experimental setup of the optical sensing network. Additionally, the system components of the designs are identified and methodically characterized so that the components well operate in the designed environment. A mockup has been setup to demonstrate the application in sensing of various liquid indices and analyse the response of the LPG sensors in order to evaluate the performance of the systems. Eventually, the resemblance of the demultiplexed spectral response to the pristine spectral response are quantified to have excellent agreement. Finally, the promising result consistency of the systems is verified through repeatability test.

  20. 47 CFR 15.717 - TVBDs that rely on spectrum sensing.

    Science.gov (United States)

    2010-10-01

    ... Television Band Devices § 15.717 TVBDs that rely on spectrum sensing. (a) Parties may submit applications for... that are identical in electrical characteristics and antenna systems may be certified under the...

  1. On Transform Domain Communication Systems under Spectrum Sensing Mismatch: A Deterministic Analysis.

    Science.gov (United States)

    Jin, Chuanxue; Hu, Su; Huang, Yixuan; Luo, Qu; Huang, Dan; Li, Yi; Gao, Yuan; Cheng, Shaochi

    2017-07-08

    Towards the era of mobile Internet and the Internet of Things (IoT), numerous sensors and devices are being introduced and interconnected. To support such an amount of data traffic, traditional wireless communication technologies are facing challenges both in terms of the increasing shortage of spectrum resources and massive multiple access. The transform-domain communication system (TDCS) is considered as an alternative multiple access system, where 5G and mobile IoT are mainly focused. However, previous studies about TDCS are under the assumption that the transceiver has the global spectrum information, without the consideration of spectrum sensing mismatch (SSM). In this paper, we present the deterministic analysis of TDCS systems under arbitrary given spectrum sensing scenarios, especially the influence of the SSM pattern to the signal to noise ratio (SNR) performance. Simulation results show that arbitrary SSM pattern can lead to inferior bit error rate (BER) performance.

  2. Semi-blind identification of wideband MIMO channels via stochastic sampling

    OpenAIRE

    Andrieu, Christophe; Piechocki, Robert J.; McGeehan, Joe P.; Armour, Simon M.

    2003-01-01

    In this paper we address the problem of wide-band multiple-input multiple-output (MIMO) channel (multidimensional time invariant FIR filter) identification using Markov chains Monte Carlo methods. Towards this end we develop a novel stochastic sampling technique that produces a sequence of multidimensional channel samples. The method is semi-blind in the sense that it uses a very short training sequence. In such a framework the problem is no longer analytically tractable; hence we resort to s...

  3. Ultra-Wideband Transceivers for Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Reisenzahn Alexander

    2005-01-01

    Full Text Available Ultra-wideband (UWB radio offers low power consumption, low power spectral density, high immunity against interference, and other benefits, not only for consumer electronics, but also for medical devices. A cochlear implant (CI is an electronic hearing apparatus, requiring a wireless link through human tissue. In this paper we propose an UWB link for a data rate of Mbps and a propagation distance up to 500 mm. Transmitters with step recovery diode and transistor pulse generators are proposed. Two types of antennas and their filter characteristics in the UWB spectrum will be discussed. An ultra-low-power back tunnel diode receiver prototype is described and compared with conventional detector receivers.

  4. Ultra-wideband and 60 GHz communications for biomedical applications

    CERN Document Server

    Yuce, Mehmet R

    2013-01-01

    This book investigates the design of devices, systems, and circuits for medical applications using the two recently established frequency bands: ultra-wideband (3.1-10.6 GHz) and 60 GHz ISM band. These two bands provide the largest bandwidths available for communication technologies and present many attractive opportunities for medical applications. The applications of these bands in healthcare are wireless body area network (WBAN), medical imaging, biomedical sensing, wearable and implantable devices, fast medical device connectivity, video data transmission, and vital signs monitoring. The r

  5. Robust Spectrum Sensing Demonstration Using a Low-Cost Front-End Receiver

    Directory of Open Access Journals (Sweden)

    Daniele Borio

    2015-01-01

    Full Text Available Spectrum Sensing (SS is an important function in Cognitive Radio (CR to detect primary users. The design of SS algorithms is one of the most challenging tasks in CR and requires innovative hardware and software solutions to enhance detection probability and minimize low false alarm probability. Although several SS algorithms have been developed in the specialized literature, limited work has been done to practically demonstrate the feasibility of this function on platforms with significant computational and hardware constraints. In this paper, SS is demonstrated using a low cost TV tuner as agile front-end for sensing a large portion of the Ultra-High Frequency (UHF spectrum. The problems encountered and the limitations imposed by the front-end are analysed along with the solutions adopted. Finally, the spectrum sensor developed is implemented on an Android device and SS implementation is demonstrated using a smartphone.

  6. PERFORMANCE OF OPPORTUNISTIC SPECTRUM ACCESS WITH SENSING ERROR IN COGNITIVE RADIO AD HOC NETWORKS

    Directory of Open Access Journals (Sweden)

    N. ARMI

    2012-04-01

    Full Text Available Sensing in opportunistic spectrum access (OSA has a responsibility to detect the available channel by performing binary hypothesis as busy or idle states. If channel is busy, secondary user (SU cannot access and refrain from data transmission. SU is allowed to access when primary user (PU does not use it (idle states. However, channel is sensed on imperfect communication link. Fading, noise and any obstacles existed can cause sensing errors in PU signal detection. False alarm detects idle states as a busy channel while miss-identification detects busy states as an idle channel. False detection makes SU refrain from transmission and reduces number of bits transmitted. On the other hand, miss-identification causes SU collide to PU transmission. This paper study the performance of OSA based on the greedy approach with sensing errors by the restriction of maximum collision probability allowed (collision threshold by PU network. The throughput of SU and spectrum capacity metric is used to evaluate OSA performance and make comparisons to those ones without sensing error as function of number of slot based on the greedy approach. The relations between throughput and signal to noise ratio (SNR with different collision probability as well as false detection with different SNR are presented. According to the obtained results show that CR users can gain the reward from the previous slot for both of with and without sensing errors. It is indicated by the throughput improvement as slot number increases. However, sensing on imperfect channel with sensing errors can degrade the throughput performance. Subsequently, the throughput of SU and spectrum capacity improves by increasing maximum collision probability allowed by PU network as well. Due to frequent collision with PU, the throughput of SU and spectrum capacity decreases at certain value of collision threshold. Computer simulation is used to evaluate and validate these works.

  7. Wide-band fanned-out supercontinuum source covering O-, E-, S-, C-, L- and U-bands

    Science.gov (United States)

    Ahmad, H.; Latif, A. A.; Awang, N. A.; Zulkifli, M. Z.; Thambiratnam, K.; Ghani, Z. A.; Harun, S. W.

    2012-10-01

    A wide-band supercontinuum source generated by mode-locked pulses injected into a Highly Non-Linear Fiber (HNLF) is proposed and demonstrated. A 49 cm long Bismuth-Erbium Doped Fiber (Bi-EDF) pumped by two 1480 nm laser diodes acts as the active gain medium for a ring fiber laser, from which mode-locked pulses are obtained using the Non-Polarization Rotation (NPR) technique. The mode-locked pulses are then injected into a 100 m long HLNF with a dispersion of 0.15 ps/nm km at 1550 nm to generate a supercontinuum spectrum spanning from 1340 nm to more than 1680 nm with a pulse width of 0.08 ps and an average power of -17 dBm. The supercontinuum spectrum is sliced using a 24 channel Arrayed Waveguide Grating (AWG) with a channel spacing of 100 GHz to obtain a fanned-out laser output covering the O-, E-, S-, C-, L- and U-bands. The lasing wavelengths obtained have an average pulse width of 9 ps with only minor fluctuations and a mode-locked repetition rate of 40 MHz, and is sufficiently stable to be used in a variety of sensing and communication applications, most notably as cost-effective sources for Fiber-to-the-Home (FTTH) networks.

  8. Optimality of Multichannel Myopic Sensing in the Presence of Sensing Error for Opportunistic Spectrum Access

    Directory of Open Access Journals (Sweden)

    Xiaofeng Jiang

    2013-01-01

    Full Text Available The optimization problem for the performance of opportunistic spectrum access is considered in this study. A user, with the limited sensing capacity, has opportunistic access to a communication system with multiple channels. The user can only choose several channels to sense and decides whether to access these channels based on the sensing information in each time slot. Meanwhile, the presence of sensing error is considered. A reward is obtained when the user accesses a channel. The objective is to maximize the expected (discounted or average reward accrued over an infinite horizon. This problem can be formulated as a partially observable Markov decision process. This study shows the optimality of the simple and robust myopic policy which focuses on maximizing the immediate reward. The results show that the myopic policy is optimal in the case of practical interest.

  9. Application of a Channel Estimation Algorithm to Spectrum Sensing in a Cognitive Radio Context

    Directory of Open Access Journals (Sweden)

    Vincent Savaux

    2014-01-01

    Full Text Available This paper deals with spectrum sensing in an orthogonal frequency division multiplexing (OFDM context, allowing an opportunistic user to detect a vacant spectrum resource in a licensed band. The proposed method is based on an iterative algorithm used for the joint estimation of noise variance and frequency selective channel. It can be seen as a second-order detector, since it is performed by means of the minimum mean square error criterion. The main advantage of the proposed algorithm is its capability to perform spectrum sensing, noise variance estimation, and channel estimation in the presence of a signal. Furthermore, the sensing duration is limited to only one OFDM symbol. We theoretically show the convergence of the algorithm, and we derive its analytical detection and false alarm probabilities. Furthermore, we show that the detector is very efficient, even for low SNR values, and is robust against a channel uncertainty.

  10. System Capacity Limits Introduced by Data Fusion on Cooperative Spectrum Sensing under Correlated Environments

    DEFF Research Database (Denmark)

    Pratas, Nuno; Marchetti, Nicola; Prasad, Neeli R.

    2010-01-01

    on cooperative sensing schemes. The analysis is supported by evaluation metrics which accounts for the perceived capacity limits. The analysis is performed along the data fusion chain, comparing several scenarios encompassing different degrees of environment correlation between the cluster nodes, number......Spectrum sensing, the cornerstone of the Cognitive Radio paradigm, has been the focus of intensive research, from which the main conclusion was that its performance can be greatly enhanced through the use of cooperative sensing schemes. Nevertheless, if a proper design of the cooperative scheme...... is not followed, then the use of cooperative schemes will introduce some limitations in the network perceived capacity. In this paper, we analyze the performance of a cooperative spectrum sensing scheme based on Data Fusion, by measuring the perceived capacity limits introduced by the use of Data Fusion...

  11. Integrated wide-band low-background amplifiers

    International Nuclear Information System (INIS)

    Il'yushchenko, I.I.

    1980-01-01

    Ways of increasing stability and reproduction of characteristics of wide-band integral amplifiers that would to the least extent increase their background noises, are discussed. Considered are some certain flowsheets of integral wide-band amplifiers with low background noise of foreign production which differ from one another by construction of inlet cascades as well as by the applied feedback type. The principal flowsheets of the amplifiers and their main performances are presented. The analysis of the data obtained has revealed that microcircuits made of cascades with a common emitter and local combined feedback are most wide-band among all the considered microcircuits [ru

  12. Integrated Ultra-Wideband Tracking and Carbon Dioxide Sensing System Design for International Space Station Applications

    Science.gov (United States)

    Ni, Jianjun (David); Hafermalz, David; Dusl, John; Barton, Rick; Wagner, Ray; Ngo, Phong

    2015-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time-of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide (CO2) and felt upset. Recent findings indicate that frequent, short-term crew exposure to elevated CO2 levels combined with other physiological impacts of microgravity may lead to a number of detrimental effects, including loss of vision. To evaluate the risks associated with transient elevated CO2 levels and design effective countermeasures, doctors must have access to frequent CO2 measurements in the immediate vicinity of individual crew members along with simultaneous measurements of their location in the space environment. To achieve this goal, a small, low-power, wearable system that integrates an accurate CO2 sensor with an ultra-wideband (UWB) radio capable of real-time location estimation and data communication is proposed. This system would be worn by crew members or mounted on a free-flyer and would automatically gather and transmit sampled sensor data tagged with real-time, high-resolution location information. Under the current proposed effort, a breadboard prototype of such a system has been developed. Although the initial effort is targeted to CO2 monitoring, the concept is applicable to other types of sensors. For the initial effort, a micro-controller is leveraged to integrate a low-power CO2 sensor with a commercially available UWB radio system with ranging capability. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested

  13. Introduction to Ultra Wideband for Wireless Communications

    DEFF Research Database (Denmark)

    Nikookar, Homayoun; Prasad, Ramjee

    wireless channels, interference, signal processing as well as applications and standardization activities are addressed. Introduction to Ultra Wideband for Wireless Communications provides easy-to-understand material to (graduate) students and researchers working in the field of commercial UWB wireless......Ultra Wideband (UWB) Technology is the cutting edge technology for wireless communications with a wide range of applications. In Introduction to Ultra Wideband for Wireless Communications UWB principles and technologies for wireless communications are explained clearly. Key issues such as UWB...... communications. Due to tutorial nature of the book it can also be adopted as a textbook on the subject in the Telecommunications Engineering curriculum. Problems at the end of each chapter extend the reader's understanding of the subject. Introduction to Ultra Wideband for Wireless Communications will aslo...

  14. A Wideband Magnetoresistive Sensor for Monitoring Dynamic Fault Slip in Laboratory Fault Friction Experiments.

    Science.gov (United States)

    Kilgore, Brian D

    2017-12-02

    A non-contact, wideband method of sensing dynamic fault slip in laboratory geophysical experiments employs an inexpensive magnetoresistive sensor, a small neodymium rare earth magnet, and user built application-specific wideband signal conditioning. The magnetoresistive sensor generates a voltage proportional to the changing angles of magnetic flux lines, generated by differential motion or rotation of the near-by magnet, through the sensor. The performance of an array of these sensors compares favorably to other conventional position sensing methods employed at multiple locations along a 2 m long × 0.4 m deep laboratory strike-slip fault. For these magnetoresistive sensors, the lack of resonance signals commonly encountered with cantilever-type position sensor mounting, the wide band response (DC to ≈ 100 kHz) that exceeds the capabilities of many traditional position sensors, and the small space required on the sample, make them attractive options for capturing high speed fault slip measurements in these laboratory experiments. An unanticipated observation of this study is the apparent sensitivity of this sensor to high frequency electomagnetic signals associated with fault rupture and (or) rupture propagation, which may offer new insights into the physics of earthquake faulting.

  15. Realization of Miniaturized Multi-/Wideband Microwave Front-Ends

    Science.gov (United States)

    Al Shamaileh, Khair A.

    The ever-growing demand toward designing microwave front-end components with enhanced access to the radio spectrum (e.g., multi-/wideband functionality) and improved physical features (e.g., miniaturized circuitry, ease and cost of fabrication) is becoming more paramount than ever before. This dissertation proposes new design methodologies, simulations, and experimental validations of passive front-ends (i.e., antennas, couplers, dividers) at microwave frequencies. The presented design concepts optimize both electrical and physical characteristics without degrading the intended performance. The developed designs are essential to the upcoming wireless technologies. The first proposed component is a compact ultra-wideband (UWB) Wilkinson power divider (WPD). The design procedure is accomplished by replacing the uniform transmission lines in each arm of the conventional single-frequency divider with impedance-varying profiles governed by a truncated Fourier series. While such non-uniform transmission lines (NTLs) are obtained through the even-mode analysis, three isolation resistors are optimized in the odd-mode circuit to achieve proper isolation and output ports matching over the frequency range of interest. The proposed design methodology is systematic, and results in single-layered and compact structures. For verification purposes, an equal split WPD is designed, simulated, and measured. The obtained results show that the input and output ports matching as well as the isolation between the output ports are below --10 dB; whereas the transmission parameters vary between --3.2 dB and --5 dB across the 3.1--10.6 GHz band. The designed divider is expected to find applications in UWB antenna diversity, multiple-input-multiple-output (MIMO) schemes, and antenna arrays feeding networks. The second proposed component is a wideband multi-way Bagley power divider (BPD). Wideband functionality is achieved by replacing the single-frequency matching uniform microstrip lines in

  16. Energy/bandwidth-Saving Cooperative Spectrum Sensing for Two-hopWRAN

    Directory of Open Access Journals (Sweden)

    Ming-Tuo Zhou

    2014-07-01

    Full Text Available A two-hop wireless regional area network (WRAN providing monitoring services operating in Television White Space (TVWS, i.e., IEEE P802.22b, may employ a great number of subscriber customer-premises equipments (S-CPEs possibly without mains power supply, leading to requirement of cost-effective and power-saving design. This paper proposes a framework of cooperative spectrum sensing (CSS and an energy/bandwidth saving CSS scheme to P802.22b. In each round of sensing, S-CPEs with SNRs lower than a predefined threshold are excluded from reporting sensing results. Numerical results show that the fused missed-detection probability and false alarmprobability could remainmeeting sensing requirements, and the overall fused error probability changes very little. With 10 S-CPEs, it is possible to save more than 40% of the energy/bandwidth on a Rayleigh channel. The principle proposed can apply to other advanced sensing technologies capable of detecting primary signals with low average SNR.

  17. Maritime wideband communication networks video transmission scheduling

    CERN Document Server

    Yang, Tingting

    2014-01-01

    This Springer Brief covers emerging maritime wideband communication networks and how they facilitate applications such as maritime distress, urgency, safety and general communications. It provides valuable insight on the data transmission scheduling and protocol design for the maritime wideband network. This brief begins with an introduction to maritime wideband communication networks including the architecture, framework, operations and a comprehensive survey on current developments. The second part of the brief presents the resource allocation and scheduling for video packet transmission wit

  18. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    Science.gov (United States)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  19. Integrating sensing across a broader spectrum to support homeland security

    Science.gov (United States)

    O'Brien, Thomas W.; Finkelstein, Marc

    2003-08-01

    All objects and activities give off energy in some part of the spectrum, may leave tell-tail signs from their previous activities (e.g., earth scaring or vapor trails), or leave information about relationships that they may have with other entities and activities (e.g., networks). Many of these phenomenologies are either not picked up by current stovepiped sensors, or the data supplied by those sensors are not fully exploited to properly observe them. In either case, new sensor data as well as the better exploitation of existing data could be used to provide, or at least cross cue or correlate with other sensor data to detect, identify, geolocate or track different kind of problems. Current sensors are often designed for specific purposes and are capable of sensing only limited parts of the spectrum. Significantly broadening the sensing spectrum will be an essential element of solving the emerging class of new "hard problems". There are many other observables available that could be exploited to assist in that process. Thus one could broaden the sensing to observe those phenomenologies associated with combustion effluents; thermal radiation; magnetic anomalies; seismic movement; acoustics; unintended electromagnetic emissions, changing weather conditions, logistics support indicators, debris trails; impressed observables (such as tagging); and others. What's needed is a disciplined, analytical process that can map observables to sensors, and ultimately to mission utility. The process, described in this SPIE presentation will address a specific example on the flow from the establishment of requirements to prosecutable observables, to objectives, to identification of sensors and assets, to the allocation of sensors and assets to observables, all based on optimizing mission utility.

  20. Energy detection for spectrum sensing in cognitive radio

    CERN Document Server

    Atapattu, Saman; Jiang, Hai

    2014-01-01

    This Springer Brief focuses on the current state-of-the-art research on spectrum sensing by using energy detection, a low-complexity and low-cost technique. It includes a comprehensive summary of recent research, fundamental theories, possible architectures, useful performance measurements of energy detection and applications of energy detection. Concise, practical chapters explore conventional energy detectors, alternative forms of energy detectors, performance measurements, diversity techniques and cooperative networks. The careful analysis enables reader to identify the most efficient techn

  1. Generalized mean detector for collaborative spectrum sensing

    KAUST Repository

    Shakir, Muhammad Zeeshan

    2013-04-01

    In this paper, a unified generalized eigenvalue based spectrum sensing framework referred to as Generalized mean detector (GMD) has been introduced. The generalization of the detectors namely (i) the eigenvalue ratio detector (ERD) involving the ratio of the largest and the smallest eigenvalues; (ii) the Geometric mean detector (GEMD) involving the ratio of the largest eigenvalue and the geometric mean of the eigenvalues and (iii) the Arithmetic mean detector (ARMD) involving the ratio of the largest and the arithmetic mean of the eigenvalues is explored. The foundation of the proposed unified framework is based on the calculation of exact analytical moments of the random variables of test statistics of the respective detectors. In this context, we approximate the probability density function (PDF) of the test statistics of the respective detectors by Gaussian/Gamma PDF using the moment matching method. Finally, we derive closed-form expressions to calculate the decision threshold of the eigenvalue based detectors by exchanging the derived exact moments of the random variables of test statistics with the moments of the Gaussian/Gamma distribution function. The performance of the eigenvalue based detectors is compared with the traditional detectors such as energy detector (ED) and cyclostationary detector (CSD) and validate the importance of the eigenvalue based detectors particularly over realistic wireless cognitive environments. Analytical and simulation results show that the GEMD and the ARMD yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, our results based on proposed simple and tractable approximation approaches are in perfect agreement with the empirical results. © 1972-2012 IEEE.

  2. Apparatus And Method For Wireless Monitoring Using Ultra-wideband Frequencies

    KAUST Repository

    Sana, Furrukh

    2015-04-23

    A system for and a method of wirelessly monitoring one or more patients can include transmitting ultra-wideband pulses toward the one or more patients, receiving ultra-wideband signals, and sampling the ultra-wideband signals. Sampling the ultra-wideband pulses can be performed with a sample rate that is less than the Nyquist rate. Impulse response can be estimated and/or recovered by exploiting sparsity of the impulse response.

  3. Novel Cooperative Spectrum Sensing Methods And Their Limitations

    DEFF Research Database (Denmark)

    Kiilerich Pratas, Nuno

    2012-01-01

    $-calculus, denoted as Bounded Broadcast Calculus. This analysis is done over centralized, decentralized and relay aided topologies. The outcome of this analysis is a theorem where it is stated, which properties a protocol should have so that it can be deemed correct, i.e. that it performs as intended, over each...... source. The node selection scheme is proposed in a centralized and in a decentralized version. These versions can complement each other and therefore lead to a more robust cooperative spectrum sensing mechanism....

  4. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens.

    Science.gov (United States)

    Jiang, Ning; Wang, Chao; Xue, Chenpeng; Li, Guilan; Lin, Shuqing; Qiu, Kun

    2017-06-26

    We propose a flat wideband chaos generation scheme that shows excellent time delay signature suppression effect, by injecting the chaotic output of general external cavity semiconductor laser into an optical time lens module composed of a phase modulator and two dispersive units. The numerical results demonstrate that by properly setting the parameters of the driving signal of phase modulator and the accumulated dispersion of dispersive units, the relaxation oscillation in chaos can be eliminated, wideband chaos generation with an efficient bandwidth up to several tens of GHz can be achieved, and the RF spectrum of generated chaotic signal is nearly as flat as uniform distribution. Moreover, the periodicity of chaos induced by the external cavity modes can be simultaneously destructed by the optical time lens module, based on this the time delay signature can be completely suppressed.

  5. Ultra-Wideband Phased Array for Millimeter-Wave 5G and ISM

    Science.gov (United States)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2016-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: fifth generation mobile architecture (5G): 28, 38, 39, 64-71 GHz, as well as Industrial, Scientific, and Medical bands (ISM): 24 and 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 24-72 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication.

  6. RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios

    Directory of Open Access Journals (Sweden)

    Zhi-Ling Tang

    2016-06-01

    Full Text Available Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system’s starting oscillation is determined, and the simulation results of the system’s response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured.

  7. On Spectrum Sensing for TV White Space in China

    Directory of Open Access Journals (Sweden)

    Christian Kocks

    2012-01-01

    Full Text Available In the field of wireless communications the idea of cognitive radio is of utmost interest. Due to its advantageous propagation properties, the TV white space can be considered to become the first commercial application of cognitive radio. It allows the usage of secondary communication systems at non-occupied frequency bands. Within this paper, spectrum sensing algorithms are introduced for the three predominant Chinese TV standards DTMB, CMMB, and PAL-D/K. A prototype platform is presented and its underlying architecture based on a combination of DSP and FPGA is illustrated including the setup of the cognitive radio application. Furthermore, the performance of the sensing algorithms implemented on the prototype platform is shown in comparison to simulation results.

  8. A Spectrum Sensing Method Based on Signal Feature and Clustering Algorithm in Cognitive Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yongwei Zhang

    2017-01-01

    Full Text Available In order to solve the problem of difficulty in determining the threshold in spectrum sensing technologies based on the random matrix theory, a spectrum sensing method based on clustering algorithm and signal feature is proposed for Cognitive Wireless Multimedia Sensor Networks. Firstly, the wireless communication signal features are obtained according to the sampling signal covariance matrix. Then, the clustering algorithm is used to classify and test the signal features. Different signal features and clustering algorithms are compared in this paper. The experimental results show that the proposed method has better sensing performance.

  9. Equal gain combining for cooperative spectrum sensing in cognitive radio networks

    KAUST Repository

    Hamza, Doha R.

    2014-08-01

    Sensing with equal gain combining (SEGC), a novel cooperative spectrum sensing technique for cognitive radio networks, is proposed. Cognitive radios simultaneously transmit their sensing results to the fusion center (FC) over multipath fading reporting channels. The cognitive radios estimate the phases of the reporting channels and use those estimates for coherent combining of the sensing results at the FC. A global decision is made at the FC by comparing the received signal with a threshold. We obtain the global detection probabilities and secondary throughput exactly through a moment generating function approach. We verify our solution via system simulation and demonstrate that the Chernoff bound and central limit theory approximation are not tight. The cases of hard sensing and soft sensing are considered and we provide examples in which hard sensing is advantageous to soft sensing. We contrast the performance of SEGC with maximum ratio combining of the sensors\\' results and provide examples where the former is superior. Furthermore, we evaluate the performance of SEGC against existing orthogonal reporting techniques such as time division multiple access (TDMA). SEGC performance always dominates that of TDMA in terms of secondary throughput. We also study the impact of phase and synchronization errors and demonstrate the robustness of the SEGC technique against such imperfections. © 2002-2012 IEEE.

  10. On the Impact of User Distribution on Cooperative Spectrum Sensing and Data Transmission with Multiuser Diversity

    KAUST Repository

    Rao, Anlei

    2011-07-01

    In this thesis, we investigate the independent but not identically distributed (i.n.i.d.) situations for spectrum sensing and data transmission. In particular, we derive the false-alarm probability and the detection probability of cooperative spectrum sensing with the scheme of energy fusion over i.n.i.d. Nakagami fading channels. Then, the performance of adaptive modulation with single-cell multiuser scheduling over i.n.i.d. Nakagami fading channels is analyzed. Closed-form expressions are derived for the average channel capacity, spectral efficiency, and bit-error-rate (BER) for both constant-power variable-rate and variable-power variable-rate uncoded M- ary quadrature amplitude modulation (M-QAM) schemes. In addition, we study the impact of time delay on the average BER of adaptive M-QAM. From the selected numerical results, we can see that cooperative spectrum sensing and multiuser diversity brings considerably better performance even over i.n.i.d. fading environments.

  11. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar, E-mail: gjeschke@ethz.ch [ETH Zurich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, CH-8093 Zurich (Switzerland)

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.

  12. Ultra-Wideband Array in PCB for Millimeter-Wave 5G and ISM

    Science.gov (United States)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2017-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: Fifth generation mobile architecture (5G): 28, 38, 39, 6471 GHz; Industrial, Scientific, and Medical bands (ISM): 24, 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 2472 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication. The results of this work are presented in this poster.

  13. Compressive sensing-based wideband capacitance measurement with a fixed sampling rate lower than the highest exciting frequency

    International Nuclear Information System (INIS)

    Xu, Lijun; Ren, Ying; Sun, Shijie; Cao, Zhang

    2016-01-01

    In this paper, an under-sampling method for wideband capacitance measurement was proposed by using the compressive sensing strategy. As the excitation signal is sparse in the frequency domain, the compressed sampling method that uses a random demodulator was adopted, which could greatly decrease the sampling rate. Besides, four switches were used to replace the multiplier in the random demodulator. As a result, not only the sampling rate can be much smaller than the signal excitation frequency, but also the circuit’s structure is simpler and its power consumption is lower. A hardware prototype was constructed to validate the method. In the prototype, an excitation voltage with a frequency up to 200 kHz was applied to a capacitance-to-voltage converter. The output signal of the converter was randomly modulated by a pseudo-random sequence through four switches. After a low-pass filter, the signal was sampled by an analog-to-digital converter at a sampling rate of 50 kHz, which was three times lower than the highest exciting frequency. The frequency and amplitude of the signal were then reconstructed to obtain the measured capacitance. Both theoretical analysis and experiments were carried out to show the feasibility of the proposed method and to evaluate the performance of the prototype, including its linearity, sensitivity, repeatability, accuracy and stability within a given measurement range. (paper)

  14. Performance analysis of spectrum sensing with multiple status changes in primary user traffic

    KAUST Repository

    Tang, Liang

    2012-06-01

    In this letter, the impact of primary user traffic with multiple status changes on the spectrum sensing performance is analyzed. Closed-form expressions for the probabilities of false alarm and detection are derived. Numerical results show that the multiple status changes of the primary user cause considerable degradation in the sensing performance. This degradation depends on the number of changes, the primary user traffic model, the primary user traffic intensity and the signal-to-noise ratio of the received signal. Numerical results also show that the amount of degradation decreases when the number of changes increases, and converges to a minimum sensing performance due to the limited sensing period and primary holding time. © 2012 IEEE.

  15. Wideband Piezomagnetoelastic Vibration Energy Harvesting

    DEFF Research Database (Denmark)

    Lei, Anders; Thomsen, Erik Vilain

    2014-01-01

    This work presents a small-scale wideband piezomagnetoelastic vibration energy harvester (VEH) aimed for operation at frequencies of a few hundred Hz. The VEH consists of a tape-casted PZT cantilever with thin sheets of iron foil attached on each side of the free tip. The wideband operation...... is achieved by placing the cantilever in a magnetic field induced by either one or two magnets located oppositely of the cantilever. The attraction force created by the magnetic field and iron foils introduces a mechanical force in opposite direction of the cantilevers restoring force causing a spring...

  16. Performance analysis of spectrum sensing with multiple status changes in primary user traffic

    KAUST Repository

    Tang, Liang; Chen, Yunfei; Hines, Evor L.; Alouini, Mohamed-Slim

    2012-01-01

    In this letter, the impact of primary user traffic with multiple status changes on the spectrum sensing performance is analyzed. Closed-form expressions for the probabilities of false alarm and detection are derived. Numerical results show

  17. Laser Sensing of Vegetation Based on Dual Spectrum Measurements of Reflection Coefficients

    Directory of Open Access Journals (Sweden)

    M. L. Belov

    2017-01-01

    Full Text Available Currently, a promising trend in remote sensing of environment is to monitor the vegetative cover: evaluate the productivity of agricultural crops; evaluate the moisture content of soils and the state of ecosystems; provide mapping the sites of bogging, desertification, drought, etc.; control the phases of vegetation of crops, etc.Development of monitoring systems for remote detection of vegetation sites being under unfavorable conditions (low or high temperature, excess or lack of water, soil salinity, disease, etc. is of relevance. Optical methods are the most effective for this task. These methods are based on the physical features of reflection spectra in the visible and near infrared spectral range for vegetation under unfavorable conditions and vegetation under normal conditions.One of the options of optoelectronic equipment for monitoring vegetation condition is laser equipment that allows remote sensing of vegetation from the aircraft and mapping of vegetation sites with abnormal (inactive periods of vegetation reflection spectra with a high degree of spatial resolution.The paper deals with development of a promising dual-spectrum method for laser remote sensing of vegetation. Using the experimentally measured reflection spectra of different vegetation types, mathematical modeling of probability for appropriate detection and false alarms to solve a problem of detecting the vegetation under unfavorable conditions (with abnormal reflection spectra is performed based on the results of dual-spectrum measurements of the reflection coefficient.In mathematical modeling, the lidar system was supposed to provide sensing at wavelengths of 0.532 μm and 0.85 μm. The noise of the measurement was supposed to be normal with zero mean value and mean-square value of 1% -10%.It is shown that the method of laser sensing of vegetation condition based on the results of dual-spectrum measurement of the reflection coefficient at wavelengths of 0.532 μm and 0

  18. An Analog Correlator for Ultra-Wideband Receivers

    Directory of Open Access Journals (Sweden)

    Tu Chunjiang

    2005-01-01

    Full Text Available We present a new analog circuit exhibiting high bandwidth and low distortion, specially designed for signal correlation in an ultra-wideband receiver front end. The ultra-wideband short impulse signals are correlated with a local pulse template by the correlator. A comparator then samples the output for signal detection. A typical Gilbert mixer core is adopted for multiplication of broadband signals up to . As a result of synchronization of the received signal and the local template, the output voltage level after integration and sampling can reach up to , which is sufficient for detection by the comparator. The circuit dissipates about from double voltage supplies of and using SiGe BiCMOS technology. Simulation results are presented to show the feasibility of this circuit design for use in ultra-wideband receivers.

  19. Generalized Wideband Cyclic MUSIC

    Directory of Open Access Journals (Sweden)

    Zhang-Meng Liu

    2009-01-01

    Full Text Available The method of Spectral Correlation-Signal Subspace Fitting (SC-SSF fails to separate wideband cyclostationary signals with coherent second-order cyclic statistics (SOCS. Averaged Cyclic MUSIC (ACM method made up for the drawback to some degree via temporally averaging the cyclic cross-correlation of the array output. This paper interprets ACM from another perspective and proposes a new DOA estimation method by generalizing ACM for wideband cyclostationary signals. The proposed method successfully makes up for the aforementioned drawback of SC-SSF and obtains a more satisfying performance than ACM. It is also demonstrated that ACM is a simplified form of the proposed method when only a single spectral frequency is exploited, and the integration of the frequencies within the signal bandwidth helps the new method to outperform ACM.

  20. An Ultra-Wideband Millimeter-Wave Phased Array

    Science.gov (United States)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  1. A Channelization-Based DOA Estimation Method for Wideband Signals

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2016-07-01

    Full Text Available In this paper, we propose a novel direction of arrival (DOA estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR using direct wideband radio frequency (RF digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method.

  2. Energy Efficient Cooperative Spectrum Sensing in Cognitive Radio Networks Using Distributed Dynamic Load Balanced Clustering Scheme

    Directory of Open Access Journals (Sweden)

    Muthukkumar R.

    2017-04-01

    Full Text Available Cognitive Radio (CR is a promising and potential technique to enable secondary users (SUs or unlicenced users to exploit the unused spectrum resources effectively possessed by primary users (PUs or licenced users. The proven clustering approach is used to organize nodes in the network into the logical groups to attain energy efficiency, network scalability, and stability for improving the sensing accuracy in CR through cooperative spectrum sensing (CSS. In this paper, a distributed dynamic load balanced clustering (DDLBC algorithm is proposed. In this algorithm, each member in the cluster is to calculate the cooperative gain, residual energy, distance, and sensing cost from the neighboring clusters to perform the optimal decision. Each member in a cluster participates in selecting a cluster head (CH through cooperative gain, and residual energy that minimises network energy consumption and enhances the channel sensing. First, we form the number of clusters using the Markov decision process (MDP model to reduce the energy consumption in a network. In this algorithm, CR users effectively utilize the PUs reporting time slots of unavailability. The simulation results reveal that the clusters convergence, energy efficiency, and accuracy of channel sensing increased considerably by using the proposed algorithm.

  3. Energy Efficient Cooperative Spectrum Sensing in Cognitive Radio Networks Using Distributed Dynamic Load Balanced Clustering Scheme

    Directory of Open Access Journals (Sweden)

    Muthukkumar R.

    2016-07-01

    Full Text Available Cognitive Radio (CR is a promising and potential technique to enable secondary users (SUs or unlicenced users to exploit the unused spectrum resources effectively possessed by primary users (PUs or licenced users. The proven clustering approach is used to organize nodes in the network into the logical groups to attain energy efficiency, network scalability, and stability for improving the sensing accuracy in CR through cooperative spectrum sensing (CSS. In this paper, a distributed dynamic load balanced clustering (DDLBC algorithm is proposed. In this algorithm, each member in the cluster is to calculate the cooperative gain, residual energy, distance, and sensing cost from the neighboring clusters to perform the optimal decision. Each member in a cluster participates in selecting a cluster head (CH through cooperative gain, and residual energy that minimises network energy consumption and enhances the channel sensing. First, we form the number of clusters using the Markov decision process (MDP model to reduce the energy consumption in a network. In this algorithm, CR users effectively utilize the PUs reporting time slots of unavailability. The simulation results reveal that the clusters convergence, energy efficiency, and accuracy of channel sensing increased considerably by using the proposed algorithm.

  4. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  5. Generation of wideband chaos with suppressed time-delay signature by delayed self-interference.

    Science.gov (United States)

    Wang, Anbang; Yang, Yibiao; Wang, Bingjie; Zhang, Beibei; Li, Lei; Wang, Yuncai

    2013-04-08

    We demonstrate experimentally and numerically a method using the incoherent delayed self-interference (DSI) of chaotic light from a semiconductor laser with optical feedback to generate wideband chaotic signal. The results show that, the DSI can eliminate the domination of laser relaxation oscillation existing in the chaotic laser light and therefore flatten and widen the power spectrum. Furthermore, the DSI depresses the time-delay signature induced by external cavity modes and improves the symmetry of probability distribution by more than one magnitude. We also experimentally show that this DSI signal is beneficial to the random number generation.

  6. 8th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Tyo, J. Scott; Baum, Carl E; Ultra-Wideband Short-Pulse Electromagnetics 8; UWBSP8

    2007-01-01

    The purpose of the Ultra-Wideband Short-Pulse Electromagnetics Conference series is to focus on advanced technologies for the generation, radiation and detection of ultra-wideband short pulse signals, taking into account their propagation and scattering from and coupling to targets of interest. This Conference series reports on developments in supporting mathematical and numerical methods and presents current and potential future applications of the technology. Ultra-Wideband Short-Pulse Electromagnetics 8 is based on the American Electromagnetics 2006 conference held from June 3-7 in Albuquerque, New Mexico. Topical areas covered in this volume include pulse radiation and measurement, scattering theory, target detection and identification, antennas, signal processing, and communications.

  7. Higher-Order Cyclostationarity Detection for Spectrum Sensing

    Directory of Open Access Journals (Sweden)

    Julien Renard

    2010-01-01

    Full Text Available Recent years have shown a growing interest in the concept of Cognitive Radios (CRs, able to access portions of the electromagnetic spectrum in an opportunistic operating way. Such systems require efficient detectors able to work in low Signal-to-Noise Ratio (SNR environments, with little or no information about the signals they are trying to detect. Energy detectors are widely used to perform such blind detection tasks, but quickly reach the so-called SNR wall below which detection becomes impossible Tandra (2005. Cyclostationarity detectors are an interesting alternative to energy detectors, as they exploit hidden periodicities present in man-made signals, but absent in noise. Such detectors use quadratic transformations of the signals to extract the hidden sine-waves. While most of the literature focuses on the second-order transformations of the signals, we investigate the potential of higher-order transformations of the signals. Using the theory of Higher-Order Cyclostationarity (HOCS, we derive a fourth-order detector that performs similarly to the second-order ones to detect linearly modulated signals, at SNR around 0 dB, which may be used if the signals of interest do not exhibit second-order cyclostationarity. More generally this paper reviews the relevant aspects of the cyclostationary and HOCS theory, and shows their potential for spectrum sensing.

  8. Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank

    Science.gov (United States)

    Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.

    2014-05-01

    Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is

  9. Wideband feeds for the upgraded GMRT

    International Nuclear Information System (INIS)

    Bandari, Hanumanth Rao; Sankarasubramanian, G; Kumar, A Praveen

    2013-01-01

    This paper describes the existing feeds in use at the GMRT Observatory and details the ongoing development of next generation wideband feeds for the upgraded GMRT. The existing feeds include: feed with folded thick dipoles (for 150 MHz), dipole-disc feed (for 325 MHz), dual-band coaxial feed (for 233 MHZ and 610 MHz), and corrugated horn feed (for 1400–1450 MHz). The new broadband feeds covered in this paper are: cone-dipole feeds for 250–500 and 500–1000 MHz, wideband horn feed for 550–900 MHz, and dual ring feed for 130–260 MHz. Design techniques and performance results for these are described.

  10. Wideband QAMC reflector's antenna for low profile applications

    Science.gov (United States)

    Grelier, M.; Jousset, M.; Mallégol, S.; Lepage, A. C.; Begaud, X.; LeMener, J. M.

    2011-06-01

    A wideband reflector's antenna based on quasi-artificial magnetic conductor is proposed. To validate the design, an Archimedean spiral has been backed to this new reflector. In comparison to classical solution using absorbent material, the prototype presents a very low thickness of λ/15 at the lowest operating frequency and an improved gain over a 2.4:1 bandwidth. The whole methodology to design this reflector can be applied to other wideband antennas.

  11. Exact performance of cooperative spectrum sensing for cognitive radios with quantized information under imperfect reporting channels

    KAUST Repository

    Ben Ghorbel, Mahdi

    2013-09-01

    Spectrum sensing is the first and main step for cognitive radio systems to achieve an efficient use of the spectrum. Cooperation among cognitive radio users is a technique employed to improve the sensing performance by exploiting the diversity between the sensing channels to overcome the fading and shadowing effects which allows reduction of miss-detection and false alarm probabilities. Information can be exchanged between cooperating users in different formats from the binary hard information to the full soft information. Quantized information has shown its efficiency as a trade-off between binary hard and full soft for other cooperative schemes, in this paper, we investigate the use of quantized information between cooperating cognitive users. We derive closed-form expressions of the cooperative average false alarm and detection probabilities over fading channels for a generalized system model with not necessarily identical average sensing Signal-to-Noise Ratio (SNR) and imperfect reporting channels. Numerical simulations allow us to conclude a tradeoff between the quantization size and the reporting energy in order to achieve the optimal cooperative error probability. Copyright © 2013 by the Institute of Electrical and Electronic Engineers, Inc.

  12. Extension of the ITU Channel Models for Wideband (OFDM) Systems

    DEFF Research Database (Denmark)

    Sørensen, Troels Bundgaard; Frederiksen, Frank

    2005-01-01

    for the evaluation of wideband system concepts with frequency dependent characteristics, e.g. frequency domain link adaptation and packet scheduling, both of which are likely to be part of future wideband systems such as based on OFDM. With the suggested procedure the frequency correlation can be kept approximately...

  13. A Survey of the DVB-T Spectrum: Opportunities for Cognitive Mobile Users

    OpenAIRE

    Csurgai-Horváth, László; Rieger, István; Kertész, József

    2016-01-01

    Cognitive radio (CR) systems are designed to utilize the available radio spectrum in an efficient and intelligent manner. Terrestrial Digital Video Broadcasting (DVB-T) frequency bands are one of the future candidates for cognitive radio applications especially because after digital television transition the TV white spaces (TVWS) became available for radio communication. This paper deals with the survey of the DVB-T spectrum; wideband measurements were performed on mobile platform in order t...

  14. Symmetrical Processing of Interferogram and Spectrum Reconstruction in Interference Spectrometer

    Institute of Scientific and Technical Information of China (English)

    楚建军; 赵达尊

    2003-01-01

    Because of its all-reflective layout based on the Fresnel double-mirror interference system, the newly developed Fourier transform imaging spectrometer has a very large spectral bandwidth ranged from a cut-off wavelength (related to the cut-off wave number σmax) to far infrared. According to the signal's symmetry and wide-band characteristics, a simple method that can efficiently weaken the low frequency noise in the reconstructed spectrum is presented. Also, according to the symmetry, the eigenvector method is applied to the reconstruction of the spectrum.

  15. Estimating Angle of Arrival (AOA for Wideband Signal by Sensor Delay Line (SDL and Tapped Delay Line (TDL Processors

    Directory of Open Access Journals (Sweden)

    Bassim Sayed Mohammed

    2018-04-01

    Full Text Available Angle of arrival (AOA estimation for wideband signal becomes more necessary for modern communication systems like Global System for Mobile (GSM, satellite, military applications and spread spectrum (frequency hopping and direct sequence. Most of the researchers are focusing on how to cancel the effects of signal bandwidth on AOA estimation performance by using a transversal filter (tap delay line (TDL. Most of the researchers were using two elements array antenna to study these effects. In this research, a general case of proposed (M array elements is used. A transversal filter (TDL in phase adaptive array antenna system is used to calculate the optimum number of taps required to compensate these effect. The proposed system uses a phase adaptive array antenna in conjunction with LMS algorithm to work an angle of arrival (AOA estimator for wideband signals rather than interference canceller. An alternative solution to compensate for the effect of signal bandwidth is proposed by using sensor delay line (SDL instead of fixed delay unit since it has variable time sampling in the time domain and not fixed time delay, depending on the angle of arrival of received signals. The proposed system has the ability to estimate two parameters for received signals simultaneously (the output Signal to Noise Ratio (SNR and AOA, unlike others systems which estimate AOA only. The comparison of the simulation results with Multiple Signal Classification (MUSIC technique showed that the proposed system gives good results for estimating AOA and the output SNR for wideband signals. (SDL processor shows better performance result than (TDL processor. MUSIC technique with both (SDL and (TDL processors shows unacceptable results for estimating (AOA for the wideband signal.

  16. Analyzing Chaos Systems and Fine Spectrum Sensing Using Detrended Fluctuation Analysis Algorithm

    Directory of Open Access Journals (Sweden)

    Javier S. González-Salas

    2016-01-01

    Full Text Available A numerical study that uses detrended fluctuation analysis (DFA algorithm of time series obtained from linear and nonlinear dynamical systems is presented. The DFA algorithm behavior toward periodic and chaotic signals is investigated and the effect of the time scale under analysis is discussed. The displayed results prove that the DFA algorithm response is invariant (stable performance to initial condition and chaotic system parameters. An initial idea of DFA algorithm implementation for fine spectrum sensing (SS is proposed under two-stage spectrum sensor approach with test statistics based on the scaling exponent value. The outcomes demonstrate a promising new SS technique that can alleviate several imperfections such as noise power uncertainty and spatial correlation between the adjacent antenna array elements.

  17. Photonic compressive sensing with a micro-ring-resonator-based microwave photonic filter

    DEFF Research Database (Denmark)

    Chen, Ying; Ding, Yunhong; Zhu, Zhijing

    2015-01-01

    A novel approach to realize photonic compressive sensing (CS) with a multi-tap microwave photonic filter is proposed and demonstrated. The system takes both advantages of CS and photonics to capture wideband sparse signals with sub-Nyquist sampling rate. The low-pass filtering function required...

  18. Secondary access based on sensing and primary ARQ feedback in spectrum sharing systems

    KAUST Repository

    Hamza, Doha R.

    2012-04-01

    In the context of primary/secondary spectrum sharing, we propose a randomized secondary access strategy with access probabilities that are a function of both the primary automatic repeat request (ARQ) feedback and the spectrum sensing outcome. The primary terminal operates in a time slotted fashion and is active only when it has a packet to send. The primary receiver can send a positive acknowledgment (ACK) when the received packet is decoded correctly. Lack of ARQ feedback is interpreted as erroneous reception or inactivity. We call this the explicit ACK scheme. The primary receiver may also send a negative acknowledgment (NACK) when the packet is received in error. Lack of ARQ feedback is interpreted as an ACK or no-transmission. This is called the explicit NACK scheme. Under both schemes, when the primary feedback is interpreted as a NACK, the secondary user assumes that there will be retransmission in the next slot and accesses the channel with a certain probability. When the primary feedback is interpreted as an ACK, the secondary user accesses the channel with either one of two probabilities based on the sensing outcome. Under these settings, we find the three optimal access probabilities via maximizing the secondary throughput given a constraint on the primary throughput. We compare the performance of the explicit ACK and explicit NACK schemes and contrast them with schemes based on either sensing or primary ARQ feedback only. © 2012 IEEE.

  19. The design of wideband metamaterial absorber at E band based on defect

    Science.gov (United States)

    Wang, L. S.; Xia, D. Y.; Ding, X. Y.; Wang, Y.

    2018-01-01

    A kind of wideband metamaterial absorber at E band is designed in this paper; it is composed of round metal cells with defect, dielectric substrate and metal film. The electromagnetic parameters of unit cell are calculated by using the finite element method. The results show that the wideband metamaterial absorber presents nearly perfect absorption above 90% with absorption ranging from 65.38GHz to 67.86GHz; the reason of wideband absorption is the overlap of different absorption frequency which is caused by electromagnetic resonance; the size parameters and position of defect has important effect on its absorption property. It has many advantages, such as simply, easy to preparation and so on. It has potential application on aerospace measurement and control, remote data communication, LTE wideband mobile communication and other fields.

  20. Super wideband characteristics of monopolar patch antenna

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2013-12-01

    Full Text Available A simple method of acquiring super wideband characteristics for monopolar patch antenna is proposed. Through adopting a modified cone as feeding and radiating structure, the monopolar patch antenna can reach the impedance bandwidth of more than 1:23.4 for voltage standing wave ratio (VSWR ≤ 2. In the whole operating band, the antenna has the like-monopole omnidirectional radiation patterns and the peak gains of 3.8–8.7 dB. Meanwhile, the height of the antenna is just 0.074λ(c, and the diameter of the radiated body is 0.205λ(c, which is smaller than other ultra-wideband omnidirectional antenna.

  1. Design of a High Linearity Four-Quadrant Analog Multiplier in Wideband Frequency Range

    Directory of Open Access Journals (Sweden)

    Abdul kareem Mokif Obais

    2017-05-01

    Full Text Available In this paper, a voltage mode four quadrant analog multiplier in the wideband frequency rangeis designed using a wideband operational amplifier (OPAMP and squaring circuits. The wideband OPAMP is designed using 10 identical NMOS transistorsand operated with supply voltages of ±12V. Two NMOS transistors and two wideband OPAMP are utilized in the design of the proposed squaring circuit. All the NMOS transistors are based on 0.35µm NMOStechnology. The multiplier has input and output voltage ranges of ±10 V, high range of linearity from -10 V to +10 V, and cutoff frequency of about 5 GHz. The proposed multiplier is designed on PSpice in Orcad 16.6

  2. Timed arrays wideband and time varying antenna arrays

    CERN Document Server

    Haupt, Randy L

    2015-01-01

    Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth

  3. A new metamaterial-based wideband rectangular invisibility cloak

    Science.gov (United States)

    Islam, S. S.; Hasan, M. M.; Faruque, M. R. I.

    2018-02-01

    A new metamaterial-based wideband electromagnetic rectangular cloak is being introduced in this study. The metamaterial unit cell shows sharp transmittances in the C- and X-bands and displays wideband negative effective permittivity region there. The metamaterial unit cell was then applied in designing a rectangular-shaped electromagnetic cloak. The scattering reduction technique was adopted for the cloaking operation. The cloak operates in the certain portion of C-and X-bands that covers more than 4 GHz bandwidth region. The experimental results were provided as well for the metamaterial and the cloak.

  4. [Auditory training with wide-band white noise: effects on the recruitment (III)].

    Science.gov (United States)

    Domínguez Ugidos, L J; Rodríguez Morejón, C; Vallés Varela, H; Iparraguirre Bolinaga, V; Knaster del Olmo, J

    2001-05-01

    The auditory training with wide-band white noise is a methodology for the qualitative recovery of the hearing loss in people suffering from sensorineural hearing loss. It is based on the application of a wide-band white modified noise. In a prospective study, we have assessed the modifications of the recruitment coefficient in a sample of 48 patients who have followed a program of 15 auditory training with wide-band white noise sessions. The average improvement of the recruitment coefficient expressed in percentage is a 7.7498%, which comes up to 23.5249% in the case of a binaural recruitment coefficient. From our results, it can be deduced that the auditory training with wide-band white noise reduces the recruitment. That is to say, the decrease of the recruitment in high intensities both binaurally and in all ears.

  5. A wideband absorber for television studios

    Science.gov (United States)

    Baird, M. D. M.

    The acoustic treatment in BBC television has taken various forms to date, all of which have been relatively expensive, some of which provide inadequate absorption. An investigation has been conducted into the possibilities of producing a new type of wideband absorber which would be more economic, also taking installation time into account, than earlier designs. This Report describes the absorption coefficient measurements made on various combinations of materials, from which a wideband sound absorber has been developed. The absorber works efficiently between 50 Hz and 10 kHz, is simple and easy to construct using readily available materials, and is fire resistant. The design lends itself, if necessary, to on-site fine tuning, and savings in the region of 50 percent can be achieved in terms of cost and space with respect to previous designs.

  6. GaAs Wideband Low Noise Amplifier Design for Breast Cancer Detection System

    DEFF Research Database (Denmark)

    Yan, Lei; Krozer, Viktor; Delcourt, Sebastien

    2009-01-01

    Modern wideband systems require low-noise receivers with bandwidth approaching 10 GHz. This paper presents ultra-wideband stable low-noise amplifier MMIC with cascode and source follower buffer configuration using GaAs technology. Source degeneration, gate and shunt peaking inductors are used...

  7. Secure Cooperative Spectrum Sensing via a Novel User-Classification Scheme in Cognitive Radios for Future Communication Technologies

    Directory of Open Access Journals (Sweden)

    Muhammad Usman

    2015-05-01

    Full Text Available Future communication networks would be required to deliver data on a far greater scale than is known to us today, thus mandating the maximal utilization of the available radio spectrum using cognitive radios. In this paper, we have proposed a novel cooperative spectrum sensing approach for cognitive radios. In cooperative spectrum sensing, the fusion center relies on reports of the cognitive users to make a global decision. The global decision is obtained by assigning weights to the reports received from cognitive users. Computation of such weights requires prior information of the probability of detection and the probability of false alarms, which are not readily available in real scenarios. Further, the cognitive users are divided into reliable and unreliable categories based on their weighted energy by using some empirical threshold. In this paper, we propose a method to classify the cognitive users into reliable, neutral and unreliable categories without using any pre-defined or empirically-obtained threshold. Moreover, the computation of weights does not require the detection, or false alarm probabilities, or an estimate of these probabilities. Reliable cognitive users are assigned the highest weights; neutral cognitive users are assigned medium weights (less than the reliable and higher than the unreliable cognitive users’ weights; and unreliable users are assigned the least weights. We show the performance improvement of our proposed method through simulations by comparing it with the conventional cooperative spectrum sensing scheme through different metrics, like receiver operating characteristic (ROC curve and mean square error. For clarity, we also show the effect of malicious users on detection probability and false alarm probability individually through simulations.

  8. Wide-band analog frequency modulation of optic signals using indirect techniques

    Science.gov (United States)

    Fitzmartin, D. J.; Balboni, E. J.; Gels, R. G.

    1991-01-01

    The wideband frequency modulation (FM) of an optical carrier by a radio frequency (RF) or microwave signal can be accomplished independent of laser type when indirect modulation is employed. Indirect modulators exploit the integral relation of phase to frequency so that phase modulators can be used to impress frequency modulation on an optical carrier. The use of integrated optics phase modulators, which are highly linear, enables the generation of optical wideband FM signals with very low intermodulation distortion. This modulator can be used as part of an optical wideband FM link for RF and microwave signals. Experimental results from the test of an indirect frequency modulator for an optical carrier are discussed.

  9. Sensing Technologies for Autism Spectrum Disorder Screening and Intervention

    Directory of Open Access Journals (Sweden)

    John-John Cabibihan

    2016-12-01

    Full Text Available This paper reviews the state-of-the-art in sensing technologies that are relevant for Autism Spectrum Disorder (ASD screening and therapy. This disorder is characterized by difficulties in social communication, social interactions, and repetitive behaviors. It is diagnosed during the first three years of life. Early and intensive interventions have been shown to improve the developmental trajectory of the affected children. The earlier the diagnosis, the sooner the intervention therapy can begin, thus, making early diagnosis an important research goal. Technological innovations have tremendous potential to assist with early diagnosis and improve intervention programs. The need for careful and methodological evaluation of such emerging technologies becomes important in order to assist not only the therapists and clinicians in their selection of suitable tools, but to also guide the developers of the technologies in improving hardware and software. In this paper, we survey the literatures on sensing technologies for ASD and we categorize them into eye trackers, movement trackers, electrodermal activity monitors, tactile sensors, vocal prosody and speech detectors, and sleep quality assessment devices. We assess their effectiveness and study their limitations. We also examine the challenges faced by this growing field that need to be addressed before these technologies can perform up to their theoretical potential.

  10. Ultra-Wideband, Short Pulse Electromagnetics 9

    CERN Document Server

    Rachidi, Farhad; Kaelin, Armin; Sabath, Frank; UWB SP 9

    2010-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, and broadband systems and components. This book serves as a state-of-the-art r...

  11. SpecNet: Spectrum Sensing Sans Frontieres

    OpenAIRE

    Iyer, Anand Padmanabha; Chintalapudi, Krishna; Navda, Vishnu; Ramjee, Ramachandran; Padmanabhan, Venkata N; Murthy, Chandra R

    2011-01-01

    While the under-utilization of licensed spectrum based on measurement studies conducted in a few developed countries has spurred lots of interest in opportunistic spectrum access, there exists no infrastructure today for measuring real-time spectrum occupancy across vast geographical regions. In this paper, we present the design and implementation of SpecNet, a first-of-its-kind platform that allows spectrum analyzers around the world to be networked and efficiently used in a coordinated manner...

  12. Wideband CMOS receivers

    CERN Document Server

    Oliveira, Luis

    2015-01-01

    This book demonstrates how to design a wideband receiver operating in current mode, in which the noise and non-linearity are reduced, implemented in a low cost single chip, using standard CMOS technology.  The authors present a solution to remove the transimpedance amplifier (TIA) block and connect directly the mixer’s output to a passive second-order continuous-time Σ∆ analog to digital converter (ADC), which operates in current-mode. These techniques enable the reduction of area, power consumption, and cost in modern CMOS receivers.

  13. Throughput Maximization Using an SVM for Multi-Class Hypothesis-Based Spectrum Sensing in Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Sana Ullah Jan

    2018-03-01

    Full Text Available A framework of spectrum sensing with a multi-class hypothesis is proposed to maximize the achievable throughput in cognitive radio networks. The energy range of a sensing signal under the hypothesis that the primary user is absent (in a conventional two-class hypothesis is further divided into quantized regions, whereas the hypothesis that the primary user is present is conserved. The non-radio frequency energy harvesting-equiped secondary user transmits, when the primary user is absent, with transmission power based on the hypothesis result (the energy level of the sensed signal and the residual energy in the battery: the lower the energy of the received signal, the higher the transmission power, and vice versa. Conversely, the lower is the residual energy in the node, the lower is the transmission power. This technique increases the throughput of a secondary link by providing a higher number of transmission events, compared to the conventional two-class hypothesis. Furthermore, transmission with low power for higher energy levels in the sensed signal reduces the probability of interference with primary users if, for instance, detection was missed. The familiar machine learning algorithm known as a support vector machine (SVM is used in a one-versus-rest approach to classify the input signal into predefined classes. The input signal to the SVM is composed of three statistical features extracted from the sensed signal and a number ranging from 0 to 100 representing the percentage of residual energy in the node’s battery. To increase the generalization of the classifier, k-fold cross-validation is utilized in the training phase. The experimental results show that an SVM with the given features performs satisfactorily for all kernels, but an SVM with a polynomial kernel outperforms linear and radial-basis function kernels in terms of accuracy. Furthermore, the proposed multi-class hypothesis achieves higher throughput compared to the

  14. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source

    International Nuclear Information System (INIS)

    Zhang, Chi; Xu, Yiqing; Wei, Xiaoming; Tsia, Kevin K.; Wong, Kenneth K. Y.

    2014-01-01

    Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated by a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier

  15. Joint Spectrum Sensing and Resource Allocation for OFDM-based Transmission with a Cognitive Relay

    Directory of Open Access Journals (Sweden)

    S. Eman Mahmoodi

    2014-04-01

    Full Text Available In this paper, we investigate the joint spectrum sensing and resource allocation problem to maximize throughput capacity of an OFDM-based cognitive radio link with a cognitive relay. By applying a cognitive relay that uses decode and forward (D&F, we achieve more reliable communications, generating less interference (by needing less transmit power and more diversity gain. In order to account for imperfections in spectrum sensing, the proposed schemes jointly modify energy detector thresholds and allocates transmit powers to all cognitive radio (CR subcarriers, while simultaneously assigning subcarrier pairs for secondary users (SU and the cognitive relay. This problem is cast as a constrained optimization problem with constraints on (1 interference introduced by the SU and the cognitive relay to the PUs; (2 miss-detection and false alarm probabilities and (3 subcarrier pairing for transmission on the SU transmitter and the cognitive relay and (4 minimum Quality of Service (QoS for each CR subcarrier. We propose one optimal and two suboptimal schemes all of which are compared to other schemes in the literature. Simulation results show that the proposed schemes achieve significantly higher throughput than other schemes in the literature for different relay situations.

  16. Ultra-wideband radar sensors and networks

    Science.gov (United States)

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  17. Substrate Effects in Wideband SiGe HBT Mixer Circuits

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2005-01-01

    are also applied to predict short distance substrate coupling effects. Simulation results using extracted equivalent circuit models and substrate coupling networks are compared with experimental results obtained on a wideband mixer circuit implemented in a 0.35 μm, 60 GHz ft SiGe HBT BiCMOS process.......In this paper, the influence from substrate effects on the performance of wideband SiGe HBT mixer circuits is investigated. Equivalent circuit models including substrate networks are extracted from on-wafer test structures and compared with electromagnetic simulations. Electromagnetic simulations...

  18. Mutual Coupling Reduction for UWB MIMO Antennas with a Wideband Neutralization Line

    DEFF Research Database (Denmark)

    Zhang, Shuai; Pedersen, Gert F.

    2016-01-01

    A wideband neutralization line is proposed to reduce the mutual coupling of a compact ultrawideband (UWB) MIMO antenna. With the introduced decoupling method, the designed UWB MIMO antenna covers the band of 3.1-5 GHz with an isolation of higher than 22 dB. The proposed wideband neutralization line...

  19. Low-profile wireless passive resonators for sensing

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xun; An, Linan

    2017-04-04

    A resonator for sensing a physical or an environmental parameter includes a support having a top surface that provides a ground plane, and a polymer-derived ceramic (PDC) element positioned on the top surface including a PDC layer, and a metal patch on the PDC layer. The metal patch is electrically isolated from all surrounding structure, and the resonator has a resonant frequency that changes as a function of the physical or environmental parameter. A system for wirelessly sensing a physical or environmental parameter includes at least one resonator and a wireless RF reader located remotely from the resonator for transmitting a wide-band RF interrogation signal that excites the resonator. The wireless RF reader detects a sensing signal retransmitted by the resonator and includes a processor for determining the physical or environmental parameter at the location of the resonator from the sensing signal.

  20. Wideband amplifier design

    CERN Document Server

    Hollister, Allen L

    2007-01-01

    In this book, the theory needed to understand wideband amplifier design using the simplest models possible will be developed. This theory will be used to develop algebraic equations that describe particular circuits used in high frequency design so that the reader develops a ""gut level"" understanding of the process and circuit. SPICE and Genesys simulations will be performed to show the accuracy of the algebraic models. By looking at differences between the algebraic equations and the simulations, new algebraic models will be developed that include parameters originally left out of the model

  1. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction.

    Science.gov (United States)

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-02-11

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking.

  2. Design of CMOS RFIC ultra-wideband impulse transmitters and receivers

    CERN Document Server

    Nguyen, Cam

    2017-01-01

    This book presents the design of ultra-wideband (UWB) impulse-based transmitter and receiver frontends, operating within the 3.1-10.6 GHz frequency band, using CMOS radio-frequency integrated-circuits (RFICs). CMOS RFICs are small, cheap, low power devices, better suited for direct integration with digital ICs as compared to those using III-V compound semiconductor devices. CMOS RFICs are thus very attractive for RF systems and, in fact, the principal choice for commercial wireless markets.  The book comprises seven chapters. The first chapter gives an introduction to UWB technology and outlines its suitability for high resolution sensing and high-rate, short-range ad-hoc networking and communications. The second chapter provides the basics of CMOS RFICs needed for the design of the UWB RFIC transmitter and receiver presented in this book. It includes the design fundamentals, lumped and distributed elements for RFIC, layout, post-layout simulation, and measurement. The third chapter discusses the basics of U...

  3. Detection of moving humans in UHF wideband SAR

    Science.gov (United States)

    Sjögren, Thomas K.; Ulander, Lars M. H.; Frölind, Per-Olov; Gustavsson, Anders; Stenström, Gunnar; Jonsson, Tommy

    2014-06-01

    In this paper, experimental results for UHF wideband SAR imaging of humans on an open field and inside a forest is presented. The results show ability to detect the humans and suggest possible ways to improve the results. In the experiment, single channel wideband SAR mode of the UHF UWB system LORA developed by Swedish Defence Research Agency (FOI). The wideband SAR mode used in the experiment was from 220 to 450 MHz, thus with a fractional bandwidth of 0.68. Three humans walking and one stationary were available in the scene with one of the walking humans in the forest. The signature of the human in the forest appeared on the field, due to azimuth shift from the positive range speed component. One human on the field and the one in the forest had approximately the same speed and walking direction. The signatures in the SAR image were compared as a function of integration time based on focusing using the average relative speed of these given by GPS logs. A signal processing gain was obtained for the human in forest until approximately 15 s and 35 s for the human on the field. This difference is likely explained by uneven terrain and trees in the way, causing a non-straight walking path.

  4. Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase.

    Science.gov (United States)

    Sui, Sai; Ma, Hua; Lv, Yueguang; Wang, Jiafu; Li, Zhiqiang; Zhang, Jieqiu; Xu, Zhuo; Qu, Shaobo

    2018-01-22

    Arbitrary control of electromagnetic waves remains a significant challenge although it promises many important applications. Here, we proposed a fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry (PB) phase, of which the elements are non-absorptive and capable of predicting the wideband and smooth phase-shift. In our design method, the metasurface is composed of low-Q-factor resonant elements without using the PB phase, and is optimized by the genetic algorithm and nonlinear fitting method, having the advantages that the far field scattering patterns can be quickly synthesized by the hybrid array patterns. To validate the design method, a wideband low radar cross section metasurface is demonstrated, showing good feasibility and performance of wideband RCS reduction. This work reveals an opportunity arising from a metasurface in effective manipulation of microwave and flexible fast optimal design method.

  5. Effect of direction on loudness for wideband and reverberant sounds

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2006-01-01

    The effect of incidence angle on loudness was investigated for wideband and reverberant sounds. In an adaptive procedure, five listeners matched the loudness of a sound coming from five incidence angles in the horizontal plane to that of the same sound with frontal incidence. The stimuli were...... presented to the listeners via individual binaural synthesis. The results confirm that loudness depends on sound incidence angle, as it does for narrow-band, anechoic sounds. The directional effects, however, were attenuated with the wideband and reverberant stimuli used in the present investigation....

  6. Ultra-wideband RCS reduction using novel configured chessboard metasurface

    International Nuclear Information System (INIS)

    Zhuang Ya-Qiang; Wang Guang-Ming; Xu He-Xiu

    2017-01-01

    A novel artificial magnetic conductor (AMC) metasurface is proposed with ultra-wideband 180° phase difference for radar cross section (RCS) reduction. It is composed of two dual-resonant AMC cells, which enable a broadband phase difference of 180°±30° from 7.9 GHz to 19.2 GHz to be achieved. A novel strategy is devised by dividing each rectangular grid in a chessboard configuration into four triangular grids, leading to a further reduction of peak bistatic RCS. Both full-wave simulation and measurement results show that the proposed metasurface presents a good RCS reduction property over an ultra-wideband frequency range. (paper)

  7. Optically addressed ultra-wideband phased antenna array

    Science.gov (United States)

    Bai, Jian

    Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization

  8. A New Time-Hopping Multiple Access Communication System Simulator: Application to Ultra-Wideband

    Directory of Open Access Journals (Sweden)

    José M. Páez-Borrallo

    2005-03-01

    Full Text Available Time-hopping ultra-wideband technology presents some very attractive features for future indoor wireless systems in terms of achievable transmission rate and multiple access capabilities. This paper develops an algorithm to design time-hopping system simulators specially suitable for ultra-wideband, which takes advantage of some of the specific characteristics of this kind of systems. The algorithm allows an improvement of both the time capabilities and the achievable sampling rate and can be used to research into the influence of different parameters on the performance of the system. An additional result is the validation of a new general performance formula for time-hopping ultra-wideband systems with multipath channels.

  9. Learning Frameworks for Cooperative Spectrum Sensing and Energy-Efficient Data Protection in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Vinh Quang Do

    2018-05-01

    Full Text Available This paper studies learning frameworks for energy-efficient data communications in an energy-harvesting cognitive radio network in which secondary users (SUs harvest energy from solar power while opportunistically accessing a licensed channel for data transmission. The SUs perform spectrum sensing individually, and send local decisions about the presence of the primary user (PU on the channel to a fusion center (FC. We first design a new cooperative spectrum-sensing technique based on a convolutional neural network in which the FC uses historical sensing data to train the network for classification problem. The system is assumed to operate in a time-slotted manner. At the beginning of each time slot, the FC uses the current local decisions as input for the trained network to decide whether the PU is active or not in that time slot. In addition, legitimate transmissions can be vulnerable to a hidden eavesdropper, which always passively listens to the communication. Therefore, we further propose a transfer learning actor–critic algorithm for an SU to decide its operation mode to increase the security level under the constraint of limited energy. In this approach, the SU directly interacts with the environment to learn its dynamics (i.e., an arrival of harvested energy; then, the SU can either stay idle to save energy or transmit to the FC secured data that are encrypted using a suitable private-key encryption method to maximize the long-term effective security level of the network. We finally present numerical simulation results under various configurations to evaluate our proposed schemes.

  10. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    DEFF Research Database (Denmark)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists...... is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics...

  11. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development: Study of the Optical Setup of a Wide-Band Optical Modulation Spectrometer

    Science.gov (United States)

    Tolls, Volker; Stringfellow, Guy (Technical Monitor)

    2001-01-01

    The purpose of this study is to advance the design of the optical setup for a wide-band Optical Modulation Spectrometer (OMS) for use with astronomical heterodyne receiver systems. This report describes the progress of this investigation achieved from March until December 2001.

  12. Wideband Acoustic Immittance: Normative Study and Test-Retest Reliability of Tympanometric Measurements in Adults

    Science.gov (United States)

    Sun, Xiao-Ming

    2016-01-01

    Purpose: The purpose of this study was to present normative data of tympanometric measurements of wideband acoustic immittance and to characterize wideband tympanograms. Method: Data were collected in 84 young adults with strictly defined normal hearing and middle ear status. Energy absorbance (EA) was measured using clicks for 1/12-octave…

  13. Wideband propagation measurements at 30.3 GHz through a pecan orchard in Texas

    Science.gov (United States)

    Papazian, Peter B.; Jones, David L.; Espeland, Richard H.

    1992-09-01

    Wideband propagation measurements were made in a pecan orchard in Texas during April and August of 1990 to examine the propagation characteristics of millimeter-wave signals through vegetation. Measurements were made on tree obstructed paths with and without leaves. The study presents narrowband attenuation data at 9.6 and 28.8 GHz as well as wideband impulse response measurements at 30.3 GHz. The wideband probe (Violette et al., 1983), provides amplitude and delay of reflected and scattered signals and bit-error rate. This is accomplished using a 500 MBit/sec pseudo-random code to BPSK modulate a 28.8 GHz carrier. The channel impulse response is then extracted by cross correlating the received pseudo-random sequence with a locally generated replica.

  14. Paper-based inkjet-printed ultra-wideband fractal antennas

    KAUST Repository

    Maza, Armando Rodriguez; Cook, Benjamin Stassen; Jabbour, Ghassan E.; Shamim, Atif

    2012-01-01

    For the first time, paper-based inkjet-printed ultra-wideband (UWB) fractal antennas are presented. Two new designs, a miniaturised UWB monopole, which utilises a fractal matching network and is the smallest reported inkjet-printed UWB printed

  15. Wideband excitation in nonlinear vibro-acoustic modulation for damage detection

    Science.gov (United States)

    Klepka, A.; Adamczyk, M.; Pieczonka, L.; Staszewski, W. J.

    2016-04-01

    The paper discusses the use of wideband excitation in nonlinear vibro-acoustic modulation technique (VAM) used for damage detection. In its original form, two mono-harmonic signals (low and high frequency) are used for excitation. The low frequency excitation is typically selected based on a modal analysis test and high frequency excitation is selected arbitrarily in the ultrasonic frequency range. This paper presents a different approach with use of wideband excitation signals. The proposed approach gives the possibility to simplify the testing procedure by omitting the modal test used to determine the value of low frequency excitation. Simultaneous use of wideband excitation for high frequency solves the ambiguity related to the selection of the frequency of acoustic wave. Broadband excitation signals require, however, more elaborate signal processing methods to determine the intensity of modulation for a given bandwidth. The paper discusses the proposed approach and the related signal processing procedure. Experimental validation of the proposed technique is performed on a laminated composite plate with a barely visible impact damage that was generated in an impact test. Piezoceramic actuators are used for vibration excitation and a scanning laser vibrometer is used for noncontact data acquisition.

  16. Age effects in the human middle ear: Wideband acoustical measures

    Science.gov (United States)

    Feeney, M. Patrick; Sanford, Chris A.

    2004-12-01

    Studies that have examined age effects in the human middle ear using either admittance measures at 220 or 660 Hz or multifrequency tympanometry from 200 to 2000 Hz have had conflicting results. Several studies have suggested an increase in admittance with age, while several others have suggested a decrease in admittance with age. A third group of studies found no significant age effect. This study examined 226 Hz tympanometry and wideband energy reflectance and impedance at ambient pressure in a group of 40 young adults and a group of 30 adults with age >=60 years. The groups did not differ in admittance measures of the middle ear at 226 Hz. However, significant age effects were found in wideband energy reflectance and impedance. In particular, in older adults there was a comparative decrease in reflectance from 800 to 2000 Hz but an increase near 4000 Hz. The results suggest a decrease in middle-ear stiffness with age. The findings of this study hold relevance for understanding the aging process in the auditory system, for the establishment of normative data for wideband energy reflectance, for the possibility of a conductive component to presbycusis, and for the interpretation of otoacoustic emission measurements. .

  17. Proof-of-Concept System for Opportunistic Spectrum Access in Multi-user Decentralized Networks

    Directory of Open Access Journals (Sweden)

    Sumit J. Darak

    2016-09-01

    Full Text Available Poor utilization of an electromagnetic spectrum and ever increasing demand for spectrum have led to surge of interests in opportunistic spectrum access (OSA based paradigms like cognitive radio and unlicensed LTE. In OSA for decentralized networks, frequency band selection from wideband spectrum is a challenging task since secondary users (SUs do not share any information with each other. In this paper, a new decision making policy (DMP has been proposed for OSA in the multi-user decentralized networks. First contribution is an accurate characterization of frequency bands using Bayes-UCB algorithm. Then, a novel SU orthogonization scheme using Bayes-UCB algorithm is proposed replacing randomization based scheme. At the end, USRP testbed has been developed for analyzing the performance of DMPs using real radio signals. Experimental results show that the proposed DMP offers significant improvement in spectrum utilization, fewer subband switching and collisions compared to other DMPs.

  18. 47 CFR 15.250 - Operation of wideband systems within the band 5925-7250 MHz.

    Science.gov (United States)

    2010-10-01

    ... of wideband systems within the band 5925-7250 MHz. (a) The −10 dB bandwidth of a device operating... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation of wideband systems within the band... variations in temperature and supply voltage. (b) The −10 dB bandwidth of the fundamental emission shall be...

  19. Aliasing-free wideband beamforming using sparse signal representation

    NARCIS (Netherlands)

    Tang, Z.; Blacquière, G.; Leus, G.

    2011-01-01

    Sparse signal representation (SSR) is considered to be an appealing alternative to classical beamforming for direction-of-arrival (DOA) estimation. For wideband signals, the SSR-based approach constructs steering matrices, referred to as dictionaries in this paper, corresponding to different

  20. Outage Analysis of Spectrum-Sharing over M-Block Fading with Sensing Information

    KAUST Repository

    Alabbasi, Abdulrahman

    2016-07-13

    Future wireless technologies, such as, 5G, are expected to support real-time applications with high data throughput, e.g., holographic meetings. From a bandwidth perspective, cognitive radio is a promising technology to enhance the system’s throughput via sharing the licensed spectrum. From a delay perspective, it is well known that increasing the number of decoding blocks will improve the system robustness against errors, while increasing the delay. Therefore, optimally allocating the resources to determine the tradeoff of tuning the length of decoding blocks while sharing the spectrum is a critical challenge for future wireless systems. In this work, we minimize the targeted outage probability over the block-fading channels while utilizing the spectrum-sharing concept. The secondary user’s outage region and the corresponding optimal power are derived, over twoblocks and M-blocks fading channels. We propose two suboptimal power strategies and derive the associated asymptotic lower and upper bounds on the outage probability with tractable expressions. These bounds allow us to derive the exact diversity order of the secondary user’s outage probability. To further enhance the system’s performance, we also investigate the impact of including the sensing information on the outage problem. The outage problem is then solved via proposing an alternating optimization algorithm, which utilizes the verified strict quasiconvex structure of the problem. Selected numerical results are presented to characterize the system’s behavior and show the improvements of several sharing concepts.

  1. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances.

    Science.gov (United States)

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A; Al-Khalifa, Hend S

    2016-05-16

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space.

  2. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances

    Directory of Open Access Journals (Sweden)

    Abdulrahman Alarifi

    2016-05-01

    Full Text Available In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space.

  3. DOD Use of Commercial Wideband Satellite Communications Systems: How Much is Needed, and How Do We Get It?

    National Research Council Canada - National Science Library

    Hutchens, Robert

    2001-01-01

    ..., A key enabler to this end is sufficient wideband satellite communications connectivity DoD's organic wideband satellite communications capabilities are inadequate, so commercial services must be used...

  4. Multipath Suppression with an Absorber for UWB Wind Turbine Blade Deflection Sensing Systems

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Eggers, Patrick Claus F.

    2017-01-01

    The deflection of a wind turbine blade can be monitored with an ultra-wideband (UWB) deflection sensing system which consists of one transmitting antenna at the blade tip and two receiving antennas at the blade root. The blade deflection is calculated by two estimated tip-root antenna distances...... verifications of the proposed method are carried out with different full-blade measurements. From all the results, it is found that the proposed technique can efficiently suppress multipath for the in-blade tip antenna, and improve the pulse wave front fidelity, so that the UWB sensing system can also...

  5. Collaborative spectrum sensing based on the ratio between largest eigenvalue and Geometric mean of eigenvalues

    KAUST Repository

    Shakir, Muhammad

    2011-12-01

    In this paper, we introduce a new detector referred to as Geometric mean detector (GEMD) which is based on the ratio of the largest eigenvalue to the Geometric mean of the eigenvalues for collaborative spectrum sensing. The decision threshold has been derived by employing Gaussian approximation approach. In this approach, the two random variables, i.e. The largest eigenvalue and the Geometric mean of the eigenvalues are considered as independent Gaussian random variables such that their cumulative distribution functions (CDFs) are approximated by a univariate Gaussian distribution function for any number of cooperating secondary users and received samples. The approximation approach is based on the calculation of exact analytical moments of the largest eigenvalue and the Geometric mean of the eigenvalues of the received covariance matrix. The decision threshold has been calculated by exploiting the CDF of the ratio of two Gaussian distributed random variables. In this context, we exchange the analytical moments of the two random variables with the moments of the Gaussian distribution function. The performance of the detector is compared with the performance of the energy detector and eigenvalue ratio detector. Analytical and simulation results show that our newly proposed detector yields considerable performance advantage in realistic spectrum sensing scenarios. Moreover, our results based on proposed approximation approach are in perfect agreement with the empirical results. © 2011 IEEE.

  6. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satel......Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...

  7. 35 Gb/s Ultra-wideband Technology for Advanced Communications

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    be applied, evolving from classic spectral inefficient pulsebased systems to more advanced and flexible modulation schemes. Ultra-wideband technology is suitable for low-power high-speed wireless communication systems over short distances, and is an appealing alternative for next generation networks ranging......The fast development of electronics and portable devices, intended mainly for multimedia applications, is increasing exponentially the data traffic demands per user. To cope with these new data demands in limited bandwidth systems, new technologies must be explored and new transmission schemes must...... from high-speed wireless personal area networks, to the internet of things applications. Its popularity stems from the fact that they can be used as an overlay to existing systems, without interference, operating in parallel to existing wireless systems, which perceive ultra-wideband emissions...

  8. Thermal Studies on the SPS Wideband Transverse Feedback Kicker

    CERN Document Server

    Roggen, Toon; Hofle, Wolfgang; Montesinos, Eric; CERN. Geneva. ATS Department

    2016-01-01

    As part of the SPS wideband transverse feedback system in the framework of the LHC Injector Upgrade (LIU) project, a wideband kicker design is being proposed. Vertical beam instabilities due to intensity dependent effects (electron cloud instability (ECI) and transverse mode coupling instability (TMCI)) are potentially suppressed by using a feedback system driving such a kicker system. One of the options for a kicker is a one meter long slotted-coaxial kicker, providing a substantial vertical kick strength (10ˉ5 –10ˉ4 eV.s/m) over a bandwidth ranging from nearly DC to 1 GHz. The necessary kick strength requires a total power of 4 kW. This note describes thermal studies that assisted in the material choice of the feedthroughs of the slotted-coaxial kicker and guided the design choices.

  9. 7th conference on ultra-wideband, short-pulse electromagnetics

    CERN Document Server

    Schenk, Uwe; Nitsch, Daniel; Sabath, Frank; Ultra-Wideband, Short-Pulse Electromagnetics 7; UWBSP7

    2007-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-Wideband Short-Pulse Electromagnetics 7 presents selected papers of deep technical content and high scientific quality from the UWB-SP7 Conference, including wide-ranging contributions on electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-res...

  10. A wideband optical monitor for a planetary-rotation coating-system

    International Nuclear Information System (INIS)

    Campanelli, M.B.; Smith, D.J.

    1998-01-01

    A substrate-specific, through-planet, wideband optical coating monitor is being developed to increase production yield and the understanding of physical vapor deposition (PVD) coatings fabricated in the Optical Manufacturing Laboratory at the University of Rochester's Laboratory for Laser Energetics. In-situ wideband optical monitoring of planetary rotation systems allows direct monitoring of large, expensive substrates with complex layering schemes. The optical monitor discussed here is under development for coating several large (e.g., 80.7 x 41.7 x 9.0 cm) polarizers for the National Ignition Facility. Wideband optical monitoring of the production substrates is used in concert with an array of crystal monitors for process control, film parameter evaluation, and error detection with associated design reoptimization. The geometry of a planetary rotation system, which produces good uniformity across large substrates, makes optical monitoring more difficult. Triggering and timing techniques for data acquisition become key to the process because the optical coating is available only intermittently for monitoring. Failure to properly consider the effects of the system dynamics during data retrieval and processing may result in significant decreases in the spectral data's reliability. Improved data accuracy allows better determination of film thicknesses, indices, and inhomogeneities and enables in-situ error detection for design reoptimization

  11. Wideband aural acoustic absorbance predicts conductive hearing loss in children.

    Science.gov (United States)

    Keefe, Douglas H; Sanford, Chris A; Ellison, John C; Fitzpatrick, Denis F; Gorga, Michael P

    2012-12-01

    This study tested the hypothesis that wideband aural absorbance predicts conductive hearing loss (CHL) in children medically classified as having otitis media with effusion. Absorbance was measured in the ear canal over frequencies from 0.25 to 8 kHz at ambient pressure or as a swept tympanogram. CHL was defined using criterion air-bone gaps of 20, 25, and 30 dB at octaves from 0.25 to 4 kHz. A likelihood-ratio predictor of CHL was constructed across frequency for ambient absorbance, and across frequency and pressure for absorbance tympanometry. Performance was evaluated at individual frequencies and for any frequency at which a CHL was present. Absorbance and conventional 0.226-kHz tympanograms were measured in children of age three to eight years with CHL and with normal hearing. Absorbance was smaller at frequencies above 0.7 kHz in the CHL group than the control group. Based on the area under the receiver operating characteristic curve, wideband absorbance in ambient and tympanometric tests were significantly better predictors of CHL than tympanometric width, the best 0.226-kHz predictor. Accuracies of ambient and tympanometric wideband absorbance did not differ. Absorbance accurately predicted CHL in children and was more accurate than conventional 0.226-kHz tympanometry.

  12. Multimedia over cognitive radio networks algorithms, protocols, and experiments

    CERN Document Server

    Hu, Fei

    2014-01-01

    PrefaceAbout the EditorsContributorsNetwork Architecture to Support Multimedia over CRNA Management Architecture for Multimedia Communication in Cognitive Radio NetworksAlexandru O. Popescu, Yong Yao, Markus Fiedler , and Adrian P. PopescuPaving a Wider Way for Multimedia over Cognitive Radios: An Overview of Wideband Spectrum Sensing AlgorithmsBashar I. Ahmad, Hongjian Sun, Cong Ling, and Arumugam NallanathanBargaining-Based Spectrum Sharing for Broadband Multimedia Services in Cognitive Radio NetworkYang Yan, Xiang Chen, Xiaofeng Zhong, Ming Zhao, and Jing WangPhysical Layer Mobility Challen

  13. Wideband Dual-Polarization Patch Antenna Array With Parallel Strip Line Balun Feeding

    DEFF Research Database (Denmark)

    Zhang, Jin; Lin, Xianqi; Nie, Liying

    2016-01-01

    A wideband dual-polarization patch antenna array is proposed in this letter. The array is fed by a parallel strip line balun, which is adopted to generate 180° phase shift in a wide frequency range. In addition, this balun has simple structure, very small phase shift error, and good ports isolati...... is higher than 30 dB. The simulation and measurement turns out to be similar. This antenna array can be used in TD-LTE base stations, and the design methods are also useful to other wideband microstrip antennas....

  14. Combined diversity and improved energy detection in cooperative spectrum sensing with faded reporting channels

    Directory of Open Access Journals (Sweden)

    Srinivas Nallagonda

    2016-04-01

    Full Text Available In this paper we evaluate the performance of cooperative spectrum sensing (CSS where each cognitive radio (CR employs an improved energy detector (IED with multiple antennas and uses selection combining (SC for detecting the primary user (PU in noisy and faded sensing (S channels. We derive an expression for the probability of false alarm and expressions for probability of missed detection in non-faded (AWGN and Rayleigh faded sensing environments in terms of cumulative distribution function (CDF. Each CR transmits its decision about PU via noisy and faded reporting (R channel to fusion center (FC. In this paper we assume that S-channels are noisy and Rayleigh faded while several cases of fading are considered for R-channels such as: (i Hoyt (or Nakagami-q, (ii Rayleigh, (iii Rician (or Nakagami-n, and (iv Weibull. A Binary Symmetric channel (BSC with a fixed error probability (r in the R-channel is also considered. The impact of fading in R-channel, S-channel and several network parameters such as IED parameter, normalized detection threshold, number of CRs, and number of antennas on missed detection and total error probability is assessed. The effects of Hoyt, Rician, and Weibull fading parameters on overall performance of IED-CSS are also highlighted.

  15. Resource management for energy and spectrum harvesting sensor networks

    CERN Document Server

    Zhang, Deyu; Zhou, Haibo; Shen, Xuemin (Sherman)

    2017-01-01

    This SpringerBrief offers a comprehensive review and in-depth discussion of the current research on resource management. The authors explain how to best utilize harvested energy and temporally available licensed spectrum. Throughout the brief, the primary focus is energy and spectrum harvesting sensor networks (ESHNs) including energy harvesting (EH)-powered spectrum sensing and dynamic spectrum access. To efficiently collect data through the available licensed spectrum, this brief examines the joint management of energy and spectrum. An EH-powered spectrum sensing and management scheme for Heterogeneous Spectrum Harvesting Sensor Networks (HSHSNs) is presented in this brief. The scheme dynamically schedules the data sensing and spectrum access of sensors in ESHSNs to optimize the network utility, while considering the stochastic nature of EH process, PU activities and channel conditions. This brief also provides useful insights for the practical resource management scheme design for ESHSNs and motivates a ne...

  16. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya [College of Science, Air Force Engineering University, Xi' an, Shaanxi 710051 (China); Zhang, Jieqiu [College of Science, Air Force Engineering University, Xi' an, Shaanxi 710051 (China); Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Xu, Zhuo [Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Zhang, Anxue [School of Electronics and Information Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2014-06-02

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  17. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    International Nuclear Information System (INIS)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Zhang, Jieqiu; Xu, Zhuo; Zhang, Anxue

    2014-01-01

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  18. Coding/modulation trade-offs for Shuttle wideband data links

    Science.gov (United States)

    Batson, B. H.; Huth, G. K.; Trumpis, B. D.

    1974-01-01

    This paper describes various modulation and coding schemes which are potentially applicable to the Shuttle wideband data relay communications link. This link will be capable of accommodating up to 50 Mbps of scientific data and will be subject to a power constraint which forces the use of channel coding. Although convolutionally encoded coherent binary PSK is the tentative signal design choice for the wideband data relay link, FM techniques are of interest because of the associated hardware simplicity and because an FM system is already planned to be available for transmission of television via relay satellite to the ground. Binary and M-ary FSK are considered as candidate modulation techniques, and both coherent and noncoherent ground station detection schemes are examined. The potential use of convolutional coding is considered in conjunction with each of the candidate modulation techniques.

  19. Portable Wideband Microwave Imaging System for Intracranial Hemorrhage Detection Using Improved Back-projection Algorithm with Model of Effective Head Permittivity

    Science.gov (United States)

    Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.

    2016-02-01

    Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials.

  20. A Resistive Wideband Space Beam Splitter

    OpenAIRE

    Mahesh, Nivedita; Subrahmanyan, Ravi; Shankar, N. Udaya; Raghunathan, Agaram

    2014-01-01

    We present the design, construction and measurements of the electromagnetic performance of a wideband space beam splitter. The beam splitter is designed to power divide the incident radiation into reflected and transmitted components for interferometer measurement of spectral features in the mean cosmic radio background. Analysis of a 2-element interferometer configuration with a vertical beam splitter between a pair of antennas leads to the requirement that the beam splitter be a resistive s...

  1. Decision Analysis of Dynamic Spectrum Access Rules

    Energy Technology Data Exchange (ETDEWEB)

    Juan D. Deaton; Luiz A. DaSilva; Christian Wernz

    2011-12-01

    A current trend in spectrum regulation is to incorporate spectrum sharing through the design of spectrum access rules that support Dynamic Spectrum Access (DSA). This paper develops a decision-theoretic framework for regulators to assess the impacts of different decision rules on both primary and secondary operators. We analyze access rules based on sensing and exclusion areas, which in practice can be enforced through geolocation databases. Our results show that receiver-only sensing provides insufficient protection for primary and co-existing secondary users and overall low social welfare. On the other hand, using sensing information between the transmitter and receiver of a communication link, provides dramatic increases in system performance. The performance of using these link end points is relatively close to that of using many cooperative sensing nodes associated to the same access point and large link exclusion areas. These results are useful to regulators and network developers in understanding in developing rules for future DSA regulation.

  2. Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application

    Science.gov (United States)

    Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI

    2018-06-01

    A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.

  3. Wideband giant optical activity and negligible circular dichroism of near-infrared chiral metamaterial based on a complementary twisted configuration

    International Nuclear Information System (INIS)

    Zhu, Weiren; Rukhlenko, Ivan D; Premaratne, Malin; Huang, Yongjun; Wen, Guangjun

    2013-01-01

    We theoretically analyze the near-infrared properties of a chiral metamaterial constituting an array of twisted crosses and complementary crosses made of silver. Through rigorous full-wave numerical simulations, we demonstrate that this type of metamaterial exhibits wideband giant optical activity, with a polarization azimuth rotation angle reaching values as large as 1900 ∘ per wavelength. Owing to the negligible loss at optical frequencies in the dielectric (magnesium fluoride) making up the metamaterial, we observe negligible circular dichroism and low dispersion of the polarization azimuth rotation angle over a wide frequency band. We envision that this type of chiral metamaterial will find extensive applications in optical communication systems and biological sensing. (paper)

  4. Evaluation of strip-line pick-up system for the SPS wideband transverse feedback system

    CERN Document Server

    Kotzian, G; Steinhagen, R J; Valuch, D; Wehrle, U

    2017-01-01

    The proposed SPS Wideband Transverse Feedback sys- tem requires a wide-band pick-up system to be able to de- tect intra-bunch motion within the SPS proton bunches, captured and accelerated in a 200 MHz bucket. We present the electro-magnetic design of transverse beam position pick-up options optimised for installation in the SPS and evaluate their performance reach with respect to direct time domain sampling of the intra-bunch motion. The analy- sis also discusses the achieved subsystem responses of the associated cabling with new low dispersion smooth wall coaxial cables, wide-band generation of intensity and posi- tion signals by means of 180 degree RF hybrids as well as passive techniques to electronically suppress the beam off- set signal, needed to optimise the dynamic range and posi- tion resolution of the planned digital intra-bunch feedback system.

  5. A Novel Compact Wideband TSA Array for Near-Surface Ice Sheet Penetrating Radar Applications

    Science.gov (United States)

    Zhang, Feng; Liu, Xiaojun; Fang, Guangyou

    2014-03-01

    A novel compact tapered slot antenna (TSA) array for near-surface ice sheet penetrating radar applications is presented. This TSA array is composed of eight compact antenna elements which are etched on two 480mm × 283mm FR4 substrates. Each antenna element is fed by a wideband coplanar waveguide (CPW) to coupled strip-line (CPS) balun. The two antenna substrates are connected together with a metallic baffle. To obtain wideband properties, another two metallic baffles are used along broadsides of the array. This array is fed by a 1 × 8 wideband power divider. The measured S11 of the array is less than -10dB in the band of 500MHz-2GHz, and the measured gain is more than 6dBi in the whole band which agrees well with the simulated results.

  6. Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances †

    Science.gov (United States)

    Alarifi, Abdulrahman; Al-Salman, AbdulMalik; Alsaleh, Mansour; Alnafessah, Ahmad; Al-Hadhrami, Suheer; Al-Ammar, Mai A.; Al-Khalifa, Hend S.

    2016-01-01

    In recent years, indoor positioning has emerged as a critical function in many end-user applications; including military, civilian, disaster relief and peacekeeping missions. In comparison with outdoor environments, sensing location information in indoor environments requires a higher precision and is a more challenging task in part because various objects reflect and disperse signals. Ultra WideBand (UWB) is an emerging technology in the field of indoor positioning that has shown better performance compared to others. In order to set the stage for this work, we provide a survey of the state-of-the-art technologies in indoor positioning, followed by a detailed comparative analysis of UWB positioning technologies. We also provide an analysis of strengths, weaknesses, opportunities, and threats (SWOT) to analyze the present state of UWB positioning technologies. While SWOT is not a quantitative approach, it helps in assessing the real status and in revealing the potential of UWB positioning to effectively address the indoor positioning problem. Unlike previous studies, this paper presents new taxonomies, reviews some major recent advances, and argues for further exploration by the research community of this challenging problem space. PMID:27196906

  7. Ultra-wideband WDM VCSEL arrays by lateral heterogeneous integration

    Science.gov (United States)

    Geske, Jon

    Advancements in heterogeneous integration are a driving factor in the development of evermore sophisticated and functional electronic and photonic devices. Such advancements will merge the optical and electronic capabilities of different material systems onto a common integrated device platform. This thesis presents a new lateral heterogeneous integration technology called nonplanar wafer bonding. The technique is capable of integrating multiple dissimilar semiconductor device structures on the surface of a substrate in a single wafer bond step, leaving different integrated device structures adjacent to each other on the wafer surface. Material characterization and numerical simulations confirm that the material quality is not compromised during the process. Nonplanar wafer bonding is used to fabricate ultra-wideband wavelength division multiplexed (WDM) vertical-cavity surface-emitting laser (VCSEL) arrays. The optically-pumped VCSEL arrays span 140 nm from 1470 to 1610 nm, a record wavelength span for devices operating in this wavelength range. The array uses eight wavelength channels to span the 140 nm with all channels separated by precisely 20 nm. All channels in the array operate single mode to at least 65°C with output power uniformity of +/- 1 dB. The ultra-wideband WDM VCSEL arrays are a significant first step toward the development of a single-chip source for optical networks based on coarse WDM (CWDM), a low-cost alternative to traditional dense WDM. The CWDM VCSEL arrays make use of fully-oxidized distributed Bragg reflectors (DBRs) to provide the wideband reflectivity required for optical feedback and lasing across 140 rim. In addition, a novel optically-pumped active region design is presented. It is demonstrated, with an analytical model and experimental results, that the new active-region design significantly improves the carrier uniformity in the quantum wells and results in a 50% lasing threshold reduction and a 20°C improvement in the peak

  8. Theoretical analysis and simulation of a code division multiple access system (cdma for secure signal transmission in wideband channels

    Directory of Open Access Journals (Sweden)

    Stevan M. Berber

    2014-06-01

    Code Division Multiple Access (CDMA technique which allows communications of multiple users in the same communication system. This is achieved in such a way that each user is assigned a unique code sequence, which is used at the receiver side to discover the information dedicated to that user. These systems belong to the group of communication systems for direct sequence spread spectrum systems. Traditionally, CDMA systems use binary orthogonal spreading codes. In this paper, a mathematical model and simulation of a CDMA system based on the application of non-binary, precisely speaking, chaotic spreading sequences. In their nature, these sequences belong to random sequences with infinite periodicity, and due to that they are appropriate for applications in the systems that provide enhanced security against interception and secrecy in signal transmission. Numerous papers are dedicated to the development of CDMA systems in flat fading channels. This paper presents the results of these systems analysis for the case when frequency selective fading is present in the channel. In addition, the paper investigates a possibility of using interleaving techniques to mitigate fading in a wideband channel with the frequency selective fading. Basic structure of a CDMA communication system and its operation In this paper, a CDMA system block schematic is ppresented and the function of all blocks is explained. Notation  to be used in the paper is introduced. Chaotic sequences are defined and explained in accordance with the method of their generation. A wideband channel with frequency selective fading is defined by its impulse response function. Theoretical analysis of a CDMA system with flat fading in a narrowband channel A narrowband channel and flat fading are defined. A mathematical analysis of the system is conducted by presenting the signal expressions at vital points in the transmitter and receiver. The expression of the signal at the output of the sequence correlator is

  9. Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques

    Science.gov (United States)

    2017-11-01

    on Bio -Inspired Optimization Techniques by Canh Ly, Nghia Tran, and Ozlem Kilic Approved for public release; distribution is...Research Laboratory Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio -Inspired Optimization Techniques by...SUBTITLE Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio -Inspired Optimization Techniques 5a. CONTRACT NUMBER

  10. Ultra-wideband wireless receiver front-end for high-speed indoor applications

    Directory of Open Access Journals (Sweden)

    Zhe-Yang Huang

    2014-12-01

    Full Text Available Low-noise, ultra-wideband (UWB wireless receiver front-end circuits were presented in this study. A two-stage common-source low-noise amplifier with wideband input impedance matching network, an active-balun and a double-balanced down-conversion mixer were adopted in the UWB wireless receiver front-end. The proposed wireless receiver front-end circuits were implemented in 0.18 μm radio-frequency-CMOS process. The maximum down-conversion power gain of the front-end is 25.8 dB; minimum single-sideband noise figure of the front-end is 4.9 dB over complete UWB band ranging from 3.1 to 10.6 GHz. Power consumption including buffers is 39.2 mW.

  11. Dual-polarization, wideband microstrip antenna array for airborne C-band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, Niels

    2000-01-01

    The paper describes the development of a C-band, dual linear polarization wideband antenna array, for use in the next-generation of the Danish airborne polarimetric synthetic aperture radar (SAR) system. The array is made of probe-fed, stacked microstrip patches. The design and performance of the...... of the basic stacked patch element, operating from 4.9 GHz to 5.7 GHz, and a 2×2 element test array of these, are described.......The paper describes the development of a C-band, dual linear polarization wideband antenna array, for use in the next-generation of the Danish airborne polarimetric synthetic aperture radar (SAR) system. The array is made of probe-fed, stacked microstrip patches. The design and performance...

  12. Wideband FM Demodulation and Multirate Frequency Transformations

    Science.gov (United States)

    2016-12-15

    Noble identities to extend the proposed approach to larger wideband to narrowband conversion factors and more practical implementations. We further...framework . . . . . . . . . . . . . . . . . . . . . 8 2 Block diagrams of the alternative MFT system for large conversion factors (a) and the Noble Identity ...of both MFT frameworks with conversion factor R = 128 and normalized radian frequency shift wd = 0.1π under the extreme senario with modulation index

  13. Robust Nearfield Wideband Beamforming Design Based on Adaptive-Weighted Convex Optimization

    Directory of Open Access Journals (Sweden)

    Guo Ye-Cai

    2017-01-01

    Full Text Available Nearfield wideband beamformers for microphone arrays have wide applications in multichannel speech enhancement. The nearfield wideband beamformer design based on convex optimization is one of the typical representatives of robust approaches. However, in this approach, the coefficient of convex optimization is a constant, which has not used all the freedom provided by the weighting coefficient efficiently. Therefore, it is still necessary to further improve the performance. To solve this problem, we developed a robust nearfield wideband beamformer design approach based on adaptive-weighted convex optimization. The proposed approach defines an adaptive-weighted function by the adaptive array signal processing theory and adjusts its value flexibly, which has improved the beamforming performance. During each process of the adaptive updating of the weighting function, the convex optimization problem can be formulated as a SOCP (Second-Order Cone Program problem, which could be solved efficiently using the well-established interior-point methods. This method is suitable for the case where the sound source is in the nearfield range, can work well in the presence of microphone mismatches, and is applicable to arbitrary array geometries. Several design examples are presented to verify the effectiveness of the proposed approach and the correctness of the theoretical analysis.

  14. Wideband feedback system prototype validation

    CERN Document Server

    Li, K; Bjorsvik, E; Fox, J; Hofle, W; Kotzian, G; Rivetta, C; Salvant, B; Turgut, O

    2017-01-01

    A wideband feedback demonstrator system has been de-veloped in collaboration with US-LARP under the joint lead-ership of CERN and SLAC. The system includes widebandkicker structures and amplifiers along with a fast digital re-configurable system up to 4 GS/s for single bunch and multibunch control. Most of the components have been installedin recent years and have been put into operation to test bothintra-bunch damping and individual bunch control in a multibunch train. In this note we report on the MD program,procedure and key findings that were made with this systemin the past year.

  15. Digital Receiver Design for Transmitted Reference Ultra-Wideband Systems

    NARCIS (Netherlands)

    Wang, Y.; Leus, G.; Van der Veen, A.J.

    2009-01-01

    A complete detection, channel estimation, synchronization, and equalization scheme for a transmitted reference (TR) ultra-wideband (UWB) system is proposed in this paper. The scheme is based on a data model which admits a moderate data rate and takes both the interframe interference (IFI) and the

  16. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    International Nuclear Information System (INIS)

    Wu Jia-Liang; Lin Bao-Qin; Da Xin-Yu

    2016-01-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x - or y -polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. (paper)

  17. Wideband Radar Echo Frequency-domain Simulation and Analysis for High Speed Moving Targets

    Directory of Open Access Journals (Sweden)

    Ning Chao

    2014-04-01

    Full Text Available A frequency-domain method is proposed for wideband radar echo simulation of high-speed moving targets. Based on the physical process of electromagnetic waves observing a moving target, a frequency-domain echo model of wideband radar is constructed, and the block diagram of the radar echo simulation in frequency-domain is presented. Then, the impacts of radial velocity and slant range on the matching filtering of LFM radar are analyzed, and some quantitative conclusions on the shift and expansion of the radar profiles are obtained. Simulation results illustrate the correctness and efficiency of the proposed method.

  18. Ultra-Wideband Transceiver for Integrated Communication and Relative Navigation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop an innovative way of using Time Modulated Ultra Wideband (TM-UWB) transceivers (radios) to provide high performance integrated...

  19. Resilience of LTE networks against smart jamming attacks: Wideband model

    KAUST Repository

    Aziz, Farhan M.; Shamma, Jeff S.; Stuber, Gordon L.

    2015-01-01

    communications. We have previously shown that LTE networks are vulnerable to Denial-of-Service (DOS) and loss of service attacks from smart jammers. In this paper, we extend our previous work on resilience of LTE networks to wideband multipath fading channel

  20. A numerical study of super-resolution through fast 3D wideband algorithm for scattering in highly-heterogeneous media

    KAUST Repository

    Létourneau, Pierre-David

    2016-09-19

    We present a wideband fast algorithm capable of accurately computing the full numerical solution of the problem of acoustic scattering of waves by multiple finite-sized bodies such as spherical scatterers in three dimensions. By full solution, we mean that no assumption (e.g. Rayleigh scattering, geometrical optics, weak scattering, Born single scattering, etc.) is necessary regarding the properties of the scatterers, their distribution or the background medium. The algorithm is also fast in the sense that it scales linearly with the number of unknowns. We use this algorithm to study the phenomenon of super-resolution in time-reversal refocusing in highly-scattering media recently observed experimentally (Lemoult et al., 2011), and provide numerical arguments towards the fact that such a phenomenon can be explained through a homogenization theory.

  1. Multiband and wideband monopole antenna for GSM900 and other wireless applications

    KAUST Repository

    Abutarboush, Hattan; Nasif, H.; Nilavalan, Rajagopal; Cheung, Sing Wai

    2012-01-01

    In this letter, the design of a compact monopole antenna for multiband and wideband operations is proposed. The antenna has three distinct frequency bands, centered at 0.94, 2.7, and 4.75 GHz. The antenna has a compact size of only 30×40×1.57 mm$ 3 including the ground plane. The multiband and wideband operations are achieved by using an E-shaped slot on the ground plane. The design procedure is also discussed. The frequency bands can be independently controlled by using the parameters of the E-slot. The impedance bandwidth, current distributions, radiation patterns, gain, and efficiency of the antenna are studied by computer simulation and measurements. © 2011 IEEE.

  2. High Performance Wideband CMOS CCI and its Application in Inductance Simulator Design

    Directory of Open Access Journals (Sweden)

    ARSLAN, E.

    2012-08-01

    Full Text Available In this paper, a new, differential pair based, low-voltage, high performance and wideband CMOS first generation current conveyor (CCI is proposed. The proposed CCI has high voltage swings on ports X and Y and very low equivalent impedance on port X due to super source follower configuration. It also has high voltage swings (close to supply voltages on input and output ports and wideband current and voltage transfer ratios. Furthermore, two novel grounded inductance simulator circuits are proposed as application examples. Using HSpice, it is shown that the simulation results of the proposed CCI and also of the presented inductance simulators are in very good agreement with the expected ones.

  3. Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference.

    Science.gov (United States)

    Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng

    2017-04-29

    Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation.

  4. The Large Office Environment - Measurement and Modeling of the Wideband Radio Channel

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Nielsen, Jesper Ødum; Bauch, Gerhard

    2006-01-01

    In a future 4G or WLAN wideband application we can imagine multiple users in a large office environment con-sisting of a single room with partitions. Up to now, indoor radio channel measurement and modelling has mainly concentrated on scenarios with several office rooms and corridors. We present...... here measurements at 5.8GHz for 100 MHz bandwidth and a novel modelling approach for the wideband radio channel in a large office room envi-ronment. An acoustic like reverberation theory is pro-posed that allows to specify a tapped delay line model just from the room dimensions and an average...... calculated from the measurements. The pro-posed model can likely also be applied to indoor hot spot scenarios....

  5. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satel...... and satellite communication signals. Due to planar structures proposed here, it is easy to integrate in the microwave integrated systems, which can play an important role in the microwave communication circuit and system.......Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...

  6. A Dual Stage Linear Prediction Approach Towards Wideband FM Demodulation With Multilevel and Partial Response Signaling

    Science.gov (United States)

    2018-01-19

    attributed to the inherent interpolation process in the MFT demodulation approach, which is more error-sensitive to discontinuous waveforms, such as...Multirate Frequency Transformations In the author’s recent work, frequency transformations enacted via multirate signal processing were used for wideband...FM to narrowband FM conversion to enable a wider range of wideband FM signals [9, 11]. The goal of the multirate processing module is to compress the

  7. Inkjet Printing of Paper-Based Wideband and High Gain Antennas

    KAUST Repository

    Cook, Benjamin

    2011-12-07

    This thesis represents a major contribution to wideband and high gain inkjet-printed antennas on paper. This work includes the complete characterization of the inkjet printing process for passive microwave devices on paper substrate as well as several ultra-wideband and high gain antenna designs. The characterization work includes the electrical characterization of the permittivity and loss tangent for paper substrate through 10 GHz, ink conductivity data for variable sintering conditions, and minimum feature sizes obtainable by today’s current inkjet processes for metallic nanoparticles. For the first time ever, inkjet-printed antennas are demonstrated that operate over the entire UWB band and demonstrate gains up to 8dB. This work also presents the first fractal-based inkjet-printed antennas with enhanced bandwidth and reduced production costs, and a novel slow wave log periodic dipole array which shows minimizations of 20% in width over conventional log periodic antennas.

  8. Wideband MIMO Channel Capacity Analysis in Multiprobe Anechoic Chamber Setups

    DEFF Research Database (Denmark)

    Fan, Wei; Kyosti, Pekka; Nielsen, Jesper Ødum

    2016-01-01

    been used to determine the test area size for a limited number of probes. However, it is desirable that the test area size is defined in terms of data rate deviation of the simulated channel in the laboratory from that of the target channel model. This paper reports MIMO capacity analysis results...... for wideband spatio-temporal channel models, with emphasis on the impact of spatial correlation at the transmit (Tx) side, the channel model, and the spatial correlation at the Rx side on the capacity simulation accuracy. Simulation results show that the number of probes is irrelevant to capacity simulation......This paper discusses over the air (OTA) testing for multiple input multiple output (MIMO) capable terminals with emphasis on wideband MIMO channel capacity analysis in a multi-probe anechoic chamber setup. In the literature, the spatial correlation simulation accuracy at the receiver (Rx) side has...

  9. Design of a Compact Wideband Antenna Array for Microwave Imaging Applications

    Directory of Open Access Journals (Sweden)

    J. Puskely

    2013-12-01

    Full Text Available In the paper, wideband antenna arrays aimed at microwave imaging applications and SAR applications operating at Ka band were designed. The antenna array feeding network is realized by a low-loss SIW technology. Moreover, we have replaced the large feed network comprised of various T and Y junctions by a simple broadband network of compact size to more reduce losses in the substrate integrated waveguide and also save space on the PCB. The designed power 8-way divider is complemented by a wideband substrate integrated waveguide to a grounded coplanar waveguide transition and directly connected to the antenna elements. The measured results of antenna array are consistent with our simulation. Obtained results of the developed array demonstrated improvement compared to previously developed binary feed networks with microstrip or SIW splitters.

  10. Spatial Dynamic Wideband Modeling of the MIMO Satellite-to-Earth Channel

    Directory of Open Access Journals (Sweden)

    Andreas Lehner

    2014-01-01

    response (CIR time series depending on the movement profile of a land mobile terminal is presented in this paper. Based on high precise wideband measurements in L-band the model reproduces the correlated shadowing and multipath conditions in rich detail. The model includes time and space variant echo signals appearing and disappearing in dependence on the receive antenna position and movement, and the actual azimuths and elevations to the various signal sources. Attenuation and path delays relative to the hypothetical line of sight (LOS ensure usability for ranging purposes. Parameters for car and pedestrian applications in urban and suburban environments are provided. The channel characteristics are determined independently of the transmitted signal. Therefore the usability, for example, for GPS and GALILEO, as well as wideband communication services from hovering platforms, is given.

  11. A Decentralized Eigenvalue Computation Method for Spectrum Sensing Based on Average Consensus

    Science.gov (United States)

    Mohammadi, Jafar; Limmer, Steffen; Stańczak, Sławomir

    2016-07-01

    This paper considers eigenvalue estimation for the decentralized inference problem for spectrum sensing. We propose a decentralized eigenvalue computation algorithm based on the power method, which is referred to as generalized power method GPM; it is capable of estimating the eigenvalues of a given covariance matrix under certain conditions. Furthermore, we have developed a decentralized implementation of GPM by splitting the iterative operations into local and global computation tasks. The global tasks require data exchange to be performed among the nodes. For this task, we apply an average consensus algorithm to efficiently perform the global computations. As a special case, we consider a structured graph that is a tree with clusters of nodes at its leaves. For an accelerated distributed implementation, we propose to use computation over multiple access channel (CoMAC) as a building block of the algorithm. Numerical simulations are provided to illustrate the performance of the two algorithms.

  12. Predictors of sense of coherence in typically developing adolescent siblings of individuals with autism spectrum disorder.

    Science.gov (United States)

    Smith, L O; Elder, J H; Storch, E A; Rowe, M A

    2015-01-01

    Children with autism spectrum disorder (ASD) may be a stressor for family members yet there is little published research on the impact of having a child with ASD on their typically developing (TD) adolescent siblings. According to Antonovsky's salutogenic model, a strong sense of coherence leads to the view that the stressor is a manageable challenge rather than a burden and promotes healthier adaptation. This study examines the relationship between stress, TD sibling resources and the sense of coherence in TD siblings. This quantitative mail-based study uses a survey methodology, analysing the responses of TD adolescent siblings (n = 96) of individuals with autism, Asperger's syndrome, or pervasive developmental disorder - not otherwise specified to several rating scales. Adolescent siblings, ages 11 to 18 years, completed the Adolescent Coping Orientation for Problem Experience (ACOPE), Network of Relationship Inventory - Social Provision Version (NRI-SPV), Youth Self Report (YSR), and Sense of Coherence (SOC) instruments; parents completed the Child Autism Rating Scale - 2nd Edition (CARS-2). The salutogenesis model was used to guide and inform this research. Findings suggested the following: (a) the stress of ASD severity and resource of adjustment are related in TD adolescent siblings; (b) TD sibling adjustment has a strong relationship with sense of coherence levels; and (c) a greater number of positive coping strategies buffer TD sibling coherence levels when ASD severity scores are high. ASD severity and TD adolescent sibling resources influence sense of coherence in adolescent TD siblings of individuals with ASD. © 2014 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  13. Wideband DOA Estimation through Projection Matrix Interpolation

    OpenAIRE

    Selva, J.

    2017-01-01

    This paper presents a method to reduce the complexity of the deterministic maximum likelihood (DML) estimator in the wideband direction-of-arrival (WDOA) problem, which is based on interpolating the array projection matrix in the temporal frequency variable. It is shown that an accurate interpolator like Chebyshev's is able to produce DML cost functions comprising just a few narrowband-like summands. Actually, the number of such summands is far smaller (roughly by factor ten in the numerical ...

  14. Doppler Processing with Ultra-Wideband (UWB) Radar Revisited

    Science.gov (United States)

    2018-01-01

    REPORT TYPE Technical Note 3. DATES COVERED (From - To) December 2017 4. TITLE AND SUBTITLE Doppler Processing with Ultra-Wideband (UWB) Radar...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This technical note revisits previous work performed at the US Army Research Laboratory related to...target considered previously is proportional to a delayed version of the transmitted signal, up to a complex constant factor. We write the received

  15. Ultra-Wideband Coplanar-Fed Monopoles: A Comparative Study

    Directory of Open Access Journals (Sweden)

    J. Jilkova

    2008-04-01

    Full Text Available The paper provides an experimental comparison of four types of ultra-wideband coplanar-fed planar monopole antennas. Parameters of the open stub completed by an L-shaped monopole and the cross monopole were adopted from the literature. The forked monopole and the coplanar monopole were fabricated and measured. Monopoles were compared from the viewpoint of the impedance bandwidth, gain, directivity patterns and dimensions.

  16. Wideband or Dual-Band Low-Profile Circular Patch Antenna with High Gain and Sidelobe Suppression

    DEFF Research Database (Denmark)

    Squadrito, Paolo; Zhang, Shuai; Pedersen, Gert F.

    2018-01-01

    This paper presents a wideband or dual-band circular disk antenna with high gain and sidelobe suppression (SLS). The antenna has a single layer and single-fed configuration. The antenna can operate with the radiation field superposition of TM12 and TM14 modes at one frequency, which provides high...... gain and SLS. A circle of 10 shorting vias with non-identical diameters are loaded inside the antenna cavity in order to excite the field superposition of TM11 and TM13 modes at another frequency. By modifying the radius of the vias, the resonant frequency with the TM11 and TM13 superposition can...... be tuned closer to or further away from the one with the TM12 and TM14 superposition. In this way, a wideband or dual-band behavior can be obtained with high gain and SLS. The proposed antenna achieves the impedance bandwidth of 6.46% for the wideband case, which is over 6 times wider than the previous...

  17. Design of an Ultra-wideband Pseudo Random Coded MIMO Radar Based on Radio Frequency Switches

    Directory of Open Access Journals (Sweden)

    Su Hai

    2017-02-01

    Full Text Available A Multiple-Input Multiple-Output (MIMO ultra-wideband radar can detect the range and azimuth information of targets in real time. It is widely used for geological surveys, life rescue, through-wall tracking, and other military or civil fields. This paper presents the design of an ultra-wideband pseudo random coded MIMO radar that is based on Radio Frequency (RF switches and implements a MIMO radar system. RF switches are employed to reduce cost and complexity of the system. As the switch pressure value is limited, the peak power of the transmitting signal is 18 dBm. The ultra-wideband radar echo is obtained by hybrid sampling, and pulse compression is computed by Digital Signal Processors (DSPs embedded in an Field-Programmable Gate Array (FPGA to simplify the signal process. The experiment illustrates that the radar system can detect the range and azimuth information of targets in real time.

  18. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    Science.gov (United States)

    Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu

    2016-08-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).

  19. Distributed Schemes for Crowdsourcing-Based Sensing Task Assignment in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Linbo Zhai

    2017-01-01

    Full Text Available Spectrum sensing is an important issue in cognitive radio networks. The unlicensed users can access the licensed wireless spectrum only when the licensed wireless spectrum is sensed to be idle. Since mobile terminals such as smartphones and tablets are popular among people, spectrum sensing can be assigned to these mobile intelligent terminals, which is called crowdsourcing method. Based on the crowdsourcing method, this paper studies the distributed scheme to assign spectrum sensing task to mobile terminals such as smartphones and tablets. Considering the fact that mobile terminals’ positions may influence the sensing results, a precise sensing effect function is designed for the crowdsourcing-based sensing task assignment. We aim to maximize the sensing effect function and cast this optimization problem to address crowdsensing task assignment in cognitive radio networks. This problem is difficult to be solved because the complexity of this problem increases exponentially with the growth in mobile terminals. To assign crowdsensing task, we propose four distributed algorithms with different transition probabilities and use a Markov chain to analyze the approximation gap of our proposed schemes. Simulation results evaluate the average performance of our proposed algorithms and validate the algorithm’s convergence.

  20. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling

    NARCIS (Netherlands)

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    Known elementary wide-band amplifiers suffer from a fundamental tradeoff between noise figure (NF) and source impedance matching, which limits the NF to values typically above 3 dB. Global negative feedback can be used to break this tradeoff, however, at the price of potential instability. In

  1. A wideband Noise-Canceling CMOS LNA exploiting a transformer

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram

    2006-01-01

    Abstract — A broadband LNA incorporating single-ended to differential conversion, has been successfully implemented using a noise-canceling technique and a single on-chip transformer. The LNA achieves a high voltage gain of 19dB, a wideband input match (2.5–4.0 GHz), and a Noise Figure of 4–5.4 dB,

  2. A wideband Noise-Canceling CMOS LNA exploiting a transformer

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram

    2006-01-01

    A broadband LNA incorporating single-ended to differential conversion, has been successfully implemented using a noise-canceling technique and a single on-chip transformer. The LNA achieves a high voltage gain of 19dB, a wideband input match (2.5–4.0 GHz), and a Noise Figure of 4–5.4 dB, while

  3. Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System

    Directory of Open Access Journals (Sweden)

    Jia Ying-xin

    2013-03-01

    Full Text Available According to an ultra-high resolution airborne SAR system with better than 0.1 m resolution, a wideband Linear Frequency Modulated (LFM pulse compression exciter with 14.8 GHz carrier and 3.2 GHz bandwidth is designed and implemented. The selection of signal generation scheme and some key technique points for wideband LFM waveform is presented in detail. Then, an acute test and analysis of the LFM signal is performed. The final airborne experiments demonstrate the validity of the LFM source which is one of the subsystems in an ultra-high resolution airborne SAR system.

  4. Novel ultra-wideband photonic signal generation and transmission featuring digital signal processing bit error rate measurements

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Tafur Monroy, Idelfonso

    2009-01-01

    We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal.......We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal....

  5. Dynamics of Gradient Bioceramic Composite Coating on Surface of Titanium Alloy by Wide-Band Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    LIU Qi-bin; ZOU Long-jiang; ZHU Wei-dong; LI Hai-tao; DONG Chuang

    2004-01-01

    The gradient bioceramic coating was prepared on the surface of titanium alloy using wide-band laser cladding. The dynamics of gradient bioceramic composite coating containing hydroxyapatite (HA) prepared with mixture of CaHPO4*2H2O and CaCO3 under the condition of wide-band laser was studied theoretically. The corresponding mathematical model and its numerical solution were presented. The examination experiment showed that HA bioceramic composite coatings can be obtained by appropriately choosing wide-band laser cladding parameters. The microstructure and surface morphology of HA bioceramic coating were observed by SEM and X-ray diffraction. The experimental results showed that the bioceramic coating is composed of HA, β-TCP, CaO, CaTiO3 and TiO2. The surface of bioceramic coating takes coral-shaped structure or short-rod piled structure, which helps osteoblast grow into bioceramic and improves the biocompatibility.

  6. Elementary wideband timing of radio pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Pennucci, Timothy T. [University of Virginia, Department of Astronomy, P.O. Box 400325 Charlottesville, VA 22904-4325 (United States); Demorest, Paul B.; Ransom, Scott M., E-mail: pennucci@virginia.edu, E-mail: pdemores@nrao.edu, E-mail: sransom@nrao.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States)

    2014-08-01

    We present an algorithm for the simultaneous measurement of a pulse time-of-arrival (TOA) and dispersion measure (DM) from folded wideband pulsar data. We extend the prescription from Taylor's 1992 work to accommodate a general two-dimensional template 'portrait', the alignment of which can be used to measure a pulse phase and DM. We show that there is a dedispersion reference frequency that removes the covariance between these two quantities and note that the recovered pulse profile scaling amplitudes can provide useful information. We experiment with pulse modeling by using a Gaussian-component scheme that allows for independent component evolution with frequency, a 'fiducial component', and the inclusion of scattering. We showcase the algorithm using our publicly available code on three years of wideband data from the bright millisecond pulsar J1824–2452A (M28A) from the Green Bank Telescope, and a suite of Monte Carlo analyses validates the algorithm. By using a simple model portrait of M28A, we obtain DM trends comparable to those measured by more standard methods, with improved TOA and DM precisions by factors of a few. Measurements from our algorithm will yield precisions at least as good as those from traditional techniques, but is prone to fewer systematic effects and is without ad hoc parameters. A broad application of this new method for dispersion measure tracking with modern large-bandwidth observing systems should improve the timing residuals for pulsar timing array experiments, such as the North American Nanohertz Observatory for Gravitational Waves.

  7. UWBRAD: Ultra Wideband Software Defined Microwave Radiometer for Ice Sheet Subsurface Temperature Sensing

    Data.gov (United States)

    National Aeronautics and Space Administration — Existing space and airborne remote sensing instruments have pushed the state-of-the-art in the characterization of ice sheet behaviors with the exception of one key...

  8. Real-time wideband holographic surveillance system

    Science.gov (United States)

    Sheen, D.M.; Collins, H.D.; Hall, T.E.; McMakin, D.L.; Gribble, R.P.; Severtsen, R.H.; Prince, J.M.; Reid, L.D.

    1996-09-17

    A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm. 28 figs.

  9. A wideband high-linearity RF receiver front-end in CMOS

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    This paper presents a wideband high-linearity RF receiver-front-end, implemented in standard 0.18 μm CMOS technology. The design employs a noise-canceling LNA in combination with two passive mixers, followed by lowpass-filtering and amplification at IF. The achieved bandwidth is >2 GHz, with a noise

  10. 10th and 11th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Mokole, Eric; UWB SP 10; UWB SP 11

    2014-01-01

    This book presents contributions of deep technical content and high scientific quality in the areas of electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques. Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Like previous books in this series, Ultra-Wideband Short-Pulse Electrom...

  11. Wideband CMOS receivers exploiting simultaneous output balancing and noise/distortion canceling

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, D.M.W.; Nauta, Bram

    2008-01-01

    Abstract— This paper deals with the problem of realizing wideband receiver front-ends in downscaled CMOSTechnologies, which are highly wanted for multi-standard radio receivers and cognitive radio applications. Instead of using many narrowband inductor based receivers, we prefer the use of one

  12. A low-noise, wideband, integrated CMOS transimpedance preamplifier for photodiode applications

    International Nuclear Information System (INIS)

    Binkley, D.M.; Paulus, M.J.; Casey, M.E.; Rochelle, J.M.

    1992-01-01

    In this paper, a low-noise, wideband, integrated CMOS transimpedance preamplifier is presented for silicon avalanche photodiode (APD) applications. The preamplifier, fabricated in a standard 2μ CMOS technology, features a transimpedance gain of 45 kΩ, a risetime of 22 ns, a series noise of 1.6nV/Hz 1/2 , and a wideband equivalent input-noise current of 12 nA for a source capacitance of 12 pF. The measured 22 Na timing resolution of 9.2-ns FWHM and energy resolution of 22.4% FWHM for the RCA C30994 BGO/APD detector module coupled to the preamplifier is comparable to the performance reported using charge-sensitive preamplifiers. This illustrates that transimpedance preamplifiers should be considered for APD applications, especially where APD noise current dominates noise from feedback resistors in the 1--kΩ to 50-kΩ range

  13. Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media

    Science.gov (United States)

    2016-03-04

    AFRL-AFOSR-VA-TR-2016-0112 Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media Natalie Cartwright RESEARCH FOUNDATION OF STATE... Electromagnetic Pulse Propagation through Causal Media 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0013 5c.  PROGRAM ELEMENT NUMBER 61102F 6...SUPPLEMENTARY NOTES 14. ABSTRACT When an electromagnetic pulse travels through a dispersive material each frequency of the transmitted pulse changes in both

  14. THE STUDY OF SPECTRUM RECONSTRUCTION BASED ON FUZZY SET FULL CONSTRAINT AND MULTIENDMEMBER DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    Y. Sun

    2017-09-01

    Full Text Available Hyperspectral imaging system can obtain spectral and spatial information simultaneously with bandwidth to the level of 10 nm or even less. Therefore, hyperspectral remote sensing has the ability to detect some kinds of objects which can not be detected in wide-band remote sensing, making it becoming one of the hottest spots in remote sensing. In this study, under conditions with a fuzzy set of full constraints, Normalized Multi-Endmember Decomposition Method (NMEDM for vegetation, water, and soil was proposed to reconstruct hyperspectral data using a large number of high-quality multispectral data and auxiliary spectral library data. This study considered spatial and temporal variation and decreased the calculation time required to reconstruct the hyper-spectral data. The results of spectral reconstruction based on NMEDM showed that the reconstructed data has good qualities and certain applications, which makes it possible to carry out spectral features identification. This method also extends the application of depth and breadth of remote sensing data, helping to explore the law between multispectral and hyperspectral data.

  15. Noise-based frequency offset modulation in wideband frequency-selective fading channels

    NARCIS (Netherlands)

    Meijerink, Arjan; Cotton, S.L.; Bentum, Marinus Jan; Scanlon, W.G.

    2009-01-01

    A frequency offset modulation scheme using wideband noise carriers is considered. The main advantage of such a scheme is that it enables fast receiver synchronization without channel adaptation, while providing robustness to multipath fading and in-band interference. This is important for low-power

  16. Multi-Objective Clustering Optimization for Multi-Channel Cooperative Spectrum Sensing in Heterogeneous Green CRNs

    KAUST Repository

    Celik, Abdulkadir

    2016-06-27

    In this paper, we address energy efficient (EE) cooperative spectrum sensing policies for large scale heterogeneous cognitive radio networks (CRNs) which consist of multiple primary channels and large number of secondary users (SUs) with heterogeneous sensing and reporting channel qualities. We approach this issue from macro and micro perspectives. Macro perspective groups SUs into clusters with the objectives: 1) total energy consumption minimization; 2) total throughput maximization; and 3) inter-cluster energy and throughput fairness. We adopt and demonstrate how to solve these using the nondominated sorting genetic algorithm-II. The micro perspective, on the other hand, operates as a sub-procedure on cluster formations decided by the macro perspective. For the micro perspectives, we first propose a procedure to select the cluster head (CH) which yields: 1) the best CH which gives the minimum total multi-hop error rate and 2) the optimal routing paths from SUs to the CH. Exploiting Poisson-Binomial distribution, a novel and generalized K-out-of-N voting rule is developed for heterogeneous CRNs to allow SUs to have different local detection performances. Then, a convex optimization framework is established to minimize the intra-cluster energy cost by jointly obtaining the optimal sensing durations and thresholds of feature detectors for the proposed voting rule. Likewise, instead of a common fixed sample size test, we developed a weighted sample size test for quantized soft decision fusion to obtain a more EE regime under heterogeneity. We have shown that the combination of proposed CH selection and cooperation schemes gives a superior performance in terms of energy efficiency and robustness against reporting error wall.

  17. A wideband software reconfigurable modem

    Science.gov (United States)

    Turner, J. H., Jr.; Vickers, H.

    A wideband modem is described which provides signal processing capability for four Lx-band signals employing QPSK, MSK and PPM waveforms and employs a software reconfigurable architecture for maximum system flexibility and graceful degradation. The current processor uses a 2901 and two 8086 microprocessors per channel and performs acquisition, tracking, and data demodulation for JITDS, GPS, IFF and TACAN systems. The next generation processor will be implemented using a VHSIC chip set employing a programmable complex array vector processor module, a GP computer module, customized gate array modules, and a digital array correlator. This integrated processor has application to a wide number of diverse system waveforms, and will bring the benefits of VHSIC technology insertion into avionic antijam communications systems.

  18. A no-tune no-match wideband probe for nuclear quadrupole resonance spectroscopy in the VHF range

    Science.gov (United States)

    Scharfetter, Hermann; Petrovic, Andreas; Eggenhofer, Heidi; Stollberger, Rudolf

    2014-12-01

    Nuclear quadrupole resonance (NQR) spectroscopy is a method for the characterization of chemical compounds containing so-called quadrupolar nuclei. Similar to nuclear magnetic resonance (NMR), the sample under investigation is irradiated with strong radiofrequency (RF) pulses, which stimulate the emission of weak RF signals from the quadrupolar nuclei. The signals are then amplified and Fourier transformed so as to obtain a spectrum. In principle, narrowband NQR spectra can be measured with NMR spectrometers. However, pure NQR signals require the absence of a static magnetic field and several special applications require the characterization of a substance over a large bandwidth, e.g. 50-100% of the central frequency, which is hardly possible with standard NMR equipment. Dedicated zero-field NQR equipment is not widespread and current concepts employ resonating probes which are tuned and matched over a wide range by using mechanical capacitors driven by stepper motors. While providing the highest signal to noise ratio (SNR) such probes are slow in operation and can only be operated from dedicated NMR consoles. We developed a low-cost NQR wideband probe without tuning and matching for applications in the very high frequency (VHF) range below 300 MHz. The probe coil was realized as part of a reactive network which approximates an exponential transmission line. The input reflection coefficient of the two developed prototype probe coils is ≤ 20 dB between 90-145 MHz and 74.5-99.5 MHz, respectively. Two wideband NQR spectra of published test substances were acquired with an SNR of better than 20 dB after sufficient averaging. The measured signals and the SNR correspond very well to the theoretically expected values and demonstrate the feasibility of the method. Because there is no need for tuning and matching, our probes can be operated easily from any available NMR console.

  19. Spectral encoded optical label detection for dynamic routing of impulse radio ultra-wideband signals in metro-access networks

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich; Yu, Xianbin; Yin, Xiaoli

    2010-01-01

    In this paper we propose and experimentally demonstrate the principle of coherent label detection for dynamic routing of wavelength division multiplexed impulse radio ultra-wideband signals by using four-tone spectral amplitude coded labels.......In this paper we propose and experimentally demonstrate the principle of coherent label detection for dynamic routing of wavelength division multiplexed impulse radio ultra-wideband signals by using four-tone spectral amplitude coded labels....

  20. Ultra wideband coplanar waveguide fed spiral antenna for humanitarian demining

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne; Appel-Hansen, Jørgen

    2000-01-01

    to 1 bandwidth with a return loss better than 10 dB from 0.4 to 3.8 GHz is presented. A wideband balun covering the frequency range of the antenna was developed. The constructed spiral antenna is very useful in a stepped frequency ground penetrating radar for humanitarian demining due to the very...

  1. Multichannel Baseband Processor for Wideband CDMA

    Science.gov (United States)

    Jalloul, Louay M. A.; Lin, Jim

    2005-12-01

    The system architecture of the cellular base station modem engine (CBME) is described. The CBME is a single-chip multichannel transceiver capable of processing and demodulating signals from multiple users simultaneously. It is optimized to process different classes of code-division multiple-access (CDMA) signals. The paper will show that through key functional system partitioning, tightly coupled small digital signal processing cores, and time-sliced reuse architecture, CBME is able to achieve a high degree of algorithmic flexibility while maintaining efficiency. The paper will also highlight the implementation and verification aspects of the CBME chip design. In this paper, wideband CDMA is used as an example to demonstrate the architecture concept.

  2. Wideband impedance measurements and modeling of DC motors for EMI predictions

    NARCIS (Netherlands)

    Diouf, F.; Leferink, Frank Bernardus Johannes; Duval, Fabrice; Bensetti, Mohamed

    2015-01-01

    In electromagnetic interference prediction, dc motors are usually modeled as a source and a series impedance. Previous researches only include the impedance of the armature, while neglecting the effect of the motor's rotation. This paper aims at measuring and modeling the wideband impedance of a dc

  3. Compact Wideband and Low-Profile Antenna Mountable on Large Metallic Surfaces

    DEFF Research Database (Denmark)

    Zhang, Shuai; Pedersen, Gert F.

    2017-01-01

    This paper proposes a compact wideband and low-profile antenna mountable on large metallic surfaces. Six rows of coupled microstrip resonators with different lengths are printed on a Teflon block. The lengths of the microstrip resonators in different rows are gradually reduced along the end-fire...

  4. Multiobjective Optimization of Linear Cooperative Spectrum Sensing: Pareto Solutions and Refinement.

    Science.gov (United States)

    Yuan, Wei; You, Xinge; Xu, Jing; Leung, Henry; Zhang, Tianhang; Chen, Chun Lung Philip

    2016-01-01

    In linear cooperative spectrum sensing, the weights of secondary users and detection threshold should be optimally chosen to minimize missed detection probability and to maximize secondary network throughput. Since these two objectives are not completely compatible, we study this problem from the viewpoint of multiple-objective optimization. We aim to obtain a set of evenly distributed Pareto solutions. To this end, here, we introduce the normal constraint (NC) method to transform the problem into a set of single-objective optimization (SOO) problems. Each SOO problem usually results in a Pareto solution. However, NC does not provide any solution method to these SOO problems, nor any indication on the optimal number of Pareto solutions. Furthermore, NC has no preference over all Pareto solutions, while a designer may be only interested in some of them. In this paper, we employ a stochastic global optimization algorithm to solve the SOO problems, and then propose a simple method to determine the optimal number of Pareto solutions under a computational complexity constraint. In addition, we extend NC to refine the Pareto solutions and select the ones of interest. Finally, we verify the effectiveness and efficiency of the proposed methods through computer simulations.

  5. Features of the non-collinear one-phonon anomalous light scattering controlled by elastic waves with elevated linear losses: potentials for multi-frequency parallel spectrum analysis of radio-wave signals.

    Science.gov (United States)

    Shcherbakov, Alexandre S; Arellanes, Adan Omar

    2017-12-01

    During subsequent development of the recently proposed multi-frequency parallel spectrometer for precise spectrum analysis of wideband radio-wave signals, we study potentials of new acousto-optical cells exploiting selected crystalline materials at the limits of their capabilities. Characterizing these wide-aperture cells is non-trivial due to new features inherent in the chosen regime of an advanced non-collinear one-phonon anomalous light scattering by elastic waves with significantly elevated acoustic losses. These features can be observed simpler in uniaxial, tetragonal, and trigonal crystals possessing linear acoustic attenuation. We demonstrate that formerly studied additional degree of freedom, revealed initially for multi-phonon regimes of acousto-optical interaction, can be identified within the one-phonon geometry as well and exploited for designing new cells. We clarify the role of varying the central acoustic frequency and acoustic attenuation using the identified degree of freedom. Therewith, we are strongly restricted by a linear regime of acousto-optical interaction to avoid the origin of multi-phonon processes within carrying out a multi-frequency parallel spectrum analysis of radio-wave signals. Proof-of-principle experiments confirm the developed approaches and illustrate their applicability to innovative technique for an advanced spectrum analysis of wideband radio-wave signals with the improved resolution in an extended frequency range.

  6. Comparison of fundamental and wideband harmonic contrast imaging of liver tumors.

    Science.gov (United States)

    Forsberg, F; Liu, J B; Chiou, H J; Rawool, N M; Parker, L; Goldberg, B B

    2000-03-01

    Wideband harmonic imaging (with phase inversion for improved tissue suppression) was compared to fundamental imaging in vivo. Four woodchucks with naturally occurring liver tumors were injected with Imagent (Alliance Pharmaceutical Corp., San Diego, CA). Randomized combinations of dose (0.05, 0.2 and 0.4 ml/kg) and acoustic output power (AO; 5, 25 and 63% or MI Siemens Medical Systems, Issaquah, WA). Tumor vascularity, conspicuity and contrast enhancement were rated by three independent observers. Imagent produced marked tumor enhancement and improved depiction of neovascularity at all dosages and AO settings in both modes. Tumor vascularity and enhancement correlated with mode, dose and AO (P < 0.002). Fundamental imaging produced more enhancement (P < 0.05), but tumor vascularity and conspicuity were best appreciated in harmonic mode (P < 0.05). Under the conditions studied here, the best approach was wideband harmonic imaging with 0.2 ml/kg of Imagent at an AO of 25%.

  7. Equal gain combining for cooperative spectrum sensing in cognitive radio networks

    KAUST Repository

    Hamza, Doha R.; Aï ssa, Sonia; Aniba, Ghassane

    2014-01-01

    are not tight. The cases of hard sensing and soft sensing are considered and we provide examples in which hard sensing is advantageous to soft sensing. We contrast the performance of SEGC with maximum ratio combining of the sensors' results and provide examples

  8. Maximum Likelihood DOA Estimation of Multiple Wideband Sources in the Presence of Nonuniform Sensor Noise

    Directory of Open Access Journals (Sweden)

    K. Yao

    2007-12-01

    Full Text Available We investigate the maximum likelihood (ML direction-of-arrival (DOA estimation of multiple wideband sources in the presence of unknown nonuniform sensor noise. New closed-form expression for the direction estimation Cramér-Rao-Bound (CRB has been derived. The performance of the conventional wideband uniform ML estimator under nonuniform noise has been studied. In order to mitigate the performance degradation caused by the nonuniformity of the noise, a new deterministic wideband nonuniform ML DOA estimator is derived and two associated processing algorithms are proposed. The first algorithm is based on an iterative procedure which stepwise concentrates the log-likelihood function with respect to the DOAs and the noise nuisance parameters, while the second is a noniterative algorithm that maximizes the derived approximately concentrated log-likelihood function. The performance of the proposed algorithms is tested through extensive computer simulations. Simulation results show the stepwise-concentrated ML algorithm (SC-ML requires only a few iterations to converge and both the SC-ML and the approximately-concentrated ML algorithm (AC-ML attain a solution close to the derived CRB at high signal-to-noise ratio.

  9. Range extension and channel capacity increase in impulse-radio ultra-wideband communications

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Yu, Xianbin; Caballero Jambrina, Antonio

    2010-01-01

    We theoretically analyze the channel capacity of a 5th-order Gaussian pulse-based ultra-wideband (UWB) system and experimentally demonstrate 2 Gbit/s UWB-over-fiber transmission systems incorporating wireless transmission. Both electrical and photonic UWB pulse generation methods are employed...

  10. Multichannel Baseband Processor for Wideband CDMA

    Directory of Open Access Journals (Sweden)

    Jim Lin

    2005-07-01

    Full Text Available The system architecture of the cellular base station modem engine (CBME is described. The CBME is a single-chip multichannel transceiver capable of processing and demodulating signals from multiple users simultaneously. It is optimized to process different classes of code-division multiple-access (CDMA signals. The paper will show that through key functional system partitioning, tightly coupled small digital signal processing cores, and time-sliced reuse architecture, CBME is able to achieve a high degree of algorithmic flexibility while maintaining efficiency. The paper will also highlight the implementation and verification aspects of the CBME chip design. In this paper, wideband CDMA is used as an example to demonstrate the architecture concept.

  11. Comparison of RF spectrum prediction methods for dynamic spectrum access

    Science.gov (United States)

    Kovarskiy, Jacob A.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2017-05-01

    Dynamic spectrum access (DSA) refers to the adaptive utilization of today's busy electromagnetic spectrum. Cognitive radio/radar technologies require DSA to intelligently transmit and receive information in changing environments. Predicting radio frequency (RF) activity reduces sensing time and energy consumption for identifying usable spectrum. Typical spectrum prediction methods involve modeling spectral statistics with Hidden Markov Models (HMM) or various neural network structures. HMMs describe the time-varying state probabilities of Markov processes as a dynamic Bayesian network. Neural Networks model biological brain neuron connections to perform a wide range of complex and often non-linear computations. This work compares HMM, Multilayer Perceptron (MLP), and Recurrent Neural Network (RNN) algorithms and their ability to perform RF channel state prediction. Monte Carlo simulations on both measured and simulated spectrum data evaluate the performance of these algorithms. Generalizing spectrum occupancy as an alternating renewal process allows Poisson random variables to generate simulated data while energy detection determines the occupancy state of measured RF spectrum data for testing. The results suggest that neural networks achieve better prediction accuracy and prove more adaptable to changing spectral statistics than HMMs given sufficient training data.

  12. Cognitive Spectrum Efficient Multiple Access Technique using Relay Systems

    DEFF Research Database (Denmark)

    Frederiksen, Flemming Bjerge; Prasad, Ramjee

    2007-01-01

    Methods to enhance the use of the frequency spectrum by automatical spectrum sensing plus spectrum sharing in a cognitive radio technology context will be presented and discussed in this paper. Ideas to increase the coverage of cellular systems by relay channels, relay stations and collaborate...

  13. Performance Analysis of Ultra-Wideband Channel for Short-Range Monopulse Radar at Ka-Band

    Directory of Open Access Journals (Sweden)

    Naohiko Iwakiri

    2012-01-01

    Full Text Available High-range resolution is inherently provided with Ka-band ultra-wideband (UWB vehicular radars. The authors have developed a prototype UWB monopulse radar equipped with a two-element receiving antenna array and reported its measurement results. In this paper, a more detailed verification using these measurements is presented. The measurements were analyzed employing matched filtering and eigendecomposition, and then multipath components were extracted to examine the behavior of received UWB monopulse signals. Next, conventional direction finding algorithms based on narrowband assumption were evaluated using the extracted multipath components, resulting in acceptable angle-of-arrival (AOA from the UWB monopulse signal regardless of wideband signals. Performance degradation due to a number of averaging the received monopulses was also examined to design suitable radar's waveforms.

  14. Ruggedizing Printed Circuit Boards Using a Wideband Dynamic Absorber

    Directory of Open Access Journals (Sweden)

    V.C. Ho

    2003-01-01

    Full Text Available The existing approaches to ruggedizing inherently fragile and sensitive critical components of electronic equipment such as printed circuit boards (PCB for use in hostile industrial and military environment are either insufficient or expensive. This paper addresses a novel approach towards ruggedizing commercial-off-the-shelf PCBs using a miniature wideband dynamic absorber. The optimisation technique used relies on the experimentally measured vibration spectra and complex receptance of the original PCB.

  15. Investigation on cored-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qunshuang, E-mail: maqunshuang@126.com; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan, E-mail: jwang@sdu.edu.cn; Liu, Kun, E-mail: liu_kun@163.com

    2015-10-05

    Highlights: • Perfect composite coatings were fabricated using wide-band laser cladding. • Special cored-eutectic structure was synthesized in Ni60/WC composite coatings. • Cored-eutectic consists of hard carbide compounds and fine lamellar eutectic of M{sub 23}C{sub 6} carbides and γ-Ni(Fe). • Wear resistance of coating layer was significantly improved due to precipitation of M{sub 23}C{sub 6} carbides. - Abstract: Ni60 composite coatings reinforced with WC particles were fabricated on the surface of Q550 steel using LDF4000-100 fiber laser device. The wide-band laser and circular beam laser used in laser cladding were obtained by optical lens. Microstructure, elemental distribution, phase constitution and wear properties of different composite coatings were investigated. The results showed that WC particles were partly dissolved under the effect of wide-band fiber laser irradiation. A special cored-eutectic structure was synthesized due to dissolution of WC particles. According to EDS and XRD results, the inside cores were confirmed as carbides of M{sub 23}C{sub 6} enriched in Cr, W and Fe. These complex carbides were primarily separated out in the molten metal when solidification started. Eutectic structure composed of M{sub 23}C{sub 6} carbides and γ-Ni(Fe) grew around carbides when cooling. Element content of Cr and W is lower at the bottom of cladding layer. In consequence, the eutectic structure formed in this region did not have inside carbides. The coatings made by circular laser beam were composed of dendritic matrix and interdendritic eutectic carbides, lacking of block carbides. Compared to coatings made by circular laser spot, the cored-eutectic structure formed in wide-band coatings had advantages of well-distribution and tight binding with matrix. The uniform power density and energy distribution and the weak liquid convection in molten pool lead to the unique microstructure evolution in composite coatings made by wide-band laser

  16. Resource-Efficient Fusion with Pre-Compensated Transmissions for Cooperative Spectrum Sensing

    Directory of Open Access Journals (Sweden)

    Dayan Adionel Guimarães

    2015-05-01

    Full Text Available Recently, a novel fusion scheme for cooperative spectrum sensing was proposed for saving resources in the control channel. Secondary users (SUs simultaneously report their decisions using binary modulations with the same carrier frequencies. The transmitted symbols add incoherently at the fusion centre (FC, leading to a larger set of symbols in which a subset is associated with the presence of the primary user (PU signal, and another subset is associated with the absence of such a signal. The decision criterion applied for discriminating these subsets works under the assumption that the channel gains are known at the FC. In this paper, we propose a new simultaneous transmission and decision scheme in which the task of channel estimation is shifted from the FC to the SUs, without the need for feeding-back of the estimates to the FC. The estimates are used at the SUs to pre-compensate for the reporting channel phase rotations and to partially compensate for the channel gains. This partial compensation is the result of signal clipping for peak-to-average power ratio (PAPR control. We show, analytically and with simulations, that this new scheme can produce large performance improvements, yet reduces the implementation complexity when compared with the original one.

  17. Iterative equalization for OFDM systems over wideband Multi-Scale Multi-Lag channels

    NARCIS (Netherlands)

    Xu, T.; Tang, Z.; Remis, R.; Leus, G.

    2012-01-01

    OFDM suffers from inter-carrier interference (ICI) when the channel is time varying. This article seeks to quantify the amount of interference resulting from wideband OFDM channels, which are assumed to follow the multi-scale multi-lag (MSML) model. The MSML channel model results in full channel

  18. Metasurface base on uneven layered fractal elements for ultra-wideband RCS reduction

    Science.gov (United States)

    Su, Jianxun; Cui, Yueyang; Li, Zengrui; Yang, Yaoqing Lamar; Che, Yongxing; Yin, Hongcheng

    2018-03-01

    A novel metasurface based on uneven layered fractal elements is designed and fabricated for ultra-wideband radar cross section (RCS) reduction in this paper. The proposed metasurface consists of two fractal subwavelength elements with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Ultra-wideband RCS reduction results from the phase cancellation between two local waves produced by these two unit cells. The diffuse scattering of electromagnetic (EM) waves is caused by the randomized phase distribution, leading to a low monostatic and bistatic RCS simultaneously. This metasurface can achieve -10dB RCS reduction in an ultra-wide frequency range from 6.6 to 23.9 GHz with a ratio bandwidth (fH/fL) of 3.62:1 under normal incidences for both x- and y-polarized waves. Both the simulation and the measurement results are consistent to verify this excellent RCS reduction performance of the proposed metasurface.

  19. Impulse radio ultra wideband wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry.

    Science.gov (United States)

    Ebrazeh, Ali; Bozorgzadeh, Bardia; Mohseni, Pedram

    2015-01-01

    This paper demonstrates the feasibility of utilizing impulse radio ultra wideband (IR-UWB) signaling technique for reliable, wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) to address the problem of elevated data rates in high-channel-count neurochemical monitoring. Utilizing an FSCV-sensing chip fabricated in AMS 0.35μm 2P/4M CMOS, a 3-5-GHz, IR-UWB transceiver (TRX) chip fabricated in TSMC 90nm 1P/9M RF CMOS, and two off-chip, miniature, UWB antennae, wireless transfer of pseudo-random binary sequence (PRBS) data at 50Mbps over a distance of wireless transmission of dopamine concentration levels prerecorded with FSCV at a CFM during flow injection analysis (FIA) is also demonstrated with transmitter (TX) power dissipation of only ~4.4μW from 1.2V, representing two orders of magnitude reduction in TX power consumption compared to that of a conventional frequency-shift-keyed (FSK) link operating at ~433MHz.

  20. Wide-band slow-wave systems simulation and applications

    CERN Document Server

    Staras, Stanislovas

    2012-01-01

    The field of electromagnetics has seen considerable advances in recent years, based on the wide applications of numerical methods for investigating electromagnetic fields, microwaves, and other devices. Wide-Band Slow-Wave Systems: Simulation and Applications presents new technical solutions and research results for the analysis, synthesis, and design of slow-wave structures for modern electronic devices with super-wide pass-bands. It makes available, for the first time in English, significant research from the past 20 years that was previously published only in Russian and Lithuanian. The aut

  1. Paper-based inkjet-printed ultra-wideband fractal antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-01-01

    For the first time, paper-based inkjet-printed ultra-wideband (UWB) fractal antennas are presented. Two new designs, a miniaturised UWB monopole, which utilises a fractal matching network and is the smallest reported inkjet-printed UWB printed antenna to date, and a fourth-order Koch Snowflake monopole, which utilises a Sierpinski gasket fractal for ink reduction, are demonstrated. It is shown that fractals prove to be a successful method of reducing fabrication costs in inkjet-printed antennas, while retaining or enhancing printed antenna performance. © 2012 The Institution of Engineering and Technology.

  2. Wideband pulse amplifiers for the NECTAr chip

    International Nuclear Information System (INIS)

    Sanuy, A.; Delagnes, E.; Gascon, D.; Sieiro, X.; Bolmont, J.; Corona, P.; Feinstein, F.; Glicenstein, J-F.; Naumann, C.L.; Nayman, P.; Ribó, M.

    2012-01-01

    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1–3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  3. Wideband pulse amplifiers for the NECTAr chip

    Science.gov (United States)

    Sanuy, A.; Delagnes, E.; Gascon, D.; Sieiro, X.; Bolmont, J.; Corona, P.; Feinstein, F.; Glicenstein, J.-F.; Naumann, C. L.; Nayman, P.; Ribó, M.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-12-01

    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  4. REMOTE SENSING FOR ENVIRONMENTAL COMPLIANCE MONITORING

    Science.gov (United States)

    I. Remote Sensing Basics A. The electromagnetic spectrum demonstrates what we can see both in the visible and beyond the visible part of the spectrum through the use of various types of sensors. B. Resolution refers to what a remote sensor can see and how often. 1. Sp...

  5. Cognitive communication and cooperative hetnet coexistence selected advances on spectrum sensing, learning, and security approaches

    CERN Document Server

    Bader, Faouzi

    2014-01-01

    This book, written by experts from universities and major industrial research laboratories, is devoted to the very hot topic of cognitive radio and networking for cooperative coexistence of heterogeneous wireless networks. Selected highly relevant advanced research is presented on spectrum sensing and progress toward the realization of accurate radio environment mapping, biomimetic learning for self-organizing networks, security threats (with a special focus on primary user emulation attack), and cognition as a tool for green next-generation networks. The research activities covered include work undertaken within the framework of the European COST Action IC0902, which is geared towards the definition of a European platform for cognitive radio and networks. Communications engineers, R&D engineers, researchers, and students will all benefit from this complete reference on recent advances in wireless communications and the design and implementation of cognitive radio systems and networks.

  6. WISM - A Wideband Instrument for Snow Measurement: Past Accomplishments, Current Status, and Path Forward

    Science.gov (United States)

    Bonds, Quenton; Racette, Paul; Durham, Tim (Principal Investigator)

    2016-01-01

    Presented are the prior accomplishments, current status and path forward for GSFC's Wideband Instrument for Snow Measurement (WISM). This work is a high level overview of the project, presented via Webinar to the IEEE young professionals.

  7. A high-speed Schottky detector for ultra-wideband communications

    DEFF Research Database (Denmark)

    Valdecasa, Guillermo Silva; Cimoli, Bruno; Blanco Granja, Ángel

    2017-01-01

    This letter reviews the design procedure of a high‐speed Schottky video detector for high‐data‐rate communications within the ultra‐wideband (UWB) frequencies. The classic design approach for video detectors is extended with a mixer‐like analysis, which results in a more detailed assessment of th....... Using 0 dBm carrier power, the lowest measured conversion loss is 10 dB for a video frequency of 1.1 GHz and better than 13 dB up to 1.8 GHz....

  8. Detection of a surface breaking crack by using the centroid variations of laser ultrasonic spectrums

    International Nuclear Information System (INIS)

    Park, Seung Kyu; Baik, Sung Hoon; Lim, Chang Hwan; Joo, Young Sang; Jung, Hyun Kyu; Cha, Hyung Ki; Kang, Young June

    2006-01-01

    A laser ultrasonic system is a non-contact inspection device with a wide-band spectrum and a high spatial resolution. It provides absolute measurements of the moving distance and it can be applied to hard-to-access locations including curved or rough surfaces like in a nuclear power plant. In this paper, we have investigated the detection methods of the depth of a surface-breaking crack by using the surface wave of a laser ultrasound. The filtering function of a surface-breaking crack is a kind of a low-pass filter. The higher frequency components are more highly decreased in proportion to the crack depth. Also, the center frequency value of each ultrasound spectrum is decreased in proportion to the crack depth. We extracted the depth information of a surface-breaking crack by observing the centroid variation of the frequency spectrum. We describe the experimental results to detect the crack depth information by using the peak-to-valley values in the time domain and the center frequency values in the frequency domain.

  9. An ultra-wideband pattern reconfigurable antenna based on graphene coating

    Science.gov (United States)

    Jiang, YanNan; Yuan, Rui; Gao, Xi; Wang, Jiao; Li, SiMin; Lin, Yi-Yu

    2016-11-01

    An ultra-wideband pattern reconfigurable antenna is proposed. The antenna is a dielectric coaxial hollow monopole with a cylindrical graphene-based impedance surface coating. It consists of a graphene sheet coated onto the inner surface of a cylindrical substrate and a set of independent polysilicon DC gating pads mounted on the outside of the cylindrical substrate. By changing the DC bias voltages to the different gating pads, the surface impedance of the graphene coating can be freely controlled. Due to the tunability of graphene's surface impedance, the radiation pattern of the proposed antenna can be reconfigured. A transmission line method is used to illustrate the physical mechanism of the proposed antenna. The results show that the proposed antenna can reconfigure its radiation pattern in the omnidirectional mode with the relative bandwidth of 58.5% and the directional mode over the entire azimuth plane with the relative bandwidth of 67%. Project supported by the National Natural Science Foundation of China (Grant Nos. 61661012, 61461016, and 61361005), the Natural Science Foundation of Guangxi, China (Grant Nos. 2015GXNSFBB139003 and 2014GXNSFAA118283), Program for Innovation Research Team of Guilin University of Electromagnetic Technology, China, and the Dean Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, China.

  10. Effects of Compound K-Distributed Sea Clutter on Angle Measurement of Wideband Monopulse Radar

    Directory of Open Access Journals (Sweden)

    Hong Zhu

    2017-01-01

    Full Text Available The effects of compound K-distributed sea clutter on angle measurement of wideband monopulse radar are investigated in this paper. We apply the conditional probability density function (pdf of monopulse ratio (MR error to analyze these effects. Based on the angle measurement procedure of the wideband monopulse radar, this conditional pdf is first deduced in detail for the case of compound K-distributed sea clutter plus noise. Herein, the spatial correlation of the texture components for each channel clutter and the correlation of the texture components between the sum and difference channel clutters are considered, and two extreme situations for each of them are tackled. Referring to the measured sea clutter data, angle measurement performances in various K-distributed sea clutter plus noise circumstances are simulated, and the effects of compound K-distributed sea clutter on angle measurement are discussed.

  11. Compressive Sensing for Spread Spectrum Receivers

    DEFF Research Database (Denmark)

    Fyhn, Karsten; Jensen, Tobias Lindstrøm; Larsen, Torben

    2013-01-01

    With the advent of ubiquitous computing there are two design parameters of wireless communication devices that become very important: power efficiency and production cost. Compressive sensing enables the receiver in such devices to sample below the Shannon-Nyquist sampling rate, which may lead...... the bit error rate performance is degraded by the subsampling in the CS-enabled receivers, this may be remedied by including quantization in the receiver model.We also study the computational complexity of the proposed receiver design under different sparsity and measurement ratios. Our work shows...

  12. An inductorless wideband LNA with a new noise canceling technique

    OpenAIRE

    MOGHADAM, POURIA PAZHOUHESH; ABRISHAMIFAR, ADIB

    2017-01-01

    An inductorless wideband low-noise amplifier (LNA) employing a new noise canceling technique for multistandard applications is presented. The main amplifier has a cascode common gate structure, which provides good input impedance matching and isolation. The proposed noise canceling technique not only improves the noise figure and power gain but also embeds a g$_{m}$-boosting technique in itself, which reduces the power consumption of the main amplifier. Using current-steering and ...

  13. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling

    OpenAIRE

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    2004-01-01

    Known elementary wide-band amplifiers suffer from a fundamental tradeoff between noise figure (NF) and source impedance matching, which limits the NF to values typically above 3 dB. Global negative feedback can be used to break this tradeoff, however, at the price of potential instability. In contrast, this paper presents a feedforward noise-canceling technique, which allows for simultaneous noise and impedance matching, while canceling the noise and distortion contributions of the matching d...

  14. Wideband Impulse Modulation and Receiver Algorithms for Multiuser Power Line Communications

    Directory of Open Access Journals (Sweden)

    Andrea M. Tonello

    2007-01-01

    Full Text Available We consider a bit-interleaved coded wideband impulse-modulated system for power line communications. Impulse modulation is combined with direct-sequence code-division multiple access (DS-CDMA to obtain a form of orthogonal modulation and to multiplex the users. We focus on the receiver signal processing algorithms and derive a maximum likelihood frequency-domain detector that takes into account the presence of impulse noise as well as the intercode interference (ICI and the multiple-access interference (MAI that are generated by the frequency-selective power line channel. To reduce complexity, we propose several simplified frequency-domain receiver algorithms with different complexity and performance. We address the problem of the practical estimation of the channel frequency response as well as the estimation of the correlation of the ICI-MAI-plus-noise that is needed in the detection metric. To improve the estimators performance, a simple hard feedback from the channel decoder is also used. Simulation results show that the scheme provides robust performance as a result of spreading the symbol energy both in frequency (through the wideband pulse and in time (through the spreading code and the bit-interleaved convolutional code.

  15. Enhanced bit rate-distance product impulse radio ultra-wideband over fiber link

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Jensen, Jesper Bevensee; Caballero Jambrina, Antonio

    2010-01-01

    We report on a record distance and bit rate-wireless impulse radio (IR) ultra-wideband (UWB) link with combined transmission over a 20 km long fiber link. We are able to improve the compliance with the regulated frequency emission mask and achieve bit rate-distance products as high as 16 Gbit/s·m....

  16. Ambient temperature dependence on emission spectrum of InAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, C.Y.; Yoon, S.F. [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore); Chua, S.J. [Institute of Materials Research and Engineering, Faculty of Engineering (Singapore)

    2009-04-15

    Semiconductor superluminescent diodes (SLDs) are important broadband light source for fiber optic gyroscope and biomedical imaging. Quantum dots (QDs) have been proposed to be the best candidate for broadband light sources due to the inhomogeneous broadening of the gain spectrum as a result of the inherited size inhomogeneity of the self-assembled QD growth. In this work, the effect of ambient temperature (25-100 C) on the emission spectrum of InAs QDs with wideband emission was investigated. It was found that the full-width at half-maximum (FWHM) of the photoluminescence (PL) spectra remains more than 125 nm throughout the temperature range, and the redshift as function of temperature is approximately 0.27 meV/K. Activation energy of 270 meV is extracted from the Arrhenius plot and the PL quenching at high temperature is attributed to thermally induced carriers escaping out of the In{sub 0.15}Ga{sub 0.85}As strain-reducing layer. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Statistical Modeling, Simulation, and Experimental Verification of Wideband Indoor Mobile Radio Channels

    Directory of Open Access Journals (Sweden)

    Yuanyuan Ma

    2018-01-01

    Full Text Available This paper focuses on the modeling, simulation, and experimental verification of wideband single-input single-output (SISO mobile fading channels for indoor propagation environments. The indoor reference channel model is derived from a geometrical rectangle scattering model, which consists of an infinite number of scatterers. It is assumed that the scatterers are exponentially distributed over the two-dimensional (2D horizontal plane of a rectangular room. Analytical expressions are derived for the probability density function (PDF of the angle of arrival (AOA, the PDF of the propagation path length, the power delay profile (PDP, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOC channel simulator is derived from the nonrealizable reference model by employing the SOC principle. It is shown that the SOC channel simulator approximates closely the reference model with respect to the FCF. The SOC channel simulator enables the performance evaluation of wideband indoor wireless communication systems with reduced realization expenditure. Moreover, the rationality and usefulness of the derived indoor channel model is confirmed by various measurements at 2.4, 5, and 60 GHz.

  18. The Analysis of a Wideband Strip-Helical Antenna with 1.1 Turns

    Directory of Open Access Journals (Sweden)

    Xihui Tang

    2016-01-01

    Full Text Available A wideband strip-helical antenna with 1.1 turns is analyzed numerically and experimentally. By replacing the traditional wire helix with wide metallic strip, the forward traveling current on the strip helix with about one turn smoothly decays to the minimum value at the open end of the helix. Therefore, the strip helix can excite a wideband circular polarization (CP wave with 50-ohm impedance matching. The proposed antenna is printed on a hollow-cylinder with a substrate relative permittivity of εr=2.2 and a thickness of h=0.5 mm. A 50 Ω coaxial cable is directly connected to excite the strip-helical antenna without any additional impedance matching section. The ground plane is placed below the antenna in order to provide a directional radiation pattern. To demonstrate this method, a prototype of 1.1-turn strip-helical antenna is tested. The test shows that the proposed antenna can reach an overlapped bandwidth of 46% with height of 0.52λ0, where λ0 is the wavelength in free space at the center operation frequency.

  19. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses

    Energy Technology Data Exchange (ETDEWEB)

    Simicevic, Neven [Center for Applied Physics Studies, Louisiana Tech University, Ruston, LA 71272 (United States)], E-mail: neven@phys.latech.edu

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  20. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses.

    Science.gov (United States)

    Simicevic, Neven

    2008-03-21

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW.

  1. FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses

    International Nuclear Information System (INIS)

    Simicevic, Neven

    2008-01-01

    With an increase in the application of ultra-wideband (UWB) electromagnetic pulses in the communications industry, radar, biotechnology and medicine, comes an interest in UWB exposure safety standards. Despite an increase of the scientific research on bioeffects of exposure to non-ionizing UWB pulses, characterization of those effects is far from complete. A numerical computational approach, such as a finite-difference time domain (FDTD) method, is required to visualize and understand the complexity of broadband electromagnetic interactions. The FDTD method has almost no limits in the description of the geometrical and dispersive properties of the simulated material, it is numerically robust and appropriate for current computer technology. In this paper, a complete calculation of exposure of the human eye to UWB electromagnetic pulses in the frequency range of 3.1-10.6, 22-29 and 57-64 GHz is performed. Computation in this frequency range required a geometrical resolution of the eye of 0.1 mm and an arbitrary precision in the description of its dielectric properties in terms of the Debye model. New results show that the interaction of UWB pulses with the eye tissues exhibits the same properties as the interaction of the continuous electromagnetic waves (CWs) with the frequencies from the pulse's frequency spectrum. It is also shown that under the same exposure conditions the exposure to UWB pulses is from one to many orders of magnitude safer than the exposure to CW

  2. Wideband pulse amplifiers for the NECTAr chip

    Energy Technology Data Exchange (ETDEWEB)

    Sanuy, A., E-mail: asanuy@ecm.ub.es [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Delagnes, E. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Gascon, D. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Sieiro, X. [Departament d' Electronica, Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, CC072, bat. 13, place Eugene Bataillon, 34095 Montpellier (France); Glicenstein, J-F. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Ribo, M. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); and others

    2012-12-11

    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  3. A GPU-Based Wide-Band Radio Spectrometer

    Science.gov (United States)

    Chennamangalam, Jayanth; Scott, Simon; Jones, Glenn; Chen, Hong; Ford, John; Kepley, Amanda; Lorimer, D. R.; Nie, Jun; Prestage, Richard; Roshi, D. Anish; Wagner, Mark; Werthimer, Dan

    2014-12-01

    The graphics processing unit has become an integral part of astronomical instrumentation, enabling high-performance online data reduction and accelerated online signal processing. In this paper, we describe a wide-band reconfigurable spectrometer built using an off-the-shelf graphics processing unit card. This spectrometer, when configured as a polyphase filter bank, supports a dual-polarisation bandwidth of up to 1.1 GHz (or a single-polarisation bandwidth of up to 2.2 GHz) on the latest generation of graphics processing units. On the other hand, when configured as a direct fast Fourier transform, the spectrometer supports a dual-polarisation bandwidth of up to 1.4 GHz (or a single-polarisation bandwidth of up to 2.8 GHz).

  4. Concurrent communication and sensing in cognitive radio devices: challenges and an enabling solution

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki; Alrabadi, Osama; Tatomirescu, Alexandru

    2014-01-01

    Cognitive Radios (CRs) need to continuously monitor the availability of unoccupied spectrum. Prior work on spectrum sensing mainly focused on time-slotted schemes where sensing and communication take place on different time periods in the same frequency. This however leads to a) limited CR...

  5. Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in vibrios.

    Directory of Open Access Journals (Sweden)

    Wai-Leung Ng

    Full Text Available Quorum sensing (QS is a bacterial cell-cell communication process that relies on the production and detection of extracellular signal molecules called autoinducers. QS allows bacteria to perform collective activities. Vibrio cholerae, a pathogen that causes an acute disease, uses QS to repress virulence factor production and biofilm formation. Thus, molecules that activate QS in V. cholerae have the potential to control pathogenicity in this globally important bacterium. Using a whole-cell high-throughput screen, we identified eleven molecules that activate V. cholerae QS: eight molecules are receptor agonists and three molecules are antagonists of LuxO, the central NtrC-type response regulator that controls the global V. cholerae QS cascade. The LuxO inhibitors act by an uncompetitive mechanism by binding to the pre-formed LuxO-ATP complex to inhibit ATP hydrolysis. Genetic analyses suggest that the inhibitors bind in close proximity to the Walker B motif. The inhibitors display broad-spectrum capability in activation of QS in Vibrio species that employ LuxO. To the best of our knowledge, these are the first molecules identified that inhibit the ATPase activity of a NtrC-type response regulator. Our discovery supports the idea that exploiting pro-QS molecules is a promising strategy for the development of novel anti-infectives.

  6. Design of a fiber optical sensor for atmospheric electric field measurement

    International Nuclear Information System (INIS)

    Baghdasaryan, H.V.; Knyazyan, T.M.; Daryan, A.V.

    2016-01-01

    All-optical sensor for atmospheric electric field detection and measurement is suggested and numerically modelled. Thin electro- optical crystal sandwiched between two distributed Bragg reflectors (DBRs) forming multilayer Gires-Tournois (G-T) microresonator is used as a sensitive part of the electric field sensor. In the sensor device, an optical fiber delivers the wideband light spectrum to the sensing multilayer structure of G-T microresonator. The reflectance spectrum of the sensor contains information on the electric field strength and direction. The relevant reflectance peaks’ shift in the reflected spectrum can be observed by an optical spectrum analyzer (OSA). Numerical modelling has been done by the method of single expression that is a suitable tool for multi-boundary problems solution. The obtained results of modelling will be useful in a new type of non-distorting sensor’s elaboration for atmospheric electric field detection and measurement. (author)

  7. Closely Mounted Compact Wideband Diversity Antenna for Mobile Phone Applications

    Directory of Open Access Journals (Sweden)

    Bunggil Yu

    2012-01-01

    Full Text Available Here a compact wideband diversity antenna covering the PCS/UMTS/WiMAX bands with high isolation and low enveloped correlation coefficient (ECC is proposed. To widen the bandwidth, the proposed antenna uses a structure with a gap-coupled feed and an inductively shorted line that has capacitive compensation between the radiator and the ground plane. Also, a suspended line with a parasitic element is used to enhance the isolation between the two antennas.

  8. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.

    1998-01-01

    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  9. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.

    1999-01-01

    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  10. Up to 35 Gbps Ultra-Wideband Wireless Data Transmission Links

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Vegas Olmos, Juan José

    2016-01-01

    For the first time Ultra-Wideband record data transmission rates up to 35.1 Gbps and 21.6 Gbps are achieved, compliant with the restrictions on the effective radiated power established by both the United States Federal Communications Commission and the European Electronic Communications Committee......, respectively. To achieve these record bit rates, the multi-band approach of Carrierless Amplitude Phase modulation scheme was employed. Wireless transmissions were achieved with a BER below the 7% FEC threshold of 3.8·10-3 ....

  11. Green Cooperative Spectrum Sensing and Scheduling in Heterogeneous Cognitive Radio Networks

    KAUST Repository

    Celik, Abdulkadir; Kamal, Ahmed E.

    2016-01-01

    the homogeneity assumption. Based on these, a prioritized ordering heuristic is developed to order channels under the spectrum, energy, and spectrum-energy limited regimes. After that, a scheduling and assignment heuristic is proposed and is shown to perform very

  12. Studies on Five Senses Treatment

    Science.gov (United States)

    Sato, Sadaka; Miao, Tiejun; Oyama-Higa, Mayumi

    2011-06-01

    This study proposed a therapy from complementary and alternative medicine to treat mental disorder by through interactions of five senses between therapist and patient. In this method sounding a certain six voices play an important role in healing and recovery. First, we studied effects of speaking using scalp- EEG measurement. Chaos analysis of EEG showed a largely enhanced largest Lyapunov exponent (LLE) during the speaking. In addition, EEG power spectrum showed an increase over most frequencies. Second, we performed case studies on mental disorder using the therapy. Running power spectrum of EEG of patients indicated decreasing power at end of treatment, implying five senses therapy induced relaxed and lowered energy in central neural system. The results agreed with patient's reports that there were considerable decline in anxiety and improvements in mood.

  13. Spatial Dynamic Wideband Modeling of the MIMO Satellite-to-Earth Channel

    OpenAIRE

    Lehner, Andreas; Steingass, Alexander

    2014-01-01

    A novel MIMO (multiple input multiple output) satellite channel model that allows the generation of associated channel impulse response (CIR) time series depending on the movement profile of a land mobile terminal is presented in this paper. Based on high precise wideband measurements in L-band the model reproduces the correlated shadowing and multipath conditions in rich detail. The model includes time and space variant echo signals appearing and disappearing in dependence on the receive ...

  14. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    Science.gov (United States)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-08-12

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.

  15. Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure.

    Science.gov (United States)

    Zhuang, Leimeng; Beeker, Willem; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-02-11

    We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For microwave photonic signal processing, this structure is able to serve as a wideband 2 × 2 RF coupler with reconfigurable complex coefficients, and therefore can be used as a polarization network for wideband antennas. Such a device can equip the antennas with not only the polarization rotation capability for linear-polarization signals but also the capability to operate with and tune between two opposite circular polarizations. Operating together with a particular modulation scheme, the device is also able to serve for simultaneous feeding of dual-polarization signals. These photonic-implemented RF functionalities can be applied to wideband antenna systems to perform agile polarization manipulations and tracking operations. An example of such a interleaver has been realized in TriPleX waveguide technology, which was designed with a free spectral range of 20 GHz and a mask footprint of smaller than 1 × 1 cm. Using the realized device, the reconfigurable complex coefficients of the polarization network were demonstrated with a continuous bandwidth from 2 to 8 GHz and an in-band phase ripple of smaller than 5 degree. The waveguide structure of the device allows it to be further integrated with other functional building blocks of a photonic integrated circuit to realize on-chip, complex microwave photonic processors. Of particular interest, it can be included in an optical beamformer for phased array antennas, so that simultaneous wideband beam and polarization trackings can be achieved photonically. To our knowledge, this is the first-time on-chip demonstration of an integrated microwave photonic polarization network for dual linear-polarized antennas.

  16. First Experimental Impulse-Radio Ultra-Wideband Transmission Under the Russian Spectral Emission Mask

    DEFF Research Database (Denmark)

    Grakhova, Elizaveta P.; Rommel, Simon; Jurado-Navas, Antonio

    2016-01-01

    Ultra-wideband impulse-radio wireless transmission under the stringent conditions and complex shape of the Russian spectral emission mask is experimentally demonstrated for the first time. Transmission of 1Gbit/s and 1.25Gbit/s signals over distances of 6m and 3m is achieved with a BER below 3.8×10-3....

  17. Wide-band residual phase-noise measurements on 40-GHz monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Larsson, David; Hvam, Jørn Märcher

    2005-01-01

    We have performed wide-band residual phase-noise measurements on semiconductor 40-GHz mode-locked lasers by employing electrical waveguide components for the radio-frequency circuit. The intrinsic timing jitters of lasers with one, two, and three quantum wells (QW) are compared and our design......-QW laser. There is good agreement between the measured results and existing theory....

  18. Implementation of an Optical-Wireless Network with Spectrum Sensing and Dynamic Resource Allocation Using Optically Controlled Reconfigurable Antennas

    Directory of Open Access Journals (Sweden)

    E. Raimundo-Neto

    2014-01-01

    Full Text Available This work proposes the concept and reports the implementation of an adaptive and cognitive radio over fiber architecture. It is aimed at dealing with the new demands for convergent networks by means of simultaneously providing the functionalities of multiband radiofrequency spectrum sensing, dynamic resource allocation, and centralized processing capability, as well as the use of optically controlled reconfigurable antennas and radio over fiber technology. The performance of this novel and innovative architecture has been evaluated in a geographically distributed optical-wireless network under real conditions and for different fiber lengths. Experimental results demonstrate reach extension of more than 40 times and an enhancement of more than 30 dB in the carrier to interference plus noise ratio parameter.

  19. Performance analysis for a chaos-based code-division multiple access system in wide-band channel

    Directory of Open Access Journals (Sweden)

    Ciprian Doru Giurcăneanu

    2015-08-01

    Full Text Available Code-division multiple access technology is widely used in telecommunications and its performance has been extensively investigated in the past. Theoretical results for the case of wide-band transmission channel were not available until recently. The novel formulae which have been published in 2014 can have an important impact on the future of wireless multiuser communications, but limitations come from the Gaussian approximations used in their derivation. In this Letter, the authors obtain more accurate expressions of the bit error rate (BER for the case when the model of the wide-band channel is two-ray, with Rayleigh fading. In the authors’ approach, the spreading sequences are assumed to be generated by logistic map given by Chebyshev polynomial function of order two. Their theoretical and experimental results show clearly that the previous results on BER, which rely on the crude Gaussian approximation, are over-pessimistic.

  20. Multidimensional Signal Processing for Sensing & Communications

    Science.gov (United States)

    2015-07-29

    Spectrum Sensing,” submitted to IEEE Intl. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Cancun, Mexico , 13-16 Dec. 2015...Sensing,” submitted to IEEE Intl. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Cancun, Mexico , 13-16 Dec. 2015...diversity in echolocating mammals ,” IEEE Signal Processing Magazine, vol. 26, no. 1, pp. 65- 75, Jan. 2009. DISTRIBUTION A: Distribution approved for

  1. A Compact QPSK Modulator with Low Amplitude and Phase Imbalance for Remote Sensing Applications

    KAUST Repository

    Ghaffar, Farhan Abdul

    2012-09-30

    A new, compact and wide-band Quadrature Phase Shift Keying (QPSK) modulator is presented for remote sensing applications. The microstrip-based modulator employs quadrature hybrid coupler, Wilkinson divider, rat race coupler and GaAs MESFET switches. It is designed to be part of an X band remote sensing transmitter with a center frequency of 8.25GHz. The fabricated module demonstrates the lowest reported amplitude and phase imbalances (0.1dB and 0.4° respectively) around its center frequency. The modulation, tested up to 160 Mbps data rate, displays carrier suppression greater than 30 dB. With negligible DC power consumption and low insertion loss, it operates for a wide bandwidth of 3 GHz (7-10 GHz). The effect of amplitude and phase imbalance is investigated on the performance of the modulator. Finally, a transmitter employing this modulator exhibits an excellent overall Error Vector Magnitude (EVM) of around 8 % that is considerably low as compared to the typically obtained values for such transmitters.

  2. A Compact QPSK Modulator with Low Amplitude and Phase Imbalance for Remote Sensing Applications

    KAUST Repository

    Ghaffar, Farhan Abdul; Al-Naffouri, Tareq Y.; Mobeen, M. Kashan; Salama, Khaled N.; Shamim, Atif

    2012-01-01

    A new, compact and wide-band Quadrature Phase Shift Keying (QPSK) modulator is presented for remote sensing applications. The microstrip-based modulator employs quadrature hybrid coupler, Wilkinson divider, rat race coupler and GaAs MESFET switches. It is designed to be part of an X band remote sensing transmitter with a center frequency of 8.25GHz. The fabricated module demonstrates the lowest reported amplitude and phase imbalances (0.1dB and 0.4° respectively) around its center frequency. The modulation, tested up to 160 Mbps data rate, displays carrier suppression greater than 30 dB. With negligible DC power consumption and low insertion loss, it operates for a wide bandwidth of 3 GHz (7-10 GHz). The effect of amplitude and phase imbalance is investigated on the performance of the modulator. Finally, a transmitter employing this modulator exhibits an excellent overall Error Vector Magnitude (EVM) of around 8 % that is considerably low as compared to the typically obtained values for such transmitters.

  3. Advanced sensing techniques for cognitive radio

    CERN Document Server

    Zhao, Guodong; Li, Shaoqian

    2017-01-01

    This SpringerBrief investigates advanced sensing techniques to detect and estimate the primary receiver for cognitive radio systems. Along with a comprehensive overview of existing spectrum sensing techniques, this brief focuses on the design of new signal processing techniques, including the region-based sensing, jamming-based probing, and relay-based probing. The proposed sensing techniques aim to detect the nearby primary receiver and estimate the cross-channel gain between the cognitive transmitter and primary receiver. The performance of the proposed algorithms is evaluated by simulations in terms of several performance parameters, including detection probability, interference probability, and estimation error. The results show that the proposed sensing techniques can effectively sense the primary receiver and improve the cognitive transmission throughput. Researchers and postgraduate students in electrical engineering will find this an exceptional resource.

  4. Investigation on wide-band scattering of a 2-D target above 1-D randomly rough surface by FDTD method.

    Science.gov (United States)

    Li, Juan; Guo, Li-Xin; Jiao, Yong-Chang; Li, Ke

    2011-01-17

    Finite-difference time-domain (FDTD) algorithm with a pulse wave excitation is used to investigate the wide-band composite scattering from a two-dimensional(2-D) infinitely long target with arbitrary cross section located above a one-dimensional(1-D) randomly rough surface. The FDTD calculation is performed with a pulse wave incidence, and the 2-D representative time-domain scattered field in the far zone is obtained directly by extrapolating the currently calculated data on the output boundary. Then the 2-D wide-band scattering result is acquired by transforming the representative time-domain field to the frequency domain with a Fourier transform. Taking the composite scattering of an infinitely long cylinder above rough surface as an example, the wide-band response in the far zone by FDTD with the pulsed excitation is computed and it shows a good agreement with the numerical result by FDTD with the sinusoidal illumination. Finally, the normalized radar cross section (NRCS) from a 2-D target above 1-D rough surface versus the incident frequency, and the representative scattered fields in the far zone versus the time are analyzed in detail.

  5. [The effect of technological parameters of wide-band laser cladding on microstructure and sinterability of gradient bioceramics composite coating].

    Science.gov (United States)

    Liu, Qibin; Zhu, Weidong; Zou, Longjiang; Zheng, Min; Dong, Chuang

    2005-12-01

    The gradient bioceramics coating was prepared on the surface of Ti-6Al-4V alloy by using wide-band laser cladding. And the effect of technological parameters of wide-band laser cladding on microstructure and sinterability of gradient bioceramics composite coating was studied. The experimental results indicated that in the circumstances of size of laser doze D and scanning velocity V being fixed, with the increasement of power P, the density of microstructure in bioceramics coating gradually degraded; with the increasement of power P, the pore rate of bioceramics gradually became high. While P = 2.3 KW, the bioceramics coating with dense structure and lower pore rate (5.11%) was obtained; while P = 2.9 KW, the bioceramics coating with disappointing density was formed and its pore rate was up to 21.32%. The microhardness of bioceramics coating demonstrated that while P = 2.3 KW, the largest value of microhardness of bioceramics coating was 1100 HV. Under the condition of our research work, the optimum technological parameters for preparing gradient bioceramics coating by wide-band laser cladding are: P = 2.3 KW, V = 145 mm/min, D = 16 mm x 2 mm.

  6. A Wideband and Compact Circularly-Polarized Rectenna for Low Power Application

    OpenAIRE

    Okba , Abderrahim; Takacs , Alexandru; Aubert , Hervé; Bellion , Anthony; Grenana , D

    2017-01-01

    International audience; This paper presents a wideband and compact circularly polarized rectenna composed by an Archimedean spiral antenna that covers the S and C frequency bands and a silicon Schottky diode. This rectenna (rectifier + antenna) is used for electromagnetic energy harvesting over a wide frequency band, in order to power autonomous wireless sensors used for satellite health monitoring. For low incident power densities (around 14 µW/cm²) the measured efficiency of at least 19% be...

  7. Effect of Substrate Permittivity and Thickness on Performance of Single-Layer, Wideband, U-Slot Antennas on Microwave Substrates

    National Research Council Canada - National Science Library

    Natarajan, V; Chatterjee, D

    2004-01-01

    This paper presents effects of substrate permittivity and thickness on the performance characteristics like impedance bandwidth, radiation efficiency and gain of a single-layer, wideband, U-slot antenna...

  8. Wideband Small-Signal Input dq Admittance Modeling of Six-Pulse Diode Rectifiers

    DEFF Research Database (Denmark)

    Yue, Xiaolong; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    This paper studies the wideband small-signal input dq admittance of six-pulse diode rectifiers. Considering the frequency coupling introduced by ripple frequency harmonics of d-and q-channel switching function, the proposed model successfully predicts the small-signal input dq admittance of six......-pulse diode rectifiers in high frequency regions that existing models fail to explain. Simulation and experimental results verify the accuracy of the proposed model....

  9. SDAI: a key piece of software to manage the new wideband backend at Robledo

    Science.gov (United States)

    Rizzo, J. R.; Gutiérrez Bustos, M.; Kuiper, T. B. H.; Cernicharo, J.; Sotuela, I.; Pedreira, A.

    2012-09-01

    A joint collaborative project was recently developed to provide the Madrid Deep Space Communications Complex with a state-of-the-art wideband backend. This new backend provides from 100MHz to 6 GHz of instantaneous bandwidth, and spectral resolutions from 6 to 200 kHz. The backend includes a new intermediate-frequency processor, as well as a FPGA-based FFT spectrometer, which manage thousands of spectroscopic channels in real time. All these equipment need to be controlled and operated by a common software, which has to synchronize activities among affected devices, and also with the observing program. The final output should be a calibrated spectrum, readable by standard radio astronomical tools for further processing. The developed software at this end is named "Spectroscopic Data Acquisition Interface" (SDAI). SDAI is written in python 2.5, using PyQt4 for the User Interface. By an ethernet socket connection, SDAI receives astronomical information (source, frequencies, Doppler correction, etc.) and the antenna status from the observing program. Then it synchronizes the observations at the required frequency by tuning the synthesizers through their USB ports; finally SDAI controls the FFT spectrometers through UDP commands sent by sockets. Data are transmitted from the FFT spectrometers by TCP sockets, and written as standard FITS files. In this paper we describe the modules built, depict a typical observing session, and show some astronomical results using SDAI.

  10. Design of a planar ultra-wideband four-way power divider/combiner using defected ground structures

    DEFF Research Database (Denmark)

    Squartecchia, Michele; Cimoli, Bruno; Midili, Virginio

    2017-01-01

    This work presents the design of a planar ultra-wideband (UWB) four-way power divider/combiner. A prototype has been fabricated on a printed circuit board and characterized. For achieving the frequency response required in UWB applications, each branch of the divider is conceived as a three...

  11. Ultra-wideband ranging precision and accuracy

    International Nuclear Information System (INIS)

    MacGougan, Glenn; O'Keefe, Kyle; Klukas, Richard

    2009-01-01

    This paper provides an overview of ultra-wideband (UWB) in the context of ranging applications and assesses the precision and accuracy of UWB ranging from both a theoretical perspective and a practical perspective using real data. The paper begins with a brief history of UWB technology and the most current definition of what constitutes an UWB signal. The potential precision of UWB ranging is assessed using Cramer–Rao lower bound analysis. UWB ranging methods are described and potential error sources are discussed. Two types of commercially available UWB ranging radios are introduced which are used in testing. Actual ranging accuracy is assessed from line-of-sight testing under benign signal conditions by comparison to high-accuracy electronic distance measurements and to ranges derived from GPS real-time kinematic positioning. Range measurements obtained in outdoor testing with line-of-sight obstructions and strong reflection sources are compared to ranges derived from classically surveyed positions. The paper concludes with a discussion of the potential applications for UWB ranging

  12. Ultra wideband wireless body area networks

    CERN Document Server

    Thotahewa, Kasun Maduranga Silva; Yuce, Mehmet Rasit

    2014-01-01

    This book explores the design of ultra wideband (UWB) technology for wireless body-area networks (WBAN).  The authors describe a novel implementation of WBAN sensor nodes that use UWB for data transmission and narrow band for data reception, enabling low power sensor nodes, with high data rate capability.  The discussion also includes power efficient, medium access control (MAC) protocol design for UWB based WBAN applications and the authors present a MAC protocol in which a guaranteed delivery mechanism is utilized to transfer data with high priority.  Readers will also benefit from this book’s feasibility analysis of the UWB technology for human implant applications through the study of electromagnetic and thermal power absorption of human tissue that is exposed to UWB signals.   • Describes hardware platform development for IR-UWB based WBAN communication; • Discusses power efficient medium access control (MAC) protocol design for IR-UWB based WBAN applications; • Includes feasibility analy...

  13. Impulse radio ultra wide-band over multi-mode fiber for in-home signal distribution

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Rodes, Roberto; Jensen, Jesper Bevensee

    2009-01-01

    We propose and experimentally demonstrate a high speed impulse radio ultra wide-band (IR-UWB) wireless link for in-home network signal distribution. The IR-UWB pulse is distributed over a multimode fiber to the transmitter antenna. Wireless transmitted bit-rates of 1 Gbps at 2 m and 2 Gbps at 1.5 m...

  14. Monostatic ultra-wideband GPR antenna for through wall detection

    Directory of Open Access Journals (Sweden)

    Ali Jawad

    2017-01-01

    Full Text Available The aim of this paper is to present a monostatic arc-shaped ultra-wideband (UWB printed monopole antenna system with 3-16 GHz frequency bandwidth suitable for through-wall detection. Ground penetrating radar (GPR technique is used for detection with the gain of 6.2 dB achieved for the proposed antenna using defected ground structure (DGS method. To serve the purpose, a simulation experiment of through-wall detection model is constructed which consists of a monostatic antenna act as transmitter and receiver, concrete wall and human skin model. The time domain reflection of obtained result is then analysed for target detection.

  15. Head and hand detuning effect study of narrow-band against wide-band mobile phone antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2014-01-01

    Wide-band (WB) and narrow-band (NB) antennas in terms of performance are compared, when interacting with the user’s right head and hand (RHH). The investigations are done through experimental measurements, using standardised head phantom and hand. It is shown that WB antennas detune more than NB ...

  16. Ultra-wideband horn antenna with abrupt radiator

    Science.gov (United States)

    McEwan, Thomas E.

    1998-01-01

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna.

  17. Ultra-Wideband Sensors for Improved Magnetic Resonance Imaging, Cardiovascular Monitoring and Tumour Diagnostics

    Directory of Open Access Journals (Sweden)

    Frank Seifert

    2010-12-01

    Full Text Available The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour’s contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied.

  18. Ultra-wideband sensors for improved magnetic resonance imaging, cardiovascular monitoring and tumour diagnostics.

    Science.gov (United States)

    Thiel, Florian; Kosch, Olaf; Seifert, Frank

    2010-01-01

    The specific advantages of ultra-wideband electromagnetic remote sensing (UWB radar) make it a particularly attractive technique for biomedical applications. We partially review our activities in utilizing this novel approach for the benefit of high and ultra-high field magnetic resonance imaging (MRI) and other applications, e.g., for intensive care medicine and biomedical research. We could show that our approach is beneficial for applications like motion tracking for high resolution brain imaging due to the non-contact acquisition of involuntary head motions with high spatial resolution, navigation for cardiac MRI due to our interpretation of the detected physiological mechanical contraction of the heart muscle and for MR safety, since we have investigated the influence of high static magnetic fields on myocardial mechanics. From our findings we could conclude, that UWB radar can serve as a navigator technique for high and ultra-high field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it can potentially be used to support standard ECG analysis by complementary information where sole ECG analysis fails. Further analytical investigations have proven the feasibility of this method for intracranial displacements detection and the rendition of a tumour's contrast agent based perfusion dynamic. Beside these analytical approaches we have carried out FDTD simulations of a complex arrangement mimicking the illumination of a human torso model incorporating the geometry of the antennas applied.

  19. Band-engineering of TiO2 as a wide-band gap semiconductor using organic chromophore dyes

    Science.gov (United States)

    Wahyuningsih, S.; Kartini, I.; Ramelan, A. H.; Saputri, L. N. M. Z.; Munawaroh, H.

    2017-07-01

    Bond-engineering as applied to semiconductor materials refers to the manipulation of the energy bands in order to control charge transfer processes in a device. When the device in question is a photoelectrochemical cell, the charges affected by drift become the focus of the study. The ideal band gap of semiconductors for enhancement of photocatalyst activity can be lowered to match with visible light absorption and the location of conduction Band (CB) should be raised to meet the reducing capacity. Otherwise, by the addition of the chromofor organic dyes, the wide-band gab can be influences by interacation resulting between TiO2 surface and the dyes. We have done the impruvisation wide-band gap of TiO2 by the addition of organic chromophore dye, and the addition of transition metal dopand. The TiO2 morphology influence the light absorption as well as the surface modification. The organic chromophore dye was syntesized by formation complexes compound of Co(PAR)(SiPA)(PAR)= 4-(2-piridylazoresorcinol), SiPA = Silyl propil amine). The result showed that the chromophore groups adsorbed onto TiO2 surface can increase the visible light absorption of wide-band gab semiconductor. Initial absorption of a chromophore will affect light penetration into the material surfaces. The use of photonic material as a solar cell shows this phenomenon clearly from the IPCE (incident photon to current conversion efficiency) measurement data. Organic chromophore dyes of Co(PAR)(SiPA) exhibited the long wavelength absorption character compared to the N719 dye (from Dyesol).

  20. Compressive sensing based algorithms for electronic defence

    CERN Document Server

    Mishra, Amit Kumar

    2017-01-01

    This book details some of the major developments in the implementation of compressive sensing in radio applications for electronic defense and warfare communication use. It provides a comprehensive background to the subject and at the same time describes some novel algorithms. It also investigates application value and performance-related parameters of compressive sensing in scenarios such as direction finding, spectrum monitoring, detection, and classification.

  1. Ultra-wideband real-time data acquisition in steady-state experiments

    International Nuclear Information System (INIS)

    Nakanishi, Hideya; Ohsuna, Masaki; Kojima, Mamoru; Nonomura, Miki; Emoto, Masahiko; Nagayama, Yoshio; Kawahata, Kazuo; Imazu, Setsuo; Okumura, Haruhiko

    2006-01-01

    The ultra-wideband real-time data acquisition (DAQ) system has started its operation at LHD steady-state experiments since 2004. It uses Compact PCI standard digitizers whose acquisition performance is continuously above 80 MB/s for each frontend, and is also capable of grabbing picture frames from high-resolution cameras. Near the end of the 8th LHD experimental period, it achieved a new world record of 84 GB/shot acquired data during about 4,000 s long-pulse discharge (no.56068). Numbers of real-time and batch DAQ were 15 and 30, respectively. To realize 80 MB/s streaming from the digitizer frontend to data storage and network clients, the acquired data are once buffered on the shared memory to be read by network streaming and data saving tasks independently. The former sends 1/N thinned stream by using a set of TCP and UDP sessions for every monitoring clients, and the latter saves raw data into a series of 10 s chunk files. Afterward, the subdivided segmental compression library 'titz' is applied in migrating them to the mass storage for enabling users to retrieve a smaller chunk of huge data. Different compression algorithms, zlib and JPEG-LS, are automatically applied for waveform picture and data, respectively. Newly made utilities and many improvements, such as acquisition status monitor, real-time waveform monitor, and 64 bit counting in digital timing system, have put the ultra-wideband acquisition system fit for practical use by entire stuff. Demonstrated technologies here could be applied for the next generation fusion experiment like ITER. (author)

  2. Finiteness effects in wideband connected arrays: Analytical models to highlight the effects of the loading impedances

    NARCIS (Netherlands)

    Neto, A.; Cavallo, D.; Gerini, G.

    2011-01-01

    Most phased arrays are designed using infinite array theory, which does not account for edge effects. However, this approximation might not be adequate for the design of wideband arrays, for which truncation effects are more significant than in traditional narrow-band arrays. In particular, edge

  3. Limit sets for the discrete spectrum of complex Jacobi matrices

    International Nuclear Information System (INIS)

    Golinskii, L B; Egorova, I E

    2005-01-01

    The discrete spectrum of complex Jacobi matrices that are compact perturbations of the discrete Laplacian is studied. The precise stabilization rate (in the sense of order) of the matrix elements ensuring the finiteness of the discrete spectrum is found. An example of a Jacobi matrix with discrete spectrum having a unique limit point is constructed. These results are discrete analogues of Pavlov's well-known results on Schroedinger operators with complex potential on a half-axis.

  4. Accurate estimation of motion blur parameters in noisy remote sensing image

    Science.gov (United States)

    Shi, Xueyan; Wang, Lin; Shao, Xiaopeng; Wang, Huilin; Tao, Zhong

    2015-05-01

    The relative motion between remote sensing satellite sensor and objects is one of the most common reasons for remote sensing image degradation. It seriously weakens image data interpretation and information extraction. In practice, point spread function (PSF) should be estimated firstly for image restoration. Identifying motion blur direction and length accurately is very crucial for PSF and restoring image with precision. In general, the regular light-and-dark stripes in the spectrum can be employed to obtain the parameters by using Radon transform. However, serious noise existing in actual remote sensing images often causes the stripes unobvious. The parameters would be difficult to calculate and the error of the result relatively big. In this paper, an improved motion blur parameter identification method to noisy remote sensing image is proposed to solve this problem. The spectrum characteristic of noisy remote sensing image is analyzed firstly. An interactive image segmentation method based on graph theory called GrabCut is adopted to effectively extract the edge of the light center in the spectrum. Motion blur direction is estimated by applying Radon transform on the segmentation result. In order to reduce random error, a method based on whole column statistics is used during calculating blur length. Finally, Lucy-Richardson algorithm is applied to restore the remote sensing images of the moon after estimating blur parameters. The experimental results verify the effectiveness and robustness of our algorithm.

  5. Ultra - Wideband, zero visual signature RF vest antenna for man-portable radios

    OpenAIRE

    Lebaric, Jovan E.; Adler, Richard W.; Limbert, Matthew E.

    2001-01-01

    This paper presents the recent research of the COMbat Wear INtegration (COMWIN) RF Vest antenna presented at MILCOM2000. This version of the ultra-wideband VHF/UHF (30 MHz to 500 MHz) vest antenna, designated as MK-III, is integrated into the existing dismounted Marine/Soldier Kevlar flak vest and has no visual signature. This antenna is one of the three COMWIN antennas developed at the Naval Postgraduate School (NPS) for the Joint Tactical Radio System applications. ...

  6. Photonic Ultra-Wideband 781.25-Mb/s Signal Generation and Transmission Incorporating Digital Signal Processing Detection

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Tafur Monroy, Idelfonso

    2009-01-01

    The generation of photonic ultra-wideband (UWB) impulse signals using an uncooled distributed-feedback laser is proposed. For the first time, we experimentally demonstrate bit-for-bit digital signal processing (DSP) bit-error-rate measurements for transmission of a 781.25-Mb/s photonic UWB signal...

  7. Real-time 2.5 Gbit/s ultra-wideband transmission using a Schottky diode-based envelope detector

    DEFF Research Database (Denmark)

    Rommel, Simon; Cimoli, Bruno; Valdecasa, Guillermo Silva

    2017-01-01

    An experimental demonstration of 2.5 Gbit/s real-time ultra-wideband transmission is presented, using a Schottky diode-based envelope detector fabricated ad-hoc using microstrip technology on a Rogers6002 substrate and surface-mount components. Real-time transmission with a BER below FEC threshold...

  8. Spectrum Hole Identification in IEEE 802.22 WRAN using Unsupervised Learning

    OpenAIRE

    V. Balaji; S. Anand; C.R. Hota; G. Raghurama

    2016-01-01

    In this paper we present a Cooperative Spectrum Sensing (CSS) algorithm for Cognitive Radios (CR) based on IEEE 802.22Wireless Regional Area Network (WRAN) standard. The core objective is to improve cooperative sensing efficiency which specifies how fast a decision can be reached in each round of cooperation (iteration) to sense an appropriate number of channels/bands (i.e. 86 channels of 7MHz bandwidth as per IEEE 802.22) within a time constraint (channel sensing time). To meet this objectiv...

  9. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies.

    Science.gov (United States)

    Jiang, Yannan; Wang, Lei; Wang, Jiao; Akwuruoha, Charles Nwakanma; Cao, Weiping

    2017-10-30

    The polarization conversion of electromagnetic (EM) waves, especially linear-to-circular (LTC) polarization conversion, is of great significance in practical applications. In this study, we propose an ultra-wideband high-efficiency reflective LTC polarization converter based on a metasurface in the terahertz regime. It consists of periodic unit cells, each cell of which is formed by a double split resonant square ring, dielectric layer, and fully reflective gold mirror. In the frequency range of 0.60 - 1.41 THz, the magnitudes of the reflection coefficients reach approximately 0.7, and the phase difference between the two orthogonal electric field components of the reflected wave is close to 90° or -270°. The results indicate that the relative bandwidth reaches 80% and the efficiency is greater than 88%, thus, ultra-wideband high-efficiency LTC polarization conversion has been realized. Finally, the physical mechanism of the polarization conversion is revealed. This converter has potential applications in antenna design, EM measurement, and stealth technology.

  10. Compressive Sensing in Communication Systems

    DEFF Research Database (Denmark)

    Fyhn, Karsten

    2013-01-01

    . The need for cheaper, smarter and more energy efficient wireless devices is greater now than ever. This thesis addresses this problem and concerns the application of the recently developed sampling theory of compressive sensing in communication systems. Compressive sensing is the merging of signal...... acquisition and compression. It allows for sampling a signal with a rate below the bound dictated by the celebrated Shannon-Nyquist sampling theorem. In some communication systems this necessary minimum sample rate, dictated by the Shannon-Nyquist sampling theorem, is so high it is at the limit of what...... with using compressive sensing in communication systems. The main contribution of this thesis is two-fold: 1) a new compressive sensing hardware structure for spread spectrum signals, which is simpler than the current state-of-the-art, and 2) a range of algorithms for parameter estimation for the class...

  11. Novel Implementations of Wideband Tightly Coupled Dipole Arrays for Wide-Angle Scanning

    Science.gov (United States)

    Yetisir, Ersin

    Ultra-wideband (UWB) antennas and arrays are essential for high data rate communications and for addressing spectrum congestion. Tightly coupled dipole arrays (TCDAs) are of particular interest due to their low-profile, bandwidth and scanning range. But existing UWB (>3:1 bandwidth) arrays still suffer from limited scanning, particularly at angles beyond 45° from broadside. Almost all previous wideband TCDAs have employed dielectric layers above the antenna aperture to improve scanning while maintaining impedance bandwidth. But even so, these UWB arrays have been limited to no more than 60° away from broadside. In this work, we propose to replace the dielectric superstrate with frequency selective surfaces (FSS). In effect, the FSS is used to create an effective dielectric layer placed over the antenna array. FSS also enables anisotropic responses and more design freedom than conventional isotropic dielectric substrates. Another important aspect of the FSS is its ease of fabrication and low weight, both critical for mobile platforms (e.g. unmanned air vehicles), especially at lower microwave frequencies. Specifically, it can be fabricated using standard printed circuit technology and integrated on a single board with active radiating elements and feed lines. In addition to the FSS superstrate, a modified version of the stripline-based folded Marchand balun is presented. As usual the balun serves to match the 50Ω coaxial cable to the high input impedance ( 200Ω) at the terminals of array elements. Doing so, earlier Wilkinson power dividers, which degrade efficiency during E-plane scanning, are eliminated. To verify the proposed array concept, 12x12 TCDA prototype was fabricated using the modified balun and the new FSS superstrate layer. The design and experimental data showed an impedance bandwidth of 6.1:1 with VSWR<3.2. The latter VSWR was achieved even when scanning down to +/-60° in the H-plane, +/-70° in the D-plane and +/-75° in the E-plane. All array

  12. A Cross-Layer Approach in Sensing and Resource Allocation for Multimedia Transmission over Cognitive UWB Networks

    Directory of Open Access Journals (Sweden)

    Lo ACC

    2010-01-01

    Full Text Available We propose an MAC centric cross-layer approach to address the problem of multimedia transmission over cognitive Ultra Wideband (C-UWB networks. Several fundamental design issues, which are related to application (APP, medium access control (MAC, and physical (PHY layer, are discussed. Although substantial research has been carried out in the PHY layer perspective of cognitive radio system, this paper attempts to extend the existing research paradigm to MAC and APP layers, which can be considered as premature at this time. This paper proposed a cross-layer design that is aware of (a UWB wireless channel conditions, (b time slot allocations at the MAC layer, and (c MPEG-4 video at the APP layer. Two cooperative sensing mechanisms, namely, AND and OR, are analyzed in terms of probability of detection ( , probability of false alarm ( , and the required sensing period. Then, the impact of sensing scheduling to the MPEG-4 video transmission over wireless cognitive UWB networks is observed. In addition, we also proposed the packet reception rate- (PRR- based resource allocation scheme that is aware of the channel condition, target PRR, and queue status.

  13. Improvement of acoustical characteristics : wideband bamboo based polymer composite

    Science.gov (United States)

    Farid, M.; Purniawan, A.; Rasyida, A.; Ramadhani, M.; Komariyah, S.

    2017-07-01

    Environmental friendly and comfortable materials are desirable for applications in the automobile interior. The objective of this research was to examine and develop bamboo based polymer composites applied to the sound absorption materials of automobile door panels. Morphological analysis of the polyurethane/bamboo powder composite materials was carried out using scanning electron microscope to reveal the microscopic material behavior and followed by the FTIR and TGA testing. The finding demonstrated that this acoustical polymer composite materials provided a potential wideband sound absorption material. The range of frequency can be controlled between 500 and 4000 Hz with an average of sound absorption coefficient around 0.411 and it met to the door panels criteria.

  14. Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator

    Science.gov (United States)

    Hou, Jian; Yan, Xiao-peng; Li, Ping; Hao, Xin-hong

    2018-03-01

    The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillatorʼs phase trajectory in a small-scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system. Project supported by the National Natural Science Foundation of China (Grant No. 61673066).

  15. A wideband (3 to 5 GHz) wide-scan connected array of dipoles with low cross polarization

    NARCIS (Netherlands)

    Cavallo, D.; Neto, A.; Gerini, G.

    2012-01-01

    A wideband, wide-scan prototype phased array of connected dipoles has been manufactured and tested from 3 to 5 GHz. The array comprises 7 × 7 elements, each fed by a loop-shaped transformer to avoid common-mode resonances. Such resonances typically affect this type of arrays, with consequent

  16. Wide-band cable systems at SLAC

    International Nuclear Information System (INIS)

    Struven, W.

    1983-01-01

    SLAC's first cable TV system was installed in 1979 to remotely monitor a narrow pulse which was generated in the west end of the klystron gallery. When Stanford Linear Collider (SLC) experimental work started at the west end of the accelerator, the original 1979 cable was upgraded to a bidirectional system so that 2 MBaud point-to-point data and several video and 9600 baud channels could be transmitted. The implementation of the SLC requires a complete upgrading of the accelerator control system. The system is based on a distributed processing configuration using a PDP11/780 VAX in the Main Control Center (MCC) and Intel single-board computers in a multibus configuration along the accelerator. The high-speed data linking is supplied by a 1 MBaud Time Division Multiple Access (TDMA) Network. The same cable is used to provide video, low-speed data, voice and high-speed point-to-point data services. The transmission system will utilize a wideband midsplit cable facility to collect and distribute signals to all parts of the network

  17. A numerical study of super-resolution through fast 3D wideband algorithm for scattering in highly-heterogeneous media

    KAUST Repository

    Lé tourneau, Pierre-David; Wu, Ying; Papanicolaou, George; Garnier, Josselin; Darve, Eric

    2016-01-01

    We present a wideband fast algorithm capable of accurately computing the full numerical solution of the problem of acoustic scattering of waves by multiple finite-sized bodies such as spherical scatterers in three dimensions. By full solution, we

  18. Two-dimensional NMR spectroscopy of 13C methanol at less than 5 μT

    Science.gov (United States)

    Shim, Jeong Hyun; Lee, Seong-Joo; Hwang, Seong-min; Yu, Kwon-Kyu; Kim, Kiwoong

    2014-09-01

    Two-dimensional (2D) spectroscopy is one of the most significant applications of nuclear magnetic resonance (NMR). Here, we demonstrate that the 2D NMR can be performed even at a low magnetic field of less than 5 μT, which is ten times less than the Earth’s magnetic field. The pulses used in the experiment were composed of circularly polarized fields for coherent as well as wideband excitations. Since the excitation band covers the entire spectral range, the simplest two-pulse sequence delivered the full 2D spectrum. At 5 μT, methanol with 13C enriched up to 99% belongs to a strongly coupled regime, and thus its 2D spectrum exhibits complicated spectral correlations, which can be exploited as a fingerprint in chemical analysis. In addition, we show that, with compressive sensing, the acquisition of the 2D spectrum can be accelerated to take only 45% of the overall duration.

  19. High-speed ultra-wideband wireless signals over fiber systems: photonic generation and DSP detection

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2009-01-01

    We firstly review the efforts in the literature on ultra-wideband (UWB)-over-fiber systems. Secondly, we present experimental results on photonic generation of high-speed UWB signals by both direct modulation and external optical injecting an uncooled semiconductor laser. Furthermore, we introduce...... the use of digital signal processing (DSP) technology to receive the generated UWB signal at 781.25 Mbit/s. Error-free transmission is achieved....

  20. Controls on Magmatic and Hydrothermal Processes at Yellowstone Supervolcano: The Wideband Magnetotelluric Component of an Integrated MT/Seismic Investigation

    Science.gov (United States)

    Schultz, A.; Bennington, N. L.; Bowles-martinez, E.; Imamura, N.; Cronin, R. A.; Miller, D. J.; Hart, L.; Gurrola, R. M.; Neal, B. A.; Scholz, K.; Fry, B.; Carbonari, R.

    2017-12-01

    Previous seismic and magnetotelluric (MT) studies beneath Yellowstone (YS) have provided insight into the origin and migration of magmatic fluids within the volcanic system. However, important questions remain concerning the generation of magmatism at YS, the migration and storage of these magmatic fluids, as well as their relationships to hydrothermal expressions. Analysis of regional-scale EarthScope MT data collected previously suggests a relative absence of continuity in crustal partial melt accumulations directly beneath YS. This is in contrast to some seismic interpretations, although such long-period MT data have limited resolving power in the upper-to-mid crustal section. A wideband MT experiment was designed as a component of an integrated MT/seismic project to examine: the origin and location of magmatic fluids at upper mantle/lower crustal depths, the preferred path of migration for these magmatic fluids into the mid- to upper-crust, the resulting distribution of the magma reservoir, the composition of the magma reservoir, and implications for future volcanism at YS. A high-resolution wideband MT survey was carried out in the YS region in the summer of 2017, with more than forty-five wideband stations installed within and immediately surrounding the YS National Park boundary. These data provided nearly six decades of bandwidth ( 10-3 Hz -to- 103 Hz). Extraordinary permitting restrictions prevented us from using conventional installation methods at many of our sites, and an innovative "no-dig" subaerial method of wideband MT was developed and used successfully. Using these new data along with existing MT datasets, we are inverting for the 3D resistivity structure at upper crustal through upper mantle scales at YS. Complementary to this MT work, a joint inversion for the 3D crustal velocity structure is being carried out using both ambient noise and earthquake travel time data. Taken together, these data should better constrain the crustal velocity

  1. Edge Detection from High Resolution Remote Sensing Images using Two-Dimensional log Gabor Filter in Frequency Domain

    International Nuclear Information System (INIS)

    Wang, K; Yu, T; Meng, Q Y; Wang, G K; Li, S P; Liu, S H

    2014-01-01

    Edges are vital features to describe the structural information of images, especially high spatial resolution remote sensing images. Edge features can be used to define the boundaries between different ground objects in high spatial resolution remote sensing images. Thus edge detection is important in the remote sensing image processing. Even though many different edge detection algorithms have been proposed, it is difficult to extract the edge features from high spatial resolution remote sensing image including complex ground objects. This paper introduces a novel method to detect edges from the high spatial resolution remote sensing image based on frequency domain. Firstly, the high spatial resolution remote sensing images are Fourier transformed to obtain the magnitude spectrum image (frequency image) by FFT. Then, the frequency spectrum is analyzed by using the radius and angle sampling. Finally, two-dimensional log Gabor filter with optimal parameters is designed according to the result of spectrum analysis. Finally, dot product between the result of Fourier transform and the log Gabor filter is inverse Fourier transformed to obtain the detections. The experimental result shows that the proposed algorithm can detect edge features from the high resolution remote sensing image commendably

  2. An Examination of Application of Artificial Neural Network in Cognitive Radios

    International Nuclear Information System (INIS)

    Salau, H Bello; Onwuka, E N; Aibinu, A M

    2013-01-01

    Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined

  3. An Examination of Application of Artificial Neural Network in Cognitive Radios

    Science.gov (United States)

    Bello Salau, H.; Onwuka, E. N.; Aibinu, A. M.

    2013-12-01

    Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined.

  4. What is a picture worth? A history of remote sensing

    Science.gov (United States)

    Moore, Gerald K.

    1979-01-01

    Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m. Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.

  5. Ultra-wideband balanced schottky envelope detector for data communication with high bitrate to carrier frequency ratio

    DEFF Research Database (Denmark)

    Granja, Angel Blanco; Cimoli, Bruno; Rodriguez, Sebastian

    2017-01-01

    This paper reports on an ultra-wideband (UWB) Schottky diode based balanced envelope detector for the L-, S-, C- and X- bands. The proposed circuit consists of a balun that splits the input signal into two 180° out of phase signals, a balanced detector, that demodulates the two signals, a low pass...

  6. A Novel Ropes-DrivenWideband Piezoelectric Vibration Energy Harvester

    Directory of Open Access Journals (Sweden)

    Jinhui Zhang

    2016-12-01

    Full Text Available This paper presents a novel piezoelectric vibration energy harvester (PVEH in which a high-frequency generating beam (HFGB is driven by an array of low-frequency driving beams (LFDBs using ropes. Two mechanisms based on frequency upconversion and multimodal harvesting work together to broaden the frequency bandwidth of the proposed vibration energy harvester (VEH. The experimental results show that the output power of generating beam (GB remains unchanged with the increasing number of driving beams (DBs, compared with the traditional arrays of beams vibration energy harvester (AB-VEH, and the output power and bandwidth behavior can be adjusted by parameters such as acceleration, rope margin, and stiffness of LFDBs, which shows the potential to achieve unlimited wideband vibration energy-harvesting for a variable environment.

  7. Distributed opportunistic spectrum sharing in cognitive radio networks

    KAUST Repository

    Hawa, Mohammed; Alammouri, Ahmad; Alhiary, Ala; Alhamad, Nidal

    2016-01-01

    In cases where the licensed radio spectrum is underutilized, cognitive radio technology enables cognitive devices to sense and then dynamically access this scarce resource making the most out of it. In this work, we introduce a simple and intuitive

  8. Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies.

    Science.gov (United States)

    Balal, Nezah; Pinhasi, Gad A; Pinhasi, Yosef

    2016-05-23

    The wide band at extremely high frequencies (EHF) above 30 GHz is applicable for high resolution directive radars, resolving the lack of free frequency bands within the lower part of the electromagnetic spectrum. Utilization of ultra-wideband signals in this EHF band is of interest, since it covers a relatively large spectrum, which is free of users, resulting in better resolution in both the longitudinal and transverse dimensions. Noting that frequencies in the millimeter band are subjected to high atmospheric attenuation and dispersion effects, a study of the degradation in the accuracy and resolution is presented. The fact that solid-state millimeter and sub-millimeter radiation sources are producing low power, the method of continuous-wave wideband frequency modulation becomes the natural technique for remote sensing and detection. Millimeter wave radars are used as complementary sensors for the detection of small radar cross-section objects under bad weather conditions, when small objects cannot be seen by optical cameras and infrared detectors. Theoretical analysis for the propagation of a wide "chirped" Frequency-Modulated Continuous-Wave (FMCW) radar signal in a dielectric medium is presented. It is shown that the frequency-dependent (complex) refractivity of the atmospheric medium causes distortions in the phase of the reflected signal, introducing noticeable errors in the longitudinal distance estimations, and at some frequencies may also degrade the resolution.

  9. Novel Radio Architectures for UWB, 60 GHz, and Cognitive Wireless Systems

    Directory of Open Access Journals (Sweden)

    Cabric Danijela

    2006-01-01

    Full Text Available There are several new radio systems which exploit novel strategies being made possible by the regulatory agencies to increase the availability of spectrum for wireless applications. Three of these that will be discussed are ultra-wideband (UWB, 60 GHz, and cognitive radios. The UWB approach attempts to share the spectrum with higher-priority users by transmitting at power levels that are so low that they do not cause interference. On the other hand, cognitive radios attempt to share spectra by introducing a spectrum sensing function, so that they are able to transmit in unused portions at a given time, place, and frequency. Another approach is to exploit the advances in CMOS technology to operate in frequency bands in the millimeter-wave region. 60 GHz operation is particularly attractive because of the 7 GHz of unlicensed spectrum that has been made available there. In this paper, we present an overview of novel radio architecture design approaches and address challenges dealing with high-frequencies, wide-bandwidths, and large dynamic-range signals encountered in these future wireless systems.

  10. Compact electromagnetic bandgap structures for notch band in ultra-wideband applications.

    Science.gov (United States)

    Rotaru, Mihai; Sykulski, Jan

    2010-01-01

    This paper introduces a novel approach to create notch band filters in the front-end of ultra-wideband (UWB) communication systems based on electromagnetic bandgap (EBG) structures. The concept presented here can be implemented in any structure that has a microstrip in its configuration. The EBG structure is first analyzed using a full wave electromagnetic solver and then optimized to work at WLAN band (5.15-5.825 GHz). Two UWB passband filters are used to demonstrate the applicability and effectiveness of the novel EBG notch band feature. Simulation results are provided for two cases studied.

  11. Ultra-small v-shaped gold split ring resonators for biosensing using fundamental magnetic resonance in the visible spectrum

    Science.gov (United States)

    Mauluidy Soehartono, Alana; Mueller, Aaron David; Tobing, Landobasa Yosef Mario; Chan, Kok Ken; Zhang, Dao Hua; Yong, Ken-Tye

    2017-10-01

    Strong light localization within metal nanostructures occurs by collective oscillations of plasmons in the form of electric and magnetic resonances. This so-called localized surface plasmon resonance (LSPR) has gained much interest in the development of low-cost sensing platforms in the visible spectrum. However, demonstrations of LSPR-based sensing are mostly limited to electric resonances due to the technological limitations for achieving magnetic resonances in the visible spectrum. In this work, we report the first demonstration of LSPR sensing based on fundamental magnetic resonance in the visible spectrum using ultrasmall gold v-shaped split ring resonators. Specifically, we show the ability for detecting adsorption of bovine serum albumin and cytochrome c biomolecules at monolayer levels, and the selective binding of protein A/G to immunoglobulin G.

  12. Development of wide-band, time and energy resolving, optical photon detectors with application to imaging astronomy

    International Nuclear Information System (INIS)

    Miller, A.J.; Cabrera, B.; Romani, R.W.; Figueroa-Feliciano, E.; Nam, S.W.; Clarke, R.M.

    2000-01-01

    Superconducting transition edge sensors (TESs) are showing promise for the wide-band spectroscopy of individual photons from the mid-infrared (IR), through the optical, and into the near ultraviolet (UV). Our TES sensors are ∼20 μm square, 40 nm thick tungsten (W) films with a transition temperature of about 80 mK. We typically attain an energy resolution of 0.15 eV FWHM over the optical range with relative timing resolution of 100 ns. Single photon events with sub-microsecond risetimes and few microsecond falltimes have been achieved allowing count rates in excess of 30 kHz per pixel. Additionally, tungsten is approximately 50% absorptive in the optical (dropping to 10% in the IR) giving these devices an intrinsically high quantum efficiency. These combined traits make our detectors attractive for fast spectrophotometers and photon-starved applications such as wide-band, time and energy resolved astronomical observations. We present recent results from our work toward the fabrication and testing of the first TES optical photon imaging arrays

  13. Harvesting the electromagnetic spectrum: from communications to renewables

    OpenAIRE

    Gremont, Boris

    2011-01-01

    The talk will give a unified perspective on one of the most precious commodities underpinning the globalised world: the electromagnetic spectrum. In particular, we will describe how electromagnetic waves have been used over the years to create the global village and the modern world as we know it. How waves can be used to help fight global warming will be discussed along with how waves and remote sensing help in saving lives. Finally, how can the electromagnetic spectrum be used to create the...

  14. Ultra-wideband short-pulse radar with range accuracy for short range detection

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  15. Fiber extended ultra-wideband radar for breath tracking through 10 cm concrete

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    2016-01-01

    This article presents an Ultra-Wideband (UWB) radar with a 20 km NZ-DSF extension on the transmitter side. The radar is based on telecom class signal generation, antennas, and a recording module operating at 20 Gsa/s. The radar is transmitting a pulse covering the frequencies from 3.4 to 9.9 GHz........ The radar system was able to track the breathing of a human through a 10 cm concrete obstacle. The frequency output was verified through the use of a metal pendulum with a fixed oscillation period...

  16. Fiber extended ultra-wideband radar for breath tracking through 10 cm concrete

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    2016-01-01

    This article presents an Ultra-Wideband (UWB) radar with a 20 km NZ-DSF extension on the transmitter side. The radar is based on telecom class signal generation, antennas, and a recording module operating at 20 Gsa/s. The radar is transmitting a pulse covering the frequencies from 3.4 to 9.9 GHz....... The radar system was able to track the breathing of a human through a 10 cm concrete obstacle. The frequency output was verified through the use of a metal pendulum with a fixed oscillation period...

  17. Study on fractal characteristics of remote sensing image in the typical volcanic uranium metallogenic areas

    International Nuclear Information System (INIS)

    Pan Wei; Ni Guoqiang; Li Hanbo

    2010-01-01

    Computing Methods of fractal dimension and multifractal spectrum about the remote sensing image are briefly introduced. The fractal method is used to study the characteristics of remote sensing images in Xiangshan and Yuhuashan volcanic uranium metallogenic areas in southern China. The research results indicate that the Xiangshan basin in which lots of volcanic uranium deposits occur,is of bigger fractal dimension based on remote sensing image texture than that of the Yuhuashan basin in which two uranium ore occurrences exist, and the multifractal spectrum in the Xiangshan basin obviously leans to less singularity index than in the Yuhuashan basin. The relation of the fractal dimension and multifractal singularity of remote sensing image to uranium metallogeny are discussed. The fractal dimension and multifractal singularity index of remote sensing image may be used to predict the volcanic uranium metallogenic areas. (authors)

  18. Ultra-Wideband Geo-Regioning: A Novel Clustering and Localization Technique

    Directory of Open Access Journals (Sweden)

    Armin Wittneben

    2007-12-01

    Full Text Available Ultra-wideband (UWB technology enables a high temporal resolution of the propagation channel. Consequently, a channel impulse response between transmitter and receiver can be interpreted as signature for their relative positions. If the position of the receiver is known, the channel impulse response indicates the position of the transmitter and vice versa. This work introduces UWB geo-regioning as a clustering and localization method based on channel impulse response fingerprinting, develops a theoretical framework for performance analysis, and evaluates this approach by means of performance results based on measured channel impulse responses. Complexity issues are discussed and performance dependencies on signal-to-noise ratio, a priori knowledge, observation window, and system bandwidth are investigated.

  19. Survey of timing/synchronization of operating wideband digital communications networks

    Science.gov (United States)

    Mitchell, R. L.

    1978-01-01

    In order to benefit from experience gained from the synchronization of operational wideband digital networks, a survey was made of three such systems: Data Transmission Company, Western Union Telegraph Company, and the Computer Communications Group of the Trans-Canada Telephone System. The focus of the survey was on deployment and operational experience from a practical (as opposed to theoretical) viewpoint. The objective was to provide a report on the results of deployment how the systems performed, and wherein the performance differed from that predicted or intended in the design. It also attempted to determine how the various system designers would use the benefit of hindsight if they could design those same systems today.

  20. State of the Art and Challenges of Radio Spectrum Monitoring in China

    Science.gov (United States)

    Lu, Q. N.; Yang, J. J.; Jin, Z. Y.; Chen, D. Z.; Huang, M.

    2017-10-01

    This paper provides an overview of radio spectrum monitoring in China. First, research background, the motivation is described and then train of thought, the prototype system, and the accomplishments are presented. Current radio spectrum monitoring systems are man-machine communication systems, which are unable to detect and process the radio interference automatically. In order to realize intelligent radio monitoring and spectrum management, we proposed an Internet of Things-based spectrum sensing approach using information system architecture and implemented a pilot program; then some very interesting results were obtained.

  1. The Sense of Agency in Autism Spectrum Disorders: a Dissociation between Prospective and Retrospective Mechanisms?

    Directory of Open Access Journals (Sweden)

    Tiziana eZalla

    2015-09-01

    Full Text Available While a large number of studies have reported impairments in social and interpersonal abilities in individuals with autism spectrum disorder (ASD, relatively few studies have focused on self-related knowledge in this population. One of the processes implicated in the physical dimension of the Self is the sense of agency (SoA, i.e., the experience of initiating and controlling one’s own actions and producing desired changes in the world via these actions. So far, the few studies investigating SoA in ASD have reported contrasting results, with some showing spared, others impaired SoA. Here, we review the existing literature and suggest that the distinction between prospective and retrospective mechanisms of the SoA might help reconcile the existing findings. In the light of a multi-componential model of SoA, we propose the view that a specific impairment at the level of prospective mechanisms acting on internal agency signals (i.e., the intention, action selection, or command produced to achieve the goal may be responsible for the reduced SoA in ASD, along with spared retrospective mechanisms. Future research should shed light on the impact of abnormal SoA on social and self-related dysfunctions in ASD.

  2. UTag: Long-range Ultra-wideband Passive Radio Frequency Tags

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F

    2007-03-14

    Long-range, ultra-wideband (UWB), passive radio frequency (RF) tags are key components in Radio Frequency IDentification (RFID) system that will revolutionize inventory control and tracking applications. Unlike conventional, battery-operated (active) RFID tags, LLNL's small UWB tags, called 'UTag', operate at long range (up to 20 meters) in harsh, cluttered environments. Because they are battery-less (that is, passive), they have practically infinite lifetimes without human intervention, and they are lower in cost to manufacture and maintain than active RFID tags. These robust, energy-efficient passive tags are remotely powered by UWB radio signals, which are much more difficult to detect, intercept, and jam than conventional narrowband frequencies. The features of long range, battery-less, and low cost give UTag significant advantage over other existing RFID tags.

  3. Distributed opportunistic spectrum sharing in cognitive radio networks

    KAUST Repository

    Hawa, Mohammed

    2016-05-19

    In cases where the licensed radio spectrum is underutilized, cognitive radio technology enables cognitive devices to sense and then dynamically access this scarce resource making the most out of it. In this work, we introduce a simple and intuitive, yet powerful and efficient, technique that allows opportunistic channel access in cognitive radio systems in a completely distributed fashion. Our proposed method achieves very high values of spectrum utilization and throughput. It also minimizes interference between cognitive base stations and the primary users licensed to use the spectrum. The algorithm responds quickly and efficiently to variations in the network parameters and also achieves a high degree of fairness between cognitive base stations. © 2016 John Wiley & Sons, Ltd.

  4. Molecular genetic analysis of the calcium sensing receptor gene in patients clinically suspected to have familial hypocalciuric hypercalcemia: phenotypic variation and mutation spectrum in a Danish population

    DEFF Research Database (Denmark)

    Nissen, Peter H; Christensen, Signe E; Heickendorff, Lene

    2007-01-01

    CONTEXT: The autosomal dominantly inherited condition familial hypocalciuric hypercalcemia (FHH) is characterized by elevated plasma calcium levels, relative or absolute hypocalciuria, and normal to moderately elevated plasma PTH. The condition is difficult to distinguish clinically from primary...... hyperparathyroidism and is caused by inactivating mutations in the calcium sensing receptor (CASR) gene. OBJECTIVE: We sought to define the mutation spectrum of the CASR gene in a Danish FHH population and to establish genotype-phenotype relationships regarding the different mutations. DESIGN AND PARTICIPANTS...

  5. Dense sampled transmission matrix for high resolution angular spectrum imaging through turbid media via compressed sensing (Conference Presentation)

    Science.gov (United States)

    Jang, Hwanchol; Yoon, Changhyeong; Choi, Wonshik; Eom, Tae Joong; Lee, Heung-No

    2016-03-01

    We provide an approach to improve the quality of image reconstruction in wide-field imaging through turbid media (WITM). In WITM, a calibration stage which measures the transmission matrix (TM), the set of responses of turbid medium to a set of plane waves with different incident angles, is preceded to the image recovery. Then, the TM is used for estimation of object image in image recovery stage. In this work, we aim to estimate highly resolved angular spectrum and use it for high quality image reconstruction. To this end, we propose to perform a dense sampling for TM measurement in calibration stage with finer incident angle spacing. In conventional approaches, incident angle spacing is made to be large enough so that the columns in TM are out of memory effect of turbid media. Otherwise, the columns in TM are correlated and the inversion becomes difficult. We employ compressed sensing (CS) for a successful high resolution angular spectrum recovery with dense sampled TM. CS is a relatively new information acquisition and reconstruction framework and has shown to provide superb performance in ill-conditioned inverse problems. We observe that the image quality metrics such as contrast-to-noise ratio and mean squared error are improved and the perceptual image quality is improved with reduced speckle noise in the reconstructed image. This results shows that the WITM performance can be improved only by executing dense sampling in the calibration stage and with an efficient signal reconstruction framework without elaborating the overall optical imaging systems.

  6. Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis.

    Science.gov (United States)

    Herrera-Piad, Luis A; Haus, Joseph W; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M; Estudillo-Ayala, Julian M; Lopez-Dieguez, Yanelis; Rojas-Laguna, Roberto

    2017-10-20

    A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material.

  7. Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis

    Directory of Open Access Journals (Sweden)

    Luis A. Herrera-Piad

    2017-10-01

    Full Text Available A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material.

  8. Joint random beam and spectrum selection for spectrum sharing systems with partial channel state information

    KAUST Repository

    Abdallah, Mohamed M.

    2013-11-01

    In this work, we develop joint interference-aware random beam and spectrum selection scheme that provide enhanced performance for the secondary network under the condition that the interference observed at the primary receiver is below a predetermined acceptable value. We consider a secondary link composed of a transmitter equipped with multiple antennas and a single-antenna receiver sharing the same spectrum with a set of primary links composed of a single-antenna transmitter and a single-antenna receiver. The proposed schemes jointly select a beam, among a set of power-optimized random beams, as well as the primary spectrum that maximizes the signal-to-interference-plus-noise ratio (SINR) of the secondary link while satisfying the primary interference constraint. In particular, we consider the case where the interference level is described by a q-bit description of its magnitude, whereby we propose a technique to find the optimal quantizer thresholds in a mean square error (MSE) sense. © 2013 IEEE.

  9. Joint random beam and spectrum selection for spectrum sharing systems with partial channel state information

    KAUST Repository

    Abdallah, Mohamed M.; Sayed, Mostafa M.; Alouini, Mohamed-Slim; Qaraqe, Khalid A.

    2013-01-01

    In this work, we develop joint interference-aware random beam and spectrum selection scheme that provide enhanced performance for the secondary network under the condition that the interference observed at the primary receiver is below a predetermined acceptable value. We consider a secondary link composed of a transmitter equipped with multiple antennas and a single-antenna receiver sharing the same spectrum with a set of primary links composed of a single-antenna transmitter and a single-antenna receiver. The proposed schemes jointly select a beam, among a set of power-optimized random beams, as well as the primary spectrum that maximizes the signal-to-interference-plus-noise ratio (SINR) of the secondary link while satisfying the primary interference constraint. In particular, we consider the case where the interference level is described by a q-bit description of its magnitude, whereby we propose a technique to find the optimal quantizer thresholds in a mean square error (MSE) sense. © 2013 IEEE.

  10. A wideband superconducting filter at Ku-band based on interdigital coupling

    Science.gov (United States)

    Jiang, Ying; Wei, Bin; Cao, Bisong; Li, Qirong; Guo, Xubo; Jiang, Linan; Song, Xiaoke; Wang, Xiang

    2018-04-01

    In this paper, an interdigital-type resonator with strong electric coupling is proposed for the wideband high-frequency (>10 GHz) filter design. The proposed microstrip resonator consists of an H-shaped main line part with its both ends installed with interdigital finger parts. Strong electric coupling is achieved between adjacent resonators. A six-pole high-temperature superconducting filter at Ku-band using this resonator is designed and fabricated. The filter has a center frequency of 15.11 GHz with a fractional bandwidth of 30%. The insertion loss of the passband is less than 0.3 dB, and the return loss is greater than 14 dB without any tuning.

  11. Thermal infrared remote sensing of crude oil slicks

    International Nuclear Information System (INIS)

    Salisbury, J.W.; D'Aria, D.M.

    1993-01-01

    It is important to develop a remote sensing technique for reliable detection of oil slicks for reasons of both oil exploration and environmental protection. Yet, unambiguous detection has proven an elusive goal. This article presents new thermal infrared spectra of oil slicks made from five different crude oil samples with a wide range of API gravities and compositions. After a brief outgassing phase, all oil slick spectra are quite similar and little affected by thickness, extended exposure to air or sunlight, and even by emulsification with seawater (mousse formation). Thus, oil slicks provide a remarkably unvarying spectral signature as remote sensing targets in the thermal infrared compared to other regions of the spectrum. This spectral signature in the 8-14 μm atmospheric window is flat, with an average reflectance of 4%. Seawater, on the other hand, has a spectrum that varies in reflectance with wavelength in the 8-14 μm window from 0.90 to 3.65%. In addition, the authors show that sea foam displays a reflectance spectrum quite similar to that of seawater in the 8-14 μm region, because the very high absorption coefficient of water in this wavelength region prevents volume scattering in foam bubbles. This results in a relatively uniform spectral background, against which oil slicks can be detected, based on their different spectral signature. Thus, thermal infrared multispectral remote sensing appears to offer a simple and reliable technique for aircraft or satellite detection of oil slicks

  12. Age and Gender Effects on Wideband Absorbance in Adults with Normal Outer and Middle Ear Function

    Science.gov (United States)

    Mazlan, Rafidah; Kei, Joseph; Ya, Cheng Li; Yusof, Wan Nur Hanim Mohd; Saim, Lokman; Zhao, Fei

    2015-01-01

    Purpose: This study examined the effects of age and gender on wideband energy absorbance in adults with normal middle ear function. Method: Forty young adults (14 men, 26 women, aged 20-38 years), 31 middle-aged adults (16 men, 15 women, aged 42-64 years), and 30 older adults (20 men, 10 women, aged 65-82 years) were assessed. Energy absorbance…

  13. The x-ray spectrum of the Cygnus Loop measured with Gas Scintillation Proportional Counters

    International Nuclear Information System (INIS)

    Tsunemi, Hiroshi; Manabe, Makoto; Yamashita, Koujun; Koyama, Katsuji.

    1988-01-01

    We report the results of an observation of the whole Cygnus Loop performed with the Gas Scintillation Proportional Counters (GSPC) on board the Tenma satellite. Line emissions around 1.9 keV and 2.5 keV, probably originating from silicon and sulfur Kα line blends, were detected. The continuum spectrum in the energy range 1-3 keV can be represented by a thermal bremsstrahlung spectrum with a temperature of 7 x 10 6 K. This is the highest value for the Cygnus Loop reported so far. The Tenma data were also combined with those from a sounding rocket flight performed previously, in which a similar detector system was employed. Thus, we obtain a wide-band X-ray spectrum for the whole Cygnus Loop with the best energy resolution reported so far. The combined data could not be fitted by a single temperature component in the thermal collisional ionization equilibrium (CIE) model or a single-temperature nonequilibrium ionization (NEI) model. A good fit is obtained if at least two temperature components are included in both the CIE and NEI models. However, only the NEI model allows a self consistent interpretation. Taking into account the emission measures for both components, we can conclude that the low-temperature, high-density component arises mainly from the shell region and that the high-temperature, low-density component arises from the interior of the shell. (author)

  14. A broad range quorum sensing inhibitor working through sRNA inhibition

    DEFF Research Database (Denmark)

    Jakobsen, Tim H.; Warming, Anders N.; Vejborg, Rebecca M.

    2017-01-01

    that the repressing effect of ajoene on quorum sensing occurs by inhibition of small regulatory RNAs (sRNA) in P. aeruginosa as well as in Staphylococcus aureus, another important human pathogen that employs quorum sensing to control virulence gene expression. Using various reporter constructs, we found that ajoene......-spectrum compounds transcending the Gram negative-positive borderline....

  15. The new Wide-band Solar Neutrino Trigger for Super-Kamiokande

    Science.gov (United States)

    Carminati, Giada

    Super-Kamiokande observes low energy electrons induced by the elastic scattering of 8B solar neutrinos. The transition region between vacuum and matter oscillations, with neutrino energy near 3 MeV, is still partially unexplored by any detector. Super-Kamiokande can study this intermediate regime adding a new software trigger. The Wide-band Intelligent Trigger (WIT) has been developed to simultaneously trigger and reconstruct very low energy electrons (above 2.49 kinetic MeV) with an e_ciency close to 100%. The WIT system, comprising 256-Hyperthreaded CPU cores and one 10-Gigabit Ethernet network switch, has been recently installed and integrated in the online DAQ system of SK and the complete system is currently in an advanced status of online data testing.

  16. Low-noise wide-band amplifiers for stochastic beam cooling experiments

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1982-01-01

    Noise characteristics of the continuous-wave wide-band amplifier systems for stochastic beam cooling experiments are presented. Also, the noise performance, bandwidth capability and gain stability of components used in these amplifiers are summarized and compared in the 100 MHz to 40 GHz frequency range. This includes bipolar and field-effect transistors, parametric amplifier, Schottky diode mixer and maser. Measurements of the noise characteristics and scattering parameters of variety GaAs FETs as a function of ambient temperature are also given. Performance data and design information are presented on a broadband 150-500 MHz preamplifier having noise temperature of approximately 35 0 K at ambient temperature of 20 0 K. An analysis of preamplifier stability based on scattering parameters concept is included

  17. Wideband and UWB Antennas for Wireless Applications: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Renato Cicchetti

    2017-01-01

    Full Text Available A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible, and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc. and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems.

  18. A Butterfly-Shaped Wideband Microstrip Patch Antenna for Wireless Communication

    Directory of Open Access Journals (Sweden)

    Liling Sun

    2015-01-01

    Full Text Available A novel butterfly-shaped patch antenna for wireless communication is introduced in this paper. The antenna is designed for wideband wireless communications and radio-frequency identification (RFID systems. Two symmetrical quasi-circular arms and two symmetrical round holes are incorporated into the patch of a microstrip antenna to expand its bandwidth. The diameter and position of the circular slots are optimized to achieve a wide bandwidth. The validity of the design concept is demonstrated by means of a prototype having a bandwidth of about 40.1%. The return loss of the butterfly-shaped antenna is greater than 10 dB between 4.15 and 6.36 GHz. The antenna can serve simultaneously most of the modern wireless communication standards.

  19. Design of Wideband Dual-Polarized Planar Antenna Using Multimode Concept

    Directory of Open Access Journals (Sweden)

    Deqiang Yang

    2016-01-01

    Full Text Available A wideband dual-polarized planar antenna is designed and analyzed by using the theory of characteristic modes (TCM. The eigenvalue, eigencurrent, characteristic pattern, and modal weighting coefficient are analyzed to bring physical insight to this kind of antenna. The results demonstrate that there are two modes resonant in the operating band for each polarization, which have been combined to form a wider frequency band. A bandwidth of 60.2% (1.72–3.2 GHz for VSWR < 1.5 with high isolation of 32 dB is achieved simultaneously. The size of the radiator structure is 0.33λ0 × 0.33λ0 × 0.22λ0 (λ0 refers to the center operating frequency.

  20. A Differentially Driven Dual-Polarized Dual-Wideband Complementary Antenna for 2G/3G/LTE Applications

    Directory of Open Access Journals (Sweden)

    Botao Feng

    2014-01-01

    Full Text Available A novel differentially driven dual-polarized dual-wideband complementary patch antenna with high isolation is proposed for 2G/3G/LTE applications. In order to generate dual-polarization and dual-wideband properties, a pair of biorthogonal dual-layer η-shaped tapered line feeding structures is utilized to feed two pairs of dual-layer U-shaped patches, respectively. The upper-layer U-shaped patches mainly serve the upper frequency band, while the lower-layer ones chiefly work for the lower frequency band. Besides, a horned reflector is introduced to improve radiation patterns and provide stable gain. The prototype antenna can achieve a bandwidth of 25.7% (0.78 GHz–1.01 GHz with a stable gain of 7.8±0.7 dBi for the lower band, and a bandwidth of 45.7% (1.69 GHz–2.69 GHz with a gain of 9.5±1.1 dBi for the upper band. Input isolation exceeding 30 dB has been obtained in the wide bandwidth. Thus, it can be potentially used as a base station antenna for 2G/3G/LTE networks.

  1. Wideband RCS Reduction of Microstrip Array Antenna Based on Absorptive Frequency Selective Surface and Microstrip Resonators

    Directory of Open Access Journals (Sweden)

    Jingjing Xue

    2017-01-01

    Full Text Available An approach for wideband radar cross section (RCS reduction of a microstrip array antenna is presented and discussed. The scheme is based on the microstrip resonators and absorptive frequency selective surface (AFSS with a wideband absorptive property over the low band 1.9–7.5 GHz and a transmission characteristic at high frequency 11.05 GHz. The AFSS is designed to realize the out-of-band RCS reduction and preserve the radiation performance simultaneously, and it is placed above the antenna with the operating frequency of 11.05 GHz. Moreover, the microstrip resonators are loaded to obtain the in-band RCS reduction. As a result, a significant RCS reduction from 1.5 GHz to 13 GHz for both types of polarization has been accomplished. Compared with the reference antenna, the simulated results exhibit that the monostatic RCS of the proposed array antenna in x- and y-polarization can be reduced as much as 17.6 dB and 21.5 dB, respectively. And the measured results agree well with the simulated ones.

  2. Radio frequency identification enabled wireless sensing for intelligent food logistics.

    Science.gov (United States)

    Zou, Zhuo; Chen, Qiang; Chen, Qing; Uysal, Ismail; Zheng, Lirong

    2014-06-13

    Future technologies and applications for the Internet of Things (IoT) will evolve the process of the food supply chain and create added value of business. Radio frequency identifications (RFIDs) and wireless sensor networks (WSNs) have been considered as the key technological enablers. Intelligent tags, powered by autonomous energy, are attached on objects, networked by short-range wireless links, allowing the physical parameters such as temperatures and humidities as well as the location information to seamlessly integrate with the enterprise information system over the Internet. In this paper, challenges, considerations and design examples are reviewed from system, implementation and application perspectives, particularly with focus on intelligent packaging and logistics for the fresh food tracking and monitoring service. An IoT platform with a two-layer network architecture is introduced consisting of an asymmetric tag-reader link (RFID layer) and an ad-hoc link between readers (WSN layer), which are further connected to the Internet via cellular or Wi-Fi. Then, we provide insights into the enabling technology of RFID with sensing capabilities. Passive, semi-passive and active RFID solutions are discussed. In particular, we describe ultra-wideband radio RFID which has been considered as one of the most promising techniques for ultra-low-power and low-cost wireless sensing. Finally, an example is provided in the form of an application in fresh food tracking services and corresponding field testing results.

  3. Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

    KAUST Repository

    Hussain, Rifaqat; Sharawi, Mohammad S.

    2015-01-01

    . The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm2. The proposed sensing antenna is used to cover a wide range

  4. Ship detection using STFT sea background statistical modeling for large-scale oceansat remote sensing image

    Science.gov (United States)

    Wang, Lixia; Pei, Jihong; Xie, Weixin; Liu, Jinyuan

    2018-03-01

    Large-scale oceansat remote sensing images cover a big area sea surface, which fluctuation can be considered as a non-stationary process. Short-Time Fourier Transform (STFT) is a suitable analysis tool for the time varying nonstationary signal. In this paper, a novel ship detection method using 2-D STFT sea background statistical modeling for large-scale oceansat remote sensing images is proposed. First, the paper divides the large-scale oceansat remote sensing image into small sub-blocks, and 2-D STFT is applied to each sub-block individually. Second, the 2-D STFT spectrum of sub-blocks is studied and the obvious different characteristic between sea background and non-sea background is found. Finally, the statistical model for all valid frequency points in the STFT spectrum of sea background is given, and the ship detection method based on the 2-D STFT spectrum modeling is proposed. The experimental result shows that the proposed algorithm can detect ship targets with high recall rate and low missing rate.

  5. Response to FCC 98-208 notice of inquiry in the matter of revision of part 15 of the commission's rules regarding ultra-wideband transmission systems

    International Nuclear Information System (INIS)

    Morey, R M.

    1998-01-01

    In general, Micropower Impulse Radar (MIR) depends on Ultra-Wideband (UWB) transmission systems. UWB technology can supply innovative new systems and products that have an obvious value for radar and communications uses. Important applications include bridge-deck inspection systems, ground penetrating radar, mine detection, and precise distance resolution for such things as liquid level measurement. Most of these UWB inspection and measurement methods have some unique qualities, which need to be pursued. Therefore, in considering changes to Part 15 the FCC needs to take into account the unique features of UWB technology. MIR is applicable to two general types of UWB systems: radar systems and communications systems. Currently LLNL and its licensees are focusing on radar or radar type systems. LLNL is evaluating MIR for specialized communication systems. MIR is a relatively low power technology. Therefore, MIR systems seem to have a low potential for causing harmful interference to other users of the spectrum since the transmitted signal is spread over a wide bandwidth, which results in a relatively low spectral power density

  6. [Application of hyperspectral remote sensing in research on ecological boundary in north farming-pasturing transition in China].

    Science.gov (United States)

    Wang, Hong-Mei; Wang, Kun; Xie, Ying-Zhong

    2009-06-01

    Studies of ecological boundaries are important and have become a rapidly evolving part of contemporary ecology. The ecotones are dynamic and play several functional roles in ecosystem dynamics, and the changes in their locations can be used as an indicator of environment changes, and for these reasons, ecotones have recently become a focus of investigation of landscape ecology and global climate change. As the interest in ecotone increases, there is an increased need for formal techniques to detect it. Hence, to better study and understand the functional roles and dynamics of ecotones in ecosystem, we need quantitative methods to characterize them. In the semi-arid region of northern China, there exists a farming-pasturing transition resulting from grassland reclamation and deforestation. With the fragmentation of grassland landscape, the structure and function of the grassland ecosystem are changing. Given this perspective; new-image processing approaches are needed to focus on transition themselves. Hyperspectral remote sensing data, compared with wide-band remote sensing data, has the advantage of high spectral resolution. Hyperspectral remote sensing can be used to visualize transitional zones and to detect ecotone based on surface properties (e. g. vegetation, soil type, and soil moisture etc). In this paper, the methods of hyperspectral remote sensing information processing, spectral analysis and its application in detecting the vegetation classifications, vegetation growth state, estimating the canopy biochemical characteristics, soil moisture, soil organic matter etc are reviewed in detail. Finally the paper involves further application of hyperspectral remote sensing information in research on local climate in ecological boundary in north farming-pasturing transition in China.

  7. On results using automated wideband instrumentation for radar measurements and characterization

    Science.gov (United States)

    Govoni, Mark A.; Dogaru, Traian; Le, Calvin; Sobczak, Kevin

    2017-05-01

    Experiences are shared from a recent radar measurement and characterization effort. A regimented data collection procedure ensures repeatability and provides an expedited alternative to typical narrowband capabilities. Commercially-available instrumentation is repurposed to support wideband data collections spanning a contiguous range of frequencies from 700 MHz to 40 GHz. Utilizing a 4-port network analyzer, both monostatic and quasi-monostatic measurements are achievable. Polarization is varied by way of a custom-designed antenna mount that allows for the mechanical reorientation of the antennas. Computational electromagnetic modeling is briefly introduced and serves in validating the legitimacy of the collection capability. Data products presented will include high-range resolution profiles and inverse synthetic aperture radar (ISAR) imagery.

  8. Coherent time-stretch transformation for real-time capture of wideband signals.

    Science.gov (United States)

    Buckley, Brandon W; Madni, Asad M; Jalali, Bahram

    2013-09-09

    Time stretch transformation of wideband waveforms boosts the performance of analog-to-digital converters and digital signal processors by slowing down analog electrical signals before digitization. The transform is based on dispersive Fourier transformation implemented in the optical domain. A coherent receiver would be ideal for capturing the time-stretched optical signal. Coherent receivers offer improved sensitivity, allow for digital cancellation of dispersion-induced impairments and optical nonlinearities, and enable decoding of phase-modulated optical data formats. Because time-stretch uses a chirped broadband (>1 THz) optical carrier, a new coherent detection technique is required. In this paper, we introduce and demonstrate coherent time stretch transformation; a technique that combines dispersive Fourier transform with optically broadband coherent detection.

  9. High-resolution nondestructive testing of multilayer dielectric materials using wideband microwave synthetic aperture radar imaging

    Science.gov (United States)

    Kim, Tae Hee; James, Robin; Narayanan, Ram M.

    2017-04-01

    Fiber Reinforced Polymer or Plastic (FRP) composites have been rapidly increasing in the aerospace, automotive and marine industry, and civil engineering, because these composites show superior characteristics such as outstanding strength and stiffness, low weight, as well as anti-corrosion and easy production. Generally, the advancement of materials calls for correspondingly advanced methods and technologies for inspection and failure detection during production or maintenance, especially in the area of nondestructive testing (NDT). Among numerous inspection techniques, microwave sensing methods can be effectively used for NDT of FRP composites. FRP composite materials can be produced using various structures and materials, and various defects or flaws occur due to environmental conditions encountered during operation. However, reliable, low-cost, and easy-to-operate NDT methods have not been developed and tested. FRP composites are usually produced as multilayered structures consisting of fiber plate, matrix and core. Therefore, typical defects appearing in FRP composites are disbondings, delaminations, object inclusions, and certain kinds of barely visible impact damages. In this paper, we propose a microwave NDT method, based on synthetic aperture radar (SAR) imaging algorithms, for stand-off imaging of internal delaminations. When a microwave signal is incident on a multilayer dielectric material, the reflected signal provides a good response to interfaces and transverse cracks. An electromagnetic wave model is introduced to delineate interface widths or defect depths from the reflected waves. For the purpose of numerical analysis and simulation, multilayered composite samples with various artificial defects are assumed, and their SAR images are obtained and analyzed using a variety of high-resolution wideband waveforms.

  10. A robust cooperative spectrum sensing scheme based on Dempster-Shafer theory and trustworthiness degree calculation in cognitive radio networks

    Science.gov (United States)

    Wang, Jinlong; Feng, Shuo; Wu, Qihui; Zheng, Xueqiang; Xu, Yuhua; Ding, Guoru

    2014-12-01

    Cognitive radio (CR) is a promising technology that brings about remarkable improvement in spectrum utilization. To tackle the hidden terminal problem, cooperative spectrum sensing (CSS) which benefits from the spatial diversity has been studied extensively. Since CSS is vulnerable to the attacks initiated by malicious secondary users (SUs), several secure CSS schemes based on Dempster-Shafer theory have been proposed. However, the existing works only utilize the current difference of SUs, such as the difference in SNR or similarity degree, to evaluate the trustworthiness of each SU. As the current difference is only one-sided and sometimes inaccurate, the statistical information contained in each SU's historical behavior should not be overlooked. In this article, we propose a robust CSS scheme based on Dempster-Shafer theory and trustworthiness degree calculation. It is carried out in four successive steps, which are basic probability assignment (BPA), trustworthiness degree calculation, selection and adjustment of BPA, and combination by Dempster-Shafer rule, respectively. Our proposed scheme evaluates the trustworthiness degree of SUs from both current difference aspect and historical behavior aspect and exploits Dempster-Shafer theory's potential to establish a `soft update' approach for the reputation value maintenance. It can not only differentiate malicious SUs from honest ones based on their historical behaviors but also reserve the current difference for each SU to achieve a better real-time performance. Abundant simulation results have validated that the proposed scheme outperforms the existing ones under the impact of different attack patterns and different number of malicious SUs.

  11. Calculations of a wideband metamaterial absorber using equivalent medium theory

    Science.gov (United States)

    Huang, Xiaojun; Yang, Helin; Wang, Danqi; Yu, Shengqing; Lou, Yanchao; Guo, Ling

    2016-08-01

    Metamaterial absorbers (MMAs) have drawn increasing attention in many areas due to the fact that they can achieve electromagnetic (EM) waves with unity absorptivity. We demonstrate the design, simulation, experiment and calculation of a wideband MMA based on a loaded double-square-loop (DSL) array of chip resisters. For a normal incidence EM wave, the simulated results show that the absorption of the full width at half maximum is about 9.1 GHz, and the relative bandwidth is 87.1%. Experimental results are in agreement with the simulations. More importantly, equivalent medium theory (EMT) is utilized to calculate the absorptions of the DSL MMA, and the calculated absorptions based on EMT agree with the simulated and measured results. The method based on EMT provides a new way to analysis the mechanism of MMAs.

  12. A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Pawlik, Michal

    2009-01-01

    A photonic ultra-wideband (UWB) pulse generator based on relaxation oscillations of a semiconductor laser is proposed and experimentally demonstrated. We numerically simulate the modulation response of a direct modulation laser (DML) and show that due to the relaxation oscillations of the laser......, the generated signals with complex shape in time domain match the Federal Communications Commission (FCC) mask in the frequency domain. Experimental results using a DML agree well with simulation predictions. Furthermore, we also experimentally demonstrate the generation of FCC compliant UWB signals...

  13. Efficient Error Detection in Soft Data Fusion for Cooperative Spectrum Sensing

    KAUST Repository

    Saqib Bhatti, Dost Muhammad; Ahmed, Saleem; Saeed, Nasir; Shaikh, Bushra

    2018-01-01

    . For CSS, all SUs report their sensing information through reporting channel to the central base station called fusion center (FC). During transmission, some of the SUs are subjected to fading and shadowing, due to which the overall performance of CSS

  14. Theoretical design and analysis of wideband active hard electromagnetic surfaces using non-Foster circuit loaded anisotropic metasurfaces

    Science.gov (United States)

    Li, Yunbo; Li, Aobo; Sievenpiper, Daniel

    2018-02-01

    The electromagnetic (EM) hard surface which can both support transverse electric and transverse magnetic surface wave modes has the important ability to reduce the EM blockage of metallic obstacles. We propose a method to design an electrically thin hard surface with wide bandwidth by loading with non-Foster elements. The wideband hard surface composed of an anisotropic impedance coating can be considered as a kind of active metasurface. We develop a method to determine the values of the loading non-Foster circuit which can minimize the dispersion of the unit cells. For this method, we derive accurate values for the loading non-Foster elements through theoretical analysis. We also determine the fundamental limitations on the bandwidth due to stability requirements. To verify our theoretical design, we simulate the transmission performance between the two ports on opposite sides of a metallic rhombus-shaped obstacle coated with the non-Foster based metasurface. The simulated results show that the blockage has been largely reduced over a broad bandwidth from 0.2 GHz to 1.5 GHz. Finally, we provide a discussion on how the resistive part of the non-Foster circuit can affect the performance of the wideband hard surface coating.

  15. Experimental Performance Comparison of 60 GHz DCM OFDM and Impulse BPSK Ultra-Wideband with Combined Optical Fibre and Wireless Transmission

    DEFF Research Database (Denmark)

    Beltrán, Marta; Jensen, Jesper Bevensee; Yu, Xianbin

    2010-01-01

    We present an experimental performance comparison of 1.44Gbps dual-carrier modulation OFDM and BPSK impulse-radio ultra-wideband in the 60GHz band with combined fibre, up to 40km, and 5m wireless transmission. Impulse-radio exhibits better dispersion tolerance requiring lower optical power....

  16. Sensing Methods for Detecting Analog Television Signals

    Science.gov (United States)

    Rahman, Mohammad Azizur; Song, Chunyi; Harada, Hiroshi

    This paper introduces a unified method of spectrum sensing for all existing analog television (TV) signals including NTSC, PAL and SECAM. We propose a correlation based method (CBM) with a single reference signal for sensing any analog TV signals. In addition we also propose an improved energy detection method. The CBM approach has been implemented in a hardware prototype specially designed for participating in Singapore TV white space (WS) test trial conducted by Infocomm Development Authority (IDA) of the Singapore government. Analytical and simulation results of the CBM method will be presented in the paper, as well as hardware testing results for sensing various analog TV signals. Both AWGN and fading channels will be considered. It is shown that the theoretical results closely match with those from simulations. Sensing performance of the hardware prototype will also be presented in fading environment by using a fading simulator. We present performance of the proposed techniques in terms of probability of false alarm, probability of detection, sensing time etc. We also present a comparative study of the various techniques.

  17. A Novel Manufacturing Process for Compact, Low-Weight and Flexible Ultra-Wideband Cavity Backed Textile Antennas

    Directory of Open Access Journals (Sweden)

    Dries Van Baelen

    2018-01-01

    Full Text Available A novel manufacturing procedure for the fabrication of ultra-wideband cavity-backed substrate integrated waveguide antennas on textile substrates is proposed. The antenna cavity is constructed using a single laser-cut electrotextile patch, which is folded around the substrate. Electrotextile slabs protruding from the laser-cut patch are then vertically folded and glued to form the antenna cavity instead of rigid metal tubelets to implement the vertical cavity walls. This approach drastically improves mechanical flexibility, decreases the antenna weight to slightly more than 1 g and significantly reduces alignment errors. As a proof of concept, a cavity-backed substrate integrated waveguide antenna is designed and realized for ultra-wideband operation in the [5.15–5.85] GHz band. Antenna performance is validated in free space as well as in two on body measurement scenarios. Furthermore, the antenna’s figures of merit are characterized when the prototype is bent at different curvature radii, as commonly encountered during deployment on the human body. Also the effect of humidity content on antenna performance is studied. In all scenarios, the realized antenna covers the entire operating frequency band, meanwhile retaining a stable radiation pattern with a broadside gain above 5 dBi, and a radiation efficiency of at least 70%.

  18. Wideband satellite phase coherent beacon observations at auroral and equatorial latitudes - A review

    International Nuclear Information System (INIS)

    Rino, C.L.; Livingston, R.C.; Cousins, M.D.; Fair, B.C.

    1978-01-01

    This paper presents a brief review of some of the principal results from the first two years of operation of the Wideband satellite which transmits phase-coherent signals from S-band to VHF. The auroral zone data show narrow regions of enhanced scintillation well equatorward of the discrete aurora. Such enhancements can be explained as a purely geometrical effect if the irregularities within the major precipitation regions have a sheet-like structure. Evidence of a localized irregularity source at the poleward boundary of the plasma trough is also found. Model computations are discussed and applied to the interpretation of equatorial data

  19. A Wideband Dual-Polarized Antenna Using Planar Quasi-Open-Sleeve Dipoles for Base Station Applications

    Directory of Open Access Journals (Sweden)

    Guan-xi Zhang

    2015-01-01

    Full Text Available A wideband dual-polarized antenna for WLAN, WiMAX, and LTE base station applications is presented in this paper. The proposed antenna consists of two pairs of orthogonal planar quasi-open-sleeve dipoles along the centerlines, a balanced feeding structure and a square ground plane. The planar quasi-open-sleeve dipole comprises a pair of bowtie-shaped planar dipoles with two parallel curve parasitic elements. The introduced parallel curve parasitic elements change the path of the current of the original bowtie-shaped planar dipoles at high frequencies and hence wideband characteristic is achieved. Two pairs of the planar quasi-open-sleeve dipoles placed orthogonally further broaden the bandwidth of the antenna with dual-polarization characteristics. The proposed antenna achieves a 10-dB return loss bandwidth from 2.32 to 4.03 GHz (53.9% bandwidth using the planar quasi-open-sleeve dipole structures. The isolation between the two ports remains more than 32 dB in the whole bandwidth. Measured results show that the proposed antenna keeps the cross-polarization under −33 dB and the front-to-back ratio better than 15 dB in the operating band. The antenna has an area of 0.3λ  × 0.3λ at 2.32 GHz making it easy to be extended to an array element.

  20. A honeycomb-like three-dimensional metamaterial absorber via super-wideband and wide-angle performances at millimeter wave and low THz frequencies

    Science.gov (United States)

    Vahidi, Alireza; Rajabalipanah, Hamid; Abdolali, Ali; Cheldavi, Ahmad

    2018-04-01

    Achieving wideband absorption via three-dimensional (3D) metamaterials has revealed as a new emerging innovative field of research, especially in recent years. Here, a novel 3D metamaterial absorber (MA) having a sixfold symmetry is designed which consists of periodic resistive honeycomb-like units. The proposed 3D MA exhibits a strong absorptivity above 90% in the widest bandwidth ever reported to the authors' knowledge from 50 to 460 GHz (the bandwidth ratio larger than 1:9), covering both millimeter wave and low -terahertz spectra. To understand the physical mechanism of absorption, the electric field and surface current distributions, the power loss density as well as the deteriorating effects of the high-order Floquet modes are monitored and discussed. As a distinctive feature in comparison to the similar 3D MAs, our engineered absorber provides multiple resonances, contributing to further broadening of the operating bandwidth. In addition, it is shown that the honeycomb-like MA retains its polarization-insensitive absorption in a wide range of incident wave angles and polarization angles. Due to flexibility of the design, these superior performances can be simply extended to terahertz, infrared and visible frequencies, potentially leading to many promising applications in imaging, sensing, and camouflage technology.

  1. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities

    Directory of Open Access Journals (Sweden)

    Yiyuan Xie

    2016-05-01

    Full Text Available A plasmonic temperature-sensing structure, based on a metal-insulator-metal (MIM waveguide with dual side-coupled hexagonal cavities, is proposed and numerically investigated by using the finite-difference time-domain (FDTD method in this paper. The numerical simulation results show that a resonance dip appears in the transmission spectrum. Moreover, the full width of half maximum (FWHM of the resonance dip can be narrowed down, and the extinction ratio can reach a maximum value by tuning the coupling distance between the waveguide and two cavities. Based on a linear relationship between the resonance dip and environment temperature, the temperature-sensing characteristics are discussed. The temperature sensitivity is influenced by the side length and the coupling distance. Furthermore, for the first time, two concepts—optical spectrum interference (OSI and misjudge rate (MR—are introduced to study the temperature-sensing resolution based on spectral interrogation. This work has some significance in the design of nanoscale optical sensors with high temperature sensitivity and a high sensing resolution.

  2. Radiation distribution sensing with normal optical fiber

    International Nuclear Information System (INIS)

    Kawarabayashi, Jun; Mizuno, Ryoji; Naka, Ryotaro; Uritani, Akira; Watanabe, Ken-ichi; Iguchi, Tetsuo; Tsujimura, Norio

    2002-01-01

    The purpose of this study is to develop a radiation distribution monitor using a normal plastic optical fiber. The monitor has a long operating length (10m-100m) and can obtain continuous radiation distributions. A principle of the position sensing is based on a time-of-flight technique. The characteristics of this monitor to beta particles, gamma rays and fast neutrons were obtained. The spatial resolutions for beta particles ( 90 Sr -90 Y), gamma rays ( 137 Cs) and D-T neutrons were 30 cm, 37 cm and 13 cm, respectively. The detection efficiencies for the beta rays, the gamma rays and D-T neutrons were 0.11%, 1.6x10 -5 % and 5.4x10 -4 %, respectively. The effective attenuation length of the detection efficiency was 18m. New principle of the position sensing based on spectroscopic analysis was also proposed. A preliminary test showed that the spectrum observed at the end of the fiber depended on the position of the irradiated point. This fact shows that the radiation distributions were calculated from the spectrum by mathematical deconvolution technique. (author)

  3. Concept for a hyperspectral remote sensing algorithm for floating marine macro plastics.

    Science.gov (United States)

    Goddijn-Murphy, Lonneke; Peters, Steef; van Sebille, Erik; James, Neil A; Gibb, Stuart

    2018-01-01

    There is growing global concern over the chemical, biological and ecological impact of plastics in the ocean. Remote sensing has the potential to provide long-term, global monitoring but for marine plastics it is still in its early stages. Some progress has been made in hyperspectral remote sensing of marine macroplastics in the visible (VIS) to short wave infrared (SWIR) spectrum. We present a reflectance model of sunlight interacting with a sea surface littered with macro plastics, based on geometrical optics and the spectral signatures of plastic and seawater. This is a first step towards the development of a remote sensing algorithm for marine plastic using light reflectance measurements in air. Our model takes the colour, transparency, reflectivity and shape of plastic litter into account. This concept model can aid the design of laboratory, field and Earth observation measurements in the VIS-SWIR spectrum and explain the results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Teaching Students with Autism Spectrum Disorders: Technology, Curriculum, and Common Sense

    Science.gov (United States)

    Ennis-Cole, Demetria

    2012-01-01

    Autism is a spectrum of disorders which comprises Asperger's Syndrome, Pervasive Developmental Delay-Not Otherwise Specified (PDD-NOS), Rett's Syndrome, Childhood Disintegrative Disorder, and Autistic Disorder. It affects 1 in 110 children (Center for Disease Control and Prevention, [CDC], 2011), and it is a complex neurological disorder that is…

  5. NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing

    Science.gov (United States)

    Chirayath, Ved

    2018-01-01

    We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and

  6. Theoretical and experimental signal-to-noise ratio assessment in new direction sensing continuous-wave Doppler lidar

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Foroughi Abari, Farzad; Mann, Jakob

    2014-01-01

    A new direction sensing continuous-wave Doppler lidar based on an image-reject homodyne receiver has recently been demonstrated at DTU Wind Energy, Technical University of Denmark. In this contribution we analyse the signal-to-noise ratio resulting from two different data processing methods both...... leading to the direction sensing capability. It is found that using the auto spectrum of the complex signal to determine the wind speed leads to a signal-to-noise ratio equivalent to that of a standard self-heterodyne receiver. Using the imaginary part of the cross spectrum to estimate the Doppler shift...... has the benefit of a zero-mean background spectrum, but comes at the expense of a decrease in the signal-to noise ratio by a factor of √2....

  7. Compressive power spectrum sensing for vibration-based output-only system identification of structural systems in the presence of noise

    Science.gov (United States)

    Tau Siesakul, Bamrung; Gkoktsi, Kyriaki; Giaralis, Agathoklis

    2015-05-01

    Motivated by the need to reduce monetary and energy consumption costs of wireless sensor networks in undertaking output-only/operational modal analysis of engineering structures, this paper considers a multi-coset analog-toinformation converter for structural system identification from acceleration response signals of white noise excited linear damped structures sampled at sub-Nyquist rates. The underlying natural frequencies, peak gains in the frequency domain, and critical damping ratios of the vibrating structures are estimated directly from the sub-Nyquist measurements and, therefore, the computationally demanding signal reconstruction step is by-passed. This is accomplished by first employing a power spectrum blind sampling (PSBS) technique for multi-band wide sense stationary stochastic processes in conjunction with deterministic non-uniform multi-coset sampling patterns derived from solving a weighted least square optimization problem. Next, modal properties are derived by the standard frequency domain peak picking algorithm. Special attention is focused on assessing the potential of the adopted PSBS technique, which poses no sparsity requirements to the sensed signals, to derive accurate estimates of modal structural system properties from noisy sub- Nyquist measurements. To this aim, sub-Nyquist sampled acceleration response signals corrupted by various levels of additive white noise pertaining to a benchmark space truss structure with closely spaced natural frequencies are obtained within an efficient Monte Carlo simulation-based framework. Accurate estimates of natural frequencies and reasonable estimates of local peak spectral ordinates and critical damping ratios are derived from measurements sampled at about 70% below the Nyquist rate and for SNR as low as 0db demonstrating that the adopted approach enjoys noise immunity.

  8. 3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution Over a 50 km Fiber With Wireless Transmission

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Gamatham, Romeo

    2010-01-01

    A 3.125 Gb/s photonic impulse radio ultra-wideband signal is created using the incoherent optical field summation resulting from the cross gain modulation of an uncooled distributed feedback laser injected with an external cavity laser. After 50 km of fiber and wireless transmission over 2.9-3.3-m...

  9. Characterization of the bistable wideband optical filter on the basis of nonlinear 2D photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Guryev, I. V., E-mail: guryev@ieee.org; Sukhoivanov, I. A., E-mail: guryev@ieee.org; Andrade Lucio, J. A., E-mail: guryev@ieee.org; Manzano, O. Ibarra, E-mail: guryev@ieee.org; Rodriguez, E. Vargaz, E-mail: guryev@ieee.org; Gonzales, D. Claudio, E-mail: guryev@ieee.org; Chavez, R. I. Mata, E-mail: guryev@ieee.org; Gurieva, N. S., E-mail: guryev@ieee.org [University of Guanajuato, Engineering division (Mexico)

    2014-05-15

    In our work, we investigated the wideband optical filter on the basis of nonlinear photonic crystal. The all-optical flip-flop using ultra-short pulses with duration lower than 200 fs is obtained in such filters. Here we pay special attention to the stability problem of the nonlinear element. To investigate this problem, the temporal response demonstrating the flip-flop have been computed within the certain range of the wavelengths as well as at different input power.

  10. 76 FR 32993 - Toward Innovative Spectrum-Sharing Technologies: A Technical Workshop on Coordinating Federal...

    Science.gov (United States)

    2011-06-07

    .../WSRD/ . Background: The dramatic rise of radio frequency-based applications has sparked a new sense of urgency among federal users, commercial service providers, equipment developers, and spectrum management...

  11. Wideband simulation of earthquake ground motion by a spectrum-matching, multiple-pulse technique

    International Nuclear Information System (INIS)

    Gusev, A.; Pavlov, V.

    2006-04-01

    To simulate earthquake ground motion, we combine a multiple-point stochastic earthquake fault model and a suite of Green functions. Conceptually, our source model generalizes the classic one of Haskell (1966). At any time instant, slip occurs over a narrow strip that sweeps the fault area at a (spatially variable) velocity. This behavior defines seismic signals at lower frequencies (LF), and describes directivity effects. High-frequency (HF) behavior of source signal is defined by local slip history, assumed to be a short segment of pulsed noise. For calculations, this model is discretized as a grid of point subsources. Subsource moment rate time histories, in their LF part, are smooth pulses whose duration equals to the rise time. In their HF part, they are segments of non-Gaussian noise of similar duration. The spectral content of subsource time histories is adjusted so that the summary far-field signal follows certain predetermined spectral scaling law. The results of simulation depend on random seeds, and on particular values of such parameters as: stress drop; average and dispersion parameter for rupture velocity; rupture nucleation point; slip zone width/rise time, wavenumber-spectrum parameter defining final slip function; the degrees of non-Gaussianity for random slip rate in time, and for random final slip in space, and more. To calculate ground motion at a site, Green functions are calculated for each subsource-site pair, then convolved with subsource time functions and at last summed over subsources. The original Green function calculator for layered weakly inelastic medium is of discrete wavenumber kind, with no intrinsic limitations with respect to layer thickness or bandwidth. The simulation package can generate example motions, or used to study uncertainties of the predicted motion. As a test, realistic analogues of recorded motions in the epicentral zone of the 1994 Northridge, California earthquake were synthesized, and related uncertainties were

  12. Energy Efficiency and SINR Maximization Beamformers for Spectrum Sharing With Sensing Information

    KAUST Repository

    Alabbasi, AbdulRahman; Rezki, Zouheir; Shihada, Basem

    2014-01-01

    an underlaying communication using adaptive beamforming schemes combined with sensing information to achieve optimal energy-efficient systems. The proposed schemes maximize EE and SINR metrics subject to cognitive radio and quality-of-service constraints

  13. Design Considerations for Autocalibrations of Wide-Band ΔΣ Fractional-N PLL Synthesizers

    Directory of Open Access Journals (Sweden)

    Jaewook Shin

    2011-01-01

    Full Text Available Autocalibration of VCO frequency and loop gain is an essential process in PLL frequency synthesizers. In a wide tuning-range fractional-N PLL frequency synthesizer, high-speed and high-precision automatic calibration is especially important for shortening the lock time and improving the phase noise. This paper reviews the design issues of the PLL auto-calibration and discusses on the limitations of the previous techniques. A very simple and efficient auto-calibration method based on a high-speed frequency-to-digital converter (FDC is proposed and verified through simulations. The proposed method is highly suited for a very wide-band ΔΣ fractional-N PLL.

  14. An open-structure sound insulator against low-frequency and wide-band acoustic waves

    Science.gov (United States)

    Chen, Zhe; Fan, Li; Zhang, Shu-yi; Zhang, Hui; Li, Xiao-juan; Ding, Jin

    2015-10-01

    To block sound, i.e., the vibration of air, most insulators are based on sealed structures and prevent the flow of the air. In this research, an acoustic metamaterial adopting side structures, loops, and labyrinths, arranged along a main tube, is presented. By combining the accurately designed side structures, an extremely wide forbidden band with a low cut-off frequency of 80 Hz is produced, which demonstrates a powerful low-frequency and wide-band sound insulation ability. Moreover, by virtue of the bypass arrangement, the metamaterial is based on an open structure, and thus air flow is allowed while acoustic waves can be insulated.

  15. Quantification of whispering gallery mode spectrum variability in application to sensing nanobiophotonics

    Science.gov (United States)

    Saetchnikov, Anton; Skakun, Victor; Saetchnikov, Vladimir; Tcherniavskaia, Elina; Ostendorf, Andreas

    2017-10-01

    An approach for the automated whispering gallery mode (WGM) signal decomposition and its parameter estimation is discussed. The algorithm is based on the peak picking and can be applied for the preprocessing of the raw signal acquired from the multiplied WGM-based biosensing chips. Quantitative estimations representing physically meaningful parameters of the external disturbing factors on the WGM spectral shape are the output values. Derived parameters can be directly applied to the further deep qualitative and quantitative interpretations of the sensed disturbing factors. The algorithm is tested on both simulated and experimental data taken from the bovine serum albumin biosensing task. The proposed solution is expected to be a useful contribution to the preprocessing phase of the complete data analysis engine and is expected to push the WGM technology toward the real-live sensing nanobiophotonics.

  16. An IQ mismatch calibration and compensation technique for wideband wireless transceivers

    International Nuclear Information System (INIS)

    Peng Jin; Zhou Liguo; Yao Heng; Yuan Fang; Shi Yin; Fang Zhi

    2014-01-01

    An IQ mismatch calibration and compensation technique based on the digital baseband for wideband wireless communication transmitters is proposed. The digital baseband transmits the signal used for IQ mismatch calibration. The signal passes through the RF transmitter path, the calibration loop (which is composed of a square power detector and a band-pass filter in the RF transceiver) and the variable gain amplifier of the receiver. The digital baseband samples the signal for IQ mismatch estimation and compensates for it. Compared with the self-calibration technique in the RF chip, the proposed technique saves area and power consumption for the wireless local area network solution. This technique has been successfully used for the 802.11n system and satisfies the requirement of the standard by achieving over 50 dB image suppression. (semiconductor integrated circuits)

  17. Low-sampling-rate ultra-wideband digital receiver using equivalent-time sampling

    KAUST Repository

    Ballal, Tarig

    2014-09-01

    In this paper, we propose an all-digital scheme for ultra-wideband symbol detection. In the proposed scheme, the received symbols are sampled many times below the Nyquist rate. It is shown that when the number of symbol repetitions, P, is co-prime with the symbol duration given in Nyquist samples, the receiver can sample the received data P times below the Nyquist rate, without loss of fidelity. The proposed scheme is applied to perform channel estimation and binary pulse position modulation (BPPM) detection. Results are presented for two receivers operating at two different sampling rates that are 10 and 20 times below the Nyquist rate. The feasibility of the proposed scheme is demonstrated in different scenarios, with reasonable bit error rates obtained in most of the cases.

  18. Low-sampling-rate ultra-wideband digital receiver using equivalent-time sampling

    KAUST Repository

    Ballal, Tarig; Al-Naffouri, Tareq Y.

    2014-01-01

    In this paper, we propose an all-digital scheme for ultra-wideband symbol detection. In the proposed scheme, the received symbols are sampled many times below the Nyquist rate. It is shown that when the number of symbol repetitions, P, is co-prime with the symbol duration given in Nyquist samples, the receiver can sample the received data P times below the Nyquist rate, without loss of fidelity. The proposed scheme is applied to perform channel estimation and binary pulse position modulation (BPPM) detection. Results are presented for two receivers operating at two different sampling rates that are 10 and 20 times below the Nyquist rate. The feasibility of the proposed scheme is demonstrated in different scenarios, with reasonable bit error rates obtained in most of the cases.

  19. DEEP WIDEBAND SINGLE POINTINGS AND MOSAICS IN RADIO INTERFEROMETRY: HOW ACCURATELY DO WE RECONSTRUCT INTENSITIES AND SPECTRAL INDICES OF FAINT SOURCES?

    Energy Technology Data Exchange (ETDEWEB)

    Rau, U.; Bhatnagar, S.; Owen, F. N., E-mail: rurvashi@nrao.edu [National Radio Astronomy Observatory, Socorro, NM-87801 (United States)

    2016-11-01

    Many deep wideband wide-field radio interferometric surveys are being designed to accurately measure intensities, spectral indices, and polarization properties of faint source populations. In this paper, we compare various wideband imaging methods to evaluate the accuracy to which intensities and spectral indices of sources close to the confusion limit can be reconstructed. We simulated a wideband single-pointing (C-array, L-Band (1–2 GHz)) and 46-pointing mosaic (D-array, C-Band (4–8 GHz)) JVLA observation using a realistic brightness distribution ranging from 1 μ Jy to 100 mJy and time-, frequency-, polarization-, and direction-dependent instrumental effects. The main results from these comparisons are (a) errors in the reconstructed intensities and spectral indices are larger for weaker sources even in the absence of simulated noise, (b) errors are systematically lower for joint reconstruction methods (such as Multi-Term Multi-Frequency-Synthesis (MT-MFS)) along with A-Projection for accurate primary beam correction, and (c) use of MT-MFS for image reconstruction eliminates Clean-bias (which is present otherwise). Auxiliary tests include solutions for deficiencies of data partitioning methods (e.g., the use of masks to remove clean bias and hybrid methods to remove sidelobes from sources left un-deconvolved), the effect of sources not at pixel centers, and the consequences of various other numerical approximations within software implementations. This paper also demonstrates the level of detail at which such simulations must be done in order to reflect reality, enable one to systematically identify specific reasons for every trend that is observed, and to estimate scientifically defensible imaging performance metrics and the associated computational complexity of the algorithms/analysis procedures.

  20. Resilience of LTE networks against smart jamming attacks: Wideband model

    KAUST Repository

    Aziz, Farhan M.

    2015-12-03

    LTE/LTE-A networks have been successfully providing advanced broadband services to millions of users worldwide. Lately, it has been suggested to use LTE networks for mission-critical applications like public safety, smart grid and military communications. We have previously shown that LTE networks are vulnerable to Denial-of-Service (DOS) and loss of service attacks from smart jammers. In this paper, we extend our previous work on resilience of LTE networks to wideband multipath fading channel, SINR estimation in frequency domain and computation of utilities based on observable parameters under the framework of single-shot and repeated games with asymmetric information. In a single-shot game formulation, network utility is severely compromised at its solutions, i.e. at the Nash Equilibria (NE). We propose evolved repeated-game strategy algorithms to combat smart jamming attacks that can be implemented in existing deployments using current technology. © 2015 IEEE.

  1. Design of high-gain, wideband antenna using microwave hyperbolic metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan, E-mail: yan.z@chula.ac.th [International School of Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand)

    2016-05-15

    In this work, we apply hyperbolic metasurfaces (HMSs) to design high-gain and wideband antennas. It is shown that HMSs formed by a single layer of split-ring resonators (SRRs) can be excited to generate highly directive beams. In particular, we suggest two types of the SRR-HMS: a capacitively loaded SRR (CLSRR)-HMS and a substrate-backed double SRR (DSRR)-HMS. Both configurations ensure that the periodicity of the structures is sufficiently small for satisfying the effective medium theory. For the antenna design, we propose a two-layer-stacked configuration for the 2.4 GHz frequency band based on the DSRR-HMS excited by a folded monopole. Measurement results confirm numerical simulations and demonstrate that an antenna gain of more than 5 dBi can be obtained for the frequency range of 2.1 - 2.6 GHz, with a maximum gain of 7.8 dBi at 2.4 GHz.

  2. Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)

    Science.gov (United States)

    Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher R.; Lambert, Kevin M.; Miranda, Felix A.

    2015-01-01

    This poster describes the implementation of a 6x6 element, dual linear polarized array with beamformer that operates from about 8-40 GHz. It is implemented using a relatively new multi-layer microfabrication process. The beamformer includes baluns that feed dual-polarized differential antenna elements and reactive splitters that cover the full frequency range of operation. This fixed beam array (FBA) serves as the feed for a multi-band instrument designed to measure snow water equivalent (SWE) from an airborne platform known as the Wideband Instrument for Snow Measurements (WISM).

  3. Strategies for improvement of spectrum capacity for WiMax cellular systems by Cognitive Radio Technology supported by Relay Stations

    DEFF Research Database (Denmark)

    Frederiksen, Flemming Bjerge; Prasad, Ramjee

    2007-01-01

    Methods to enhance the use of the frequency spectrum by automatical spectrum sensing plus spectrum sharing in a cognitive radio technology context will be presented and discussed in this paper. Ideas to improve the wireless transmission by orthogonal OFDM-based communication and to increase...... the coverage of cellular systems by relay stations will be presented as well.   ...

  4. Wide and Fast Wavelength-Swept Fiber Laser Based on Dispersion Tuning for Dynamic Sensing

    Directory of Open Access Journals (Sweden)

    Shinji Yamashita

    2009-01-01

    Full Text Available We have developed a unique wide and fast wavelength-swept fiber laser for dynamic and accurate fiber sensing. The wavelength tuning is based on the dispersion tuning technique, which simply modulates the loss/gain in the dispersive laser cavity. By using wideband semiconductor optical amplifiers (SOAs, the sweep range could be as wide as ∼180 nm. Since the cavity contains no mechanical components, such as tunable filters, we could achieve very high sweep rate, as high as ∼200 kHz. We have realized the swept lasers at three wavelength bands, 1550 nm, 1300 nm, and 800 nm, using SOAs along with erbium-doped fiber amplifiers (EDFAs, and in two laser configurations, ring and linear ones. We also succeeded in applying the swept laser for a dynamic fiber-Bragg grating (FBG sensor system. In this paper, we review our researches on the wide and fast wavelength-swept fiber lasers.

  5. Radiation distribution sensing with normal optical fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kawarabayashi, Jun; Mizuno, Ryoji; Naka, Ryotaro; Uritani, Akira; Watanabe, Ken-ichi; Iguchi, Tetsuo [Nagoya Univ., Dept. of Nuclear Engineering, Nagoya, Aichi (Japan); Tsujimura, Norio [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan)

    2002-12-01

    The purpose of this study is to develop a radiation distribution monitor using a normal plastic optical fiber. The monitor has a long operating length (10m-100m) and can obtain continuous radiation distributions. A principle of the position sensing is based on a time-of-flight technique. The characteristics of this monitor to beta particles, gamma rays and fast neutrons were obtained. The spatial resolutions for beta particles ({sup 90}Sr{sup -90}Y), gamma rays ({sup 137}Cs) and D-T neutrons were 30 cm, 37 cm and 13 cm, respectively. The detection efficiencies for the beta rays, the gamma rays and D-T neutrons were 0.11%, 1.6x10{sup -5}% and 5.4x10{sup -4}%, respectively. The effective attenuation length of the detection efficiency was 18m. New principle of the position sensing based on spectroscopic analysis was also proposed. A preliminary test showed that the spectrum observed at the end of the fiber depended on the position of the irradiated point. This fact shows that the radiation distributions were calculated from the spectrum by mathematical deconvolution technique. (author)

  6. Outage Analysis of Spectrum-Sharing over M-Block Fading with Sensing Information

    KAUST Repository

    Alabbasi, Abdulrahman; Rezki, Zouheir; Shihada, Basem

    2016-01-01

    on the outage probability with tractable expressions. These bounds allow us to derive the exact diversity order of the secondary user’s outage probability. To further enhance the system’s performance, we also investigate the impact of including the sensing

  7. Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm.

    Science.gov (United States)

    Al-Shabib, Nasser A; Husain, Fohad Mabood; Ahmed, Faheem; Khan, Rais Ahmad; Ahmad, Iqbal; Alsharaeh, Edreese; Khan, Mohd Shahnawaz; Hussain, Afzal; Rehman, Md Tabish; Yusuf, Mohammad; Hassan, Iftekhar; Khan, Javed Masood; Ashraf, Ghulam Md; Alsalme, Ali Mohammed; Al-Ajmi, Mohamed F; Tarasov, Vadim V; Aliev, Gjumrakch

    2016-12-05

    Bacterial spoilage of food products is regulated by density dependent communication system called quorum sensing (QS). QS control biofilm formation in numerous food pathogens and Biofilms formed on food surfaces act as carriers of bacterial contamination leading to spoilage of food and health hazards. Agents inhibiting or interfering with bacterial QS and biofilm are gaining importance as a novel class of next-generation food preservatives/packaging material. In the present study, Zinc nanostructures were synthesised using Nigella sativa seed extract (NS-ZnNPs). Synthesized nanostructures were characterized hexagonal wurtzite structure of size ~24 nm by UV-visible, XRD, FTIR and TEM. NS-ZnNPs demonstrated broad-spectrum QS inhibition in C. violaceum and P. aeruginosa biosensor strains. Synthesized nanostructures inhibited QS regulated functions of C. violaceum CVO26 (violacein) and elastase, protease, pyocyanin and alginate production in PAO1 significantly. NS-ZnNPs at sub-inhibitory concentrations inhibited the biofilm formation of four-food pathogens viz. C. violaceum 12472, PAO1, L. monocytogenes, E. coli. Moreover, NS-ZnNPs was found effective in inhibiting pre-formed mature biofilms of the four pathogens. Therefore, the broad-spectrum inhibition of QS and biofilm by biogenic Zinc oxide nanoparticles and it is envisaged that these nontoxic bioactive nanostructures can be used as food packaging material and/or as food preservative.

  8. Experimental Characterization of Ultra-Wideband Channel Parameter Measurements in an Underground Mine

    Directory of Open Access Journals (Sweden)

    B. Nkakanou

    2011-01-01

    Full Text Available Experimental results for an ultra-wideband (UWB channel parameters in an underground mining environment over a frequency range of 3 GHz to 10 GHz are reported. The measurements were taken both in LOS and NLOS cases in two different size mine galleries. In the NLOS case, results were acquired for different corridor obstruction angles. The results were obtained during an extensive measurement campaign in the UWB frequency, and the measurement procedure allows both the large- and small-scale parameters such as the path loss exponent, coherence bandwidth, and so forth, to be quantified. The capacity of the UWB channel as a function of the physical depth of the mine gallery has also been recorded for comparison purposes.

  9. Time-Domain Diversity in Ultra-Wideband MIMO Communications

    Directory of Open Access Journals (Sweden)

    Alain Sibille

    2005-03-01

    Full Text Available The development of ultra-wideband (UWB communications is impeded by the drastic transmitted power limitations imposed by regulation authorities due to the “polluting” character of these radio emissions with respect to existing services. Technical solutions must be researched in order either to limit the level of spectral pollution by UWB devices or to increase their reception sensitivity. In the present work, we consider pulse-based modulations and investigate time-domain multiple-input multiple-output (MIMO diversity as one such possible solution. The basic principles of time-domain diversity in the extreme (low multipath density or intermediate (dense multipath UWB regimes are addressed, which predict the possibility of a MIMO gain equal to the product Nt×Nr of the numbers of transmit/receive antenna elements when the channel is not too severe. This analysis is confirmed by simulations using a parametric empirical stochastic double-directional channel model. They confirm the potential interest of MIMO approaches solutions in order to bring a valuable performance gain in UWB communications.

  10. Wideband quin-stable energy harvesting via combined nonlinearity

    Directory of Open Access Journals (Sweden)

    Chen Wang

    2017-04-01

    Full Text Available In this work, we propose a wideband quintuple-well potential piezoelectric-based vibration energy harvester using a combined nonlinearity: the magnetic nonlinearity induced by magnetic force and the piecewise-linearity produced by mechanical impact. With extra stable states compared to other multi-stable harvesters, the quin-stable harvester can distribute its potential energy more uniformly, which provides shallower potential wells and results in lower excitation threshold for interwell motion. The mathematical model of this quin-stable harvester is derived and its equivalent piecewise-nonlinear restoring force is measured in the experiment and identified as piecewise polynomials. Numerical simulations and experimental verifications are performed in different levels of sinusoid excitation ranging from 1 to 25 Hz. The results demonstrate that, with lower potential barriers compared with tri-stable counterpart, the quin-stable arrangement can escape potential wells more easily for doing high-energy interwell motion over a wider band of frequencies. Moreover, by utilizing the mechanical stoppers, this harvester can produce significant output voltage under small tip deflections, which results in a high power density and is especially suitable for a compact MEMS approach.

  11. A Wideband Channel Model for Intravehicular Nomadic Systems

    Directory of Open Access Journals (Sweden)

    François Bellens

    2011-01-01

    Full Text Available The increase in electronic entertainment equipments within vehicles has rendered the idea of replacing the wired links with intra-vehicle personal area networks. Ultra-wideband (UWB seems an appropriate candidate technology to meet the required data rates for interconnecting such devices. In particular, the multiband OFDM (MB-OFDM is able to provide very high transfer rates (up to 480 MBps over relatively short distances and low transmit power. In order to evaluate the performances of UWB systems within vehicles, a reliable channel model is needed. In this paper, a nomadic system where a base station placed in the center of the dashboard wants to communicate with fixed devices placed at the rear seat is investigated. A single-input single-output (SISO channel model for intra-vehicular communication (IVC systems is proposed, based on reverberation chamber theory. The model is based on measurements conducted in real traffic conditions, with a varying number of passengers in the car. Temporal variations of the wireless channels are also characterized and parametrized. The proposed model is validated by comparing model-independent statistics with the measurements.

  12. Wide-band neutrino beams at 1000 GeV

    International Nuclear Information System (INIS)

    Malensek, A.; Stutte, L.

    1983-01-01

    In a previous publication, S. Mori discussed various broad-band neutrino and antineutrino beams using 1000 GeV protons on target. A new beam (SST) has been designed which provides the same neutrino flux as the quadrupole triplet (QT) while suppressing the wrong sign flux by a factor of 18. It also provides more than twice as much high energy antineutrino flux than the sign-selected bare target (SSBT) and in addition, has better neutrino suppression. While it is possible to increase the flux obtained from the single horn system over that previously described, the conclusion which states any horn focussing system seems to be of marginal use for Tevatron neutrino physics, is unchanged. Neutrino and antineutrino event rates and wrong sign backgrounds were computed using NUADA for a 100 metric ton detector of radius 1.5 meters. Due to radiation considerations and the existing transformer location, the horn beam is placed in its usual position inside the Target Tube. All other beams are placed in Fronthall. Thus, for the wide-band Fronthall trains a decay distance of 520 meters is used, versus 400 meters for the horn train

  13. Performance Analysis of HF Band FB-MC-SS

    Energy Technology Data Exchange (ETDEWEB)

    Hussein Moradi; Stephen Andrew Laraway; Behrouz Farhang-Boroujeny

    2016-01-01

    Abstract—In a recent paper [1] the filter bank multicarrier spread spectrum (FB-MC-SS) waveform was proposed for wideband spread spectrum HF communications. A significant benefit of this waveform is robustness against narrow and partial band interference. Simulation results in [1] demonstrated good performance in a wideband HF channel over a wide range of conditions. In this paper we present a theoretical analysis of the bit error probably for this system. Our analysis tailors the results from [2] where BER performance was analyzed for maximum ration combining systems that accounted for correlation between subcarriers and channel estimation error. Equations are give for BER that closely match the simulated performance in most situations.

  14. Interference Mitigation for Coexistence of Heterogeneous Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Wu Haitao

    2006-01-01

    Full Text Available Two ultra-wideband (UWB specifications, that is, direct-sequence (DS UWB and multiband-orthogonal frequency division multiplexing (MB-OFDM UWB, have been proposed as the candidates of the IEEE 802.15.3a, competing for the standard of high-speed wireless personal area networks (WPAN. Due to the withdrawal of the standardization process, the two heterogeneous UWB technologies will coexist in the future commercial market. In this paper, we investigate the mutual interference of such coexistence scenarios by physical layer Monte Carlo simulations. The results reveal that the coexistence severely degrades the performance of both UWB systems. Moreover, such interference is asymmetric due to the heterogeneity of the two systems. Therefore, we propose the goodput-oriented utility-based transmit power control (GUTPC algorithm for interference mitigation. The feasible condition and the convergence property of GUTPC are investigated, and the choice of the coefficients is discussed for fairness and efficiency. Numerical results demonstrate that GUTPC improves the goodput of the coexisting systems effectively and fairly with saved power.

  15. Principles and Limitations of Ultra-Wideband FM Communications Systems

    Directory of Open Access Journals (Sweden)

    Kouwenhoven Michiel HL

    2005-01-01

    Full Text Available This paper presents a novel UWB communications system using double FM: a low-modulation index digital FSK followed by a high-modulation index analog FM to create a constant-envelope UWB signal. FDMA techniques at the subcarrier level are exploited to accommodate multiple users. The system is intended for low (1–10 kbps and medium (100–1000 kbps bit rate, and short-range WPAN systems. A wideband delay-line FM demodulator that is not preceded by any limiting amplifier constitutes the key component of the UWBFM receiver. This unusual approach permits multiple users to share the same RF bandwidth. Multipath, however, may limit the useful subcarrier bandwidth to one octave. This paper addresses the performance with AWGN and multipath, the resistance to narrowband interference, as well as the simultaneous detection of multiple FM signals at the same carrier frequency. SPICE and Matlab simulation results illustrate the principles and limitations of this new technology. A hardware demonstrator has been realized and has allowed the confirmation of theory with practical results.

  16. Bandwidth enhancement of a microstrip patch antenna for ultra-wideband applications

    Science.gov (United States)

    Anum, Khanda; Singh, Milind Saurabh; Mishra, Rajan; Tripathi, G. S.

    2018-04-01

    The microstrip antennas are used where size, weight, cost, and performance are constraints. Microstrip antennas (MSA) are being used in many government and commercial applications among which it is mostly used in wireless communication. The proposed antenna is designed for Ultra-wideband (UWB), it is designed on FR4 substrate material with ɛr = 4.3 and 0.0025 loss tangent. The shape and size of patch in microstrip patch antenna plays an important role in its performance. In the proposed antenna design the respective changes have been introduced which includes slotting the feedline,adding a curved slot in patch and change in patch shape itself to improve the bandwidth of the conventional antenna. The simulated results of proposed antenna shows impedance bandwidth (defined by 10 dB return loss) of 2-11.1GHz, VSWRcommunication at 7.25-8.395 GHz.

  17. Spread Spectrum Based Energy Efficient Collaborative Communication in Wireless Sensor Networks.

    Science.gov (United States)

    Ghani, Anwar; Naqvi, Husnain; Sher, Muhammad; Khan, Muazzam Ali; Khan, Imran; Irshad, Azeem

    2016-01-01

    Wireless sensor networks consist of resource limited devices. Most crucial of these resources is battery life, as in most applications like battle field or volcanic area monitoring, it is often impossible to replace or recharge the power source. This article presents an energy efficient collaborative communication system based on spread spectrum to achieve energy efficiency as well as immunity against jamming, natural interference, noise suppression and universal frequency reuse. Performance of the proposed system is evaluated using the received signal power, bit error rate (BER) and energy consumption. The results show a direct proportionality between the power gain and the number of collaborative nodes as well as BER and signal-to-noise ratio (Eb/N0). The analytical and simulation results of the proposed system are compared with SISO system. The comparison reveals that SISO perform better than collaborative communication in case of small distances whereas collaborative communication performs better than SISO in case of long distances. On the basis of these results it is safe to conclude that collaborative communication in wireless sensor networks using wideband systems improves the life time of nodes in the networks thereby prolonging the network's life time.

  18. Conjugation of fiber-coupled wide-band light sources and acousto-optical spectral elements

    Science.gov (United States)

    Machikhin, Alexander; Batshev, Vladislav; Polschikova, Olga; Khokhlov, Demid; Pozhar, Vitold; Gorevoy, Alexey

    2017-12-01

    Endoscopic instrumentation is widely used for diagnostics and surgery. The imaging systems, which provide the hyperspectral information of the tissues accessible by endoscopes, are particularly interesting and promising for in vivo photoluminescence diagnostics and therapy of tumour and inflammatory diseases. To add the spectral imaging feature to standard video endoscopes, we propose to implement acousto-optical (AO) filtration of wide-band illumination of incandescent-lamp-based light sources. To collect maximum light and direct it to the fiber-optic light guide inside the endoscopic probe, we have developed and tested the optical system for coupling the light source, the acousto-optical tunable filter (AOTF) and the light guide. The system is compact and compatible with the standard endoscopic components.

  19. Coastal Application of Altimetric Measurement using Wideband Signals of Opportunity Reflectometry

    Science.gov (United States)

    Shah, R.; Garrison, J. L.; Li, Z.; Ho, S. C.

    2017-12-01

    The majority of the world's population live in coastal regions, making this region subject to growing stress from resource exploitation, marine operations, and other human activities. The coastal ocean is also a highly dynamic region driven by the interfaces between land, sea, and air. Understanding the evolution over short temporal and small spatial scales of the coastal ocean environment is a complex and long-standing challenge. Over the last decade, it has been well established that submesoscale processes are highly energetic and have a temporal scale of hours at a 10-km of spatial scale. These processes fundamentally impact ocean dynamics, biological processes, trace gas mixing and transport. Satellite altimeters, which have played a significant role in mapping the variability of the Earth's open ocean, have known limitations in coastal areas resulting from land contamination and rapid variations due to tides and atmospheric effects. This study will evaluate the potential application of an emerging remote sensing technology (Signals of Opportunity Reflectometry: SoOp-R) to the problem of resolving submesoscale processes in the coastal regions, with spatial scales on the order of 10 km and temporal scales on the order of 1 day. SoOp-R reutilizes existing powerful communication satellite transmissions as illumination sources in a bistatic radar configuration. A number of direct broadcast satellites (DBS), currently operating in geostationary orbit, occupy very large bandwidth (400-500 MHz) spectral allocations in the Ku- and Ka- bands. Theoretically, sea surface height (SSH) can be estimated by measuring the reflected path delay of these signals with very high precision (on the order of 4-5 cm) due to the large bandwidth and high signal- to-noise ratio. SoOp-R instruments are passive, requiring only low-power receivers which could be launched on constellations of small satellites. The distribution of altimetry measurements, combined with the off-nadir geometry

  20. Wideband noise observed at ground level in the auroral region

    International Nuclear Information System (INIS)

    Benson, R.F.; Desch, M.D.

    1991-01-01

    A sideband noise event was detected at ground level from the Andoya Rocket Range in Norway in January 1989. The signals were observed on four commercial communication receivers (tuned to 159, 515, 905, and 1200 kHz), an ionosonde (200-kHz to 3.5-MHz interference-free observations) and a riometer (32.5 MHz). The event, which occurred during a period of magnetic disturbance near magnetic midnight, was the only one observed during nearly 3 weeks of operations. This low frequency-of-occurrence is attributed partly to high local noise levels. The ease with which this event was identified on the ionograms produced by the local ionosonde suggests that routine ionosonde recordings should be inspected in search for such events. Such an effort would enhance existing research directed toward developing techniques for identifying quiet communication channels and help to identify the origin and frequency-of-occurrence of high-latitude wideband noise events. 20 refs

  1. Fast switching wideband rectifying circuit for future RF energy harvesting

    Science.gov (United States)

    Asmeida, Akrem; Mustam, Saizalmursidi Md; Abidin, Z. Z.; Ashyap, A. Y. I.

    2017-09-01

    This paper presents the design and simulation of fast switching microwave rectifying circuit for ultra wideband patch antenna over a dual-frequency band (1.8 GHz for GSM and 2.4 GHz for ISM band). This band was chosen due to its high signal availability in the surrounding environment. New rectifying circuit topology with pair-matching trunks is designed using Advanced Design System (ADS) software. These trunks are interfaced with power divider to achieve good bandwidth, fast switching and high efficiency. The power divider acts as a good isolator between the trunks and its straightforward design structure makes it a good choice for a single feed UWB antenna. The simulated results demonstrate that the maximum output voltage is 2.13 V with an input power of -5 dBm. Moreover, the rectifier offers maximum efficiency of 86% for the input power of -5 dBm at given band, which could easily power up wireless sensor networks (WSN) and other small devices sufficiently.

  2. A Comprehensive Evaluation of Indoor Ranging Using Ultra-Wideband Technology

    Directory of Open Access Journals (Sweden)

    Camillo Gentile

    2007-04-01

    Full Text Available Ultra-wideband technology shows promise for precision ranging due to its fine time resolution to resolve multipath fading and the presence of lower frequencies in the baseband to penetrate walls. While a concerted effort has been conducted in the extensive modeling of the indoor UWB channel in recent years, to our knowledge only two papers have reported ranging performance, but for limited range and fixed bandwidth and center frequency. In principle, boosting power can guarantee connectivity between transmitter and receiver, but not precision due to the distorting effects of walls and other objects in the direct path. In order to gauge the limits of UWB ranging, we carry out 5000 measurements up to an unprecedented 45 m in non-line-of-sight conditions in four separate buildings with dominant wall material varying from sheet rock to steel. In addition, we report performance for varying bandwidth and center frequency of the system.

  3. A Comprehensive Evaluation of Indoor Ranging Using Ultra-Wideband Technology

    Directory of Open Access Journals (Sweden)

    Gentile Camillo

    2007-01-01

    Full Text Available Ultra-wideband technology shows promise for precision ranging due to its fine time resolution to resolve multipath fading and the presence of lower frequencies in the baseband to penetrate walls. While a concerted effort has been conducted in the extensive modeling of the indoor UWB channel in recent years, to our knowledge only two papers have reported ranging performance, but for limited range and fixed bandwidth and center frequency. In principle, boosting power can guarantee connectivity between transmitter and receiver, but not precision due to the distorting effects of walls and other objects in the direct path. In order to gauge the limits of UWB ranging, we carry out 5000 measurements up to an unprecedented 45 m in non-line-of-sight conditions in four separate buildings with dominant wall material varying from sheet rock to steel. In addition, we report performance for varying bandwidth and center frequency of the system.

  4. Micro-Doppler Ambiguity Resolution Based on Short-Time Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Jing-bo Zhuang

    2015-01-01

    Full Text Available When using a long range radar (LRR to track a target with micromotion, the micro-Doppler embodied in the radar echoes may suffer from ambiguity problem. In this paper, we propose a novel method based on compressed sensing (CS to solve micro-Doppler ambiguity. According to the RIP requirement, a sparse probing pulse train with its transmitting time random is designed. After matched filtering, the slow-time echo signals of the micromotion target can be viewed as randomly sparse sampling of Doppler spectrum. Select several successive pulses to form a short-time window and the CS sensing matrix can be built according to the time stamps of these pulses. Then performing Orthogonal Matching Pursuit (OMP, the unambiguous micro-Doppler spectrum can be obtained. The proposed algorithm is verified using the echo signals generated according to the theoretical model and the signals with micro-Doppler signature produced using the commercial electromagnetic simulation software FEKO.

  5. Proceedings of the 1986 international geoscience and remote sensing symposium (IGARSS '86) on remote sensing: today's solutions for tomorrow's information needs, volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Guyenne, T.D.; Hunt, J.J.

    1986-08-01

    New instruments with enormous information gathering abilities are being planned to provide data from all parts of the spectrum. New data processing and storage hardware, combined with fundamental advances in information systems concepts and algorithms are awaiting the research efforts to mold them for special use. Some topics covered in the proceedings are: Optical and infrared remote sensing systems; information transfer and Third World development; wave target interaction mechanisms; microwave remote sensing of sea ice; ERS-1 sensor performance, calibration, and data validation; geophysics; imaging spectrometry; image analysis systems; ocean radar scattering; marginal ice zone remote sensing; geomorphology; SAR applications; geology; multispectral image analysis; ocean wind scatterometry; passive microwave sensing; radar mapping and land use; meteorology and atmospheric sounding; and radar instrumentation.

  6. Oil spill remote sensing sensors and aircraft

    International Nuclear Information System (INIS)

    Fingas, M.; Fruhwirth, M.; Gamble, L.

    1992-01-01

    The most common form of remote sensing as applied to oil spills is aerial remote sensing. The technology of aerial remote sensing, mainly from aircraft, is reviewed along with aircraft-mounted remote sensors and aircraft modifications. The characteristics, advantages, and limitations of optical techniques, infrared and ultraviolet sensors, fluorosensors, microwave and radar sensors, and slick thickness sensors are discussed. Special attention is paid to remote sensing of oil under difficult circumstances, such as oil in water or oil on ice. An infrared camera is the first sensor recommended for oil spill work, as it is the cheapest and most applicable device, and is the only type of equipment that can be bought off-the-shelf. The second sensor recommended is an ultraviolet and visible-spectrum device. The laser fluorosensor offers the only potential for discriminating between oiled and un-oiled weeds or shoreline, and for positively identifying oil pollution on ice and in a variety of other situations. However, such an instrument is large and expensive. Radar, although low in priority for purchase, offers the only potential for large-area searches and foul-weather remote sensing. Most other sensors are experimental or do not offer good potential for oil detection or mapping. 48 refs., 8 tabs

  7. Energy Efficiency and SINR Maximization Beamformers for Spectrum Sharing With Sensing Information

    KAUST Repository

    Alabbasi, Abdulrahman

    2014-09-01

    In this paper, we consider a cognitive radio multi-input-multi-output environment, in which we adapt our beamformer to maximize both energy efficiency (EE) and signal-to-interference-plus-noise ratio (SINR) metrics. Our design considers an underlaying communication using adaptive beamforming schemes combined with sensing information to achieve optimal energy-efficient systems. The proposed schemes maximize EE and SINR metrics subject to cognitive radio and quality-of-service constraints. The analysis of the proposed schemes is classified into two categories based on knowledge of the secondary-transmitter-to-primary-receiver channel. Since the optimizations of EE and SINR problems are not convex problems, we transform them into a standard semidefinite programming (SDP) form to guarantee that the optimal solutions are global. An analytical solution is provided for one scheme, while the second scheme is left in a standard SDP form. Selected numerical results are used to quantify the impact of the sensing information on the proposed schemes compared to the benchmark ones.

  8. Detection of local inflammation induced by repeated exposure to contact allergens by use of IVIS SpectrumCT analyses

    DEFF Research Database (Denmark)

    Nielsen, Morten M.; Schmidt, Jonas D.; Christensen, Jan P.

    2017-01-01

    Background: Contact allergy is characterized by local skin inflammation that, in some cases, can result in systemic immune activation. Objectives: To investigate whether IVIS SpectrumCT analyses can be used to detect the immune response induced by contact allergens. Methods: Mice were repeatedly...... exposed to vehicle or allergens on the ears. The local and systemic responses were analysed at different times with the ProSense 750 FAST probe in IVIS SpectrumCT measurements. In addition, changes in ear thickness, cytokine profile in the skin and immunological phenotype in the draining lymph nodes...... and spleen were determined. Results: Local inflammation was detected by ProSense 750 FAST and correlated with changes in ear thickness, cytokine profile and immunological phenotype following exposure to the strong contact allergen 2,4-dinitrofluorobenzene. Analysis of the systemic response with ProSense 750...

  9. Novel Low Loss Wide-Band Multi-Port Integrated Circuit Technology for RF/Microwave Applications

    Science.gov (United States)

    Simons, Rainee N.; Goverdhanam, Kavita; Katehi, Linda P. B.; Burke, Thomas P. (Technical Monitor)

    2001-01-01

    In this paper, novel low loss, wide-band coplanar stripline technology for radio frequency (RF)/microwave integrated circuits is demonstrated on high resistivity silicon wafer. In particular, the fabrication process for the deposition of spin-on-glass (SOG) as a dielectric layer, the etching of microvias for the vertical interconnects, the design methodology for the multiport circuits and their measured/simulated characteristics are graphically illustrated. The study shows that circuits with very low loss, large bandwidth, and compact size are feasible using this technology. This multilayer planar technology has potential to significantly enhance RF/microwave IC performance when combined with semi-conductor devices and microelectromechanical systems (MEMS).

  10. Optimal Pricing of Spectrum Resources in Wireless Opportunistic Access

    Directory of Open Access Journals (Sweden)

    Hanna Bogucka

    2012-01-01

    Full Text Available We consider opportunistic access to spectrum resources in cognitive wireless networks. The users equipment, or the network nodes in general are able to sense the spectrum and adopt a subset of available resources (the spectrum and the power individually and independently in a distributed manner, that is, based on their local channel quality information and not knowing the Channel State Information (CSI of the other nodes' links in the considered network area. In such a network scenery, the competition of nodes for available resources is observed, which can be modeled as a game. To obtain spectrally efficient and fair spectrum allocation in this competitive environment with the nodes having no information on the other players, taxation of resources is applied to coerce desired behavior of the competitors. In the paper, we present mathematical formulation of the problem of finding the optimal taxation rate (common for all nodes and propose a reduced-complexity algorithm for this optimization. Simulation results for these derived optimal values in various scenarios are also provided.

  11. Joint opportunistic beam and spectrum selection schemes for spectrum sharing systems with limited feedback

    KAUST Repository

    Sayed, Mostafa M.

    2014-11-01

    Spectrum sharing systems have been introduced to alleviate the problem of spectrum scarcity by allowing an unlicensed secondary user (SU) to share the spectrum with a licensed primary user (PU) under acceptable interference levels to the primary receiver (PU-Rx). In this paper, we consider a secondary link composed of a secondary transmitter (SU-Tx) equipped with multiple antennas and a single-antenna secondary receiver (SU-Rx). The secondary link is allowed to share the spectrum with a primary network composed of multiple PUs communicating over distinct frequency spectra with a primary base station. We develop a transmission scheme where the SU-Tx initially broadcasts a set of random beams over all the available primary spectra for which the PU-Rx sends back the index of the spectrum with the minimum interference level, as well as information that describes the interference value, for each beam. Based on the feedback information on the PU-Rx, the SU-Tx adapts the transmitted beams and then resends the new beams over the best primary spectrum for each beam to the SU-Rx. The SU-Rx selects the beam that maximizes the received signal-to-interference-plus-noise ratio (SINR) to be used in transmission over the next frame. We consider three cases for the level of feedback information describing the interference level. In the first case, the interference level is described by both its magnitude and phase; in the second case, only the magnitude is considered; and in the third case, we focus on a q-bit description of its magnitude. In the latter case, we propose a technique to find the optimal quantizer thresholds in a mean-square-error sense. We also develop a statistical analysis for the SINR statistics and the capacity and bit error rate of the secondary link and present numerical results that study the impact of the different system parameters.

  12. Travel Advice for Higher Functioning Individuals on the Autism Spectrum

    Science.gov (United States)

    VanBergeijk, Ernst

    2009-01-01

    While travel training on local mass transit makes intuitive sense, the thought of larger scale travel training does not occur to most people. Possible benefits that could be gained from long distance or more involved traveling with individuals on the autism spectrum are vast. In this article, the author presents 11 essential skills that are a…

  13. Networks systems and operations. [wideband communication techniques for data links with satellites

    Science.gov (United States)

    1975-01-01

    The application of wideband communication techniques for data links with satellites is discussed. A diagram of the demand assigned voice communications system is provided. The development of prototype integrated spacecraft paramps at S- and C-bands is described and the performance of space-qualified paramps is tabulated. The characteristics of a dual parabolic cylinder monopulse zoom antenna for use with the tracking and data relay satellite system (TDRSS) are analyzed. The development of a universally applicable transponder at S-band is reported. A block diagram of the major subassemblies of the S-band transponder is included. The technology aspects of network timing and synchronization of communication systems are to show the use of the Omega navigation system. The telemetry data compression system used during the Skylab program is evaluated.

  14. First results from the Cluster wideband plasma wave investigation

    Directory of Open Access Journals (Sweden)

    D. A. Gurnett

    2001-09-01

    Full Text Available In this report we present the first results from the Cluster wideband plasma wave investigation. The four Cluster spacecraft were successfully placed in closely spaced, high-inclination eccentric orbits around the Earth during two separate launches in July – August 2000. Each spacecraft includes a wideband plasma wave instrument designed to provide high-resolution electric and magnetic field wave-forms via both stored data and direct downlinks to the NASA Deep Space Network. Results are presented for three commonly occurring magnetospheric plasma wave phenomena: (1 whistlers, (2 chorus, and (3 auroral kilometric radiation. Lightning-generated whistlers are frequently observed when the spacecraft is inside the plasmasphere. Usually the same whistler can be detected by all spacecraft, indicating that the whistler wave packet extends over a spatial dimension at least as large as the separation distances transverse to the magnetic field, which during these observations were a few hundred km. This is what would be expected for nonducted whistler propagation. No case has been found in which a strong whistler was detected at one spacecraft, with no signal at the other spacecraft, which would indicate ducted propagation. Whistler-mode chorus emissions are also observed in the inner region of the magnetosphere. In contrast to lightning-generated whistlers, the individual chorus elements seldom show a one-to-one correspondence between the spacecraft, indicating that a typical chorus wave packet has dimensions transverse to the magnetic field of only a few hundred km or less. In one case where a good one-to-one correspondence existed, significant frequency variations were observed between the spacecraft, indicating that the frequency of the wave packet may be evolving as the wave propagates. Auroral kilometric radiation, which is an intense radio emission generated along the auroral field lines, is frequently observed over the polar regions. The

  15. First results from the Cluster wideband plasma wave investigation

    Directory of Open Access Journals (Sweden)

    D. A. Gurnett

    Full Text Available In this report we present the first results from the Cluster wideband plasma wave investigation. The four Cluster spacecraft were successfully placed in closely spaced, high-inclination eccentric orbits around the Earth during two separate launches in July – August 2000. Each spacecraft includes a wideband plasma wave instrument designed to provide high-resolution electric and magnetic field wave-forms via both stored data and direct downlinks to the NASA Deep Space Network. Results are presented for three commonly occurring magnetospheric plasma wave phenomena: (1 whistlers, (2 chorus, and (3 auroral kilometric radiation. Lightning-generated whistlers are frequently observed when the spacecraft is inside the plasmasphere. Usually the same whistler can be detected by all spacecraft, indicating that the whistler wave packet extends over a spatial dimension at least as large as the separation distances transverse to the magnetic field, which during these observations were a few hundred km. This is what would be expected for nonducted whistler propagation. No case has been found in which a strong whistler was detected at one spacecraft, with no signal at the other spacecraft, which would indicate ducted propagation. Whistler-mode chorus emissions are also observed in the inner region of the magnetosphere. In contrast to lightning-generated whistlers, the individual chorus elements seldom show a one-to-one correspondence between the spacecraft, indicating that a typical chorus wave packet has dimensions transverse to the magnetic field of only a few hundred km or less. In one case where a good one-to-one correspondence existed, significant frequency variations were observed between the spacecraft, indicating that the frequency of the wave packet may be evolving as the wave propagates. Auroral kilometric radiation, which is an intense radio emission generated along the auroral field lines, is frequently observed over the polar regions. The

  16. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy.

    Science.gov (United States)

    Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol

    2017-10-01

    A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  17. Dual-modal cancer detection based on optical pH sensing and Raman spectroscopy

    Science.gov (United States)

    Kim, Soogeun; Lee, Seung Ho; Min, Sun Young; Byun, Kyung Min; Lee, Soo Yeol

    2017-10-01

    A dual-modal approach using Raman spectroscopy and optical pH sensing was investigated to discriminate between normal and cancerous tissues. Raman spectroscopy has demonstrated the potential for in vivo cancer detection. However, Raman spectroscopy has suffered from strong fluorescence background of biological samples and subtle spectral differences between normal and disease tissues. To overcome those issues, pH sensing is adopted to Raman spectroscopy as a dual-modal approach. Based on the fact that the pH level in cancerous tissues is lower than that in normal tissues due to insufficient vasculature formation, the dual-modal approach combining the chemical information of Raman spectrum and the metabolic information of pH level can improve the specificity of cancer diagnosis. From human breast tissue samples, Raman spectra and pH levels are measured using fiber-optic-based Raman and pH probes, respectively. The pH sensing is based on the dependence of pH level on optical transmission spectrum. Multivariate statistical analysis is performed to evaluate the classification capability of the dual-modal method. The analytical results show that the dual-modal method based on Raman spectroscopy and optical pH sensing can improve the performance of cancer classification.

  18. Analysis Framework for Opportunistic Spectrum OFDMA and its Application to the IEEE 802.22 Standard

    OpenAIRE

    Park, Jihoon; Pawełczak, Przemysław; Grønsund, Pål; Čabrić, Danijela

    2010-01-01

    We present an analytical model that enables throughput evaluation of Opportunistic Spectrum Orthogonal Frequency Division Multiple Access (OS-OFDMA) networks. The core feature of the model, based on a discrete time Markov chain, is the consideration of different channel and subchannel allocation strategies under different Primary and Secondary user types, traffic and priority levels. The analytical model also assesses the impact of different spectrum sensing strategies on the throughput of OS...

  19. Revisión del estado del arte deIR-Ultra-Wideband y simulación de la respuesta impulsiva del canal IEEE802.15.4a Review of the state of art of IR-Ultra-Wideband and simulation of Impulse Responce of the IEEE 802.15.4a channel

    Directory of Open Access Journals (Sweden)

    Julio Suárez Páez

    2010-06-01

    Full Text Available Este artículo realiza una revisión del estado del arte de la tecnología basada en canales de Banda Ultra Ancha (UWB, Ultra–Wideband enfocándose en su regulación, estandarización, aplicaciones básicas, modelo de canal IEEE 802.15.4a y simulación de la respuesta impulsiva de este tipo de canal. También se pretende introducir al lector en las tecnologías basadas en canales IR–UWB y en los parámetros para el modelamiento y simulación del canal UWB IEEE 802.15.4a.This paper reviews the state of the art of the technology based in channels of Ultra Wide band (UWB Ultra–Wideband focusing on its regulation, standardization, basic applications, IEEE 802.15.4a channel model and simulation of the impulsive response of this type of channel. Also, it aims to introduce the reader to the technologies based on IR–UWB channels and the parameters for modeling and simulation of IEEE 802.15.4a UWB channel.

  20. Support by Participatory Sense-Making in Robot Therapy for Children with Autism

    NARCIS (Netherlands)

    Weda, J.J.; Schadenberg, Bob Rinse; van Dijk, Jelle

    2017-01-01

    People with Autism Spectrum Condition have issues navigating social situations. Typically, in therapy, robots teach people with ASC desirable social interaction according to traditional models which focus on the cognitive, rather than emotions or intuitions. Participatory sense- making could provide

  1. Ultra Wideband Signal Detection with a Schottky Diode Based Envelope Detector

    DEFF Research Database (Denmark)

    Rommel, Simon; Cimoli, Bruno; Valdecasa, Guillermo Silva

    error correction threshold are achieved for wireless distances of 20 cm and 50 cm at respective data rates of 2.5 Gbit/s and 1.25 Gbit/s. uwb transmission is one of the most attractive alternatives for low-power high-speed wireless communication systems over short distances, its popularity stemming from....... The receiver is able to detect an ultra-wideband signal compliant with the Federal Communications Commission (fcc) regulations for uwb transmission and consisting of a 2.5 Gbit/s non-return-to-zero (nrz) data signal on a 6.9 GHz carrier after 20 cm wireless transmission. Bit error rates (ber) below the forward...... its interoperability with existing wireless services and its license free operation. The latter is conditioned on meeting a number of standards and regulations for maximum radiated powers, designed to ensure the former by defining uwb signals as signals with large bandwidths in the frequency range...

  2. Ultra-Wideband Tracking System Design for Relative Navigation

    Science.gov (United States)

    Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John

    2011-01-01

    This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.

  3. Biocompatibility of a functionally graded bioceramic coating made by wide-band laser cladding.

    Science.gov (United States)

    Weidong, Zhu; Qibin, Liu; Min, Zheng; Xudong, Wang

    2008-11-01

    The application of plasma spray is the most popular method by which a metal-bioceramic surface composite can be prepared for the repair of biological hard-tissue, but this method has disadvantages. These disadvantages include poor coating-to-substrate adhesion, low mechanical strength, and brittleness of the coating. In the investigation described in this article, a gradient bioceramic coating was prepared on a Ti-6Al-4V titanium alloy surface using a gradient composite design and wide-band laser cladding techniques. Using a trilayer-structure composed of a substratum, an alloy and bioceramics, the coating was chemically and metallurgically bonded with the substratum. The coating, which contains beta-tricalcium phosphate and hydroxyapatite, showed favorable biocompatibility with the bone tissue and promoted in vivo osteogenesis.

  4. Wideband Channel Modeling for mm-Wave inside Trains for 5G-Related Applications

    Directory of Open Access Journals (Sweden)

    Juan Moreno García-Loygorri

    2018-01-01

    Full Text Available Passenger trains and especially metro trains have been identified as one of the key scenarios for 5G deployments. The wireless channel inside a train car is reported in the frequency range between 26.5 GHz and 40 GHz. These bands have received a lot of interest for high-density scenarios with a high-traffic demand, two of the most relevant aspects of a 5G network. In this paper we provide a full description of the wideband channel estimating Power-Delay Profiles (PDP, Saleh-Valenzuela model parameters, time-of-arrival (TOA ranging, and path-loss results. Moreover, the performance of an automatic clustering algorithm is evaluated. The results show a remarkable degree of coherence and general conclusions are obtained.

  5. Low-complexity Wireless Monitoring of Respiratory Movements Using Ultra-wideband Impulse Response Estimation

    KAUST Repository

    Sana, Furrukh

    2014-03-01

    In this paper; we present a comprehensive scheme for wireless monitoring of the respiratory movements in humans. Our scheme overcomes the challenges low signal-to-noise ratio, background clutter and high sampling rates. It is based on the estimation of the ultra-wideband channel impulse response. We suggest techniques for dealing with background clutter in situations when it might be time variant. We also present a novel methodology for reducing the required sampling rate of the system significantly while achieving the accuracy offered by the Nyquist rate. Performance results from simulations conducted with pre-recorded respiratory signals demonstrate the robustness of our scheme for tackling the above challenges and providing a low-complexity solution for the monitoring of respiratory movements.

  6. Low-Complexity Spatial-Temporal Filtering Method via Compressive Sensing for Interference Mitigation in a GNSS Receiver

    Directory of Open Access Journals (Sweden)

    Chung-Liang Chang

    2014-01-01

    Full Text Available A compressive sensing based array processing method is proposed to lower the complexity, and computation load of array system and to maintain the robust antijam performance in global navigation satellite system (GNSS receiver. Firstly, the spatial and temporal compressed matrices are multiplied with array signal, which results in a small size array system. Secondly, the 2-dimensional (2D minimum variance distortionless response (MVDR beamformer is employed in proposed system to mitigate the narrowband and wideband interference simultaneously. The iterative process is performed to find optimal spatial and temporal gain vector by MVDR approach, which enhances the steering gain of direction of arrival (DOA of interest. Meanwhile, the null gain is set at DOA of interference. Finally, the simulated navigation signal is generated offline by the graphic user interface tool and employed in the proposed algorithm. The theoretical analysis results using the proposed algorithm are verified based on simulated results.

  7. Spectrum Hole Identification in IEEE 802.22 WRAN using Unsupervised Learning

    Directory of Open Access Journals (Sweden)

    V. Balaji

    2016-01-01

    Full Text Available In this paper we present a Cooperative Spectrum Sensing (CSS algorithm for Cognitive Radios (CR based on IEEE 802.22Wireless Regional Area Network (WRAN standard. The core objective is to improve cooperative sensing efficiency which specifies how fast a decision can be reached in each round of cooperation (iteration to sense an appropriate number of channels/bands (i.e. 86 channels of 7MHz bandwidth as per IEEE 802.22 within a time constraint (channel sensing time. To meet this objective, we have developed CSS algorithm using unsupervised K-means clustering classification approach. The received energy level of each Secondary User (SU is considered as the parameter for determining channel availability. The performance of proposed algorithm is quantified in terms of detection accuracy, training and classification delay time. Further, the detection accuracy of our proposed scheme meets the requirement of IEEE 802.22 WRAN with the target probability of falsealrm as 0.1. All the simulations are carried out using Matlab tool.

  8. An ultra-wideband tunable multi-wavelength Brillouin fibre laser based on a semiconductor optical amplifier and dispersion compensating fibre in a linear cavity configuration

    International Nuclear Information System (INIS)

    Zulkifli, M Z; Ahmad, H; Hassan, N A; Jemangin, M H; Harun, S W

    2011-01-01

    A multi-wavelength Brillouin fibre laser (MBFL) with an ultra-wideband tuning range from 1420 nm to 1620 nm is demonstrated. The MBFL uses an ultra-wideband semiconductor optical amplifier (SOA) and a dispersion compensating fibre (DCF) as the linear gain medium and nonlinear gain medium, respectively. The proposed MBFL has a wide tuning range covering the short (S-), conventional (C-) and long (L-) bands with a wavelength spacing of 0.08 nm, making it highly suitable for DWDM system applications. The output power of the observed Brillouin Stokes ranges approximately from -5.94 dBm to -0.41 dBm for the S-band, from -4.34 dBm to 0.02 dBm for the C-band and from -2.19 dBm to 0.39 dBm for the L-band. The spacing between each adjacent wavelengths of all the three bands is about 0.08 nm, which is approximately 10.7 GHz for the frequency domain. (lasers)

  9. RFI and Remote Sensing of the Earth from Space

    Science.gov (United States)

    Le Vine, D. M.; Johnson, J. T.; Piepmeier, J.

    2016-01-01

    Passive microwave remote sensing of the Earth from space provides information essential for understanding the Earth's environment and its evolution. Parameters such as soil moisture, sea surface temperature and salinity, and profiles of atmospheric temperature and humidity are measured at frequencies determined by the physics (e.g. sensitivity to changes in desired parameters) and by the availability of suitable spectrum free from interference. Interference from manmade sources (radio frequency interference) is an impediment that in many cases limits the potential for accurate measurements from space. A review is presented here of the frequencies employed in passive microwave remote sensing of the Earth from space and the associated experience with RFI.

  10. A Flexible Nested Sodium and Proton Coil Array with Wideband Matching for Knee Cartilage MRI at 3 Tesla

    Science.gov (United States)

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Alon, Leeor; Chang, Gregory; Sodickson, Daniel K.; Regatte, Ravinder R.; Wiggins, Graham C.

    2015-01-01

    Purpose We describe a 6×2 channel sodium/proton array for knee MRI at 3 Tesla. Multi-element coil arrays are desirable because of well-known signal-to-noise ratio advantages over volume and single-element coils. However, low coil-tissue coupling that is characteristic of coils operating at low frequency can make the potential gains from a phased array difficult to realize. Methods The issue of low coil-tissue coupling in the developed six channel sodium receive array was addressed by implementing 1) a mechanically flexible former to minimize coil-to-tissue distance and reduce the overall diameter of the array and 2) a wideband matching scheme that counteracts preamplifier noise degradation caused by coil coupling and a high quality factor. The sodium array was complemented with a nested proton array to enable standard MRI. Results The wideband matching scheme and tight-fitting mechanical design contributed to greater than 30% central SNR gain on the sodium module over a mono-nuclear sodium birdcage coil, while the performance of the proton module was sufficient for clinical imaging. Conclusion We expect the strategies presented in this work to be generally relevant in high density receive arrays, particularly in x-nuclei or small animal applications, or in those where the array is distant from the targeted tissue. PMID:26502310

  11. Ontology-based classification of remote sensing images using spectral rules

    Science.gov (United States)

    Andrés, Samuel; Arvor, Damien; Mougenot, Isabelle; Libourel, Thérèse; Durieux, Laurent

    2017-05-01

    Earth Observation data is of great interest for a wide spectrum of scientific domain applications. An enhanced access to remote sensing images for "domain" experts thus represents a great advance since it allows users to interpret remote sensing images based on their domain expert knowledge. However, such an advantage can also turn into a major limitation if this knowledge is not formalized, and thus is difficult for it to be shared with and understood by other users. In this context, knowledge representation techniques such as ontologies should play a major role in the future of remote sensing applications. We implemented an ontology-based prototype to automatically classify Landsat images based on explicit spectral rules. The ontology is designed in a very modular way in order to achieve a generic and versatile representation of concepts we think of utmost importance in remote sensing. The prototype was tested on four subsets of Landsat images and the results confirmed the potential of ontologies to formalize expert knowledge and classify remote sensing images.

  12. Geological remote sensing

    Science.gov (United States)

    Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek

    2018-02-01

    Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.

  13. Utilizing wideband AMC structures for high-gain inkjet-printed antennas on lossy paper substrate

    KAUST Repository

    Cook, Benjamin Stassen

    2013-01-01

    Significant gain and bandwidth improvement of inkjet-printed antennas with integrated artificial magnetic conductor (AMC) is achieved by utilizing wideband ground-backed frequency selective surfaces (FSSs) to overcome the high losses of organic substrates such as paper. A microstrip-fed monopole mounted on an artificial magnetic conductor is demonstrated to improve the gain by 5 dB over previous works and exhibit much wider impedance bandwidth while maintaining a thin antenna profile and a 20% electrical size reduction. The effect of AMC bandwidth on substrate losses and the gain reduction caused by finite AMC array effects are investigated in an effort to produce high-gain, miniaturized, low-cost wearable and structure mount antennas. © 2013 IEEE.

  14. Digital Receiver Design for Transmitted Reference Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Wang Yiyin

    2009-01-01

    Full Text Available Abstract A complete detection, channel estimation, synchronization, and equalization scheme for a transmitted reference (TR ultra-wideband (UWB system is proposed in this paper. The scheme is based on a data model which admits a moderate data rate and takes both the interframe interference (IFI and the intersymbol interference (ISI into consideration. Moreover, the bias caused by the interpulse interference (IPI in one frame is also taken into account. Based on the analysis of the stochastic properties of the received signals, several detectors are studied and evaluated. Furthermore, a data-aided two-stage synchronization strategy is proposed, which obtains sample-level timing in the range of one symbol at the first stage and then pursues symbol-level synchronization by looking for the header at the second stage. Three channel estimators are derived to achieve joint channel and timing estimates for the first stage, namely, the linear minimum mean square error (LMMSE estimator, the least squares (LS estimator, and the matched filter (MF. We check the performance of different combinations of channel estimation and equalization schemes and try to find the best combination, that is, the one providing a good tradeoff between complexity and performance.

  15. Digital Receiver Design for Transmitted Reference Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Yiyin Wang

    2009-01-01

    Full Text Available A complete detection, channel estimation, synchronization, and equalization scheme for a transmitted reference (TR ultra-wideband (UWB system is proposed in this paper. The scheme is based on a data model which admits a moderate data rate and takes both the interframe interference (IFI and the intersymbol interference (ISI into consideration. Moreover, the bias caused by the interpulse interference (IPI in one frame is also taken into account. Based on the analysis of the stochastic properties of the received signals, several detectors are studied and evaluated. Furthermore, a data-aided two-stage synchronization strategy is proposed, which obtains sample-level timing in the range of one symbol at the first stage and then pursues symbol-level synchronization by looking for the header at the second stage. Three channel estimators are derived to achieve joint channel and timing estimates for the first stage, namely, the linear minimum mean square error (LMMSE estimator, the least squares (LS estimator, and the matched filter (MF. We check the performance of different combinations of channel estimation and equalization schemes and try to find the best combination, that is, the one providing a good tradeoff between complexity and performance.

  16. Instabilities simulations with wideband feedback systems: CMAD, HEADTAIL, WARP

    International Nuclear Information System (INIS)

    Li, Kevin; Cesaratto, J; Fox, J D; Pivi, M; Rivetta, C; Rumolo, G

    2013-01-01

    Transverse mode coupling (TMCI) and electron cloud instabilities (ECI) pose fundamental limitations on the acceptable beam intensities in the SPS at CERN. This in turn limits the ultimate achievable luminosity in the LHC. Therefore, future luminosity upgrades foresee methods for evading TMCI as well as ECI. Proposed approaches within the LHC Injector Upgrade (LIU) project include new optics with reduced transition energy as well as vacuum chamber coating techniques. As a complementary option, high bandwidth feedback systems may provide instability mitigation by actively damping the intra-bunch motion of unstable modes. In an effort to evaluate the potentials and limitations of such feedback systems and to characterise some of the specifications, a numerical model of a realistic feedback system has been developed and integrated into available instabilities simulation codes. Together with the implementation of this new feedback system model, CMAD and HEADTAIL have been used to investigate the impact of different wideband feedback systems on ECI in the SPS. In this paper, we present some details on the numerical model of the realistic feedback system and its implementation as well as the results obtained from the simulation study using this model together with the instability codes. (author)

  17. 3D-Printed Super-Wideband Spidron Fractal Cube Antenna with Laminated Copper

    Directory of Open Access Journals (Sweden)

    Oh Heon Kwon

    2017-09-01

    Full Text Available In this paper, a 3D-printed super-wideband (SWB Spidron fractal cube antenna is proposed. The Spidron fractal configuration is utilized as a self-complementary structure on each face of a 3D frame to attain SWB characteristics. The antenna is excited through a tapered microstrip balun for both mode transforming and impedance matching. A prototype of the proposed antenna, including the 3D frame fabricated with the help of a 3D printer and Spidron fractal patches made of copper tape, is experimentally verified. The measured −10 dB reflection ratio bandwidth is 34:1 (0.44–15.38 GHz. The peak gain varies from 3.42 to 9.29 dBi within the operating frequency bandwidth. The measured radiation patterns are nearly omnidirectional at all operating frequency bands.

  18. Proposal of a wide-band mirror polarizer of slow neutrons at a pulsed neutron source

    International Nuclear Information System (INIS)

    Nikitenko, Yu.V.; Ostanevich, Yu.M.

    1992-01-01

    The new type wide-band mirror-based neutron polarizer to be operated at a pulsed neutron source is suggested. The idea is to use a movable polarizing mirror system, which, be the incoming beam monochromatized by the time-of-flight, would allow one to tune glancing angles in time so, that the total reflection condition is always fulfilled only for one of the two neutron spin eigenstates. Estimates show, that with the pulsed reactor IBR-2 such polarizer allows one to build a small-angle neutron scattering instrument capable to effectively use the wave-length band from 2 to 15 A. 9 refs.; 1 fig

  19. Performance of the THS4302 and the Class V Radiation-Tolerant THS4304-SP Silicon Germanium Wideband Amplifiers at Extreme Temperatures

    Science.gov (United States)

    Patterson, Richard L.; Elbuluk, Malik; Hammoud, Ahmad; VanKeuls, Frederick W.

    2009-01-01

    This report discusses the performance of silicon germanium, wideband gain amplifiers under extreme temperatures. The investigated devices include Texas Instruments THS4304-SP and THS4302 amplifiers. Both chips are manufactured using the BiCom3 process based on silicon germanium technology along with silicon-on-insulator (SOI) buried oxide layers. The THS4304-SP device was chosen because it is a Class V radiation-tolerant (150 kRad, TID silicon), voltage-feedback operational amplifier designed for use in high-speed analog signal applications and is very desirable for NASA missions. It operates with a single 5 V power supply [1]. It comes in a 10-pin ceramic flatpack package, and it provides balanced inputs, low offset voltage and offset current, and high common mode rejection ratio. The fixed-gain THS4302 chip, which comes in a 16-pin leadless package, offers high bandwidth, high slew rate, low noise, and low distortion [2]. Such features have made the amplifier useful in a number of applications such as wideband signal processing, wireless transceivers, intermediate frequency (IF) amplifier, analog-to-digital converter (ADC) preamplifier, digital-to-analog converter (DAC) output buffer, measurement instrumentation, and medical and industrial imaging.

  20. Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched PPLN waveguide.

    Science.gov (United States)

    Sua, Yong Meng; Chen, Jia-Yang; Huang, Yu-Ping

    2018-06-15

    We report a wideband optical parametric amplification (OPA) over 14 THz covering telecom S, C, and L bands with observed maximum parametric gain of 38.3 dB. The OPA is realized through cascaded second-harmonic generation and difference-frequency generation (cSHG-DFG) in a 2 cm periodically poled LiNbO 3 (PPLN) waveguide. With tailored cross section geometry, the waveguide is optimally mode matched for efficient cascaded nonlinear wave mixing. We also identify and study the effect of competing nonlinear processes in this cSHG-DFG configuration.