WorldWideScience

Sample records for wideband ofdm systems

  1. Experimental demonstration of the transmission performance for LDPC-coded multiband OFDM ultra-wideband over fiber system

    Science.gov (United States)

    He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu

    2015-01-01

    To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.

  2. Design and Validation of an Optimized MB-OFDM Ultra Wideband Transceiver System

    OpenAIRE

    Liang, Guixuan

    2013-01-01

    Esta tesis está incluida dentro del campo del campo de Multiband Orthogonal Frequency Division Multiplexing Ultra Wideband (MB-OFDM UWB), el cual ha adquirido una gran importancia en las comunicaciones inalámbricas de alta tasa de datos en la última década. UWB surgió con el objetivo de satisfacer la creciente demanda de conexiones inalámbricas en interiores y de uso doméstico, con bajo coste y alta velocidad. La disponibilidad de un ancho de banda grande, el potencial para alta velocidad de ...

  3. MIMO-OFDM performance in relation to wideband channel properties

    NARCIS (Netherlands)

    Li, P.; Zhang, H.; Oostveen, J.; Fledderus, E.

    2010-01-01

    In this paper, the sensitivity of the error rate performance of MIMO-OFDM-based practical systems (WiMAX and LTE) to wide band channel properties is investigated. The behavior of the wideband channel is characterized in terms of delay spread (DS) and angular spread (AS). The impacts of DS and AS on

  4. Adaptive low-rank channel estimation for multi-band OFDM ultra-wideband communications

    Directory of Open Access Journals (Sweden)

    Hu Chia-Chang

    2011-01-01

    Full Text Available Abstract In this paper, an adaptive channel estimation scheme based on the reduced-rank (RR Wiener filtering (WF technique is proposed for multi-band (MB orthogonal frequency division multiplexing (OFDM ultra-wideband (UWB communication systems in multipath fading channels. This RR-WF-based algorithm employs an adaptive fuzzy-inference-controlled (FIC filter rank. Additionally, a comparative investigation into various channel estimation schemes is presented as well for MB-OFDM UWB communication systems. As a consequence, the FIC RR-WF channel estimation algorithm is capable of producing the bit-error-rate (BER performance similar to that of the full-rank WF channel estimator and superior than those of other interpolation-based channel estimation schemes.

  5. OFDM systems for wireless communications

    CERN Document Server

    Narasimhamurthy, Adarsh

    2010-01-01

    Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in the standards for digital audio/video broadcasting, WiFi and WiMax. Being a frequency-domain approach to communications, OFDM has important advantages in dealing with the frequency-selective nature of high data rate wireless communication channels. As the needs for operating with higher data rates become more pressing, OFDM systems have emerged as an effective physical-layer solution.This short monograph is intended as a tutorial which highlights the deleterious aspects of the wireless channel and presents why OFDM is

  6. A Processing Technique for OFDM-Modulated Wideband Radar Signals

    NARCIS (Netherlands)

    Tigrek, R.F.

    2010-01-01

    The orthogonal frequency division multiplexing (OFDM) is a multicarrier spread-spectrum technique which finds wide-spread use in communications. The OFDM pulse compression method that utilizes an OFDM communication signal for radar tasks has been developed and reported in this dissertation. Using

  7. Quantization Effects in OFDM Systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2008-01-01

    The advantage of using orthogonal frequency division multiplexing (OFDM) over the single-carrier modulation is its ability to mitigate interference and fading without complex equalization filters in the receiver. OFDM systems have a high peak-to-average ratio (PAPR) which results in a high

  8. Simulation Study of OFDM, COFDM and Mimo-OFDM System

    Directory of Open Access Journals (Sweden)

    Mrutyunjaya Panda

    2009-07-01

    Full Text Available Orthogonal frequency division Multiplexing (OFDM is a popular method for high data-rate wireless transmission. It converts a frequency selective channel into a set of parallel flat fading sub-channels, which makes the receiver simpler. Thereby, the bandwidth of the sub-carriers becomes small compared with the coherence bandwidth of the channel, which allows simple equalization. The BER curve of OFDM is compared with the single carrier 16-QAM systems. The BER curve for COFDM using differential encoding method is also discussed. OFDM may be combined with multiple antennas at both Transmitter and Receiver, resulting a MIMO-OFDM system. In this paper, various channel estimation methods of MIMO-OFDM system using MMSE and LS are discussed. Also, in this, the effect of various Doppler frequencies on the normalized channel estimation is discussed. Finally, the normalized channel estimation versus no. of iteration by using multiple antennas (same or different at both the access points is discussed.

  9. Efficient Feedforward Linearization Technique Using Genetic Algorithms for OFDM Systems

    Directory of Open Access Journals (Sweden)

    García Paloma

    2010-01-01

    Full Text Available Feedforward is a linearization method that simultaneously offers wide bandwidth and good intermodulation distortion suppression; so it is a good choice for Orthogonal Frequency Division Multiplexing (OFDM systems. Feedforward structure consists of two loops, being necessary an accurate adjustment between them along the time, and when temperature, environmental, or operating changes are produced. Amplitude and phase imbalances of the circuit elements in both loops produce mismatched effects that lead to degrade its performance. A method is proposed to compensate these mismatches, introducing two complex coefficients calculated by means of a genetic algorithm. A full study is carried out to choose the optimal parameters of the genetic algorithm applied to wideband systems based on OFDM technologies, which are very sensitive to nonlinear distortions. The method functionality has been verified by means of simulation.

  10. PERFORMANCE ANALYSIS OF PILOT BASED CHANNEL ESTIMATION TECHNIQUES IN MB OFDM SYSTEMS

    Directory of Open Access Journals (Sweden)

    M. Madheswaran

    2011-12-01

    Full Text Available Ultra wideband (UWB communication is mainly used for short range of communication in wireless personal area networks. Orthogonal Frequency Division Multiplexing (OFDM is being used as a key physical layer technology for Fourth Generation (4G wireless communication. OFDM based communication gives high spectral efficiency and mitigates Inter-symbol Interference (ISI in a wireless medium. In this paper the IEEE 802.15.3a based Multiband OFDM (MB OFDM system is considered. The pilot based channel estimation techniques are considered to analyze the performance of MB OFDM systems over Liner Time Invariant (LTI Channel models. In this paper, pilot based Least Square (LS and Least Minimum Mean Square Error (LMMSE channel estimation technique has been considered for UWB OFDM system. In the proposed method, the estimated Channel Impulse Responses (CIRs are filtered in the time domain for the consideration of the channel delay spread. Also the performance of proposed system has been analyzed for different modulation techniques for various pilot density patterns.

  11. Coding for MIMO-OFDM in future wireless systems

    CERN Document Server

    Ahmed, Bannour

    2015-01-01

    This book introduces the reader to the MIMO-OFDM system, in Rayleigh frequency selective-channels. Orthogonal frequency division multiplexing (OFDM) has been adopted in the wireless local-area network standards IEEE 802.11a due to its high spectral efficiency and ability to deal with frequency selective fading. The combination of OFDM with spectral efficient multiple antenna techniques makes the OFDM a good candidate to overcome the frequency selective problems.

  12. Adaptive OFDM System Design For Cognitive Radio

    NARCIS (Netherlands)

    Zhang, Q.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2006-01-01

    Recently, Cognitive Radio has been proposed as a promising technology to improve spectrum utilization. A highly flexible OFDM system is considered to be a good candidate for the Cognitive Radio baseband processing where individual carriers can be switched off for frequencies occupied by a licensed

  13. Wideband feedback system prototype validation

    CERN Document Server

    Li, K; Bjorsvik, E; Fox, J; Hofle, W; Kotzian, G; Rivetta, C; Salvant, B; Turgut, O

    2017-01-01

    A wideband feedback demonstrator system has been de-veloped in collaboration with US-LARP under the joint lead-ership of CERN and SLAC. The system includes widebandkicker structures and amplifiers along with a fast digital re-configurable system up to 4 GS/s for single bunch and multibunch control. Most of the components have been installedin recent years and have been put into operation to test bothintra-bunch damping and individual bunch control in a multibunch train. In this note we report on the MD program,procedure and key findings that were made with this systemin the past year.

  14. Phase Noise Compensation for OFDM Systems

    Science.gov (United States)

    Leshem, Amir; Yemini, Michal

    2017-11-01

    We describe a low complexity method for time domain compensation of phase noise in OFDM systems. We extend existing methods in several respects. First we suggest using the Karhunen-Lo\\'{e}ve representation of the phase noise process to estimate the phase noise. We then derive an improved datadirected choice of basis elements for LS phase noise estimation and present its total least square counterpart problem. The proposed method helps overcome one of the major weaknesses of OFDM systems. We also generalize the time domain phase noise compensation to the multiuser MIMO context. Finally we present simulation results using both simulated and measured phased noise. We quantify the tracking performance in the presence of residual carrier offset.

  15. Spectrally and Energy Efficient OFDM (SEE-OFDM) for Intensity Modulated Optical Wireless Systems

    OpenAIRE

    Lam, Emily; Wilson, Sarah Kate; Elgala, Hany; Little, Thomas D. C.

    2015-01-01

    Spectrally and energy efficient orthogonal frequency division multiplexing (SEE-OFDM) is an optical OFDM technique based on combining multiple asymmetrically clipped optical OFDM (ACO-OFDM) signals into one OFDM signal. By summing different components together, SEE-OFDM can achieve the same spectral efficiency as DC-biased optical OFDM (DCO-OFDM) without an energy-inefficient DC-bias. This paper introduces multiple methods for decoding a SEE-OFDM symbol and shows that an iterative decoder wit...

  16. PERFORMANCE OF MIMO OFDM SYSTEMS IN FADING CHANNELS

    Directory of Open Access Journals (Sweden)

    C. Kokkonis

    2008-05-01

    Full Text Available The performance of OFDM based systems isseriously affected by imperfections in systemimplementation. To gain a beter understanding of theinfluence of these impairments on the performance ofmultiple antenna OFDM systems, this paper studies azero-forcing based MIMO OFDM system withimperfections modeled as additive error sources in bothtransmitter (TX and receiver (RX. Based on this model,expressions are derived for the probability of error ofuncoded impaired MIMO systems in fading and nonfadingenvironments. These results allow for insightfulcomparison between the influence of TX and RXimpairments. It is concluded that the influence of RXimperfections decreases with an increasing number of RXbranches, while this is not the case for TX deficiencies.

  17. Simulation of OFDM technique for wireless communication systems

    Science.gov (United States)

    Bloul, Albe; Mohseni, Saeed; Alhasson, Bader; Ayad, Mustafa; Matin, M. A.

    2010-08-01

    Orthogonal Frequency Division Multiplex (OFDM) is a modulation technique to transmit the baseband Radio signals over Fiber (RoF). Combining OFDM modulation technique and radio over fiber technology will improve future wireless communication. This technique can be implemented using laser and photodetector as optical modulator and demodulator. OFDM uses multiple sub-carriers to transmit low data rate streams in parallel, by using Quadrature Amplitude Modulation (QAM) or Phase Shift Keying (PSK). In this paper we will compare power spectrum signal and signal constellation of transmitted and received signals in RoF using Matlab and OptiSystem simulation software.

  18. Performance of a 60-GHz DCM-OFDM and BPSK-Impulse Ultra-Wideband System with Radio-Over-Fiber and Wireless Transmission Employing a Directly-Modulated VCSEL

    DEFF Research Database (Denmark)

    Beltrán, Marta; Jensen, Jesper Bevensee; Yu, Xianbin

    2011-01-01

    The performance of radio-over-fiber optical transmission employing vertical-cavity surface-emitting lasers (VCSELs), and further wireless transmission, of the two major ultra-wideband (UWB) implementations is reported when operating in the 60-GHz radio band. Performance is evaluated at 1.44 Gbit...... good tolerance to chromatic dispersion due to the chirp characteristics of electro-optical conversion when a directly-modulated VCSEL is employed. The performance comparison indicates that BPSK-IR UWB exhibits better tolerance to optical transmission impairments requiring lower received optical power...

  19. Robotic Mobile System's Performance-Based MIMO-OFDM Technology

    OpenAIRE

    Omar Alani; Omar Daoud

    2009-01-01

    In this paper, a predistortion neural network (PDNN) architecture has been imposed to the Sniffer Mobile Robot (SNFRbot) that is based on spatial multiplexed wireless Orthogonal Frequency Division Multiplexing (OFDM) transmission technology. This proposal is used to improve the system performance by combating one of the main drawbacks that is encountered by OFDM technology; Peak-to-Average Power Ratio (PAPR). Simulation results show that using PDNN resulted in better PAPR performance than the...

  20. Impact of Cyclic Prefix length on OFDM system Capacity

    DEFF Research Database (Denmark)

    Rom, Christian; Sørensen, Troels Bundgaard; Mogensen, Preben Elgaard

    2005-01-01

    This paper is a study on the impact of the Cyclic Prefix (CP) length on the downlink Capacity in a base-band synchronized SISO-OFDM context. To measure this impact, the capacity, measured in bits per second per hertz, is chosen as quality parameter. The study shows how the lengthening of the CP......) the useful OFDM symbol duration, 2) the Signal to Noise Ratio (SNR) at the receiver and 3) the channel Power Delay Profile (PDP). Depending on the values of these parameters different optimum CP lengths are obtained. For a system using only one value of CP length we suggest an optimum value to be 4us...... for an OFDM symbol length of 40us and 6us for an OFDM symbol length of 80us....

  1. Time and Frequency Synchronisation in 4G OFDM Systems

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available This paper presents a complete synchronisation scheme of a baseband OFDM receiver for the currently designed 4G mobile communication system. Since the OFDM transmission is vulnerable to time and frequency offsets, accurate estimation of these parameters is one of the most important tasks of the OFDM receiver. In this paper, the design of a single OFDM synchronisation pilot symbol is introduced. The pilot is used for coarse timing offset and fractional frequency offset estimation. However, it can be applied for fine timing synchronisation and integer frequency offset estimation algorithms as well. A new timing metric that improves the performance of the coarse timing synchronisation is presented. Time domain synchronisation is completed after receiving this single OFDM pilot symbol. During the tracking phase, carrier frequency and sampling frequency offsets are tracked and corrected by means of the nondata-aided algorithm developed by the author. The proposed concept was tested by means of computer simulations, where the OFDM signal was transmitted over a multipath Rayleigh fading channel characterised by the WINNER channel models with Doppler shift and additive white Gaussian noise.

  2. Time and Frequency Synchronisation in 4G OFDM Systems

    Directory of Open Access Journals (Sweden)

    Langowski Adrian

    2009-01-01

    Full Text Available This paper presents a complete synchronisation scheme of a baseband OFDM receiver for the currently designed 4G mobile communication system. Since the OFDM transmission is vulnerable to time and frequency offsets, accurate estimation of these parameters is one of the most important tasks of the OFDM receiver. In this paper, the design of a single OFDM synchronisation pilot symbol is introduced. The pilot is used for coarse timing offset and fractional frequency offset estimation. However, it can be applied for fine timing synchronisation and integer frequency offset estimation algorithms as well. A new timing metric that improves the performance of the coarse timing synchronisation is presented. Time domain synchronisation is completed after receiving this single OFDM pilot symbol. During the tracking phase, carrier frequency and sampling frequency offsets are tracked and corrected by means of the nondata-aided algorithm developed by the author. The proposed concept was tested by means of computer simulations, where the OFDM signal was transmitted over a multipath Rayleigh fading channel characterised by the WINNER channel models with Doppler shift and additive white Gaussian noise.

  3. OFDM concepts for future communication systems

    CERN Document Server

    Rohling, Hermann

    2011-01-01

    The Orthogonal Frequency Division Multiplexing (OFDM) digital transmission technique has advantages in broadcast and mobile communications applications. This book gives a good insight into these, and provides an overview of the scientific progress.

  4. Advanced OFDM systems for terrestrial multimedia links

    OpenAIRE

    Posega, Renzo; Mlynek, Daniel

    2007-01-01

    Recently, there has been considerable discussion about new wireless technologies and standards able to achieve high data rates. Due to the recent advances of digital signal processing and Very Large Scale Integration (VLSI) technologies, the initial obstacles encountered for the implementation of Orthogonal Frequency Division Multiplexing (OFDM) modulation schemes, such as massive complex multiplications and high speed memory accesses, do not exist anymore. OFDM offers strong multipath protec...

  5. Performance Analysis of OFDM 60GHz System and SC-FDE 60GHz System

    Directory of Open Access Journals (Sweden)

    Han Xueyan

    2016-01-01

    Full Text Available In this paper, the performance of 60GHz wireless communication system with SC and OFDM is studied, the models of OFDM 60GHz system and SC 60GHz frequency domain equalization (SC-FDE system are established, and the bit error rate (BER performance of OFDM 60GHz system and SC-FDE 60GHz system in 802.15.3c channels is compared. The simulation results show that SC-FDE 60GHz system has a slight advantage over OFDM system in line-of-sight (LOS channels, while OFDM 60GHz system has a slight advantage over SC-FDE system in non-line-of-sight (NLOS channels. For 60GHz system, OFDM 60GHz system has a slight advantage over SC-FDE system in overcoming multipath fading, but the performance of both is close whether in the LOS or NLOS case.

  6. Memory and computation reduction for least-square channel estimation of mobile OFDM systems

    NARCIS (Netherlands)

    Xu, T.; Tang, Z.; Lu, H.; Leuken, R van

    2012-01-01

    Mobile OFDM refers to OFDM systems with fast moving transceivers, contrastive to traditional OFDM systems whose transceivers are stationary or have a low velocity. In this paper, we use Basis Expansion Models (BEM) to model the time-variation of channels, based on which two least-squares (LS)

  7. Interference Mitigation for Coexistence of Heterogeneous Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Wu Haitao

    2006-01-01

    Full Text Available Two ultra-wideband (UWB specifications, that is, direct-sequence (DS UWB and multiband-orthogonal frequency division multiplexing (MB-OFDM UWB, have been proposed as the candidates of the IEEE 802.15.3a, competing for the standard of high-speed wireless personal area networks (WPAN. Due to the withdrawal of the standardization process, the two heterogeneous UWB technologies will coexist in the future commercial market. In this paper, we investigate the mutual interference of such coexistence scenarios by physical layer Monte Carlo simulations. The results reveal that the coexistence severely degrades the performance of both UWB systems. Moreover, such interference is asymmetric due to the heterogeneity of the two systems. Therefore, we propose the goodput-oriented utility-based transmit power control (GUTPC algorithm for interference mitigation. The feasible condition and the convergence property of GUTPC are investigated, and the choice of the coefficients is discussed for fairness and efficiency. Numerical results demonstrate that GUTPC improves the goodput of the coexisting systems effectively and fairly with saved power.

  8. Analysis and Compensation of Transmitter and Receiver I/Q Imbalances in Space-Time Coded Multiantenna OFDM Systems

    Directory of Open Access Journals (Sweden)

    Zou Yaning

    2008-01-01

    Full Text Available Abstract The combination of orthogonal frequency division multiplexing (OFDM and multiple-input multiple-output (MIMO techniques has been widely considered as the most promising approach for building future wireless transmission systems. The use of multiple antennas poses then big restrictions on the size and cost of individual radio transmitters and receivers, to keep the overall transceiver implementation feasible. This results in various imperfections in the analog radio front ends. One good example is the so-called I/Q imbalance problem related to the amplitude and phase matching of the transceiver I and Q chains. This paper studies the performance of space-time coded (STC multiantenna OFDM systems under I/Q imbalance, covering both the transmitter and the receiver sides of the link. The challenging case of frequency-selective I/Q imbalances is assumed, being an essential ingredient in future wideband wireless systems. As a practical example, the Alamouti space-time coded OFDM system with two transmit and M receive antennas is examined in detail and a closed-form solution for the resulting signal-to-interference ratio (SIR at the detector input due to I/Q imbalance is derived. This offers a valuable analytical tool for assessing the I/Q imbalance effects in any STC-OFDM system, without lengthy data or system simulations. In addition, the impact of I/Q imbalances on the channel estimation in the STC-OFDM context is also analyzed analytically. Furthermore, based on the derived signal models, a practical pilot-based I/Q imbalance compensation scheme is also proposed, being able to jointly mitigate the effects of frequency-selective I/Q imbalances as well as channel estimation errors. The performance of the compensator is analyzed using extensive computer simulations, and it is shown to virtually reach the perfectly matched reference system performance with low pilot overhead.

  9. Analysis and Compensation of Transmitter and Receiver I/Q Imbalances in Space-Time Coded Multiantenna OFDM Systems

    Directory of Open Access Journals (Sweden)

    Yaning Zou

    2007-12-01

    Full Text Available The combination of orthogonal frequency division multiplexing (OFDM and multiple-input multiple-output (MIMO techniques has been widely considered as the most promising approach for building future wireless transmission systems. The use of multiple antennas poses then big restrictions on the size and cost of individual radio transmitters and receivers, to keep the overall transceiver implementation feasible. This results in various imperfections in the analog radio front ends. One good example is the so-called I/Q imbalance problem related to the amplitude and phase matching of the transceiver I and Q chains. This paper studies the performance of space-time coded (STC multiantenna OFDM systems under I/Q imbalance, covering both the transmitter and the receiver sides of the link. The challenging case of frequency-selective I/Q imbalances is assumed, being an essential ingredient in future wideband wireless systems. As a practical example, the Alamouti space-time coded OFDM system with two transmit and M receive antennas is examined in detail and a closed-form solution for the resulting signal-to-interference ratio (SIR at the detector input due to I/Q imbalance is derived. This offers a valuable analytical tool for assessing the I/Q imbalance effects in any STC-OFDM system, without lengthy data or system simulations. In addition, the impact of I/Q imbalances on the channel estimation in the STC-OFDM context is also analyzed analytically. Furthermore, based on the derived signal models, a practical pilot-based I/Q imbalance compensation scheme is also proposed, being able to jointly mitigate the effects of frequency-selective I/Q imbalances as well as channel estimation errors. The performance of the compensator is analyzed using extensive computer simulations, and it is shown to virtually reach the perfectly matched reference system performance with low pilot overhead.

  10. Analysis of Intercarrier Interference Cancellation Scheme in OFDM Systems

    Directory of Open Access Journals (Sweden)

    Nasir Salh Almisbah

    2012-06-01

    Full Text Available Abstract: Orthogonal Frequency Division Multiplexing (OFDM is an emerging multi-carrier modulation scheme, which has been adopted for several wireless standards such as IEEE 802.11a and HiperLAN2. In OFDM systems, the performance is very sensitive to subcarrier frequency errors (offset. This paper shows the analysis and derivations of intercarrier interference (ICI complex gain that used in self-cancellation scheme and its dependence on subcarrier frequency offset. Simulation shows that better improvement in performance is achieved for systems that use this cancellation scheme. Moreover, analysis and simulation show that theoretical carrier-to-interference ratio (CIR for OFDM with cancellation scheme is greater than conventional one by more than 14dB.

  11. TWA-based channel estimation for CO-OFDM systems

    Science.gov (United States)

    Li, Li; Wu, Di; Han, Li; Hu, Gui-jun

    2014-03-01

    An efficient channel estimation method called time-domain weighted average (TWA) algorithm is proposed for coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. On the premise of calculating the associated weight of channel transfer function, a more exact channel characteristic is obtained by calculating the weighted average of the pilot transfer function in this algorithm. Compared with time-domain average (TA) algorithm, the TWA algorithm can reach the same bit error rate (BER) with fewer pilots, and it improves the performance of CO-OFDM systems.

  12. Ultra-Wideband Radio Frequency Identification Systems

    CERN Document Server

    Nekoogar, Faranak

    2012-01-01

    Ultra-Wideband Radio Frequency Identification Systems describes the essentials of radio frequency identification systems as well as their target markets. The authors provide a study of commercially available RFID systems and characterizes their performance in terms of read range and reliability in the presence of conductive and dielectric materials. The capabilities and limitations of some commercial RFID systems are reported followed by comprehensive discussions of the advantages and challenges of using ultra-wideband technology for tag/reader communications. The book presents practical aspects of UWB RFID system such as: pulse generation, remote powering, tag and reader antenna design, as well as special applications of  UWB RFIDs in a simple and easy-to-understand language.

  13. Discrete Multiwavelet Critical-Sampling Transform-Based OFDM System over Rayleigh Fading Channels

    Directory of Open Access Journals (Sweden)

    Sameer A. Dawood

    2015-01-01

    Full Text Available Discrete multiwavelet critical-sampling transform (DMWCST has been proposed instead of fast Fourier transform (FFT in the realization of the orthogonal frequency division multiplexing (OFDM system. The proposed structure further reduces the level of interference and improves the bandwidth efficiency through the elimination of the cyclic prefix due to the good orthogonality and time-frequency localization properties of the multiwavelet transform. The proposed system was simulated using MATLAB to allow various parameters of the system to be varied and tested. The performance of DMWCST-based OFDM (DMWCST-OFDM was compared with that of the discrete wavelet transform-based OFDM (DWT-OFDM and the traditional FFT-based OFDM (FFT-OFDM over flat fading and frequency-selective fading channels. Results obtained indicate that the performance of the proposed DMWCST-OFDM system achieves significant improvement compared to those of DWT-OFDM and FFT-OFDM systems. DMWCST improves the performance of the OFDM system by a factor of 1.5–2.5 dB and 13–15.5 dB compared with the DWT and FFT, respectively. Therefore the proposed system offers higher data rate in wireless mobile communications.

  14. Phase noise estimation and mitigation for DCT-based coherent optical OFDM systems.

    Science.gov (United States)

    Yang, Chuanchuan; Yang, Feng; Wang, Ziyu

    2009-09-14

    In this paper, as an attractive alternative to the conventional discrete Fourier transform (DFT) based orthogonal frequency division multiplexing (OFDM), discrete cosine transform (DCT) based OFDM which has certain advantages over its counterpart is studied for optical fiber communications. As is known, laser phase noise is a major impairment to the performance of coherent optical OFDM (CO-OFDM) systems. However, to our knowledge, detailed analysis of phase noise and the corresponding mitigation methods for DCT-based CO-OFDM systems have not been reported yet. To address these issues, we analyze the laser phase noise in the DCT-based CO-OFDM systems, and propose phase noise estimation and mitigation schemes. Numerical results show that the proposal is very effective in suppressing phase noise and could significantly improve the performance of DCT-based CO-OFDM systems.

  15. Another Approach to Save Energy in OFDM Systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2010-01-01

    In this paper, we propose an energy-efficient error correction scheme to lower the power consumption of the ADCs in the OFDM system. The proposed opportunistic error correction scheme is based on resolution adaptive ADCs and fountain codes. The key idea is to reduce the dynamic range of the channel

  16. Opportunistic error correction for OFDM-based DVB systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    2013-01-01

    DVB-T2 (second generation terrestrial digital video broadcasting) employs LDPC (Low Density Parity Check) codes combined with BCH (Bose-Chaudhuri-Hocquengham) codes, which has a better performance in comparison to convolutional and Reed-Solomon codes used in other OFDM-based DVB systems. However,

  17. The adaptive channel estimation for STBC-OFDM systems

    OpenAIRE

    Özbek, Berna; Yılmaz, Reyat

    2005-01-01

    In this paper, we propose adaptive channel estimation methods based on LMS and RLS for orthogonal STBC-OFDM systems with three transmit antennas. The performance of the proposed algorithms is obtained in the frequency selective channels using Hiperlan/2 characteristics.

  18. Opportunistic error correction for OFDM-based DVB systems

    NARCIS (Netherlands)

    Shao, X.; Slump, Cornelis H.

    DVB-T2 (second generation terrestrial digital video broadcasting) employs LDPC (Low Density Parity Check) codes combined with BCH (Bose-Chaudhuri-Hocquengham) codes, which has a better performance in comparison to convolutional and Reed-Solomon codes used in other OFDM-based DVB systems. However,

  19. System for Processing Coded OFDM Under Doppler and Fading

    Science.gov (United States)

    Tsou, Haiping; Darden, Scott; Lee, Dennis; Yan, Tsun-Yee

    2005-01-01

    An advanced communication system has been proposed for transmitting and receiving coded digital data conveyed as a form of quadrature amplitude modulation (QAM) on orthogonal frequency-division multiplexing (OFDM) signals in the presence of such adverse propagation-channel effects as large dynamic Doppler shifts and frequency-selective multipath fading. Such adverse channel effects are typical of data communications between mobile units or between mobile and stationary units (e.g., telemetric transmissions from aircraft to ground stations). The proposed system incorporates novel signal processing techniques intended to reduce the losses associated with adverse channel effects while maintaining compatibility with the high-speed physical layer specifications defined for wireless local area networks (LANs) as the standard 802.11a of the Institute of Electrical and Electronics Engineers (IEEE 802.11a). OFDM is a multi-carrier modulation technique that is widely used for wireless transmission of data in LANs and in metropolitan area networks (MANs). OFDM has been adopted in IEEE 802.11a and some other industry standards because it affords robust performance under frequency-selective fading. However, its intrinsic frequency-diversity feature is highly sensitive to synchronization errors; this sensitivity poses a challenge to preserve coherence between the component subcarriers of an OFDM system in order to avoid intercarrier interference in the presence of large dynamic Doppler shifts as well as frequency-selective fading. As a result, heretofore, the use of OFDM has been limited primarily to applications involving small or zero Doppler shifts. The proposed system includes a digital coherent OFDM communication system that would utilize enhanced 802.1la-compatible signal-processing algorithms to overcome effects of frequency-selective fading and large dynamic Doppler shifts. The overall transceiver design would implement a two-frequency-channel architecture (see figure

  20. Impulse noise estimation and removal for OFDM systems

    KAUST Repository

    Al-Naffouri, Tareq Y.

    2014-03-01

    Orthogonal Frequency Division Multiplexing (OFDM) is a modulation scheme that is widely used in wired and wireless communication systems. While OFDM is ideally suited to deal with frequency selective channels and AWGN, its performance may be dramatically impacted by the presence of impulse noise. In fact, very strong noise impulses in the time domain might result in the erasure of whole OFDM blocks of symbols at the receiver. Impulse noise can be mitigated by considering it as a sparse signal in time, and using recently developed algorithms for sparse signal reconstruction. We propose an algorithm that utilizes the guard band subcarriers for the impulse noise estimation and cancellation. Instead of relying on ℓ1 minimization as done in some popular general-purpose compressive sensing schemes, the proposed method jointly exploits the specific structure of this problem and the available a priori information for sparse signal recovery. The computational complexity of the proposed algorithm is very competitive with respect to sparse signal reconstruction schemes based on ℓ1 minimization. The proposed method is compared with respect to other state-of-the-art methods in terms of achievable rates for an OFDM system with impulse noise and AWGN. © 2014 IEEE.

  1. Dispersion and nonlinear effects in OFDM-RoF system

    Science.gov (United States)

    Alhasson, Bader H.; Bloul, Albe M.; Matin, M.

    2010-08-01

    The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.

  2. A Novel Frequency Synchronization Algorithm and its Cramer Rao Bound in Practical UWB Environment for MB-OFDM Systems

    Directory of Open Access Journals (Sweden)

    S. Chakrabarti

    2009-04-01

    Full Text Available This paper presents an efficient time-domain coarse frequency offset (FO synchronizer (TCFS for multi-band orthogonal frequency division multiplexing (MB-OFDM systems effective for practical ultra-wideband (UWB environment. The proposed algorithm derives its estimates based on phase differences in the received subcarrier signals of several successive OFDM symbols in the preamble. We consider different carrier FOs and different channel responses in different bands to keep the analysis and simulation compatible for practical multiband UWB scenario. Performance of the algorithm is studied by means of bit error rate (BER analysis of MBOFDM system. We derive the Cramer Rao lower bound (CRLB of the estimation error variance and compare it with the simulated error variance both in additive white Gaussian noise and UWB channel model (CM environments, CM1-CM4. Both analysis and simulation show that TCFS can estimate coarse carrier FO more efficiently in UWB fading channels for MB-OFDM applications compared to the other reported results in literature. Also, computational complexity of the proposed algorithm is analyzed for its usability evaluation.

  3. ON THE PAPR REDUCTION IN OFDM SYSTEMS: A NOVEL ZCT PRECODING BASED SLM TECHNIQUE

    Directory of Open Access Journals (Sweden)

    VARUN JEOTI

    2011-06-01

    Full Text Available High Peak to Average Power Ratio (PAPR reduction is still an important challenge in Orthogonal Frequency Division Multiplexing (OFDM systems. In this paper, we propose a novel Zadoff-Chu matrix Transform (ZCT precoding based Selected Mapping (SLM technique for PAPR reduction in OFDM systems. This technique is based on precoding the constellation symbols with ZCT precoder after the multiplication of phase rotation factor and before the Inverse Fast Fourier Transform (IFFT in the SLM based OFDM (SLM-OFDM Systems. Computer simulation results show that, the proposed technique can reduce PAPR up to 5.2 dB for N=64 (System subcarriers and V=16 (Dissimilar phase sequences, at clip rate of 10-3. Additionally, ZCT based SLM-OFDM (ZCT-SLM-OFDM systems also take advantage of frequency variations of the communication channel and can also offer substantial performance gain in fading multipath channels.

  4. Optical performance monitoring in coherent optical OFDM systems.

    Science.gov (United States)

    Shieh, William; Tucker, Rodney S; Chen, Wei; Yi, Xingwen; Pendock, Graeme

    2007-01-22

    Optical performance monitoring is an indispensable feature for optical systems and networks. In this paper, we propose the concept of optical performance monitoring through channel estimation by receiver signal processing. We show that in coherent-optical-orthogonal-frequency-division- multiplexed (CO-OFDM) systems, critical optical system parameters including fiber chromatic dispersion, Q value, and optical signal-to-noise ratio (OSNR) can be accurately monitored without resorting to separate monitoring devices.

  5. Underwater Communications: An OFDM-system for Underwater Communications

    OpenAIRE

    Gregersen, Svein Erik Søndervik

    2007-01-01

    In the fall 2006 NTNU (The Norwegian University and Science and Technology) initiated a strategic project in cooperations with SINTEF where the aim is to gain more knowledge about underwater acoustic communications. This study is a part of this project and focuses on a system for underwater communication. A orthogonal frequency division multiplexing (OFDM) system using differential quadrature phase shift keying (DQPSK) has been defined and implemented in MATLAB. The system has been characteri...

  6. Layered Video Transmission on Adaptive OFDM Wireless Systems

    Directory of Open Access Journals (Sweden)

    D. Dardari

    2004-09-01

    Full Text Available Future wireless video transmission systems will consider orthogonal frequency division multiplexing (OFDM as the basic modulation technique due to its robustness and low complexity implementation in the presence of frequency-selective channels. Recently, adaptive bit loading techniques have been applied to OFDM showing good performance gains in cable transmission systems. In this paper a multilayer bit loading technique, based on the so called “ordered subcarrier selection algorithm,” is proposed and applied to a Hiperlan2-like wireless system at 5 GHz for efficient layered multimedia transmission. Different schemes realizing unequal error protection both at coding and modulation levels are compared. The strong impact of this technique in terms of video quality is evaluated for MPEG-4 video transmission.

  7. Experimental demonstration of improved fiber nonlinearity tolerance for unique-word DFT-spread OFDM systems.

    Science.gov (United States)

    Chen, Xi; Li, An; Gao, Guanjun; Shieh, William

    2011-12-19

    In this paper we experimentally demonstrate transmission performance of optical DFT-spread OFDM systems in comparison with conventional OFDM systems. A 440.8-Gb/s superchannel consisting of 8 x 55.1-Gb/s densely-spaced DFT-S OFDM signal is successfully received after 1120-km transmission with a spectral efficiency of 3.5 b/s/Hz. It is shown that DFT-S OFDM can achieve an improvement of 1 dB in Q factor and 1 dB in launch power over conventional OFDM. Additionally, unique word aided phase estimation algorithm is proposed and demonstrated enabling extremely long OFDM symbol transmission.

  8. Degenerated-Inverse-Matrix-Based Channel Estimation for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Yoshida Makoto

    2009-01-01

    Full Text Available Abstract This paper addresses time-domain channel estimation for pilot-symbol-aided orthogonal frequency division multiplexing (OFDM systems. By using a cyclic sinc-function matrix uniquely determined by transmitted subcarriers, the performance of our proposed scheme approaches perfect channel state information (CSI, within a maximum of 0.4 dB degradation, regardless of the delay spread of the channel, Doppler frequency, and subcarrier modulation. Furthermore, reducing the matrix size by splitting the dispersive channel impulse response into clusters means that the degenerated inverse matrix estimator (DIME is feasible for broadband, high-quality OFDM transmission systems. In addition to theoretical analysis on normalized mean squared error (NMSE performance of DIME, computer simulations over realistic nonsample spaced channels also showed that the DIME is robust for intersymbol interference (ISI channels and fast time-invariant channels where a minimum mean squared error (MMSE estimator does not work well.

  9. Degenerated-Inverse-Matrix-Based Channel Estimation for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Makoto Yoshida

    2009-01-01

    Full Text Available This paper addresses time-domain channel estimation for pilot-symbol-aided orthogonal frequency division multiplexing (OFDM systems. By using a cyclic sinc-function matrix uniquely determined by Nc transmitted subcarriers, the performance of our proposed scheme approaches perfect channel state information (CSI, within a maximum of 0.4 dB degradation, regardless of the delay spread of the channel, Doppler frequency, and subcarrier modulation. Furthermore, reducing the matrix size by splitting the dispersive channel impulse response into clusters means that the degenerated inverse matrix estimator (DIME is feasible for broadband, high-quality OFDM transmission systems. In addition to theoretical analysis on normalized mean squared error (NMSE performance of DIME, computer simulations over realistic nonsample spaced channels also showed that the DIME is robust for intersymbol interference (ISI channels and fast time-invariant channels where a minimum mean squared error (MMSE estimator does not work well.

  10. Performance evaluation of channel estimation techniques for a mobile fourth generation wide area OFDM system

    OpenAIRE

    Dowler, ASH; Doufexi, A; Nix, AR

    2002-01-01

    In this paper channel estimation techniques for a mobile fourth generation coherent orthogonal frequency division multiplexing (OFDM) system are proposed. Coherent detection dictates that a per-subband estimate of the frequency response of the channel is generated for each OFDM symbol. This is achieved by inserting pilot symbols amongst the data symbols in the OFDM modulation grid. With suitable interpolation, the channel estimate at all intermediate symbols can be generated. A number of chan...

  11. Bit Loading Algorithms for Cooperative OFDM Systems

    Directory of Open Access Journals (Sweden)

    Bo Gui

    2007-12-01

    Full Text Available We investigate the resource allocation problem for an OFDM cooperative network with a single source-destination pair and multiple relays. Assuming knowledge of the instantaneous channel gains for all links in the entire network, we propose several bit and power allocation schemes aiming at minimizing the total transmission power under a target rate constraint. First, an optimal and efficient bit loading algorithm is proposed when the relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel permutation, in which the subchannels are reallocated at relay nodes, is considered. An optimal subchannel permutation algorithm is first proposed and then an efficient suboptimal algorithm is considered to achieve a better complexity-performance tradeoff. A distributed bit loading algorithm is also proposed for ad hoc networks. Simulation results show that significant performance gains can be achieved by the proposed bit loading algorithms, especially when subchannel permutation is employed.

  12. Bit Loading Algorithms for Cooperative OFDM Systems

    Directory of Open Access Journals (Sweden)

    Gui Bo

    2008-01-01

    Full Text Available Abstract We investigate the resource allocation problem for an OFDM cooperative network with a single source-destination pair and multiple relays. Assuming knowledge of the instantaneous channel gains for all links in the entire network, we propose several bit and power allocation schemes aiming at minimizing the total transmission power under a target rate constraint. First, an optimal and efficient bit loading algorithm is proposed when the relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel permutation, in which the subchannels are reallocated at relay nodes, is considered. An optimal subchannel permutation algorithm is first proposed and then an efficient suboptimal algorithm is considered to achieve a better complexity-performance tradeoff. A distributed bit loading algorithm is also proposed for ad hoc networks. Simulation results show that significant performance gains can be achieved by the proposed bit loading algorithms, especially when subchannel permutation is employed.

  13. Experimental demonstration of 110-Gb/s unsynchronized band-multiplexed superchannel coherent optical OFDM/OQAM system.

    Science.gov (United States)

    Li, Zhaohui; Jiang, Tao; Li, Haibo; Zhang, Xuebing; Li, Cai; Li, Chao; Hu, Rong; Luo, Ming; Zhang, Xu; Xiao, Xiao; Yang, Qi; Yu, Shaohua

    2013-09-23

    In this paper, we experimentally demonstrate the first 110-Gb/s multi-band superchannel coherent optical orthogonal frequency-division multiplexing based on offset quadrature amplitude modulation (OFDM/OQAM) system. Unlike the conventional orthogonal band-multiplexed OFDM system, no timing or frequency synchronization is required for the OFDM/OQAM system. We further investigate the influence of guard band, and find that very trivial guard band spacing (OFDM system.

  14. Decision-directed iterative methods for PAPR reduction in optical wireless OFDM systems

    Science.gov (United States)

    Azim, Ali W.; Le Guennec, Yannis; Maury, Ghislaine

    2017-04-01

    In this paper, we propose two iterative decision-directed methods for peak-to-average power ratio (PAPR) reduction in optical-orthogonal frequency division multiplexing (O-OFDM) systems. The proposed methods are applicable to state-of-the-art intensity modulation-direct detection (IM-DD) O-OFDM techniques for optical wireless communication (OWC) systems, including both direct-current (DC) biased O-OFDM (DCO-OFDM), and asymmetrically clipped O-OFDM (ACO-OFDM). Conventional O-OFDM suffers from high power consumption due to high PAPR. The high PAPR of the O-OFDM signal can be counteracted by clipping the signal to a predefined threshold. However, because of clipping an inevitable distortion occurs due to the loss of useful information, thus, clipping mitigation methods are required. The proposed iterative decision-directed methods operate at the receiver, and recover the lost information by mitigating the clipping distortion. Simulation results acknowledge that the high PAPR of O-OFDM can be significantly reduced using clipping, and the proposed methods can successfully circumvent the clipping distortions. Furthermore, the proposed PAPR reduction methods exhibit a much lower computational complexity compared to standard PAPR reduction methods.

  15. The robustness of subcarrier-index modulation in 16-QAM CO-OFDM system with 1024-point FFT.

    Science.gov (United States)

    Jan, Omar H A; Sandel, David; Puntsri, Kidsanapong; Al-Bermani, Ali; El-Darawy, Mohamed; Noé, Reinhold

    2012-12-17

    We present in numerical simulations the robustness of subcarrier index modulation (SIM) OFDM to combat laser phase noise. The ability of using DFB lasers with SIM-OFDM in 16-QAM CO-OFDM system with 1024-point FFT has been verified. Although SIM-OFDM has lower spectral efficiency compared to the conventional CO-OFDM system, it is a good candidate for 16-QAM CO-OFDM system with 1024-point FFT which uses a DFB laser of 1 MHz linewidth. In addition, we show the tolerance of SIM-OFDM for mitigation of fiber nonlinearities in long-haul CO-OFDM system. The simulation results show a significant penalty reduction, essentially that due to SPM.

  16. Spatial Diversity Scheme to Efficiently Cancel ISI and ICI in OFDM-OQAM Systems

    Directory of Open Access Journals (Sweden)

    Nizar Zorba

    2010-01-01

    removal while no ISI is generated. Moreover, the proposed system benefits from the multiuser gain through an opportunistic scheduler at the transmitter side to select the user with the best channel characteristics at each instant. The resultant scheme OQAM-OFDM-MIMO data rate is obtained in a closed form expression and proved to be higher than the classical CP-OFDM systems.

  17. A New Transceiver for OFDM Systems Using Smooth Local Trigonometric Transforms

    Science.gov (United States)

    Chang, Qing; Tan, Yongbo; Qi, Wei; Chen, Dirong

    This letter proposes a new transceiver for OFDM systems based on Smooth Local Trigonometric Transform (LTT). In our transceiver, the transmitter is realized by firstmodulating the original serial data using a constellation mapper, then feeding the results into the inverse LTT modulator. Unlike the conventional DFT-OFDM system, which always uses the roll cosine function as its window function, the proposed system needs no additional window function for the reason that LTT transform includes a bell-shaped window function by itself. Moreover, each LTT-OFDM symbol has a much more rapid attenuation rate outside of the spectral bandwidth and better spectrum convergence. In the receiver, the original data is recovered by demodulating the received data using forward LTT. Comparative simulation results from the conventional DFT-OFDM system, the system we proposed, and the recently proposed DCT based OFDM system are discussed in terms of bit error rate (BER).

  18. Phase Noise Effect on MIMO-OFDM Systems with Common and Independent Oscillators

    Directory of Open Access Journals (Sweden)

    Xiaoming Chen

    2017-01-01

    Full Text Available The effects of oscillator phase noises (PNs on multiple-input multiple-output (MIMO orthogonal frequency division multiplexing (OFDM systems are studied. It is shown that PNs of common oscillators at the transmitter and at the receiver have the same influence on the performance of (single-stream beamforming MIMO-OFDM systems, yet different influences on spatial multiplexing MIMO-OFDM systems with singular value decomposition (SVD based precoding/decoding. When each antenna is equipped with an independent oscillator, the PNs at the transmitter and at the receiver have different influences on beamforming MIMO-OFDM systems as well as spatial multiplexing MIMO-OFDM systems. Specifically, the PN effect on the transmitter (receiver can be alleviated by having more transmit (receive antennas for the case of independent oscillators. It is found that the independent oscillator case outperforms the common oscillator case in terms of error vector magnitude (EVM.

  19. Bit and Power Loading Approach for Broadband Multi-Antenna OFDM System

    DEFF Research Database (Denmark)

    Rahman, Muhammad Imadur; Das, Suvra S.; Wang, Yuanye

    2007-01-01

    In this work, we have studied bit and power allocation strategies for multi-antenna assisted Orthogonal Frequency Division Multiplexing (OFDM) systems and investigated the impact of different rates of bit and power allocations on various multi-antenna diversity schemes. It is observed that, if we...... allocations across OFDM sub-channels are required together for efficient exploitation of wireless channel....

  20. Practical Approaches to Adaptive Resource Allocation in OFDM Systems

    Directory of Open Access Journals (Sweden)

    N. Y. Ermolova

    2007-11-01

    Full Text Available Whenever a communication system operates in a time-frequency dispersive radio channel, the link adaptation provides a benefit in terms of any system performance metric by employing time, frequency, and, in case of multiple users, multiuser diversities. With respect to an orthogonal frequency division multiplexing (OFDM system, link adaptation includes bit, power, and subcarrier allocations. While the well-known water-filling principle provides the optimal solution for both margin-maximization and rate-maximization problems, implementation complexity often makes difficult its application in practical systems. This paper presents a few suboptimal (low-complexity adaptive loading algorithms for both single- and multiuser OFDM systems. We show that the single-user system performance can be improved by suitable power loading and an algorithm based on the incomplete channel state information is derived. At the same time, the power loading in a multiuser system only slightly affects performance while the initial subcarrier allocation has a rather big impact. A number of subcarrier allocation algorithms are discussed and the best one is derived on the basis of the order statistics theory.

  1. Practical Approaches to Adaptive Resource Allocation in OFDM Systems

    Directory of Open Access Journals (Sweden)

    Ermolova NY

    2008-01-01

    Full Text Available Abstract Whenever a communication system operates in a time-frequency dispersive radio channel, the link adaptation provides a benefit in terms of any system performance metric by employing time, frequency, and, in case of multiple users, multiuser diversities. With respect to an orthogonal frequency division multiplexing (OFDM system, link adaptation includes bit, power, and subcarrier allocations. While the well-known water-filling principle provides the optimal solution for both margin-maximization and rate-maximization problems, implementation complexity often makes difficult its application in practical systems. This paper presents a few suboptimal (low-complexity adaptive loading algorithms for both single- and multiuser OFDM systems. We show that the single-user system performance can be improved by suitable power loading and an algorithm based on the incomplete channel state information is derived. At the same time, the power loading in a multiuser system only slightly affects performance while the initial subcarrier allocation has a rather big impact. A number of subcarrier allocation algorithms are discussed and the best one is derived on the basis of the order statistics theory.

  2. Noncoherent detection of DQPSK in OFDM systems using predictive VA

    Science.gov (United States)

    Veludandi, Vineel K.; Vasudevan, K.

    2017-01-01

    Noncoherent detection of differential quaternary phase shift keying (DQPSK) signals in OFDM systems is efficiently implemented using a predictive Viterbi algorithm (VA) operating on a trellis with just S T = MP-1 states instead of M P states, where M denotes an M-ary PSK constellation and P denotes the order of the prediction filter. The prediction filter coefficients are generated based on the channel DFT alone making a high SNR approximation, since the estimation of the noise-variance using training symbols results in loss of throughput.

  3. A Robust Threshold for Iterative Channel Estimation in OFDM Systems

    Directory of Open Access Journals (Sweden)

    A. Kalaycioglu

    2010-04-01

    Full Text Available A novel threshold computation method for pilot symbol assisted iterative channel estimation in OFDM systems is considered. As the bits are transmitted in packets, the proposed technique is based on calculating a particular threshold for each data packet in order to select the reliable decoder output symbols to improve the channel estimation performance. Iteratively, additional pilot symbols are established according to the threshold and the channel is re-estimated with the new pilots inserted to the known channel estimation pilot set. The proposed threshold calculation method for selecting additional pilots performs better than non-iterative channel estimation, no threshold and fixed threshold techniques in poor HF channel simulations.

  4. Low-power wide-locking-range injection-locked frequency divider for OFDM UWB systems

    Energy Technology Data Exchange (ETDEWEB)

    Yin Jiangwei; Li Ning; Zheng Renliang; Li Wei; Ren Junyan, E-mail: lining@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-05-01

    This paper describes a divide-by-two injection-locked frequency divider (ILFD) for frequency synthesizers as used in multiband orthogonal frequency division multiplexing (OFDM) ultra-wideband (UWB) systems. By means of dual-injection technique and other conventional tuning techniques, such as DCCA and varactor tuning, the divider demonstrates a wide locking range while consuming much less power. The chip was fabricated in the Jazz 0.18 mum RF CMOS process. The measurement results show that the divider achieves a locking range of 4.85 GHz (6.23 to 11.08 GHz) at an input power of 8 dBm. The core circuit without the test buffer consumes only 3.7 mA from a 1.8 V power supply and has a die area of 0.38 x 0.28 mm{sup 2}. The wide locking range combined with low power consumption makes the ILFD suitable for its application in UWB systems.

  5. Study of S-G filter based real-time OFDM-PON system

    Science.gov (United States)

    Deng, Conghui; Zhang, Qi; Wang, Yongjun; Xin, Xiangjun

    2013-12-01

    Real-time Orthogonal Frequency Division Multiplexing Passive Optical Network (OFDM-PON) has been extensively studied at home and abroad in recent years. In this paper, we realize a real-time OFDM transmitter system and introduce Savitzky-Golay filter to smooth the transmitted signal into the communication system. Firstly, the architecture of the real-time OFDM-PON was proposed in which a Xilinx V5 FPGA is used to generate the OFDM signal and a S-G filter is used to smooth the signal and weaken the noise. At the receiver, we use MATLAB to recover the signal and simulate the constellation diagram and bit error rate. What's more, this paper introduces the basic principle of S-G filter and analysis the performance of the filter when it is used in an OFDM system. In conclusion, the simulation results show that the S-G filter implemented in the real-time OFDM-PON system is easy to realize that it can reduce the complexity of the system and bit error rate at the same time. As a result, it is proofed to be suitable for the real-time OFDM-PON system.

  6. PAPR Reduction in All-optical OFDM Systems Based on Phase Pre-emphasis

    Energy Technology Data Exchange (ETDEWEB)

    He Zhou; Li, Wei; Shao Jing; Liang Xiaojun; Huang Dexiu [Wuhan National Lab for Optoelectronics, Department of Optoelectronics Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Tao Zhiyong [State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts and Telecommunications, Wuhan 430074 (China); Deng Zhuanhua, E-mail: hezhou@wri.com.cn, E-mail: weilee@mail.hust.edu.cn [School of Computer Science and Technology, Hubei University of Economics, Wuhan 430205 (China)

    2011-02-01

    This paper investigates the peak-to-average power ratio (PAPR) theory in all-optical orthogonal frequency division multiplexing (OFDM) optical fibre communication systems. We find out that phase pre-emphasis could effectively reduce PAPR in all-optical OFDM communication systems which employ intensity modulation-direct detection (IM-DD) method. An equation is developed and proposed to calculate suitable phasing values for pre-emphasis. Furthermore, we find out that phase pre-emphasis cannot reduce PAPR effectively in all-optical OFDM systems that employ Phase Shift Keying (PSK) or Quadracture Amplitude Modulation (QAM) method.

  7. A Coherent Optical OFDM Communication System with Nonlinear Distortion Compensation in the Channel and Receiver

    Science.gov (United States)

    Asha, R. S.; Jayasree, V. K.

    2017-08-01

    A simple and low-cost scheme is proposed for reducing the distortions in the coherent optical orthogonal frequency-division multiplexing (CO-OFDM) system. The total wireless channel noise and the distortions in the receiver can be considered as an additive white Gaussian noise model and all distortions can be reduced using maximum likelihood sequence estimation (MLSE) equalizers. The performance of the CO-OFDM is analyzed for different fiber lengths and laser powers. Results show that the MLSE-equalized system can outperform with a higher Q-factor of 8 dB than conventional CO-OFDM system.

  8. Channel estimation in DFT-based offset-QAM OFDM systems.

    Science.gov (United States)

    Zhao, Jian

    2014-10-20

    Offset quadrature amplitude modulation (offset-QAM) orthogonal frequency division multiplexing (OFDM) exhibits enhanced net data rates compared to conventional OFDM, and reduced complexity compared to Nyquist FDM (N-FDM). However, channel estimation in discrete-Fourier-transform (DFT) based offset-QAM OFDM is different from that in conventional OFDM and requires particular study. In this paper, we derive a closed-form expression for the demultiplexed signal in DFT-based offset-QAM systems and show that although the residual crosstalk is orthogonal to the decoded signal, its existence degrades the channel estimation performance when the conventional least-square method is applied. We propose and investigate four channel estimation algorithms for offset-QAM OFDM that vary in terms of performance, complexity, and tolerance to system parameters. It is theoretically and experimentally shown that simple channel estimation can be realized in offset-QAM OFDM with the achieved performance close to the theoretical limit. This, together with the existing advantages over conventional OFDM and N-FDM, makes this technology very promising for optical communication systems.

  9. Phase Noise Effect on MIMO-OFDM Systems with Common and Independent Oscillators

    DEFF Research Database (Denmark)

    Chen, Xiaoming; Wang, Hua; Fan, Wei

    2017-01-01

    In this paper, the effects of oscillator phase noises (PNs) on multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems are studied. It is shown that PNs of common oscillators at the transmitter and at the receiver have the same influence on the performance...... of (single-stream) beamforming MIMO-OFDM systems, yet different influences on spatial multiplexing MIMOOFDM systems with singular value decomposition (SVD) based precoding/decoding. When each antenna is equipped with an independent oscillator, the PNs at the transmitter and at the receiver have different...... influences on beamforming MIMO-OFDM systems as well as spatial multiplexing MIMO-OFDM systems. Specifically, the PN effect at the transmitter (receiver) can be alleviated by having more transmit (receive) antennas for the case of independent oscillators. It is found that the independent oscillator case...

  10. Improving OFDM/DQPSK System Performance in the Conditions of Frequency Offset Existence

    Directory of Open Access Journals (Sweden)

    B. R. Dimitrijević

    2010-11-01

    Full Text Available The basic characteristics of Orthogonal Frequency Division Multiplex (OFDM systems with DQPSK modulation and channel estimation with an adaptive transversal filter and LMS algorithm are analyzed and presented in this paper. In the simulation environment designed for this purpose, we analyzed the effects of frequency offset on the performance of OFDM digital communications and presented the method for improving system performance in the presence of frequency offset. We analyzed the influence of OFDM system parameters on system’s performance for various values of frequency offsets, filter lengths and the number of subcarriers. Finally, we compared the result with the one for a perfectly synchronized OFDM/DQPSK system with differential and coherent demodulation.

  11. PAPR reduction based on improved Nyquist pulse shaping technology in OFDM-RoF systems

    Science.gov (United States)

    Liu, Jian-fei; Li, Ning; Lu, Jia; Zeng, Xiang-ye; Li, Jie; Wang, Meng-jun

    2013-01-01

    High peak-to-average power ratio (PAPR) is the main disadvantage in orthogonal frequency-division multiplexing (OFDM) communication systems, which also exists in OFDM-radio over fiber (RoF) systems. In this paper, we firstly analyze the impact of high PAPR on a 40 GHz OFDM-RoF system, and then describe the theory of Nyquist pulse shaping technology for reducing PAPR. To suppress PAPR further, an improved Nyquist pulse shaping technology is proposed, in which the distribution of original-data amplitude is changed by properly selecting the time-limited waveforms of the different subcarriers. We firstly apply the improved Nyquist pulse shaping technology to an OFDM-RoF system. The simulation results show that PAPR is effectively reduced by more than 2 dB with the bit error rate (BER) declining by about 0.125%.

  12. Blind estimation of carrier frequency offset, I/Q imbalance and DC offset for OFDM systems

    Science.gov (United States)

    Liu, Tao; Li, Hanzhang

    2012-12-01

    Sensitivity to carrier frequency offset (CFO) is one of the biggest drawbacks of orthogonal frequency division multiplexing (OFDM) system. A lot of CFO estimation algorithms had been studied for compensation of CFO in OFDM system. However, with the adoption of direct-conversion architecture (DCA), which introduces additional impairments such as dc offset (DCO) and in-phase/quadrature (I/Q) imbalance in OFDM system, the established CFO estimation algorithms suffer from performance degradation. In our previous study, we developed a blind CFO, I/Q imbalance and DCO estimation algorithm for OFDM systems with DCA. In this article, we propose an alternative algorithm with reduced computation complexity and better accuracy. Performance of the proposed algorithm is demonstrated by simulations.

  13. A Golay complementary TS-based symbol synchronization scheme in variable rate LDPC-coded MB-OFDM UWBoF system

    Science.gov (United States)

    He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin

    2015-09-01

    In this paper, a Golay complementary training sequence (TS)-based symbol synchronization scheme is proposed and experimentally demonstrated in multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system with a variable rate low-density parity-check (LDPC) code. Meanwhile, the coding gain and spectral efficiency in the variable rate LDPC-coded MB-OFDM UWBoF system are investigated. By utilizing the non-periodic auto-correlation property of the Golay complementary pair, the start point of LDPC-coded MB-OFDM UWB signal can be estimated accurately. After 100 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1×10-3, the experimental results show that the short block length 64QAM-LDPC coding provides a coding gain of 4.5 dB, 3.8 dB and 2.9 dB for a code rate of 62.5%, 75% and 87.5%, respectively.

  14. Security scheme in IMDD-OFDM-PON system with the chaotic pilot interval and scrambling

    Science.gov (United States)

    Chen, Qianghua; Bi, Meihua; Fu, Xiaosong; Lu, Yang; Zeng, Ran; Yang, Guowei; Yang, Xuelin; Xiao, Shilin

    2018-01-01

    In this paper, a random chaotic pilot interval and permutations scheme without any requirement of redundant sideband information is firstly proposed for the physical layer security-enhanced intensity modulation direct detection orthogonal frequency division multiplexing passive optical network (IMDD-OFDM-PON) system. With the help of the position feature of inserting the pilot, a simple logistic chaos map is used to generate the random pilot interval and scramble the chaotic subcarrier allocation of each column pilot data for improving the physical layer confidentiality. Due to the dynamic chaotic permutations of pilot data, the enhanced key space of ∼103303 is achieved in OFDM-PON. Moreover, the transmission experiment of 10-Gb/s 16-QAM encrypted OFDM data is successfully demonstrated over 20-km single-mode fiber, which indicates that the proposed scheme not only improves the system security, but also can achieve the same performance as in the common IMDD-OFDM-PON system without encryption scheme.

  15. Covert Communication in MIMO-OFDM System Using Pseudo Random Location of Fake Subcarriers

    Directory of Open Access Journals (Sweden)

    Rizky Pratama Hudhajanto

    2016-08-01

    Full Text Available Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM is the most used wireless transmission scheme in the world. However, its security is the interesting problem to discuss if we want to use this scheme to transmit a sensitive data, such as in the military and commercial communication systems. In this paper, we propose a new method to increase the security of MIMO-OFDM system using the change of location of fake subcarrier. The fake subcarriers’ location is generated per packet of data using Pseudo Random sequence generator. The simulation results show that the proposed scheme does not decrease the performance of conventional MIMO-OFDM. The attacker or eavesdropper gets worse Bit Error Rate (BER than the legal receiver compared to the conventional MIMO-OFDM system.

  16. An adaptive scaling and biasing scheme for OFDM-based visible light communication systems.

    Science.gov (United States)

    Wang, Zhaocheng; Wang, Qi; Chen, Sheng; Hanzo, Lajos

    2014-05-19

    Orthogonal frequency-division multiplexing (OFDM) has been widely used in visible light communication systems to achieve high-rate data transmission. Due to the nonlinear transfer characteristics of light emitting diodes (LEDs) and owing the high peak-to-average-power ratio of OFDM signals, the transmitted signal has to be scaled and biased before modulating the LEDs. In this contribution, an adaptive scaling and biasing scheme is proposed for OFDM-based visible light communication systems, which fully exploits the dynamic range of the LEDs and improves the achievable system performance. Specifically, the proposed scheme calculates near-optimal scaling and biasing factors for each specific OFDM symbol according to the distribution of the signals, which strikes an attractive trade-off between the effective signal power and the clipping-distortion power. Our simulation results demonstrate that the proposed scheme significantly improves the performance without changing the LED's emitted power, while maintaining the same receiver structure.

  17. Blind Decoding of Multiple Description Codes over OFDM Systems via Sequential Monte Carlo

    Directory of Open Access Journals (Sweden)

    Guo Dong

    2005-01-01

    Full Text Available We consider the problem of transmitting a continuous source through an OFDM system. Multiple description scalar quantization (MDSQ is applied to the source signal, resulting in two correlated source descriptions. The two descriptions are then OFDM modulated and transmitted through two parallel frequency-selective fading channels. At the receiver, a blind turbo receiver is developed for joint OFDM demodulation and MDSQ decoding. Transformation of the extrinsic information of the two descriptions are exchanged between each other to improve system performance. A blind soft-input soft-output OFDM detector is developed, which is based on the techniques of importance sampling and resampling. Such a detector is capable of exchanging the so-called extrinsic information with the other component in the above turbo receiver, and successively improving the overall receiver performance. Finally, we also treat channel-coded systems, and a novel blind turbo receiver is developed for joint demodulation, channel decoding, and MDSQ source decoding.

  18. Fast dispersion estimation in coherent optical 16QAM fast OFDM systems.

    Science.gov (United States)

    Zhao, J; Shams, H

    2013-01-28

    Fast channel estimation is crucial to increase the payload efficiency which is of particular importance for optical packet networks. In this paper, we propose a novel least-square based dispersion estimation method in coherent optical fast OFDM (F-OFDM) systems. Additionally, we experimentally demonstrate for the first time a 37.5 Gb/s 16QAM coherent F-OFDM system with 480 km transmission using the proposed scheme. The results show that this method outperforms the conventional channel estimation methods in minimizing the overhead load. A single training symbol can achieve near-optimum channel estimation without any prior information of the transmission distance. This makes optical F-OFDM a very promising scheme for the future burst-mode applications.

  19. CFO and channel estimation for MISO-OFDM systems

    KAUST Repository

    Ladaycia, Abdelhamid

    2017-11-02

    This study deals with the joint channel and carrier frequency offset (CFO) estimation in a Multiple Input Single Output (MISO) communications system. This problem arises in OFDM (Orthogonal Frequency Division Multiplexing) based multi-relay transmission protocols such that the geo-routing one proposed by A. Bader et al in 2012. Indeed, the outstanding performance of this multi-hop relaying scheme relies heavily on the channel and CFO estimation quality at the PHY layer. In this work, two approaches are considered: The first is based on estimating the overall channel (including the CFO) as a time-varying one using an adaptive scheme under the assumption of small or moderate CFOs while the second one performs separately, the channel and CFO parameters estimation based on the considered data model. The two solutions are analyzed and compared in terms of performance, cost and convergence rate.

  20. A Fast LMMSE Channel Estimation Method for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Zhou Wen

    2009-01-01

    Full Text Available A fast linear minimum mean square error (LMMSE channel estimation method has been proposed for Orthogonal Frequency Division Multiplexing (OFDM systems. In comparison with the conventional LMMSE channel estimation, the proposed channel estimation method does not require the statistic knowledge of the channel in advance and avoids the inverse operation of a large dimension matrix by using the fast Fourier transform (FFT operation. Therefore, the computational complexity can be reduced significantly. The normalized mean square errors (NMSEs of the proposed method and the conventional LMMSE estimation have been derived. Numerical results show that the NMSE of the proposed method is very close to that of the conventional LMMSE method, which is also verified by computer simulation. In addition, computer simulation shows that the performance of the proposed method is almost the same with that of the conventional LMMSE method in terms of bit error rate (BER.

  1. Feedback Reduction in Uplink MIMO OFDM Systems by Chunk Optimization

    Science.gov (United States)

    Jorswieck, Eduard; Sezgin, Aydin; Ottersten, Björn; Paulraj, Arogyaswami

    2007-12-01

    The performance of multiuser MIMO systems can be significantly increased by channel-aware scheduling and signal processing at the transmitters based on channel state information. In the multipleantenna uplink multicarrier scenario, the base station decides centrally on the optimal signal processing and spectral power allocation as well as scheduling. An interesting challenge is the reduction of the overhead in order to inform the mobiles about their transmit strategies. In this work, we propose to reduce the feedback by chunk processing and quantization. We maximize the weighted sum rate of a MIMO OFDM MAC under individual power constraints and chunk size constraints. An efficient iterative algorithm is developed and convergence is proved. The feedback overhead as a function of the chunk size is considered in the rate computation and the optimal chunk size is determined by numerical simulations for various channel models. Finally, the issues of finite modulation and coding schemes as well as quantization of the precoding matrices are addressed.

  2. Narrowband Interference Suppression in Wireless OFDM Systems

    OpenAIRE

    Nikolova, Zlatka; Iliev, Georgi; Ovtcharov, Miglen; Poulkov, Vladimir

    2009-01-01

    Signal distortions in communication systems occur between the transmitter and the receiver; these distortions normally cause bit errors at the receiver. In addition interference by other signals may add to the deterioration in performance of the communication link. In order to achieve reliable communication, the effects of the communication channel distortion and interfering signals must be reduced using different techniques. The aim of this paper is to introduce the f...

  3. Secure Image Transmission over DFT-precoded OFDM-VLC systems based on Chebyshev Chaos scrambling

    Science.gov (United States)

    Wang, Zhongpeng; Qiu, Weiwei

    2017-08-01

    This paper proposes a physical layer image secure transmission scheme for discrete Fourier transform (DFT) precoded OFDM-based visible light communication systems by using Chebyshev chaos maps. In the proposed scheme, 256 subcarriers and QPSK modulation are employed. The transmitted digital signal of the image is encrypted with a Chebyshev chaos sequence. The encrypted signal is then transformed by a DFT precoding matrix to reduce the PAPR of the OFDM signal. After that, the encrypted and DFT-precoded OFDM are transmitted over a VLC channel. The simulation results show that the proposed image security transmission scheme can not only protect the DFT-precoded OFDM-based VLC from eavesdroppers but also improve BER performance.

  4. A New-Trend Model-Based to Solve the Peak Power Problems in OFDM Systems

    Directory of Open Access Journals (Sweden)

    Ashraf A. Eltholth

    2008-01-01

    Full Text Available The high peak to average power ration (PAR levels of orthogonal frequency division multiplexing (OFDM signals attract the attention of many researchers during the past decade. Existing approaches that attack this PAR issue are abundant, but no systematic framework or comparison between them exists to date. They sometimes even differ in the problem definition itself and consequently in the basic approach to follow. In this paper, we propose a new trend in mitigating the peak power problem in OFDM system based on modeling the effects of clipping and amplifier nonlinearities in an OFDM system. We showed that the distortion due to these effects is highly related to the dynamic range itself rather than the clipping level or the saturation level of the nonlinear amplifier, and thus we propose two criteria to reduce the dynamic range of the OFDM, namely, the use of MSK modulation and the use of Hadamard transform. Computer simulations of the OFDM system using Matlab are completely matched with the deduced model in terms of OFDM signal quality metrics such as BER, ACPR, and EVM. Also simulation results show that even the reduction of PAR using the two proposed criteria is not significat, and the reduction in the amount of distortion due to HPA is truley delightful.

  5. Performance analysis of a finite radon transform in OFDM system under different channel models

    Energy Technology Data Exchange (ETDEWEB)

    Dawood, Sameer A.; Anuar, M. S.; Fayadh, Rashid A. [School of Computer and Communication Engineering, Universiti Malaysia Perlis (UniMAP) Pauh Putra, 02000 Arau, Parlis (Malaysia); Malek, F.; Abdullah, Farrah Salwani [School of Electrical System Engineering, Universiti Malaysia Perlis (UniMAP) Pauh Putra, 02000 Arau, Parlis (Malaysia)

    2015-05-15

    In this paper, a class of discrete Radon transforms namely Finite Radon Transform (FRAT) was proposed as a modulation technique in the realization of Orthogonal Frequency Division Multiplexing (OFDM). The proposed FRAT operates as a data mapper in the OFDM transceiver instead of the conventional phase shift mapping and quadrature amplitude mapping that are usually used with the standard OFDM based on Fast Fourier Transform (FFT), by the way that ensure increasing the orthogonality of the system. The Fourier domain approach was found here to be the more suitable way for obtaining the forward and inverse FRAT. This structure resulted in a more suitable realization of conventional FFT- OFDM. It was shown that this application increases the orthogonality significantly in this case due to the use of Inverse Fast Fourier Transform (IFFT) twice, namely, in the data mapping and in the sub-carrier modulation also due to the use of an efficient algorithm in determining the FRAT coefficients called the optimal ordering method. The proposed approach was tested and compared with conventional OFDM, for additive white Gaussian noise (AWGN) channel, flat fading channel, and multi-path frequency selective fading channel. The obtained results showed that the proposed system has improved the bit error rate (BER) performance by reducing inter-symbol interference (ISI) and inter-carrier interference (ICI), comparing with conventional OFDM system.

  6. AN IMPROVED PREAMBLE AIDED TIMING ESTIMATION METHAN IMPROVED PREAMBLE AIDED TIMING ESTIMATION METHOD FOR OFDM SYSTEMSOD FOR OFDM SYSTEMS

    Directory of Open Access Journals (Sweden)

    Sandeep Shukla

    2015-09-01

    Full Text Available This paper presents an improved robust method for timing offset estimation in preamble-aided OFDM system. The proposed method is aimed to provide low complexity, high performance timing estimator under the high frequency offset conditions. It uses a modified preamble structure and utilizes double autocorrelation technique to achieve robust timing estimation performance with only moderate increase in complexity. We finally evaluated and compared the performance of the proposed method in terms of mean square error (MSE in AWGN, Rayleigh fading ISI channels and HIPERLAN/2 indoor channel A. The results indicate that the new method has a significantly smaller estimator MSE than the previously presented methods.

  7. Real-time all-optical OFDM transmission system based on time-domain optical fourier transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Kong, Deming; Røge, Kasper Meldgaard

    2014-01-01

    We propose a novel simple all-optical OFDM transmission system based on time-domain OFT using time-lenses. A real-time 160 Gbit/s DPSK OFDM transmission with 16 decorrelated data subcarriers is successfully demonstrated over 100 km.......We propose a novel simple all-optical OFDM transmission system based on time-domain OFT using time-lenses. A real-time 160 Gbit/s DPSK OFDM transmission with 16 decorrelated data subcarriers is successfully demonstrated over 100 km....

  8. Experimental research of adaptive OFDM and OCT precoding with a high SE for VLLC system

    Science.gov (United States)

    Liu, Shuang-ao; He, Jing; Chen, Qinghui; Deng, Rui; Zhou, Zhihua; Chen, Shenghai; Chen, Lin

    2017-09-01

    In this paper, an adaptive orthogonal frequency division multiplexing (OFDM) modulation scheme with 128/64/32/16-quadrature amplitude modulation (QAM) and orthogonal circulant matrix transform (OCT) precoding is proposed and experimentally demonstrated for a visible laser light communication (VLLC) system with a cost-effective 450-nm blue-light laser diode (LD). The performance of OCT precoding is compared with conventional the adaptive Discrete Fourier Transform-spread (DFT-spread) OFDM scheme, 32 QAM OCT precoding OFDM scheme, 64 QAM OCT precoding OFDM scheme and adaptive OCT precoding OFDM scheme. The experimental results show that OCT precoding can achieve a relatively flat signal-to-noise ratio (SNR) curve, and it can provide performance improvement in bit error rate (BER). Furthermore, the BER of the proposed OFDM signal with a raw bit rate 5.04 Gb/s after 5-m free space transmission is less than 20% of soft-decision forward error correlation (SD-FEC) threshold of 2.4 × 10-2, and the spectral efficiency (SE) of 4.2 bit/s/Hz can be successfully achieved.

  9. Improved Joint ICI Cancellation and Error Correction for OFDM System

    Science.gov (United States)

    Sabir, Zeeshan; Yousaf, Syed Abdul Rehman; Babar, M. Inayatullah; Wahla, M. Arif

    Orthogonal Frequency Division Multiplexing (OFDM) is attractive for high data rate transmission due to spectral efficiency but is known to be sensitive to synchronization errors(symbol time and frequency offset)[1]. Mobility is the basic feature of most of present day techniques that employs OFDM at the backend but Doppler frequencies generated due to the mobility causes frequency offsets which results in Inter Carrier Interference (ICI) amongst the subcarriers of the multicarrier OFDM technique. It induces cross talk and causes deterioration of signal. This paper proposes an efficient Frequency-domain ICI mitigation technique based on the estimation of channel taps to vanish the effects of channel frequency offsets from the proposed OFDM model.

  10. Performance of Channel Estimation in MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Subuh Pramono

    2013-07-01

    Full Text Available This paper presented the performance of faded channel estimation method on orthogonal frequency division multiplexing-multiple input multiple output (OFDM-MIMO i.e. least squares (LS and minimum mean squared error (MMSE. Channel impuls response (CIR was required to overcome the intersymbol interference (ISI. Channel impuls response information was obtained from channel estimation processing. Iterance simulation used monte-carlo technique to determined the performance of bit error rate (BER and mean squared error(MSE. Simulation results show that the mean squared error performance on MIMO system was better than the SISO system.On MMSE channel estimation, the MIMO 2Tx-2Rx system provided 2 dB improvement that compared to SISO system at value of MSE 10-2. Furthermore, MIMO 3Tx-2Rx produce improvement about 1.5 dB, MIMO 4Tx-2Rx improve about 3.5 dB at BER 10-4, respectively. The MIMO 2Tx-2Rx system, MMSE channel estimation produced better performance 1 dB than LS channel estimation with sufficient SNR value for MSE 10-2 . Pilot arrangement, the simulation results show that the block type-pilot arrangement produced better performance than the comb type-pilot arrangement at fast fading channel. Block type-pilot arrangement system produced better 10 dB than the comb type-pilot arrangement with MMSE method at value of BER 2 10-2

  11. Joint Channel and Phase Noise Estimation in MIMO-OFDM Systems

    Science.gov (United States)

    Ngebani, I. M.; Chuma, J. M.; Zibani, I.; Matlotse, E.; Tsamaase, K.

    2017-05-01

    The combination of multiple-input multiple-output (MIMO) techniques with orthogonal frequency division multiplexing (OFDM), MIMO-OFDM, is a promising way of achieving high spectral efficiency in wireless communication systems. However, the performance of MIMO-ODFM systems is highly degraded by radio frequency (RF) impairments such as phase noise. Similar to the single-input single-output (SISO) case, phase noise in MIMO-OFDM systems results in a common phase error (CPE) and inter carrier interference (ICI). In this paper the problem of joint channel and phase noise estimation in a system with multiple transmit and receive antennas where each antenna is equipped with its own independent oscillator is tackled. The technique employed makes use of a novel placement of pilot carriers in the preamble and data portion of the MIMO-OFDM frame. Numerical results using a 16 and 64 quadrature amplitude modulation QAM schemes are provided to illustrate the effectiveness of the proposed scheme for MIMO-OFDM systems.

  12. BER performance analysis of OFDM-MIMO system using GNU Radio

    Directory of Open Access Journals (Sweden)

    Singh M.Ushamahesh

    2016-01-01

    Full Text Available Multiple Input Multiple Output (MIMO channels can be used to increase the data rate and the channel capacity by employing multiple transmitting and receiving antennas at both the ends of a wireless communication system. MIMO systems employ Orthogonal Frequency Division Multiplexing (OFDM technique and it uses separate antennas at both the transmitter and receiver to increase the data rate and with OFDM, instead of a single carrier, the main information is modulated into a number of independent sub-carrier signals which are orthogonal to each other. This paper presents an OFDM-MIMO transceiver design and the performance analysis of the system based on Error rate for different modulation techniques using GNU Radio. OFDM is chosen over a single carrier solution due to lower complexity of equalizers for high delay spread channels or high data rates. So the combination of MIMO-OFDM system has become a potential technology for high speed data transmission and efficient utilization of the channel spectrum for the modern wireless communication networks.

  13. Spectrally efficient polarization multiplexed direct-detection OFDM system without frequency gap.

    Science.gov (United States)

    Wei, Chia-Chien; Zeng, Wei-Siang; Lin, Chun-Ting

    2016-01-25

    We experimentally demonstrate a spectrally efficient direct-detection orthogonal frequency-division multiplexing (DD-OFDM) system. In addition to polarization-division multiplexing, removing the frequency gap further improves the spectral efficiency of the OFDM system. The frequency gap between a reference carrier and OFDM subcarriers avoids subcarrier-to-subcarrier beating interference (SSBI) in traditional DD-OFDM systems. Without dynamic polarization control, the resulting interference after square-law direct detection in the proposed gap-less system is polarization-dependent and composed of linear inter-carrier interference (ICI) and nonlinear SSBI. Thus, this work proposes an iterative multiple-input multiple-output detection scheme to remove the mixed polarization-dependent interference. Compared to the previous scheme, which only removes ICI, the proposed scheme can further eliminate SSBI to achieve the improvement of ∼ 7 dB in signal-to-noise ratio. Without the need for polarization control, we successfully utilize 7-GHz bandwidth to transmit a 39.5-Gbps polarization multiplexed OFDM signal over 100 km.

  14. Time domain reshuffling for OFDM based indoor visible light communication systems.

    Science.gov (United States)

    You, Xiaodi; Chen, Jian; Yu, Changyuan; Zheng, Huanhuan

    2017-05-15

    For orthogonal frequency division multiplexing (OFDM) based indoor visible light communication (VLC) systems, partial non-ideal transmission conditions such as insufficient guard intervals and a dispersive channel can result in severe inter-symbol crosstalk (ISC). By deriving from the inverse Fourier transform, we present a novel time domain reshuffling (TDR) concept for both DC-biased optical (DCO-) and asymmetrically clipped optical (ACO-) OFDM VLC systems. By using only simple operations in the frequency domain, potential high peaks can be relocated within each OFDM symbol to alleviate ISC. To simplify the system, we also propose an effective unified design of the TDR schemes for both DCO- and ACO-OFDM. Based on Monte-Carlo simulations, we demonstrate the statistical distribution of the signal high peak values and the complementary cumulative distribution function of the peak-to-average power ratio under different cases for comparison. Simulation results indicate improved bit error rate (BER) performance by adopting TDR to counteract ISC deterioration. For example, for binary phase shift keying at a BER of 10-3, the signal to noise ratio gains are ~1.6 dB and ~6.6 dB for DCO- and ACO-OFDM, respectively, with ISC of 1/64. We also show a reliable transmission by adopting TDR for rectangle 8-quadrature amplitude modulation with ISC of < 1/64.

  15. Image Transmission through OFDM System under the Influence of AWGN Channel

    Science.gov (United States)

    Krishna, Dharavathu; Anuradha, M. S., Dr.

    2017-08-01

    OFDM system is one among the modern techniques which is most abundantly used in next generation wireless communication networks for transmitting many forms of digital data in efficient manner than compared with other existing traditional techniques. In this paper, one such kind of a digital data corresponding to a two dimensional (2D) gray-scale image is used to evaluate the functionality and overall performance of an OFDM system under the influence of modeled AWGN channel in MATLAB simulation environment. Within the OFDM system, different configurations of notable modulation techniques such as M-PSK and M-QAM are considered for evaluation of the system and necessary valid conclusions are made from the comparison of several observed MATLAB simulation results.

  16. A channel estimation scheme for MIMO-OFDM systems

    Science.gov (United States)

    He, Chunlong; Tian, Chu; Li, Xingquan; Zhang, Ce; Zhang, Shiqi; Liu, Chaowen

    2017-08-01

    In view of the contradiction of the time-domain least squares (LS) channel estimation performance and the practical realization complexity, a reduced complexity channel estimation method for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) based on pilot is obtained. This approach can transform the complexity of MIMO-OFDM channel estimation problem into a simple single input single output-orthogonal frequency division multiplexing (SISO-OFDM) channel estimation problem and therefore there is no need for large matrix pseudo-inverse, which greatly reduces the complexity of algorithms. Simulation results show that the bit error rate (BER) performance of the obtained method with time orthogonal training sequences and linear minimum mean square error (LMMSE) criteria is better than that of time-domain LS estimator and nearly optimal performance.

  17. All-optical OFDM system using a wavelength selective switch based transmitter and a spectral magnification based receiver

    DEFF Research Database (Denmark)

    Guan, Pengyu; Lefrancois, S.; Lillieholm, Mads

    2014-01-01

    We demonstrate an AO-OFDM system with a WSS-based transmitter and time-lens based receiver for spectral magnification, achieving BER~10-9 for a 28×10 Gbit/s DPSK AO-OFDM signal. Furthermore, the receiver performance for DPSK and DQPSK is investigated using Monte Carlo simulations....

  18. Feedback Reduction in Uplink MIMO OFDM Systems by Chunk Optimization

    Directory of Open Access Journals (Sweden)

    Arogyaswami Paulraj

    2008-01-01

    Full Text Available The performance of multiuser MIMO systems can be significantly increased by channel-aware scheduling and signal processing at the transmitters based on channel state information. In the multipleantenna uplink multicarrier scenario, the base station decides centrally on the optimal signal processing and spectral power allocation as well as scheduling. An interesting challenge is the reduction of the overhead in order to inform the mobiles about their transmit strategies. In this work, we propose to reduce the feedback by chunk processing and quantization. We maximize the weighted sum rate of a MIMO OFDM MAC under individual power constraints and chunk size constraints. An efficient iterative algorithm is developed and convergence is proved. The feedback overhead as a function of the chunk size is considered in the rate computation and the optimal chunk size is determined by numerical simulations for various channel models. Finally, the issues of finite modulation and coding schemes as well as quantization of the precoding matrices are addressed.

  19. Subsiding OOB Emission and ICI Power Using iPOWER Pulse in OFDM Systems

    Directory of Open Access Journals (Sweden)

    KAMAL, S.

    2016-02-01

    Full Text Available A novel family of Nyquist-I pulses called iPOWER is proposed with a new design parameter that provides an extra degree of freedom for a certain roll-off factor. The proposed pulse is examined and compared with other existing pulses in terms of out-of-band (OOB power, intercarrier interference (ICI power, signal-to-interference ratio (SIR power, and bit-error-rate (BER in orthogonal frequency division multiplexing (OFDM systems. The BER was analyzed in the presence of carrier frequency offset (CFO, which introduces ICI in OFDM-based systems. Eye diagram tool is also used to visually analyze the performance of the proposed pulse. Simulation results show that the iPOWER pulse performs better in terms of OOB power, ICI power, SIR power, and improving BER in comparison to other existing pulses in OFDM-based systems.

  20. An Improved Algorithm of Successive Interference Cancellation for STC-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Wei Shihong

    2014-03-01

    Full Text Available STC-OFDM systems effectively overcome the disadvantage of inter symbol interference and frequency selective fading for Orthogonal Frequency Division Multiplexing communication systems, however, there are still some issues, such as how to suppressing mutual interference due to multi-antenna transmitting. In this paper, an improving algorithm combining with channel frequency response recovery is proposed, which recover the channel frequency response of the pilot before successive interference cancellation and reduce the effects of the channel frequency response estimation. Theoretical analysis and computer simulation shows that the proposal algorithm can improve performance of Bit Error Rate and suppress the interference in the STC-OFDM communication systems.

  1. An Opportunistic Error Correction Layer for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Xiaoying Shao

    2009-01-01

    Full Text Available We propose a novel cross layer scheme to reduce the power consumption of ADCs in OFDM systems. The ADCs in a receiver can consume up to 50% of the total baseband energy. Our scheme is based on resolution-adaptive ADCs and Fountain codes. In a wireless frequency-selective channel some subcarriers have good channel conditions and others are attenuated. The key part of the proposed system is that the dynamic range of ADCs can be reduced by discarding subcarriers that are attenuated by the channel. Correspondingly, the power consumption in ADCs can be decreased. In our approach, each subcarrier carries a Fountain-encoded packet. To protect Fountain-encoded packets against bit errors, an LDPC code has been used. The receiver only decodes subcarriers (i.e., Fountain-encoded packets with the highest SNR. Others are discarded. For that reason a LDPC code with a relatively high code rate can be used. The new error correction layer does not require perfect channel knowledge, so it can be used in a realistic system where the channel is estimated. With our approach, more than 70% of the energy consumption in the ADCs can be saved compared with the conventional IEEE 802.11a WLAN system under the same channel conditions and throughput. In addition, it requires 7.5 dB less SNR than the 802.11a system. To reduce the overhead of Fountain codes, we apply message passing and Gaussian elimination in the decoder. In this way, the overhead is 3% for a small block size (i.e., 500 packets. Using both methods results in an efficient system with low delay.

  2. An Opportunistic Error Correction Layer for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Shao Xiaoying

    2009-01-01

    Full Text Available Abstract We propose a novel cross layer scheme to reduce the power consumption of ADCs in OFDM systems. The ADCs in a receiver can consume up to 50% of the total baseband energy. Our scheme is based on resolution-adaptive ADCs and Fountain codes. In a wireless frequency-selective channel some subcarriers have good channel conditions and others are attenuated. The key part of the proposed system is that the dynamic range of ADCs can be reduced by discarding subcarriers that are attenuated by the channel. Correspondingly, the power consumption in ADCs can be decreased. In our approach, each subcarrier carries a Fountain-encoded packet. To protect Fountain-encoded packets against bit errors, an LDPC code has been used. The receiver only decodes subcarriers (i.e., Fountain-encoded packets with the highest SNR. Others are discarded. For that reason a LDPC code with a relatively high code rate can be used. The new error correction layer does not require perfect channel knowledge, so it can be used in a realistic system where the channel is estimated. With our approach, more than 70% of the energy consumption in the ADCs can be saved compared with the conventional IEEE 802.11a WLAN system under the same channel conditions and throughput. In addition, it requires 7.5 dB less SNR than the 802.11a system. To reduce the overhead of Fountain codes, we apply message passing and Gaussian elimination in the decoder. In this way, the overhead is 3% for a small block size (i.e., 500 packets. Using both methods results in an efficient system with low delay.

  3. CFO compensation method using optical feedback path for coherent optical OFDM system

    Science.gov (United States)

    Moon, Sang-Rok; Hwang, In-Ki; Kang, Hun-Sik; Chang, Sun Hyok; Lee, Seung-Woo; Lee, Joon Ki

    2017-07-01

    We investigate feasibility of carrier frequency offset (CFO) compensation method using optical feedback path for coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. Recently proposed CFO compensation algorithms provide wide CFO estimation range in electrical domain. However, their practical compensation range is limited by sampling rate of an analog-to-digital converter (ADC). This limitation has not drawn attention, since the ADC sampling rate was high enough comparing to the data bandwidth and CFO in the wireless OFDM system. For CO-OFDM, the limitation is becoming visible because of increased data bandwidth, laser instability (i.e. large CFO) and insufficient ADC sampling rate owing to high cost. To solve the problem and extend practical CFO compensation range, we propose a CFO compensation method having optical feedback path. By adding simple wavelength control for local oscillator, the practical CFO compensation range can be extended to the sampling frequency range. The feasibility of the proposed method is experimentally investigated.

  4. Efficient algorithms for solution of interference cancellation and channel estimation for mobile OFDM system

    Science.gov (United States)

    Fan, Tong-liang; Wen, Yu-cang; Kadri, Chaibou

    Orthogonal frequency-division multiplexing (OFDM) is robust against frequency selective fading because of the increase of the symbol duration. However, the time-varying nature of the channel causes inter-carrier interference (ICI) which destroys the orthogonal of sub-carriers and degrades the system performance severely. To alleviate the detrimental effect of ICI, there is a need for ICI mitigation within one OFDM symbol. We propose an iterative Inter-Carrier Interference (ICI) estimation and cancellation technique for OFDM systems based on regularized constrained total least squares. In the proposed scheme, ICI aren't treated as additional additive white Gaussian noise (AWGN). The effect of Inter-Carrier Interference (ICI) and inter-symbol interference (ISI) on channel estimation is regarded as perturbation of channel. We propose a novel algorithm for channel estimation o based on regularized constrained total least squares. Computer simulations show that significant improvement can be obtained by the proposed scheme in fast fading channels.

  5. Pilot Signal Design and Direct Ranging Methods for Radio Localization Using OFDM Systems

    DEFF Research Database (Denmark)

    Jing, Lishuai

    Having accurate localization capability is becoming important for existing and future terrestrial wireless communication systems, in particular for orthogonal frequency-division multiplexing (OFDM) systems, such as WiMAX, wireless local area network, long-term evolution (LTE) and its extension LTE......-Advanced. To obtain accurate position estimates, not only advanced estimation algorithms are needed but also the transmitted signals should be scrutinized. In this dissertation, we investigate how to design OFDM pilot signals and propose and evaluate high accuracy ranging techniques with tractable computational....... For scenarios where the number of path components is unknown and these components are not necessary separable, we propose a direct ranging technique using the received frequency-domain OFDM pilot signals. Compared to conventional (two-step) ranging methods, which estimate intermediate parameters...

  6. Channel Estimation and Optimal Power Allocation for a Multiple-Antenna OFDM System

    Directory of Open Access Journals (Sweden)

    Yao Kung

    2002-01-01

    Full Text Available We propose combining channel estimation and optimal power allocation approaches for a multiple-antenna orthogonal frequency division multiplexing (OFDM system in high-speed transmission applications. We develop a least-square channel estimation approach, derive the performance bound of the estimator, and investigate the optimal training sequences for initial channel acquisition. Based on the channel estimates, the optimal power allocation solution which maximizes the bandwidth efficiency is derived under power and quality of service (Qos (symbol error rate constraints. It is shown that combining channel tracking and adaptive power allocation can dramatically enhance the outage capacity of an OFDM multiple-antenna system when severing fading occurs.

  7. Performance evaluation of CO-OFDM systems based on electrical constant-envelope signals

    Science.gov (United States)

    Dias, Vinicius O. C.; Pereira, Ezequiel da V.; Rocha, Helder R. O.; Segatto, Marcelo E. V.; Silva, Jair A. L.

    2017-09-01

    The influence of the electrical phase modulation index h in the performance of constant-envelope orthogonal frequency division multiplexing (CE-OFDM) in coherent detection optical systems is treated analytically and its range of validity examined by simulations. A compromise between h and subcarrier mapping is identified according to differences in sensitivity related to non-linearities inserted by the optical modulator. It is shown that the proposed scheme outperforms conventional coherent detection OFDM systems, which is strongly dependent on both phase and optical modulation indexes.

  8. GFDM performance in terms of BER, PAPR and OOB and comparison to OFDM system

    Energy Technology Data Exchange (ETDEWEB)

    Antapurkar, Shwetal K., E-mail: h2014077@pilani.bits-pilani.ac.in; Pandey, Avinash, E-mail: h2014083@pilani.bits-pilani.ac.in [P G student, Dept. of EEE, Birla Institute of Technology and Science, Pilani, Rajasthan, India-333031 (India); Gupta, K. K., E-mail: kgupta@pilani.bits-pilani.ac.in [Asst Prof, Dept. of EEE, Birla Institute of Technology and Science, Pilani, Rajasthan, India-333031 (India)

    2016-03-09

    Generalized frequency division multiplexing is a multicarrier modulation technique which can be foreseen as a potential alternative for upcoming wireless networks. GFDM attractive features include reduced out-of-band radiation(OOB) and low peak-to-average ratio(PAPR), which are the crucial shortcomings of OFDM used in present day wireless communication networks. This paper gives detailed description of GFDM system model and further studies and validates through simulations, the performance of GFDM in terms of OOB, PAPR and Bit Error Rate (BER) and compares the results obtained with OFDM system.

  9. PMD compensation in fiber-optic communication systems with direct detection using LDPC-coded OFDM.

    Science.gov (United States)

    Djordjevic, Ivan B

    2007-04-02

    The possibility of polarization-mode dispersion (PMD) compensation in fiber-optic communication systems with direct detection using a simple channel estimation technique and low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) is demonstrated. It is shown that even for differential group delay (DGD) of 4/BW (BW is the OFDM signal bandwidth), the degradation due to the first-order PMD can be completely compensated for. Two classes of LDPC codes designed based on two different combinatorial objects (difference systems and product of combinatorial designs) suitable for use in PMD compensation are introduced.

  10. Carrier frequency offset estimation for OFDM systems with time-varying DC Offset

    Science.gov (United States)

    Liu, Tao; Li, Hanzhang

    2012-12-01

    Orthogonal frequency division multiplexing (OFDM) systems with direct-conversion architecture suffer from both carrier frequency offset (CFO) and dc offset (DCO). In this paper, we study CFO estimation problem for OFDM systems with time-varying DCO (TV-DCO) caused by gain mode switch of low noise amplifier (LNA). Based on linear approximation of TV-DCO, a blind algorithm is proposed for CFO estimation by means of DCO compensation and power leakage minimization. Performance of the proposed algorithm is demonstrated by simulations.

  11. Blind CP-OFDM and ZP-OFDM Parameter Estimation in Frequency Selective Channels

    Directory of Open Access Journals (Sweden)

    Vincent Le Nir

    2009-01-01

    Full Text Available A cognitive radio system needs accurate knowledge of the radio spectrum it operates in. Blind modulation recognition techniques have been proposed to discriminate between single-carrier and multicarrier modulations and to estimate their parameters. Some powerful techniques use autocorrelation- and cyclic autocorrelation-based features of the transmitted signal applying to OFDM signals using a Cyclic Prefix time guard interval (CP-OFDM. In this paper, we propose a blind parameter estimation technique based on a power autocorrelation feature applying to OFDM signals using a Zero Padding time guard interval (ZP-OFDM which in particular excludes the use of the autocorrelation- and cyclic autocorrelation-based techniques. The proposed technique leads to an efficient estimation of the symbol duration and zero padding duration in frequency selective channels, and is insensitive to receiver phase and frequency offsets. Simulation results are given for WiMAX and WiMedia signals using realistic Stanford University Interim (SUI and Ultra-Wideband (UWB IEEE 802.15.4a channel models, respectively.

  12. Joint optimization of CQI calculation and interference mitigation for user scheduling in MIMO-OFDM systems

    KAUST Repository

    Sadek, Mirette

    2011-05-01

    In MIMO-OFDM multiuser systems, user scheduling is employed as a means of multiple access. In a downlink scenario, users that share the same subcarriers of an OFDM symbol are separated through precoding in order to achieve space division multiple access (SDMA). User scheduling techniques rely on channel knowledge at the transmitter, namely, the so-called channel quality indicator (CQI). In this paper, we implement a leakage-based precoding algorithm whose purpose is twofold. First, it is used to compute a reliable CQI based on a group of precoding vectors that are adapted to the channel. Then, it implements user scheduling through using the optimum vectors for precoding, thus minimizing interference among users. We also introduce the concept of resource block size adaptivity. The resource block (RB) is defined as the least unit in an OFDM symbol that a user can be assigned to. We propose a variable RB size that adapts to the channel conditions. © 2011 IEEE.

  13. A Novel Method for Performance Analysis of OFDM Polarization Diversity System in Ricean Fading Environment

    DEFF Research Database (Denmark)

    Ilic-Delibasic, M.; Pejanovic-Djurisic, M.; Prasad, R.

    2012-01-01

    OFDM (Orthogonal Frequency Division Multiplexing) is proven to be a very effective modulation and multiple access technique that enables high data rate transmission. Due to its good performance it is already implemented in several standardized technologies, and it is very promising technique...... conditions. In order to calculate BER (Bit Error Rate) for the considered OFDM polarization diversity system with a certain level of the received signals correlation, we propose a novel analytical method. The obtained results are compared with the ones attained by simulation....

  14. Iterative algorithm for phase noise estimation in coherent optical DFT-S OFDM systems

    Science.gov (United States)

    Tao, Li; Tan, Hui; Fang, Chonghua

    2017-07-01

    An iterative algorithm is proposed and investigated for phase noise estimation of discrete Fourier transform spread (DFT-S) orthogonal frequency division multiplexing (OFDM). Compared with common phase estimation (CPE), significant improvement of tolerance to laser bandwidth is obtained and 2.7 dB improvement at BER of 3.8×10-3 is found using the CPE-iter scheme in 103.3 Gb/s coherent polarization-division-multiplexed DFT-S OFDM system over 480-km transmission through simulation.

  15. Channel estimation algorithm for interference suppression in IMDD-OQAM-OFDM transmission systems

    Science.gov (United States)

    Zhang, Lu; Xiao, Shilin; Bi, Meihua; Liu, Ling; Zhou, Zhao

    2016-04-01

    In this paper, we investigate the intrinsic interference caused by intra-symbol data and channel noise in the intensity-modulation direct-detection OQAM-OFDM (IMDD-OQAM-OFDM) system by theoretical derivation. Based on the analysis, we proposed and experimentally demonstrated a channel estimation algorithm with the combination of IAM-C and frequency-averaging method to combat the effect of these noises. Experimental results show that compared to the common channel estimation algorithms, our algorithm can greatly reduce the error vector magnitude (EVM) and achieve ~1.5 dB sensitivity improvement.

  16. Impact of Nonlinear Power Amplifier on Link Adaptation Algorithm of OFDM Systems

    DEFF Research Database (Denmark)

    Das, Suvra S.; Tariq, Faisal; Rahman, Muhammad Imadur

    2007-01-01

    The impact of non linear distortion due to High Power Amplifier (HPA) on the performance of Link Adaptation (LA) - Orthogonal Frequency Division Multiplexing (OFDM) based wireless system is analyzed. The performance of both Forward Error Control Coding (FEC) en-coded and uncoded system is evaluated...... in this work....

  17. A Novel Fractional Fourier Transform-Based ASK-OFDM System for Underwater Acoustic Communications

    Directory of Open Access Journals (Sweden)

    Rami Ashri

    2017-12-01

    Full Text Available A key research area in wireless transmission is underwater communications. It has a vital role in applications such as underwater sensor networks (UWSNs and disaster detection. The underwater channel is very unique as compared to other alternatives of transmission channels. It is characterized by path loss, multipath fading, Doppler spread and ambient noise. Thus, the bit error rate (BER is increased to a large extent when compared to its counterpart of cellular communications. Acoustic signals are the current best solution for underwater communications. The use of electromagnetic or optical waves obviously entails a much higher data rate. However, they suffer from high attenuation, absorption or scattering. This paper proposes a novel fractional fast Fourier transform (FrFT—orthogonal frequency division multiplexing (FrFT-OFDM system for underwater acoustic (UWA communication—which employs the amplitude shift keying (ASK modulation technique (FrFT-ASK-OFDM. Specifically, ASK achieves a better bandwidth efficiency as compared to other commonly used modulation techniques, such as quadrature amplitude modulation (QAM and phase shift keying (PSK. In particular, the system proposed in this article can achieve a very promising BER performance, and can reach higher data rates when compared to other systems proposed in the literature. The BER performance of the proposed system is evaluated numerically, and is compared to the corresponding M-ary QAM system in the UWA channel for the same channel conditions. Moreover, the performance of the proposed system is compared to the conventional fast Fourier transform (FFT-OFDM (FFT-OFDM system in the absence and presence of the effect of carrier frequency offset (CFO. Numerical results show that the proposed system outperforms the conventional FFT-based systems for UWA channels, even in channels dominated by CFO. Moreover, the spectral efficiency and data rate of the proposed system are approximately double

  18. Low-Complexity Block Turbo Equalization for OFDM Systems in Time-Varying Channels

    NARCIS (Netherlands)

    Fang, K.; Rugini, L.; Leus, G.

    2008-01-01

    We propose low-complexity block turbo equalizers for orthogonal frequency-division multiplexing (OFDM) systems in time-varying channels. The presented work is based on a soft minimum mean-squared error (MMSE) block linear equalizer (BLE) that exploits the banded structure of the frequency-domain

  19. An improved channel estimation algorithm for CO-OFDM system and its performance analysis

    Science.gov (United States)

    Zhang, Shuai; Bai, Shun-chang; Bai, Cheng-lin; Luo, Qing-long; Fang, Wen-jing

    2014-03-01

    We present an extra processing added to conventional least square (LS) channel estimation to further improve its performance in coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. The influence of noise, chromatic dispersion and polarization mode dispersion on the performance of the proposed algorithm is analyzed. The simulation results show that the improved algorithm has better performance and lower complexity.

  20. Analysis of Channel Coding Performance in OFDM Technique for Underwater Acoustic Communication System

    Directory of Open Access Journals (Sweden)

    Machmud Roby Alhamidi

    2013-12-01

    Full Text Available One way to increase the performance of Orthogonal Frequency Division Multiplexing System (OFDM system is by adding a channel coding (error correction code in order to detect and correct errors that occur when sending data.At communication of acoustic underwater channel coding is required because of the characteristics of the channel bottom water is much different compared with the air channel and errors are likely to occur.In this research it was made simulation of acoustic underwater communication system with OFDM applied channel codingin which using Hamming code (7,4 and Hamming code (15,11 that is able to correct one error and detect two errors then BCH code capable to correct two errors for BCH (15,7 and correct 9 errors forBCH (127,64 and Reed Solomon code able to correct two errors for RS (15,11 and correct 8 errors for RS (31,15. Results of the study confirm the better performance when system usesOFDM with BCH Code (127.64 than other codes that are used, starting from 1 decibel (dB to 3 dB for the performance of BER as10 -3 on Additive Gaussian White Noise (AWGN channel while at the multipath channel, the performance of Bit Error Rate (BER got better result on 1 dB up to 8 dB for BER performance as10 -3. Keyword: Underwater, Orthogonal Frequency Division Multiplexing (OFDM, channel coding

  1. A robust and scalable neuromorphic communication system by combining synaptic time multiplexing and MIMO-OFDM.

    Science.gov (United States)

    Srinivasa, Narayan; Zhang, Deying; Grigorian, Beayna

    2014-03-01

    This paper describes a novel architecture for enabling robust and efficient neuromorphic communication. The architecture combines two concepts: 1) synaptic time multiplexing (STM) that trades space for speed of processing to create an intragroup communication approach that is firing rate independent and offers more flexibility in connectivity than cross-bar architectures and 2) a wired multiple input multiple output (MIMO) communication with orthogonal frequency division multiplexing (OFDM) techniques to enable a robust and efficient intergroup communication for neuromorphic systems. The MIMO-OFDM concept for the proposed architecture was analyzed by simulating large-scale spiking neural network architecture. Analysis shows that the neuromorphic system with MIMO-OFDM exhibits robust and efficient communication while operating in real time with a high bit rate. Through combining STM with MIMO-OFDM techniques, the resulting system offers a flexible and scalable connectivity as well as a power and area efficient solution for the implementation of very large-scale spiking neural architectures in hardware.

  2. Optimal Superimposed Training Sequences for Channel Estimation in MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Kumar RatnamVRaja

    2010-01-01

    Full Text Available Abstract In this work an iterative time domain Least Squares (LS based channel estimation method using superimposed training (ST for a Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM system over time varying frequency selective fading channels is proposed. The performance of the channel estimator is analyzed in terms of the Mean Square Estimation Error (MSEE and its impact on the uncoded Bit Error Rate (BER of the MIMO-OFDM system is studied. A new selection criterion for the training sequences that jointly optimizes the MSEE and the BER of the OFDM system is proposed. Chirp based sequences are proposed and shown to satisfy the same. These are compared with the other sequences proposed in the literature and are found to yield a superior performance. The sequences, one for each transmitting antenna, offers fairness through providing equal interference in all the data carriers unlike earlier proposals. The effectiveness of the mathematical analysis presented is demonstrated through a comparison with the simulation studies. Experimental studies are carried out to study and validate the improved performance of the proposed scheme. The scheme is applied to the IEEE 802.16e OFDM standard and a case is made with the required design of the sequence.

  3. Optimal Superimposed Training Sequences for Channel Estimation in MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Ratnam V. Raja Kumar

    2010-01-01

    Full Text Available In this work an iterative time domain Least Squares (LS based channel estimation method using superimposed training (ST for a Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM system over time varying frequency selective fading channels is proposed. The performance of the channel estimator is analyzed in terms of the Mean Square Estimation Error (MSEE and its impact on the uncoded Bit Error Rate (BER of the MIMO-OFDM system is studied. A new selection criterion for the training sequences that jointly optimizes the MSEE and the BER of the OFDM system is proposed. Chirp based sequences are proposed and shown to satisfy the same. These are compared with the other sequences proposed in the literature and are found to yield a superior performance. The sequences, one for each transmitting antenna, offers fairness through providing equal interference in all the data carriers unlike earlier proposals. The effectiveness of the mathematical analysis presented is demonstrated through a comparison with the simulation studies. Experimental studies are carried out to study and validate the improved performance of the proposed scheme. The scheme is applied to the IEEE 802.16e OFDM standard and a case is made with the required design of the sequence.

  4. Abatement of PAPR for ACO-OFDM deployed in VLC systems by frequency modulation of the baseband signal forming a constant envelope

    Science.gov (United States)

    Kumar Singh, Vinay; Dalal, U. D.

    2017-06-01

    To inhibit the effect of non-linearity of the LEDs leading to a significant increase in the peak to average power ratio (PAPR) of the OFDM signals in the Visible light communication (VLC) we propose a frequency modulated constant envelope OFDM (FM CE-OFDM) technique. The abrupt amplitude variations in the OFDM signal are frequency modulated before being applied to the LED for electro-optical conversion resulting in a constant envelope signal. The LED is maintained in the linear region of operation by this constant envelope signal at sufficient DC bias. The proposed technique reduces the PAPR to the least possible value ≈0 dB. We theoretically analyze and perform numerical simulations to assess the enhancement of the proposed system. The optimal modulation index is found to be 0.3. The metrics pertaining to the evaluation of the phase discontinuity is derived and is found to be lesser for the FM CE-OFDM as compared to the phase modulated (PM) CE-OFDM. The receiver sensitivity is improved by 1.6 dB for a transmission distance of 2 m for the FM CE-OFDM as compared to the PM CE-OFDM at the FEC threshold. We compare the BER performance of the ideal OFDM (without the non linearity of LED), power back-off OFDM, PM CE-OFDM and FM CE-OFDM in an optical wireless channel (OWC) scenario. The FM CE-OFDM has an improvement of 2.1 dB SNR at the FEC threshold as compared to the PM CE-OFDM. It also shows an improvement of 11 dB when compared with the power back-off technique used in the VLC systems for 10 dB power back-off.

  5. Wide-band slow-wave systems simulation and applications

    CERN Document Server

    Staras, Stanislovas

    2012-01-01

    The field of electromagnetics has seen considerable advances in recent years, based on the wide applications of numerical methods for investigating electromagnetic fields, microwaves, and other devices. Wide-Band Slow-Wave Systems: Simulation and Applications presents new technical solutions and research results for the analysis, synthesis, and design of slow-wave structures for modern electronic devices with super-wide pass-bands. It makes available, for the first time in English, significant research from the past 20 years that was previously published only in Russian and Lithuanian. The aut

  6. PAPR analysis for OFDM visible light communication.

    Science.gov (United States)

    Wang, Jiaheng; Xu, Yang; Ling, Xintong; Zhang, Rong; Ding, Zhi; Zhao, Chunming

    2016-11-28

    Orthogonal frequency-division multiplexing (OFDM) is a practical technology in visible light communication (VLC) for high-speed transmissions. However, one of its operational limitations is the peak-to-average power ratio (PAPR) of the transmitted signal. In this paper, we analyze the PAPR distributions of four VLC OFDM schemes, namely DC-biased optical OFDM (DCO-OFDM), asymmetrically clipped optical OFDM (ACO-OFDM), pulse amplitude modulated discrete multitone (PAM-DMT), and Flip-OFDM. Both lower and upper clippings are considered. We analytically derive the complementary cumulative distribution functions (CCDFs) of the PAPRs of the clipped VLC OFDM signals, and investigate the impact of lower and upper clippings on PAPR distributions. Our analytical results, as verified by numerical simulations, provide useful insights and guidelines for VLC OFDM system designs.

  7. Spectral Efficiency and Energy Efficiency of OFDM Systems: Impact of Power Amplifiers and Countermeasures

    OpenAIRE

    Joung, Jingon; Ho, Chin Keong; Sun, Sumei

    2013-01-01

    In wireless communication systems, the nonlinear effect and inefficiency of power amplifier (PA) have posed practical challenges for system designs to achieve high spectral efficiency (SE) and energy efficiency (EE). In this paper, we analyze the impact of PA on the SE-EE tradeoff of orthogonal frequency division multiplex (OFDM) systems. An ideal PA that is always linear and incurs no additional power consumption can be shown to yield a decreasing convex function in the SE-EE tradeoff. In co...

  8. 2x2 MIMO-OFDM Gigabit fiber-wireless access system based on polarization division multiplexed WDM-PON

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Zhao, Ying

    2012-01-01

    -based zero forcing (ZF) channel estimation algorithm is designed to compensate the polarization rotation and wireless multipath fading. A 797 Mb/s net data rate QPSK-OFDM signal with error free (OFDM signal with BER performance of 1.2 × 10......We propose a spectral efficient radio over wavelength division multiplexed passive optical network (WDM-PON) system by combining optical polarization division multiplexing (PDM) and wireless multiple input multiple output (MIMO) spatial multiplexing techniques. In our experiment, a training...

  9. Transmission Power Determination Based on Power Amplifier Operations in Large-Scale MIMO-OFDM Systems

    OpenAIRE

    Byung Moo Lee; Youngok Kim

    2017-01-01

    This paper presents a method to determine transmission power based on power amplifier (PA) operations in order to improve the energy efficiency (EE) of a large-scale (LS) Multiple Input Multiple Output (MIMO)-OFDM system, which is a multi-carrier multiple antenna system with a large amount of transmitter (TX) antennas. Regarding the EE improvement, we propose two kinds of PA operation schemes: increasing the effective TX power (ITXP) and reducing the PA power consumption (RPC) assuming that a...

  10. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication

    Directory of Open Access Journals (Sweden)

    Tran MinhHai

    2016-01-01

    Full Text Available We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1 estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2 symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically.

  11. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication

    Science.gov (United States)

    MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa

    2016-01-01

    We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically. PMID:27057558

  12. Particle swarm optimization for pilot tones design in MIMO-OFDM systems

    Science.gov (United States)

    Nuri Seyman, Muhammet; Taşpinar, Necmi

    2011-12-01

    Channel estimation is an essential task in MIMO-OFDM systems for coherent demodulation and data detection. Also designing pilot tones that affect the channel estimation performance is an important issue for these systems. For this reason, in this article we propose particle swarm optimization (PSO) to optimize placement and power of the comb-type pilot tones that are used for least square (LS) channel estimation in MIMO-OFDM systems. To optimize the pilot tones, upper bound of MSE is used as the objective function of PSO. The effects of Doppler shifts on designing pilot tones are also investigated. According to the simulation results, PSO is an effective solution for designing pilot tones.

  13. Particle swarm optimization for pilot tones design in MIMO-OFDM systems

    Directory of Open Access Journals (Sweden)

    Taşpinar Necmi

    2011-01-01

    Full Text Available Abstract Channel estimation is an essential task in MIMO-OFDM systems for coherent demodulation and data detection. Also designing pilot tones that affect the channel estimation performance is an important issue for these systems. For this reason, in this article we propose particle swarm optimization (PSO to optimize placement and power of the comb-type pilot tones that are used for least square (LS channel estimation in MIMO-OFDM systems. To optimize the pilot tones, upper bound of MSE is used as the objective function of PSO. The effects of Doppler shifts on designing pilot tones are also investigated. According to the simulation results, PSO is an effective solution for designing pilot tones.

  14. An Acoustic OFDM System with Symbol-by-Symbol Doppler Compensation for Underwater Communication.

    Science.gov (United States)

    MinhHai, Tran; Rie, Saotome; Suzuki, Taisaku; Wada, Tomohisa

    2016-01-01

    We propose an acoustic OFDM system for underwater communication, specifically for vertical link communications such as between a robot in the sea bottom and a mother ship in the surface. The main contributions are (1) estimation of time varying Doppler shift using continual pilots in conjunction with monitoring the drift of Power Delay Profile and (2) symbol-by-symbol Doppler compensation in frequency domain by an ICI matrix representing nonuniform Doppler. In addition, we compare our proposal against a resampling method. Simulation and experimental results confirm that our system outperforms the resampling method when the velocity changes roughly over OFDM symbols. Overall, experimental results taken in Shizuoka, Japan, show our system using 16QAM, and 64QAM achieved a data throughput of 7.5 Kbit/sec with a transmitter moving at maximum 2 m/s, in a complicated trajectory, over 30 m vertically.

  15. Comparisons of spectrally-enhanced asymmetrically-clipped optical OFDM systems.

    Science.gov (United States)

    Lowery, Arthur James

    2016-02-22

    Asymmetrically clipped optical orthogonal frequency-division multiplexing (ACO-OFDM) is a technique that sacrifices spectral efficiency in order to transmit an orthogonally frequency-division multiplexed signal over a unipolar channel, such as a directly modulated direct-detection fiber or free-space channel. Several methods have been proposed to regain this spectral efficiency, including: asymmetrically clipped DC-biased optical OFDM (ADO-OFDM), enhanced U-OFDM (EU-OFDM), spectral and energy efficient OFDM (SEE-OFDM), Hybrid-ACO-OFDM and Layered-ACO-OFDM. This paper presents simulations up to high-order constellation sizes to show that Layered-ACO-OFDM offers the highest receiver sensitivity for a given optical power at spectral efficiencies above 3 bit/s/Hz. For comparison purposes, white Gaussian noise is added at the receiver, component nonlinearities are not considered, and the fiber is considered to be linear and dispersion-less. The simulations show that LACO-OFDM has a 7-dB sensitivity advantage over DC-biased OFDM (DCO-OFDM) for 1024-QAM at 87.5% of DCO-OFDM's spectral efficiency, at the same bit rate and optical power. This is approximately equivalent to a 4.4-dB advantage at the same spectral efficiency of 87.7% if 896-QAM were to be used for DCO-OFDM.

  16. Performance comparison of a fiber optic communication system based on optical OFDM and an optical OFDM-MIMO with Alamouti code by using numerical simulations

    Science.gov (United States)

    Serpa-Imbett, C. M.; Marín-Alfonso, J.; Gómez-Santamaría, C.; Betancur-Agudelo, L.; Amaya-Fernández, F.

    2013-12-01

    Space division multiplexing in multicore fibers is one of the most promise technologies in order to support transmissions of next-generation peta-to-exaflop-scale supercomputers and mega data centers, owing to advantages in terms of costs and space saving of the new optical fibers with multiple cores. Additionally, multicore fibers allow photonic signal processing in optical communication systems, taking advantage of the mode coupling phenomena. In this work, we numerically have simulated an optical MIMO-OFDM (multiple-input multiple-output orthogonal frequency division multiplexing) by using the coded Alamouti to be transmitted through a twin-core fiber with low coupling. Furthermore, an optical OFDM is transmitted through a core of a singlemode fiber, using pilot-aided channel estimation. We compare the transmission performance in the twin-core fiber and in the singlemode fiber taking into account numerical results of the bit-error rate, considering linear propagation, and Gaussian noise through an optical fiber link. We carry out an optical fiber transmission of OFDM frames using 8 PSK and 16 QAM, with bit rates values of 130 Gb/s and 170 Gb/s, respectively. We obtain a penalty around 4 dB for the 8 PSK transmissions, after 100 km of linear fiber optic propagation for both singlemode and twin core fiber. We obtain a penalty around 6 dB for the 16 QAM transmissions, with linear propagation after 100 km of optical fiber. The transmission in a two-core fiber by using Alamouti coded OFDM-MIMO exhibits a better performance, offering a good alternative in the mitigation of fiber impairments, allowing to expand Alamouti coded in multichannel systems spatially multiplexed in multicore fibers.

  17. Bit and Power Allocation Strategies for OFDM Systems over Time-Varying Channels

    Science.gov (United States)

    Gao, Xiang; Naraghi-Pour, Mort

    Many bit and power allocation algorithms have been recently developed for OFDM systems assuming perfect knowledge of the channel state information (CSI). In practice, however, these algorithms experience significant performance loss due to the inaccuracies in CSI. For time-varying channels the imperfect channel state information due to outdated channel estimates is a major source of these inaccuracies. To mitigate this effect, we propose to predict the channel state information and devise the bit and power allocation algorithm using the predicted CSI. We study several channel prediction algorithms for OFDM systems and present robust bit and power allocation schemes based on the predicted CSI. Simulation results show that for Doppler frequencies up to 100Hz, the proposed bit and power allocation algorithms (using the predicted CSI) can achieve performance close to that of the algorithms that assume perfect knowledge of CSI.

  18. A fast forward/backward semi-blind channel estimation for MIMO STC-OFDM systems

    Science.gov (United States)

    Chang, Lena; Cheng, Ching-Min; Tang, Zay-Shing

    2013-09-01

    In the study, we propose an efficient subspace-based semiblind channel estimation for multiple-input-multiple-output (MIMO) space-time code (STC) orthogonal frequency-division multiplexing (OFDM) systems. We first proposed a forward-backward estimation (FBE) method which can improve the channel estimation accuracy by using both the forward and backward receiving data. Then, based on the symmetric property of the forward and backward smoothed correlation matrix, we develop a fast forward-backward (FFB) estimation method which estimates the noise subspace by performing eigen-decomposition of two half dimensionality sub-matrices obtained from the forward and backward smoothed correlation matrix. FFB achieves the same performance as the FBE but only requires one-fourth computation complexity of FBE. Computer simulations demonstrate the effectiveness and accuracy in channel estimation of the proposed FFB for the MIMO STC-OFDM systems.

  19. Message-Passing Receiver for OFDM Systems over Highly Delay-Dispersive Channels

    DEFF Research Database (Denmark)

    Barbu, Oana-Elena; Manchón, Carles Navarro; Rom, Christian

    2017-01-01

    Propagation channels with maximum excess delay exceeding the duration of the cyclic prefix (CP) in OFDM systems cause intercarrier and intersymbol interference which, unless accounted for, degrade the receiver performance. Using tools from Bayesian inference and sparse signal reconstruction, we...... derive an iterative algorithm that estimates an approximate representation of the channel impulse response and the noise variance, estimates and cancels the intrinsic interference and decodes the data over a block of symbols. Simulation results show that the receiver employing our algorithm outperforms...... and future wireless communications systems. By enabling the OFDM receiver experiencing these harsh conditions to locally cancel the interference, our design circumvents the spectral efficiency loss incurred by extending the CP duration, otherwise a straightforward solution. Furthermore, it sets the premises...

  20. High performance mixed optical CDMA system using ZCC code and multiband OFDM

    Science.gov (United States)

    Nawawi, N. M.; Anuar, M. S.; Junita, M. N.; Rashidi, C. B. M.

    2017-11-01

    In this paper, we have proposed a high performance network design, which is based on mixed optical Code Division Multiple Access (CDMA) system using Zero Cross Correlation (ZCC) code and multiband Orthogonal Frequency Division Multiplexing (OFDM) called catenated OFDM. In addition, we also investigate the related changing parameters such as; effective power, number of user, number of band, code length and code weight. Then we theoretically analyzed the system performance comprehensively while considering up to five OFDM bands. The feasibility of the proposed system architecture is verified via the numerical analysis. The research results demonstrated that our developed modulation solution can significantly enhanced the total number of user; improving up to 80% for five catenated bands compared to traditional optical CDMA system, with the code length equals to 80, transmitted at 622 Mbps. It is also demonstrated that the BER performance strongly depends on number of weight, especially with less number of users. As the number of weight increases, the BER performance is better.

  1. Interference Robust Transmission for the Downlink of an OFDM-Based Mobile Communications System

    Directory of Open Access Journals (Sweden)

    Markus Konrad

    2008-01-01

    Full Text Available Radio networks for future mobile communications systems, for example, 3GPP Long-Term Evolution (LTE, are likely to use an orthogonal frequency division multiplexing- (OFDM- based air interface in the downlink with a frequency reuse factor of one to avoid frequency planning. Therefore, system capacity is limited by interference, which is particularly crucial for mobile terminals with a single receive antenna. Nevertheless, next generation mobile communications systems aim at increasing downlink throughput. In this paper, a single antenna interference cancellation (SAIC algorithm is introduced for amplitude-shift keying (ASK modulation schemes in combination with bit-interleaved coded OFDM. By using such a transmission strategy, high gains in comparison to a conventional OFDM transmission with quadrature amplitude modulation (QAM can be achieved. The superior performance of the novel scheme is confirmed by an analytical bit-error probability (BEP analysis of the SAIC receiver for a single interferer, Rayleigh fading, and uncoded transmission. For the practically more relevant multiple interferer case we present an adaptive least-mean-square (LMS and an adaptive recursive least-squares (RLS SAIC algorithm. We show that in particular the RLS approach enables a good tradeoff between performance and complexity and is robust even to multiple interferers.

  2. Performance study of an OFDM visible light communication system based on white LED array

    Science.gov (United States)

    Tian, Chong-Wen; Li, Yan-Ting; Ye, Wei-Lin; Quan, Xiang-Yin; Song, Zhanwei; Zheng, Chuan-Tao

    2011-11-01

    By introducing orthogonal frequency division multiplexing (OFDM) technology, a visible light communication (VLC) system using a 5×5 white LED array is studied in this paper. The OFDM transmitter and receiver are modeled through MATLAB/Simulink tool. The electrical-optical-electrical (EOE) response of the VLC channel, which is also the response of the detector, is derived based on Lambert's lighting model. Then the modeling on the overall OFDM/VLC system is established by combining the above three models together. The effects of the factors which include the digital modulation, Reed-Solomon (RS) coding, pilot form, pilot ratio (PR) and communication distance on the bit error rate (BER) of the system are discussed. The results show that through the use of RS coding, block pilot, quadrate phase shift keying (QPSK) modulation and a suitable pilot ratio about 1/3, under the communication rate about 550 kbit/s, the BER can be dropped to below 10-5, and the communication distance can reach 0.9 m.

  3. Pilot-Symbol-Assisted Channel Estimation for Space-Time Coded OFDM Systems

    Directory of Open Access Journals (Sweden)

    Williams Douglas B

    2002-01-01

    Full Text Available Space-time coded orthogonal frequency division multiplexing (OFDM transmitter diversity techniques have been shown to provide an efficient means of achieving near optimal diversity gain in frequency-selective fading channels. For these systems, knowledge of the channel parameters is required at the receivers for diversity combining and decoding. In this paper, we propose a low complexity, bandwidth efficient, pilot-symbol-assisted (PSA channel estimator for multiple transmitter OFDM systems. The pilot symbols are constructed to be nonoverlapping in frequency to allow simultaneous sounding of the multiple channels. The time-varying channel responses are tracked by interpolating a set of estimates obtained through periodically transmitted pilot symbols. Simulations are used to verify the effectiveness of the proposed estimator and to examine its limitations. It is also shown that the PSA channel estimator has a lower computational complexity and better performance than a previously proposed decision-directed minimum mean square error MMSE channel estimator for OFDM transmitter diversity systems.

  4. The Research on Improved Companding Transformation for Reducing PAPR in Underwater Acoustic OFDM Communication System

    Directory of Open Access Journals (Sweden)

    Jinqiu Wu

    2016-01-01

    Full Text Available To solve the problem of the high peak-to-average power ratio (PAPR in Orthogonal Frequency Division Multiplexing (OFDM for the underwater acoustic communication system, the paper offers a method of reducing PAPR which combines the amplitude limiting and the improved nonlinear transformation. Traditional amplitude limiting technique can reduce PAPR in OFDM system effectively, at the cost of reducing the bit error rate (BER. However the companding transformation has far less computation complexity than SLM or PTS technologies and can improve the BER performance compared to the amplitude limiting technique simultaneously. The paper combines these two kinds of techniques, takes full use of advantages of the two method, and puts forward a low-complexity scheme choosing parameters that are more appropriate to the underwater acoustic field, with the result of improved BER performance even in lower SNR. Both simulation and experiment results show that the new method which combines clipping and companding transformation can effectively reduce the PAPR in the underwater acoustic OFDM communication system and improve the BER performance simultaneously.

  5. Genetic algorithm approach for adaptive power and subcarrier allocation in multi-user OFDM systems

    Science.gov (United States)

    Reddy, Y. B.; Naraghi-Pour, Mort

    2007-04-01

    In this paper, a novel genetic algorithm application is proposed for adaptive power and subcarrier allocation in multi-user Orthogonal Frequency Division Multiplexing (OFDM) systems. To test the application, a simple genetic algorithm was implemented in MATLAB language. With the goal of minimizing the overall transmit power while ensuring the fulfillment of each user's rate and bit error rate (BER) requirements, the proposed algorithm acquires the needed allocation through genetic search. The simulations were tested for BER 0.1 to 0.00001, data rate of 256 bit per OFDM block and chromosome length of 128. The results show that genetic algorithm outperforms the results in [3] in subcarrier allocation. The convergence of GA model with 8 users and 128 subcarriers performs better in power requirement compared to that in [4] but converges more slowly.

  6. Leakage based precoding for multi-user MIMO-OFDM systems

    KAUST Repository

    Sadek, Mirette

    2011-08-01

    In downlink multi-user multiple-input multiple-output (MIMO) transmissions, several precoding schemes have been proposed to decrease interference among users. Notable among these precoding schemes is one that uses the signal-to-leakage-plus-noise ratio (SLNR) as an optimization criterion. In this paper, leveraging the efficiency of the SLNR optimization, we generalize this precoding scheme to MIMO orthogonal frequency division multiplexing (OFDM) multi-user systems where the OFDM is used to overcome the inter-symbol- interference (ISI) introduced by multipath channels. We also introduce a channel compensation technique that reconstructs the channel at the transmitter for every time instant given a significantly lower channel feedback rate by the receiver. © 2006 IEEE.

  7. HRR Profiling on Integrated Radar-Communication Systems Using OFDM-PCSF Signals

    Directory of Open Access Journals (Sweden)

    Xuanxuan Tian

    2017-01-01

    Full Text Available In order to improve both the transmission data rate and the range resolution simultaneously in integrated radar-communication (RadCom systems, orthogonal frequency-division multiplexing with phase-coded and stepped-frequency (OFDM-PCSF waveform is proposed. A corresponding high resolution range (HRR profile generation method is also presented. We first perform OFDM-PCSF waveform design by combining the intrapulse phase coding with the interpulse stepped-frequency modulation. We then give the ambiguity function (AF based on the presented waveforms. Then, the synthetic range profile (SRP processing to achieve HRR performance is analyzed. Theoretical analysis and simulation results show that the proposed methods can achieve HRR profiles of the targets and high data rate transmissions, while a relative low computational complexity can be achieved.

  8. Analysis of the maximum likelihood channel estimator for OFDM systems in the presence of unknown interference

    Science.gov (United States)

    Dermoune, Azzouz; Simon, Eric Pierre

    2017-12-01

    This paper is a theoretical analysis of the maximum likelihood (ML) channel estimator for orthogonal frequency-division multiplexing (OFDM) systems in the presence of unknown interference. The following theoretical results are presented. Firstly, the uniqueness of the ML solution for practical applications, i.e., when thermal noise is present, is analytically demonstrated when the number of transmitted OFDM symbols is strictly greater than one. The ML solution is then derived from the iterative conditional ML (CML) algorithm. Secondly, it is shown that the channel estimate can be described as an algebraic function whose inputs are the initial value and the means and variances of the received samples. Thirdly, it is theoretically demonstrated that the channel estimator is not biased. The second and the third results are obtained by employing oblique projection theory. Furthermore, these results are confirmed by numerical results.

  9. SFO compensation by pilot-aided channel estimation for real-time DDO-OFDM system

    Science.gov (United States)

    Deng, Rui; He, Jing; Chen, Ming; Chen, Lin

    2015-11-01

    In this paper, we experimentally demonstrated a pilot-aided and linear interpolated channel estimation technique in the real-time direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) system using a cost-effective directly modulated laser (DML). It has been verified that the pilot-aided and linear interpolated channel estimation technique can help to compensate the sampling frequency offset (SFO) effect. The experimental results show that, based on the pilot-aided and linear interpolated channel estimation technique, even at a SFO of 170 ppm, a 16-QAM-OFDM signal can be successfully transmitted over 100-km SSMF under the hard-decision forward-error-correction (HD-FEC) threshold with a bit error rate of 3.8×10-3. And the effect of up to ~25 ppm SFO can be negligible.

  10. An approach enabling adaptive FEC for OFDM in fiber-VLLC system

    Science.gov (United States)

    Wei, Yiran; He, Jing; Deng, Rui; Shi, Jin; Chen, Shenghai; Chen, Lin

    2017-12-01

    In this paper, we propose an orthogonal circulant matrix transform (OCT)-based adaptive frame-level-forward error correction (FEC) scheme for fiber-visible laser light communication (VLLC) system and experimentally demonstrate by Reed-Solomon (RS) Code. In this method, no extra bits are spent for adaptive message, except training sequence (TS), which is simultaneously used for synchronization and channel estimation. Therefore, RS-coding can be adaptively performed frames by frames via the last received codeword-error-rate (CER) feedback estimated by the TSs of the previous few OFDM frames. In addition, the experimental results exhibit that over 20 km standard single-mode fiber (SSMF) and 8 m visible light transmission, the costs of RS codewords are at most 14.12% lower than those of conventional adaptive subcarrier-RS-code based 16-QAM OFDM at bit error rate (BER) of 10-5.

  11. On Low-Pass Phase Noise Mitigation in OFDM System for mmWave Communications

    DEFF Research Database (Denmark)

    Chen, Xiaoming; Fan, Wei

    2017-01-01

    . It is also shown that the PN spectral shape of the phase-lockedloop (PLL) based oscillator also aects the PN mitigation and that a larger PN may not necessarily degrade the performance of the OFDM system with PN mitigation. Simulations with realistic millimeter-wave (mmWave) PN and channel models......A phase noise (PN) mitigation scheme was proposed for orthogonal frequency division multiplexing (OFDM) in a previous work. The proposed scheme does not require detailed knowledge of PN statistics and can eectively compensate the PN with sucient number of unknowns. In this paper, we analyze...... the performance of PN estimation/ mitigation using the proposed scheme. It is shown that increasing the number of unknowns reduces the modeling error, yet increases the additive noise. Hence, increasing the number of unknowns increases the computational complexity and can even degrade the estimation performance...

  12. Performance Analysis of CP-Based and CAZAC Training Sequence-Based Synchronization in OFDM System

    Directory of Open Access Journals (Sweden)

    R. Gaguk Pratama Yudha

    2016-12-01

    Full Text Available Orthogonal Frequency Division Multiplexing (OFDM is a popular wireless data transmission scheme. However, its synchronization is still being a major problem when it is applied in real hardware. Cyclic Prefix (CP based synchronization is one of the solutions in this problem, but CP has high crest factor. In the other hand, CAZAC sequence is another solution with lower crest factor but the higher complexity and also CAZAC has potential in security and channel estimation implementation. The performance between CP and CAZAC sequence based synchronization in OFDM system is analyzed in this paper. The real hardware, Universal Software Rado Peripheral (USRP, is used to prove the analysis. The CAZAC sequence has 10% performance increased in frequency offset than CP based synchronization.

  13. Channel estimation for OFDM system in atmospheric optical communication based on compressive sensing

    Science.gov (United States)

    Zhao, Qingsong; Hao, Shiqi; Geng, Hongjian; Sun, Han

    2015-10-01

    Orthogonal frequency division multiplexing (OFDM) technique applied to the atmospheric optical communication can improve data transmission rate, restrain pulse interference, and reduce effect of multipath caused by atmospheric scattering. Channel estimation, as one of the important modules in OFDM, has been investigated thoroughly and widely with great progress. In atmospheric optical communication system, channel estimation methods based on pilot are common approaches, such as traditional least-squares (LS) algorithm and minimum mean square error (MMSE) algorithm. However, sensitivity of the noise effects and high complexity of computation are shortcomings of LS algorithm and MMSE algorithm, respectively. Here, a new method based on compressive sensing is proposed to estimate the channel state information of atmospheric optical communication OFDM system, especially when the condition is closely associated with turbulence. Firstly, time-varying channel model is established under the condition of turbulence. Then, in consideration of multipath effect, sparse channel model is available for compressive sensing. And, the pilot signal is reconstructed with orthogonal matching tracking (OMP) algorithm, which is used for reconstruction. By contrast, the work of channel estimation is completed by LS algorithm as well. After that, simulations are conducted respectively in two different indexes -signal error rate (SER) and mean square error (MSE). Finally, result shows that compared with LS algorithm, the application of compressive sensing can improve the performance of SER and MSE. Theoretical analysis and simulation results show that the proposed method is reasonable and efficient.

  14. Evaluation of strip-line pick-up system for the SPS wideband transverse feedback system

    CERN Document Server

    Kotzian, G; Steinhagen, R J; Valuch, D; Wehrle, U

    2013-01-01

    The proposed SPS Wideband Transverse Feedback system requires a wide-band pick-up system to be able to detect intra-bunch motion within the SPS proton bunches, captured and accelerated in a 200 MHz bucket. We present the electro-magnetic design of transverse beam position pick-up options optimised for installation in the SPS and evaluate their performance reach with respect to direct time domain sampling of the intra-bunch motion. The analysis also discusses the achieved subsystem responses of the associated cabling with new low dispersion smooth wall coaxial cables, wide-band generation of intensity and position signals by means of 180 degree RF hybrids as well as passive techniques to electronically suppress the beam off-set signal, needed to optimise the dynamic range and position resolution of the planned digital intra-bunch feedback system.

  15. GaAs Wideband Low Noise Amplifier Design for Breast Cancer Detection System

    DEFF Research Database (Denmark)

    Yan, Lei; Krozer, Viktor; Delcourt, Sebastien

    2009-01-01

    to explore simultaneous wideband noise optimization and input power matching requirement. The low-noise amplifier circuit operates across a band of 0.3 to 10 GHz with a gain of around 14 dB and the measured noise figure NF below 1.5 dB up to 8 GHz. Measured small-signal results show good stability and very......Modern wideband systems require low-noise receivers with bandwidth approaching 10 GHz. This paper presents ultra-wideband stable low-noise amplifier MMIC with cascode and source follower buffer configuration using GaAs technology. Source degeneration, gate and shunt peaking inductors are used...

  16. Investigation of Doppler Effects on high mobility OFDM-MIMO systems with the support of High Altitude Platforms (HAPs)

    Science.gov (United States)

    Mohammed, H. A.; Sibley, M. J. N.; Mather, P. J.

    2012-05-01

    The merging of Orthogonal Frequency Division Multiplexing (OFDM) with Multiple-input multiple-output (MIMO) is a promising mobile air interface solution for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. This paper details the design of a highly robust and efficient OFDM-MIMO system to support permanent accessibility and higher data rates to users moving at high speeds, such as users travelling on trains. It has high relevance for next generation wireless local area networks (WLANs) and 4G mobile cellular wireless systems. The paper begins with a comprehensive literature review focused on both technologies. This is followed by the modelling of the OFDM-MIMO physical layer based on Simulink/Matlab that takes into consideration high vehicular mobility. Then the entire system is simulated and analysed under different encoding and channel estimation algorithms. The use of High Altitude Platform system (HAPs) technology is considered and analysed.

  17. Ultra-Wideband Angle-of-Arrival Tracking Systems

    Science.gov (United States)

    Arndt, G. Dickey; Ngo, Phong H.; Phan, Chau T.; Gross, Julia; Ni, Jianjun; Dusl, John

    2010-01-01

    Systems that measure the angles of arrival of ultra-wideband (UWB) radio signals and perform triangulation by use of those angles in order to locate the sources of those signals are undergoing development. These systems were originally intended for use in tracking UWB-transmitter-equipped astronauts and mobile robots on the surfaces of remote planets during early stages of exploration, before satellite-based navigation systems become operational. On Earth, these systems could be adapted to such uses as tracking UWB-transmitter-equipped firefighters inside buildings or in outdoor wildfire areas obscured by smoke. The same characteristics that have made UWB radio advantageous for fine resolution ranging, covert communication, and ground-penetrating radar applications in military and law-enforcement settings also contribute to its attractiveness for the present tracking applications. In particular, the waveform shape and the short duration of UWB pulses make it possible to attain the high temporal resolution (of the order of picoseconds) needed to measure angles of arrival with sufficient precision, and the low power spectral density of UWB pulses enables UWB radio communication systems to operate in proximity to other radio communication systems with little or no perceptible mutual interference.

  18. Reverse polarity optical-OFDM (RPO-OFDM): dimming compatible OFDM for gigabit VLC links.

    Science.gov (United States)

    Elgala, Hany; Little, Thomas D C

    2013-10-07

    Visible light communications (VLC) technology permits the exploitation of light-emitting diode (LED) luminaries for simultaneous illumination and broadband wireless communication. Optical orthogonal frequency-division multiplexing (O-OFDM) is a promising modulation technique for VLC systems, in which the real-valued O-OFDM baseband signal is used to modulate the instantaneous power of the optical carrier to achieve gigabit data rates. However, a major design challenge that limits the commercialization of VLC is how to incorporate the industry-preferred pulse-width modulation (PWM) light dimming technique while maintaining a broadband and reliable communication link. In this work, a novel signal format, reverse polarity O-OFDM (RPO-OFDM), is proposed to combine the fast O-OFDM communication signal with the relatively slow PWM dimming signal, where both signals contribute to the effective LED brightness. The advantages of using RPO-OFDM include, (1) the data rate is not limited by the frequency of the PWM signal, (2) the LED dynamic range is fully utilized to minimize the nonlinear distortion of the O-OFDM communication signal, and (3) the bit-error performance is sustained over a large fraction of the luminaire dimming range. In addition, RPO-OFDM offers a practical approach to utilize off-the-shelf LED drivers. We show results of numerical simulations to study the trade-offs between the PWM duty cycle, average electrical O-OFDM signal power, radiated optical flux as well as human perceived light.

  19. Experimental investigation of inter-core crosstalk tolerance of MIMO-OFDM/OQAM radio over multicore fiber system.

    Science.gov (United States)

    He, Jiale; Li, Borui; Deng, Lei; Tang, Ming; Gan, Lin; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2016-06-13

    In this paper, the feasibility of space division multiplexing for optical wireless fronthaul systems is experimentally demonstrated by implementing high speed MIMO-OFDM/OQAM radio signals over 20km 7-core fiber and 0.4m wireless link. Moreover, the impact of optical inter-core crosstalk in multicore fibers on the proposed MIMO-OFDM/OQAM radio over fiber system is experimentally evaluated in both SISO and MIMO configurations for comparison. The experimental results show that the inter-core crosstalk tolerance of the proposed radio over fiber system can be relaxed to -10 dB by using the proposed MIMO-OFDM/OQAM processing. These results could guide high density multicore fiber design to support a large number of antenna modules and a higher density of radio-access points for potential applications in 5G cellular system.

  20. Performance analysis of super-orthogonal space-frequency trellis coded OFDM system

    CSIR Research Space (South Africa)

    Sokoya, O

    2009-08-01

    Full Text Available that is used with OFDM. SOSFTC-OFDM utilizes the diversities in frequency and space domain by assuming that coding is done along adjacent subcarrier in an OFDM environment. This paper evaluates the exact pairwise error probability (PEP) of the SOSFTC...

  1. Multiple-Input Multiple-Output OFDM with Index Modulation

    OpenAIRE

    Basar, Ertugrul

    2015-01-01

    Orthogonal frequency division multiplexing with index modulation (OFDM-IM) is a novel multicarrier transmission technique which has been proposed as an alternative to classical OFDM. The main idea of OFDM-IM is the use of the indices of the active subcarriers in an OFDM system as an additional source of information. In this work, we propose multiple-input multiple-output OFDM-IM (MIMO-OFDM-IM) scheme by combining OFDM-IM and MIMO transmission techniques. The low complexity transceiver structu...

  2. Principles and Limitations of Ultra-Wideband FM Communications Systems

    Directory of Open Access Journals (Sweden)

    Kouwenhoven Michiel HL

    2005-01-01

    Full Text Available This paper presents a novel UWB communications system using double FM: a low-modulation index digital FSK followed by a high-modulation index analog FM to create a constant-envelope UWB signal. FDMA techniques at the subcarrier level are exploited to accommodate multiple users. The system is intended for low (1–10 kbps and medium (100–1000 kbps bit rate, and short-range WPAN systems. A wideband delay-line FM demodulator that is not preceded by any limiting amplifier constitutes the key component of the UWBFM receiver. This unusual approach permits multiple users to share the same RF bandwidth. Multipath, however, may limit the useful subcarrier bandwidth to one octave. This paper addresses the performance with AWGN and multipath, the resistance to narrowband interference, as well as the simultaneous detection of multiple FM signals at the same carrier frequency. SPICE and Matlab simulation results illustrate the principles and limitations of this new technology. A hardware demonstrator has been realized and has allowed the confirmation of theory with practical results.

  3. Principles and Limitations of Ultra-Wideband FM Communications Systems

    Science.gov (United States)

    Gerrits, John F. M.; Kouwenhoven, Michiel H. L.; van der Meer, Paul R.; Farserotu, John R.; Long, John R.

    2005-12-01

    This paper presents a novel UWB communications system using double FM: a low-modulation index digital FSK followed by a high-modulation index analog FM to create a constant-envelope UWB signal. FDMA techniques at the subcarrier level are exploited to accommodate multiple users. The system is intended for low (1-10 kbps) and medium (100-1000 kbps) bit rate, and short-range WPAN systems. A wideband delay-line FM demodulator that is not preceded by any limiting amplifier constitutes the key component of the UWBFM receiver. This unusual approach permits multiple users to share the same RF bandwidth. Multipath, however, may limit the useful subcarrier bandwidth to one octave. This paper addresses the performance with AWGN and multipath, the resistance to narrowband interference, as well as the simultaneous detection of multiple FM signals at the same carrier frequency. SPICE and Matlab simulation results illustrate the principles and limitations of this new technology. A hardware demonstrator has been realized and has allowed the confirmation of theory with practical results.

  4. Low-mobility channel tracking for MIMO-OFDM communication systems

    Science.gov (United States)

    Pagadarai, Srikanth; Wyglinski, Alexander M.; Anderson, Christopher R.

    2013-12-01

    It is now well understood that by exploiting the available additional spatial dimensions, multiple-input multiple-output (MIMO) communication systems provide capacity gains, compared to a single-input single-output systems without increasing the overall transmit power or requiring additional bandwidth. However, these large capacity gains are feasible only when the perfect knowledge of the channel is available to the receiver. Consequently, when the channel knowledge is imperfect, as is common in practical settings, the impact of the achievable capacity needs to be evaluated. In this study, we begin with a general MIMO framework at the outset and specialize it to the case of orthogonal frequency division multiplexing (OFDM) systems by decoupling channel estimation from data detection. Cyclic-prefixed OFDM systems have attracted widespread interest due to several appealing characteristics not least of which is the fact that a single-tap frequency-domain equalizer per subcarrier is sufficient due to the circulant structure of the resulting channel matrix. We consider a low-mobility wireless channel which exhibits inter-block channel variations and apply Kalman tracking when MIMO-OFDM communication is performed. Furthermore, we consider the signal transmission to contain a stream of training and information symbols followed by information symbols alone. By relying on predicted channel states when training symbols are absent, we aim to understand how the improvements in channel capacity are affected by imperfect channel knowledge. We show that the Kalman recursion procedure can be simplified by the optimal minimum mean square error training design. Using the simplified recursion, we derive capacity upper and lower bounds to evaluate the performance of the system.

  5. Estimation and compensation of sample frequency offset in coherent optical OFDM systems.

    Science.gov (United States)

    Yi, Xingwen; Qiu, Kun

    2011-07-04

    Coherent optical OFDM systems employ DAC at the transmitters and ADC at the receivers. The sample frequencies of DAC and ADC in such systems need to be synchronized, especially in the context of high-speed transmissions. This paper presents a channel model including the effect of the sample frequency offset, which adds an additional phase shift proportional to the subcarrier index. The sample frequency offset monitoring and the compensation method are discussed and verified in experiment. It is expected that the synchronization can be achieved by feeding the monitoring result back to the receiver oscillator.

  6. Fading-Aware Packet Scheduling Algorithm in OFDM-MIMO Systems

    Directory of Open Access Journals (Sweden)

    Zhifeng Diao

    2007-05-01

    Full Text Available To maximize system throughput and guarantee the quality of service (QoS of multimedia traffic in orthogonal frequency division multiplexing (OFDM systems with smart antennas, a new packet scheduler is introduced to consider QoS requirements, packet location in the frame, and modulation level. In the frequency domain, several consecutive subchannels are grouped as a frequency subband. Each subband in a frame can be used to transmit a packet, and can be reused by several users in a multiple-input and multiple-output (MIMO systems. In this paper, we consider the adaptive packet scheduling algorithms design for OFDM/SDMA system. Based on the BER requirements, all traffics are divided into classes. Based on such classification, a dynamic packet scheduler is proposed, which greatly improves system capacity, and can guarantee QoS requirements. Adaptive modulation is also applied in the scheduler. Then, the complexity analysis of these algorithms is given. When compared with existing schedulers, our scheduler achieves higher system capacity with much reduced complexity. The use of adaptive modulation further enhances the system capacity. Simulation results demonstrate that as the traffic load increases, the new scheduler has much better performance in system throughput, average delay, and packet loss rate.

  7. Improvement of the chromatic dispersion tolerance in coherent optical OFDM systems using shifted DFT windows for ultra-long-haul optical transmission systems.

    Science.gov (United States)

    Sung, Minkyu; Kim, Hoon; Lee, Jaehoon; Jeong, Jichai

    2014-09-22

    In a high-capacity ultra-long-haul optical coherent orthogonal frequency-division multiplexing (CO-OFDM) system, the dispersion tolerance is determined by the length of cyclic extension (CE). In this paper, we propose a novel scheme to substantially improve the dispersion tolerance of CO-OFDM systems without increasing the CE length. Multiple time-shifted discrete Fourier transform (DFT) windows are exploited at the receiver, each demodulating only a part of the subcarriers. Effectively, the proposed scheme reduces the bandwidth of the OFDM signals under demodulation. Numerical simulations are performed to show the improved dispersion tolerance of the proposed scheme in comparison with the conventional CO-OFDM system. We show that the dispersion tolerance improves by a factor equal to the number of DFT windows. The tradeoff between the improved dispersion tolerance and increased receiver complexity is also presented.

  8. MMSE-based algorithm for joint signal detection, channel and noise variance estimation for OFDM systems

    CERN Document Server

    Savaux, Vincent

    2014-01-01

    This book presents an algorithm for the detection of an orthogonal frequency division multiplexing (OFDM) signal in a cognitive radio context by means of a joint and iterative channel and noise estimation technique. Based on the minimum mean square criterion, it performs an accurate detection of a user in a frequency band, by achieving a quasi-optimal channel and noise variance estimation if the signal is present, and by estimating the noise level in the band if the signal is absent. Organized into three chapters, the first chapter provides the background against which the system model is pr

  9. Low complexity symbol-wise beamforming for MIMO-OFDM systems

    KAUST Repository

    Lee, Hyun Ho

    2011-12-01

    In this paper, we consider a low complexity symbol-wise beamforming for MIMO-OFDM systems. We propose a non-iterative algorithm for the symbol-wise beamforming, which can provide the performance approaching that of the conventional symbol-wise beamforming based on the iterative algorithm. We demonstrate that our proposed scheme can reduce the computational complexity significantly. From our simulation results, it is evident that our proposed scheme leads to a negligible performance loss compared to the conventional symbol-wise beamforming regardless of spatial correlation or presence of co-channel interference. © 2011 IEEE.

  10. Performance Analysis of Circular 8-QAM Constellation with MMSE Equalizer for OFDM System Using USRP

    Directory of Open Access Journals (Sweden)

    Muh. Alfan Taufiqurrahman

    2016-12-01

    Full Text Available Bandwidth is very important in communication system, and it is a limited resource. In order to save the limited bandwidth resource, high order M-ary modulation is widely employed in modern communication and broadcasting systems. In Orthogonal Frequency Division Multiplexing (OFDM, fading environment lead to a loss of orthogonality between the subcarriers. In this paper, we present the performance analysis of circular 8-Quadrature Ampilutude Modulation (QAM constellation for Orthogonal Frequency Division Multiplexing (OFDM system. We also combine the system with Minimum Mean Square Error (MMSE equalizer to mitigate the effect of Inter Symbol Interference (ISI. Then, all of this system is implemented practically using Universal Software Radio Peripheral (USRP. The performance of circular 8-QAM and MMSE equalizer is evaluated by comparing with other 8-QAM modulation models such as circular-Zero Forcing (ZF, star-ZF, Square-ZF, Star-MMSE, and Square-MMSE. The performance of circular 8-QAM with MMSE equalizer is  better than the other combinations. Bit Error Rate (BER graph shows that the performance of circular-MMSE is better than star-MMSE. The performance improvement using circular-MMSE is about 1.6%. The performance will decrease when the distance is increased. The performance of this system is greatly affected by the distance between transmitter and receiver.

  11. A Low-Complexity Time-Domain MMSE Channel Estimator for Space-Time/Frequency Block-Coded OFDM Systems

    Directory of Open Access Journals (Sweden)

    Çırpan HakanAli

    2006-01-01

    Full Text Available Focusing on transmit diversity orthogonal frequency-division multiplexing (OFDM transmission through frequency-selective channels, this paper pursues a channel estimation approach in time domain for both space-frequency OFDM (SF-OFDM and space-time OFDM (ST-OFDM systems based on AR channel modelling. The paper proposes a computationally efficient, pilot-aided linear minimum mean-square-error (MMSE time-domain channel estimation algorithm for OFDM systems with transmitter diversity in unknown wireless fading channels. The proposed approach employs a convenient representation of the channel impulse responses based on the Karhunen-Loeve (KL orthogonal expansion and finds MMSE estimates of the uncorrelated KL series expansion coefficients. Based on such an expansion, no matrix inversion is required in the proposed MMSE estimator. Subsequently, optimal rank reduction is applied to obtain significant taps resulting in a smaller computational load on the proposed estimation algorithm. The performance of the proposed approach is studied through the analytical results and computer simulations. In order to explore the performance, the closed-form expression for the average symbol error rate (SER probability is derived for the maximum ratio receive combiner (MRRC. We then consider the stochastic Cramer-Rao lower bound(CRLB and derive the closed-form expression for the random KL coefficients, and consequently exploit the performance of the MMSE channel estimator based on the evaluation of minimum Bayesian MSE. We also analyze the effect of a modelling mismatch on the estimator performance. Simulation results confirm our theoretical analysis and illustrate that the proposed algorithms are capable of tracking fast fading and improving overall performance.

  12. Bit Error Rate Approximation of MIMO-OFDM Systems with Carrier Frequency Offset and Channel Estimation Errors

    Directory of Open Access Journals (Sweden)

    Zhang Lu

    2010-01-01

    Full Text Available The bit error rate (BER of multiple-input multiple-output (MIMO orthogonal frequency-division multiplexing (OFDM systems with carrier frequency offset and channel estimation errors is analyzed in this paper. Intercarrier interference (ICI and interantenna interference (IAI due to the residual frequency offsets are analyzed, and the average signal-to-interference-and-noise ratio (SINR is derived. The BER of equal gain combining (EGC and maximal ratio combining (MRC with MIMO-OFDM is also derived. The simulation results demonstrate the accuracy of the theoretical analysis.

  13. Space-Frequency Block Code with Matched Rotation for MIMO-OFDM System with Limited Feedback

    Directory of Open Access Journals (Sweden)

    Thushara D. Abhayapala

    2009-01-01

    Full Text Available This paper presents a novel matched rotation precoding (MRP scheme to design a rate one space-frequency block code (SFBC and a multirate SFBC for MIMO-OFDM systems with limited feedback. The proposed rate one MRP and multirate MRP can always achieve full transmit diversity and optimal system performance for arbitrary number of antennas, subcarrier intervals, and subcarrier groupings, with limited channel knowledge required by the transmit antennas. The optimization process of the rate one MRP is simple and easily visualized so that the optimal rotation angle can be derived explicitly, or even intuitively for some cases. The multirate MRP has a complex optimization process, but it has a better spectral efficiency and provides a relatively smooth balance between system performance and transmission rate. Simulations show that the proposed SFBC with MRP can overcome the diversity loss for specific propagation scenarios, always improve the system performance, and demonstrate flexible performance with large performance gain. Therefore the proposed SFBCs with MRP demonstrate flexibility and feasibility so that it is more suitable for a practical MIMO-OFDM system with dynamic parameters.

  14. Computationally Efficient Power Allocation Algorithm in Multicarrier-Based Cognitive Radio Networks: OFDM and FBMC Systems

    Directory of Open Access Journals (Sweden)

    Shaat Musbah

    2010-01-01

    Full Text Available Cognitive Radio (CR systems have been proposed to increase the spectrum utilization by opportunistically access the unused spectrum. Multicarrier communication systems are promising candidates for CR systems. Due to its high spectral efficiency, filter bank multicarrier (FBMC can be considered as an alternative to conventional orthogonal frequency division multiplexing (OFDM for transmission over the CR networks. This paper addresses the problem of resource allocation in multicarrier-based CR networks. The objective is to maximize the downlink capacity of the network under both total power and interference introduced to the primary users (PUs constraints. The optimal solution has high computational complexity which makes it unsuitable for practical applications and hence a low complexity suboptimal solution is proposed. The proposed algorithm utilizes the spectrum holes in PUs bands as well as active PU bands. The performance of the proposed algorithm is investigated for OFDM and FBMC based CR systems. Simulation results illustrate that the proposed resource allocation algorithm with low computational complexity achieves near optimal performance and proves the efficiency of using FBMC in CR context.

  15. Performance evaluation of a real time OFDM radio over fiber system at 2.5 GHz using software defined radio SDR

    DEFF Research Database (Denmark)

    David Cepeda, Juan; Rodriguez, Santiago Isaac; Rico-Martinez, Monica

    2017-01-01

    This paper presents the implementation of an OFDM radio over fiber (RoF) system at 2.5 GHz using software defined radio (SDR). In this work, first we present an introduction of the main concepts about radio over fiber and an orthogonal frequency-division multiplexing (OFDM) system at 2.5 GHz......, then we present a comparison of an OFDM RoF system in three scenarios, modifying the wireless distances and the optical fiber distance in order to evaluate the performance of the system taking into account the symbol error rate (SER) vs signal to noise ratio (SNR) curves....

  16. Channel Impulse Response Length and Noise Variance Estimation for OFDM Systems with Adaptive Guard Interval

    Directory of Open Access Journals (Sweden)

    Gelle Guillaume

    2007-01-01

    Full Text Available A new algorithm estimating channel impulse response (CIR length and noise variance for orthogonal frequency-division multiplexing (OFDM systems with adaptive guard interval (GI length is proposed. To estimate the CIR length and the noise variance, the different statistical characteristics of the additive noise and the mobile radio channels are exploited. This difference is due to the fact that the variance of the channel coefficients depends on the position within the CIR, whereas the noise variance of each estimated channel tap is equal. Moreover, the channel can vary rapidly, but its length changes more slowly than its coefficients. An auxiliary function is established to distinguish these characteristics. The CIR length and the noise variance are estimated by varying the parameters of this function. The proposed method provides reliable information of the estimated CIR length and the noise variance even at signal-to-noise ratio (SNR of 0 dB. This information can be applied to an OFDM system with adaptive GI length, where the length of the GI is adapted to the current length of the CIR. The length of the GI can therefore be optimized. Consequently, the spectral efficiency of the system is increased.

  17. Semiblind frequency-domain timing synchronization and channel estimation for OFDM systems

    Science.gov (United States)

    Kung, Te-Lung; Parhi, Keshab K.

    2013-12-01

    In this article, we propose unit vectors in the high dimensional Cartesian coordinate system as the preamble, and then propose a semiblind timing synchronization and channel estimation scheme for orthogonal frequency division multiplexing (OFDM) systems. Due to the lack of useful information in the time-domain, a frequency-domain timing synchronization algorithm is proposed. The proposed semiblind approach consists of three stages. In the first stage, a coarse timing offset related to the delayed timing of the path with the maximum gain in multipath fading channels is obtained. Then, a fine time adjustment algorithm is performed to find the actual delayed timing in channels. Finally, the channel response in the frequency-domain is obtained based on the final timing estimate. Although the required number of additions in the proposed algorithm is higher than those in conventional methods, the simulation results show that the proposed approach has excellent performance of timing synchronization in several channel models at signal-to-noise ratio (SNR) smaller than 6 dB. In addition, for a low-density parity-check coded single-input single-output OFDM system, our proposed approach has better bit-error-rate performance than conventional approaches for SNR varying from 3 to 8 dB.

  18. Channel Impulse Response Length and Noise Variance Estimation for OFDM Systems with Adaptive Guard Interval

    Directory of Open Access Journals (Sweden)

    Van Duc Nguyen

    2007-02-01

    Full Text Available A new algorithm estimating channel impulse response (CIR length and noise variance for orthogonal frequency-division multiplexing (OFDM systems with adaptive guard interval (GI length is proposed. To estimate the CIR length and the noise variance, the different statistical characteristics of the additive noise and the mobile radio channels are exploited. This difference is due to the fact that the variance of the channel coefficients depends on the position within the CIR, whereas the noise variance of each estimated channel tap is equal. Moreover, the channel can vary rapidly, but its length changes more slowly than its coefficients. An auxiliary function is established to distinguish these characteristics. The CIR length and the noise variance are estimated by varying the parameters of this function. The proposed method provides reliable information of the estimated CIR length and the noise variance even at signal-to-noise ratio (SNR of 0 dB. This information can be applied to an OFDM system with adaptive GI length, where the length of the GI is adapted to the current length of the CIR. The length of the GI can therefore be optimized. Consequently, the spectral efficiency of the system is increased.

  19. Fairness-Aware and Energy Efficiency Resource Allocation in Multiuser OFDM Relaying System

    Directory of Open Access Journals (Sweden)

    Guangjun Liang

    2016-01-01

    Full Text Available A fairness-aware resource allocation scheme in a cooperative orthogonal frequency division multiple (OFDM network is proposed based on jointly optimizing the subcarrier pairing, power allocation, and channel-user assignment. Compared with traditional OFDM relaying networks, the source is permitted to retransfer the same data transmitted by it in the first time slot, further improving the system capacity performance. The problem which maximizes the energy efficiency (EE of the system with total power constraint and minimal spectral efficiency constraint is formulated into a mixed-integer nonlinear programming (MINLP problem which has an intractable complexity in general. The optimization model is simplified into a typical fractional programming problem which is testified to be quasiconcave. Thus we can adopt Dinkelbach method to deal with MINLP problem proposed to achieve the optimal solution. The simulation results show that the joint resource allocation method proposed can achieve an optimal EE performance under the minimum system service rate requirement with a good global convergence.

  20. Development and experimental validation of downlink multiuser MIMO-OFDM in gigabit wireless LAN systems

    Science.gov (United States)

    Ishihara, Koichi; Asai, Yusuke; Kudo, Riichi; Ichikawa, Takeo; Takatori, Yasushi; Mizoguchi, Masato

    2013-12-01

    Multiuser multiple-input multiple-output (MU-MIMO) has been proposed as a means to improve spectrum efficiency for various future wireless communication systems. This paper reports indoor experimental results obtained for a newly developed and implemented downlink (DL) MU-MIMO orthogonal frequency division multiplexing (OFDM) transceiver for gigabit wireless local area network systems in the microwave band. In the transceiver, the channel state information (CSI) is estimated at each user and fed back to an access point (AP) on a real-time basis. At the AP, the estimated CSI is used to calculate the transmit beamforming weight for DL MU-MIMO transmission. This paper also proposes a recursive inverse matrix computation scheme for computing the transmit weight in real time. Experiments with the developed transceiver demonstrate its feasibility in a number of indoor scenarios. The experimental results clarify that DL MU-MIMO-OFDM transmission can achieve a 972-Mbit/s transmission data rate with simple digital signal processing of single-antenna users in an indoor environment.

  1. Achievable information rates calculation for optical OFDM few-mode fiber long-haul transmission systems.

    Science.gov (United States)

    Lin, Changyu; Djordjevic, Ivan B; Zou, Ding

    2015-06-29

    We propose a method to estimate the lower bound of achievable information rates (AIRs) of high speed orthogonal frequency-division multiplexing (OFDM) in spatial division multiplexing (SDM) optical long-haul transmission systems. The estimation of AIR is based on the forward recursion of multidimensional super-symbol efficient sliding-window Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm. We consider most of the degradations of fiber links including nonlinear effects in few-mode fiber (FMF). This method does not consider the SDM as a simple multiplexer of independent data streams, but provides a super-symbol version for AIR calculation over spatial channels. This super-symbol version of AIR calculation algorithm, in principle, can be used for arbitrary multiple-input-multiple-output (MIMO)-SDM system with channel memory consideration. We illustrate this method by performing Monte Carlo simulations in a complete FMF model. Both channel model and algorithm for calculation of the AIRs are described in details. We also compare the AIRs results for QPSK/16QAM in both single mode fiber (SMF)- and FMF-based optical OFDM transmission.

  2. Joint Symbol Timing and CFO Estimation for OFDM/OQAM Systems in Multipath Channels

    Directory of Open Access Journals (Sweden)

    Angelo Petrella

    2010-01-01

    Full Text Available The problem of data-aided synchronization for orthogonal frequency division multiplexing (OFDM systems based on offset quadrature amplitude modulation (OQAM in multipath channels is considered. In particular, the joint maximum-likelihood (ML estimator for carrier-frequency offset (CFO, amplitudes, phases, and delays, exploiting a short known preamble, is derived. The ML estimators for phases and amplitudes are in closed form. Moreover, under the assumption that the CFO is sufficiently small, a closed form approximate ML (AML CFO estimator is obtained. By exploiting the obtained closed form solutions a cost function whose peaks provide an estimate of the delays is derived. In particular, the symbol timing (i.e., the delay of the first multipath component is obtained by considering the smallest estimated delay. The performance of the proposed joint AML estimator is assessed via computer simulations and compared with that achieved by the joint AML estimator designed for AWGN channel and that achieved by a previously derived joint estimator for OFDM systems.

  3. Performance analysis of an all-optical OFDM system in presence of non-linear phase noise.

    Science.gov (United States)

    Hmood, Jassim K; Harun, Sulaiman W; Emami, Siamak D; Khodaei, Amin; Noordin, Kamarul A; Ahmad, Harith; Shalaby, Hossam M H

    2015-02-23

    The potential for higher spectral efficiency has increased the interest in all-optical orthogonal frequency division multiplexing (OFDM) systems. However, the sensitivity of all-optical OFDM to fiber non-linearity, which causes nonlinear phase noise, is still a major concern. In this paper, an analytical model for estimating the phase noise due to self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in an all-optical OFDM system is presented. The phase noise versus power, distance, and number of subcarriers is evaluated by implementing the mathematical model using Matlab. In order to verify the results, an all-optical OFDM system, that uses coupler-based inverse fast Fourier transform/fast Fourier transform without any nonlinear compensation, is demonstrated by numerical simulation. The system employs 29 subcarriers; each subcarrier is modulated by a 4-QAM or 16-QAM format with a symbol rate of 25 Gsymbol/s. The results indicate that the phase variance due to FWM is dominant over those induced by either SPM or XPM. It is also shown that the minimum phase noise occurs at -3 dBm and -1 dBm for 4-QAM and 16-QAM, respectively. Finally, the error vector magnitude (EVM) versus subcarrier power and symbol rate is quantified using both simulation and the analytical model. It turns out that both EVM results are in good agreement with each other.

  4. Timing Metrics of Joint Timing and Carrier-Frequency Offset Estimation Algorithms for TDD-based OFDM systems

    NARCIS (Netherlands)

    Hoeksema, F.W.; Srinivasan, R.; Schiphorst, Roelof; Slump, Cornelis H.

    2004-01-01

    In joint timing and carrier offset estimation algorithms for Time Division Duplexing (TDD) OFDM systems, different timing metrics are proposed to determine the beginning of a burst or symbol. In this contribution we investigated the different timing metrics in order to establish their impact on the

  5. Interference-Aware PAPR Reduction Scheme to Increase the Energy Efficiency of Large-Scale MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Byung Moo Lee

    2017-08-01

    Full Text Available Large-scale (LS multi-user (MU multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM is considered to be a desirable signal transmission scheme because it can significantly improve the energy efficiency (EE and spectral efficiency (SE of the system. However, there are many difficulties in realizing an LS-MU-MIMO-OFDM system, and one of these is its high peak-to-average power ratio (PAPR, which results in serious nonlinear signal distortion and power inefficiency of the power amplifier (PA. LS-MIMO-OFDM systems require a lot of PAs, which are necessary to be connected to each antenna. To compensate for the PA nonlinearity and increase the efficiency, a digital pre-distorter (DPD is very popular and has been successfully implemented in current base stations (BSs. However, a DPD is very difficult to use in an LS-MU-MIMO-OFDM system because it is expensive, but should be applied to each antenna. Therefore, a considerate scheme of signal processing is necessary to cope with the PA nonliearity issue of the LS-MU-MIMO-OFDM system. In this paper, we propose an interference-aware iterative clipping and filtering peak-to-average power ratio (PAPR reduction scheme for LS-MU-MIMO-OFDM systems. In the proposed scheme, the clipping level in the clipping process is adaptively adjusted based on any kind of interference level that exists in the general communication environment. In particular, when matched filtering (MF precoding is used for the LS-MU-MIMO-OFDM, the inter-user interference (IUI always exists with a practical number of transmitter (TX antennas, and this inevitable IUI level can be a decision point for the clipping ratio (CR. Choosing a proper CR to make the clipping noise lower than IUI has a very high benefit for the EE improvement of the system. The results of numerical analysis show that the proposed scheme can induce a very effective peak-to-average power ratio (PAPR performance with little SE loss.

  6. Demonstration of 2.97-Gb/s video signal transmissions in DML-based IM-DDO-OFDM systems

    Science.gov (United States)

    Chen, Ming; He, Jing; Deng, Rui; Chen, Qinghui; Zhang, Jinlong; Chen, Lin

    2016-05-01

    To further investigate the feasibility of the digital signal processing (DSP) algorithms (e.g., symbol timing synchronization, channel estimation and equalization, and sampling clock frequency offset (SCFO) estimation and compensation) for real-time optical orthogonal frequency-division multiplexing (OFDM) system, 2.97-Gb/s real-time high-definition video signal parallel transmission is experimentally demonstrated in OFDM-based short-reach intensity-modulated direct-detection (IM-DD) systems. The experimental results show that, in the presence of ∼12 ppm SCFO between transmitter and receiver, the adaptively modulated OFDM signal transmission over 20 km standard single-mode fiber with an error bit rate less than 1 × 10-9 can be achieved by using only DSP-based small SCFO estimation and compensation method without utilizing forward error correction technique. To the best of our knowledge, for the first time, we successfully demonstrate that the video signal at a bit rate in excess of 1-Gb/s transmission in a simple real-valued inverse fast Fourier transform and fast Fourier transform based IM-DD optical OFDM system employing a directly modulated laser.

  7. PAPR Reduction in OFDM-based Visible Light Communication Systems Using a Combination of Novel Peak-value Feedback Algorithm and Genetic Algorithm

    Science.gov (United States)

    Deng, Honggui; Liu, Yan; Ren, Shuang; He, Hailang; Tang, Chengying

    2017-10-01

    We propose an enhanced partial transmit sequence technique based on novel peak-value feedback algorithm and genetic algorithm (GAPFA-PTS) to reduce peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals in visible light communication (VLC) systems(VLC-OFDM). To demonstrate the advantages of our proposed algorithm, we analyze the flow of proposed technique and compare the performances with other techniques through MATLAB simulation. The results show that GAPFA-PTS technique achieves a significant improvement in PAPR reduction while maintaining low bit error rate (BER) and low complexity in VLC-OFDM systems.

  8. VLSI architecture of a K-best detector for MIMO-OFDM wireless communication systems

    Energy Technology Data Exchange (ETDEWEB)

    Jian Haifang; Shi Yin, E-mail: jhf@semi.ac.c [Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2009-07-15

    The K-best detector is considered as a promising technique in the MIMO-OFDM detection because of its good performance and low complexity. In this paper, a new K-best VLSI architecture is presented. In the proposed architecture, the metric computation units (MCUs) expand each surviving path only to its partial branches, based on the novel expansion scheme, which can predetermine the branches' ascending order by their local distances. Then a distributed sorter sorts out the new K surviving paths from the expanded branches in pipelines. Compared to the conventional K-best scheme, the proposed architecture can approximately reduce fundamental operations by 50% and 75% for the 16-QAM and the 64-QAM cases, respectively, and, consequently, lower the demand on the hardware resource significantly. Simulation results prove that the proposed architecture can achieve a performance very similar to conventional K-best detectors. Hence, it is an efficient solution to the K-best detector's VLSI implementation for high-throughput MIMO-OFDM systems.

  9. Turbo Processing for Joint Channel Estimation, Synchronization, and Decoding in Coded MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available This paper proposes a turbo joint channel estimation, synchronization, and decoding scheme for coded multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM systems. The effects of carrier frequency offset (CFO, sampling frequency offset (SFO, and channel impulse responses (CIRs on the received samples are analyzed and explored to develop the turbo decoding process and vector recursive least squares (RLSs algorithm for joint CIR, CFO, and SFO tracking. For burst transmission, with initial estimates derived from the preamble, the proposed scheme can operate without the need of pilot tones during the data segment. Simulation results show that the proposed turbo joint channel estimation, synchronization, and decoding scheme offers fast convergence and low mean squared error (MSE performance over quasistatic Rayleigh multipath fading channels. The proposed scheme can be used in a coded MIMO-OFDM transceiver in the presence of multipath fading, carrier frequency offset, and sampling frequency offset to provide a bit error rate (BER performance comparable to that in an ideal case of perfect synchronization and channel estimation over a wide range of SFO values.

  10. Novel Rx IQ mismatch compensation considering laser phase noise for CO-OFDM system

    Science.gov (United States)

    Ma, Xiurong; Ding, Zhaocai; Li, Kun; Wang, Xiao

    2015-08-01

    In this paper, a novel compensation scheme for receiver (Rx) in-phase/quadrature (IQ) mismatch is proposed in coherent optical orthogonal frequency division multiplexing (CO-OFDM) system in the presence of laser phase noise. In this scheme, laser phase noise and channel distortion were combined as a new channel transfer factor, the IQ mismatch factor and initial channel transfer factor can be estimated independently based on the relationship of IQ mismatch factors. And the channel transfer factor can be updated on a symbol-by-symbol basis which retrieves an estimation of the phase noise value by extracting and averaging the phase drift of all OFDM sub-channels. Numerical results indicate that when the phase and amplitude mismatch are 10° and 2 dB respectively, a 1.6 dB optical signal-to noise ratio is improved at laser linewidth of 60 kHz. Furthermore, the complexity of the proposed method is analyzed in terms of the number of required complex multiplications per bit.

  11. Turbo Processing for Joint Channel Estimation, Synchronization, and Decoding in Coded MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Ko ChiChung

    2009-01-01

    Full Text Available This paper proposes a turbo joint channel estimation, synchronization, and decoding scheme for coded multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM systems. The effects of carrier frequency offset (CFO, sampling frequency offset (SFO, and channel impulse responses (CIRs on the received samples are analyzed and explored to develop the turbo decoding process and vector recursive least squares (RLSs algorithm for joint CIR, CFO, and SFO tracking. For burst transmission, with initial estimates derived from the preamble, the proposed scheme can operate without the need of pilot tones during the data segment. Simulation results show that the proposed turbo joint channel estimation, synchronization, and decoding scheme offers fast convergence and low mean squared error (MSE performance over quasistatic Rayleigh multipath fading channels. The proposed scheme can be used in a coded MIMO-OFDM transceiver in the presence of multipath fading, carrier frequency offset, and sampling frequency offset to provide a bit error rate (BER performance comparable to that in an ideal case of perfect synchronization and channel estimation over a wide range of SFO values.

  12. Soft-input iterative channel estimation for bit-interleaved turbo-coded MIMO-OFDM systems

    Directory of Open Access Journals (Sweden)

    Olutayo O. Oyerinde

    2013-01-01

    Full Text Available Bit-interleaved coded modulation (BICM is a robust multiplexing technique for achieving multiplexing gain in multiple-input multiple-output (MIMO-orthogonal frequency division multiplexing (OFDM systems. However, in order to benefit maximally from the various advantages offered by BICM-based MIMO-OFDM systems, availability of accurate MIMO channel state information (CSI at the receiver end of the system is essential. Without accurate MIMO CSI, accurate MIMO demapping and coherent detection and decoding of the transmitted message symbols at the system�s receiver would be impossible. In such cases, the multiplexing gain offered by the BICM technique, as well as the higher data rate made possible by the MIMO-OFDM system, is not benefitted from in full. In this paper, we propose a soft input based decision-directed channel estimation scheme for the provision of MIMO CSI for coherent detection of signals in MIMO-OFDM systems. The proposed channel estimator works in iterative mode with a MIMO demapper and a turbo decoder, and is based on the fast data projection method (FDPM and the variable step size normalised least mean square (VSSNLMS algorithm. Simulation results of the proposed estimator based on the FDPM and VSSNLMS algorithms indicate better performance in comparison with the same estimator employing minimum mean square error criteria and deflated projection approximation subspace tracking algorithms for both slow- and fast-fading channel scenarios. The proposed estimator would be suitable for use at the receiver end of MIMO-OFDM wireless communication systems operating in either slow- or fast-fading channels.

  13. VLSI Design of a Variable-Length FFT/IFFT Processor for OFDM-Based Communication Systems

    Directory of Open Access Journals (Sweden)

    Jen-Chih Kuo

    2003-12-01

    Full Text Available The technique of {orthogonal frequency division multiplexing (OFDM} is famous for its robustness against frequency-selective fading channel. This technique has been widely used in many wired and wireless communication systems. In general, the {fast Fourier transform (FFT} and {inverse FFT (IFFT} operations are used as the modulation/demodulation kernel in the OFDM systems, and the sizes of FFT/IFFT operations are varied in different applications of OFDM systems. In this paper, we design and implement a variable-length prototype FFT/IFFT processor to cover different specifications of OFDM applications. The cached-memory FFT architecture is our suggested VLSI system architecture to design the prototype FFT/IFFT processor for the consideration of low-power consumption. We also implement the twiddle factor butterfly {processing element (PE} based on the {{coordinate} rotation digital computer (CORDIC} algorithm, which avoids the use of conventional multiplication-and-accumulation unit, but evaluates the trigonometric functions using only add-and-shift operations. Finally, we implement a variable-length prototype FFT/IFFT processor with TSMC 0.35 μm 1P4M CMOS technology. The simulations results show that the chip can perform (64-2048-point FFT/IFFT operations up to 80 MHz operating frequency which can meet the speed requirement of most OFDM standards such as WLAN, ADSL, VDSL (256∼2K, DAB, and 2K-mode DVB.

  14. Experimental demonstration of polar coded IM/DD optical OFDM for short reach system

    Science.gov (United States)

    Fang, Jiafei; Xiao, Shilin; Liu, Ling; Bi, Meihua; Zhang, Lu; Zhang, Yunhao; Hu, Weisheng

    2017-11-01

    In this paper, we propose a novel polar coded intensity modulation direct detection (IM/DD) optical orthogonal frequency division multiplexing (OFDM) system for short reach system. A method of evaluating the channel signal noise ratio (SNR) is proposed for soft-demodulation. The experimental results demonstrate that, compared to the conventional case, ∼9.5 dB net coding gain (NCG) at the bit error rate (BER) of 1E-3 can be achieved after 40-km standard single mode fiber (SSMF) transmission. Based on the experimental result, (512,256) polar code with low complexity and satisfactory BER performance meets the requirement of low latency in short reach system, which is a promising candidate for latency-stringent short reach optical system.

  15. A system architecture for an advanced Canadian wideband mobile satellite system

    Science.gov (United States)

    Takats, P.; Keelty, M.; Moody, H.

    1993-01-01

    In this paper, the system architecture for an advanced Canadian ka-band geostationary mobile satellite system is described, utilizing hopping spot beams to support a 256 kbps wideband service for both N-ISDN and packet-switched interconnectivity to small briefcase-size portable and mobile terminals. An assessment is given of the technical feasibility of the satellite payload and terminal design in the post year 2000 timeframe. The satellite payload includes regeneration and on-board switching to permit single hop interconnectivity between mobile terminals. The mobile terminal requires antenna tracking and platform stabilization to ensure acquisition of the satellite signal. The potential user applications targeted for this wideband service includes: home-office, multimedia, desk-top (PC) videoconferencing, digital audio broadcasting, single and multi-user personal communications.

  16. Resource Allocation in MU-OFDM Cognitive Radio Systems with Partial Channel State Information

    Directory of Open Access Journals (Sweden)

    Shen Zhiqi

    2010-01-01

    Full Text Available In wireless communications, the assumption that the transmitter has perfect channel state information (CSI is often unreasonable, due to feedback delays, estimation errors, and quantization errors. In order to accurately assess system performance, a more careful analysis with imperfect CSI is needed. In this paper, the impact of partial CSI due to feedback delays in a multiuser Orthogonal Frequency Division Multiplexing (MU-OFDM cognitive radio (CR system is investigated. The effect of partial CSI on the bit error rate (BER is analyzed. A relationship between the transmit power and the number of bits loaded on a subcarrier is derived which takes into account the target BER requirement. With this relationship, existing resource allocation schemes which are based on perfect CSI being available can be applied when only partial CSI is available. Simulation results are provided to illustrate how the system performance degrades with increasingly poor CSI.

  17. OFDM for underwater acoustic communications

    CERN Document Server

    Zhou, Shengli

    2014-01-01

    A blend of introductory material and advanced signal processing and communication techniques, of critical importance to underwater system and network development This book, which is the first to describe the processing techniques central to underwater OFDM, is arranged into four distinct sections: First, it describes the characteristics of underwater acoustic channels, and stresses the difference from wireless radio channels. Then it goes over the basics of OFDM and channel coding. The second part starts with an overview of the OFDM receiver, and develops various modules for the receiver des

  18. Receiver IQ mismatch estimation in PDM CO-OFDM system using training symbol

    Science.gov (United States)

    Peng, Dandan; Ma, Xiurong; Yao, Xin; Zhang, Haoyuan

    2017-07-01

    Receiver in-phase/quadrature (IQ) mismatch is hard to mitigate at the receiver via using conventional method in polarization division multiplexed (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. In this paper, a novel training symbol structure is proposed to estimate IQ mismatch and channel distortion. Combined this structure with Gram Schmidt orthogonalization procedure (GSOP) algorithm, we can get lower bit error rate (BER). Meanwhile, based on this structure one estimation method is deduced in frequency domain which can achieve the estimation of IQ mismatch and channel distortion independently and improve the system performance obviously. Numerical simulation shows that the proposed two methods have better performance than compared method at 100 Gb/s after 480 km fiber transmission. Besides, the calculation complexity is also analyzed.

  19. A combination of selected mapping and clipping to increase energy efficiency of OFDM systems

    Science.gov (United States)

    Lee, Byung Moo; Rim, You Seung

    2017-01-01

    We propose an energy efficient combination design for OFDM systems based on selected mapping (SLM) and clipping peak-to-average power ratio (PAPR) reduction techniques, and show the related energy efficiency (EE) performance analysis. The combination of two different PAPR reduction techniques can provide a significant benefit in increasing EE, because it can take advantages of both techniques. For the combination, we choose the clipping and SLM techniques, since the former technique is quite simple and effective, and the latter technique does not cause any signal distortion. We provide the structure and the systematic operating method, and show the various analyzes to derive the EE gain based on the combined technique. Our analysis show that the combined technique increases the EE by 69% compared to no PAPR reduction, and by 19.34% compared to only using SLM technique. PMID:29023591

  20. Design of Robust Pulses to Insufficient Synchronization for OFDM/OQAM Systems in Doubly Dispersive Channels

    Directory of Open Access Journals (Sweden)

    Yu Zhao

    2015-01-01

    Full Text Available This paper presents a pulse shaping method robust to insufficient synchronization in orthogonal frequency division multiplexing with offset quadrature amplitude modulation (OFDM/OQAM systems over doubly dispersive (DD channels. The proposed pulse is designed as a linear combination of several well localized Hermite functions. The coefficients optimization problem is modeled as a nonconvex constrained fractional programming problem based on the signal-to-interference ratio (SIR maximization criterion. An efficient iterative algorithm is applied to simplify the problem to a series of quadratically constrained quadratic program (QCQP problems which can be solved by semidefinite relaxation (SDR method. Simulation results show that the proposed pulse is superior to traditional pulses with respect to SIR performance over DD channels in the presence of carrier frequency offset (CFO and timing offset (TO.

  1. A Low-Complexity Integer Frequency Offset Estimation Scheme Using Combined Training Symbols for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Y. Lee

    2014-12-01

    Full Text Available In orthogonal frequency division multiplexing (OFDM systems, an integer part of a frequency offset (IFO that causes ambiguity in data demodulation is estimated generally by comparing correlations between the received and local signals for IFO candidates. In this paper, we propose an IFO estimation scheme that provides a tradeoff between the estimation performance and the computational complexity including a conventional scheme as a special case. In the proposed scheme, template signals are formed by combining frequency-shifted training symbols, allowing the receiver to reduce the number of IFO candidates in the estimation process. Numerical results illustrate the tradeoff of the proposed scheme: The proposed scheme exhibits a tradeoff between the correct estimation probability and the computational complexity taking the number of the training symbols used to construct the template signal as a parameter.

  2. Pilot symbol assisted channel estimation for OFDM-based cognitive radio systems

    Science.gov (United States)

    Manasseh, Emmanuel; Ohno, Shuichi; Nakamoto, Masayoshi

    2013-12-01

    In this article, challenges regarding the provision of channel state information (CSI) in non-contiguous orthogonal frequency division multiplexing (NC-OFDM) cognitive radio (CR) systems are addressed. We propose a novel scheme that utilizes cross entropy (CE) optimization together with an analytical pilot power distribution technique to design pilot symbols that minimizes the channel estimate mean squared error (MSE) of frequency-selective channels. The optimal selection of pilot subcarriers is a combinatorial problem that requires heavy computations. To reduce the computational complexity, the CE optimization is utilized to determine the position of pilot subcarriers. Then, for a given pilot placement obtained by the CE algorithm, a closed form expression to obtain optimal pilot power distribution is employed. Simulation results indicate that, the proposed pilot symbol design provides better channel estimate MSE as well as the bit error rate (BER) performance when compared with the conventional equal powered pilot design.

  3. Low complexity variational bayes iterative reviver for MIMO-OFDM systems

    DEFF Research Database (Denmark)

    Xiong, Chunlin; Wang, Hua; Zhang, Xiaoying

    2009-01-01

    A low complexity iterative receiver is proposed in this paper for MIMO-OFDM systems in time-varying multi-path channel based on the variational Bayes (VB) method. According to the VB method, the estimation algorithms of the signal distribution and the channel distribution are derived...... for the receiver. With the aid of the soft-output QRD-M algorithm, whose complexity is fixed and relatively low, the signal distribution can be obtained conveniently. In particular, a sequential channel estimation algorithm, which completely avoids the computation of matrix inversion and multiplication......, is introduced for the channel distribution estimation. Moreover, the distribution estimations of the signals and the channels are performed in a cyclical iteration way. The simulation results show that the performance loss of the proposed receiver is only ldB for fast varying channels and less than 0.5 d...

  4. Low-complexity blind equalization for OFDM systems with general constellations

    KAUST Repository

    Al-Naffouri, Tareq Y.

    2012-12-01

    This paper proposes a low-complexity algorithm for blind equalization of data in orthogonal frequency division multiplexing (OFDM)-based wireless systems with general constellations. The proposed algorithm is able to recover the transmitted data even when the channel changes on a symbol-by-symbol basis, making it suitable for fast fading channels. The proposed algorithm does not require any statistical information about the channel and thus does not suffer from latency normally associated with blind methods. The paper demonstrates how to reduce the complexity of the algorithm, which becomes especially low at high signal-to-noise ratio (SNR). Specifically, it is shown that in the high SNR regime, the number of operations is of the order O(LN), where L is the cyclic prefix length and N is the total number of subcarriers. Simulation results confirm the favorable performance of the proposed algorithm. © 2012 IEEE.

  5. Experimental demonstration of MIMO-OFDM underwater wireless optical communication

    Science.gov (United States)

    Song, Yuhang; Lu, Weichao; Sun, Bin; Hong, Yang; Qu, Fengzhong; Han, Jun; Zhang, Wei; Xu, Jing

    2017-11-01

    In this paper, we propose and experimentally demonstrate a multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) underwater wireless optical communication (UWOC) system, with a gross bit rate of 33.691 Mb/s over a 2-m water channel using low-cost blue light-emitting-diodes (LEDs) and 10-MHz PIN photodiodes. The system is capable of realizing robust data transmission within a relatively large reception area, leading to relaxed alignment requirement for UWOC. In addition, we have compared the system performance of repetition coding OFDM (RC-OFDM), Alamouti-OFDM and multiple-input single-output OFDM (MISO-OFDM) in turbid water. Results show that the Alamouti-OFDM UWOC is more resistant to delay than the RC-OFDM-based system.

  6. Wide-Band Optical Fibre System for Investigation of MEMS and NEMS Deflection

    Directory of Open Access Journals (Sweden)

    Orłowska Karolina

    2014-08-01

    Full Text Available In this work the construction of experimental setup for MEMS/NEMS deflection measurements is presented. The system is based on intensity fibre optic detector for linear displacement sensing. Furthermore the electronic devices: current source for driving the light source and photodetector with wide-band preamplifier are presented.

  7. High-speed ultra-wideband wireless signals over fiber systems: photonic generation and DSP detection

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2009-01-01

    We firstly review the efforts in the literature on ultra-wideband (UWB)-over-fiber systems. Secondly, we present experimental results on photonic generation of high-speed UWB signals by both direct modulation and external optical injecting an uncooled semiconductor laser. Furthermore, we introduce...

  8. Experimental Demonstration of Nonlinearity and Phase Noise Tolerant 16-QAM OFDM W-Band (75–110 GHz) Signal Over Fiber System

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Tafur Monroy, Idelfonso

    2014-01-01

    We propose a nonlinearity and phase noise tolerant orthogonal frequency division multiplexing (OFDM) W-band signal over fiber system based on phase modulation and photonic heterodyne up-conversion techniques. By heterodyne mixing the phase-modulated optical OFDM signal with a free-running laser...... in the photodiode, the constant envelope OFDM W-band wireless signal is obtained to suppress the nonlinear impairments. Moreover, the phase noises of the beating lasers appear as additive terms to the desired signal, and could be easily filtered out without complex phase noise estimation and compensation algorithms....... In our experiment, 4 Gb/s QPSK and 8 Gb/s 16-QAM constant envelope OFDM W-band signals are transmitted over 22.8 km single mode fiber and 2.3 m air distance with achieved bit-error-rate performance below the forward error correction limit....

  9. BER Analysis of Various Channel Equalization Schemes of a QO-STBC Encoded OFDM based MIMO CDMA System

    OpenAIRE

    Husnul Ajra; Md. Zahid Hasan; Md. Shohidul Islam

    2014-01-01

    Quasi Orthogonal Space Time Block Code (QO-STBC) can provide full-rate transmission and low decoding complexity. This paper deals with channel estimation for Quasi Orthogonal Space Time Block Code (QO-STBC) encoded Orthogonal Frequency Division Multiplexing (OFDM) based Multiple Input multiple Output (MIMO) Code Division Multiple Access (CDMA) system. Using the QO-STBC coding property, we analysis the weight performance that reduce the computational complexity of system. The design of channel...

  10. Semiblind channel estimation for MIMO-OFDM systems

    Science.gov (United States)

    Chen, Yi-Sheng; Song, Jyu-Han

    2012-12-01

    This article proposes a semiblind channel estimation method for multiple-input multiple-output orthogonal frequency-division multiplexing systems based on circular precoding. Relying on the precoding scheme at the transmitters, the autocorrelation matrix of the received data induces a structure relating the outer product of the channel frequency response matrix and precoding coefficients. This structure makes it possible to extract information about channel product matrices, which can be used to form a Hermitian matrix whose positive eigenvalues and corresponding eigenvectors yield the channel impulse response matrix. This article also tests the resistance of the precoding design to finite-sample estimation errors, and explores the effects of the precoding scheme on channel equalization by performing pairwise error probability analysis. The proposed method is immune to channel zero locations, and is reasonably robust to channel order overestimation. The proposed method is applicable to the scenarios in which the number of transmitters exceeds that of the receivers. Simulation results demonstrate the performance of the proposed method and compare it with some existing methods.

  11. Laser linewidth and fiber nonlinearity tolerance study of C-16QAM compared to square 16QAM in coherent OFDM system

    Science.gov (United States)

    Xu, Fei; Qiao, Yaojun; Zhou, Ji; Guo, Mengqi; Tian, Huiping

    2017-03-01

    We introduced an effective modulation format circle 16 quadrature amplitude modulation (C-16QAM) to improve the laser linewidth induced phase noise and fiber nonlinear effects tolerance in coherent orthogonal frequency division multiplexing (OFDM) system without other losses compared to square 16QAM. Although C-16QAM has improved the performance of single channel system with Viterbi-Viterbi carrier phase estimation, C-16QAM using in coherent OFDM system has not been performed and such configuration of system may solve many problems in the next generation access networks. Here we numerically studied two separate manifestations of phase noise generated by laser linewidth and fiber nonlinear effects. We take these two kinds of phase noise into consideration separately by investigating the influence of laser linewidth with fixed launch power into transmission fiber and the influence of fiber nonlinear effects with fixed laser linewidth. We find that the C-16QAM improves the laser linewidth induced phase noise significantly and improves fiber nonlinear effects tolerance to a certain degree compared to square 16QAM. This coherent C-16QAM OFDM system may have great prospects for the next generation access networks for these significantly improvements.

  12. Robustness analysis of a parallel two-box digital polynomial predistorter for an SOA-based CO-OFDM system

    Science.gov (United States)

    Diouf, C.; Younes, M.; Noaja, A.; Azou, S.; Telescu, M.; Morel, P.; Tanguy, N.

    2017-11-01

    The linearization performance of various digital baseband pre-distortion schemes is evaluated in this paper for a coherent optical OFDM (CO-OFDM) transmitter employing a semiconductor optical amplifier (SOA). In particular, the benefits of using a parallel two-box (PTB) behavioral model, combining a static nonlinear function with a memory polynomial (MP) model, is investigated for mitigating the system nonlinearities and compared to the memoryless and MP models. Moreover, the robustness of the predistorters under different operating conditions and system uncertainties is assessed based on a precise SOA physical model. The PTB scheme proves to be the most effective linearization technique for the considered setup, with an excellent performance-complexity tradeoff over a wide range of conditions.

  13. On robust soft-input soft-output demodulators for OFDM systems: when imperfect channel state information is present

    Science.gov (United States)

    Chen, Chulong; Zoltowski, Michael D.

    2013-05-01

    In this paper a soft-input soft-output (SISO) QAM demodulator with robust performance on imperfect channel information are proposed for bit-interleaved OFDM systems. A full Bayesian approach is proposed to the channel estimation and demodulation problem. The frequency-selective fading channel impulse response and AWGN variance encountered in OFDM systems are jointly modeled as complex Gaussian-gamma random variables. The uncertainty of the channels are naturally encoded in the posterior distribution. Robust demodulators for known and unknown AWGN variance are derived basing on Bayesian posterior predictive distribution. It's performance combined with the bit-interleaved coded modulation (BICM) is demonstrated. And schemes with reduced complexity are also discussed. Simulation results show an improved BER (more than 0:5dB in most cases) comparing to that of the conventional demodulators ignorant of the channel estimation errors.

  14. Pilot signal design via constrained optimization with application to delay-Doppler shift estimation in OFDM systems

    DEFF Research Database (Denmark)

    Jing, Lishuai; Pedersen, Troels; Fleury, Bernard Henri

    2013-01-01

    We address the problem of searching for the optimal pilot signal, i.e. pattern and signature, of an orthogonal frequency-division multiplexing (OFDM) system when the purpose is to estimate the delay and Doppler shift under the assumption of a single-path propagation channel. This problem...... demonstrate that data interference causes a performance loss if a standard non-coherent correlator is used. The results also indicate that the pilot pattern impacts the estimator's performance more than the pilot signature....

  15. Evaluation of the computational effort for chromatic dispersion compensation in coherent optical PM-OFDM and PM-QAM systems.

    Science.gov (United States)

    Poggiolini, P; Carena, A; Curri, V; Forghieri, F

    2009-02-02

    Recently, coherent-detection (CoD) polarization multiplexed (PM) transmission has attracted considerable interest, specifically as a possible solution for next-generation systems transmitting 100 Gb/s per channel and beyond. In this context, enabled by progress in ultra-fast digital signal processing (DSP) electronics, both multilevel phase/amplitude modulated formats (such as QAM) and orthogonal-frequency-division multiplexed (OFDM) formats have been proposed. One specific feature of DSP-supported CoD is the possibility of dealing with fiber chromatic dispersion (CD) electronically, either by post-filtering (PM-QAM) or by appropriately introducing symbol-duration redundancy (PM-OFDM). In both cases, ultra-long-haul fully uncompensated links seem to be possible. In this paper we estimate the computational effort required by CD compensation, when using the PM-QAM or PM-OFDM formats. Such effort, when expressed as number of operations per received bit, was found to be logarithmic with respect to link length, bit rate and fiber dispersion, for both classes of systems. We also found that PM-OFDM may have some advantage over PM-QAM, depending mostly on the over-sampling needed by the two systems. Asymptotically, for large channel memory and small over-sampling, the two systems tend to require the same CD-compensation computational effort. We also showed that the effort required by the mitigation of polarization-related effects can in principle be made small as compared to that of CD over long uncompensated links.

  16. On the Estimation of Carrier Frequency Offset and DC Offset for OFDM Systems

    Science.gov (United States)

    Lin, Hai; Nakao, Takeshi; Lu, Weiming; Yamashita, Katsumi

    In an orthogonal frequency division multiplexing (OFDM) receiver with direct-conversion architecture, carrier frequency offset (CFO) and direct-current offset (DCO), which cause severe performance degradation, need to be estimated and compensated. Recently, by investigating the subspace of OFDM signal after coarse DCO cancellation using timedomain average, we have proposed a nullspace-based estimator (NSE), for blind CFO and DCO estimation. In this paper, based on an analysis of the cost function of the NSE, we propose a common nullspace based estimator (CNSE). It is shown that by matching the frequency occupation of the received OFDM signal with CFO and DCO, the CNSE can achieve the full performance potential of the NSE. Also, the performance analysis reveals that the CNSE can asymptotically approach the Cramer-Rao bound (CRB) of OFDM CFO estimation in the presence of DCO. Finally the analysis results are confirmed by simulations.

  17. An improved scheme for Flip-OFDM based on Hartley transform in short-range IM/DD systems.

    Science.gov (United States)

    Zhou, Ji; Qiao, Yaojun; Cai, Zhuo; Ji, Yuefeng

    2014-08-25

    In this paper, an improved Flip-OFDM scheme is proposed for IM/DD optical systems, where the modulation/demodulation processing takes advantage of the fast Hartley transform (FHT) algorithm. We realize the improved scheme in one symbol period while conventional Flip-OFDM scheme based on fast Fourier transform (FFT) in two consecutive symbol periods. So the complexity of many operations in improved scheme is half of that in conventional scheme, such as CP operation, polarity inversion and symbol delay. Compared to FFT with complex input constellation, the complexity of FHT with real input constellation is halved. The transmission experiment over 50-km SSMF has been realized to verify the feasibility of improved scheme. In conclusion, the improved scheme has the same BER performance with conventional scheme, but great superiority on complexity.

  18. An OFDM System Using Polyphase Filter and DFT Architecture for Very High Data Rate Applications

    Science.gov (United States)

    Kifle, Muli; Andro, Monty; Vanderaar, Mark J.

    2001-01-01

    This paper presents a conceptual architectural design of a four-channel Orthogonal Frequency Division Multiplexing (OFDM) system with an aggregate information throughput of 622 megabits per second (Mbps). Primary emphasis is placed on the generation and detection of the composite waveform using polyphase filter and Discrete Fourier Transform (DFT) approaches to digitally stack and bandlimit the individual carriers. The four-channel approach enables the implementation of a system that can be both power and bandwidth efficient, yet enough parallelism exists to meet higher data rate goals. It also enables a DC power efficient transmitter that is suitable for on-board satellite systems, and a moderately complex receiver that is suitable for low-cost ground terminals. The major advantage of the system as compared to a single channel system is lower complexity and DC power consumption. This is because the highest sample rate is half that of the single channel system and synchronization can occur at most, depending on the synchronization technique, a quarter of the rate of a single channel system. The major disadvantage is the increased peak-to-average power ratio over the single channel system. Simulation results in a form of bit-error-rate (BER) curves are presented in this paper.

  19. Dynamic Subcarrier Allocation for Real-Time Traffic over Multiuser OFDM Systems

    Directory of Open Access Journals (Sweden)

    Li VictorOK

    2009-01-01

    Full Text Available A dynamic resource allocation algorithm to satisfy the packet delay requirements for real-time services, while maximizing the system capacity in multiuser orthogonal frequency division multiplexing (OFDM systems is introduced. Our proposed cross-layer algorithm, called Dynamic Subcarrier Allocation algorithm for Real-time Traffic (DSA-RT, consists of two interactive components. In the medium access control (MAC layer, the users' expected transmission rates in terms of the number of subcarriers per symbol and their corresponding transmission priorities are evaluated. With the above MAC-layer information and the detected subcarriers' channel gains, in the physical (PHY layer, a modified Kuhn-Munkres algorithm is developed to minimize the system power for a certain subcarrier allocation, then a PHY-layer resource allocation scheme is proposed to optimally allocate the subcarriers under the system signal-to-noise ratio (SNR and power constraints. In a system where the number of mobile users changes dynamically, our developed MAC-layer access control and removal schemes can guarantee the quality of service (QoS of the existing users in the system and fully utilize the bandwidth resource. The numerical results show that DSA-RT significantly improves the system performance in terms of the bandwidth efficiency and delay performance for real-time services.

  20. Equalization for multi-scale multi-lag OFDM channels

    NARCIS (Netherlands)

    Tang, Z.; Remis, R.; Xu, T.; Leus, G.; Nordenvaad, M.L.

    2011-01-01

    We consider an orthogonal frequency-division multiplexing (OFDM) transmission scheme over wideband underwater acoustic channels, where the propagation paths can experience distinct Doppler effects (manifested in signal scales) and time of arrivals (manifested in lags). We capture such an effect in

  1. Experimental study of coexistence of multi-band OFDM-UWB and OFDM-baseband signals in long-reach PONs using directly modulated lasers.

    Science.gov (United States)

    Morgado, José A P; Fonseca, Daniel; Cartaxo, Adolfo V T

    2011-11-07

    Transmission of coexisting Orthogonal Frequency Division Multiplexing (OFDM)-baseband (BB) and multi-band OFDM-ultra-wideband (UWB) signals along long-reach passive optical networks using directly modulated lasers (DML) is experimentally demonstrated.When optimized modulation indexes are used, bit error ratios not exceeding 5 × 10⁻⁴ can be achieved by all (OFDM-BB and three OFDM-UWB sub-bands) signals for a reach of 100 km of standard single-mode fiber (SSMF) and optical signal-to-noise ratios not lower than 25dB@0.1 nm. It is experimentally shown that, for the SSMF reach of 100km, the optimized performance of coexisting OFDM-BB and OFDM-UWB signals is mainly imposed by the combination of two effects: the SSMF dispersion-induced nonlinear distortion of the OFDM-UWB signals caused by the OFDM-BB and OFDM-UWB signals, and the further degradation of the OFDM-UWB signals with higher frequency, due to the reduced DML bandwidth.

  2. Optimization of Planar Monopole Wideband Antenna for Wireless Communication System.

    Science.gov (United States)

    Shakib, Mohammed Nazmus; Moghavvemi, Mahmoud; Mahadi, Wan Nor Liza

    2016-01-01

    In this paper, a new compact wideband monopole antenna is presented for wireless communication applications. This antenna comprises of a new radiating patch, a new arc-shaped strip, microstrip feed line, and a notched ground plane. The proposed radiating patch is combined with a rectangular and semi-circular patch and is integrated with a partial ground plane to provide a wide impedance bandwidth. The new arc-shaped strip between the radiating patch and microstrip feed line creates an extra surface on the patch, which helps further widen the bandwidth. Inserting one step notch on the ground plane further enhances the bandwidth. The antenna has a compact size of 16×20×1.6mm3. The measured result indicated that the antenna achieves a 127% bandwidth at VSWR≤2, ranging from 4.9GHz to 22.1GHz. Stable radiation patterns with acceptable gain are achieved. Also, a measured bandwidth of 107.7% at VSWR≤1.5 (5.1-17GHz) is obtained, which is suitable for UWB outdoor propagation. This antenna is compatible with a good number of wireless standards, including UWB band, Wimax 5.4 GHz band, MVDDS (12.2-12.7GHz), and close range radar and satellite communication in the X-band (8-12GHz), and Ku band (12-18GHz).

  3. Covert Underwater Communications with Multiband OFDM

    NARCIS (Netherlands)

    Leus, G.; Walree, P.A. van; Boschma, J.J.; Fanciullacci, C.; Gerritsen, H.; Tusoni, P.

    2008-01-01

    We consider the use of orthogonal frequency division multiplexing (OFDM) for covert acoustic telemetry. To reduce the complexity of the receiver we use a multiband approach, modulating each band by OFDM. The system has been tested at sea in a highly time-varying environment. A total bandwidth of 3.6

  4. Distributed Channel Estimation and Pilot Contamination Analysis for Massive MIMO-OFDM Systems

    KAUST Repository

    Zaib, Alam

    2016-07-22

    By virtue of large antenna arrays, massive MIMO systems have a potential to yield higher spectral and energy efficiency in comparison with the conventional MIMO systems. This paper addresses uplink channel estimation in massive MIMO-OFDM systems with frequency selective channels. We propose an efficient distributed minimum mean square error (MMSE) algorithm that can achieve near optimal channel estimates at low complexity by exploiting the strong spatial correlation among antenna array elements. The proposed method involves solving a reduced dimensional MMSE problem at each antenna followed by a repetitive sharing of information through collaboration among neighboring array elements. To further enhance the channel estimates and/or reduce the number of reserved pilot tones, we propose a data-aided estimation technique that relies on finding a set of most reliable data carriers. Furthermore, we use stochastic geometry to quantify the pilot contamination, and in turn use this information to analyze the effect of pilot contamination on channel MSE. The simulation results validate our analysis and show near optimal performance of the proposed estimation algorithms.

  5. Capacity of BICM Using (Bi-)Orthogonal Signal Constellations in Impulse-Radio Ultra-Wideband Systems

    CERN Document Server

    Schenk, Andreas

    2011-01-01

    Bit-interleaved coded modulation (BICM) using (bi-)orthogonal signals is especially well suited for the application in impulse-radio ultra-wideband transmission systems, which typically operate in the power-limited regime and require a very low-complexity transmitter and receiver design. In this paper we analyze the capacity of BICM using (bi-)orthogonal signals with coherent and noncoherent detection and put particular focus on the power-limited or wideband regime. We give analytical expressions for the ratio energy per bit vs. noise power spectral density in the limit of infinite bandwidth and the respective wideband slope, and thus, are able to quantify the loss incurred by the restriction to BICM in contrast to coded modulation. The gained theoretical insights allow to derive design rules for impulse-radio ultra-wideband transmission systems.

  6. Cooperative localization algorithms in ultra-wideband systems for indoor positioning

    OpenAIRE

    Pedrera Rubio, Ferran

    2012-01-01

    Indoor positioning has become an important research field in recent years. This is due to the potential services or products that can be offered, which would be very useful for users in several applications, and the interesting commercialization possibilities. But nowadays the most developed positioning systems are used outdoors, and for example GNSSs do not provide indoor coverage, so the efforts are focused on other local radio technologies. In particular, ultra-wideband is the object of th...

  7. OFDM AF Variable Gain Relay System for the Next Generation Mobile Cellular

    Directory of Open Access Journals (Sweden)

    E. Kocan

    2012-06-01

    Full Text Available In this paper we present analytical performance evaluation of a dual-hop OFDM amplify-andforward (AF variable gain (VG relay system implementing ordered subcarrier mapping (SCM at the relay station (R, considered to be a very interesting solution for the next generation mobile cellular networks. A scenario with no direct communication between the source of information (S and destination terminal (D, with the Rayleigh fading statistics on both hops is assumed. A closed form analytical expression for the bit error rate (BER performance of the considered system with DPSK modulation is derived, while for its ergodic capacity performance, a tight upper bound expression is obtained. The accuracy of the undertaken analytical approach is confirmed through comparison with simulation results. It is shown that significant capacity enhancement can be achieved through SCM implementation at R, for all the signal-to-noise ratio (SNR values on both hops, but especially in the region of small SNRs on hops. BER analysis reveals that in the region of small and medium average SNRs on both hops BER performance may also be improved with SCM at R station.

  8. Low-Bit Rate Feedback Strategies for Iterative IA-Precoded MIMO-OFDM-Based Systems

    Directory of Open Access Journals (Sweden)

    Sara Teodoro

    2014-01-01

    Full Text Available Interference alignment (IA is a promising technique that allows high-capacity gains in interference channels, but which requires the knowledge of the channel state information (CSI for all the system links. We design low-complexity and low-bit rate feedback strategies where a quantized version of some CSI parameters is fed back from the user terminal (UT to the base station (BS, which shares it with the other BSs through a limited-capacity backhaul network. This information is then used by BSs to perform the overall IA design. With the proposed strategies, we only need to send part of the CSI information, and this can even be sent only once for a set of data blocks transmitted over time-varying channels. These strategies are applied to iterative MMSE-based IA techniques for the downlink of broadband wireless OFDM systems with limited feedback. A new robust iterative IA technique, where channel quantization errors are taken into account in IA design, is also proposed and evaluated. With our proposed strategies, we need a small number of quantization bits to transmit and share the CSI, when comparing with the techniques used in previous works, while allowing performance close to the one obtained with perfect channel knowledge.

  9. Low-Bit Rate Feedback Strategies for Iterative IA-Precoded MIMO-OFDM-Based Systems

    Science.gov (United States)

    Teodoro, Sara; Silva, Adão; Dinis, Rui; Gameiro, Atílio

    2014-01-01

    Interference alignment (IA) is a promising technique that allows high-capacity gains in interference channels, but which requires the knowledge of the channel state information (CSI) for all the system links. We design low-complexity and low-bit rate feedback strategies where a quantized version of some CSI parameters is fed back from the user terminal (UT) to the base station (BS), which shares it with the other BSs through a limited-capacity backhaul network. This information is then used by BSs to perform the overall IA design. With the proposed strategies, we only need to send part of the CSI information, and this can even be sent only once for a set of data blocks transmitted over time-varying channels. These strategies are applied to iterative MMSE-based IA techniques for the downlink of broadband wireless OFDM systems with limited feedback. A new robust iterative IA technique, where channel quantization errors are taken into account in IA design, is also proposed and evaluated. With our proposed strategies, we need a small number of quantization bits to transmit and share the CSI, when comparing with the techniques used in previous works, while allowing performance close to the one obtained with perfect channel knowledge. PMID:24678274

  10. Optimally Joint Subcarrier Matching and Power Allocation in OFDM Multihop System

    Directory of Open Access Journals (Sweden)

    Shuyuan Yang

    2008-04-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM multihop system is a promising way to increase capacity and coverage. In this paper, we propose an optimally joint subcarrier matching and power allocation scheme to further maximize the total channel capacity with the constrained total system power. First, the problem is formulated as a mixed binary integer programming problem, which is prohibitive to find the global optimum in terms of complexity. Second, by making use of the equivalent channel power gain for any matched subcarrier pair, a low complexity scheme is proposed. The optimal subcarrier matching is to match subcarriers by the order of the channel power gains. The optimal power allocation among the matched subcarrier pairs is water-filling. An analytical argument is given to prove that the two steps achieve the optimally joint subcarrier matching and power allocation. The simulation results show that the proposed scheme achieves the largest total channel capacity as compared to the other schemes, where there is no subcarrier matching or no power allocation.

  11. Optimally Joint Subcarrier Matching and Power Allocation in OFDM Multihop System

    Directory of Open Access Journals (Sweden)

    Wang Wenyi

    2008-01-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM multihop system is a promising way to increase capacity and coverage. In this paper, we propose an optimally joint subcarrier matching and power allocation scheme to further maximize the total channel capacity with the constrained total system power. First, the problem is formulated as a mixed binary integer programming problem, which is prohibitive to find the global optimum in terms of complexity. Second, by making use of the equivalent channel power gain for any matched subcarrier pair, a low complexity scheme is proposed. The optimal subcarrier matching is to match subcarriers by the order of the channel power gains. The optimal power allocation among the matched subcarrier pairs is water-filling. An analytical argument is given to prove that the two steps achieve the optimally joint subcarrier matching and power allocation. The simulation results show that the proposed scheme achieves the largest total channel capacity as compared to the other schemes, where there is no subcarrier matching or no power allocation.

  12. Efficient Compensation of Transmitter and Receiver IQ Imbalance in OFDM Systems

    Directory of Open Access Journals (Sweden)

    Tandur Deepaknath

    2010-01-01

    Full Text Available Radio frequency impairments such as in-phase/quadrature-phase (IQ imbalances can result in a severe performance degradation in direct-conversion architecture-based communication systems. In this paper, we consider the case of transmitter and receiver IQ imbalance together with frequency selective channel distortion. The proposed training-based schemes can decouple the compensation of transmitter and receiver IQ imbalance from the compensation of channel distortion in an orthogonal frequency division multiplexing (OFDM systems. The presence of frequency selective channel fading is a requirement for the estimation of IQ imbalance parameters when both transmitter/receiver IQ imbalance are present. However, the proposed schemes are equally applicable over a frequency flat/frequency selective channel when either transmitter or only receiver IQ imbalance is present. Once the transmitter and receiver IQ imbalance parameters are estimated, a standard channel equalizer can be applied to estimate/compensate for the channel distortion. The proposed schemes result in an overall lower training overhead and a lower computational requirement, compared to the joint compensation of transmitter/receiver IQ imbalance and channel distortion. Simulation results demonstrate that the proposed schemes provide a very efficient compensation with performance close to the ideal case without any IQ imbalance.

  13. Transmission Power Determination Based on Power Amplifier Operations in Large-Scale MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Byung Moo Lee

    2017-07-01

    Full Text Available This paper presents a method to determine transmission power based on power amplifier (PA operations in order to improve the energy efficiency (EE of a large-scale (LS Multiple Input Multiple Output (MIMO-OFDM system, which is a multi-carrier multiple antenna system with a large amount of transmitter (TX antennas. Regarding the EE improvement, we propose two kinds of PA operation schemes: increasing the effective TX power (ITXP and reducing the PA power consumption (RPC assuming that a reduction of peak-to-average power ratio is applied in the appropriate manner. Closed-form expressions of relative EE are derived for both schemes, and the relative EE of the ITXP scheme is shown to depend on the precoding method that is applied to reduce the inter-user interference, while that of the RPC scheme is independent of the precoding method. The relative EE difference between the ITXP and the RPC schemes is also shown to rely on the occupation ratio of the PA power consumption over the total power consumption. Thus, the EE can remarkably improve by selecting the appropriate scheme based on the circumstances. The results of a simulation also validate the derived closed-form expression of the relative EE.

  14. Advanced Receiver Design for Mitigating Multiple RF Impairments in OFDM Systems: Algorithms and RF Measurements

    Directory of Open Access Journals (Sweden)

    Adnan Kiayani

    2012-01-01

    Full Text Available Direct-conversion architecture-based orthogonal frequency division multiplexing (OFDM systems are troubled by impairments such as in-phase and quadrature-phase (I/Q imbalance and carrier frequency offset (CFO. These impairments are unavoidable in any practical implementation and severely degrade the obtainable link performance. In this contribution, we study the joint impact of frequency-selective I/Q imbalance at both transmitter and receiver together with channel distortions and CFO error. Two estimation and compensation structures based on different pilot patterns are proposed for coping with such impairments. The first structure is based on preamble pilot pattern while the second one assumes a sparse pilot pattern. The proposed estimation/compensation structures are able to separate the individual impairments, which are then compensated in the reverse order of their appearance at the receiver. We present time-domain estimation and compensation algorithms for receiver I/Q imbalance and CFO and propose low-complexity algorithms for the compensation of channel distortions and transmitter IQ imbalance. The performance of the compensation algorithms is investigated with computer simulations as well as with practical radio frequency (RF measurements. The performance results indicate that the proposed techniques provide close to the ideal performance both in simulations and measurements.

  15. Compressive Sensing Based Bayesian Sparse Channel Estimation for OFDM Communication Systems: High Performance and Low Complexity

    Science.gov (United States)

    Xu, Li; Shan, Lin; Adachi, Fumiyuki

    2014-01-01

    In orthogonal frequency division modulation (OFDM) communication systems, channel state information (CSI) is required at receiver due to the fact that frequency-selective fading channel leads to disgusting intersymbol interference (ISI) over data transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by compressive sensing based sparse channel estimation (SCE) methods, for example, orthogonal matching pursuit algorithm, which can take the advantage of sparse structure effectively in the channel as for prior information. However, these developed methods are vulnerable to both noise interference and column coherence of training signal matrix. In other words, the primary objective of these conventional methods is to catch the dominant channel taps without a report of posterior channel uncertainty. To improve the estimation performance, we proposed a compressive sensing based Bayesian sparse channel estimation (BSCE) method which cannot only exploit the channel sparsity but also mitigate the unexpected channel uncertainty without scarifying any computational complexity. The proposed method can reveal potential ambiguity among multiple channel estimators that are ambiguous due to observation noise or correlation interference among columns in the training matrix. Computer simulations show that proposed method can improve the estimation performance when comparing with conventional SCE methods. PMID:24983012

  16. Carrier Frequency Offset Estimation and I/Q Imbalance Compensation for OFDM Systems

    Directory of Open Access Journals (Sweden)

    M. Omair Ahmad

    2007-01-01

    Full Text Available Two types of radio-frequency front-end imperfections, that is, carrier frequency offset and the inphase/quadrature (I/Q imbalance are considered for orthogonal frequency division multiplexing (OFDM communication systems. A preamble-assisted carrier frequency estimator is proposed along with an I/Q imbalance compensation scheme. The new frequency estimator reveals the relationship between the inphase and the quadrature components of the received preamble and extracts the frequency offset from the phase shift caused by the frequency offset and the cross-talk interference due to the I/Q imbalance. The proposed frequency estimation algorithm is fast, efficient, and robust to I/Q imbalance. An I/Q imbalance estimation/compensation algorithm is also presented by solving a least-square problem formulated using the same preamble as employed for the frequency offset estimation. The computational complexity of the I/Q estimation scheme is further reduced by using part of the short symbols with a little sacrifice in the estimation accuracy. Computer simulation and comparison with some of the existing algorithms are conducted, showing the effectiveness of the proposed method.

  17. A Low-Complexity KL Expansion-Based Channel Estimator for OFDM Systems

    Directory of Open Access Journals (Sweden)

    Şenol Habib

    2005-01-01

    Full Text Available This paper first proposes a computationally efficient, pilot-aided linear minimum mean square error (MMSE batch channel estimation algorithm for OFDM systems in unknown wireless fading channels. The proposed approach employs a convenient representation of the discrete multipath fading channel based on the Karhunen-Loeve (KL orthogonal expansion and finds MMSE estimates of the uncorrelated KL series expansion coefficients. Based on such an expansion, no matrix inversion is required in the proposed MMSE estimator. Moreover, optimal rank reduction is achieved by exploiting the optimal truncation property of the KL expansion resulting in a smaller computational load on the estimation algorithm. The performance of the proposed approach is studied through analytical and experimental results. We then consider the stochastic Cramér-Rao bound and derive the closed-form expression for the random KL coefficients and consequently exploit the performance of the MMSE channel estimator based on the evaluation of minimum Bayesian MSE. We also analyze the effect of a modelling mismatch on the estimator performance. To further reduce the complexity, we extend the batch linear MMSE to the sequential linear MMSE estimator. With the fast convergence property and the simple structure, the sequential linear MMSE estimator provides an attractive alternative to the implementation of channel estimator.

  18. Compressive Sensing Based Bayesian Sparse Channel Estimation for OFDM Communication Systems: High Performance and Low Complexity

    Directory of Open Access Journals (Sweden)

    Guan Gui

    2014-01-01

    Full Text Available In orthogonal frequency division modulation (OFDM communication systems, channel state information (CSI is required at receiver due to the fact that frequency-selective fading channel leads to disgusting intersymbol interference (ISI over data transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by compressive sensing based sparse channel estimation (SCE methods, for example, orthogonal matching pursuit algorithm, which can take the advantage of sparse structure effectively in the channel as for prior information. However, these developed methods are vulnerable to both noise interference and column coherence of training signal matrix. In other words, the primary objective of these conventional methods is to catch the dominant channel taps without a report of posterior channel uncertainty. To improve the estimation performance, we proposed a compressive sensing based Bayesian sparse channel estimation (BSCE method which cannot only exploit the channel sparsity but also mitigate the unexpected channel uncertainty without scarifying any computational complexity. The proposed method can reveal potential ambiguity among multiple channel estimators that are ambiguous due to observation noise or correlation interference among columns in the training matrix. Computer simulations show that proposed method can improve the estimation performance when comparing with conventional SCE methods.

  19. Compressive sensing based Bayesian sparse channel estimation for OFDM communication systems: high performance and low complexity.

    Science.gov (United States)

    Gui, Guan; Xu, Li; Shan, Lin; Adachi, Fumiyuki

    2014-01-01

    In orthogonal frequency division modulation (OFDM) communication systems, channel state information (CSI) is required at receiver due to the fact that frequency-selective fading channel leads to disgusting intersymbol interference (ISI) over data transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by compressive sensing based sparse channel estimation (SCE) methods, for example, orthogonal matching pursuit algorithm, which can take the advantage of sparse structure effectively in the channel as for prior information. However, these developed methods are vulnerable to both noise interference and column coherence of training signal matrix. In other words, the primary objective of these conventional methods is to catch the dominant channel taps without a report of posterior channel uncertainty. To improve the estimation performance, we proposed a compressive sensing based Bayesian sparse channel estimation (BSCE) method which cannot only exploit the channel sparsity but also mitigate the unexpected channel uncertainty without scarifying any computational complexity. The proposed method can reveal potential ambiguity among multiple channel estimators that are ambiguous due to observation noise or correlation interference among columns in the training matrix. Computer simulations show that proposed method can improve the estimation performance when comparing with conventional SCE methods.

  20. Experimental demonstration of high spectral efficient 4 × 4 MIMO SCMA-OFDM/OQAM radio over multi-core fiber system.

    Science.gov (United States)

    Liu, Chang; Deng, Lei; He, Jiale; Li, Di; Fu, Songnian; Tang, Ming; Cheng, Mengfan; Liu, Deming

    2017-07-24

    In this paper, 4 × 4 multiple-input multiple-output (MIMO) radio over 7-core fiber system based on sparse code multiple access (SCMA) and OFDM/OQAM techniques is proposed. No cyclic prefix (CP) is required by properly designing the prototype filters in OFDM/OQAM modulator, and non-orthogonally overlaid codewords by using SCMA is help to serve more users simultaneously under the condition of using equal number of time and frequency resources compared with OFDMA, resulting in the increase of spectral efficiency (SE) and system capacity. In our experiment, 11.04 Gb/s 4 × 4 MIMO SCMA-OFDM/OQAM signal is successfully transmitted over 20 km 7-core fiber and 0.4 m air distance in both uplink and downlink. As a comparison, 6.681 Gb/s traditional MIMO-OFDM signal with the same occupied bandwidth has been evaluated for both uplink and downlink transmission. The experimental results show that SE could be increased by 65.2% with no bit error rate (BER) performance degradation compared with the traditional MIMO-OFDM technique.

  1. High-Speed Turbo-TCM-Coded Orthogonal Frequency-Division Multiplexing Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available One of the UWB proposals in the IEEE P802.15 WPAN project is to use a multiband orthogonal frequency-division multiplexing (OFDM system and punctured convolutional codes for UWB channels supporting a data rate up to 480 Mbps. In this paper, we improve the proposed system using turbo TCM with QAM constellation for higher data rate transmission. We construct a punctured parity-concatenated trellis codes, in which a TCM code is used as the inner code and a simple parity-check code is employed as the outer code. The result shows that the system can offer a much higher spectral efficiency, for example, 1.2 Gbps, which is 2.5 times higher than the proposed system. We identify several essential requirements to achieve the high rate transmission, for example, frequency and time diversity and multilevel error protection. Results are confirmed by density evolution.

  2. DFT-based offset-QAM OFDM for optical communications.

    Science.gov (United States)

    Zhao, Jian

    2014-01-13

    We experimentally demonstrate and numerically investigate a discrete-Fourier-transform (DFT) based offset quadrature-amplitude-modulation (offset-QAM) orthogonal frequency division multiplexing (OFDM) system. We investigate the scheme using a set of square-root-raised-cosine functions and a set of super-Gaussian functions as signal spectra. It is shown that offset-QAM OFDM exhibits negligible penalty for all investigated spectra, in contrast to rectangular-function based Nyquist FDM (N-FDM) and sinc-function based conventional OFDM (C-OFDM). The required guard interval (GI) length for dispersion compensation in offset-QAM OFDM is analyzed and shown to scale with twice the subcarrier spacing rather than the full OFDM bandwidth. Experimental results show that 38-Gb/s offset-16QAM OFDM supports 600-km fiber transmission with negligible penalty in the absence of GI while a GI length of eight is required in C-OFDM. Further numerical simulations show that by avoiding the GI, 112-Gb/s polarization multiplexed offset-4QAM OFDM can achieve 23% increase in net data rate over C-OFDM under the same transmission reach. We also discuss the design of the pulse-shaping filter in the DFT-based implementation and show that when compared to N-FDM, the required memory length of the filter for pulse shaping can be reduced from 60 to 2 in offset-QAM OFDM regardless of the fiber length.

  3. Low-Complexity Banded Equalizers for OFDM Systems in Doppler Spread Channels

    NARCIS (Netherlands)

    Rugini, L.; Banelli, P.; Leus, G.

    2006-01-01

    Recently, several approaches have been proposed for the equalization of orthogonal frequency-division multiplexing (OFDM) signals in challenging high-mobility scenarios. Among them, a minimum mean-squared error (MMSE) block linear equalizer (BLE), based on a band LDL factorization, is particularly

  4. On the capacity of MIMO-OFDM based diversity and spatial multiplexing in Radio-over-Fiber system

    Science.gov (United States)

    El Yahyaoui, Moussa; El Moussati, Ali; El Zein, Ghaïs

    2017-11-01

    This paper proposes a realistic and global simulation to predict the behavior of a Radio over Fiber (RoF) system before its realization. In this work we consider a 2 × 2 Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) RoF system at 60 GHz. This system is based on Spatial Diversity (SD) which increases reliability (decreases probability of error) and Spatial Multiplexing (SMX) which increases data rate, but not necessarily reliability. The 60 GHz MIMO channel model employed in this work based on a lot of measured data and statistical analysis named Triple-S and Valenzuela (TSV) model. To the authors best knowledge; it is the first time that this type of TSV channel model has been employed for 60 GHz MIMO-RoF system. We have evaluated and compared the performance of this system according to the diversity technique, modulation schemes, and channel coding rate for Line-Of-Sight (LOS) desktop environment. The SMX coded is proposed as an intermediate system to improve the Signal to Noise Ratio (SNR) and the data rate. The resulting 2 × 2 MIMO-OFDM SMX system achieves a higher data rate up to 70 Gb/s with 64QAM and Forward Error Correction (FEC) limit of 10-3 over 25-km fiber transmission followed by 3-m wireless transmission using 7 GHz bandwidth of millimeter wave band.

  5. Investigation of PMD in direct-detection optical OFDM with zero padding.

    Science.gov (United States)

    Li, Xiang; Alphones, Arokiaswami; Zhong, Wen-De; Yu, Changyuan

    2013-09-09

    We investigate the polarization-mode dispersion (PMD) effect of zero padding OFDM (ZP-OFDM) in direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) systems. We first study the conventional equalization method for ZP-OFDM. Then an equalization method based on sorted QR decomposition is proposed to further improve the performance. It is found that the performance improvement of ZP-OFDM is due to the frequency domain oversampling (FDO) induced inter-carrier interference (ICI). Numerical simulation results show that compared with cyclic prefix OFDM (CP-OFDM), ZP-OFDM has a significantly higher tolerance to PMD in DDO-OFDM systems when the channel spectral nulls occur at certain differential group delay (DGD) values.

  6. Exploiting Redundancy in an OFDM SDR Receiver

    Directory of Open Access Journals (Sweden)

    Tomas Palenik

    2009-01-01

    Full Text Available Common OFDM system contains redundancy necessary to mitigate interblock interference and allows computationally effective single-tap frequency domain equalization in receiver. Assuming the system implements an outer error correcting code and channel state information is available in the receiver, we show that it is possible to understand the cyclic prefix insertion as a weak inner ECC encoding and exploit the introduced redundancy to slightly improve error performance of such a system. In this paper, an easy way to implement modification to an existing SDR OFDM receiver is presented. This modification enables the utilization of prefix redundancy, while preserving full compatibility with existing OFDM-based communication standards.

  7. Coherent optical DFT-spread OFDM transmission using orthogonal band multiplexing.

    Science.gov (United States)

    Yang, Qi; He, Zhixue; Yang, Zhu; Yu, Shaohua; Yi, Xingwen; Shieh, William

    2012-01-30

    Coherent optical OFDM (CO-OFDM) combined with orthogonal band multiplexing provides a scalable and flexible solution for achieving ultra high-speed rate. Among many CO-OFDM implementations, digital Fourier transform spread (DFT-S) CO-OFDM is proposed to mitigate fiber nonlinearity in long-haul transmission. In this paper, we first illustrate the principle of DFT-S OFDM. We then experimentally evaluate the performance of coherent optical DFT-S OFDM in a band-multiplexed transmission system. Compared with conventional clipping methods, DFT-S OFDM can reduce the OFDM peak-to-average power ratio (PAPR) value without suffering from the interference of the neighboring bands. With the benefit of much reduced PAPR, we successfully demonstrate 1.45 Tb/s DFT-S OFDM over 480 km SSMF transmission.

  8. Intelligent Modified Channel and Frequency Offset Estimation Schemes in Future Generation OFDM-Based Packet Communication Systems

    Directory of Open Access Journals (Sweden)

    Jaemin Kwak

    2008-07-01

    Full Text Available The channel estimation and frequency offset estimation scheme for future generation orthogonal frequency division multiplexing (OFDM- based intelligent packet communication systems are proposed. In the channel estimation scheme, we use additional 8 short training symbols besides 2 long training symbols for intelligently improving estimation performance. In the proposed frequency offset estimation scheme, we allocate intelligently different powers to the short and long training symbols while maintaining average power of overall preamble sequence. The preamble structure considered is based on the preamble specified in standardization group of IEEE802.11a for wireless local area network (WLAN and IEEE802.11p for intelligent transportation systems (ITSs. From the simulation results, it is shown that the proposed intelligent estimation schemes can achieve better mean squared error (MSE performance for channel and frequency offset estimation error than the conventional scheme. The proposed schemes can be used in designing for enhancing the performance of OFDM-based future generation intelligent communication network systems.

  9. Intelligent Modified Channel and Frequency Offset Estimation Schemes in Future Generation OFDM-Based Packet Communication Systems

    Directory of Open Access Journals (Sweden)

    Cho Sungeon

    2008-01-01

    Full Text Available Abstract The channel estimation and frequency offset estimation scheme for future generation orthogonal frequency division multiplexing (OFDM- based intelligent packet communication systems are proposed. In the channel estimation scheme, we use additional 8 short training symbols besides 2 long training symbols for intelligently improving estimation performance. In the proposed frequency offset estimation scheme, we allocate intelligently different powers to the short and long training symbols while maintaining average power of overall preamble sequence. The preamble structure considered is based on the preamble specified in standardization group of IEEE802.11a for wireless local area network (WLAN and IEEE802.11p for intelligent transportation systems (ITSs. From the simulation results, it is shown that the proposed intelligent estimation schemes can achieve better mean squared error (MSE performance for channel and frequency offset estimation error than the conventional scheme. The proposed schemes can be used in designing for enhancing the performance of OFDM-based future generation intelligent communication network systems.

  10. Zero-guard-interval coherent optical OFDM with overlapped frequency-domain CD and PMD equalization.

    Science.gov (United States)

    Chen, Chen; Zhuge, Qunbi; Plant, David V

    2011-04-11

    This paper presents a new channel estimation/equalization algorithm for coherent OFDM (CO-OFDM) digital receivers, which enables the elimination of the cyclic prefix (CP) for OFDM transmission. We term this new system as the zero-guard-interval (ZGI)-CO-OFDM. ZGI-CO-OFDM employs an overlapped frequency-domain equalizer (OFDE) to compensate both chromatic dispersion (CD) and polarization mode dispersion (PMD) before the OFDM demodulation. Despite the zero CP overhead, ZGI-CO-OFDM demonstrates a superior PMD tolerance than the previous reduced-GI (RGI)-CO-OFDM, which is verified under several different PMD conditions. Additionally, ZGI-CO-OFDM can improve the channel estimation accuracy under high PMD conditions by using a larger intra-symbol frequency-averaging (ISFA) length as compared to RGI-CO-OFDM. ZGI-CO-OFDM also enables the use of ever smaller fast Fourier transform (FFT) sizes (i.e. OFDM. We show that ZGI-CO-OFDM requires reasonably small additional computation effort (~13.6%) compared to RGI-CO-OFDM for 112-Gb/s transmission over a 1600-km dispersion-uncompensated optical link. © 2011 Optical Society of America

  11. A MIMO-OFDM Testbed, Channel Measurements, and System Considerations for Outdoor-Indoor WiMAX

    Directory of Open Access Journals (Sweden)

    Torres

    2010-01-01

    Full Text Available The design, implementation, and test of a real-time flexible (Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing MIMO-OFDM IEEE 802.16 prototype are presented. For the design, a channel measurement campaign on the 3.5 GHz band has been carried out, focusing on outdoor-indoor scenarios. The analysis of measured channels showed that higher capacity can be achieved in case of obstructed scenarios and that (Channel Distribution Information at the Transmitter CDIT capacity is close to (Channel State Information at the Transmitter CSIT with much lower complexity and requirements in terms of channel estimation and feedback. The baseband prototype used an (Field Programmable Gate Array FPGA where enhanced signal processing algorithms are implemented in order to improve system performance. We have shown that for MIMO-OFDM systems, extra signal processing such as enhanced joint channel and frequency offset estimation is needed to obtain a good performance and approach in practice the theoretical capacity improvements.

  12. A MIMO-OFDM Testbed, Channel Measurements, and System Considerations for Outdoor-Indoor WiMAX

    Directory of Open Access Journals (Sweden)

    Víctor P. Gil Jiménez

    2010-01-01

    Full Text Available The design, implementation, and test of a real-time flexible 2×2 (Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing MIMO-OFDM IEEE 802.16 prototype are presented. For the design, a channel measurement campaign on the 3.5 GHz band has been carried out, focusing on outdoor-indoor scenarios. The analysis of measured channels showed that higher capacity can be achieved in case of obstructed scenarios and that (Channel Distribution Information at the Transmitter CDIT capacity is close to (Channel State Information at the Transmitter CSIT with much lower complexity and requirements in terms of channel estimation and feedback. The baseband prototype used an (Field Programmable Gate Array FPGA where enhanced signal processing algorithms are implemented in order to improve system performance. We have shown that for MIMO-OFDM systems, extra signal processing such as enhanced joint channel and frequency offset estimation is needed to obtain a good performance and approach in practice the theoretical capacity improvements.

  13. Blind and semi-blind ML detection for space-time block-coded OFDM wireless systems

    Science.gov (United States)

    Zaib, Alam; Al-Naffouri, Tareq Y.

    2014-12-01

    This paper investigates the joint maximum likelihood (ML) data detection and channel estimation problem for Alamouti space-time block-coded (STBC) orthogonal frequency-division multiplexing (OFDM) wireless systems. The joint ML estimation and data detection is generally considered a hard combinatorial optimization problem. We propose an efficient low-complexity algorithm based on branch-estimate-bound strategy that renders exact joint ML solution. However, the computational complexity of blind algorithm becomes critical at low signal-to-noise ratio (SNR) as the number of OFDM carriers and constellation size are increased especially in multiple-antenna systems. To overcome this problem, a semi-blind algorithm based on a new framework for reducing the complexity is proposed by relying on subcarrier reordering and decoding the carriers with different levels of confidence using a suitable reliability criterion. In addition, it is shown that by utilizing the inherent structure of Alamouti coding, the estimation performance improvement or the complexity reduction can be achieved. The proposed algorithms can reliably track the wireless Rayleigh fading channel without requiring any channel statistics. Simulation results presented against the perfect coherent detection demonstrate the effectiveness of blind and semi-blind algorithms over frequency-selective channels with different fading characteristics.

  14. Blind and semi-blind ML detection for space-time block-coded OFDM wireless systems

    KAUST Repository

    Zaib, Alam

    2014-01-01

    This paper investigates the joint maximum likelihood (ML) data detection and channel estimation problem for Alamouti space-time block-coded (STBC) orthogonal frequency-division multiplexing (OFDM) wireless systems. The joint ML estimation and data detection is generally considered a hard combinatorial optimization problem. We propose an efficient low-complexity algorithm based on branch-estimate-bound strategy that renders exact joint ML solution. However, the computational complexity of blind algorithm becomes critical at low signal-to-noise ratio (SNR) as the number of OFDM carriers and constellation size are increased especially in multiple-antenna systems. To overcome this problem, a semi-blind algorithm based on a new framework for reducing the complexity is proposed by relying on subcarrier reordering and decoding the carriers with different levels of confidence using a suitable reliability criterion. In addition, it is shown that by utilizing the inherent structure of Alamouti coding, the estimation performance improvement or the complexity reduction can be achieved. The proposed algorithms can reliably track the wireless Rayleigh fading channel without requiring any channel statistics. Simulation results presented against the perfect coherent detection demonstrate the effectiveness of blind and semi-blind algorithms over frequency-selective channels with different fading characteristics.

  15. Simple optoelectronic frequency-offset estimator for coherent optical OFDM.

    Science.gov (United States)

    Jignesh, Jokhakar; Corcoran, Bill; Zhu, Chen; Lowery, Arthur

    2017-12-11

    We propose a carrier frequency-offset estimator for optical OFDM systems using off-the-shelf optical components and simple digital processing as a replacement for the purely digital signal processing using the cyclostationarity property of optical OFDM signals with cyclic prefix. Simulations show the system accuracy of OFDM signal with 15% cyclic prefix. The effects of the system parameters on the performance are investigated.

  16. 47 CFR 15.252 - Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation of wideband vehicular radar systems..., Additional Provisions § 15.252 Operation of wideband vehicular radar systems within the bands 16.2-17.7 GHz and 23.12-29.0 GHz. (a) Operation under this section is limited to field disturbance sensors that are...

  17. MIMO-OFDM System's Performance Using LDPC Codes for a Mobile Robot

    Science.gov (United States)

    Daoud, Omar; Alani, Omar

    This work deals with the performance of a Sniffer Mobile Robot (SNFRbot)-based spatial multiplexed wireless Orthogonal Frequency Division Multiplexing (OFDM) transmission technology. The use of Multi-Input Multi-Output (MIMO)-OFDM technology increases the wireless transmission rate without increasing transmission power or bandwidth. A generic multilayer architecture of the SNFRbot is proposed with low power and low cost. Some experimental results are presented and show the efficiency of sniffing deadly gazes, sensing high temperatures and sending live videos of the monitored situation. Moreover, simulation results show the achieved performance by tackling the Peak-to-Average Power Ratio (PAPR) problem of the used technology using Low Density Parity Check (LDPC) codes; and the effect of combating the PAPR on the bit error rate (BER) and the signal to noise ratio (SNR) over a Doppler spread channel.

  18. Principles and Limitations of Ultra-Wideband FM Communications Systems

    NARCIS (Netherlands)

    Gerrits, J.F.M.; Kouwenhoven, M.H.L.; Van Der Meer, P.R.; Farserotu, J.R.; Long, J.R.

    2005-01-01

    This paper presents a novel UWB communications system using double FM: a low-modulation index digital FSK followed by a high-modulation index analog FM to create a constant-envelope UWB signal. FDMA techniques at the subcarrier level are exploited to accommodate multiple users. The system is

  19. An HF and lower VHF spectrum assessment system exploiting instantaneously wideband capture

    Science.gov (United States)

    Barnes, Rod I.; Singh, Malkiat; Earl, Fred

    2017-09-01

    We report on a spectral environment evaluation and recording (SEER) system, for instantaneously wideband spectral capture and characterization in the HF and lower VHF band, utilizing a direct digital receiver coupled to a data recorder. The system is designed to contend with a wide variety of electromagnetic environments and to provide accurately calibrated spectral characterization and display from very short (ms) to synoptic scales. The system incorporates a novel RF front end involving automated gain and equalization filter selection which provides an analogue frequency-dependent gain characteristic that mitigates the high dynamic range found across the HF and lower VHF spectrum. The system accurately calibrates its own internal noise and automatically subtracts this from low variance, external spectral estimates, further extending the dynamic range over which robust characterization is possible. Laboratory and field experiments demonstrate that the implementation of these concepts has been effective. Sensitivity to varying antenna load impedance of the internal noise reduction process has been examined. Examples of software algorithms to provide extraction and visualization of spectral behavior over narrowband, wideband, short, and synoptic scales are provided. Application in HF noise spectral density monitoring, spectral signal strength assessment, and electromagnetic interference detection is possible with examples provided. The instantaneously full bandwidth collection provides some innovative applications, and this is demonstrated by the collection of discrete lightning emissions, which form fast ionograms called "flashagrams" in power-delay-frequency plots.

  20. SPECTRAL EFFICIENCY MAXIMIZATION IN MISO-OFDM SYSTEMS USING RATE ADAPTIVE BIT LOADING AND TRANSMIT ANTENNA SELECTION TECHNIQUES

    Directory of Open Access Journals (Sweden)

    VINOTH BABU KUMARAVELU

    2017-05-01

    Full Text Available A high spectral efficient system is expected to meet the growing demands of multimedia applications through a wireless medium. In this paper, a low complex high spectral efficient Reduced Multiple Input Single Output (R-MISO-Orthogonal Frequency Division Multiplexing (OFDM system is proposed. The proposed system exploits the benefits of Rate Adaptive Bit Loading (RABL, Transmit Antenna Selection (TAS and Space Frequency Block Codes (SFBC to get high spectral efficiency through a constrained available spectrum. The performance of the proposed system with different configurations of R-MISO is analyzed with the average Signal to Noise Ratio (SNR gain, Bit Error Rate (BER, outage probability, spectral efficiency and data rate. The performance of the proposed system has greatly enhanced by utilizing TAS and RABL techniques. The obtained simulation results validate this statement.

  1. Algorithms for Indoor Positioning Systems Using Ultra-Wideband Signals

    NARCIS (Netherlands)

    Yan, J.

    2010-01-01

    Positioning systems and techniques have attracted more and more attention in recent years, in particular with satellite navigation technology as a tremendous enabler, and developments in indoor navigation. The work presented in this thesis has been conducted within the research project: \\HERE:

  2. Estimation of CFO and Channels in Phase-Shift Orthogonal Pilot-Aided OFDM Systems with Transmitter Diversity

    Directory of Open Access Journals (Sweden)

    Carlos Ribeiro

    2009-01-01

    Full Text Available We present a CFO estimation algorithm and an associated channel estimation method for broadband OFDM systems with transmitter diversity. The CFO estimation algorithm explores the TD structure of the transmitted symbols carrying pilots and data, relying solely on the data component present on the symbols to estimate the CFO, thus avoiding additional overhead like training symbols or null subcarriers. An intermediate output of the CFO algorithm provides an easy-to-get initial CIR estimate that will be improved with the utilization of a TD LMMSE filter. The feasibility of the investigated methods is substantiated by system simulation using indoor and outdoor broadband wireless channel models. Simulation results show that the joint algorithms provide a near optimal system's performance.

  3. Modelling and Studies for a Wideband Feedback System for Mitigation of Transverse Single Bunch Instabilities

    CERN Document Server

    Li, K S B; Rumolo, G; Cesaratto, J; Dusatko, J; Fox, J; Pivi, M; Pollock, K; Rivetta, C; Turgut, O

    2013-01-01

    As part of the LHC Injector Upgrade (LIU) Project [1], a wideband feedback system is under study for mitigation of coherent single bunch instabilities. This type of system may provide a generic way of shifting the instability threshold to regions that are currently inaccessible, thus, boosting the brightness of future beams. To study the effectiveness of such systems, a numerical model has been developed that constitutes a realistic feedback system including real transfer functions for pickup and kicker, realistic N-tap FIR and IIR filters as well as noise and saturation effects. Simulations of SPS cases have been performed with HEADTAIL to evaluate the feedback effectiveness in the presence of transverse mode coupling and electron clouds. Some results are presented addressing bandwidth limitations and amplifier power requirements.

  4. Design and performance investigation of LDPC-coded upstream transmission systems in IM/DD OFDM-PONs

    Science.gov (United States)

    Gong, Xiaoxue; Guo, Lei; Wu, Jingjing; Ning, Zhaolong

    2016-12-01

    In Intensity-Modulation Direct-Detection (IM/DD) Orthogonal Frequency Division Multiplexing Passive Optical Networks (OFDM-PONs), aside from Subcarrier-to-Subcarrier Intermixing Interferences (SSII) induced by square-law detection, the same laser frequency for data sending from Optical Network Units (ONUs) results in ONU-to-ONU Beating Interferences (OOBI) at the receiver. To mitigate those interferences, we design a Low-Density Parity Check (LDPC)-coded and spectrum-efficient upstream transmission system. A theoretical channel model is also derived, in order to analyze the detrimental factors influencing system performances. Simulation results demonstrate that the receiver sensitivity is improved 3.4 dB and 2.5 dB under QPSK and 8QAM, respectively, after 100 km Standard Single-Mode Fiber (SSMF) transmission. Furthermore, the spectrum efficiency can be improved by about 50%.

  5. Design and implementation of an OFDM-based communication system for the GNU Radio platform

    OpenAIRE

    Majo Boter, Marcos

    2011-01-01

    Projecte final de carrera fet en col.laboració amb Institut für Kommunikationsnetze und Rechnersysteme. Universität Stuttgart Català: El processament de senyal en temps real mitjançant software és un camp que s'està expandint molt gràcies a la capacitat de processament dels ordinadors actuals. L'objectiu d'aquest treball ha estat el disseny i la implementació d'una Ràdio Definida en Software (SDR) que funcioni amb tecnologia OFDM, similar a la utilitzada en les comunicacions mòvils de 4a g...

  6. All-optical virtual private network system in OFDM based long-reach PON using RSOA re-modulation technique

    Science.gov (United States)

    Kim, Chang-Hun; Jung, Sang-Min; Kang, Su-Min; Han, Sang-Kook

    2015-01-01

    We propose an all-optical virtual private network (VPN) system in an orthogonal frequency division multiplexing (OFDM) based long reach PON (LR-PON). In the optical access network field, technologies based on fundamental upstream (U/S) and downstream (D/S) have been actively researched to accommodate explosion of data capacity. However, data transmission among the end users which is arisen from cloud computing, file-sharing and interactive game takes a large weight inside of internet traffic. Moreover, this traffic is predicted to increase more if Internet of Things (IoT) services are activated. In a conventional PON, VPN data is transmitted through ONU-OLT-ONU via U/S and D/S carriers. It leads to waste of bandwidth and energy due to O-E-O conversion in the OLT and round-trip propagation between OLT and remote node (RN). Also, it causes inevitable load to the OLT for electrical buffer, scheduling and routing. The network inefficiency becomes more critical in a LR-PON which has been researched as an effort to reduce CAPEX and OPEX through metro-access consolidation. In the proposed system, the VPN data is separated from conventional U/S and re-modulated on the D/S carrier by using RSOA in the ONUs to avoid bandwidth consumption of U/S and D/S unlike in previously reported system. Moreover, the transmitted VPN data is re-directed to the ONUs by wavelength selective reflector device in the RN without passing through the OLT. Experimental demonstration for the VPN communication system in an OFDM based LR-PON has been verified.

  7. Wavelet-Coded OFDM for Next Generation Mobile Communications

    DEFF Research Database (Denmark)

    Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    2016-01-01

    efficiency. The results show that the Wavelet-Coded OFDM system achieves a BER of 10−3 with nearly 6 dB less SNR than the convolutional coded OFDM system in frequency selective channels with a normalized channel response variation rate of ζ = 10−4.The proposed system fits as a key enabler for the use of mm-wave...

  8. A low-power high-speed ultra-wideband pulse radio transmission system.

    Science.gov (United States)

    Wei Tang; Culurciello, E

    2009-10-01

    We present a low-power high-speed ultra-wideband (UWB) transmitter with a wireless transmission test platform. The system is specifically designed for low-power high-speed wireless implantable biosensors. The integrated transmitter consists of a compact pulse generator and a modulator. The circuit is fabricated in the 0.5-mum silicon-on-sapphire process and occupies 420 mum times 420 mum silicon area. The transmitter is capable of generating pulses with 1-ns width and the pulse rate can be controlled between 90 MHz and 270 MHz. We built a demonstration/testing system for the transmitter. The transmitter achieves a 14-Mb/s data rate. With 50% duty cycle data, the power consumption of the chip is between 10 mW and 21 mW when the transmission distance is from 3.2 to 4 m. The core circuit size is 70 mum times 130 mum.

  9. On the Design of an Elegant CFO Estimate System with the Assistance of Pilots for OFDM Transmission

    Directory of Open Access Journals (Sweden)

    Tsui-Tsai Lin

    2015-12-01

    Full Text Available We present an improved line search method of the carrier frequency offset (CFO estimate technique for OFDM systems aided with pilots. Unlike the conventional approaches, prior knowledge of channel order is unnecessary for the presented scheme, because we apply an interpolation technique for obtaining the extended channel frequency response. The search mechanism of the proposed approach is primarily based on the criterion that CFO can be found by discovering the frequency that achieves the minimum value of the well-defined channel residual energy. In addition, we substitute the line search method with an iterative approach to reduce the proposed estimator’s complexity. Analytical and simulation results have been conducted to verify the efficacy of the proposed schemes in this paper.

  10. Joint Channel Estimation and Signal Detection for the OFDM System Without Cyclic Prefix Over Doubly-Selective Channels

    Science.gov (United States)

    Song, Lijun; Lei, Xia; Jin, Maozhu; Lv, Zhihan

    2015-12-01

    In the high-speed railway wireless communication, a joint channel estimation and signal detection algorithm is proposed for the orthogonal frequency division multiplexing (OFDM) system without cyclic prefix in the doubly-selective fading channels. Our proposed method first combines the basis expansion model (BEM) and the inter symbol interference (ISI) cancellation to overcome the situation that exists with the fast time-varying channel and the normalized maximum multipath channel exceeding the length of the cyclic prefix (CP). At first, the channel estimation and signal detection can be approximated without considering the ISI. Then, the channel parameters and signal detection are updated through ISI cancellation and circular convolution reconstruction from the frequency domain. The simulations show the algorithm can improve the performance of channel estimation and signal detection.

  11. Development of a high power wideband polarizer for electron cyclotron current drive system in JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Saigusa, Mikio, E-mail: saigusa@mx.ibaraki.ac.jp [Ibaraki University, Hitachi, Ibaraki 316-8511 (Japan); Oyama, Gaku; Matsubara, Fumiaki; Takii, Keita; Sai, Takuma [Ibaraki University, Hitachi, Ibaraki 316-8511 (Japan); Kobayashi, Takayuki; Moriyama, Shinichi [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan)

    2015-10-15

    Highlights: • We developed a new wideband polarizer for JT-60SA ECCD system. • The wideband polarizer is optimized for dual frequency gyrotrons (110 and 138 GHz) in JT-60SA. • The wideband polarization properties were verified at cold tests. • The preliminary high power tests have been carried out at 0.25 MW, 3 s at 110 GHz. - Abstract: A wideband polarizer consisting of a polarization twister and a circular polarizer has been developed for an electron cyclotron current driving system in JT-60SA, where the output frequencies of a dual frequency gyrotron for JT-60SA are 110 and 138 GHz. The groove depths are optimized for the dual frequencies by numerical simulations using a FDTD method and cold test results. The polarization properties of a mock-up polarizer are measured at the dual frequencies in cold tests. The cold test results suggest that all practical polarizations for ECCD experiments can be achieved at the dual frequencies. The prototype polarization twister has been tested up to 0.25 MW during 3 s at the frequency of 110 GHz.

  12. Theoretical analysis and simulation of a code division multiple access system (cdma for secure signal transmission in wideband channels

    Directory of Open Access Journals (Sweden)

    Stevan M. Berber

    2014-06-01

    Full Text Available Chaotic spreading sequences can increase secrecy and resistance to interception in signal transmission. Chaos-based CDMA systems have been well investigated in the case of flat fading and noise presence in the channel. However, these systems operating in wideband channels, characterized by the frequency selective fading and white Gaussian noise, have not been investigated to the level of understanding their practical applications. This paper presents a detailed mathematical model of a CDMA system based on chaotic spreading sequences. In a theoretical analysis, all signals are represented in the discrete time domain. Using the theory of discrete time stochastic processes, the probability of error expressions are derived in a closed form for a multi-user chaos based CDMA system. For the sake of comparison, the expressions for the probability of error are derived separately for narrowband and wideband channels. The application of the system interleaving technique is investigated in particular, which showed that this technique can substantially improve probability of error in the system.  The system is simulated and the findings of the simulation confirmed theoretically expected results. Possible improvements in the probability of bit error due to multipath channel nature, with and without interleavers, are quantified depending on the random delay and the number of users in the system. In the analyzed system, a simplified version of the wideband channel model, proposed for modern wideband wireless networks, is used. Introduction Over the past years, the demand for wireless communications has increased substantially due to advancements in mobile communication systems and networks. Following these increasing demands, modern communication systems require the ability to handle a large number of users to process and transmit wideband signals through complex frequency selective channels. One of the techniques for transmission of multi-user signals is the

  13. Joint Frequency Ambiguity Resolution and Accurate Timing Estimation in OFDM Systems with Multipath Fading

    Directory of Open Access Journals (Sweden)

    Ouyang Shan

    2006-01-01

    Full Text Available A serious disadvantage of orthogonal frequency-division multiplexing (OFDM is its sensitivity to carrier frequency offset (CFO and timing offset (TO. For many low-complexity algorithms, the estimation ambiguity exists when the CFO is greater than one or two subcarrier spacing, and the estimated TO is also prone to exceeding the ISI-free interval within the cyclic prefix (CP. This paper presents a method for joint CFO ambiguity resolution and accurate TO estimation in multipath fading. Maximum-likelihood (ML principle is employed and only one pilot symbol is needed. Frequency ambiguity is resolved and accurate TO can be obtained simultaneously by using the fast Fourier transform (FFT and one-dimensional (1D search. Both known and unknown channel order cases are considered. Computer simulations show that the proposed algorithm outperforms some others in the multipath fading channels.

  14. Information-Theoretic Analysis of Underwater Acoustic OFDM Systems in Highly Dispersive Channels

    Directory of Open Access Journals (Sweden)

    Francois-Xavier Socheleau

    2012-01-01

    established by the ISI/ICI and are based on lower bounds on mutual information that assume independent and identically distributed input data symbols. In agreement with recent statistical analyses of experimental shallow-water data, the channel is modeled as a multivariate Rician fading process with a slowly time-varying mean and with potentially correlated scatterers, which is more general than the common wide-sense stationary uncorrelated scattering model. Numerical assessments on real UA channels with spread factors around 10−1 show that reliable OFDM transmissions at 2 to 4 bits/sec/Hz are achievable provided an average signal-to-noise ratio of 15 to 20 dB.

  15. Integrated Ultra-Wideband Tracking and Carbon Dioxide Sensing System Design for International Space Station Applications

    Science.gov (United States)

    Ni, Jianjun (David); Hafermalz, David; Dusl, John; Barton, Rick; Wagner, Ray; Ngo, Phong

    2015-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time-of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide (CO2) and felt upset. Recent findings indicate that frequent, short-term crew exposure to elevated CO2 levels combined with other physiological impacts of microgravity may lead to a number of detrimental effects, including loss of vision. To evaluate the risks associated with transient elevated CO2 levels and design effective countermeasures, doctors must have access to frequent CO2 measurements in the immediate vicinity of individual crew members along with simultaneous measurements of their location in the space environment. To achieve this goal, a small, low-power, wearable system that integrates an accurate CO2 sensor with an ultra-wideband (UWB) radio capable of real-time location estimation and data communication is proposed. This system would be worn by crew members or mounted on a free-flyer and would automatically gather and transmit sampled sensor data tagged with real-time, high-resolution location information. Under the current proposed effort, a breadboard prototype of such a system has been developed. Although the initial effort is targeted to CO2 monitoring, the concept is applicable to other types of sensors. For the initial effort, a micro-controller is leveraged to integrate a low-power CO2 sensor with a commercially available UWB radio system with ranging capability. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested

  16. Variance based OFDM frame synchronization

    Directory of Open Access Journals (Sweden)

    Z. Fedra

    2012-04-01

    Full Text Available The paper deals with a new frame synchronization scheme for OFDM systems and calculates the complexity of this scheme. The scheme is based on the computing of the detection window variance. The variance is computed in two delayed times, so a modified Early-Late loop is used for the frame position detection. The proposed algorithm deals with different variants of OFDM parameters including guard interval, cyclic prefix, and has good properties regarding the choice of the algorithm's parameters since the parameters may be chosen within a wide range without having a high influence on system performance. The verification of the proposed algorithm functionality has been performed on a development environment using universal software radio peripheral (USRP hardware.

  17. Weighted-noise threshold based channel estimation for OFDM ...

    Indian Academy of Sciences (India)

    Orthogonal frequency division multiplexing (OFDM) technology is the key to evolving telecommunication standards including 3GPP-LTE Advanced and WiMAX. Reliability of any OFDM system increases with improvedmean square error performance (MSE) of its channel estimator (CE). Particularly, a least squares (LS) ...

  18. Experimental demonstration of cyclic prefix insertion for all-optical fractional OFDM

    Science.gov (United States)

    Nagashima, T.; Cincotti, G.; Murakawa, T.; Shimizu, S.; Hasegawa, M.; Hattori, K.; Okuno, M.; Mino, S.; Himeno, A.; Wada, N.; Uenohara, H.; Konishi, T.

    2017-08-01

    We verified the insertion effect of a cyclic prefix (CP) in an all-optical fractional orthogonal frequency division multiplexing (FrOFDM) system. CP is an essential technique for reducing inter-channel interference in conventional OFDM. Because a FrOFDM signal is generated by a fractional Fourier transform, which is a generalization of the Fourier transform, a CP is also effective for a FrOFDM signal. The measured bit error rate of a 4×10 Gbit/s DBPSK all-optical FrOFDM system showed that the CP improves the signal quality even if the performance of the time gate is insufficient.

  19. Adaptive Space-Time-Spreading-Assisted Wideband CDMA Systems Communicating over Dispersive Nakagami- Fading Channels

    Directory of Open Access Journals (Sweden)

    Yang Lie-Liang

    2005-01-01

    Full Text Available In this contribution, the performance of wideband code-division multiple-access (W-CDMA systems using space-time-spreading- (STS- based transmit diversity is investigated, when frequency-selective Nakagami- fading channels, multiuser interference, and background noise are considered. The analysis and numerical results suggest that the achievable diversity order is the product of the frequency-selective diversity order and the transmit diversity order. Furthermore, both the transmit diversity and the frequency-selective diversity have the same order of importance. Since W-CDMA signals are subjected to frequency-selective fading, the number of resolvable paths at the receiver may vary over a wide range depending on the transmission environment encountered. It can be shown that, for wireless channels where the frequency selectivity is sufficiently high, transmit diversity may be not necessitated. Under this case, multiple transmission antennas can be leveraged into an increased bitrate. Therefore, an adaptive STS-based transmission scheme is then proposed for improving the throughput of W-CDMA systems. Our numerical results demonstrate that this adaptive STS-based transmission scheme is capable of significantly improving the effective throughput of W-CDMA systems. Specifically, the studied W-CDMA system's bitrate can be increased by a factor of three at the modest cost of requiring an extra 0.4 dB or 1.2 dB transmitted power in the context of the investigated urban or suburban areas, respectively.

  20. Validity of an ultra-wideband local positioning system to measure locomotion in indoor sports.

    Science.gov (United States)

    Serpiello, F R; Hopkins, W G; Barnes, S; Tavrou, J; Duthie, G M; Aughey, R J; Ball, K

    2017-12-01

    The validity of an Ultra-wideband (UWB) positioning system was investigated during linear and change-of-direction (COD) running drills. Six recreationally-active men performed ten repetitions of four activities (walking, jogging, maximal acceleration, and 45º COD) on an indoor court. Activities were repeated twice, in the centre of the court and on the side. Participants wore a receiver tag (Clearsky T6, Catapult Sports) and two reflective markers placed on the tag to allow for comparisons with the criterion system (Vicon). Distance, mean and peak velocity, acceleration, and deceleration were assessed. Validity was assessed via percentage least-square means difference (Clearsky-Vicon) with 90% confidence interval and magnitude-based inference; typical error was expressed as within-subject standard deviation. The mean differences for distance, mean/peak speed, and mean/peak accelerations in the linear drills were in the range of 0.2-12%, with typical errors between 1.2 and 9.3%. Mean and peak deceleration had larger differences and errors between systems. In the COD drill, moderate-to-large differences were detected for the activity performed in the centre of the court, increasing to large/very large on the side. When filtered and smoothed following a similar process, the UWB-based positioning system had acceptable validity, compared to Vicon, to assess movements representative of indoor sports.

  1. Nonlinear compensation for high-order modulation signal in a IM/DD DFT-S-OFDM system with directly modulated laser

    Science.gov (United States)

    Wang, Kaihui; Qin, Chaoyi; Xiao, Jiangnan; Chi, Nan; Yu, Jianjun

    2017-01-01

    The nonlinear compensation algorithm based on Volterra series has been proved effective in low order modulation OFDM system, such as QPSK/16QAM. In this paper, we demonstrate a 64QAM/ 128QAM DFT-S-OFDM signal generation with DML with some advanced algorithms such as DD-LMS, ISFA, DFT-S and nonlinear compensation to improve the signal performance. For the first time we demonstrate that the nonlinear compensation algorithm based on Volterra series can improve the performance of the high-order modulation DFT-S-OFDM signal such as 64QAM and 128QAM. In this experiment we have realized 19.1/11.2Gb/s 64/128QAM signal transmission over 15km fiber at 1307nm. For 64QAM case, the receiver sensitivity can be improved about 1dB when all the algorithms mentioned in this paper are adopted. And the BER can be improved from 4.7x10-3 to 2.8x10-3 at 7.0dBm for 128QAM signal, which reaches the HD-FEC threshold of 3.8x10-3.

  2. Design of the New Wideband RF System for the CERN PS Booster

    CERN Document Server

    Paoluzzi, Mauro; Angoletta, Maria Elena; Arnaudon, Luca; Energico, Salvatore; Findlay, Alan; Haase, Matthias; Jaussi, Michael; Jones, Anthony; Landré, David; Molendijk, John; Quartullo, Danilo; Shaposhnikova, Elena

    2016-01-01

    For the renovation and upgrade of the CERN PS Booster (PSB) RF systems a development project was launched in 2012. The design, based on a new approach, aimed at replacing the existing tuned, narrowband RF systems with wideband, modular, solid-state driven units. A wide range of issues had to be addressed spanning from RF power production, radiation hardness of solid-state devices, active cancellation of beam-induced voltages, dedicated low-level electronics allowing multi-harmonic operation and beam stability. Following a three-year prototyping and testing campaign and two international reviews, the project endorsement came at the end of year 2015. It foresees the complete removal of present h1, h2 and h10 systems and the deployment of a new one covering all the frequency ranges from 1 MHz to 18 MHz. The four PSB rings will be equipped with 144 identical acceleration cells providing 24 kV total RF voltage per ring. This paper describes the design concepts, the retained solutions, the expected performances and...

  3. Two-Step Time of Arrival Estimation for Pulse-Based Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    H. Vincent Poor

    2008-05-01

    Full Text Available In cooperative localization systems, wireless nodes need to exchange accurate position-related information such as time-of-arrival (TOA and angle-of-arrival (AOA, in order to obtain accurate location information. One alternative for providing accurate position-related information is to use ultra-wideband (UWB signals. The high time resolution of UWB signals presents a potential for very accurate positioning based on TOA estimation. However, it is challenging to realize very accurate positioning systems in practical scenarios, due to both complexity/cost constraints and adverse channel conditions such as multipath propagation. In this paper, a two-step TOA estimation algorithm is proposed for UWB systems in order to provide accurate TOA estimation under practical constraints. In order to speed up the estimation process, the first step estimates a coarse TOA of the received signal based on received signal energy. Then, in the second step, the arrival time of the first signal path is estimated by considering a hypothesis testing approach. The proposed scheme uses low-rate correlation outputs and is able to perform accurate TOA estimation in reasonable time intervals. The simulation results are presented to analyze the performance of the estimator.

  4. Low-Complexity Banded Equalizers for OFDM Systems in Doppler Spread Channels

    Directory of Open Access Journals (Sweden)

    Leus Geert

    2006-01-01

    Full Text Available Recently, several approaches have been proposed for the equalization of orthogonal frequency-division multiplexing (OFDM signals in challenging high-mobility scenarios. Among them, a minimum mean-squared error (MMSE block linear equalizer (BLE, based on a band LDL factorization, is particularly attractive for its good tradeoff between performance and complexity. This paper extends this approach towards two directions. First, we boost the BER performance of the BLE by designing a receiver window specially tailored to the band LDL factorization. Second, we design an MMSE block decision-feedback equalizer (BDFE that can be modified to support receiver windowing. All the proposed banded equalizers share a similar computational complexity, which is linear in the number of subcarriers. Simulation results show that the proposed receiver architectures are effective in reducing the BER performance degradation caused by the intercarrier interference (ICI generated by time-varying channels. We also consider a basis expansion model (BEM channel estimation approach, to establish its impact on the BER performance of the proposed banded equalizers.

  5. Compensation of Linear Multiscale Doppler for OFDM-Based Underwater Acoustic Communication Systems

    Directory of Open Access Journals (Sweden)

    A. E. Abdelkareem

    2012-01-01

    Full Text Available In particular cases, such as acceleration, it is required to design a receiver structure that is capable of accomplishing time varying Doppler compensation. In this paper, two approaches are taken into consideration in order to estimate the symbol timing offset parameter. The first method employed to achieve an estimate of this particular parameter is based upon centroid localization and this prediction is reinforced by a second technique which utilises linear prediction, based on the assumption that the speed changes linearly during the OFDM symbol time. Subsequently, the two estimations of the symbol timing offset parameter are smoothed in order to obtain a fine tuned approximation of the Doppler scale. Additionally, the effects of weighting coefficients on smoothing the Doppler scale and on the performance of the receiver are also investigated. The proposed receiver is investigated, incorporating an improvement that includes fine tuning of the coarse timing synchronization in order to accommodate the time-varying Doppler. Based on this fine-tuned timing synchronization, an extension to the improved receiver is presented to assess the performance of two point correlations. The proposed algorithms' performances were investigated using real data obtained from an experiment that took place in the North Sea in 2009.

  6. Comparison of Antenna Array Systems Using OFDM for Software Radio via the SIBIC Model

    Directory of Open Access Journals (Sweden)

    Robert D. Palmer

    2005-09-01

    Full Text Available This paper investigates the performance of two candidates for software radio WLAN, reconfigurable OFDM modulation and antenna diversity, in an indoor environment. The scenario considered is a 20 m×10 m×3 m room with two base units and one mobile unit. The two base units use omnidirectional antennas to transmit and the mobile unit uses either a single antenna with equalizer, a fixed beamformer with equalizer, or an adaptive beamformer with equalizer to receive. The modulation constellation of the data is QPSK and 16-QAM. The response of the channel at the mobile unit is simulated using a three-dimensional indoor WLAN propagation model that generates multipath components with realistic spatial and temporal correlation. An underlying assumption of the scenario is that existing antenna hardware is available and could be exploited if software processing resources are allocated. The results of the simulations indicate that schemes using more resources outperform simpler schemes in most cases. This implies that desired user performance could be used to dynamically assign software processing resources to the demands of a particular indoor WLAN channel if such resources are available.

  7. A fast-hopping 3-band CMOS frequency synthesizer for MB-OFDM UWB system

    Science.gov (United States)

    Yongzheng, Zheng; Lingli, Xia; Weinan, Li; Yumei, Huang; Zhiliang, Hong

    2009-09-01

    A fast-hopping 3-band (mode 1) multi-band orthogonal frequency division multiplexing ultra-wideband frequency synthesizer is presented. This synthesizer uses two phase-locked loops for generating steady frequencies and one quadrature single-sideband mixer for frequency shifting and quadrature frequency generation. The generated carriers can hop among 3432 MHz, 3960 MHz, and 4488 MHz. Implemented in a 0.13 μm CMOS process, this fully integrated synthesizer consumes 27 mA current from a 1.2 V supply. Measurement shows that the out-of-band spurious tones are below -50 dBc, while the in-band spurious tones are below -34 dBc. The measured hopping time is below 2 ns. The core die area is 1.0 × 1.8 mm2.

  8. A fast-hopping 3-band CMOS frequency synthesizer for MB-OFDM UWB system

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yongzheng; Xia Lingli; Li Weinan; Huang Yumei; Hong Zhiliang, E-mail: yumeihuang@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-09-15

    A fast-hopping 3-band (mode 1) multi-band orthogonal frequency division multiplexing ultra-wideband frequency synthesizer is presented. This synthesizer uses two phase-locked loops for generating steady frequencies and one quadrature single-sideband mixer for frequency shifting and quadrature frequency generation. The generated carriers can hop among 3432 MHz, 3960 MHz, and 4488 MHz. Implemented in a 0.13 {mu}m CMOS process, this fully integrated synthesizer consumes 27 mA current from a 1.2 V supply. Measurement shows that the out-of-band spurious tones are below -50 dBc, while the in-band spurious tones are below -34 dBc. The measured hopping time is below 2 ns. The core die area is 1.0 x 1.8 mm{sup 2}.

  9. Hybrid PAPR reduction scheme with Huffman coding and DFT-spread technique for direct-detection optical OFDM systems

    Science.gov (United States)

    Peng, Miao; Chen, Ming; Zhou, Hui; Wan, Qiuzhen; Jiang, LeYong; Yang, Lin; Zheng, Zhiwei; Chen, Lin

    2018-01-01

    High peak-to-average power ratio (PAPR) of the transmit signal is a major drawback in optical orthogonal frequency division multiplexing (OOFDM) system. In this paper, we propose and experimentally demonstrate a novel hybrid scheme, combined the Huffman coding and Discrete Fourier Transmission-Spread (DFT-spread), in order to reduce high PAPR in a 16-QAM short-reach intensity-modulated and direct-detection OOFDM (IMDD-OOFDM) system. The experimental results demonstrated that the hybrid scheme can reduce the PAPR by about 1.5, 2, 3 and 6 dB, and achieve 1.5, 1, 2.5 and 3 dB receiver sensitivity improvement compared to clipping, DFT-spread and Huffman coding and original OFDM signals, respectively, at an error vector magnitude (EVM) of -10 dB after transmission over 20 km standard single-mode fiber (SSMF). Furthermore, the throughput gain can be of the order of 30% by using the hybrid scheme compared with the cases of without applying the Huffman coding.

  10. Adaptive Volterra equalizer for optical OFDM modem

    Science.gov (United States)

    Mhatli, Sofien; Nsiri, Bechir; Jarajreh, Mutsam A.; Channoufi, Malek; Attia, Rabah

    2015-01-01

    This paper addresses OFDM (orthogonal frequency division multiplexing) transmission over optical links with high spectral efficiency, i.e. by using high-order QAM-modulation schemes as a mapping method prior to the OFDM multicarrier representation. Here we address especially coherent optical OFDM modem in long distance which is affected by a nonlinear distortion caused by fiber nonlinearity as a major performance-limiting factor in advanced optical communication systems. We proposed a nonlinear electrical equalization scheme based on the Volterra model. Compared with other popular linear compensation technique such as the LMS (least Mean Square) and RLS (Recursive Least square), simulation results are presented to demonstrate the capability of a Volterra model based electrical equalizer used in a coherent optical orthogonal frequency division multiplexing system. It is shown that the Volterra model based equalizer can significantly reduce nonlinear distortion.

  11. Information Guided Precoding for OFDM

    KAUST Repository

    Li, Qiang

    2017-08-09

    In the conventional orthogonal frequency division multiplexing with index modulation (OFDM-IM), the M-ary modulated symbols are transmitted on a subset of subcarriers under the guidance of information bits. In this paper, a novel information guided precoding, called precoding aided (P-)OFDMIM, is proposed to improve the spectral efficiency (SE) of OFDMIM. In P-OFDM-IM, the information bits are jointly conveyed through the conventional M-ary modulated symbols and the indices of precoding matrices and vectors. Then, the principle of P-OFDM-IM is embodied in two different implementation types, including P-OFDM-IM-I and P-OFDM-IM-II. Specifically, P-OFDM-IM-I divides all subcarriers into L groups and modulates them by L distinguishable constellations. P-OFDM-IM-II partitions the total subcarriers into L overlapped layers and performs IM layer by layer, where distinguishable constellations are employed across layers. A practical precoding strategy is designed for P-OFDM-IM under the phase shift keying/quadrature amplitude modulation constraint. A low-complexity log-likelihood ratio detector is proposed to ease the computational burden on the receiver. To evaluate the performance of P-OFDM-IM theoretically, an upper bound on the bit error rate and the achievable rate are studied. Computer simulation results show that P-OFDM-IM-I outperforms the existing OFDM-IM related schemes at high SE, while P-OFDM-IM-II performs the best at low SE.

  12. Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System

    Science.gov (United States)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John

    2012-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".

  13. An application of OFDM method to optical disc recording

    Science.gov (United States)

    Saito, Kimihiro

    2017-08-01

    An application of Orthogonal Frequency Division Multiplexing (OFDM) method to optical disc recording/readout is presented. OFDM has been widely used in the field of telecommunication owing to its highly efficient frequency usage. However OFDM has not been applied to optical disc recording because it is a multiple data transfer method and needs to record analog signals. Partial Response Maximum Likelihood (PRML) used in the current optical disc systems requires a certain kind of analog recording. Although optical recording usually creates binary marks, it is possible to obtain arbitrary analog readout signals by using PWM method. Another technique to generate analog signals using the oversampled binary recording is described and applied to multiple level recording. In addition, it is found that the level adjustment of multiple carriers for OFDM leads to the advantage when it is applied to the optical disc system. Using the simple transfer function model of the optical disc system, two types of readout signals using PRML and OFDM are calculated and then their qualities are compared. Since Quadrature Amplitude Modulation (QAM) method can be combined with OFDM, it is possible to increase the recoding density of optical disc systems. A method employing OFDM with 64-QAM and the pre-enhance method to the high frequency carrier shows an ability of 1.5 times recording density of the conventional Bru-ray Disc (BD).

  14. On the Comparative Performance Analysis of Turbo-Coded Non-Ideal Sigle-Carrier and Multi-Carrier Waveforms over Wideband Vogler-Hoffmeyer HF Channels

    Directory of Open Access Journals (Sweden)

    F. Genc

    2014-09-01

    Full Text Available The purpose of this paper is to compare the turbo-coded Orthogonal Frequency Division Multiplexing (OFDM and turbo-coded Single Carrier Frequency Domain Equalization (SC-FDE systems under the effects of Carrier Frequency Offset (CFO, Symbol Timing Offset (STO and phase noise in wide-band Vogler-Hoffmeyer HF channel model. In mobile communication systems multi-path propagation occurs. Therefore channel estimation and equalization is additionally necessary. Furthermore a non-ideal local oscillator generally is misaligned with the operating frequency at the receiver. This causes carrier frequency offset. Hence in coded SC-FDE and coded OFDM systems; a very efficient, low complex frequency domain channel estimation and equalization is implemented in this paper. Also Cyclic Prefix (CP based synchronization synchronizes the clock and carrier frequency offset.The simulations show that non-ideal turbo-coded OFDM has better performance with greater diversity than non-ideal turbo-coded SC-FDE system in HF channel.

  15. Low-complexity frequency domain nonlinear compensation for OFDM based high-speed visible light communication systems with light emitting diodes.

    Science.gov (United States)

    Zhang, Guowu; Zhang, Junwei; Hong, Xuezhi; He, Sailing

    2017-02-20

    A novel frequency domain nonlinear compensation method, FD-NC, is proposed for orthogonal frequency division multiplexing (OFDM) based visible light communication (VLC) system. By tackling the memory nonlinear impairments from light emitting diodes (LEDs) in the frequency domain rather than in the time domain, the proposed method has much lower computational complexity than the conventional time domain Volterra nonlinear compensation method (TD-NC). Both theoretical derivation and experimental investigation of the proposed method in OFDM based VLC systems with four types of commercial LEDs are presented. The results of experiments show that the proposed low-complexity FD-NC method with a moderate truncation factor achieves a performance comparable to that of the TD-NC. The application of FD-NC method in the bit-power loading OFDM VLC system is also experimentally demonstrated. Compared with the linear equalization case, at a bit error rate (BER) of 3.8 × 10-3 (a), the transmission distance of a 960 Mbps VLC system can be extended from 0.7 m to 1.8 m by the FD-NC, and (b) the achievable system capacity can be enhanced by 18.7%~36.5% for transmission distance in the range of 0.5 m~2 m with the FD-NC. The complexity analysis shows that the required number of real-valued multiplications (RNRM) of the FD-NC is independent of linear or nonlinear memory length. The reduction of RNRM achieved by the FD-NC over the TD-NC becomes more profound for a larger nonlinear memory length or a smaller truncation factor.

  16. Experimental demonstration of low-complexity fiber chromatic dispersion mitigation for reduced guard-interval OFDM coherent optical communication systems based on digital spectrum sub-band multiplexing.

    Science.gov (United States)

    Malekiha, Mahdi; Tselniker, Igor; Nazarathy, Moshe; Tolmachev, Alex; Plant, David V

    2015-10-05

    We experimentally demonstrate a novel digital signal processing (DSP) structure for reduced guard-interval (RGI) OFDM coherent optical systems. The proposed concept is based on digitally slicing optical channel bandwidth into multiple spectrally disjoint sub-bands which are then processed in parallel. Each low bandwidth sub-band has a smaller delay-spread compared to a full-band signal. This enables compensation of both chromatic dispersion (CD) and polarization mode dispersion using a simple timing and one-tap-per-symbol frequency domain equalizer with a small cyclic prefix overhead. In terms of the DSP architecture, this allows for a highly efficient parallelization of DSP tasks performed over the received signal samples by deploying multiple processors running at a lower clock rate. It should be noted that this parallelization is performed in the frequency domain and it allows for flexible optical transceiver schemes. In addition, the resulting optical receiver is simplified due to the removal of the CD compensation equalizer compared to conventional RGI-OFDM systems. In this paper we experimentally demonstrate digital sub-banding of optical bandwidth. We test the system performance for different modulation formats (QPSK, 16QAM and 32QAM) over various transmission distances and optical launch powers using a 1.5% CP overhead in all scenarios. We also compare the proposed RGI-OFDM architecture performance against common single carrier modulation formats. At the same total data rate and signal bandwidth both systems have similar performance and transmission reach whereas the proposed method allows for a significant reduction of computational complexity due to removal of CD pre/post compensation equalizer.

  17. Error Control Coding Schemes for Ultra-wideband Impulse Radio Systems

    NARCIS (Netherlands)

    Pietrzyk, M.M.

    2010-01-01

    Ultra-wideband (UWB) is a promising technology that offers a potential solution for the data rate, cost, power consumption and physical size requirements of the next generation wireless devices. UWB may also play an important role in the realization of future heterogeneous networking. This

  18. System Level Evaluation of Innovative Coded MIMO-OFDM Systems for Broadcasting Digital TV

    Directory of Open Access Journals (Sweden)

    Y. Nasser

    2008-01-01

    Full Text Available Single-frequency networks (SFNs for broadcasting digital TV is a topic of theoretical and practical interest for future broadcasting systems. Although progress has been made in the characterization of its description, there are still considerable gaps in its deployment with MIMO technique. The contribution of this paper is multifold. First, we investigate the possibility of applying a space-time (ST encoder between the antennas of two sites in SFN. Then, we introduce a 3D space-time-space block code for future terrestrial digital TV in SFN architecture. The proposed 3D code is based on a double-layer structure designed for intercell and intracell space time-coded transmissions. Eventually, we propose to adapt a technique called effective exponential signal-to-noise ratio (SNR mapping (EESM to predict the bit error rate (BER at the output of the channel decoder in the MIMO systems. The EESM technique as well as the simulations results will be used to doubly check the efficiency of our 3D code. This efficiency is obtained for equal and unequal received powers whatever is the location of the receiver by adequately combining ST codes. The 3D code is then a very promising candidate for SFN architecture with MIMO transmission.

  19. Energy-Efficiency Analysis of Per-Subcarrier Antenna Selection with Peak-Power Reduction in MIMO-OFDM Wireless Systems

    Directory of Open Access Journals (Sweden)

    Ngoc Phuc Le

    2014-01-01

    Full Text Available The use of per-subcarrier antenna subset selection in OFDM wireless systems offers higher system capacity and/or improved link reliability. However, the implementation of the conventional per-subcarrier selection scheme may result in significant fluctuations of the average power and peak power across antennas, which affects the potential benefits of the system. In this paper, power efficiency of high-power amplifiers and energy efficiency in per-subcarrier antenna selection MIMO-OFDM systems are investigated. To deliver the maximum overall power efficiency, we propose a two-step strategy for data-subcarrier allocation. This strategy consists of an equal allocation of data subcarriers based on linear optimization and peak-power reduction via cross-antenna permutations. For analysis, we derive the CCDF (complementary cumulative distribution function of the power efficiency as well as the analytical expressions of the average power efficiency. It is proved from the power-efficiency perspective that the proposed allocation scheme outperforms the conventional scheme. We also show that the improvement in the power efficiency translates into an improved capacity and, in turn, increases energy efficiency of the proposed system. Simulation results are provided to validate our analyses.

  20. Wideband and high-power light sources for in-line interferometric diagnostics of laser structuring systems

    Science.gov (United States)

    Peterka, Pavel; Todorov, Filip; KašÎ¯k, Ivan; Matějec, Vlastimil; Podrazký, Ondřej; Šašek, Ladislav; Mallmann, Guilherme; Schmitt, Robert

    2012-01-01

    Laser structuring is rapidly developing manufacturing technique for broad spectrum of industrial branches, e.g. aerospace, power engineering, tool- and mould making, and automotive. It enables to prepare work pieces and products with very fine micro structures achieving a far better degree of details than conventional structuring techniques like etching or eroding. However, the state of art in laser structuring shows a crucial deficit. Used systems contain no metrology setup to detect the shape geometry (depth and length) and contour accuracy during the process. Therefore, an innovative in-line metrology technique based on low coherence interferometry for laser structuring systems has been investigated and described in the paper. In this contribution we present our results in the research of wideband and highpower light sources for the proposed low-coherence interferometric measurement system. The system can be incorporated into a structuring workplace equipped with a Q-switched ytterbium-doped fiber laser at 1064 nm for material processing. In the paper we focus on two wideband sources for such a measurement system. The first source is based on a superluminescent diode and the second one is based on an amplified spontaneous emission in a double-clad ytterbium-doped fiber. An example of results measured with the proposed in-line metrology system is presented.

  1. Influence of frequency offset on the reception of OFDM/QPSK signal using MBDD algorithm

    Directory of Open Access Journals (Sweden)

    N. Milošević

    2011-11-01

    Full Text Available In this paper we present the basic characteristics of Orthogonal Frequency Division Multiplex (OFDM systems with quadrature phase shift keying (QPSK modulation and multi-bit differential detection (MBDD. In the simulation environment designed for this purpose, we analyze the effects of frequency offset on the performances of OFDM digital communications. We also analyze the influence of OFDM system parameters on system performances for various values of frequency offset, number of bits for multi-bit detection and the number of subcarriers. We have shown the advantages and disadvantages of using MBDD in the OFDM systems.

  2. Multiband OFDM for Covert Acoustic Communications

    NARCIS (Netherlands)

    Leus, G.; Van Walree, P.A.

    A multiband OFDM transmitter and receiver are presented for underwater communications at low SNR. Compared with a single-band OFDMscheme, the multiband approach leads to a considerable reduction in the receiver complexity. The proposed system has been tested at sea with 16 subbands covering a total

  3. Multiband OFDM for Covert Acoustic Communications

    NARCIS (Netherlands)

    Leus, G.; Walree, P.A. van

    2008-01-01

    A multiband OFDM transmitter and receiver are presented for underwater communications at low SNR. Compared with a single-band OFDMscheme, the multiband approach leads to a considerable reduction in the receiver complexity. The proposed system has been tested at sea with 16 subbands covering a total

  4. Enhanced subcarrier-index modulation-based asymmetrically clipped optical OFDM using even subcarriers

    Science.gov (United States)

    Guan, Rui; Xu, Wei; Yang, Zhaohui; Huang, Nuo; Wang, Jin-Yuan; Chen, Ming

    2017-11-01

    In this paper, we propose a subcarrier-index modulation-based asymmetrically clipped optical orthogonal frequency division multiplexing (SACO-OFDM) scheme for optical wireless communication (OWC) systems, which benefits from the subcarrier-index modulation (SIM) and asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) techniques. SACO-OFDM conveys additional information via the subcarrier indexing, and the error rate of the bit transmitted by the subcarrier indexing is much lower than that of the conventional M-ary modulation scheme. On the other hand, as the signal constellation in M-ary modulation is relieved, SACO-OFDM has simple transceiver structure and low detection complexity. Moreover, considering the spectral, an enhanced SACO-OFDM (ESACO-OFDM) using even subcarriers is proposed. In this technique, the odd subcarriers are activated for SACO-OFDM, and the imaginary part of even subcarriers are activated for pulse-amplitude-modulated discrete multitone (PAM-DMT). Clearly, ESACO-OFDM achieves better spectral efficiency than the conventional optical OFDM, since all subcarriers are used for data transmission. Simulation results verify the significant bit error rate (BER) and peak-to-average power ratio (PAPR) improvement by the proposed ESACO-OFDM, especially for the medium-to-high signal-to-noise ratio (SNR) regime.

  5. Evaluation of optical ZP-OFDM transmission performance in multimode fiber links.

    Science.gov (United States)

    Medina, Pau; Almenar, Vicenç; Corral, Juan L

    2014-01-13

    In this paper, the performance of Zero Padding Orthogonal Frequency Division Multiplexing (ZP-OFDM) on intensity modulation-direct detection (IM-DD) multimode fiber (MMF) links is assessed by means of numerical simulations. The performance of ZP-OFDM is compared to classical Cyclic Prefixed form of OFDM (CP-OFDM) which is known to offer a limited performance in terms of symbol recovery in subcarriers suffering severe fading. Simulations results show that ZP-OFDM is able to reach 29 Gbps in 99.5% of all installed MMF links up to 600 meters compared to 14 Gbps for CP-OFDM when a 64 points fast Fourier transform (FFT) size is used. The use of ZP-OFDM makes it possible to increase the link length up to 1200 and 2400 m with a 25 Gbps data rate if the FFT sizes are increased to 128 and 256 points, respectively; whereas the CP-OFDM scheme will offer a maximum data rate of 10 Gbps in both cases. ZP-OFDM can be an alternative to adaptive loading OFDM schemes without the need of a negotiation between transmitter and receiver, reducing the system deployment complexity and increasing the flexibility in scenarios with multiple receivers.

  6. Performance of DS-UWB in MB-OFDM and multi-user interference over Nakagami-m fading channels

    KAUST Repository

    Mehbodniya, Abolfazl

    2011-01-18

    The mutual interference between the two ultra wideband (UWB) technologies, which use the same frequency spectrum, will be a matter of concern in the near future. In this context, we present a performance analysis of direct-sequence (DS) UWB communication in the presence of multiband orthogonal frequency division multiplexing (MB-OFDM) UWB interfering transmissions. The channel fading is modeled according to Nakagami-m distribution, and multi-user interference is taken into account. The DS-UWB system performance is evaluated in terms of bit error rate (BER). Specifically, using the characteristic function approach, an analytical expression for the average BER is derived conditioned on the channel impulse response. Numerical and simulation results are provided and compared for different coexistence scenarios. © 2011 John Wiley & Sons, Ltd.

  7. Robust Timing Synchronization for AC-OFDM Based Optical Wireless Communications

    CERN Document Server

    Ranjha, Bilal A; Kavehrad, Mohsen; Deng, Peng

    2015-01-01

    Visible light communications (VLC) have recently attracted a growing interest and can be a potential solution to realize indoor wireless communication with high bandwidth capacity for RF-restricted environments such as airplanes and hospitals. Optical based orthogonal frequency division multiplexing (OFDM) systems have been proposed in the literature to combat multipath distortion and intersymbol interference (ISI) caused by multipath signal propagation. In this paper, we present a robust timing synchronization scheme suitable for asymmetrically clipped (AC) OFDM based optical intensity modulated direct detection (IM/DD) wireless systems. Our proposed method works perfectly for ACO-OFDM, Pulse amplitude modulated discrete multitone (PAM-DMT) and discrete Hartley transform (DHT) based optical OFDM systems. In contrast to existing OFDM timing synchronization methods which are either not suitable for AC OFDM techniques due to unipolar nature of output signal or perform poorly, our proposed method is suitable for...

  8. BER estimation for multi-hop RoFSO QAM or PSK OFDM communication systems over gamma gamma or exponentially modeled turbulence channels

    Science.gov (United States)

    Nistazakis, H. E.; Stassinakis, A. N.; Sheikh Muhammad, S.; Tombras, G. S.

    2014-12-01

    The optical wireless and in particular the radio-on-free-space-optical (RoFSO) communication systems are gaining popularity due to their high date rates, license free spectrum and adequate reliability at installation and operational costs which are much lower than comparable technologies. One significant disadvantage of these systems concerns the randomly time varying characteristics of the propagation path mainly caused by the atmospheric turbulence. In this work, we study the BER performance of a multi-hop RoFSO system which is using an orthogonal frequency division multiplexing (OFDM) scheme, with either quadrature amplitude modulation (QAM) or phase shift keying format (PSK), over atmospheric turbulence channels modeled with the gamma gamma or the negative exponential distribution. The individual RoFSO parts of the whole optical link are connected to each other by using regenerators relay nodes. The dominant impairments which are the most significant and have been taken into account are the atmospheric turbulence, the path losses, the nonlinear responsivity of the laser diode and the inter-modulation distortion effect. For this setup, we derive closed form mathematical expressions for the estimation of the BER performance for each individual OFDM RoFSO link and for the whole relayed optical communication system, as well. Finally, the corresponding numerical results, for common link's parameters, are presented.

  9. Vacuum-Compatible Wideband White Light and Laser Combiner Source System

    Science.gov (United States)

    Azizi, Alineza; Ryan, Daniel J.; Tang, Hong; Demers, Richard T.; Kadogawa, Hiroshi; An, Xin; Sun, George Y.

    2010-01-01

    For the Space Interferometry Mission (SIM) Spectrum Calibration Development Unit (SCDU) testbed, wideband white light is used to simulate starlight. The white light source mount requires extremely stable pointing accuracy (light from a single-mode fiber was combined, through a beam splitter window with special coating from broadband wavelengths, with light from multimode fiber. Both lights were coupled to a photonic crystal fiber (PCF). In many optical systems, simulating a point star with broadband spectrum with stability of microradians for white light interferometry is a challenge. In this case, the cameras use the white light interference to balance two optical paths, and to maintain close tracking. In order to coarse align the optical paths, a laser light is sent into the system to allow tracking of fringes because a narrow band laser has a great range of interference. The design requirements forced the innovators to use a new type of optical fiber, and to take a large amount of care in aligning the input sources. The testbed required better than 1% throughput, or enough output power on the lowest spectrum to be detectable by the CCD camera (6 nW at camera). The system needed to be vacuum-compatible and to have the capability for combining a visible laser light at any time for calibration purposes. The red laser is a commercially produced 635-nm laser 5-mW diode, and the white light source is a commercially produced tungsten halogen lamp that gives a broad spectrum of about 525 to 800 nm full width at half maximum (FWHM), with about 1.4 mW of power at 630 nm. A custom-made beam splitter window with special coating for broadband wavelengths is used with the white light input via a 50-mm multi-mode fiber. The large mode area PCF is an LMA-8 made by Crystal Fibre (core diameter of 8.5 mm, mode field diameter of 6 mm, and numerical aperture at 625 nm of 0.083). Any science interferometer that needs a tracking laser fringe to assist in alignment can use this system.

  10. Wideband and Multiband Antenna Design and Fabrication for Modern Wireless Communications Systems

    Directory of Open Access Journals (Sweden)

    Adit Kurniawan

    2014-11-01

    Full Text Available One of the major challenges due to spectrum scarcity in modern wireless communication is on antenna design that can serve a non-contagious frequency spectrum. In this paper, wideband and multiband design approaches are proposed to produce antennas that can serve various wireless technologies using different frequencies from 2.3 to 6.0 GHz, covering WiFi frequencies at 2.4-2.48 GHz, 5,15-5,35 GHz and 5,725-5,825 GHz, as well as WiMax frequencies at 2.3-2.4 GHz, 2.495-2.695 GHz, 3.3-3.8 GHz, and 5.25-5.85 GHz. The wideband and multiband antenna were implemented on an 0.8 mm thick of FR4 epoxy dielectric substrate with permittivity εr="4".3. The return loss of 10 dB can be achieved for 2.3 to 6 GHz in wideband antenna, and a tripe band of 2.3-2.8 GHz, 3.3-3.7 GHz, and above 4.6 GHz in multiband antenna. The gain of both antennas increases almost linearly from 0 dB at 2.3 GHz to around 4.5 dB at 6 GHz, except for the stop band at 2.8-3.3 GHz which has a significant drop of gain, corresponding to the stop frequency band. Antenna radiation pattern is bidirectional at x-y plane and nearly omnidirectional at y-z plane, and shows a similar patern for both wideband and multiband design approaches.

  11. A Low-Complexity LMMSE Channel Estimation Method for OFDM-Based Cooperative Diversity Systems with Multiple Amplify-and-Forward Relays

    Directory of Open Access Journals (Sweden)

    Yan Kai

    2008-01-01

    Full Text Available Orthogonal frequency division multiplexing- (OFDM- based amplify-and-forward (AF cooperative communication is an effective way for single-antenna systems to exploit the spatial diversity gains in frequency-selective fading channels, but the receiver usually requires the knowledge of the channel state information to recover the transmitted signals. In this paper, a training-sequences-aided linear minimum mean square error (LMMSE channel estimation method is proposed for OFDM-based cooperative diversity systems with multiple AF relays over frequency-selective fading channels. The mean square error (MSE bound on the proposed method is derived and the optimal training scheme with respect to this bound is also given. By exploiting the optimal training scheme, an optimal low-rank LMMSE channel estimator is introduced to reduce the computational complexity of the proposed method via singular value decomposition. Furthermore, the Chu sequence is employed as the training sequence to implement the optimal training scheme with easy realization at the source terminal and reduced computational complexity at the relay terminals. The performance of the proposed low-complexity channel estimation method and the superiority of the derived optimal training scheme are verified through simulation results.

  12. A Low-Complexity LMMSE Channel Estimation Method for OFDM-Based Cooperative Diversity Systems with Multiple Amplify-and-Forward Relays

    Directory of Open Access Journals (Sweden)

    Haitao Liu

    2008-07-01

    Full Text Available Orthogonal frequency division multiplexing- (OFDM- based amplify-and-forward (AF cooperative communication is an effective way for single-antenna systems to exploit the spatial diversity gains in frequency-selective fading channels, but the receiver usually requires the knowledge of the channel state information to recover the transmitted signals. In this paper, a training-sequences-aided linear minimum mean square error (LMMSE channel estimation method is proposed for OFDM-based cooperative diversity systems with multiple AF relays over frequency-selective fading channels. The mean square error (MSE bound on the proposed method is derived and the optimal training scheme with respect to this bound is also given. By exploiting the optimal training scheme, an optimal low-rank LMMSE channel estimator is introduced to reduce the computational complexity of the proposed method via singular value decomposition. Furthermore, the Chu sequence is employed as the training sequence to implement the optimal training scheme with easy realization at the source terminal and reduced computational complexity at the relay terminals. The performance of the proposed low-complexity channel estimation method and the superiority of the derived optimal training scheme are verified through simulation results.

  13. Low overhead and nonlinear-tolerant adaptive zero-guard-interval CO-OFDM.

    Science.gov (United States)

    Wang, Wei; Zhuge, Qunbi; Gao, Yuliang; Qiu, Meng; Morsy-Osman, Mohamed; Chagnon, Mathieu; Xu, Xian; Plant, David V

    2014-07-28

    We propose an adaptive channel estimation (CE) method for zero-guard-interval (ZGI) coherent optical (CO)-OFDM systems, and demonstrate its performance in a single channel 28 Gbaud polarization-division multiplexed ZGI CO-OFDM experiment with only 1% OFDM processing overhead. We systematically investigate its robustness against various transmission impairments including residual chromatic dispersion, polarization-mode dispersion, state of polarization rotation, sampling frequency offset and fiber nonlinearity. Both experimental and numerical results show that the adaptive CE-aided ZGI CO-OFDM is highly robust against these transmission impairments in fiber optical transmission systems.

  14. Blind equalization for dual-polarization two-subcarrier coherent QPSK-OFDM signals.

    Science.gov (United States)

    Li, Fan; Zhang, Junwen; Yu, Jianjun; Li, Xinying

    2014-01-15

    Dual-polarization two-subcarrier coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission and reception is successfully demonstrated with blind equalization. A two-subcarrier quadrature phase shift keyed OFDM (QPSK-OFDM) signal can be equalized as a 9-ary quadrature amplitude modulation signal in the time domain with the cascaded multimodulus algorithm equalization method. The nonlinear effect resistance and transmission distance can be enhanced compared with the traditional CO-OFDM transmission system based on frequency equalization with training sequence.

  15. Efficient Wideband Spectrum Sensing with Maximal Spectral Efficiency for LEO Mobile Satellite Systems

    Directory of Open Access Journals (Sweden)

    Feilong Li

    2017-01-01

    Full Text Available The usable satellite spectrum is becoming scarce due to static spectrum allocation policies. Cognitive radio approaches have already demonstrated their potential towards spectral efficiency for providing more spectrum access opportunities to secondary user (SU with sufficient protection to licensed primary user (PU. Hence, recent scientific literature has been focused on the tradeoff between spectrum reuse and PU protection within narrowband spectrum sensing (SS in terrestrial wireless sensing networks. However, those narrowband SS techniques investigated in the context of terrestrial CR may not be applicable for detecting wideband satellite signals. In this paper, we mainly investigate the problem of joint designing sensing time and hard fusion scheme to maximize SU spectral efficiency in the scenario of low earth orbit (LEO mobile satellite services based on wideband spectrum sensing. Compressed detection model is established to prove that there indeed exists one optimal sensing time achieving maximal spectral efficiency. Moreover, we propose novel wideband cooperative spectrum sensing (CSS framework where each SU reporting duration can be utilized for its following SU sensing. The sensing performance benefits from the novel CSS framework because the equivalent sensing time is extended by making full use of reporting slot. Furthermore, in respect of time-varying channel, the spatiotemporal CSS (ST-CSS is presented to attain space and time diversity gain simultaneously under hard decision fusion rule. Computer simulations show that the optimal sensing settings algorithm of joint optimization of sensing time, hard fusion rule and scheduling strategy achieves significant improvement in spectral efficiency. Additionally, the novel ST-CSS scheme performs much higher spectral efficiency than that of general CSS framework.

  16. Efficient Wideband Spectrum Sensing with Maximal Spectral Efficiency for LEO Mobile Satellite Systems.

    Science.gov (United States)

    Li, Feilong; Li, Zhiqiang; Li, Guangxia; Dong, Feihong; Zhang, Wei

    2017-01-21

    The usable satellite spectrum is becoming scarce due to static spectrum allocation policies. Cognitive radio approaches have already demonstrated their potential towards spectral efficiency for providing more spectrum access opportunities to secondary user (SU) with sufficient protection to licensed primary user (PU). Hence, recent scientific literature has been focused on the tradeoff between spectrum reuse and PU protection within narrowband spectrum sensing (SS) in terrestrial wireless sensing networks. However, those narrowband SS techniques investigated in the context of terrestrial CR may not be applicable for detecting wideband satellite signals. In this paper, we mainly investigate the problem of joint designing sensing time and hard fusion scheme to maximize SU spectral efficiency in the scenario of low earth orbit (LEO) mobile satellite services based on wideband spectrum sensing. Compressed detection model is established to prove that there indeed exists one optimal sensing time achieving maximal spectral efficiency. Moreover, we propose novel wideband cooperative spectrum sensing (CSS) framework where each SU reporting duration can be utilized for its following SU sensing. The sensing performance benefits from the novel CSS framework because the equivalent sensing time is extended by making full use of reporting slot. Furthermore, in respect of time-varying channel, the spatiotemporal CSS (ST-CSS) is presented to attain space and time diversity gain simultaneously under hard decision fusion rule. Computer simulations show that the optimal sensing settings algorithm of joint optimization of sensing time, hard fusion rule and scheduling strategy achieves significant improvement in spectral efficiency. Additionally, the novel ST-CSS scheme performs much higher spectral efficiency than that of general CSS framework.

  17. A Fast Hartley Transform based novel optical OFDM system for VLC indoor application with constant envelope PAPR reduction technique using frequency modulation

    Science.gov (United States)

    Singh, Vinay Kumar; Dalal, U. D.

    2017-10-01

    In this research literature we present a unique optical OFDM system for Visible Light Communication (VLC) intended for indoor application which uses a non conventional transform-Fast Hartley Transform and an effective method to reduce the peak to average power ratio (PAPR) of the OFDM signal based on frequency modulation leading to a constant envelope (CE) signal. The proposed system is analyzed by a complete mathematical model and verified by the concurrent simulations results. The use of the non conventional transform makes the system computationally more desirable as it does not require the Hermitian symmetry constraint to yield real signals. The frequency modulation of the baseband signal converge random peaks into a CE signal. This leads to alleviation of the non linearity effects of the LED used in the link for electrical to optical conversion. The PAPR is reduced to 2 dB by this technique in this work. The impact of the modulation index on the performance of the system is also investigated. An optimum modulation depth of 30% gives better results. The additional phase discontinuity incurring on the demodulated signal at the receiver is also significantly reduced. A comparison of the improvement in phase discontinuity of the proposed technique of combating the PAPR with the previously known phase modulation technique is also presented in this work. Based on the channel metrics we evaluate the system performance and report an improvement of 1.2 dB at the FEC threshold. The proposed system is simple in design and computationally efficient and this can be incorporated into the present VLC system without much alteration thereby making it a cost effective solution.

  18. Extended reach OFDM-PON using super-Nyquist image induced aliasing.

    Science.gov (United States)

    Guo, Changjian; Liang, Jiawei; Liu, Jie; Liu, Liu

    2015-08-24

    We investigate a novel dispersion compensating technique in double sideband (DSB) modulated and directed-detected (DD) passive optical network (PON) systems using super-Nyquist image induced aliasing. We show that diversity is introduced to the higher frequency components by deliberate aliasing using the super-Nyquist images. We then propose to use fractional sampling and per-subcarrier maximum ratio combining (MRC) to harvest this diversity. We evaluate the performance of conventional orthogonal frequency division multiplexing (OFDM) signals along with discrete Fourier transform spread (DFT-S) OFDM and code-division multiplexing OFDM (CDM-OFDM) signals using the proposed scheme. The results show that the DFT-S OFDM signal has the best performance due to spectrum spreading and its superior peak-to-average power ratio (PAPR). By using the proposed scheme, the reach of a 10-GHz bandwidth QPSK modulated OFDM-PON can be extended to around 90 km. We also experimentally show that the achievable data rate of the OFDM signals can be effectively increased using the proposed scheme when adaptive bit loading is applied, depending on the transmission distance. A 10.5% and 5.2% increase in the achievable bit rate can be obtained for DSB modulated OFDM-PONs in 48.3-km and 83.2-km standard single mode fiber (SSMF) transmission cases, respectively, without any modification on the transmitter. A 40-Gb/s OFDM transmission over 83.2-km SSMF is successfully demonstrated.

  19. On Coding of Scheduling Information in OFDM

    OpenAIRE

    Gunnarsson, Fredrik; Moosavi, Reza; Eriksson, Jonas; Larsson, Erik G.; Wiberg, Niklas; Frenger, Pål

    2009-01-01

    Control signaling strategies for scheduling information in cellular OFDM systems are studied. A single-cell multiuser system model is formulated that provides system capacity estimates accounting for the signaling overhead. Different scheduling granularities are considered, including the one used in the specifications for the 3G Long Term Evolution (LTE). A greedy scheduling method is assumed, where each resource is assigned to the user for which it can support the highest number of bits. The...

  20. System Wide Implementation of Photonically Generated Impulse Radio Ultra-Wideband for Gigabit Fiber-Wireless Access

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Rodes Lopez, Roberto

    2013-01-01

    radio ultra-wideband (IR-UWB) signals at 781.25 Mbps with on-off keying (OOK) and binary phase shift keying (BPSK) modulation formats. We further advance the state-of-the-art to include multi-Gigabit IR-UWB signal generation. Both OOK and BPSK signals comply with the Federal Communications Commission...... (FCC) regulation. Secondly, we implement UWB fiber transmission systems and study hybrid fiber-wireless transmission performance at a system level. This is accomplished by employing our digital signal processing (DSP) assisted receiver. The photonic generation method is superior to the state......-of-the-art electronic generation method in terms of transmission bit-error rate performance. Moreover, photonic IR-UWB generation is shown to be capable of longer wireless reach due to its lower bandwidth limitation. Finally, we experimentally demonstrate the integration of a relaxation oscillations-based UWB photonic...

  1. Influence of Inter Carrier Interference on Link Adaptation Algorithms in OFDM Systems

    DEFF Research Database (Denmark)

    Das, Suvra S.; Rahman, Muhammad Imadur; Wang, Yuanye

    2007-01-01

    systems is not obvious and has not received much attention till now. It is seen that when ICI is not captured in the SNR measured then the LA system fails to meet the target error rate. However, it is shown that with suitable modification to the SNR switching threshold for changing the adaptive modulation...

  2. Spectral Weighting Functions for Single-symbol Phase-noise Specifications in OFDM Systems

    NARCIS (Netherlands)

    Hoeksema, F.W.; Schiphorst, Roelof; Slump, Cornelis H.

    2003-01-01

    For the specification of phase-noise requirements for the front-end of a HiperLAN/2 system we investigated available literature on the subject. Literature differed in several aspects. One aspect is in the type of phase-noise used (Wiener phase-noise or small-angle phase noise). A Wiener phase-noise

  3. Preamble-aided time delay estimation in frequency selective channels for wireless OFDM systems

    Directory of Open Access Journals (Sweden)

    Qun Yu

    2014-08-01

    Full Text Available In this Letter, an improved method for estimating the time delay in preamble-aided orthogonal frequency division multiplexing systems is presented. It uses a conventional preamble structure and combines cross-correlation techniques to achieve estimations of time delay and the number of multipaths without any additional overhead. Computer simulations results show that the proposed method is of near-ideal property in frequency-selected channels.

  4. PERFORMANCE EVALUATION OF TURBO CODED OFDM SYSTEMS AND APPLICATION OF TURBO DECODING FOR IMPULSIVE CHANNEL

    Directory of Open Access Journals (Sweden)

    Savitha H. M.

    2010-09-01

    Full Text Available A comparison of the performance of hard and soft-decision turbo coded Orthogonal Frequency Division Multiplexing systems with Quadrature Phase Shift Keying (QPSK and 16-Quadrature Amplitude Modulation (16-QAM is considered in the first section of this paper. The results show that the soft-decision method greatly outperforms the hard-decision method. The complexity of the demapper is reduced with the use of simplified algorithm for 16-QAM demapping. In the later part of the paper, we consider the transmission of data over additive white class A noise (AWAN channel, using turbo coded QPSK and 16-QAM systems. We propose a novel turbo decoding scheme for AWAN channel. Also we compare the performance of turbo coded systems with QPSK and 16-QAM on AWAN channel with two different channel values- one computed as per additive white Gaussian noise (AWGN channel conditions and the other as per AWAN channel conditions. The results show that the use of appropriate channel value in turbo decoding helps to combat the impulsive noise more effectively. The proposed model for AWAN channel exhibits comparable Bit error rate (BER performance as compared to AWGN channel.

  5. Banded all-optical OFDM super-channels with low-bandwidth receivers.

    Science.gov (United States)

    Song, Binhuang; Zhu, Chen; Corcoran, Bill; Zhuang, Leimeng; Lowery, Arthur James

    2016-08-08

    We propose a banded all-optical orthogonal frequency division multiplexing (AO-OFDM) transmission system based on synthesising a number of truncated sinc-shaped subcarriers for each sub-band. This approach enables sub-band by sub-band reception and therefore each receiver's electrical bandwidth can be significantly reduced compared with a conventional AO-OFDM system. As a proof-of-concept experiment, we synthesise 6 × 10-Gbaud subcarriers in both conventional and banded AO-OFDM systems. With a limited receiver electrical bandwidth, the experimental banded AO-OFDM system shows 2-dB optical signal to noise ratio (OSNR) benefit over conventional AO-OFDM at the 7%-overhead forward error correction (FEC) threshold. After transmission over 800-km of single-mode fiber, ≈3-dB improvement in Q-factor can be achieved at the optimal launch power at a cost of increasing the spectral width by 14%.

  6. OFDM pilot allocation for sparse channel estimation

    CERN Document Server

    Pakrooh, Pooria; Marvasti, Farrokh

    2011-01-01

    In communication systems, efficient use of the spectrum is an indispensable concern. Recently the use of compressed sensing for the purpose of estimating Orthogonal Frequency Division Multiplexing (OFDM) sparse multipath channels has been proposed to decrease the transmitted overhead in form of the pilot subcarriers which are essential for channel estimation. In this paper, we investigate the problem of deterministic pilot allocation in OFDM systems. The method is based on minimizing the coherence of the submatrix of the unitary Discrete Fourier Transform (DFT) matrix associated with the pilot subcarriers. Unlike the usual case of equidistant pilot subcarriers, we show that non-uniform patterns based on cyclic difference sets are optimal. In cases where there are no difference sets, we perform a greedy search method for finding a suboptimal solution. We also investigate the performance of the recovery methods such as Orthogonal Matching Pursuit (OMP) and Iterative Method with Adaptive Thresholding (IMAT) for ...

  7. OFDM pilot allocation for sparse channel estimation

    Science.gov (United States)

    Pakrooh, Pooria; Amini, Arash; Marvasti, Farokh

    2012-12-01

    In communication systems, efficient use of the spectrum is an indispensable concern. Recently the use of compressed sensing for the purpose of estimating orthogonal frequency division multiplexing (OFDM) sparse multipath channels has been proposed to decrease the transmitted overhead in form of the pilot subcarriers which are essential for channel estimation. In this article, we investigate the problem of deterministic pilot allocation in OFDM systems. The method is based on minimizing the coherence of the submatrix of the unitary discrete fourier transform (DFT) matrix associated with the pilot subcarriers. Unlike the usual case of equidistant pilot subcarriers, we show that non-uniform patterns based on cyclic difference sets are optimal. In cases where there are no difference sets, we perform a greedy method for finding a suboptimal solution. We also investigate the performance of the recovery methods such as orthogonal matching pursuit (OMP) and iterative method with adaptive thresholding (IMAT) for estimation of the channel taps.

  8. Mitigating the Effects of Mobility and Synchronization Error in OFDM based Cooperative Communication Systems

    Directory of Open Access Journals (Sweden)

    Bereket Babiso Yetera

    2014-08-01

    Full Text Available An Orthogonal Frequency Division Multiplexing based mobile wireless network with a sender, a destination and a third station acting as a cooperating node is modelled and analyzed. The length of cyclic prefix in the orthogonal frequency division multiplexed symbols is made to vary depending on the channel conditions and maximum likelihood estimator is used at the receiver in order to compensate for the carrier frequency offset that occurs during transmission. Simulation results show that maximum likelihood estimator has better performance than self-cancellation estimations. The channels between the source, the cooperating node and the destination are modelled containing thermal noise, Rayleigh fading, Rician fading and path loss. Amplify-and-Forward cooperation protocol is used at the cooperating node when the system is in cooperation mode. For a relatively short distance between the cooperating nodes, when compared to the distance between them and the base station, amplify and forward cooperation protocol has a better performance than decode-and forward protocol, unless an error correcting code is simulated. The cooperating node turns its cooperation mode switch ON or OFF depending on the channel state between the source and the cooperating nodes.  The performance of different combination protocols at the receiver is simulated and maximum ratio combining is found to have better performance. However, for immobile wireless sensor networks Extended SNR (ESNR combiner has also better performance. The system has also showed that with any kind of combination protocol at the receiver it is possible to achieve second order diversity when there is only one cooperating node in the system.

  9. Performance and Spectral Efficiency of OFDM systems on urban radio channels

    OpenAIRE

    Acuña González, José

    2013-01-01

    The increasing in the demand of mobile data, generally Internet access, at rates near 45% per year, but not exclusively, and the decreasing of the gigabyte price are pushing the telecommunication industry to improve the spectral efficiency of the networks. The work on this PhD Thesis is involved in this path. Many simulations were done to know the details of the performance and the spectral efficiency of fourth generation (4G) systems. These simulations have been done using both 4G standar...

  10. An Approach to Optimum Joint Beamforming Design in a MIMO-OFDM Multiuser System

    Directory of Open Access Journals (Sweden)

    Pascual-Iserte Antonio

    2004-01-01

    Full Text Available This paper describes a multiuser scenario with several terminals acceding simultaneously to the same frequency channel. The objective is to design an optimal multiuser system that may be used as a comparative framework when evaluating other suboptimal solutions and to contribute to the already published works on this topic. The present work assumes that a centralized manager knows perfectly all the channel responses between all the terminals. According to this, the transmitters and receivers, using antenna arrays and leading to the so-called multiple-input-multiple-output (MIMO channels, are designed in a joint beamforming approach, attempting to minimize the total transmit power subject to quality of service (QoS constraints. Since this optimization problem is not convex, the use of the simulated annealing (SA technique is proposed to find the optimum solution.

  11. Preamble and pilot symbol design for channel estimation in OFDM systems with null subcarriers

    Directory of Open Access Journals (Sweden)

    Ohno Shuichi

    2011-01-01

    Full Text Available Abstract In this article, design of preamble for channel estimation and pilot symbols for pilot-assisted channel estimation in orthogonal frequency division multiplexing system with null subcarriers is studied. Both the preambles and pilot symbols are designed to minimize the l 2 or the l ∞ norm of the channel estimate mean-squared errors (MSE in frequency-selective environments. We use convex optimization technique to find optimal power distribution to the preamble by casting the MSE minimization problem into a semidefinite programming problem. Then, using the designed optimal preamble as an initial value, we iteratively select the placement and optimally distribute power to the selected pilot symbols. Design examples consistent with IEEE 802.11a as well as IEEE 802.16e are provided to illustrate the superior performance of our proposed method over the equi-spaced equi-powered pilot symbols and the partially equi-spaced pilot symbols.

  12. Low complexity transmit antenna selection with power balancing in OFDM systems

    KAUST Repository

    Park, Kihong

    2010-10-01

    In this paper, we consider multi-carrier systems with multiple transmit antennas under the power balancing constraint, which is defined as the constraint that the power on each antenna should be limited under a certain level due to the linearity of the power amplifier of the RF chain. Applying transmit antenna selection and fixed-power variable-rate transmission per subcarrier as a function of channel variations, we propose an implementation-friendly antenna selection method which offers a reduced complexity in comparison with the optimal antenna selection scheme. More specifically, in order to solve the subcarrier imbalance across the antennas, we operate a two-step reallocation procedure to minimize the loss of spectral efficiency. We also provide an analytic lower bound on the spectral efficiency for the proposed scheme. From selected numerical results, we show that our suboptimal scheme offers almost the same spectral efficiency as the optimal one. © 2010 IEEE.

  13. Cooperative OFDM underwater acoustic communications

    CERN Document Server

    Cheng, Xilin; Cheng, Xiang

    2016-01-01

    Following underwater acoustic channel modeling, this book investigates the relationship between coherence time and transmission distances. It considers the power allocation issues of two typical transmission scenarios, namely short-range transmission and medium-long range transmission. For the former scenario, an adaptive system is developed based on instantaneous channel state information. The primary focus is on cooperative dual-hop orthogonal frequency division multiplexing (OFDM). This book includes the decomposed fountain codes designed to enable reliable communications with higher energy efficiency. It covers the Doppler Effect, which improves packet transmission reliability for effective low-complexity mirror-mapping-based intercarrier interference cancellation schemes capable of suppressing the intercarrier interference power level. Designed for professionals and researchers in the field of underwater acoustic communications, this book is also suitable for advanced-level students in electrical enginee...

  14. Performance and Complexity Evaluation of Iterative Receiver for Coded MIMO-OFDM Systems

    Directory of Open Access Journals (Sweden)

    Rida El Chall

    2016-01-01

    Full Text Available Multiple-input multiple-output (MIMO technology in combination with channel coding technique is a promising solution for reliable high data rate transmission in future wireless communication systems. However, these technologies pose significant challenges for the design of an iterative receiver. In this paper, an efficient receiver combining soft-input soft-output (SISO detection based on low-complexity K-Best (LC-K-Best decoder with various forward error correction codes, namely, LTE turbo decoder and LDPC decoder, is investigated. We first investigate the convergence behaviors of the iterative MIMO receivers to determine the required inner and outer iterations. Consequently, the performance of LC-K-Best based receiver is evaluated in various LTE channel environments and compared with other MIMO detection schemes. Moreover, the computational complexity of the iterative receiver with different channel coding techniques is evaluated and compared with different modulation orders and coding rates. Simulation results show that LC-K-Best based receiver achieves satisfactory performance-complexity trade-offs.

  15. On the diversity enhancement and power balancing of per-subcarrier antenna selection in OFDM systems

    KAUST Repository

    Park, Kihong

    2010-09-01

    In this paper, we consider multi-carrier systems with multiple transmit antennas under a power balancing constraint. Applying transmit antenna selection and discrete rate adaptive modulation using M-ary quadrature amplitude modulation (QAM) according to the channel variation per subcarrier, we develop an optimal antenna selection scheme in terms of maximum spectral efficiency where all the possible grouping to send the same information bearing signals in a group of subcarriers are searched and the groups of subcarriers to provide the frequency diversity gain are formed. In addition, we propose a suboptimal method to reduce the computational complexity of the optimal method. The suboptimal scheme consider only the subcarriers under outage and those are combined sequentially until it meets a required SNR. Numerical results show that the proposed suboptimal method with diversity combining outperforms the optimal antenna selection without diversity combining introduced in [1], especially for low SNR region and offers the spectral efficiency close to that of the optimal method with diversity combining, while maintaining lower complexity. ©2010 IEEE.

  16. Compressed sensing techniques for receiver based post-compensation of transmitter's nonlinear distortions in OFDM systems

    KAUST Repository

    Owodunni, Damilola S.

    2014-04-01

    In this paper, compressed sensing techniques are proposed to linearize commercial power amplifiers driven by orthogonal frequency division multiplexing signals. The nonlinear distortion is considered as a sparse phenomenon in the time-domain, and three compressed sensing based algorithms are presented to estimate and compensate for these distortions at the receiver using a few and, at times, even no frequency-domain free carriers (i.e. pilot carriers). The first technique is a conventional compressed sensing approach, while the second incorporates a priori information about the distortions to enhance the estimation. Finally, the third technique involves an iterative data-aided algorithm that does not require any pilot carriers and hence allows the system to work at maximum bandwidth efficiency. The performances of all the proposed techniques are evaluated on a commercial power amplifier and compared. The error vector magnitude and symbol error rate results show the ability of compressed sensing to compensate for the amplifier\\'s nonlinear distortions. © 2013 Elsevier B.V.

  17. Compact microstrip stepped impedance wideband bandpass filter

    Science.gov (United States)

    Li, Lin; Li, Zheng-Fan; Xia, H.-X.; Yang, J.-X.

    2011-08-01

    A novel wideband bandpass filter with a very compact size is presented in this article. Using a side-coupled stepped impedance resonator, wideband characteristics with adjustable centre frequency and 3-dB fractional bandwidth can be obtained easily. Finally, a filter sample is designed and fabricated to provide an experimental verification on the proposed topology. Good insertion/return losses, flat group delay, wide bandwidth as well as ultra compact size are achieved as demonstrated in both simulation and experiment, which makes this filter a very promising candidate for applications in future wideband communication system.

  18. Introduction to Ultra Wideband for Wireless Communications

    DEFF Research Database (Denmark)

    Nikookar, Homayoun; Prasad, Ramjee

    communications. Due to tutorial nature of the book it can also be adopted as a textbook on the subject in the Telecommunications Engineering curriculum. Problems at the end of each chapter extend the reader's understanding of the subject. Introduction to Ultra Wideband for Wireless Communications will aslo...... be useful for practicing engineers from industry who deal with the wireless systems that are designed and analyzed with the UWB technique.......Ultra Wideband (UWB) Technology is the cutting edge technology for wireless communications with a wide range of applications. In Introduction to Ultra Wideband for Wireless Communications UWB principles and technologies for wireless communications are explained clearly. Key issues such as UWB...

  19. PAR-Aware Large-Scale Multi-User MIMO-OFDM Downlink

    CERN Document Server

    Studer, Christoph

    2012-01-01

    We investigate an orthogonal frequency-division multiplexing (OFDM)-based downlink transmission scheme for large-scale multi-user (MU) multiple-input multiple-output (MIMO) wireless systems. The use of OFDM causes a high peak-to-average (power) ratio (PAR), which necessitates expensive and power-inefficient radio-frequency (RF) components at the base station. In this paper, we present a novel downlink transmission scheme, which exploits the massive degrees-of-freedom available in large-scale MU-MIMO-OFDM systems to achieve low PAR. Specifically, we propose to jointly perform MU precoding, OFDM modulation, and PAR reduction by solving a convex optimization problem. We develop a corresponding fast iterative truncation algorithm (FITRA) and show numerical results to demonstrate tremendous PAR-reduction capabilities. The significantly reduced linearity requirements eventually enable the use of low-cost RF components for the large-scale MU-MIMO-OFDM downlink.

  20. Selected mapping based orthogonal frequency division multiplexing system (OFDM) for the reduction of peak to average power ratio (PAPR) using higher number of novel phase sequences under 32-QAM

    Science.gov (United States)

    Gupta, Prabal; Singh, Balpreet; Arora, Krishan

    2017-07-01

    The very high peak to average power ratio (PAPR) is the biggest problem faced by OFDM system which ultimately causes distortion in the transmitted data. In the literatures various techniques have been proposed for the reduction of PAPR. One of the important technique which is known as Selected Mapping (SLM) or distortion-less technique proposed by several literature for the reduction of PAPR. But SLM technique generally uses several number of randomly designed phase sequence in frequency domain so that after inverse fast Fourier transform (IFFT) when data is converted into corresponding time domain sequence it can be optimized accordingly. Henceforth, in this paper we are proposing a higher number of novel phase sequence based SLM with 32-Quadrature amplitude modulation (QAM) under various sub carriers like 32, 64, 128, 256 and 512. Probabilistic analysis with the help of complementary cumulative distribution function (CCDF) clearly depicts the remarkable performance of our proposed algorithm in comparison with conventional OFDM system.

  1. A 4.2 GS/sec. Synchronized Vertical Excitation System for SPS Studies - Steps Toward Wideband Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Fox, John

    2012-07-10

    A 4.2 GS/sec. beam excitation system with accelerator synchronization and power stages is described. The system is capable of playing unique samples (32 samples/bunch) for 15,000 turns on selected bunch(es) in the SPS in syn- chronism with the injection and acceleration cycle. The purpose of the system is to excite internal modes of single-bunch vertical motion, and study the bunch dynamics in the presence of developing Electron cloud or TMCI effects. The system includes a synchronized master oscillator, SPS timing functions, an FPGA based arbitrary waveform generator, 4.2 GS/sec. D/A system and four 80W 20-1000 MHz amplifiers driving a tapered stripline pickup/kicker. A software GUI allows specification of various modulation signals, selection of bunches and turns to excite, while a remote control interface allows simple control/monitoring of the RF power stages located in the tunnel. The successful use of this system for SPS MD measurements in 2011 is a vital proof-of-principle for wideband feedback using similar functions to correct the beam motion.

  2. A novel generalized oppositional biogeography-based optimization algorithm: application to peak to average power ratio reduction in OFDM systems

    Directory of Open Access Journals (Sweden)

    Goudos Sotirios K.

    2016-01-01

    Full Text Available A major drawback of orthogonal frequency division multiplexing (OFDM signals is the high value of peak to average power ratio (PAPR. Partial transmit sequences (PTS is a popular PAPR reduction method with good PAPR reduction performance, but its search complexity is high. In this paper, in order to reduce PTS search complexity we propose a new technique based on biogeography-based optimization (BBO. More specifically, we present a new Generalized Oppositional Biogeography Based Optimization (GOBBO algorithm which is enhanced with Oppositional Based Learning (OBL techniques. We apply both the original BBO and the new Generalized Oppositional BBO (GOBBO to the PTS problem. The GOBBO-PTS method is compared with other PTS schemes for PAPR reduction found in the literature. The simulation results show that GOBBO and BBO are in general highly efficient in producing significant PAPR reduction and reducing the PTS search complexity.

  3. Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

    KAUST Repository

    Hussain, Rifaqat

    2015-06-18

    © The Institution of Engineering and Technology 2015. A compact, novel multi-mode, multi-band frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system, integrated with ultra-wideband (UWB) sensing antenna, is presented. The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm2. The proposed sensing antenna is used to cover a wide range of frequency bands from 710 to 3600 MHz. The frequency reconfigurable dual-element MIMO antenna is integrated with P-type, intrinsic, N-type (PIN) diodes for frequency agility. Different modes of selection are used for the MIMO antenna system reconfigurability to support different wireless system standards. The proposed MIMO antenna configuration is used to cover various frequency bands from 755 to 3450 MHz. The complete system comprising the multi-band reconfigurable MIMO antennas and UWB sensing antenna for cognitive radio applications is proposed with a compact form factor.

  4. Demostration of 520 Gb/s/λ pre-equalized DFT-spread PDM-16QAM-OFDM signal transmission.

    Science.gov (United States)

    Li, Fan; Yu, Jianjun; Cao, Zizheng; Chen, Ming; Zhang, Junwen; Li, Xinying

    2016-02-08

    In this paper, we successfully transmit 8 × 520 Gb/s pre-equalized DFT-spread PDM-16QAM orthogonal frequency-division multiplexing (OFDM) signal over 840 km SMF with BER under 2.4 × 10(-2). We discuss how to obtain accurate tranceivers' response during pre-equalization for DFT-spread OFDM with coherent detection and we find conventional OFDM symbols training sequences (TSs) outperform DFT-spread OFDM symbols TSs in obtaining channel response for pre-equalization and equalization. Additionally, the optimal IFFT/FFT size is explored for the pre-equalized DFT-spread PDM-16QAM-OFDM transmission systems. It is the first time to realize 400 Gb/s/λ net rate OFDM signal transmission.

  5. Wideband current transformers for the surveillance of the beam extraction kicker system of the Large Hadron Collider

    CERN Document Server

    Defrance, C; Ducimetière, L; Vossenberg, E

    2007-01-01

    The LHC beam dumping system must protect the LHC machine from damage by reliably and safely extracting and absorbing the circulating beams when requested. Two sets of 15 extraction kicker magnets form the main active part of this system. A separate high voltage pulse generator powers each magnet. Because of the high beam energy and the consequences which could result from significant beam loss due to a malfunctioning of the dump system the magnets and generators are continuously surveyed in order to generate a beam abort as soon as an internal fault is detected. Amongst these surveillance systems, wideband current transformers have been designed to detect any erratic start in one of the generators. Output power should be enough to directly re-trigger all the power trigger units of the remaining 14 generators. The current transformers were developed in collaboration with industry. To minimize losses, high-resistivity cobalt alloy was chosen for the cores. The annealing techniques originally developed for LEP b...

  6. Iterative Frequency-Domain Channel Estimation and Equalization for Ultra-Wideband Systems with Short Cyclic Prefix

    Directory of Open Access Journals (Sweden)

    Salim Bahçeci

    2010-01-01

    Full Text Available In impulse radio ultra-wideband (IR-UWB systems where the channel lengths are on the order of a few hundred taps, conventional use of frequency-domain (FD processing for channel estimation and equalization may not be feasible because the need to add a cyclic prefix (CP to each block causes a significant reduction in the spectral efficiency. On the other hand, using no or short CP causes the interblock interference (IBI and thus degradation in the receiver performance. Therefore, in order to utilize FD receiver processing UWB systems without a significant loss in the spectral efficiency and the performance, IBI cancellation mechanisms are needed in both the channel estimation and equalization operations. For this reason, in this paper, we consider the joint FD channel estimation and equalization for IR-UWB systems with short cyclic prefix (CP and propose a novel iterative receiver employing soft IBI estimation and cancellation within both its FD channel estimator and FD equalizer components. We show by simulation results that the proposed FD receiver attains performances close to that of the full CP case in both line-of-sight (LOS and non-line-of-sight (NLOS UWB channels after only a few iterations.

  7. Narrow band interference cancelation in OFDM: Astructured maximum likelihood approach

    KAUST Repository

    Sohail, Muhammad Sadiq

    2012-06-01

    This paper presents a maximum likelihood (ML) approach to mitigate the effect of narrow band interference (NBI) in a zero padded orthogonal frequency division multiplexing (ZP-OFDM) system. The NBI is assumed to be time variant and asynchronous with the frequency grid of the ZP-OFDM system. The proposed structure based technique uses the fact that the NBI signal is sparse as compared to the ZP-OFDM signal in the frequency domain. The structure is also useful in reducing the computational complexity of the proposed method. The paper also presents a data aided approach for improved NBI estimation. The suitability of the proposed method is demonstrated through simulations. © 2012 IEEE.

  8. An Optical OFDM Modem with Adaptive Volterra Equalizer

    Science.gov (United States)

    Tawade, Laxman; Pinjarkar, Umesh; Awade, Kavita; Bapu Aboobacker, Abida; Gosavi, Manisha; Bhatlawande, Yogeshwari

    2015-03-01

    It addresses orthogonal frequency division multiplexing (OFDM) transmission over optical links with high spectral efficiency, i.e. by using high-order quadrature amplitude modulation (QAM) schemes as a mapping method prior to the OFDM multicarrier representation. Here we address especially coherent optical OFDM modem in long distance which is affected by nonlinear distortion caused by fiber nonlinearity. Fiber nonlinearity is a majo performance-limiting factor in advanced optical communication systems. We proposed a nonlinear electrical equalization scheme based on the Volterra model. To compare with other popular linear compensation technique such as the least mean square (LMS), simulation results are presented to demonstrate the capability of a Volterra model based electrical equalizer used in a coherent optical orthogonal frequency division multiplexing system. It is shown that the Volterra model based equalizer can significantly reduce nonlinear distortion.

  9. Coherent optical OFDM: theory and design

    National Research Council Canada - National Science Library

    W. Shieh; H. Bao; Y. Tang

    2008-01-01

    Coherent optical OFDM (CO-OFDM) has recently been proposed and the proof-of-concept transmission experiments have shown its extreme robustness against chromatic dispersion and polarization mode dispersion...

  10. Through-the-wall localization of a moving target by two independent ultra wideband (UWB) radar systems.

    Science.gov (United States)

    Kocur, Dušan; Svecová, Mária; Rovňáková, Jana

    2013-09-09

    In the case of through-the-wall localization of moving targets by ultra wideband (UWB) radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

  11. A novel very wideband integrated antenna system for 4G and 5G mm-wave applications

    KAUST Repository

    Ikram, M.

    2017-09-22

    In this work, a novel very wideband 4-element monopole based multiple-input multiple-output (MIMO) antenna system with single connected antenna array (CAA) is presented. The CAA is based on a single slot which is etched on the ground plane. A 2 × 1 power divider/combiner is used to excite the slot to act as a CAA. The proposed design covers the 4G bands between 1850 and 3700, and the 28 GHz 5G band. The covered bandwidths are 1462 and 240 MHz from 1843 to 3305 MHz and 3500 to 3740 MHz, respectively, for 4G applications. A bandwidth of 1.22 GHz from 27.5 to 28.72 GHz is obtained for 5G applications. The proposed antenna system is designed on a double layer RO4350B substrate with height of 0.76 mm and dielectric constant of 3.5. The total size of the design is 115 × 65 × 0.76 mm. It is compact, low profile and suitable for wireless handheld devices. The MIMO performance metrics such as isolation and ECC are evaluated and good agreement between simulations and measurements is achieved.

  12. Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB Radar Systems

    Directory of Open Access Journals (Sweden)

    Jana Rovňáková

    2013-09-01

    Full Text Available In the case of through-the-wall localization of moving targets by ultra wideband (UWB radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

  13. A mid-infrared carbon monoxide sensor system using wideband absorption spectroscopy and a single-reflection spherical optical chamber

    Science.gov (United States)

    Dong, Ming; Zheng, Chuantao; Miao, Shuzhuo; Song, Fang; Wang, Yiding

    2017-09-01

    A mid-infrared carbon monoxide (CO) sensor system based on a dual-channel differential detection method was developed using a broadband light source in the 4.60 μm wavelength region and a single-reflection spherical optical chamber with ∼0.373 m absorption path length. CO detection was realized by targeting the wideband strong absorption lines within 4.55-4.65 μm. A dual-channel pyroelectric detector as well as a self-developed digital signal processor (DSP) based orthogonal lock-in amplifier was employed to process CO sensing signal. A minimum detection limit of ∼0.5 ppm in volume (ppmv) was achieved with a measurement time of 6 s, based on an Allan deviation analysis of the sensor system. The response time (1000 → 0 ppmv) was determined to be ∼7 s for the CO sensor operation. Due to the characteristics of low detection limit, fast response time and high cost performance, the proposed sensor has relatively good prospect in coal-mining operation.

  14. Performance bounds on micro-Doppler estimation and adaptive waveform design using OFDM signals

    Science.gov (United States)

    Sen, Satyabrata; Barhen, Jacob; Glover, Charles W.

    2014-05-01

    We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Craḿer-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.

  15. Performance Bounds on Micro-Doppler Estimation and Adaptive Waveform Design Using OFDM Signals

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL; Barhen, Jacob [ORNL; Glover, Charles Wayne [ORNL

    2014-01-01

    We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute the Cram er-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.

  16. OFDM: From the Idea to Implementation

    Science.gov (United States)

    Fechtel, S. A.

    2005-05-01

    OFDM (orthogonal frequency-division multiplexing) is one of the key digital communication technologies of the current decade. The first part of this paper presents the fundamentals of OFDM and its benefits in the presence of multipath propagation in a tutorial-like fashion. The second part details on some of the most important aspects of OFDM transceiver implementation: concept of receiver channel filtering and A/D conversion, radio impairment compensation (I/Q mismatch), and OFDM demodulator (FFT) design.

  17. An approach for physical layer security enhancement and PAPR reduction in OFDM-PON

    Science.gov (United States)

    Chen, Junxin; Zhu, Zhi-liang

    2017-07-01

    This work develops a solution for simultaneous physical layer security enhancement and peak-to-average power ratio (PAPR) reduction for orthogonal frequency division multiplexing passive optical network (OFDM-PON) systems. The encryption is carried out within the subcarriers with the help of three-dimensional (3-D) chaotic cat map. Experimental results demonstrate that the OFDM-PON system under the protection of the proposed technique is high sensitive to the secret key, invalid optical network units cannot obtain any useful information from the ciphertext. Besides, the PAPR of the OFDM symbols has also been significantly reduced, and hence the system is more robust against various nonlinear disturbances.

  18. A 3.1-4.8 GHz CMOS receiver for MB-OFDM UWB

    Energy Technology Data Exchange (ETDEWEB)

    Yang Guang; Yao Wang; Yin Jiangwei; Zheng Renliang; Li Wei; Li Ning; Ren Junyan, E-mail: w-li@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-01-15

    An integrated fully differential ultra-wideband CMOS receiver for 3.1-4.8 GHz MB-OFDM systems is presented. A gain controllable low noise amplifier and a merged quadrature mixer are integrated as the RF front-end. Five order Gm-C type low pass filters and VGAs are also integrated for both I and Q IF paths in the receiver. The ESD protected chip is fabricated in a Jazz 0.18 mum RF CMOS process and achieves a maximum total voltage gain of 65 dB, an AGC range of 45 dB with about 6 dB/step, an averaged total noise figure of 6.4 to 8.8 dB over 3 bands and an in-band IIP3 of -5.1 dBm. The receiver occupies 2.3 mm{sup 2} and consumes 110 mA from a 1.8 V supply including test buffers and a digital module.

  19. Constellation-masked secure communication technique for OFDM-PON.

    Science.gov (United States)

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Yu, Jianjun

    2012-10-22

    This paper proposes a novel secure communication technique using constellation masking for applications in orthogonal frequency division multiplexing passive optical network (OFDM-PON). The constellation masking is applied both on each subcarrier and among different subcarriers. The Arnold mapping is utilized as the parameter function for the mask factors. A interleave length is employed to provide a scalable masking granularity for different ONUs. A 15.54 Gb/s constellation-masked 32QAM-OFDM signal has been successfully transmitted over 25-km single mode fiber in the experiment. Experimental results show that the proposed scheme can effectively protect the system from illegal ONU without wasting the bandwidth. The constellation-masked technique suggests an effective solution for the physical secure communication in future OFDM access network.

  20. Optimal and Suboptimal Finger Selection Algorithms for MMSE Rake Receivers in Impulse Radio Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Chiang Mung

    2006-01-01

    Full Text Available The problem of choosing the optimal multipath components to be employed at a minimum mean square error (MMSE selective Rake receiver is considered for an impulse radio ultra-wideband system. First, the optimal finger selection problem is formulated as an integer programming problem with a nonconvex objective function. Then, the objective function is approximated by a convex function and the integer programming problem is solved by means of constraint relaxation techniques. The proposed algorithms are suboptimal due to the approximate objective function and the constraint relaxation steps. However, they perform better than the conventional finger selection algorithm, which is suboptimal since it ignores the correlation between multipath components, and they can get quite close to the optimal scheme that cannot be implemented in practice due to its complexity. In addition to the convex relaxation techniques, a genetic-algorithm- (GA- based approach is proposed, which does not need any approximations or integer relaxations. This iterative algorithm is based on the direct evaluation of the objective function, and can achieve near-optimal performance with a reasonable number of iterations. Simulation results are presented to compare the performance of the proposed finger selection algorithms with that of the conventional and the optimal schemes.

  1. Application of a joint and iterative MMSE-based estimation of SNR and frequency-selective channel for OFDM systems

    Science.gov (United States)

    Savaux, Vincent; Louët, Yves; Djoko-Kouam, Moïse; Skrzypczak, Alexandre

    2013-12-01

    This article presents an iterative minimum mean square error- (MMSE-) based method for the joint estimation of signal-to-noise ratio (SNR) and frequency-selective channel in an orthogonal frequency division multiplexing (OFDM) context. We estimate the SNR thanks to the MMSE criterion and the channel frequency response by means of the linear MMSE (LMMSE). As each estimation requires the other one to be performed, the proposed algorithm is iterative. In this article, a realistic case is considered; i.e., the channel covariance matrix used in LMMSE is supposed to be totally unknown at the receiver and must be estimated. We will theoretically prove that the algorithm converges for a relevantly chosen initialization value. Furthermore simulations show that the algorithm quickly converges to a solution that is close to the one in which the covariance matrix is perfectly known. Compared to existing SNR estimation methods, the algorithm improves the trade-off between the number of required pilots and the SNR estimation quality.

  2. Adaptive OFDM Radar Waveform Design for Improved Micro-Doppler Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Engineering Science Advanced Research, Computer Science and Mathematics Division

    2014-07-01

    Here we analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a rotating target having multiple scattering centers. The use of a frequency-diverse OFDM signal enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. We characterize the accuracy of micro-Doppler frequency estimation by computing the Cramer-Rao bound (CRB) on the angular-velocity estimate of the target. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations with respect to the signal-to-noise ratios, number of temporal samples, and number of OFDM subcarriers. We also analysed numerically the improvement in estimation accuracy due to the adaptive waveform design. A grid-based maximum likelihood estimation technique is applied to evaluate the corresponding mean-squared error performance.

  3. Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems.

    Science.gov (United States)

    Hugues-Salas, E; Giddings, R P; Jin, X Q; Wei, J L; Zheng, X; Hong, Y; Shu, C; Tang, J M

    2011-02-14

    The feasibility of utilising low-cost, un-cooled vertical cavity surface-emitting lasers (VCSELs) as intensity modulators in real-time optical OFDM (OOFDM) transceivers is experimentally explored, for the first time, in terms of achievable signal bit rates, physical mechanisms limiting the transceiver performance and performance robustness. End-to-end real-time transmission of 11.25 Gb/s 64-QAM-encoded OOFDM signals over simple intensity modulation and direct detection, 25 km SSMF PON systems is experimentally demonstrated with a power penalty of 0.5 dB. The low extinction ratio of the VCSEL intensity-modulated OOFDM signal is identified to be the dominant factor determining the maximum obtainable transmission performance. Experimental investigations indicate that, in addition to the enhanced transceiver performance, adaptive power loading can also significantly improve the system performance robustness to variations in VCSEL operating conditions. As a direct result, the aforementioned capacity versus reach performance is still retained over a wide VCSEL bias (driving) current (voltage) range of 4.5 mA to 9 mA (275 mVpp to 320 mVpp). This work is of great value as it demonstrates the possibility of future mass production of cost-effective OOFDM transceivers for PON applications.

  4. Power-efficient method for IM-DD optical transmission of multiple OFDM signals.

    Science.gov (United States)

    Effenberger, Frank; Liu, Xiang

    2015-05-18

    We propose a power-efficient method for transmitting multiple frequency-division multiplexed (FDM) orthogonal frequency-division multiplexing (OFDM) signals in intensity-modulation direct-detection (IM-DD) optical systems. This method is based on quadratic soft clipping in combination with odd-only channel mapping. We show, both analytically and experimentally, that the proposed approach is capable of improving the power efficiency by about 3 dB as compared to conventional FDM OFDM signals under practical bias conditions, making it a viable solution in applications such as optical fiber-wireless integrated systems where both IM-DD optical transmission and OFDM signaling are important.

  5. Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM.

    Science.gov (United States)

    Liu, Xiang; Buchali, Fred

    2008-12-22

    We present an efficient channel estimation method for coherent optical OFDM (CO-OFDM) based on intra-symbol frequency-domain averaging (ISFA), and systematically study its robustness against transmission impairments such as optical noise, chromatic dispersion (CD), polarization-mode dispersion (PMD), polarization-dependent loss (PDL), and fiber nonlinearity. Numerical simulations are performed for a 112-Gb/s polarization-division multiplexed (PDM) CO-OFDM signal, and the ISFAbased channel estimation and the subsequent channel compensation are found to be highly robust against these transmission impairments in typical optical transport systems.

  6. Apparatus And Method For Wireless Monitoring Using Ultra-wideband Frequencies

    KAUST Repository

    Sana, Furrukh

    2015-04-23

    A system for and a method of wirelessly monitoring one or more patients can include transmitting ultra-wideband pulses toward the one or more patients, receiving ultra-wideband signals, and sampling the ultra-wideband signals. Sampling the ultra-wideband pulses can be performed with a sample rate that is less than the Nyquist rate. Impulse response can be estimated and/or recovered by exploiting sparsity of the impulse response.

  7. PAPR reduction based on tone reservation scheme for DCO-OFDM indoor visible light communications.

    Science.gov (United States)

    Bai, Jurong; Li, Yong; Yi, Yang; Cheng, Wei; Du, Huimin

    2017-10-02

    High peak-to-average power ratio (PAPR) leads to out-of-band power and in-band distortion in the direct current-biased optical orthogonal frequency division multiplexing (DCO-OFDM) systems. In order to effectively reduce the PAPR with faster convergence and lower complexity, this paper proposes a tone reservation based scheme, which is the combination of the signal-to-clipping noise ratio (SCR) procedure and the least squares approximation (LSA) procedure. In the proposed scheme, the transmitter of the DCO-OFDM indoor visible light communication (VLC) system is designed to transform the PAPR reduced signal into real-valued positive OFDM signal without doubling the transmission bandwidth. Moreover, the communication distance and the light emitting diode (LED) irradiance angle are taking into consideration in the evaluation of the system bit error rate (BER). The PAPR reduction efficiency of the proposed scheme is remarkable for DCO-OFDM indoor VLC systems.

  8. W-band OFDM photonic vector signal generation employing a single Mach-Zehnder modulator and precoding.

    Science.gov (United States)

    Xiao, Jiangnan; Li, Xinying; Xu, Yuming; Zhang, Ziran; Chen, Long; Yu, Jianjun

    2015-09-07

    We present a simple radio-over-fiber (RoF) link architecture for millimeter-wave orthogonal frequency division multiplexing (OFDM) transmission using only one Mach-Zehnder modulator (MZM) and precoding technique. In the transmission system, the amplitudes and the phase of the driving radio-frequency (RF) OFDM signal on each sub-carrier are precoded, to ensure that the OFDM signal after photodetector (PD) can be restored to original OFDM signal. The experimental results show that the bit-error ratios (BERs) of the transmission system are less than the forward-error-correction (FEC) threshold of 3.8 × 10(-3), which demonstrates that the generation of OFDM vector signal based on our proposed scheme can be employed in our system architecture.

  9. D-BLAST OFDM with Channel Estimation

    Directory of Open Access Journals (Sweden)

    Du Jianxuan

    2004-01-01

    Full Text Available Multiple-input and multiple-output (MIMO systems formed by multiple transmit and receive antennas can improve performance and increase capacity of wireless communication systems. Diagonal Bell Laboratories Layered Space-Time (D-BLAST structure offers a low-complexity solution for realizing the attractive capacity of MIMO systems. However, for broadband wireless communications, channel is frequency-selective and orthogonal frequency division multiplexing (OFDM has to be used with MIMO techniques to reduce system complexity. In this paper, we investigate D-BLAST for MIMO-OFDM systems. We develop a layerwise channel estimation algorithm which is robust to channel variation by exploiting the characteristic of the D-BLAST structure. Further improvement is made by subspace tracking to considerably reduce the error floor. Simulation results show that the layerwise estimators require 1 dB less signal-to-noise ratio (SNR than the traditional blockwise estimator for a word error rate (WER of when Doppler frequency is 40 Hz. Among the layerwise estimators, the subspace-tracking estimator provides a 0.8 dB gain for WER with 200 Hz Doppler frequency compared with the DFT-based estimator.

  10. Effects of Channel Estimation Errors in OFDM-MIMO-based Underwater Communications

    OpenAIRE

    Håkegård, Jan Erik; Grythe, Knut Harald

    2009-01-01

    State-of-the-art radio communication systems are in a large extent based on multi-carrier communication (OFDM) and multiple antennas (MIMO). In this paper the performance of such systems adapted to an underwater acoustic communication channel is assessed. The effect of the channel characteristics on an OFDM-MIMO scheme similar to that used in WiMAX (IEEE802.16e) is analyzed, in particular related to channel estimation error. Simulation results illustrate the relation between estimation error ...

  11. Experimental demonstration of the OQAM-OFDM-based wavelength stacked passive optical networks

    Science.gov (United States)

    Bi, Meihua; Zhang, Lu; Liu, Ling; Yang, Guowei; Zeng, Ran; Xiao, Shilin; Li, Zhengxuan; Song, Yingxiong

    2017-07-01

    We demonstrate a wavelength stacked passive optical network (PON) with offset quadrature amplitude modulation based orthogonal frequency division multiplexing (OQAM-OFDM), which can provide 100-km single mode fiber (SMF) transmission without any inline repeater amplifier for both downlink and uplink. By experiment, we verify the feasibility of this proposed PON system for bi-directional long distance transmission especially for asynchronous upstream. Experimental result shows that, negligible power penalty is achieved even with 100-km SMF transmission, and 3.6-dB sensitivity improvement is obtained when compared to OFDM-based asynchronous system. Besides, the performance in terms of side-lode suppression and peak to average power ratio (PAPR) are also contrastively analyzed between OFDM and OQAM-OFDM-based PON system.

  12. Portable Wideband Microwave Imaging System for Intracranial Hemorrhage Detection Using Improved Back-projection Algorithm with Model of Effective Head Permittivity

    Science.gov (United States)

    Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.

    2016-01-01

    Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials. PMID:26842761

  13. Experimental demonstrations of record high REAM intensity modulator-enabled 19.25Gb/s real-time end-to-end dual-band optical OFDM colorless transmissions over 25km SSMF IMDD systems.

    Science.gov (United States)

    Zhang, Q W; Hugues-Salas, E; Giddings, R P; Wang, M; Tang, J M

    2013-04-08

    Record-high 19.25Gb/s real-time end-to-end dual-band optical OFDM (OOFDM) colorless transmissions across the entire C-band are experimentally demonstrated, for the first time, in reflective electro-absorption modulator (REAM)-based 25km standard SMF systems using intensity modulation and direct detection. Adaptively modulated baseband (0-2GHz) and passband (6.125 ± 2GHz) OFDM RF sub-bands, supporting signal line rates of 9.75Gb/s and 9.5Gb/s respectively, are independently generated and detected with FPGA-based DSP clocked at only 100MHz as well as DACs/ADCs operating at sampling speeds as low as 4GS/s. The two OFDM sub-bands are electrically multiplexed for intensity modulation of a single optical carrier by an 8GHz REAM. The REAM colorlessness is experimentally characterized, based on which optimum REAM operating conditions are identified. To maximize and balance the signal transmission performance of each sub-band, on-line adaptive transceiver optimization functions and live performance monitoring are fully exploited to optimize key OOFDM transceiver and system parameters. For different wavelengths within the C-band, corresponding minimum received optical powers at the FEC limit vary in a range of <0.5dB and bit error rate performances for both baseband and passband signals are almost identical. Furthermore, detailed investigations are also undertaken of the maximum aggregated signal line rate sensitivity to electrical sub-band power variation. It is shown that the aforementioned system has approximately 3dB tolerance to RF sub-band power variation.

  14. An Implementation of Error Minimization Data Transmission in OFDM using Modified Convolutional Code

    Directory of Open Access Journals (Sweden)

    Hendy Briantoro

    2016-04-01

    Full Text Available This paper presents about error minimization in OFDM system. In conventional system, usually using channel coding such as BCH Code or Convolutional Code. But, performance BCH Code or Convolutional Code is not good in implementation of OFDM System. Error bits of OFDM system without channel coding is 5.77%. Then, we used convolutional code with code rate 1/2, it can reduce error bitsonly up to 3.85%. So, we proposed OFDM system with Modified Convolutional Code. In this implementation, we used Software Define Radio (SDR, namely Universal Software Radio Peripheral (USRP NI 2920 as the transmitter and receiver. The result of OFDM system using Modified Convolutional Code with code rate is able recover all character received so can decrease until 0% error bit. Increasing performance of Modified Convolutional Code is about 1 dB in BER of 10-4 from BCH Code and Convolutional Code. So, performance of Modified Convolutional better than BCH Code or Convolutional Code. Keywords: OFDM, BCH Code, Convolutional Code, Modified Convolutional Code, SDR, USRP

  15. All-optical generation of DFT-S-OFDM superchannels using periodic sinc pulses.

    Science.gov (United States)

    Lowery, Arthur James; Zhu, Chen; Viterbo, Emanuele; Corcoran, Bill

    2014-11-03

    Discrete-Fourier-transform spread (DFT-S) optical Orthogonal Frequency Division Multiplexed (OFDM) signals offer improved nonlinearity performance in long haul optical communications systems, and can be used to form superchannels. In this paper we propose how DFT-S-OFDM superchannels can be generated and demultiplexed using all-optical techniques, and demonstrate the feasibility using numerical simulations. We also discuss how each wavelength channel is similar to recently proposed Orthogonally Time-Division Multiplexed (OrthTDM) systems using periodic-sinc pulses from, for example, a Nyquist laser. The key difference between OrthTDM and DFT-S-OFDM is the synchronization of the symbol boundaries of every modulation tributary; because of this we show that OrthTDM cannot be formed into superchannels that can be demultiplexed without penalties, but DFT-S-OFDM can be.

  16. A Next Generation Wireless Simulator Based on MIMO-OFDM: LTE Case Study

    Directory of Open Access Journals (Sweden)

    Gómez Gerardo

    2010-01-01

    Full Text Available The complexity of next generation wireless systems is growing exponentially. The combination of Multiple-Input Multiple-Output (MIMO technology with Orthogonal Frequency Division Multiplexing (OFDM is considered as the best solution to provide high data rates under frequency-selective fading channels. The design and evaluation of MIMO-OFDM systems require a detailed analysis of a number of functionalities such as MIMO transmission modes, channel estimation, MIMO detection, channel coding, or cross-layer scheduling. In this paper we present a MIMO-OFDM-based simulator that includes the main physical and link layer functionalities. The simulator has been used to evaluate the performance of the 3GPP Long-Term Evolution (LTE technology for different MIMO-OFDM techniques under realistic assumptions such as user mobility or bandwidth-limited feedback channel.

  17. Dynamic Subarrays for Hybrid Precoding in Wideband mmWave MIMO Systems

    OpenAIRE

    Park, Sungwoo; Alkhateeb, Ahmed; Heath Jr., Robert W.

    2016-01-01

    Hybrid analog/digital precoding architectures can address the trade-off between achievable spectral efficiency and power consumption in large-scale MIMO systems. This makes it a promising candidate for millimeter wave systems, which require deploying large antenna arrays at both the transmitter and receiver to guarantee sufficient received signal power. Most prior work on hybrid precoding focused on narrowband channels and assumed fully-connected hybrid architectures. MmWave systems, though, ...

  18. Performance analysis for a chaos-based code-division multiple access system in wide-band channel

    Directory of Open Access Journals (Sweden)

    Ciprian Doru Giurcăneanu

    2015-08-01

    Full Text Available Code-division multiple access technology is widely used in telecommunications and its performance has been extensively investigated in the past. Theoretical results for the case of wide-band transmission channel were not available until recently. The novel formulae which have been published in 2014 can have an important impact on the future of wireless multiuser communications, but limitations come from the Gaussian approximations used in their derivation. In this Letter, the authors obtain more accurate expressions of the bit error rate (BER for the case when the model of the wide-band channel is two-ray, with Rayleigh fading. In the authors’ approach, the spreading sequences are assumed to be generated by logistic map given by Chebyshev polynomial function of order two. Their theoretical and experimental results show clearly that the previous results on BER, which rely on the crude Gaussian approximation, are over-pessimistic.

  19. Study of a satellite communication system for wideband communications: Executive summary

    Science.gov (United States)

    1983-08-01

    Configurations of a 20/30 GHz satellite system providing wide band services over Europe in the 1990's were studied to identify payload technologies which have to be developed. A market study assessed potential demand for wide band services in Europe and determined the competitivity or complementarity of a space communication system with optical fiber systems. Results show that a wide band satellite system is especially of interest if there is a high growth in demand for video teleconferences. Due to the large transmission capacities required (1000 channels) it is mandatory to develop architectures and technologies in order to reduce the space segment cost and make it competitive with optical fiber transmissions. Satellite systems would be vulnerable in a price war.

  20. Equation-Method for correcting clipping errors in OFDM signals.

    Science.gov (United States)

    Bibi, Nargis; Kleerekoper, Anthony; Muhammad, Nazeer; Cheetham, Barry

    2016-01-01

    Orthogonal frequency division multiplexing (OFDM) is the digital modulation technique used by 4G and many other wireless communication systems. OFDM signals have significant amplitude fluctuations resulting in high peak to average power ratios which can make an OFDM transmitter susceptible to non-linear distortion produced by its high power amplifiers (HPA). A simple and popular solution to this problem is to clip the peaks before an OFDM signal is applied to the HPA but this causes in-band distortion and introduces bit-errors at the receiver. In this paper we discuss a novel technique, which we call the Equation-Method, for correcting these errors. The Equation-Method uses the Fast Fourier Transform to create a set of simultaneous equations which, when solved, return the amplitudes of the peaks before they were clipped. We show analytically and through simulations that this method can, correct all clipping errors over a wide range of clipping thresholds. We show that numerical instability can be avoided and new techniques are needed to enable the receiver to differentiate between correctly and incorrectly received frequency-domain constellation symbols.

  1. Frequency interleaving towards spectrally efficient directly detected optical OFDM for next-generation optical access networks.

    Science.gov (United States)

    Mehedy, Lenin; Bakaul, Masuduzzaman; Nirmalathas, Ampalavanapillai

    2010-10-25

    In this paper, we theoretically analyze and demonstrate that spectral efficiency of a conventional direct detection based optical OFDM system (DDO-OFDM) can be improved significantly using frequency interleaving of adjacent DDO-OFDM channels where OFDM signal band of one channel occupies the spectral gap of other channel and vice versa. We show that, at optimum operating condition, the proposed technique can effectively improve the spectral efficiency of the conventional DDO-OFDM system as much as 50%. We also show that such a frequency interleaved DDO-OFDM system, with a bit rate of 48 Gb/s within 25 GHz bandwidth, achieves sufficient power budget after transmission over 25 km single mode fiber to be used in next-generation time-division-multiplexed passive optical networks (TDM-PON). Moreover, by applying 64- quadrature amplitude modulation (QAM), the system can be further scaled up to 96 Gb/s with a power budget sufficient for 1:16 split TDM-PON.

  2. OFDM techniques for narrow-band power line communications; OFDM-Verfahren fuer die schmalbandige Datenuebertragung im elektrischen Energieversorgungsnetz

    Energy Technology Data Exchange (ETDEWEB)

    Hoch, Martin

    2012-07-01

    In Power Line Communications (PLC) the power distribution grid is modelled by a frequency-selective time-variant channel. Therefore, OFDM techniques are suited very well for this application since they equalize the frequency-selective behaviour in a simple fashion. For narrow-band PLC, where only little amounts of data are to be transmitted, it is advantageous to employ a non-coherent system that does not need a training sequence for channel estimation. Such type of system can be brought up with CyclicPrefix OFDM in combination with Differential Phase-Shift Keying (DPSK). In an alternative, Unique-Word OFDM, the guard interval is not filled by a cyclic prefix, but a ''unique word'', which can be deployed for channel estimation. However, there is a loss in signal-to-noise power ratio due to the special type of signal generation. This loss can be more than regained in principle, but only by applying expensive detection. Another interesting technique is Wavelet-OFDM as its transmit spectrum can be formed outstandingly because of extended transmit pulses. This implies a large overhead when short packets of data are transmitted - additionally to a training sequence, for non-coherent detection is not possible. Cyclic-Prefix OFDM and DPSK are the basis of the Physical Layers of the PLC systems ''PLC G3'' and ''PRIME''. Comparing their specifications and analyzing simulation results ''PLC G3'' turns out to be the more reliable system. In order to equalize the time-variant behaviour of the power line channel, linear equalization and Multiple Symbol Differential Detection is studied as well as algorithms to estimate the time-variant envelope. (orig.)

  3. An Overview of the Japanese GALA-V Wideband VLBI System

    Science.gov (United States)

    Sekido, Mamoru; Takefuji, Kazuhiro; Ujihara, Hideki; Kondo, Tetsuro; Tsutsumi, Masanori; Miyauchi, Yuka; Kawai, Eiji; Takiguchi, Hiroshi; Hasegawa, Shingo; Ichikawa, Ryuichi; Koyama, Yasuhiro; Hanado, Yuko; Watabe, Ken-ichi; Suzuyama, Tomonari; Komuro, Jun-ichi; Terada, Kenjiro; Namba, Kunitaka; Takahashi, Rumi; Okamoto, Yoshihiro; Aoki, Tetsuro; Ikeda, Takatoshi

    2016-12-01

    NICT is developing a new broadband VLBI system, named GALA-V, with the aim of performing frequency comparisons between atomic time standards over intercontinental baselines. The development of the broadband GALA-V system is coordinated to be as compatible as possible with the VGOS system. Two types of original broadband feed systems were developed for the Kashima 34-m antenna of modified Cassegrain optics. The first prototype feed, called IGUANA-H, works in the 6.5-16 GHz frequency range, while the second feed, NINJA, works in the 3.2-14 GHz range. The GALA-V observation system is designed to capture four bands of 1024 MHz width in the 3-14 GHz range. Two types of data acquisition modes are available. One is a narrow channel mode, which acquires multiple channels with 32-MHz bandwidth. This mode is compatible with the NASA Proof-of-Concept (PoC) system developed by MIT Haystack Observatory. The other is a broad channel acquisition mode, in which a signal of 1024 MHz width is digitized as a single channel. A radio frequency (RF) direct sampling technique was used in this mode as a new approach for broadband observation taking advantage of the high-speed sampler K6/GALAS and its digital filtering function. This technique has several advantages in the precise delay measurement of the broadband bandwidth synthesis. VLBI experiments were conducted between the Kashima 34-m antenna and the Ishioka 13-m VGOS station of GSI, Japan. The first broadband observation over 8-GHz bandwidth was successful on this baseline in early 2015. The results of the broadband bandwidth synthesis over 8-GHz bandwidth proved sub-pico-second resolution group delay measurement with one second of integration time. Time series of the group delay data showed several picoseconds of fluctuation over a few hundred seconds of time. The Allan standard deviation is consistent with the frozen flow model of Kolmogorov tropospheric turbulence.

  4. Mitigation of nonlinear transmission effects for OFDM 16-QAM optical signal using adaptive modulation.

    Science.gov (United States)

    Skidin, Anton S; Sidelnikov, Oleg S; Fedoruk, Mikhail P; Turitsyn, Sergei K

    2016-12-26

    The impact of the fiber Kerr effect on error statistics in the nonlinear (high power) transmission of the OFDM 16-QAM signal over a 2000 km EDFA-based link is examined. We observed and quantified the difference in the error statistics for constellation points located at three power-defined rings. Theoretical analysis of a trade-off between redundancy and error rate reduction using probabilistic coding of three constellation power rings decreasing the symbol-error rate of OFDM 16-QAM signal is presented. Based on this analysis, we propose to mitigate the nonlinear impairments using the adaptive modulation technique applied to the OFDM 16-QAM signal. We demonstrate through numerical modelling the system performance improvement by the adaptive modulation for the large number of OFDM subcarriers (more than 100). We also show that a similar technique can be applied to single carrier transmission.

  5. Wideband vs. Multiband Trade-offs for a Scalable Multifunction RF system

    NARCIS (Netherlands)

    Huizing, A.G.

    2005-01-01

    This paper presents a concept for a scalable multifunction RF (SMRF) system that allows the RF functionality (radar, electronic warfare and communications) to be easily extended and the RF performance to be scaled to the requirements of different missions and platforms. A trade-off analysis is

  6. OFDM: From the Idea to Implementation

    Directory of Open Access Journals (Sweden)

    S. A. Fechtel

    2005-01-01

    Full Text Available OFDM (orthogonal frequency-division multiplexing is one of the key digital communication technologies of the current decade. The first part of this paper presents the fundamentals of OFDM and its benefits in the presence of multipath propagation in a tutorial-like fashion. The second part details on some of the most important aspects of OFDM transceiver implementation: concept of receiver channel filtering and A/D conversion, radio impairment compensation (I/Q mismatch, and OFDM demodulator (FFT design.

  7. Wide-Band Data Transmission System Expected in the Next Generation Space VLBI Mission: VSOP-2

    Science.gov (United States)

    Murata, Yasuhiro; Hirabayashi, Hisashi

    2002-01-01

    Following the success of the VLBI Space Observatory Program (VSOP), a next generation space VLBI mission (VSOP-2) is currently being planned. We expect the data rate of more than 1 Gbps to get more sensitivity. Here we will present: (1) How to sample the data (on board), including the radiation test results which show we can have the 10 Gbps sampler LSI which can use in space; (2) Possibility of the bit rate more than 1 Gbps to downlink the VLBI data. We studied the link budget for the wide band data transmission, and discussed the various ideas which can get more than 1 Gbps; and (3) What kind of VLBI tracking station and recording system will be expected for the VSOP-2 mission? We will present the idea of using normal radio telescopes as a tracking station, and also review the possibility of recording and processing at the tracking stations and correlators.

  8. Wide-band gap devices in PV systems - opportunities and challenges

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Cristian; Eni, Emanuel-Petre; Blaabjerg, Frede

    2014-01-01

    The recent developments in wide band-gap devices based GaN and SiC is showing a high impact on the PV-inverter technology, which is strongly influenced by efficiency, power density and cost. Besides the high efficiency of PV inverters, also the mechanical size, the compactness and simple structure...... have an important role in the cost reduction. To increase the efficiency of PV systems, most of solutions for PV inverters have moved to three-level (3L) structures reaching typical efficiencies of 98% due to low switching losses of 600V Si IGBT or MOSFET and reduced core losses in the filter......) three-phase PV-inverter topologies in terms of efficiency, thermal loading distribution and costs. Moreover the above mentioned PV-inverters are built and tested in laboratory in order to validate the obtained results....

  9. A Novel Reconfigurable MB-OFDM UWB LNA Using Programmable Current Reuse

    Directory of Open Access Journals (Sweden)

    Ahmed Ragheb

    2013-01-01

    Full Text Available This paper presents a design of a reconfigurable low noise amplifier (LNA for multiband orthogonal frequency division multiplexing (MB-OFDM ultra wideband (UWB receivers. The proposed design is divided into three stages; the first one is a common gate (CG topology to provide the input matching over a wideband. The second stage is a programmable circuit to control the mode of operation. The third stage is a current reuse topology to improve the gain, flatness and consume lower power. The proposed LNA is designed using 0.18 μm CMOS technology. This LNA has been designed to operate in two subbands of MB-OFDM UWB, UWB mode-1 and mode-3, as a single or concurrent mode. The simulation results exhibit the power gain up to 17.35, 18, and 11 dB for mode-1, mode-3, and concurrent mode, respectively. The NF is 3.5, 3.9, and 6.5 and the input return loss is better than −12, −13.57, and −11 dB over mode-1, mode-3, and concurrent mode, respectively. This design consumes 4 mW supplied from 1.2 V.

  10. Frequency Adaptability and Waveform Design for OFDM Radar Space-Time Adaptive Processing

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL; Glover, Charles Wayne [ORNL

    2012-01-01

    We propose an adaptive waveform design technique for an orthogonal frequency division multiplexing (OFDM) radar signal employing a space-time adaptive processing (STAP) technique. We observe that there are inherent variabilities of the target and interference responses in the frequency domain. Therefore, the use of an OFDM signal can not only increase the frequency diversity of our system, but also improve the target detectability by adaptively modifying the OFDM coefficients in order to exploit the frequency-variabilities of the scenario. First, we formulate a realistic OFDM-STAP measurement model considering the sparse nature of the target and interference spectra in the spatio-temporal domain. Then, we show that the optimal STAP-filter weight-vector is equal to the generalized eigenvector corresponding to the minimum generalized eigenvalue of the interference and target covariance matrices. With numerical examples we demonstrate that the resultant OFDM-STAP filter-weights are adaptable to the frequency-variabilities of the target and interference responses, in addition to the spatio-temporal variabilities. Hence, by better utilizing the frequency variabilities, we propose an adaptive OFDM-waveform design technique, and consequently gain a significant amount of STAP-performance improvement.

  11. Transmission of OFDM wired-wireless quintuple-play services along WDM LR-PONs using centralized broadband impairment compensation.

    Science.gov (United States)

    Alves, Tiago M F; Morant, Maria; Cartaxo, Adolfo V T; Llorente, Roberto

    2012-06-18

    The simultaneous transmission of four orthogonal frequency-division multiplexing (OFDM)-based signals used to provide quintuple-play services along wavelength division multiplexing (WDM) long-reach passive optical networks (LR-PONs) is demonstrated experimentally. Particularly, the transmission performance of custom signal bearing Gigabit Ethernet data, Worldwide Interoperability for Microwave Access, Long Term Evolution and Ultra Wideband (sub-bands 2 and 3) signals is evaluated for different LR-PONs reaches, considering single-wavelength and WDM transmission, and using a centralized impairment compensation technique at the central office that is transparent to the services provided.It is shown that error vector magnitude-compliant levels are obtained for all the OFDM-based signals in WDM LR-PONs reaching 100 km and that negligible inter-channel crosstalk is obtained for a channel spacing of 100 GHz regardless the OFDM-based signal considered. The successful multi-format OFDM transmission along the 100 km-long WDM LR-PON is achieved in the absence of optical dispersion compensation or single sideband modulation, and it is enabled by the performance improvement provided by the centralized impairment compensation realized.

  12. Wideband EMG telemetry system

    Science.gov (United States)

    Rosatino, S. A.; Westbrook, R. M.

    1979-01-01

    Miniature, individual crystal-controlled RF transmitters located in EMG pressure sensors simplifies multichannel EMG telemetry for electronic gait monitoring. Transmitters which are assigned operating frequencies within 174 - 216 MHz band have linear frequency response from 20 - 2000 Hz and operate over range of 15 m.

  13. BER analysis of DS-UWB system employing a laplace distribution model

    KAUST Repository

    Mehbodniya, Abolfazl

    2011-01-01

    This letter takes a new approach to extract a closed-form expression for the bit error rate (BER) of direct-sequence ultra wideband (DS-UWB) system. In the analysis, the main signal is impaired by multi-user interference (MUI) and an external source of interference originated by simultanously transmitting multiband orthogonal frequency division multiplexing (MB-OFDM) systems which are located in the vicinity of the DS-UWB receiver. All the transmission channels are affected by Nakagami-m fading. A Laplacian distribution is considered for MUI to comply more with real statistical behaviors of this kind of interference. © IEICE 2011.

  14. Optimal Data Transmission on MIMO OFDM Channels

    Science.gov (United States)

    2008-12-01

    standard with OFDM using different values of coding rates. International Telecommunications Union (ITU) channel models are selected for the wireless...AND ABBREVIATIONS AWGN Additive White Gaussian Noise BER Bit Error Rate BPSK Binary Phase Sift Keying CDMA Code Division Multiple Access CSI...division multiple access ( CDMA ) and orthogonal frequency division multiplexing (OFDM). The latter, in particular, is widely used in several standards

  15. Channel Estimation in DCT-Based OFDM

    Science.gov (United States)

    Wang, Yulin; Zhang, Gengxin; Xie, Zhidong; Hu, Jing

    2014-01-01

    This paper derives the channel estimation of a discrete cosine transform- (DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic. PMID:24757439

  16. Channel estimation in DCT-based OFDM.

    Science.gov (United States)

    Wang, Yulin; Zhang, Gengxin; Xie, Zhidong; Hu, Jing

    2014-01-01

    This paper derives the channel estimation of a discrete cosine transform-(DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic.

  17. OFDM and MC-CDMA for broadband multi-user communications WLANs and broadcasting

    CERN Document Server

    2003-01-01

    "OFDM systems have experienced increased attention in recent years and have found applications in a number of diverse areas including telephone-line based ADSL links, digital audio and video broadcasting systems, and wireless local area networks. OFDM is being considered for the next-generation of wireless systems both with and without direct sequence spreading and the resultant spreading-based multi-carrier CDMA systems have numerous attractive properties. This volume provides the reader with a broad overview of the research on OFDM systems during their 40-year history. Part I commences with an easy to read conceptual, rather than mathematical, treatment of the basic design issues of OFDM systems. The discussions gradually deepen to include adaptive single and multi-user OFDM systems invoking adaptive turbo coding. Part II introduces the taxonomy of multi-carrier CDMA systems and deals with the design of their spreading codes and the objective of minimising their crest factors. This part also compares the be...

  18. A Novel Monopulse Angle Estimation Method for Wideband LFM Radars

    Directory of Open Access Journals (Sweden)

    Yi-Xiong Zhang

    2016-06-01

    Full Text Available Traditional monopulse angle estimations are mainly based on phase comparison and amplitude comparison methods, which are commonly adopted in narrowband radars. In modern radar systems, wideband radars are becoming more and more important, while the angle estimation for wideband signals is little studied in previous works. As noise in wideband radars has larger bandwidth than narrowband radars, the challenge lies in the accumulation of energy from the high resolution range profile (HRRP of monopulse. In wideband radars, linear frequency modulated (LFM signals are frequently utilized. In this paper, we investigate the monopulse angle estimation problem for wideband LFM signals. To accumulate the energy of the received echo signals from different scatterers of a target, we propose utilizing a cross-correlation operation, which can achieve a good performance in low signal-to-noise ratio (SNR conditions. In the proposed algorithm, the problem of angle estimation is converted to estimating the frequency of the cross-correlation function (CCF. Experimental results demonstrate the similar performance of the proposed algorithm compared with the traditional amplitude comparison method. It means that the proposed method for angle estimation can be adopted. When adopting the proposed method, future radars may only need wideband signals for both tracking and imaging, which can greatly increase the data rate and strengthen the capability of anti-jamming. More importantly, the estimated angle will not become ambiguous under an arbitrary angle, which can significantly extend the estimated angle range in wideband radars.

  19. Advanced Signal Processing for MIMO-OFDM Receivers

    DEFF Research Database (Denmark)

    Manchón, Carles Navarro

    contributions is the derivation of a novel message-passing scheme combining the MF and BP frameworks; the algorithm is derived from the stationary points of a region-based free energy approximation, and is guaranteed to converge if the underlying probabilistic model satisfies certain conditions. Moreover, we......-division multiplexing (OFDM) systems, with a particular emphasis on the 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) standard as a study case. Signal processing in wireless receivers can be designed following different strategies. On the one hand, one can use intuitive argumentation to define...... apply the combined message-passing algorithm to the probabilistic model of a MIMO-OFDM system; from the general derivation of the messages in the model, several instances of receiver structures with varying degrees of computational complexity and performance are obtained. We also explore...

  20. LDPC coded OFDM over the atmospheric turbulence channel.

    Science.gov (United States)

    Djordjevic, Ivan B; Vasic, Bane; Neifeld, Mark A

    2007-05-14

    Low-density parity-check (LDPC) coded optical orthogonal frequency division multiplexing (OFDM) is shown to significantly outperform LDPC coded on-off keying (OOK) over the atmospheric turbulence channel in terms of both coding gain and spectral efficiency. In the regime of strong turbulence at a bit-error rate of 10(-5), the coding gain improvement of the LDPC coded single-side band unclipped-OFDM system with 64 sub-carriers is larger than the coding gain of the LDPC coded OOK system by 20.2 dB for quadrature-phase-shift keying (QPSK) and by 23.4 dB for binary-phase-shift keying (BPSK).

  1. Generalized Wideband Cyclic MUSIC

    Directory of Open Access Journals (Sweden)

    Zhang-Meng Liu

    2009-01-01

    Full Text Available The method of Spectral Correlation-Signal Subspace Fitting (SC-SSF fails to separate wideband cyclostationary signals with coherent second-order cyclic statistics (SOCS. Averaged Cyclic MUSIC (ACM method made up for the drawback to some degree via temporally averaging the cyclic cross-correlation of the array output. This paper interprets ACM from another perspective and proposes a new DOA estimation method by generalizing ACM for wideband cyclostationary signals. The proposed method successfully makes up for the aforementioned drawback of SC-SSF and obtains a more satisfying performance than ACM. It is also demonstrated that ACM is a simplified form of the proposed method when only a single spectral frequency is exploited, and the integration of the frequencies within the signal bandwidth helps the new method to outperform ACM.

  2. Ultra-Wideband Radio

    Directory of Open Access Journals (Sweden)

    Pozar David M

    2005-01-01

    Full Text Available The application of ultra-wideband (UWB technology to low-cost short-range communications presents unique challenges to the communications engineer. The impact of the US FCC's regulations and the characteristics of the low-power UWB propagation channels are explored, and their effects on UWB hardware design are illustrated. This tutorial introduction includes references to more detailed explorations of the subject.

  3. A Novel 2-D OFDM-DS-CDMA Receiver with Frequency-Time Spreading

    Science.gov (United States)

    Chen, Joy Iong-Zong

    This paper presents a novel 2-D (2-dimension) receiver that adopts the reception scheme to promote OFDM-DS-CDMA (orthogonal frequency division multiplexing multi-carrier coded-division multiple-access) system performance. The system model includes spread coding and a system block diagram of the 2-D receiver shown graphically with 3-D (three dimensions) plots. The analytical calculation of system performance for an OFDM-DS-CDMA system combined with the proposed receiver equipment is investigated. To evaluate the results from the channel fading effect is considered over the correlated fading environments. The correlated-Nakagami-m statistical distribution is taken into account in the evaluation. The results show that the number of users, the number of subcarriers and the fading channel correlation generally affect OFDM-DS-CDMA systems. The system is also influenced by the Doppler shift and the signal propagation environment (fading parameter).

  4. Near Shannon Limit Low Peak Mean To Envelope Power Ratio (PMEPR) Turbo Block Coded OFDM for Space Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to study and develop an innovative Turbo-block coded modulation scheme suitable for Orthogonal Frequency Division Modulation (OFDM) system. The new...

  5. Time-Frequency Based Channel Estimation for High-Mobility OFDM Systems–Part I: MIMO Case

    Directory of Open Access Journals (Sweden)

    Chaparro LuisF

    2010-01-01

    Full Text Available Multiple-input multiple-output (MIMO systems hold the potential to drastically improve the spectral efficiency and link reliability in future wireless communications systems. A particularly promising candidate for next-generation fixed and mobile wireless systems is the combination of MIMO technology with Orthogonal Frequency Division Multiplexing (OFDM. OFDM has become the standard method because of its advantages over single carrier modulation schemes on multipath, frequency selective fading channels. Doppler frequency shifts are expected in fast-moving environments, causing the channel to vary in time, that degrades the performance of OFDM systems. In this paper, we present a time-varying channel modeling and estimation method based on the Discrete Evolutionary Transform to obtain a complete characterization of MIMO-OFDM channels. Performance of the proposed method is evaluated and compared on different levels of channel noise and Doppler frequency shifts.

  6. New high performance SAW convolvers used in high bit rate and wideband spread spectrum CDMA communications system.

    Science.gov (United States)

    Hikita, M; Takubo, C; Asai, K

    2000-01-01

    New surface acoustic wave (SAW) convolver structures with high conversion efficiency and self-temperature compensation characteristics have been developed. Strong piezoelectric substrates, regardless of temperature coefficients of delay (TCD), can be used in these convolvers. New demodulation techniques using the developed SAW convolver for high bit rate and wideband spread spectrum code division multiple access (CDMA) communications have also been developed. I- and Q-channel demodulation data can be derived directly from binary phase shift keying (BPSK) or quadri-phase shift keying (QPSK) CDMA signals. In an experiment using a 128 degrees YX-LiNbO(3) substrate, CDMA signals of 9 Mbps (megabits per second) with 60 Mcps (megachips per second) spread by 13-chip Barker code and 11 Mbps with 140 Mcps spread by 25-chip Shiba's code were clearly demodulated, demonstrating the effectiveness of these techniques for use in future CDMA communications.

  7. Energy-efficient WDM-OFDM-PON employing shared OFDM modulation modules in optical line terminal.

    Science.gov (United States)

    Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Kongtao; Su, Yikai

    2012-03-26

    We propose and experimentally demonstrate a scheme to improve the energy efficiency of wavelength division multiplexing - orthogonal frequency division multiplexing - passive optical networks (WDM-OFDM-PONs). By using an N × M opto-mechanic switch in optical line terminal (OLT), an OFDM modulation module is shared by several channels to deliver data to multiple users with low traffic demands during non-peak hours of the day, thus greatly reducing the number of operating devices and minimizing the energy consumption of the OLT. An experiment utilizing one OFDM modulation module to serve three optical network units (ONUs) in a WDM-OFDM-PON is performed to verify the feasibility of our proposal. Theoretical analysis and numerical calculation show that the proposed scheme can achieve a saving of 23.6% in the energy consumption of the OFDM modulation modules compared to conventional WDM-OFDM-PON.

  8. Optimizing end-to-end system performance for millimeter and submillimeter spectroscopy of protostars : wideband heterodyne receivers and sideband-deconvolution techniques for rapid molecular-line surveys

    Science.gov (United States)

    Sumner, Matthew Casey

    This thesis describes the construction, integration, and use of a new 230-GHz ultra-wideband heterodyne receiver, as well as the development and testing of a new sideband-deconvolution algorithm, both designed to enable rapid, sensitive molecular-line surveys. The 230-GHz receiver, known as Z-Rex, is the first of a new generation of wideband receivers to be installed at the Caltech Submillimeter Observatory (CSO). Intended as a proof-of-concept device, it boasts an ultra-wide IF output range of sim 6 - 18 GHz, offering as much as a twelvefold increase in the spectral coverage that can be achieved with a single LO setting. A similarly wideband IF system has been designed to couple this receiver to an array of WASP2 spectrometers, allowing the full bandwidth of the receiver to be observed at low resolution, ideal for extra-galactic redshift surveys. A separate IF system feeds a high-resolution 4-GHz AOS array frequently used for performing unbiased line surveys of galactic objects, particularly star-forming regions. The design and construction of the wideband IF system are presented, as is the work done to integrate the receiver and the high-resolution spectrometers into a working system. The receiver is currently installed at the CSO where it is available for astronomers' use. In addition to demonstrating wideband design principles, the receiver also serves as a testbed for a synthesizer-driven, active LO chain that is under consideration for future receiver designs. Several lessons have been learned, including the importance of driving the final amplifier of the LO chain into saturation and the absolute necessity of including a high-Q filter to remove spurious signals from the synthesizer output. The on-telescope performance of the synthesizer-driven LO chain is compared to that of the Gunn-oscillator units currently in use at the CSO. Although the frequency agility of the synthesized LO chain gives it a significant advantage for unbiased line surveys, the cleaner

  9. Real-time demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers.

    Science.gov (United States)

    Jin, X Q; Giddings, R P; Hugues-Salas, E; Tang, J M

    2009-10-26

    The feasibility of implementing 128-QAM in off-the-shelf component-based real-time optical OFDM (OOFDM) transceivers incorporating advanced channel estimation, on-line performance monitoring and live parameter optimisation, is experimentally investigated, for the first time, in intensity-modulation and direct-detection (IMDD) single-mode fibre (SMF) and multi-mode fibre (MMF) transmission systems involving directly modulated DFB lasers. The highest ever spectral efficiency of 5.25bit/s/Hz is demonstrated successfully in the aforementioned simple systems. Experimental investigations show that, it is feasible to transmit 5.25 Gb/s 128-QAM-encoded OOFDM real-time signals over 25 km MetroCor(TM) SMFs and 500 m 62.5/125 microm OM1 MMFs. The impact of key parameters on the transmission performance of the real-time OOFDM transceivers with 128-QAM encoding are explored, based on which optimum signal clipping ratios are identified.

  10. Evaluation of multiple-channel OFDM based airborne ultrasonic communications.

    Science.gov (United States)

    Jiang, Wentao; Wright, William M D

    2016-09-01

    Orthogonal frequency division multiplexing (OFDM) modulation has been extensively used in both wired and wireless communication systems. The use of OFDM technology allows very high spectral efficiency data transmission without using complex equalizers to correct the effect of a frequency-selective channel. This work investigated OFDM methods in an airborne ultrasonic communication system, using commercially available capacitive ultrasonic transducers operating at 50kHz to transmit information through the air. Conventional modulation schemes such as binary phase shift keying (BPSK) and quadrature amplitude modulation (QAM) were used to modulate sub-carrier signals, and the performances were evaluated in an indoor laboratory environment. Line-of-sight (LOS) transmission range up to 11m with no measurable errors was achieved using BPSK at a data rate of 45kb/s and a spectral efficiency of 1b/s/Hz. By implementing a higher order modulation scheme (16-QAM), the system data transfer rate was increased to 180kb/s with a spectral efficiency of 4b/s/Hz at attainable transmission distances up to 6m. Diffraction effects were incorporated into a model of the ultrasonic channel that also accounted for beam spread and attenuation in air. The simulations were a good match to the measured signals and non-LOS signals could be demodulated successfully. The effects of multipath interference were also studied in this work. By adding cyclic prefix (CP) to the OFDM symbols, the bit error rate (BER) performance was significantly improved in a multipath environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Quadrature amplitude modulation from basics to adaptive trellis-coded turbo-equalised and space-time coded OFDM CDMA and MC-CDMA systems

    CERN Document Server

    Hanzo, Lajos

    2004-01-01

    "Now fully revised and updated, with more than 300 pages of new material, this new edition presents the wide range of recent developments in the field and places particular emphasis on the family of coded modulation aided OFDM and CDMA schemes. In addition, it also includes a fully revised chapter on adaptive modulation and a new chapter characterizing the design trade-offs of adaptive modulation and space-time coding." "In summary, this volume amalgamates a comprehensive textbook with a deep research monograph on the topic of QAM, ensuring it has a wide-ranging appeal for both senior undergraduate and postgraduate students as well as practicing engineers and researchers."--Jacket.

  12. Using specific and adaptive arrangement of grid-type pilot in channel estimation for white-lightLED-based OFDM visible light communication system

    Science.gov (United States)

    Lin, Wan-Feng; Chow, Chi-Wai; Yeh, Chien-Hung

    2015-03-01

    Orthogonal frequency division multiplexing (OFDM) is a promising candidate for light emitting diode (LED)-based optical wireless communication (OWC); however, precise channel estimation is required for synchronization and equalization. In this work, we study and discover that the channel response of the white-lightLED-based OWC was smooth and stable. Hence we propose and demonstrate using a specific and adaptive arrangement of grid-type pilot scheme to estimate the LED OWC channel response. Experimental results show that our scheme can achieve better transmission performance and with some transmission capacity enhancement when compared with the method using training-symbol scheme (also called block-type pilot scheme).

  13. Non-Linear Detection for Joint Space-Frequency Block Coding and Spatial Multiplexing in OFDM-MIMO Systems

    DEFF Research Database (Denmark)

    Rahman, Imadur Mohamed; Marchetti, Nicola; Fitzek, Frank

    2005-01-01

    (SIC) receiver where the detection is done on subcarrier by sub-carrier basis based on both Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) nulling criterion for the system. In terms of Frame Error Rate (FER), MMSE based SIC receiver performs better than all other receivers compared...... in this paper. We have found that a linear two-stage receiver for the proposed system [1] performs very close to the non-linear receiver studied in this work. Finally, we compared the system performance in spatially correlated scenario. It is found that higher amount of spatial correlation at the transmitter...... can be tolerated, whereas higher receive spatial correlation is detrimental to the system....

  14. An Ultra-Wideband Millimeter-Wave Phased Array

    Science.gov (United States)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  15. Weighted OFDM for wireless multipath channels

    DEFF Research Database (Denmark)

    Prasad, Ramjee; Nikookar, H.

    2000-01-01

    In this paper the novel method of "weighted OFDM" is addressed. Different types of weighting factors (including Rectangular, Bartlett, Gaussian. Raised cosine, Half-sin and Shanon) are considered. The impact of weighting of OFDM on the peak-to-average power ratio (PAPR) is investigated by means...... of simulation and is compared for the above mentioned weighting factors. Results show that by weighting of the OFDM signal the PAPR reduces. Bit error performance of weighted multicarrier transmission over a multipath channel is also investigated. Results indicate that there is a trade off between PAPR...

  16. Wideband Piezomagnetoelastic Vibration Energy Harvesting

    DEFF Research Database (Denmark)

    Lei, Anders; Thomsen, Erik Vilain

    2014-01-01

    This work presents a small-scale wideband piezomagnetoelastic vibration energy harvester (VEH) aimed for operation at frequencies of a few hundred Hz. The VEH consists of a tape-casted PZT cantilever with thin sheets of iron foil attached on each side of the free tip. The wideband operation...

  17. Suppression of laser phase noise in direct-detection optical OFDM transmission using phase-conjugated pilots

    Science.gov (United States)

    Zhang, Lu; Ming, Yi; Li, Jin

    2017-11-01

    Due to the unique phase noise (PN) characteristics in direct-detection optical OFDM (DDO-OFDM) systems, the design of PN compensator is considered as a difficult task. In this paper, a laser PN suppression scheme with low complexity for DDO-OFDM based on coherent superposition of data carrying subcarriers and their phase conjugates is proposed. Through theoretical derivation, the obvious PN suppression is observed. The effectiveness of this technique is demonstrated by simulation of a 4-QAM DDO-OFDM system over 1000 km transmission length at different laser line-width and subcarrier frequency spacing. The results show that the proposed scheme can significantly suppress both varied phase rotation term (PTR) and inter-carrier interference (ICI), and the laser line-width can be relaxed with up to 9 dB OSNR saving or even breakthrough of performance floor.

  18. Utilization of multi-band OFDM modulation to increase traffic rate of phosphor-LED wireless VLC.

    Science.gov (United States)

    Yeh, Chien-Hung; Chen, Hsing-Yu; Chow, Chi-Wai; Liu, Yen-Liang

    2015-01-26

    To increase the traffic rate in phosphor-LED visible light communication (VLC), a multi-band orthogonal frequency division multiplexed (OFDM) modulation is first proposed and demonstrated. In the measurement, we do not utilize optical blue filter to increase modulation bandwidth of phosphor-LED in the VLC system. In this proposed scheme, different bands of OFDM signals are applied to different LED chips in a LED lamp, this can avoid the power fading and nonlinearity issue by applying the same OFDM signal to all the LED chips in a LED lamp. Here, the maximum increase percentages of traffic rates are 41.1%, 17.8% and 17.8% under received illuminations of 200, 500 and 1000 Lux, respectively, when the proposed three-band OFDM modulation is used in the VLC system. In addition, the analysis and verification by experiments are also performed.

  19. Realization of OFDM modulation and demodulation for visible light communication based on FPGA

    Science.gov (United States)

    Wu, Chun-hui; Gao, Zong-yu; Li, Hong-lei; Chen, Xiong-bin; Mao, Xu-rui; Lu, Hui-min; Wang, Jian-ping; He, Lin; Cui, Shi-gang; Chen, Hong-da

    2017-01-01

    In order to ensure stable, correct and real-time high-speed transmission of indoor visible light communication (VLC), the key modulation and demodulation technologies of orthogonal frequency division multiplexing (OFDM) are studied in this paper. The time-domain synchronization, frequency synchronization and channel equalization of receiver are analyzed and optimized by utilizing short and long training preamble. Moreover, field programmable gate array (FPGA) development board (Xilinx Kintex-7) and Verilog hardware description language are used to realize the design of proposed OFDM-VLC system. Simulation and experiment both verify the feasibility of the hardware designs of this system. The proposed OFDM-based VLC system can process signal in real-time, which can be used in actual VLC application systems.

  20. Performance study of terrestrial multi-hop OFDM FSO communication systems with pointing errors over turbulence channels

    Science.gov (United States)

    Nistazakis, H. E.; Ninos, M. P.; Tsigopoulos, A. D.; Zervos, D. A.; Tombras, G. S.

    2016-08-01

    The free-space optical communication systems attract significant research and commercial interest the last few years, due to their high performance and reliability characteristics along with their, relatively, low installation and operational cost. Moreover, due to the fact that these systems are using the atmosphere as propagation path, their performance is varying according to its characteristics. Here, we present the performance analysis of a serially relayed radio-on-free-space-optical (RoFSO) communication system which employs the orthogonal frequency division multiplexing technique, with a quadrature amplitude modulation scheme, over atmospheric turbulence channels modelled by either the Gamma-Gamma or the Gamma distribution model. For this RoFSO communication link, we derive closed-form mathematical expressions for the estimation of its average bit error rate and outage probability, taking into account the relays' number, the atmospheric turbulence and the pointing errors effect. Furthermore, for realistic parameter values, numerical results are presented using the derived mathematical expressions, which are verified through the corresponding numerical simulations.

  1. PAPR-Constrained Pareto-Optimal Waveform Design for OFDM-STAP Radar

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2014-01-01

    We propose a peak-to-average power ratio (PAPR) constrained Pareto-optimal waveform design approach for an orthogonal frequency division multiplexing (OFDM) radar signal to detect a target using the space-time adaptive processing (STAP) technique. The use of an OFDM signal does not only increase the frequency diversity of our system, but also enables us to adaptively design the OFDM coefficients in order to further improve the system performance. First, we develop a parametric OFDM-STAP measurement model by considering the effects of signaldependent clutter and colored noise. Then, we observe that the resulting STAP-performance can be improved by maximizing the output signal-to-interference-plus-noise ratio (SINR) with respect to the signal parameters. However, in practical scenarios, the computation of output SINR depends on the estimated values of the spatial and temporal frequencies and target scattering responses. Therefore, we formulate a PAPR-constrained multi-objective optimization (MOO) problem to design the OFDM spectral parameters by simultaneously optimizing four objective functions: maximizing the output SINR, minimizing two separate Cramer-Rao bounds (CRBs) on the normalized spatial and temporal frequencies, and minimizing the trace of CRB matrix on the target scattering coefficients estimations. We present several numerical examples to demonstrate the achieved performance improvement due to the adaptive waveform design.

  2. Direct-detection optical OFDM superchannel for long-reach PON using pilot regeneration.

    Science.gov (United States)

    Hu, Rong; Yang, Qi; Xiao, Xiao; Gui, Tao; Li, Zhaohui; Luo, Ming; Yu, Shaohua; You, Shanhong

    2013-11-04

    We demonstrate a novel long-reach PON downstream scheme based on the regenerated pilot assisted direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) superchannel transmission. We use the optical comb source to form DDO-OFDM superchannel, and reserve the center carrier as a seed pilot. The seed pilot is further tracked and reused to generate multiple optical carriers at the local exchange. Each regenerated pilot carrier is selected to beat with an adjacent OFDM sub-band at ONU, so that the electrical bandwidth limitation can be much released compared to the conventional DDO-OFDM superchannel detection. With the proposed proof-of-concept architecture, we experimentally demonstrated a 116.7 Gb/s superchannel OFDM-PON system with transmission reach of 100 km, and 1:64 splitting ratio. We analyze the impact of carrier-to-sideband power ratio (CSPR) on system performance. The experiment result shows that, 5 dB power margin is still remained at ONU using such technique.

  3. MAI-free performance of PMU-OFDM transceiver in time-variant environment

    Science.gov (United States)

    Tadjpour, Layla; Tsai, Shang-Ho; Kuo, C.-C. J.

    2005-06-01

    An approximately multi-user OFDM transceiver was introduced to reduce the multi-access interference (MAI ) due to the carrier frequency offset (CFO) to a negligible amount via precoding by Tsai, Lin and Kuo. In this work, we investigate the performance of this precoded multi-user (PMU) OFDM system in a time-variant channel environment. We analyze and compare the MAI effect caused by time-variant channels in the PMU-OFDM and the OFDMA systems. Generally speaking, the MAI effect consists of two parts. The first part is due to the loss of orthogonality among subchannels for all users while the second part is due to the CFO effect caused by the Doppler shift. Simulation results show that, although OFDMA outperforms the PMU-OFDM transceiver in a fast time-variant environment without CFO, PMU-OFDM outperforms OFDMA in a slow time-variant channel via the use of M/2 symmetric or anti-symmetric codewords of M Hadamard-Walsh codes.

  4. Ultra-Wideband, Short Pulse Electromagnetics 9

    CERN Document Server

    Rachidi, Farhad; Kaelin, Armin; Sabath, Frank; UWB SP 9

    2010-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, and broadband systems and components. This book serves as a state-of-the-art r...

  5. Wideband amplifier design

    CERN Document Server

    Hollister, Allen L

    2007-01-01

    In this book, the theory needed to understand wideband amplifier design using the simplest models possible will be developed. This theory will be used to develop algebraic equations that describe particular circuits used in high frequency design so that the reader develops a ""gut level"" understanding of the process and circuit. SPICE and Genesys simulations will be performed to show the accuracy of the algebraic models. By looking at differences between the algebraic equations and the simulations, new algebraic models will be developed that include parameters originally left out of the model

  6. Wideband CMOS receivers

    CERN Document Server

    Oliveira, Luis

    2015-01-01

    This book demonstrates how to design a wideband receiver operating in current mode, in which the noise and non-linearity are reduced, implemented in a low cost single chip, using standard CMOS technology.  The authors present a solution to remove the transimpedance amplifier (TIA) block and connect directly the mixer’s output to a passive second-order continuous-time Σ∆ analog to digital converter (ADC), which operates in current-mode. These techniques enable the reduction of area, power consumption, and cost in modern CMOS receivers.

  7. On the diversity enhancement and power balancing of per-subcarrier transmit antenna selection in OFDM systems

    KAUST Repository

    Park, Kihong

    2011-01-01

    In this paper, we consider multicarrier systems with multiple transmit antennas under a power-balancing constraint. Applying transmit antenna selection and discrete rate-adaptive modulation using M-ary quadrature-amplitude modulation (QAM) according to the channel variation per subcarrier, we develop an optimal transmit antenna selection scheme in terms of the maximum spectral efficiency, where all the possible groupings for sending the same information-bearing signals in a group of subcarriers are searched, and the groups of subcarriers for providing the frequency diversity gain are formed. In addition, we propose a suboptimal method for reducing the computational complexity of the optimal method. The suboptimal scheme considers only the subcarriers under outage, and these subcarriers are sequentially combined until the required signal-to-noise ratio (SNR) is met. Numerical results show that the proposed suboptimal method with diversity combining outperforms the optimal antenna selection without diversity combining, as introduced in the work of Sandell and Coon, particularly for low-SNR regions, and offers the spectral efficiency close to the optimal method with diversity combining while maintaining lower complexity. © 2011 IEEE.

  8. EAM-based high-speed 100-km OFDM transmission featuring tolerant modulator operation enabled using SSII cancellation.

    Science.gov (United States)

    Chen, Hsing-Yu; Wei, Chia-Chien; Lu, I-Cheng; Chen, Yu-Chao; Chu, Hsuan-Hao; Chen, Jyehong

    2014-06-16

    In this study, a technique was developed to compensate for nonlinear distortion through cancelling subcarrier-to-subcarrier intermixing interference (SSII) in an electroabsorption modulator (EAM)-based orthogonal frequency-division multiplexing (OFDM) transmission system. The nonlinear distortion to be compensated for is induced by both EAM nonlinearity and fiber dispersion. Because an OFDM signal features an inherently high peak-to-average power ratio, a trade-off exists between the optical modulation index (OMI) and modulator nonlinearity. Therefore, the nonlinear distortion limits the operational tolerance of the bias voltage and the driving power to a small region. After applying the proposed SSII cancellation, the OMI of an OFDM signal was increased yielding only a small increment of nonlinear distortion, and the tolerance region of the operational conditions was also increased. By employing the proposed scheme, this study successfully demonstrates 50-Gbps OFDM transmission over 100-km dispersion-uncompensated single-mode fiber based on a single 10-GHz EAM.

  9. Experimental demonstration of 30 Gb/s direct-detection optical OFDM transmission with blind symbol synchronisation using virtual subcarriers.

    Science.gov (United States)

    Bouziane, R; Milder, P A; Erkılınç, S; Galdino, L; Kilmurray, S; Thomsen, B C; Bayvel, P; Killey, R I

    2014-02-24

    The paper investigates the performance of a blind symbol synchronisation technique for optical OFDM systems based on virtual subcarriers. The test-bed includes a real-time 16-QAM OFDM transmitter operating at a net data rate of 30.65 Gb/s using a single OFDM band with a single FPGA-DAC subsystem and demonstrates transmission over 23.3 km SSMF with direct detection at a BER of 10(-3). By comparing the performance of the proposed synchronisation scheme with that of the Schmidl and Cox algorithm, it was found that the two approaches achieve similar performance for large numbers of averaging symbols, but the performance of the proposed scheme degrades as the number of averaging symbols is reduced. The proposed technique has lower complexity and bandwidth overhead as it does not rely on training sequences. Consequently, it is suitable for implementation in high speed optical OFDM transceivers.

  10. Radiation Hardened Turbo Coded OFDM Modulator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Micro Inc. proposes to develop an innovative Turbo-Coded Orthogonal Frequency Division Modulation (TC-OFDM) ASIC device. The proposed device provides data...

  11. OFDM Radar Space-Time Adaptive Processing by Exploiting Spatio-Temporal Sparsity

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2013-01-01

    We propose a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly-moving target using an orthogonal frequency division multiplexing (OFDM) radar. We observe that the target and interference spectra are inherently sparse in the spatio-temporal domain. Hence, we exploit that sparsity to develop an efficient STAP technique that utilizes considerably lesser number of secondary data and produces an equivalent performance as the other existing STAP techniques. In addition, the use of an OFDM signal increases the frequency diversity of our system, as different scattering centers of a target resonate at different frequencies, and thus improves the target detectability. First, we formulate a realistic sparse-measurement model for an OFDM radar considering both the clutter and jammer as the interfering sources. Then, we apply a residual sparse-recovery technique based on the LASSO estimator to estimate the target and interference covariance matrices, and subsequently compute the optimal STAP-filter weights. Our numerical results demonstrate a comparative performance analysis of the proposed sparse-STAP algorithm with four other existing STAP methods. Furthermore, we discover that the OFDM-STAP filter-weights are adaptable to the frequency-variabilities of the target and interference responses, in addition to the spatio-temporal variabilities. Hence, by better utilizing the frequency variabilities, we propose an adaptive OFDM-waveform design technique, and consequently gain a significant amount of STAP-performance improvement.

  12. Achievable information rate enhancement of visible light communication using probabilistically shaped OFDM modulation.

    Science.gov (United States)

    Xie, Chenhui; Chen, Zexin; Fu, Songnian; Liu, Wu; He, Zhixue; Deng, Lei; Tang, Ming; Liu, Deming

    2018-01-08

    We present the first experimental demonstration of orthogonal frequency division multiplexed (OFDM) modulation using the probabilistic shaping (PS) technique in visible light communication (VLC) systems, in order to increase the achievable information rate (AIR) according to the pre-estimated signal to noise ratio (SNR) of VLC channel. We numerically investigate the performance of PS technique and make a fair comparison with bit-loading technique under different scenarios. By using a phosphor-LED based VLC system with available bandwidth of ~45-MHz, OFDM with PS technique can experimentally realize an AIR of 204.1-Mb/s over 1-m free space transmission, leading to a 26.8% increment in comparison with OFDM using bit-loading technique at the expense of 16% overall forward error correction (FEC) overhead (OH).

  13. A Pilot-Pattern Based Algorithm for MIMO-OFDM Channel Estimation

    Directory of Open Access Journals (Sweden)

    Guomin Li

    2016-12-01

    Full Text Available An improved pilot pattern algorithm for facilitating the channel estimation in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM systems is proposed in this paper. The presented algorithm reconfigures the parameter in the least square (LS algorithm, which belongs to the space-time block-coded (STBC category for channel estimation in pilot-based MIMO-OFDM system. Simulation results show that the algorithm has better performance in contrast to the classical single symbol scheme. In contrast to the double symbols scheme, the proposed algorithm can achieve nearly the same performance with only half of the complexity of the double symbols scheme.

  14. Photonic layer security in fiber-optic networks and optical OFDM transmission

    Science.gov (United States)

    Wang, Zhenxing

    Currently the Internet is experiencing an explosive growth in the world. Such growth leads to an increased data transmission rate demand in fiber-optical networks. Optical orthogonal frequency multiplexing (OFDM) is considered as a promising solution to achieve data rate beyond 100Gb/s per wavelength channel. In the meanwhile, because of extensive data transmission and sharing, data security has become an important problem and receives considerable attention in current research literature. This thesis focuses on data security issues at the physical layer of optical networks involving code-division multiple access (CDMA) systems and steganography methods. The thesis also covers several implementation issues in optical OFDM transmission. Optical CDMA is regarded as a good candidate to provide photonic layer security in multi-access channels. In this thesis we provide a systematic analysis of the security performance of incoherent optical CDMA codes. Based on the analysis, we proposed and experimentally demonstrated several methods to improve the security performance of the optical CDMA systems, such as applying all-optical encryption, and code hopping using nonlinear wavelength conversion. Moreover, we demonstrate that the use of wireless CDMA codes in optical systems can enhance the security in one single-user end-to-end optical channel. Optical steganography is another method to provide photonic data security and involves hiding the existence of data transmissions. In the thesis, we demonstrate that an optical steganography channel can exist in phase modulated public channels as well as traditional on-off-keying (OOK) modulated channels, without data synchronization. We also demonstrate an optical steganography system with enhanced security by utilizing temporal phase modulation techniques. Additionally, as one type of an overlay channel, the optical steganography technology can carry the sensor data collected by wireless sensor network on top of public optical

  15. Chaos-based CAZAC scheme for secure transmission in OFDM-PON

    Science.gov (United States)

    Fu, Xiaosong; Bi, Meihua; Zhou, Xuefang; Yang, Guowei; Lu, Yang; Hu, Miao

    2018-01-01

    To effectively resist malicious eavesdropping and performance deterioration, a novel chaos-based secure transmission scheme is proposed to enhance the physical layer security and reduce peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing passive optical network (OFDM-PON). By the randomly extracting operation of common CAZAC values, the specially-designed constant amplitude zero autocorrelation (CAZAC) is created for system encryption and PAPR reduction enhancing the transmission security. This method is verified in {10-Gb/s encrypted OFDM-PON with 20-km fiber transmission. Results show that, compared to common OFDM-PON, our scheme achieves {3-dB PAPR reduction and {1-dB receiver sensitivity improvement.

  16. Extended Cyclostationary Signatures for OFDM in the Presence of Hardware Imperfections

    Science.gov (United States)

    Schmitz, Johannes; Zivkovic, Milan; Mathar, Rudolf

    2012-09-01

    Cyclostationary signatures have been shown to be an effective method for OFDM network synchronization and Cognitive Radio coordination. In this article, an extended method that utilizes cyclostationary signatures for signal parameter identification of OFDM-based Cognitive Radio nodes is presented. The scenario, implemented on a GNU Radio based evaluation platform, shows how different signal parameters, e.g. carrier frequency, occupied bandwidth and the used modulation scheme can be identified at the receiver side using the described approach. A major drawback of cyclostationary detection in OFDM systems is its sensitivity to frequency offset and sampling rate mismatches between oscillators at the transmitter and the receiver. An analytical model that characterizes this impairments is derived, followed by a discussion of implementation issues and the performance evaluation of proposed cyclostationary signature detection, both in a simulation environment and through RF experiments.

  17. Identifying time-varying channels with aid of pilots for MIMO-OFDM

    Science.gov (United States)

    Tang, Zijian; Leus, Geert

    2011-12-01

    In this paper, we consider pilot-aided channel estimation for orthogonal frequency division multiplexing (OFDM) systems with a multiple-input multiple-output setup. The channel is time varying due to Doppler effects and can be approximated by an oversampled complex exponential basis expansion model. We use a best linear unbiased estimator (BLUE) to estimate the channel with the aid of frequency-multiplexed pilots. The applicability of the BLUE, which is referred to as the channel identifiability in this paper, relies upon a proper pilot structure. Depending on whether the channel is estimated within a single OFDM symbol or multiple OFDM symbols, we propose simple pilot structures that guarantee channel identifiability. Further, it is shown that by employing more receive antennas, the BLUE can combat more effectively the Doppler-induced interference and therefore improve the channel estimation performance.

  18. Identifying time-varying channels with aid of pilots for MIMO-OFDM

    Directory of Open Access Journals (Sweden)

    Leus Geert

    2011-01-01

    Full Text Available Abstract In this paper, we consider pilot-aided channel estimation for orthogonal frequency division multiplexing (OFDM systems with a multiple-input multiple-output setup. The channel is time varying due to Doppler effects and can be approximated by an oversampled complex exponential basis expansion model. We use a best linear unbiased estimator (BLUE to estimate the channel with the aid of frequency-multiplexed pilots. The applicability of the BLUE, which is referred to as the channel identifiability in this paper, relies upon a proper pilot structure. Depending on whether the channel is estimated within a single OFDM symbol or multiple OFDM symbols, we propose simple pilot structures that guarantee channel identifiability. Further, it is shown that by employing more receive antennas, the BLUE can combat more effectively the Doppler-induced interference and therefore improve the channel estimation performance.

  19. Data-aided adaptive weighted channel equalizer for coherent optical OFDM.

    Science.gov (United States)

    Mousa-Pasandi, Mohammad E; Plant, David V

    2010-02-15

    We report an adaptive weighted channel equalizer (AWCE) for orthogonal frequency division multiplexing (OFDM) and study its performance for long-haul coherent optical OFDM (CO-OFDM) transmission systems. This equalizer updates the equalization parameters on a symbol-by-symbol basis thus can track slight drifts of the optical channel. This is suitable to combat polarization mode dispersion (PMD) degradation while increasing the periodicity of pilot symbols which can be translated into a significant overhead reduction. Furthermore, AWCE can increase the precision of RF-pilot enabled phase noise estimation in the presence of noise, using data-aided phase noise estimation. Simulation results corroborate the capability of AWCE in both overhead reduction and improving the quality of the phase noise compensation (PNC).

  20. An OFDM receiver implemented on the coarse-grain reconfigurable Montium processor

    NARCIS (Netherlands)

    Rauwerda, G.K.; Heysters, P.M.; Smit, Gerardus Johannes Maria

    Future mobile terminals become multimode communication systems. In order to handle different standards, we propose to perform baseband processing in heterogeneous reconfigurable hardware. OFDM is one of the techniques that exists in multimode communication systems. As an example, we present the

  1. A wideband RF amplifier for satellite tuners

    Science.gov (United States)

    Xueqing, Hu; Zheng, Gong; Yin, Shi; Foster, Dai Fa

    2011-11-01

    This paper presents the design and measured performance of a wideband amplifier for a direct conversion satellite tuner. It is composed of a wideband low noise amplifier (LNA) and a two-stage RF variable gain amplifier (VGA) with linear gain in dB and temperature compensation schemes. To meet the system linearity requirement, an improved distortion compensation technique and a bypass mode are applied on the LNA to deal with the large input signal. Wideband matching is achieved by resistive feedback and an off-chip LC-ladder matching network. A large gain control range (over 80 dB) is achieved by the VGA with process voltage and temperature compensation and dB linearization. In total, the amplifier consumes up to 26 mA current from a 3.3 V power supply. It is fabricated in a 0.35-μm SiGe BiCMOS technology and occupies a silicon area of 0.25 mm2.

  2. Adaptive OFDM Waveform Design for Spatio-Temporal-Sparsity Exploited STAP Radar

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2017-11-01

    In this chapter, we describe a sparsity-based space-time adaptive processing (STAP) algorithm to detect a slowly moving target using an orthogonal frequency division multiplexing (OFDM) radar. The motivation of employing an OFDM signal is that it improves the target-detectability from the interfering signals by increasing the frequency diversity of the system. However, due to the addition of one extra dimension in terms of frequency, the adaptive degrees-of-freedom in an OFDM-STAP also increases. Therefore, to avoid the construction a fully adaptive OFDM-STAP, we develop a sparsity-based STAP algorithm. We observe that the interference spectrum is inherently sparse in the spatio-temporal domain, as the clutter responses occupy only a diagonal ridge on the spatio-temporal plane and the jammer signals interfere only from a few spatial directions. Hence, we exploit that sparsity to develop an efficient STAP technique that utilizes considerably lesser number of secondary data compared to the other existing STAP techniques, and produces nearly optimum STAP performance. In addition to designing the STAP filter, we optimally design the transmit OFDM signals by maximizing the output signal-to-interference-plus-noise ratio (SINR) in order to improve the STAP performance. The computation of output SINR depends on the estimated value of the interference covariance matrix, which we obtain by applying the sparse recovery algorithm. Therefore, we analytically assess the effects of the synthesized OFDM coefficients on the sparse recovery of the interference covariance matrix by computing the coherence measure of the sparse measurement matrix. Our numerical examples demonstrate the achieved STAP-performance due to sparsity-based technique and adaptive waveform design.

  3. An Efficient FFT For OFDM Based Cognitive Radio On A Reconfigurable Architecture

    NARCIS (Netherlands)

    Zhang, Q.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2007-01-01

    Cognitive Radio is a promising technology to utilize non-used parts of the spectrum that actually are assigned to licensed services. An adaptive OFDM based Cognitive Radio system has the capacity to nullify individual carriers to avoid interference to the licensed user. Therefore, there could be a

  4. Identifying time-varying channels with aid of pilots for MIMO-OFDM

    NARCIS (Netherlands)

    Tang, Z.; Leus, G.J.T.

    2011-01-01

    In this paper, we consider pilot-aided channel estimation for orthogonal frequency division multiplexing (OFDM) systems with a multiple-input multiple-output setup. The channel is time varying due to Doppler effects and can be approximated by an oversampled complex exponential basis expansion model.

  5. Identification and Classification of OFDM Based Signals Using Preamble Correlation and Cyclostationary Feature Extraction

    Science.gov (United States)

    2009-09-01

    baseband modulation technique to employ. The pseudo-random pilot sequence will be an important feature for system identification as will be demonstrated...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited IDENTIFICATION AND...TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Identification and Classification of OFDM Based Signals using Preamble Correlation

  6. Fast wideband acoustical holography.

    Science.gov (United States)

    Hald, Jørgen

    2016-04-01

    Patch near-field acoustical holography methods like statistically optimized near-field acoustical holography and equivalent source method are limited to relatively low frequencies, where the average array-element spacing is less than half of the acoustic wavelength, while beamforming provides useful resolution only at medium-to-high frequencies. With adequate array design, both methods can be used with the same array. But for holography to provide good low-frequency resolution, a small measurement distance is needed, whereas beamforming requires a larger distance to limit sidelobe issues. The wideband holography method of the present paper was developed to overcome that practical conflict. Only a single measurement is needed at a relatively short distance and a single result is obtained covering the full frequency range. The method uses the principles of compressed sensing: A sparse sound field representation is assumed with a chosen set of basis functions, a measurement is taken with an irregular array, and the inverse problem is solved with a method that enforces sparsity in the coefficient vector. Instead of using regularization based on the 1-norm of the coefficient vector, an iterative solution procedure is used that promotes sparsity. The iterative method is shown to provide very similar results in most cases and to be computationally much more efficient.

  7. Energy-efficient WDM-OFDM-PON employing shared OFDM modulation modules in optical line terminal

    National Research Council Canada - National Science Library

    Hu, Xiaofeng; Zhang, Liang; Cao, Pan; Wang, Kongtao; Su, Yikai

    2012-01-01

    We propose and experimentally demonstrate a scheme to improve the energy efficiency of wavelength division multiplexing - orthogonal frequency division multiplexing - passive optical networks (WDM-OFDM-PONs). By using an N...

  8. Derivation of GFDM Based on OFDM Principles

    Energy Technology Data Exchange (ETDEWEB)

    Hussein Moradi; Behrouz Farhang-Boroujeny

    2015-06-01

    This paper starts with discussing the principle based on which the celebrated orthogonal frequency division multiplexing (OFDM) signals are constructed. It then extends the same principle to construct the newly introduced generalized frequency division multiplexing (GFDM) signals. This novel derivation sheds light on some interesting properties of GFDM. In particular, our derivation seamlessly leads to an implementation of GFDM transmitter which has significantly lower complexity than what has been reported so far. Our derivation also facilitates a trivial understanding of how GFDM (similar to OFDM) can be applied in MIMO channels.

  9. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network.

    Science.gov (United States)

    Saotome, Rie; Hai, Tran Minh; Matsuda, Yasuto; Suzuki, Taisaku; Wada, Tomohisa

    2015-01-01

    In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20-28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20-30%.

  10. An OFDM Receiver with Frequency Domain Diversity Combined Impulsive Noise Canceller for Underwater Network

    Directory of Open Access Journals (Sweden)

    Rie Saotome

    2015-01-01

    Full Text Available In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles, AUV (autonomous underwater vehicle, divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3 and 93.750 Hz (MODE2 OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%.

  11. Hardware-in-the-loop simulation technology of wide-band radar targets based on scattering center model

    Directory of Open Access Journals (Sweden)

    Huang Hao

    2015-10-01

    Full Text Available Hardware-in-the-loop (HWIL simulation technology can verify and evaluate the radar by simulating the radio frequency environment in an anechoic chamber. The HWIL simulation technology of wide-band radar targets can accurately generate wide-band radar target echo which stands for the radar target scattering characteristics and pulse modulation of radar transmitting signal. This paper analyzes the wide-band radar target scattering properties first. Since the responses of target are composed of many separate scattering centers, the target scattering characteristic is restructured by scattering centers model. Based on the scattering centers model of wide-band radar target, the wide-band radar target echo modeling and the simulation method are discussed. The wide-band radar target echo is reconstructed in real-time by convoluting the transmitting signal to the target scattering parameters. Using the digital radio frequency memory (DRFM system, the HWIL simulation of wide-band radar target echo with high accuracy can be actualized. A typical wide-band radar target simulation is taken to demonstrate the preferable simulation effect of the reconstruction method of wide-band radar target echo. Finally, the radar target time-domain echo and high-resolution range profile (HRRP are given. The results show that the HWIL simulation gives a high-resolution range distribution of wide-band radar target scattering centers.

  12. Out-of-band emission suppression techniques based on a generalized OFDM framework

    Science.gov (United States)

    You, Zihao; Fang, Juan; Lu, I.-Tai

    2014-12-01

    Orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) systems suffer from the large out-of-band emission (OOBE) that may interfere with other users. Since most existing OFDM OOBE suppression schemes are derived on the base of an original OFDM system without any other scheme, we first propose a generalized OFDM framework that is capable of describing these schemes no matter whether any one or more of the schemes is applied. Then, according to the place where these schemes are implemented in our framework, they are classified into three groups, namely symbol mapping techniques, precoding techniques, and time-domain techniques. Finally, based on the proposed framework, we propose three new schemes by combining a precoding scheme named singular value decomposition (SVD) precoding with three other schemes from the three groups, namely spectral precoding, N-continuous symbol mapping, and filtering. Numerical results show the power spectral density (PSD), peak-to-average power ratio (PAPR), and bit error rate (BER) performances of the three proposed schemes. Since the individual schemes have complementary characteristics, the three proposed combined schemes are constructed to maintain the merits and avoid the drawbacks of the individual schemes involved. Thus, it is demonstrated that the proposed framework can be employed to develop other new combined OOBE suppression schemes tailoring to some specific practical needs.

  13. Channel Analysis and Estimation and Compensation of Doppler Shift in Underwater Acoustic Communication and Mitigation of IFI, ISI in Ultra-wideband Radio

    Science.gov (United States)

    Ahmed, Sadia

    Water occupies three fourth of earth's surface. The remaining one fourth is land. Although human habitats reside on land, there is no denying of the vital connection between land and water. The future sustainability of human species on this planet depends on wise utilization of all available resources, including that provided by the vast water world. Therefore, it is imperative to explore, understand, and define this massive, varying, and in many areas, unexplored water domain. The water domain exploration and data collection can be conducted using manned or unmanned vehicles, as allowed by the water environment. This dissertation addresses three of the key difficulties that occur during underwater acoustic communication among manned and/or unmanned vehicles and proposes feasible solutions to resolve those difficulties. The focus and the contributions of this research involve the following perspectives: 1) Representation of Underwater Acoustic Communication (UAC) Channels: Providing a comprehensive classification and representation of the underwater acoustic communication channel based on the channel environment. 2) Estimation and Compensation of Doppler Shift: Providing compensation algorithm to mitigate varying Doppler shift effect over subcarriers in UAC Orthogonal Frequency Division Multiplexing (OFDM) systems. 3) Mitigation of Inter-symbol Interference (ISI): Providing feasible solution to long delay spread causing ISI in Ultra-wideband channels.

  14. Theoretical calculation on ICI reduction using digital coherent superposition of optical OFDM subcarrier pairs in the presence of laser phase noise.

    Science.gov (United States)

    Yi, Xingwen; Xu, Bo; Zhang, Jing; Lin, Yun; Qiu, Kun

    2014-12-15

    Digital coherent superposition (DCS) of optical OFDM subcarrier pairs with Hermitian symmetry can reduce the inter-carrier-interference (ICI) noise resulted from phase noise. In this paper, we show two different implementations of DCS-OFDM that have the same performance in the presence of laser phase noise. We complete the theoretical calculation on ICI reduction by using the model of pure Wiener phase noise. By Taylor expansion of the ICI, we show that the ICI power is cancelled to the second order by DCS. The fourth order term is further derived out and only decided by the ratio of laser linewidth to OFDM subcarrier symbol rate, which can greatly simplify the system design. Finally, we verify our theoretical calculations in simulations and use the analytical results to predict the system performance. DCS-OFDM is expected to be beneficial to certain optical fiber transmissions.

  15. Performance Evaluation of 60 GHz OFDM Communications under Channel Impairments over Multipath Fading Channels at 60 GHz

    Directory of Open Access Journals (Sweden)

    Rodolfo GOMES

    2016-09-01

    Full Text Available This paper presents a detailed analysis of the impact of multipath propagation phenomena on the performance of mm Wave wireless systems for both uncoded and coded OFDM architectures, based on IEEE 802.15.3c standard for high data rate applications. The performance of OFDM is known to be severely affected by channel impairments when its excess time delay exceeds the time guard interval of the OFDM symbol. Hence, this paper evaluates the impact that such impairments have on both uncoded and coded system performances through appropriate metrics based on BER, operating range and PSNR for residential, office and kiosk scenarios under LOS and NLOS. The feasibility of real-time high- definition video transmission using 60 GHz radio systems will be demonstrated through the transmission of uncompressed Full HD video content over various radio propagation environments, which will allow one to perfectly understand the system limitations, and consequently the range of applications that might be developed.

  16. Rayleigh fading effect reduction with wideband DS/CDMA signals

    Science.gov (United States)

    Holtzman, Jack M.; Jalloul, Louay M. A.

    1994-02-01

    Mobile radio fading analyses typically assume a single frequency carrier transmitted through the propagation medium. The results are then used for the case of narrowband transmission. New phenomena occur with wideband transmission. This paper presents an analysis of the mitigation of the Rayleigh fading effect for wideband direct sequence code division multiple access (DS/CDMA) signaling. There are measurements that show this phenomenon. The reduction of the Rayleigh fading effect is an advantage of CDMA over narrowband transmission systems and it eases the burden of CDMA power control. A general expression for the coefficient of variation of the received wideband signal power is derived. It is shown how the coefficient of variation of the received power decreases as the bandwidth spreading increases. This paper also analyzes the time correlation needed for other analyses (e.g., CDMA power control).

  17. Energy-efficient optical network units for OFDM PON based on time-domain interleaved OFDM technique.

    Science.gov (United States)

    Hu, Xiaofeng; Cao, Pan; Zhang, Liang; Jiang, Lipeng; Su, Yikai

    2014-06-02

    We propose and experimentally demonstrate a new scheme to reduce the energy consumption of optical network units (ONUs) in orthogonal frequency division multiplexing passive optical networks (OFDM PONs) by using time-domain interleaved OFDM (TI-OFDM) technique. In a conventional OFDM PON, each ONU has to process the complete downstream broadcast OFDM signal with a high sampling rate and a large FFT size to retrieve its required data, even if it employs a portion of OFDM subcarriers. However, in our scheme, the ONU only needs to sample and process one data group from the downlink TI-OFDM signal, effectively reducing the sampling rate and the FFT size of the ONU. Thus, the energy efficiency of ONUs in OFDM PONs can be greatly improved. A proof-of-concept experiment is conducted to verify the feasibility of the proposed scheme. Compared to the conventional OFDM PON, our proposal can save 17.1% and 26.7% energy consumption of ONUs by halving and quartering the sampling rate and the FFT size of ONUs with the use of the TI-OFDM technology.

  18. Narrowband and wideband characterisation of satellite mobile/PCN channel

    Science.gov (United States)

    Butt, G.; Parks, M. A. N.; Evans, B. G.

    1995-01-01

    This paper presents models characterizing satellite mobile channel. Statistical narrowband models based on the CSER high elevation angle channel measurement campaign are reported. Such models are understood to be useful for communication system simulations. It has been shown from the modelling results that for the mobile satellite links at high elevation angles line-of-sight (LOS) signal is available most of the time, even under the heavy shadowing conditions. Wideband measurement campaign which CSER is about to undertake, and subsequently the modelling approach to be adopted is also discussed. It is noted that a wideband channel model is expected to provide a useful tool in investigating CDMA applications.

  19. Performance of adaptive DD-OFDM multicore fiber links and its relation with intercore crosstalk.

    Science.gov (United States)

    Alves, Tiago M F; Luís, Ruben S; Puttnam, Benjamin J; Cartaxo, Adolfo V T; Awaji, Yoshinari; Wada, Naoya

    2017-07-10

    Adaptive direct-detection (DD) orthogonal frequency-division multiplexing (OFDM) is proposed to guarantee signal quality over time in weakly-coupled homogenous multicore fiber (MCFs) links impaired by stochastic intercore crosstalk (ICXT). For the first time, the received electrical power of the ICXT and the performance of the adaptive DD-OFDM MCF link are experimentally monitored quasi-simultaneously over a 210 hour period. Experimental results show that the time evolution of the error vector magnitude due to the ICXT can be suitably estimated from the normalized power of the detected crosstalk. The detected crosstalk results from the beating between the carrier in the test core and ICXT originating from the carrier and modulated signal from interfering core. The results show that the operation of DD-OFDM systems employing fixed modulation can be severely impaired by the presence of ICXT that may unpredictable vary in both power and frequency. The system may suffer from deleterious impact of moderate ICXT levels over a time duration of several hours or from peak ICXT levels occurring over a number of minutes. Such power fluctuations can lead to large variations in bit error ratio (BER) for static modulation schemes. Here, we show that BER fluctuations may be minimized by the use of adaptive modulation techniques and that in particular, the adaptive OFDM is a viable solution to guarantee link quality in MCF-based systems. An experimental model of an adaptive DD-OFDM MCF link shows an average throughput of 12 Gb/s that represents a reduction of only 9% compared to the maximum throughput measured without ICXT and an improvement of 23% relative to throughput obtained with static modulation.

  20. Implementace OFDM demodulátoru v obvodu FPGA

    OpenAIRE

    Solar, Pavel

    2010-01-01

    Diplomová práce stručně rozebírá princip OFDM modulace, možnosti synchronizace a odhadu frekvenční charakteristiky kanálu v OFDM. Je vytvořen jednoduchý model OFDM systému v programu MATLAB. Kombinací schématického popisu a popisu v jazyce VHDL je vytvořen ve vývojovém prostředí ISE behaviorální popis OFDM demodulátoru pro implementaci do FPGA. The master's thesis briefly analyses the principle of OFDM modulation, possibilities of the synchronization and channel estimation in OFDM. The sim...

  1. A Constant Envelope OFDM Implementation on GNU Radio

    Science.gov (United States)

    2015-02-02

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5524--15-9575 A Constant Envelope OFDM Implementation on GNU Radio February 2, 2015...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT A Constant Envelope OFDM Implementation on GNU Radio Andrew Robertson, Amos Ajo, Sastry Kompella, Joe...time for non-linear amplification. These requirements are uniquely served by constant envelope OFDM . We describe the use-cases, theory, and

  2. Multifrequency OFDM SAR in Presence of Deception Jamming

    OpenAIRE

    Schuerger Jonathan; Garmatyuk Dmitriy

    2010-01-01

    Orthogonal frequency division multiplexing (OFDM) is considered in this paper from the perspective of usage in imaging radar scenarios with deception jamming. OFDM radar signals are inherently multifrequency waveforms, composed of a number of subbands which are orthogonal to each other. While being employed extensively in communications, OFDM has not found comparatively wide use in radar, and, particularly, in synthetic aperture radar (SAR) applications. In this paper, we aim to show the adv...

  3. Experimental demonstration of novel source-free ONUs in bidirectional RF up-converted optical OFDM-PON utilizing polarization multiplexing.

    Science.gov (United States)

    Zhang, Chongfu; Chen, Chen; Feng, Yuan; Qiu, Kun

    2012-03-12

    We propose and experimentally demonstrate a novel cost-effective optical orthogonal frequency-division multiplexing-based passive optical network (OFDM-PON) system, wherein all optical network units (ONUs) are source-free not only in the optical domain but also in the electric domain, by utilizing polarization multiplexing (PolMUX) in the downlink transmission. Two pure optical bands with a frequency interval of 10 GHz and downlink up-converted 10 GHz OFDM signal are carried in two orthogonal states of polarization (SOPs), respectively. 10 GHz radio frequency (RF) source can be generated by a heterodyne of two pure optical bands after polarization beam splitting in each ONU, therefore it can be used to down-convert the downlink OFDM signal and up-convert the uplink OFDM signal. In the whole bidirectional up-converted OFDM-PON system, only one single RF source is employed in the optical line terminal (OLT). Experimental results successfully verify the feasibility of our proposed cost-effective optical OFDM-PON system.

  4. Passive Synthetic Aperture Radar Imaging Using Commercial OFDM Communication Networks

    Science.gov (United States)

    2012-09-13

    imaging area. 24 Falcone and Colone recently presented passive radar work using the 802.11 OFDM WiFi signal [31]. The study demonstrates the practical...φR is 4.3 degrees at both aperture ends. The array is radiated with the generic OFDM pulse. The OFDM symbols use 112 Figure 67. PFA SAR image using a...OFDM WiFi -based passive bistatic radar”. Radar Conference, 2010 IEEE, 516–521. 2010. [32] Flood, J.E. Telecommunication Networks, 2ed. The

  5. Experimental demonstration of SCMA-OFDM for passive optical network

    Science.gov (United States)

    Lin, Bangjiang; Tang, Xuan; Shen, Xiaohuan; Zhang, Min; Lin, Chun; Ghassemlooy, Zabih

    2017-12-01

    We introduces a novel architecture for next generation passive optical network (PON) based on the employment of sparse code multiple access (SCMA) combined with orthogonal frequency division multiplexing (OFDM) modulation, in which the binary data is directly encoded to multi-dimensional codewords and then spread over OFDM subcarriers. The feasibility of SCMA-OFDM-PON is verified with experimental demonstration. We show that the SCMA-OFDM offers 150% overloading gain in the number of optical network units compared with the orthogonal frequency division multiplexing access.

  6. Experimental demonstration of IDMA-OFDM for passive optical network

    Science.gov (United States)

    Lin, Bangjiang; Tang, Xuan; Li, Yiwei; Zhang, Min; Lin, Chun; Ghassemlooy, Zabih

    2017-11-01

    We present interleave division multiple access (IDMA) scheme combined with orthogonal frequency division multiplexing (OFDM) for passive optical network, which offers improved transmission performance and good chromatic dispersion tolerance. The interleavers are employed to separate different users and the generated chips are modulated on OFDM subcarriers. The feasibility of IDMA-OFDM-PON is experimentally verified with a bitrate of 3.3 Gb/s per user. Compared with OFDMA, IDMA-OFDM offers 8 and 6 dB gains in term of receiver sensitivity in the cases of 2 and 4 users, respectively.

  7. Nonlinear impairment compensation for DFT-S OFDM signal transmission with directly modulated laser and direct detection

    Science.gov (United States)

    Gou, Pengqi; Wang, Kaihui; Qin, Chaoyi; Yu, Jianjun

    2017-03-01

    We experimentally demonstrate a 16-ary quadrature amplitude modulation (16QAM) DFT-spread optical orthogonal frequency division multiplexing (OFDM) transmission system utilizing a cost-effective directly modulated laser (DML) and direct detection. For 20-Gbaud 16QAM-OFDM signal, with the aid of nonlinear equalization (NLE) algorithm, we respectively provide 6.2-dB and 5.2-dB receiver sensitivity improvement under the hard-decision forward-error-correction (HD-FEC) threshold of 3.8×10-3 for the back-to-back (BTB) case and after transmission over 10-km standard single mode fiber (SSMF) case, related to only adopt post-equalization scheme. To our knowledge, this is the first time to use dynamic nonlinear equalizer (NLE) based on the summation of the square of the difference between samples in one IM/DD OFDM system with DML to mitigate nonlinear distortion.

  8. WDM extended reach passive optical networks using OFDM-QAM.

    Science.gov (United States)

    Chow, Chi-Wai; Yeh, Chien-Hung; Wang, Chia-Hsuan; Shih, Fu-Yuan; Pan, Ci-Ling; Chi, Sien

    2008-08-04

    In order to reduce the cost for delivering future broadband services, network operators are inclined to simplify the network architectures by integrating the metro and access networks into a single system. Hence, extended reach passive optical networks (ER-PONs) have been proposed. ER-PON usually has four new features: high data rate in both upstream and downstream signals (>1 Gb/s); reach extension to >100 km; a high split ratio (>100); and using wavelength division multiplexing (WDM). In this work, we propose and demonstrate a highly spectral efficient ER-PON using 4 Gb/s OFDM-QAM for both upstream and downstream signals, while achieving a high split-ratio of 256. The ER-PON employs optical components optimized for GPON (bandwidth of approximately 1 GHz) and reaches 100 km without dispersion compensation. Numerical analysis using 16, 64 and 256-QAM OFDM are also performed to study the back-to-back receiver sensitivities and power penalties at different electrical driving ratios.

  9. Implementation of orthogonal frequency division multiplexing (OFDM) and advanced signal processing for elastic optical networking in accordance with networking and transmission constraints

    Science.gov (United States)

    Johnson, Stanley

    An increasing adoption of digital signal processing (DSP) in optical fiber telecommunication has brought to the fore several interesting DSP enabled modulation formats. One such format is orthogonal frequency division multiplexing (OFDM), which has seen great success in wireless and wired RF applications, and is being actively investigated by several research groups for use in optical fiber telecom. In this dissertation, I present three implementations of OFDM for elastic optical networking and distributed network control. The first is a field programmable gate array (FPGA) based real-time implementation of a version of OFDM conventionally known as intensity modulation and direct detection (IMDD) OFDM. I experimentally demonstrate the ability of this transmission system to dynamically adjust bandwidth and modulation format to meet networking constraints in an automated manner. To the best of my knowledge, this is the first real-time software defined networking (SDN) based control of an OFDM system. In the second OFDM implementation, I experimentally demonstrate a novel OFDM transmission scheme that supports both direct detection and coherent detection receivers simultaneously using the same OFDM transmitter. This interchangeable receiver solution enables a trade-off between bit rate and equipment cost in network deployment and upgrades. I show that the proposed transmission scheme can provide a receiver sensitivity improvement of up to 1.73 dB as compared to IMDD OFDM. I also present two novel polarization analyzer based detection schemes, and study their performance using experiment and simulation. In the third implementation, I present an OFDM pilot-tone based scheme for distributed network control. The first instance of an SDN-based OFDM elastic optical network with pilot-tone assisted distributed control is demonstrated. An improvement in spectral efficiency and a fast reconfiguration time of 30 ms have been achieved in this experiment. Finally, I

  10. Ultra-wideband MMICs for remote sensing applications

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2003-01-01

    This paper presents an overview of the current activity at the Technical University of Denmark in the field of ultra-wideband monolitic microwave integrated circuits (MMICs) for next-generation high-resolution synthetic aperature radar (SAR) systems. The transfer function requirements for MMIC co...

  11. Clutter suppression for moving targets detection with wideband radar

    NARCIS (Netherlands)

    Le Chevalier, F.; Krasnov, O.A.; Deudon, F.; Bidon, S.

    2011-01-01

    Wideband (high range resolution) radars have been proposed [7] as high performance systems for detection of small targets in adverse environments, due to their small resolution cells and non-ambiguity in range and velocity (velocity ambiguity removed by the measurement of the range migration of the

  12. Downlink resource allocation in beyond 3G OFDMA cellular systems

    NARCIS (Netherlands)

    Jorgušeski, L.; Prasad, R.

    2007-01-01

    Orthogonal Frequency Division Multiplex (OFDM) based wireless communication is becoming a standard for providing broadband wireless services. OFDM is already deployed in various WLAN systems such as 802.11 a/g/e and in the mobile WiMAX systems (802.16e). The OFDM physical layer is also considered by

  13. Wideband Speech Recovery Using Psychoacoustic Criteria

    Directory of Open Access Journals (Sweden)

    Visar Berisha

    2007-08-01

    Full Text Available Many modern speech bandwidth extension techniques predict the high-frequency band based on features extracted from the lower band. While this method works for certain types of speech, problems arise when the correlation between the low and the high bands is not sufficient for adequate prediction. These situations require that additional high-band information is sent to the decoder. This overhead information, however, can be cleverly quantized using human auditory system models. In this paper, we propose a novel speech compression method that relies on bandwidth extension. The novelty of the technique lies in an elaborate perceptual model that determines a quantization scheme for wideband recovery and synthesis. Furthermore, a source/filter bandwidth extension algorithm based on spectral spline fitting is proposed. Results reveal that the proposed system improves the quality of narrowband speech while performing at a lower bitrate. When compared to other wideband speech coding schemes, the proposed algorithms provide comparable speech quality at a lower bitrate.

  14. Wideband Speech Recovery Using Psychoacoustic Criteria

    Directory of Open Access Journals (Sweden)

    Berisha Visar

    2007-01-01

    Full Text Available Many modern speech bandwidth extension techniques predict the high-frequency band based on features extracted from the lower band. While this method works for certain types of speech, problems arise when the correlation between the low and the high bands is not sufficient for adequate prediction. These situations require that additional high-band information is sent to the decoder. This overhead information, however, can be cleverly quantized using human auditory system models. In this paper, we propose a novel speech compression method that relies on bandwidth extension. The novelty of the technique lies in an elaborate perceptual model that determines a quantization scheme for wideband recovery and synthesis. Furthermore, a source/filter bandwidth extension algorithm based on spectral spline fitting is proposed. Results reveal that the proposed system improves the quality of narrowband speech while performing at a lower bitrate. When compared to other wideband speech coding schemes, the proposed algorithms provide comparable speech quality at a lower bitrate.

  15. Maritime wideband communication networks video transmission scheduling

    CERN Document Server

    Yang, Tingting

    2014-01-01

    This Springer Brief covers emerging maritime wideband communication networks and how they facilitate applications such as maritime distress, urgency, safety and general communications. It provides valuable insight on the data transmission scheduling and protocol design for the maritime wideband network. This brief begins with an introduction to maritime wideband communication networks including the architecture, framework, operations and a comprehensive survey on current developments. The second part of the brief presents the resource allocation and scheduling for video packet transmission wit

  16. A modular wideband sound absorber

    Science.gov (United States)

    Plumb, G. D.

    The absorption coefficients were measured of various depths of RW2 grade Rockwool laid directly on the floor of the ISO-Standard reverberation room at BBC Research Department. The Rockwool was very effective as a wideband sound absorber. A new absorber was designed and tested, having the dimensions of the existing BBC type A modular absorbers and containing RW2 Rockwool. The new absorber has a smoother absorption coefficient curve, a less complicated construction, and weighs less than the existing BBC wideband absorber (type A8/A9). It has been named type A11 and has an equivalent performance to that of BBC type A2 and A3 absorbers combined. It complements, very well, the performance of the A10 very low frequency absorber, described in a companion Report (BBC RD No. 1992/10).

  17. Analytic discrete cosine harmonic wavelet transform based OFDM ...

    Indian Academy of Sciences (India)

    Abstract. An OFDM based on Analytic Discrete Cosine Harmonic Wavelet Trans- form (ADCHWT_OFDM) has been proposed in this paper. Analytic DCHWT has been realized by applying DCHWT to the original signal and to its Hilbert trans- form. ADCHWT has been found to be computationally efficient and very effective.

  18. On the potential of OFDM enhancements as 5G waveforms

    DEFF Research Database (Denmark)

    Berardinelli, Gilberto; Pajukoski, Kari; Lähetkangas, Eeva

    2014-01-01

    Division Multiplexing (OFDM) and its recently proposed enhancements as 5G waveforms, mainly focusing on their capability to cope with our requirements. Significant focus is given to the novel zero-tail paradigm, which allows boosting the OFDM flexibility while circumventing demerits such as poor spectral...

  19. Optical dual-mode index modulation aided OFDM for visible light communications

    Science.gov (United States)

    Mao, Tianqi; Jiang, Rui; Bai, Ruowen

    2017-05-01

    Dual-mode index modulation aided orthogonal frequency multiplexing (DM-OFDM) is recently proposed, where the spectral efficiency is enhanced compared with conventional OFDM schemes. In this paper, we propose two different optical DM-OFDM schemes for visible light communications, dual-mode index modulation aided DC-biased optical OFDM (DM-DCO-OFDM) and dual-mode index modulation aided unipolar OFDM (DM-U-OFDM). In the optical DM-OFDM schemes, subcarriers are partitioned into OFDM subblocks, divided into two groups within each subblock, and modulated by two different modes of constellations. Additional information bits can be transmitted implicitly by the indices of subcarriers modulated by the same constellation alphabet. In order to generate non-negative signals, the real-valued time-domain signals are DC-biased in DM-DCO-OFDM, whilst positive and negative signals are transmitted separately in DM-U-OFDM. At the receiver, both a maximum-likelihood (ML) detector and a log-likelihood ratio (LLR) detector are employed for signal demodulation. Besides, simulation results demonstrate that the proposed optical DM-OFDM schemes are capable of enhancing the spectral efficiency compared with other existing optical OFDM schemes, and DM-DCO-OFDM as well as DM-U-OFDM can achieve significant performance gains over their conventional counterparts at the same spectral efficiency, when the nonlinear transfer characteristic of light-emitting diodes (LEDs) is considered.

  20. A monolithic 3.1-4.8 GHz MB-OFDM UWB transceiver in 0.18-{mu}m CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Renliang; Jiang Xudong; Yao Wang; Yang Guang; Yin Jiangwei; Zheng Jianqin; Ren Junyan; Li Wei; Li Ning, E-mail: jyren@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2010-06-15

    A monolithic RF transceiver for an MB-OFDM UWB system in 3.1-4.8 GHz is presented. The transceiver adopts direct-conversion architecture and integrates all building blocks including a gain controllable wideband LNA, a I/Q merged quadrature mixer, a fifth-order Gm-C bi-quad Chebyshev LPF/VGA, a fast-settling frequency synthesizer with a poly-phase filter, a linear broadband up-conversion quadrature modulator, an active D2S converter and a variable-gain power amplifier. The ESD protected transceiver is fabricated in Jazz Semiconductor's 0.18-{mu}m RF CMOS with an area of 6.1 mm{sup 2} and draws a total current of 221 mA from 1.8-V supply. The receiver achieves a maximum voltage gain of 68 dB with a control range of 42 dB in 6 dB/step, noise figures of 5.5-8.8 dB for three sub-bands, and an in-band/out-band IIP3 better than -4 dBm/+9 dBm. The transmitter achieves an output power ranging from -10.7 to -3 dBm with gain control, an output P{sub 1dB} better than -7.7 dBm, a sideband rejection about 32.4 dBc, and LO suppression of 31.1 dBc. The hopping time among sub-bands is less than 2.05 ns. (semiconductor integrated circuits)

  1. SEMICONDUCTOR INTEGRATED CIRCUITS: A monolithic 3.1-4.8 GHz MB-OFDM UWB transceiver in 0.18-μm CMOS

    Science.gov (United States)

    Renliang, Zheng; Xudong, Jiang; Wang, Yao; Guang, Yang; Jiangwei, Yin; Jianqin, Zheng; Junyan, Ren; Wei, Li; Ning, Li

    2010-06-01

    A monolithic RF transceiver for an MB-OFDM UWB system in 3.1-4.8 GHz is presented. The transceiver adopts direct-conversion architecture and integrates all building blocks including a gain controllable wideband LNA, a I/Q merged quadrature mixer, a fifth-order Gm-C bi-quad Chebyshev LPF/VGA, a fast-settling frequency synthesizer with a poly-phase filter, a linear broadband up-conversion quadrature modulator, an active D2S converter and a variable-gain power amplifier. The ESD protected transceiver is fabricated in Jazz Semiconductor's 0.18-μm RF CMOS with an area of 6.1 mm2 and draws a total current of 221 mA from 1.8-V supply. The receiver achieves a maximum voltage gain of 68 dB with a control range of 42 dB in 6 dB/step, noise figures of 5.5-8.8 dB for three sub-bands, and an in-band/out-band IIP3 better than -4 dBm/+9 dBm. The transmitter achieves an output power ranging from -10.7 to -3 dBm with gain control, an output P1dB better than -7.7 dBm, a sideband rejection about 32.4 dBc, and LO suppression of 31.1 dBc. The hopping time among sub-bands is less than 2.05 ns.

  2. Downlink Linear Precoders Based on Statistical CSI for Multicell MIMO-OFDM

    Directory of Open Access Journals (Sweden)

    Ebrahim Baktash

    2017-01-01

    Full Text Available With 5G communication systems on the horizon, efficient interference management in heterogeneous multicell networks is more vital than ever. This paper investigates the linear precoder design for downlink multicell multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM systems, where base stations (BSs coordinate to reduce the interference across space and frequency. In order to minimize the overall feedback overhead in next-generation systems, we consider precoding schemes that require statistical channel state information (CSI only. We apply the random matrix theory to approximate the ergodic weighted sum rate of the system with a closed form expression. After formulating the approximation for general channels, we reduce the results to a more compact form using the Kronecker channel model for which several multicarrier concepts such as frequency selectivity, channel tap correlations, and intercarrier interference (ICI are rigorously represented. We find the local optimal solution for the maximization of the approximate rate using a gradient method that requires only the covariance structure of the MIMO-OFDM channels. Within this covariance structure are the channel tap correlations and ICI information, both of which are taken into consideration in the precoder design. Simulation results show that the rate approximation is very accurate even for very small MIMO-OFDM systems and the proposed method converges rapidly to a near-optimal solution that competes with networked MIMO and precoders based on instantaneous full CSI.

  3. Power amplifier linearization technique with IQ imbalance and crosstalk compensation for broadband MIMO-OFDM transmitters

    Directory of Open Access Journals (Sweden)

    Werner Stefan

    2011-01-01

    Full Text Available Abstract The design of predistortion techniques for broadband multiple input multiple output-OFDM (MIMO-OFDM systems raises several implementation challenges. First, the large bandwidth of the OFDM signal requires the introduction of memory effects in the PD model. In addition, it is usual to consider an imbalanced in-phase and quadrature (IQ modulator to translate the predistorted baseband signal to RF. Furthermore, the coupling effects, which occur when the MIMO paths are implemented in the same reduced size chipset, cannot be avoided in MIMO transceivers structures. This study proposes a MIMO-PD system that linearizes the power amplifier response and compensates nonlinear crosstalk and IQ imbalance effects for each branch of the multiantenna system. Efficient recursive algorithms are presented to estimate the complete MIMO-PD coefficients. The algorithms avoid the high computational complexity in previous solutions based on least squares estimation. The performance of the proposed MIMO-PD structure is validated by simulations using a two-transmitter antenna MIMO system. Error vector magnitude and adjacent channel power ratio are evaluated showing significant improvement compared with conventional MIMO-PD systems.

  4. Securing OFDM over Wireless Time-Varying Channels Using Subcarrier Overloading with Joint Signal Constellations

    Directory of Open Access Journals (Sweden)

    Gill R. Tsouri

    2009-01-01

    Full Text Available A method of overloading subcarriers by multiple transmitters to secure OFDM in wireless time-varying channels is proposed and analyzed. The method is based on reverse piloting, superposition modulation, and joint decoding. It makes use of channel randomness, reciprocity, and fast decorrelation in space to secure OFDM with low overheads on encryption, decryption, and key distribution. These properties make it a good alternative to traditional software-based information security algorithms in systems where the costs associated with such algorithms are an implementation obstacle. A necessary and sufficient condition for achieving information theoretic security in accordance with channel and system parameters is derived. Security by complexity is assessed for cases where the condition for information theoretic security is not satisfied. In addition, practical means for implementing the method are derived including generating robust joint constellations, decoding data with low complexity, and mitigating the effects of imperfections due to mobility, power control errors, and synchronization errors.

  5. Multichannel Baseband Processor for Wideband CDMA

    Directory of Open Access Journals (Sweden)

    Jalloul Louay MA

    2005-01-01

    Full Text Available The system architecture of the cellular base station modem engine (CBME is described. The CBME is a single-chip multichannel transceiver capable of processing and demodulating signals from multiple users simultaneously. It is optimized to process different classes of code-division multiple-access (CDMA signals. The paper will show that through key functional system partitioning, tightly coupled small digital signal processing cores, and time-sliced reuse architecture, CBME is able to achieve a high degree of algorithmic flexibility while maintaining efficiency. The paper will also highlight the implementation and verification aspects of the CBME chip design. In this paper, wideband CDMA is used as an example to demonstrate the architecture concept.

  6. Multichannel Baseband Processor for Wideband CDMA

    Science.gov (United States)

    Jalloul, Louay M. A.; Lin, Jim

    2005-12-01

    The system architecture of the cellular base station modem engine (CBME) is described. The CBME is a single-chip multichannel transceiver capable of processing and demodulating signals from multiple users simultaneously. It is optimized to process different classes of code-division multiple-access (CDMA) signals. The paper will show that through key functional system partitioning, tightly coupled small digital signal processing cores, and time-sliced reuse architecture, CBME is able to achieve a high degree of algorithmic flexibility while maintaining efficiency. The paper will also highlight the implementation and verification aspects of the CBME chip design. In this paper, wideband CDMA is used as an example to demonstrate the architecture concept.

  7. Resource Allocation with Adaptive Spread Spectrum OFDM Using 2D Spreading for Power Line Communications

    Directory of Open Access Journals (Sweden)

    Baudais Jean-Yves

    2007-01-01

    Full Text Available Bit-loading techniques based on orthogonal frequency division mutiplexing (OFDM are frequently used over wireline channels. In the power line context, channel state information can reasonably be obtained at both transmitter and receiver sides, and adaptive loading can advantageously be carried out. In this paper, we propose to apply loading principles to an spread spectrum OFDM (SS-OFDM waveform which is a multicarrier system using 2D spreading in the time and frequency domains. The presented algorithm handles the subcarriers, spreading codes, bits and energies assignment in order to maximize the data rate and the range of the communication system. The optimization is realized at a target symbol error rate and under spectral mask constraint as usually imposed. The analytical study shows that the merging principle realized by the spreading code improves the rate and the range of the discrete multitone (DMT system in single and multiuser contexts. Simulations have been run over measured power line communication (PLC channel responses and highlight that the proposed system is all the more interesting than the received signal-to-noise ratio (SNR is low.

  8. 42.13 gbit/s 16qam-OFDM photonics-wireless transmission in 75-110 GHz band

    DEFF Research Database (Denmark)

    Deng, Lei; Liu, D. M.; Pang, Xiaodan

    2012-01-01

    We present a simple architecture for realizing high capacity W-band (75-110 GHz) photonics-wireless system. 42.13 Gbit/s 16QAM-OFDM optical baseband signal is obtained in a seamless 15 GHz spectral bandwidth by using an optical frequency comb generator, resulting in a spectral efficiency of 2.808...

  9. Broadband Mm-Wave OFDM Communications in Doubly Selective Channel: Performance Evaluation Using Measured Mm-Wave Channel

    DEFF Research Database (Denmark)

    Chen, Xiaoming; Fan, Wei; Pedersen, Gert F.

    2018-01-01

    In this work, we evaluate the performance of the broadband millimeter-wave (mm-wave) OFDM system in the presence of phase noise (PN) of phase-locked loop based oscillator and delay spread of measured mm-wave channel. It is shown, using Akaike's information criterion, that the channel tap coeffici...

  10. A MIMO-OFDM Testbed for Wireless Local Area Networks

    Directory of Open Access Journals (Sweden)

    Conrat Jean-Marc

    2006-01-01

    Full Text Available We describe the design steps and final implementation of a MIMO OFDM prototype platform developed to enhance the performance of wireless LAN standards such as HiperLAN/2 and 802.11, using multiple transmit and multiple receive antennas. We first describe the channel measurement campaign used to characterize the indoor operational propagation environment, and analyze the influence of the channel on code design through a ray-tracing channel simulator. We also comment on some antenna and RF issues which are of importance for the final realization of the testbed. Multiple coding, decoding, and channel estimation strategies are discussed and their respective performance-complexity trade-offs are evaluated over the realistic channel obtained from the propagation studies. Finally, we present the design methodology, including cross-validation of the Matlab, C++, and VHDL components, and the final demonstrator architecture. We highlight the increased measured performance of the MIMO testbed over the single-antenna system.

  11. All optical OFDM transmission for passive optical networks

    Science.gov (United States)

    Kachare, Nitin; Ashik T., J.; Bai, K. Kalyani; Kumar, D. Sriram

    2017-06-01

    This paper demonstrates the idea of data transmission at a very higher rate (Tbits/s) through optical fibers in a passive optical network using the most efficient data transmission technique widely used in wireless communication that is orthogonal frequency division multiplexing. With an increase in internet users, data traffic has also increased significantly and the current dense wavelength division multiplexing (DWDM) systems may not support the next generation passive optical networks (PONs) requirements. The approach discussed in this paper allows to increase the downstream data rate per user and extend the standard single-mode fiber reach for future long-haul applications. All-optical OFDM is a promising solution for terabit per second capable single wavelength transmission, with high spectral efficiency and high tolerance to chromatic dispersion.

  12. A Self-organized MIMO-OFDM-based Cellular Network

    Science.gov (United States)

    Grünheid, Rainer; Fellenberg, Christian

    2012-05-01

    This paper presents a system proposal for a self-organized cellular network, which is based on the MIMO-OFDM transmission technique. Multicarrier transmission, combined with appropriate beamforming concepts, yields high bandwidth-efficiency and shows a robust behavior in multipath radio channels. Moreover, it provides a fine and tuneable granularity of space-time-frequency resources. Using a TDD approach and interference measurements in each cell, the Base Stations (BSs) decide autonomously which of the space-time-frequency resource blocks are allocated to the Mobile Terminals (MTs) in the cell, in order to fulfil certain Quality of Service (QoS) parameters. Since a synchronized Single Frequency Network (SFN), i.e., a re-use factor of one is applied, the resource blocks can be shared adaptively and flexibly among the cells, which is very advantageous in the case of a non-uniform MT distribution.

  13. BICM-ID scheme for clipped DCO-OFDM in visible light communications.

    Science.gov (United States)

    Tan, Jiandong; Wang, Zhaocheng; Wang, Qi; Dai, Linglong

    2016-03-07

    Visible light communication (VLC) is recommended for indoor transmissions in 5G network, whereby DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM) is adopted to eliminate the inter-symbol interference (ISI) but suffers from considerable performance loss induced by clipping distortion. In this paper, bit-interleaved coded modulation with iterative demapping and decoding (BICM-ID) scheme for clipped DCO-OFDM is investigated to enhance the performance of VLC systems. In order to further mitigate the clipping distortions, a novel soft demapping criterion is proposed, and a simplified demapping algorithm is developed to reduce the complexity of the proposed criterion. Simulation results illustrate that the enhanced demapping algorithm achieves a significant performance gain.

  14. Research on Channel Estimation and OFDM Signals Detection in Rapidly Time-Variant Channels

    Directory of Open Access Journals (Sweden)

    M. Huang

    2014-09-01

    Full Text Available It is well known that iterative channel estimation and OFDM signals detection can significantly improve the performance of communication system. However, its performance is poor due to the modelling error of basis expansion model (BEM being large enough and can not being ignored in rapidly time-variant channels. In this paper, channel estimation and OFDM signals detection are integrated into a real non-linear least squares (NLS problem. Then the modified Broyden-Fletcher-Goldfarb-Shanno (MBFGS algorithm is adopted to search the optimal solution. In addition, Cramer-Rao Bound (CRB for our proposed approach is derived. Simulation results are presented to illustrate the superiority of the proposed approach.

  15. Adaptively loaded IM/DD optical OFDM based on set-partitioned QAM formats.

    Science.gov (United States)

    Zhao, Jian; Chen, Lian-Kuan

    2017-04-17

    We investigate the constellation design and symbol error rate (SER) of set-partitioned (SP) quadrature amplitude modulation (QAM) formats. Based on the SER analysis, we derive the adaptive bit and power loading algorithm for SP QAM based intensity-modulation direct-detection (IM/DD) orthogonal frequency division multiplexing (OFDM). We experimentally show that the proposed system significantly outperforms the conventional adaptively-loaded IM/DD OFDM and can increase the data rate from 36 Gbit/s to 42 Gbit/s in the presence of severe dispersion-induced spectral nulls after 40-km single-mode fiber. It is also shown that the adaptive algorithm greatly enhances the tolerance to fiber nonlinearity and allows for more power budget.

  16. Wideband Channel Modeling in Real Atmospheric Environments with Experimental Evaluation

    Science.gov (United States)

    2013-04-01

    received signal will experience ISI and the channel is considered wideband. If either the transmitter or receiver is mobile or the environment is not...are commonly used in spread spectrum communication systems such as Code Division Multiple Access ( CDMA ) systems. Narrowband interference mitigation...Model (APM) for Mobile Radio Applications,” IEEE Trans. Antennas and Propagation, vol. 54, no. 10 (October), pp. 2869–2877. [5] A. Barrios. 1995

  17. Influence des amplificateurs optiques à semi-conducteurs (SOA) sur la transmission cohérente de signaux optiques à format de modulation multi-porteuses (CO-OFDM)

    OpenAIRE

    Khaleghi, Hamidreza

    2012-01-01

    Future wavelength division multiplexing (WDM) systems might take advantage from the use of semiconductor optical amplifiers (SOA), especially to benefit from their large optical bandwidth for signal amplification. In this work, we study the influence of SOAs on the coherent optical-OFDM (CO OFDM) transmission system. This recently proposed technique allows both to increase the spectral efficiency of the transmission and to compensate the linear imperfections of the optical channel.In this wor...

  18. A model for wideband HF propagation channels

    Science.gov (United States)

    Vogler, L. E.; Hoffmeyer, J. A.

    1993-11-01

    Expressions to model the sky wave propagation conditions that occur in a HF communication link are presented. The model is intended not only for narrowband applications but also for wideband systems such as those using spread spectrum techniques. A discussion of the background leading to the present development effort is followed by a description of the method used to derive the model transfer function. Analytic expressions for the impulse response and the scattering function are given, and the introduction of random processes into the model is described. Comparisons of scattering functions from the model and from measurements are shown for spread-F conditions ranging from mild to intense and for both an auroral path and a midlatitude path.

  19. Experimental demonstration of OFDM/OQAM transmission with DFT-based channel estimation for visible laser light communications

    Science.gov (United States)

    He, Jing; Shi, Jin; Deng, Rui; Chen, Lin

    2017-08-01

    Recently, visible light communication (VLC) based on light-emitting diodes (LEDs) is considered as a candidate technology for fifth-generation (5G) communications, VLC is free of electromagnetic interference and it can simplify the integration of VLC into heterogeneous wireless networks. Due to the data rates of VLC system limited by the low pumping efficiency, small output power and narrow modulation bandwidth, visible laser light communication (VLLC) system with laser diode (LD) has paid more attention. In addition, orthogonal frequency division multiplexing/offset quadrature amplitude modulation (OFDM/OQAM) is currently attracting attention in optical communications. Due to the non-requirement of cyclic prefix (CP) and time-frequency domain well-localized pulse shapes, it can achieve high spectral efficiency. Moreover, OFDM/OQAM has lower out-of-band power leakage so that it increases the system robustness against inter-carrier interference (ICI) and frequency offset. In this paper, a Discrete Fourier Transform (DFT)-based channel estimation scheme combined with the interference approximation method (IAM) is proposed and experimentally demonstrated for VLLC OFDM/OQAM system. The performance of VLLC OFDM/OQAM system with and without DFT-based channel estimation is investigated. Moreover, the proposed DFT-based channel estimation scheme and the intra-symbol frequency-domain averaging (ISFA)-based method are also compared for the VLLC OFDM/OQAM system. The experimental results show that, the performance of EVM using the DFT-based channel estimation scheme is improved about 3dB compared with the conventional IAM method. In addition, the DFT-based channel estimation scheme can resist the channel noise effectively than that of the ISFA-based method.

  20. Thermal Studies on the SPS Wideband Transverse Feedback Kicker

    CERN Document Server

    Roggen, Toon; Hofle, Wolfgang; Montesinos, Eric; CERN. Geneva. ATS Department

    2016-01-01

    As part of the SPS wideband transverse feedback system in the framework of the LHC Injector Upgrade (LIU) project, a wideband kicker design is being proposed. Vertical beam instabilities due to intensity dependent effects (electron cloud instability (ECI) and transverse mode coupling instability (TMCI)) are potentially suppressed by using a feedback system driving such a kicker system. One of the options for a kicker is a one meter long slotted-coaxial kicker, providing a substantial vertical kick strength (10ˉ5 –10ˉ4 eV.s/m) over a bandwidth ranging from nearly DC to 1 GHz. The necessary kick strength requires a total power of 4 kW. This note describes thermal studies that assisted in the material choice of the feedthroughs of the slotted-coaxial kicker and guided the design choices.