WorldWideScience

Sample records for wideband code division

  1. Performance analysis for a chaos-based code-division multiple access system in wide-band channel

    Directory of Open Access Journals (Sweden)

    Ciprian Doru Giurcăneanu

    2015-08-01

    Full Text Available Code-division multiple access technology is widely used in telecommunications and its performance has been extensively investigated in the past. Theoretical results for the case of wide-band transmission channel were not available until recently. The novel formulae which have been published in 2014 can have an important impact on the future of wireless multiuser communications, but limitations come from the Gaussian approximations used in their derivation. In this Letter, the authors obtain more accurate expressions of the bit error rate (BER for the case when the model of the wide-band channel is two-ray, with Rayleigh fading. In the authors’ approach, the spreading sequences are assumed to be generated by logistic map given by Chebyshev polynomial function of order two. Their theoretical and experimental results show clearly that the previous results on BER, which rely on the crude Gaussian approximation, are over-pessimistic.

  2. Theoretical analysis and simulation of a code division multiple access system (cdma for secure signal transmission in wideband channels

    Directory of Open Access Journals (Sweden)

    Stevan M. Berber

    2014-06-01

    Code Division Multiple Access (CDMA technique which allows communications of multiple users in the same communication system. This is achieved in such a way that each user is assigned a unique code sequence, which is used at the receiver side to discover the information dedicated to that user. These systems belong to the group of communication systems for direct sequence spread spectrum systems. Traditionally, CDMA systems use binary orthogonal spreading codes. In this paper, a mathematical model and simulation of a CDMA system based on the application of non-binary, precisely speaking, chaotic spreading sequences. In their nature, these sequences belong to random sequences with infinite periodicity, and due to that they are appropriate for applications in the systems that provide enhanced security against interception and secrecy in signal transmission. Numerous papers are dedicated to the development of CDMA systems in flat fading channels. This paper presents the results of these systems analysis for the case when frequency selective fading is present in the channel. In addition, the paper investigates a possibility of using interleaving techniques to mitigate fading in a wideband channel with the frequency selective fading. Basic structure of a CDMA communication system and its operation In this paper, a CDMA system block schematic is ppresented and the function of all blocks is explained. Notation  to be used in the paper is introduced. Chaotic sequences are defined and explained in accordance with the method of their generation. A wideband channel with frequency selective fading is defined by its impulse response function. Theoretical analysis of a CDMA system with flat fading in a narrowband channel A narrowband channel and flat fading are defined. A mathematical analysis of the system is conducted by presenting the signal expressions at vital points in the transmitter and receiver. The expression of the signal at the output of the sequence correlator is

  3. Spectral encoded optical label detection for dynamic routing of impulse radio ultra-wideband signals in metro-access networks

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich; Yu, Xianbin; Yin, Xiaoli

    2010-01-01

    In this paper we propose and experimentally demonstrate the principle of coherent label detection for dynamic routing of wavelength division multiplexed impulse radio ultra-wideband signals by using four-tone spectral amplitude coded labels.......In this paper we propose and experimentally demonstrate the principle of coherent label detection for dynamic routing of wavelength division multiplexed impulse radio ultra-wideband signals by using four-tone spectral amplitude coded labels....

  4. High-Speed Turbo-TCM-Coded Orthogonal Frequency-Division Multiplexing Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Wang Yanxia

    2006-01-01

    Full Text Available One of the UWB proposals in the IEEE P802.15 WPAN project is to use a multiband orthogonal frequency-division multiplexing (OFDM system and punctured convolutional codes for UWB channels supporting a data rate up to 480 Mbps. In this paper, we improve the proposed system using turbo TCM with QAM constellation for higher data rate transmission. We construct a punctured parity-concatenated trellis codes, in which a TCM code is used as the inner code and a simple parity-check code is employed as the outer code. The result shows that the system can offer a much higher spectral efficiency, for example, 1.2 Gbps, which is 2.5 times higher than the proposed system. We identify several essential requirements to achieve the high rate transmission, for example, frequency and time diversity and multilevel error protection. Results are confirmed by density evolution.

  5. Experimental demonstration of the transmission performance for LDPC-coded multiband OFDM ultra-wideband over fiber system

    Science.gov (United States)

    He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin; Su, Jinshu

    2015-01-01

    To improve the transmission performance of multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) over optical fiber, a pre-coding scheme based on low-density parity-check (LDPC) is adopted and experimentally demonstrated in the intensity-modulation and direct-detection MB-OFDM UWB over fiber system. Meanwhile, a symbol synchronization and pilot-aided channel estimation scheme is implemented on the receiver of the MB-OFDM UWB over fiber system. The experimental results show that the LDPC pre-coding scheme can work effectively in the MB-OFDM UWB over fiber system. After 70 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1 × 10-3, the receiver sensitivities are improved about 4 dB when the LDPC code rate is 75%.

  6. Coding/modulation trade-offs for Shuttle wideband data links

    Science.gov (United States)

    Batson, B. H.; Huth, G. K.; Trumpis, B. D.

    1974-01-01

    This paper describes various modulation and coding schemes which are potentially applicable to the Shuttle wideband data relay communications link. This link will be capable of accommodating up to 50 Mbps of scientific data and will be subject to a power constraint which forces the use of channel coding. Although convolutionally encoded coherent binary PSK is the tentative signal design choice for the wideband data relay link, FM techniques are of interest because of the associated hardware simplicity and because an FM system is already planned to be available for transmission of television via relay satellite to the ground. Binary and M-ary FSK are considered as candidate modulation techniques, and both coherent and noncoherent ground station detection schemes are examined. The potential use of convolutional coding is considered in conjunction with each of the candidate modulation techniques.

  7. On the Comparative Performance Analysis of Turbo-Coded Non-Ideal Sigle-Carrier and Multi-Carrier Waveforms over Wideband Vogler-Hoffmeyer HF Channels

    Directory of Open Access Journals (Sweden)

    F. Genc

    2014-09-01

    Full Text Available The purpose of this paper is to compare the turbo-coded Orthogonal Frequency Division Multiplexing (OFDM and turbo-coded Single Carrier Frequency Domain Equalization (SC-FDE systems under the effects of Carrier Frequency Offset (CFO, Symbol Timing Offset (STO and phase noise in wide-band Vogler-Hoffmeyer HF channel model. In mobile communication systems multi-path propagation occurs. Therefore channel estimation and equalization is additionally necessary. Furthermore a non-ideal local oscillator generally is misaligned with the operating frequency at the receiver. This causes carrier frequency offset. Hence in coded SC-FDE and coded OFDM systems; a very efficient, low complex frequency domain channel estimation and equalization is implemented in this paper. Also Cyclic Prefix (CP based synchronization synchronizes the clock and carrier frequency offset.The simulations show that non-ideal turbo-coded OFDM has better performance with greater diversity than non-ideal turbo-coded SC-FDE system in HF channel.

  8. Towers of generalized divisible quantum codes

    Science.gov (United States)

    Haah, Jeongwan

    2018-04-01

    A divisible binary classical code is one in which every code word has weight divisible by a fixed integer. If the divisor is 2ν for a positive integer ν , then one can construct a Calderbank-Shor-Steane (CSS) code, where X -stabilizer space is the divisible classical code, that admits a transversal gate in the ν th level of Clifford hierarchy. We consider a generalization of the divisibility by allowing a coefficient vector of odd integers with which every code word has zero dot product modulo the divisor. In this generalized sense, we construct a CSS code with divisor 2ν +1 and code distance d from any CSS code of code distance d and divisor 2ν where the transversal X is a nontrivial logical operator. The encoding rate of the new code is approximately d times smaller than that of the old code. In particular, for large d and ν ≥2 , our construction yields a CSS code of parameters [[O (dν -1) ,Ω (d ) ,d ] ] admitting a transversal gate at the ν th level of Clifford hierarchy. For our construction we introduce a conversion from magic state distillation protocols based on Clifford measurements to those based on codes with transversal T gates. Our tower contains, as a subclass, generalized triply even CSS codes that have appeared in so-called gauge fixing or code switching methods.

  9. Wideband Impulse Modulation and Receiver Algorithms for Multiuser Power Line Communications

    Directory of Open Access Journals (Sweden)

    Andrea M. Tonello

    2007-01-01

    Full Text Available We consider a bit-interleaved coded wideband impulse-modulated system for power line communications. Impulse modulation is combined with direct-sequence code-division multiple access (DS-CDMA to obtain a form of orthogonal modulation and to multiplex the users. We focus on the receiver signal processing algorithms and derive a maximum likelihood frequency-domain detector that takes into account the presence of impulse noise as well as the intercode interference (ICI and the multiple-access interference (MAI that are generated by the frequency-selective power line channel. To reduce complexity, we propose several simplified frequency-domain receiver algorithms with different complexity and performance. We address the problem of the practical estimation of the channel frequency response as well as the estimation of the correlation of the ICI-MAI-plus-noise that is needed in the detection metric. To improve the estimators performance, a simple hard feedback from the channel decoder is also used. Simulation results show that the scheme provides robust performance as a result of spreading the symbol energy both in frequency (through the wideband pulse and in time (through the spreading code and the bit-interleaved convolutional code.

  10. Multichannel Baseband Processor for Wideband CDMA

    Science.gov (United States)

    Jalloul, Louay M. A.; Lin, Jim

    2005-12-01

    The system architecture of the cellular base station modem engine (CBME) is described. The CBME is a single-chip multichannel transceiver capable of processing and demodulating signals from multiple users simultaneously. It is optimized to process different classes of code-division multiple-access (CDMA) signals. The paper will show that through key functional system partitioning, tightly coupled small digital signal processing cores, and time-sliced reuse architecture, CBME is able to achieve a high degree of algorithmic flexibility while maintaining efficiency. The paper will also highlight the implementation and verification aspects of the CBME chip design. In this paper, wideband CDMA is used as an example to demonstrate the architecture concept.

  11. Multichannel Baseband Processor for Wideband CDMA

    Directory of Open Access Journals (Sweden)

    Jim Lin

    2005-07-01

    Full Text Available The system architecture of the cellular base station modem engine (CBME is described. The CBME is a single-chip multichannel transceiver capable of processing and demodulating signals from multiple users simultaneously. It is optimized to process different classes of code-division multiple-access (CDMA signals. The paper will show that through key functional system partitioning, tightly coupled small digital signal processing cores, and time-sliced reuse architecture, CBME is able to achieve a high degree of algorithmic flexibility while maintaining efficiency. The paper will also highlight the implementation and verification aspects of the CBME chip design. In this paper, wideband CDMA is used as an example to demonstrate the architecture concept.

  12. Design of an Ultra-wideband Pseudo Random Coded MIMO Radar Based on Radio Frequency Switches

    Directory of Open Access Journals (Sweden)

    Su Hai

    2017-02-01

    Full Text Available A Multiple-Input Multiple-Output (MIMO ultra-wideband radar can detect the range and azimuth information of targets in real time. It is widely used for geological surveys, life rescue, through-wall tracking, and other military or civil fields. This paper presents the design of an ultra-wideband pseudo random coded MIMO radar that is based on Radio Frequency (RF switches and implements a MIMO radar system. RF switches are employed to reduce cost and complexity of the system. As the switch pressure value is limited, the peak power of the transmitting signal is 18 dBm. The ultra-wideband radar echo is obtained by hybrid sampling, and pulse compression is computed by Digital Signal Processors (DSPs embedded in an Field-Programmable Gate Array (FPGA to simplify the signal process. The experiment illustrates that the radar system can detect the range and azimuth information of targets in real time.

  13. Optical Code-Division Multiple-Access and Wavelength Division Multiplexing: Hybrid Scheme Review

    OpenAIRE

    P. Susthitha Menon; Sahbudin Shaari; Isaac A.M. Ashour; Hesham A. Bakarman

    2012-01-01

    Problem statement: Hybrid Optical Code-Division Multiple-Access (OCDMA) and Wavelength-Division Multiplexing (WDM) have flourished as successful schemes for expanding the transmission capacity as well as enhancing the security for OCDMA. However, a comprehensive review related to this hybrid system are lacking currently. Approach: The purpose of this paper is to review the literature on OCDMA-WDM overlay systems, including our hybrid approach of one-dimensional coding of SAC OCDMA with WDM si...

  14. Optical code-division multiple-access networks

    Science.gov (United States)

    Andonovic, Ivan; Huang, Wei

    1999-04-01

    This review details the approaches adopted to implement classical code division multiple access (CDMA) principles directly in the optical domain, resulting in all optical derivatives of electronic systems. There are a number of ways of realizing all-optical CDMA systems, classified as incoherent and coherent based on spreading in the time and frequency dimensions. The review covers the basic principles of optical CDMA (OCDMA), the nature of the codes used in these approaches and the resultant limitations on system performance with respect to the number of stations (code cardinality), the number of simultaneous users (correlation characteristics of the families of codes), concluding with consideration of network implementation issues. The latest developments will be presented with respect to the integration of conventional time spread codes, used in the bulk of the demonstrations of these networks to date, with wavelength division concepts, commonplace in optical networking. Similarly, implementations based on coherent correlation with the aid of a local oscillator will be detailed and comparisons between approaches will be drawn. Conclusions regarding the viability of these approaches allowing the goal of a large, asynchronous high capacity optical network to be realized will be made.

  15. Strict optical orthogonal codes for purely asynchronous code-division multiple-access applications

    Science.gov (United States)

    Zhang, Jian-Guo

    1996-12-01

    Strict optical orthogonal codes are presented for purely asynchronous optical code-division multiple-access (CDMA) applications. The proposed code can strictly guarantee the peaks of its cross-correlation functions and the sidelobes of any of its autocorrelation functions to have a value of 1 in purely asynchronous data communications. The basic theory of the proposed codes is given. An experiment on optical CDMA systems is also demonstrated to verify the characteristics of the proposed code.

  16. Optical code division multiple access fundamentals and applications

    CERN Document Server

    Prucnal, Paul R

    2005-01-01

    Code-division multiple access (CDMA) technology has been widely adopted in cell phones. Its astonishing success has led many to evaluate the promise of this technology for optical networks. This field has come to be known as Optical CDMA (OCDMA). Surveying the field from its infancy to the current state, Optical Code Division Multiple Access: Fundamentals and Applications offers the first comprehensive treatment of OCDMA from technology to systems.The book opens with a historical perspective, demonstrating the growth and development of the technologies that would eventually evolve into today's

  17. Performance Analysis of Optical Code Division Multiplex System

    Science.gov (United States)

    Kaur, Sandeep; Bhatia, Kamaljit Singh

    2013-12-01

    This paper presents the Pseudo-Orthogonal Code generator for Optical Code Division Multiple Access (OCDMA) system which helps to reduce the need of bandwidth expansion and improve spectral efficiency. In this paper we investigate the performance of multi-user OCDMA system to achieve data rate more than 1 Tbit/s.

  18. Coding and decoding for code division multiple user communication systems

    Science.gov (United States)

    Healy, T. J.

    1985-01-01

    A new algorithm is introduced which decodes code division multiple user communication signals. The algorithm makes use of the distinctive form or pattern of each signal to separate it from the composite signal created by the multiple users. Although the algorithm is presented in terms of frequency-hopped signals, the actual transmitter modulator can use any of the existing digital modulation techniques. The algorithm is applicable to error-free codes or to codes where controlled interference is permitted. It can be used when block synchronization is assumed, and in some cases when it is not. The paper also discusses briefly some of the codes which can be used in connection with the algorithm, and relates the algorithm to past studies which use other approaches to the same problem.

  19. A New Prime Code for Synchronous Optical Code Division Multiple-Access Networks

    Directory of Open Access Journals (Sweden)

    Huda Saleh Abbas

    2018-01-01

    Full Text Available A new spreading code based on a prime code for synchronous optical code-division multiple-access networks that can be used in monitoring applications has been proposed. The new code is referred to as “extended grouped new modified prime code.” This new code has the ability to support more terminal devices than other prime codes. In addition, it patches subsequences with “0s” leading to lower power consumption. The proposed code has an improved cross-correlation resulting in enhanced BER performance. The code construction and parameters are provided. The operating performance, using incoherent on-off keying modulation and incoherent pulse position modulation systems, has been analyzed. The performance of the code was compared with other prime codes. The results demonstrate an improved performance, and a BER floor of 10−9 was achieved.

  20. Performance analysis of quantum access network using code division multiple access model

    International Nuclear Information System (INIS)

    Hu Linxi; Yang Can; He Guangqiang

    2017-01-01

    A quantum access network has been implemented by frequency division multiple access and time division multiple access, while code division multiple access is limited for its difficulty to realize the orthogonality of the code. Recently, the chaotic phase shifters were proposed to guarantee the orthogonality by different chaotic signals and spread the spectral content of the quantum states. In this letter, we propose to implement the code division multiple access quantum network by using chaotic phase shifters and synchronization. Due to the orthogonality of the different chaotic phase shifter, every pair of users can faithfully transmit quantum information through a common channel and have little crosstalk between different users. Meanwhile, the broadband spectra of chaotic signals efficiently help the quantum states to defend against channel loss and noise. (paper)

  1. Quantum internet using code division multiple access

    Science.gov (United States)

    Zhang, Jing; Liu, Yu-xi; Özdemir, Şahin Kaya; Wu, Re-Bing; Gao, Feifei; Wang, Xiang-Bin; Yang, Lan; Nori, Franco

    2013-01-01

    A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels. PMID:23860488

  2. Wavelet based multicarrier code division multiple access ...

    African Journals Online (AJOL)

    This paper presents the study on Wavelet transform based Multicarrier Code Division Multiple Access (MC-CDMA) system for a downlink wireless channel. The performance of the system is studied for Additive White Gaussian Noise Channel (AWGN) and slowly varying multipath channels. The bit error rate (BER) versus ...

  3. On the upgrade of an optical code division PON with a code-sense ethernet MAC protocol

    NARCIS (Netherlands)

    Huiszoon, B.; Waardt, de H.; Khoe, G.D.; Koonen, A.M.J.

    2007-01-01

    We propose, for the first time, optical code-sense multiple access / collision detection to upgrade an optical code division passive optical network with minor modifications to transparently deploy Ethernet (or packet) based services.

  4. Diagonal Eigenvalue Unity (DEU) code for spectral amplitude coding-optical code division multiple access

    Science.gov (United States)

    Ahmed, Hassan Yousif; Nisar, K. S.

    2013-08-01

    Code with ideal in-phase cross correlation (CC) and practical code length to support high number of users are required in spectral amplitude coding-optical code division multiple access (SAC-OCDMA) systems. SAC systems are getting more attractive in the field of OCDMA because of its ability to eliminate the influence of multiple access interference (MAI) and also suppress the effect of phase induced intensity noise (PIIN). In this paper, we have proposed new Diagonal Eigenvalue Unity (DEU) code families with ideal in-phase CC based on Jordan block matrix with simple algebraic ways. Four sets of DEU code families based on the code weight W and number of users N for the combination (even, even), (even, odd), (odd, odd) and (odd, even) are constructed. This combination gives DEU code more flexibility in selection of code weight and number of users. These features made this code a compelling candidate for future optical communication systems. Numerical results show that the proposed DEU system outperforms reported codes. In addition, simulation results taken from a commercial optical systems simulator, Virtual Photonic Instrument (VPI™) shown that, using point to multipoint transmission in passive optical network (PON), DEU has better performance and could support long span with high data rate.

  5. Optical code division multiple access secure communications systems with rapid reconfigurable polarization shift key user code

    Science.gov (United States)

    Gao, Kaiqiang; Wu, Chongqing; Sheng, Xinzhi; Shang, Chao; Liu, Lanlan; Wang, Jian

    2015-09-01

    An optical code division multiple access (OCDMA) secure communications system scheme with rapid reconfigurable polarization shift key (Pol-SK) bipolar user code is proposed and demonstrated. Compared to fix code OCDMA, by constantly changing the user code, the performance of anti-eavesdropping is greatly improved. The Pol-SK OCDMA experiment with a 10 Gchip/s user code and a 1.25 Gb/s user data of payload has been realized, which means this scheme has better tolerance and could be easily realized.

  6. Uneven-Layered Coding Metamaterial Tile for Ultra-wideband RCS Reduction and Diffuse Scattering.

    Science.gov (United States)

    Su, Jianxun; He, Huan; Li, Zengrui; Yang, Yaoqing Lamar; Yin, Hongcheng; Wang, Junhong

    2018-05-25

    In this paper, a novel uneven-layered coding metamaterial tile is proposed for ultra-wideband radar cross section (RCS) reduction and diffuse scattering. The metamaterial tile is composed of two kinds of square ring unit cells with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Due to the phase cancellation between two unit cells, the metamaterial tile has the scattering pattern of four strong lobes deviating from normal direction. The metamaterial tile and its 90-degree rotation can be encoded as the '0' and '1' elements to cover an object, and diffuse scattering pattern can be realized by optimizing phase distribution, leading to reductions of the monostatic and bi-static RCSs simultaneously. The metamaterial tile can achieve -10 dB RCS reduction from 6.2 GHz to 25.7 GHz with the ratio bandwidth of 4.15:1 at normal incidence. The measured and simulated results are in good agreement and validate the proposed uneven-layered coding metamaterial tile can greatly expanding the bandwidth for RCS reduction and diffuse scattering.

  7. Optical Code-Division Multiple Access: Challenges and Solutions

    Science.gov (United States)

    Chen, Lawrence R.

    2003-02-01

    Optical code-division multiple-access (OCDMA) is a technique well-suited for providing the required photonic connectivity in local access networks. Although the principles of OCDMA have been known for many years, it has never delivered on its potential. In this paper, we will describe the key challenges and impediments that have prevented OCDMA from delivering on its potential, as well as discuss possible solutions. We focus on the limitations of one-dimensional codes and the benefit of exploiting the additional degrees of freedom in using multiple dimensions for defining the codes. We discuss the advantages of using differential detection in order to implement bipolar communications. We then show how two-dimensional wavelength-time codes can be appropriately combined with differential detection in order to achieve high performance OCDMA systems with a large number of users operating with good BER performance for a large aggregate capacity. We also discuss the impact of channel coding techniques, for example forward error correction or turbo coding, on BER performance.

  8. Development of authentication code for multi-access optical code division multiplexing based quantum key distribution

    Science.gov (United States)

    Taiwo, Ambali; Alnassar, Ghusoon; Bakar, M. H. Abu; Khir, M. F. Abdul; Mahdi, Mohd Adzir; Mokhtar, M.

    2018-05-01

    One-weight authentication code for multi-user quantum key distribution (QKD) is proposed. The code is developed for Optical Code Division Multiplexing (OCDMA) based QKD network. A unique address assigned to individual user, coupled with degrading probability of predicting the source of the qubit transmitted in the channel offer excellent secure mechanism against any form of channel attack on OCDMA based QKD network. Flexibility in design as well as ease of modifying the number of users are equally exceptional quality presented by the code in contrast to Optical Orthogonal Code (OOC) earlier implemented for the same purpose. The code was successfully applied to eight simultaneous users at effective key rate of 32 bps over 27 km transmission distance.

  9. Utility subroutine package used by Applied Physics Division export codes

    International Nuclear Information System (INIS)

    Adams, C.H.; Derstine, K.L.; Henryson, H. II; Hosteny, R.P.; Toppel, B.J.

    1983-04-01

    This report describes the current state of the utility subroutine package used with codes being developed by the staff of the Applied Physics Division. The package provides a variety of useful functions for BCD input processing, dynamic core-storage allocation and managemnt, binary I/0 and data manipulation. The routines were written to conform to coding standards which facilitate the exchange of programs between different computers

  10. Performance enhancement of optical code-division multiple-access systems using transposed modified Walsh code

    Science.gov (United States)

    Sikder, Somali; Ghosh, Shila

    2018-02-01

    This paper presents the construction of unipolar transposed modified Walsh code (TMWC) and analysis of its performance in optical code-division multiple-access (OCDMA) systems. Specifically, the signal-to-noise ratio, bit error rate (BER), cardinality, and spectral efficiency were investigated. The theoretical analysis demonstrated that the wavelength-hopping time-spreading system using TMWC was robust against multiple-access interference and more spectrally efficient than systems using other existing OCDMA codes. In particular, the spectral efficiency was calculated to be 1.0370 when TMWC of weight 3 was employed. The BER and eye pattern for the designed TMWC were also successfully obtained using OptiSystem simulation software. The results indicate that the proposed code design is promising for enhancing network capacity.

  11. Polarization diversity scheme on spectral polarization coding optical code-division multiple-access network

    Science.gov (United States)

    Yen, Chih-Ta; Huang, Jen-Fa; Chang, Yao-Tang; Chen, Bo-Hau

    2010-12-01

    We present an experiment demonstrating the spectral-polarization coding optical code-division multiple-access system introduced with a nonideal state of polarization (SOP) matching conditions. In the proposed system, the encoding and double balanced-detection processes are implemented using a polarization-diversity scheme. Because of the quasiorthogonality of Hadamard codes combining with array waveguide grating routers and a polarization beam splitter, the proposed codec pair can encode-decode multiple code words of Hadamard code while retaining the ability for multiple-access interference cancellation. The experimental results demonstrate that when the system is maintained with an orthogonal SOP for each user, an effective reduction in the phase-induced intensity noise is obtained. The analytical SNR values are found to overstate the experimental results by around 2 dB when the received effective power is large. This is mainly limited by insertion losses of components and a nonflattened optical light source. Furthermore, the matching conditions can be improved by decreasing nonideal influences.

  12. Two-dimensional QR-coded metamaterial absorber

    Science.gov (United States)

    Sui, Sai; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Zhang, Jieqiu; Qu, Shaobo

    2016-01-01

    In this paper, the design of metamaterial absorbers is proposed based on QR coding and topology optimization. Such absorbers look like QR codes and can be recognized by decoding softwares as well as mobile phones. To verify the design, two lightweight wideband absorbers are designed, which can achieve wideband absorption above 90 % in 6.68-19.30 and 7.00-19.70 GHz, respectively. More importantly, polarization-independent absorption over 90 % can be maintained under incident angle within 55°. The QR code absorber not only can achieve wideband absorption, but also can carry information such as texts and Web sites. They are of important values in applications such identification and electromagnetic protection.

  13. Measurements of stimulated-Raman-scattering-induced tilt in spectral-amplitude-coding optical code-division multiple-access systems

    Science.gov (United States)

    Al-Qazwini, Zaineb A. T.; Abdullah, Mohamad K.; Mokhtar, Makhfudzah B.

    2009-01-01

    We measure the stimulated Raman scattering (SRS)-induced tilt in spectral-amplitude-coding optical code-division multiple-access (SAC-OCDMA) systems as a function of system main parameters (transmission distance, power per chip, and number of users) via computer simulations. The results show that SRS-induced tilt significantly increases as transmission distance, power per chip, or number of users grows.

  14. China Dimensions Data Collection: GuoBiao (GB) Codes for the Administrative Divisions of the Peoples Republic of China

    Data.gov (United States)

    National Aeronautics and Space Administration — GuoBiao (GB) Codes for the Administrative Divisions of the People's Republic of China consists of geographic codes for the administrative divisions of China. The...

  15. Ultrafast all-optical code-division multiple-access networks

    Science.gov (United States)

    Kwong, Wing C.; Prucnal, Paul R.; Liu, Yanming

    1992-12-01

    In optical code-division multiple access (CDMA), the architecture of optical encoders/decoders is another important factor that needs to be considered, besides the correlation properties of those already extensively studied optical codes. The architecture of optical encoders/decoders affects, for example, the amount of power loss and length of optical delays that are associated with code sequence generation and correlation, which, in turn, affect the power budget, size, and cost of an optical CDMA system. Various CDMA coding architectures are studied in the paper. In contrast to the encoders/decoders used in prime networks (i.e., prime encodes/decoders), which generate, select, and correlate code sequences by a parallel combination of fiber-optic delay-lines, and in 2n networks (i.e., 2n encoders/decoders), which generate and correlate code sequences by a serial combination of 2 X 2 passive couplers and fiber delays with sequence selection performed in a parallel fashion, the modified 2n encoders/decoders generate, select, and correlate code sequences by a serial combination of directional couplers and delays. The power and delay- length requirements of the modified 2n encoders/decoders are compared to that of the prime and 2n encoders/decoders. A 100 Mbit/s optical CDMA experiment in free space demonstrating the feasibility of the all-serial coding architecture using a serial combination of 50/50 beam splitters and retroreflectors at 10 Tchip/s (i.e., 100,000 chip/bit) with 100 fs laser pulses is reported.

  16. Experimental demonstration of 2.5 Gbit/S incoherent two-dimensional optical code division multiple access system

    International Nuclear Information System (INIS)

    Glesk, I.; Baby, V.; Bres, C.-S.; Xu, L.; Rand, D.; Prucnal, P.R.

    2004-01-01

    We demonstrated error-free operation of 4 simultaneous users in a fast frequency-hopping time-spreading optical code division multiple access system operating at 2.5 Gbit/s a Star architecture. Effective power penalty was ≤0.5dB. Novel optical code division multiple access receiver based on Terahertz Optical Asymmetric Demultiplexer was demonstrated to eliminate multiple access interference (Authors)

  17. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction.

    Science.gov (United States)

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-02-11

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking.

  18. Average Likelihood Methods of Classification of Code Division Multiple Access (CDMA)

    Science.gov (United States)

    2016-05-01

    subject to code matrices that follows the structure given by (113). [⃗ yR y⃗I ] = √ Es 2L [ GR1 −GI1 GI2 GR2 ] [ QR −QI QI QR ] [⃗ bR b⃗I ] + [⃗ nR n⃗I... QR ] [⃗ b+ b⃗− ] + [⃗ n+ n⃗− ] (115) The average likelihood for type 4 CDMA (116) is a special case of type 1 CDMA with twice the code length and...AVERAGE LIKELIHOOD METHODS OF CLASSIFICATION OF CODE DIVISION MULTIPLE ACCESS (CDMA) MAY 2016 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE

  19. Wideband propagation measurements at 30.3 GHz through a pecan orchard in Texas

    Science.gov (United States)

    Papazian, Peter B.; Jones, David L.; Espeland, Richard H.

    1992-09-01

    Wideband propagation measurements were made in a pecan orchard in Texas during April and August of 1990 to examine the propagation characteristics of millimeter-wave signals through vegetation. Measurements were made on tree obstructed paths with and without leaves. The study presents narrowband attenuation data at 9.6 and 28.8 GHz as well as wideband impulse response measurements at 30.3 GHz. The wideband probe (Violette et al., 1983), provides amplitude and delay of reflected and scattered signals and bit-error rate. This is accomplished using a 500 MBit/sec pseudo-random code to BPSK modulate a 28.8 GHz carrier. The channel impulse response is then extracted by cross correlating the received pseudo-random sequence with a locally generated replica.

  20. Free-space optical code-division multiple-access system design

    Science.gov (United States)

    Jeromin, Lori L.; Kaufmann, John E.; Bucher, Edward A.

    1993-08-01

    This paper describes an optical direct-detection multiple access communications system for free-space satellite networks utilizing code-division multiple-access (CDMA) and forward error correction (FEC) coding. System performance is characterized by how many simultaneous users operating at data rate R can be accommodated in a signaling bandwidth W. The performance of two CDMA schemes, optical orthogonal codes (OOC) with FEC and orthogonal convolutional codes (OCC), is calculated and compared to information-theoretic capacity bounds. The calculations include the effects of background and detector noise as well as nonzero transmitter extinction ratio and power imbalance among users. A system design for 10 kbps multiple-access communications between low-earth orbit satellites is given. With near- term receiver technology and representative system losses, a 15 W peak-power transmitter provides 10-6 BER performance with seven interfering users and full moon background in the receiver FOV. The receiver employs an array of discrete wide-area avalanche photodiodes (APD) for wide field of view coverage. Issues of user acquisition and synchronization, implementation technology, and system scalability are also discussed.

  1. Improved Encrypted-Signals-Based Reversible Data Hiding Using Code Division Multiplexing and Value Expansion

    Directory of Open Access Journals (Sweden)

    Xianyi Chen

    2018-01-01

    Full Text Available Compared to the encrypted-image-based reversible data hiding (EIRDH method, the encrypted-signals-based reversible data hiding (ESRDH technique is a novel way to achieve a greater embedding rate and better quality of the decrypted signals. Motivated by ESRDH using signal energy transfer, we propose an improved ESRDH method using code division multiplexing and value expansion. At the beginning, each pixel of the original image is divided into several parts containing a little signal and multiple equal signals. Next, all signals are encrypted by Paillier encryption. And then a large number of secret bits are embedded into the encrypted signals using code division multiplexing and value expansion. Since the sum of elements in any spreading sequence is equal to 0, lossless quality of directly decrypted signals can be achieved using code division multiplexing on the encrypted equal signals. Although the visual quality is reduced, high-capacity data hiding can be accomplished by conducting value expansion on the encrypted little signal. The experimental results show that our method is better than other methods in terms of the embedding rate and average PSNR.

  2. Securing optical code-division multiple-access networks with a postswitching coding scheme of signature reconfiguration

    Science.gov (United States)

    Huang, Jen-Fa; Meng, Sheng-Hui; Lin, Ying-Chen

    2014-11-01

    The optical code-division multiple-access (OCDMA) technique is considered a good candidate for providing optical layer security. An enhanced OCDMA network security mechanism with a pseudonoise (PN) random digital signals type of maximal-length sequence (M-sequence) code switching to protect against eavesdropping is presented. Signature codes unique to individual OCDMA-network users are reconfigured according to the register state of the controlling electrical shift registers. Examples of signature reconfiguration following state switching of the controlling shift register for both the network user and the eavesdropper are numerically illustrated. Dynamically changing the PN state of the shift register to reconfigure the user signature sequence is shown; this hinders eavesdroppers' efforts to decode correct data sequences. The proposed scheme increases the probability of eavesdroppers committing errors in decoding and thereby substantially enhances the degree of an OCDMA network's confidentiality.

  3. Variable weight Khazani-Syed code using hybrid fixed-dynamic technique for optical code division multiple access system

    Science.gov (United States)

    Anas, Siti Barirah Ahmad; Seyedzadeh, Saleh; Mokhtar, Makhfudzah; Sahbudin, Ratna Kalos Zakiah

    2016-10-01

    Future Internet consists of a wide spectrum of applications with different bit rates and quality of service (QoS) requirements. Prioritizing the services is essential to ensure that the delivery of information is at its best. Existing technologies have demonstrated how service differentiation techniques can be implemented in optical networks using data link and network layer operations. However, a physical layer approach can further improve system performance at a prescribed received signal quality by applying control at the bit level. This paper proposes a coding algorithm to support optical domain service differentiation using spectral amplitude coding techniques within an optical code division multiple access (OCDMA) scenario. A particular user or service has a varying weight applied to obtain the desired signal quality. The properties of the new code are compared with other OCDMA codes proposed for service differentiation. In addition, a mathematical model is developed for performance evaluation of the proposed code using two different detection techniques, namely direct decoding and complementary subtraction.

  4. System performances of optical space code-division multiple-access-based fiber-optic two-dimensional parallel data link.

    Science.gov (United States)

    Nakamura, M; Kitayama, K

    1998-05-10

    Optical space code-division multiple access is a scheme to multiplex and link data between two-dimensional processors such as smart pixels and spatial light modulators or arrays of optical sources like vertical-cavity surface-emitting lasers. We examine the multiplexing characteristics of optical space code-division multiple access by using optical orthogonal signature patterns. The probability density function of interference noise in interfering optical orthogonal signature patterns is calculated. The bit-error rate is derived from the result and plotted as a function of receiver threshold, code length, code weight, and number of users. Furthermore, we propose a prethresholding method to suppress the interference noise, and we experimentally verify that the method works effectively in improving system performance.

  5. Performance enhancement of successive interference cancellation scheme based on spectral amplitude coding for optical code-division multiple-access systems using Hadamard codes

    Science.gov (United States)

    Eltaif, Tawfig; Shalaby, Hossam M. H.; Shaari, Sahbudin; Hamarsheh, Mohammad M. N.

    2009-04-01

    A successive interference cancellation scheme is applied to optical code-division multiple-access (OCDMA) systems with spectral amplitude coding (SAC). A detailed analysis of this system, with Hadamard codes used as signature sequences, is presented. The system can easily remove the effect of the strongest signal at each stage of the cancellation process. In addition, simulation of the prose system is performed in order to validate the theoretical results. The system shows a small bit error rate at a large number of active users compared to the SAC OCDMA system. Our results reveal that the proposed system is efficient in eliminating the effect of the multiple-user interference and in the enhancement of the overall performance.

  6. Testbed for Multi-Wavelength Optical Code Division Multiplexing Based on Passive Linear Unitary Filters

    National Research Council Canada - National Science Library

    Yablonovitch, Eli

    2000-01-01

    .... The equipment purchased under this grant has permitted UCLA to purchase a number of broad-band optical components, including especially some unique code division multiplexing filters that permitted...

  7. Image transmission in multicore-fiber code-division multiple access network

    Science.gov (United States)

    Yang, Guu-Chang; Kwong, Wing C.

    1997-01-01

    Recently, two-dimensional (2-D) signature patterns were proposed to encode binary digitized image pixels in optical code-division multiple-access (CDMA) networks with 'multicore' fiber. The new technology enables parallel transmission and simultaneous access of 2-D images in multiple-access environment, where these signature patterns are defined as optical orthogonal signature pattern codes (OOSPCs). However, previous work on OOSPCs assumed that the weight of each signature pattern was the same. In this paper, we construct a new family of OOSPCs with the removal of this assumption. Since varying the weight of a user's signature pattern affects that user's performance, this approach is useful for CDMA optical systems with multiple performance requirements.

  8. A Golay complementary TS-based symbol synchronization scheme in variable rate LDPC-coded MB-OFDM UWBoF system

    Science.gov (United States)

    He, Jing; Wen, Xuejie; Chen, Ming; Chen, Lin

    2015-09-01

    In this paper, a Golay complementary training sequence (TS)-based symbol synchronization scheme is proposed and experimentally demonstrated in multiband orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband over fiber (UWBoF) system with a variable rate low-density parity-check (LDPC) code. Meanwhile, the coding gain and spectral efficiency in the variable rate LDPC-coded MB-OFDM UWBoF system are investigated. By utilizing the non-periodic auto-correlation property of the Golay complementary pair, the start point of LDPC-coded MB-OFDM UWB signal can be estimated accurately. After 100 km standard single-mode fiber (SSMF) transmission, at the bit error rate of 1×10-3, the experimental results show that the short block length 64QAM-LDPC coding provides a coding gain of 4.5 dB, 3.8 dB and 2.9 dB for a code rate of 62.5%, 75% and 87.5%, respectively.

  9. Performance analysis of multiple interference suppression over asynchronous/synchronous optical code-division multiple-access system based on complementary/prime/shifted coding scheme

    Science.gov (United States)

    Nieh, Ta-Chun; Yang, Chao-Chin; Huang, Jen-Fa

    2011-08-01

    A complete complementary/prime/shifted prime (CPS) code family for the optical code-division multiple-access (OCDMA) system is proposed. Based on the ability of complete complementary (CC) code, the multiple-access interference (MAI) can be suppressed and eliminated via spectral amplitude coding (SAC) OCDMA system under asynchronous/synchronous transmission. By utilizing the shifted prime (SP) code in the SAC scheme, the hardware implementation of encoder/decoder can be simplified with a reduced number of optical components, such as arrayed waveguide grating (AWG) and fiber Bragg grating (FBG). This system has a superior performance as compared to previous bipolar-bipolar coding OCDMA systems.

  10. Cascaded holographic polymer reflection grating filters for optical-code-division multiple-access applications.

    Science.gov (United States)

    Kostuk, Raymond K; Maeda, Wendi; Chen, Chia-Hung; Djordjevic, Ivan; Vasic, Bane

    2005-12-10

    We evaluate the use of edge-illuminated holographic Bragg filters formed in phenanthrenequinone-doped poly(methyl methacrylate) for optical-code-division multiple-access (OCDMA) coding and decoding applications. Experimental cascaded Bragg filters are formed to select two different wavelengths with a fixed distance between the gratings and are directly coupled to a fiber-measurement system. The configuration and tolerances of the cascaded gratings are shown to be practical for time-wavelength OCDMA applications.

  11. Optical code-division multiple-access protocol with selective retransmission

    Science.gov (United States)

    Mohamed, Mohamed A. A.; Shalaby, Hossam M. H.; El-Badawy, El-Sayed A.

    2006-05-01

    An optical code-division multiple-access (OCDMA) protocol based on selective retransmission technique is proposed. The protocol is modeled using a detailed state diagram and is analyzed using equilibrium point analysis (EPA). Both traditional throughput and average delay are used to examine its performance for several network parameters. In addition, the performance of the proposed protocol is compared to that of the R3T protocol, which is based on a go-back-n technique. Our results show that a higher performance is achieved by the proposed protocol at the expense of system complexity.

  12. Code division multiple-access techniques in optical fiber networks. II - Systems performance analysis

    Science.gov (United States)

    Salehi, Jawad A.; Brackett, Charles A.

    1989-08-01

    A technique based on optical orthogonal codes was presented by Salehi (1989) to establish a fiber-optic code-division multiple-access (FO-CDMA) communications system. The results are used to derive the bit error rate of the proposed FO-CDMA system as a function of data rate, code length, code weight, number of users, and receiver threshold. The performance characteristics for a variety of system parameters are discussed. A means of reducing the effective multiple-access interference signal by placing an optical hard-limiter at the front end of the desired optical correlator is presented. Performance calculations are shown for the FO-CDMA with an ideal optical hard-limiter, and it is shown that using a optical hard-limiter would, in general, improve system performance.

  13. A satellite mobile communication system based on Band-Limited Quasi-Synchronous Code Division Multiple Access (BLQS-CDMA)

    Science.gov (United States)

    Degaudenzi, R.; Elia, C.; Viola, R.

    1990-01-01

    Discussed here is a new approach to code division multiple access applied to a mobile system for voice (and data) services based on Band Limited Quasi Synchronous Code Division Multiple Access (BLQS-CDMA). The system requires users to be chip synchronized to reduce the contribution of self-interference and to make use of voice activation in order to increase the satellite power efficiency. In order to achieve spectral efficiency, Nyquist chip pulse shaping is used with no detection performance impairment. The synchronization problems are solved in the forward link by distributing a master code, whereas carrier forced activation and closed loop control techniques have been adopted in the return link. System performance sensitivity to nonlinear amplification and timing/frequency synchronization errors are analyzed.

  14. Filter multiplexing by use of spatial Code Division Multiple Access approach.

    Science.gov (United States)

    Solomon, Jonathan; Zalevsky, Zeev; Mendlovic, David; Monreal, Javier Garcia

    2003-02-10

    The increasing popularity of optical communication has also brought a demand for a broader bandwidth. The trend, naturally, was to implement methods from traditional electronic communication. One of the most effective traditional methods is Code Division Multiple Access. In this research, we suggest the use of this approach for spatial coding applied to images. The approach is to multiplex several filters into one plane while keeping their mutual orthogonality. It is shown that if the filters are limited by their bandwidth, the output of all the filters can be sampled in the original image resolution and fully recovered through an all-optical setup. The theoretical analysis of such a setup is verified in an experimental demonstration.

  15. Reducing BER of spectral-amplitude coding optical code-division multiple-access systems by single photodiode detection technique

    Science.gov (United States)

    Al-Khafaji, H. M. R.; Aljunid, S. A.; Amphawan, A.; Fadhil, H. A.; Safar, A. M.

    2013-03-01

    In this paper, we present a single photodiode detection (SPD) technique for spectral-amplitude coding optical code-division multiple-access (SAC-OCDMA) systems. The proposed technique eliminates both phase-induced intensity noise (PIIN) and multiple-access interference (MAI) in the optical domain. Analytical results show that for 35 simultaneous users transmitting at data rate of 622 Mbps, the bit-error rate (BER) = 1.4x10^-28 for SPD technique is much better compared to 9.3x10^-6 and 9.6x10^-3 for the modified-AND as well as the AND detection techniques, respectively. Moreover, we verified the improved performance afforded by the proposed technique using data transmission simulations.

  16. Fiber Bragg grating for spectral phase optical code-division multiple-access encoding and decoding

    Science.gov (United States)

    Fang, Xiaohui; Wang, Dong-Ning; Li, Shichen

    2003-08-01

    A new method for realizing spectral phase optical code-division multiple-access (OCDMA) coding based on step chirped fiber Bragg gratings (SCFBGs) is proposed and the corresponding encoder/decoder is presented. With this method, a mapping code is introduced for the m-sequence address code and the phase shift can be inserted into the subgratings of the SCFBG according to the mapping code. The transfer matrix method together with Fourier transform is used to investigate the characteristics of the encoder/decoder. The factors that influence the correlation property of the encoder/decoder, including index modulation and bandwidth of the subgrating, are identified. The system structure is simple and good correlation output can be obtained. The performance of the OCDMA system based on SCFBGs has been analyzed.

  17. Tailoring Chirped Moiré Fiber Bragg Gratings for Wavelength-Division-Multiplexing and Optical Code-Division Multiple-Access Applications

    Science.gov (United States)

    Chen, Lawrence R.; Smith, Peter W. E.

    The design and fabrication of chirped Moiré fiber Bragg gratings (CMGs) are presented, which can be used in either (1) transmission as passband filters for providing wavelength selectivity in wavelength-division-multiplexed (WDM) systems or (2) reflection as encoding/decoding elements to decompose short broadband pulses in both wavelength and time in order to implement an optical code-division multiple-access (OCDMA) system. In transmission, the fabricated CMGs have single or multiple flattened passbands ( 12 dB isolation and near constant in-band group delay. It is shown that these filters do not produce any measurable dispersion-induced power penalties when used to provide wavelength selectivity in 2.5 Gbit/s systems. It is also demonstrated how CMGs can be used in reflection to encode/decode short pulses from a wavelength-tunable mode-locked Er-doped fiber laser.

  18. Distributed magnetic field positioning system using code division multiple access

    Science.gov (United States)

    Prigge, Eric A. (Inventor)

    2003-01-01

    An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.

  19. Impact of optical hard limiter on the performance of an optical overlapped-code division multiple access system

    Science.gov (United States)

    Inaty, Elie; Raad, Robert; Tablieh, Nicole

    2011-08-01

    Throughout this paper, a closed form expression of the multiple access interference (MAI) limited bit error rate (BER) is provided for the multiwavelength optical code-division multiple-access system when the system is working above the nominal transmission rate limit imposed by the passive encoding-decoding operation. This system is known in literature as the optical overlapped code division multiple access (OV-CDMA) system. A unified analytical framework is presented emphasizing the impact of optical hard limiter (OHL) on the BER performance of such a system. Results show that the performance of the OV-CDMA system may be highly improved when using OHL preprocessing at the receiver side.

  20. Preliminary In-vivo Results For Spatially Coded Synthetic Transmit Aperture Ultrasound Based On Frequency Division

    DEFF Research Database (Denmark)

    Gran, Fredrik; Hansen, Kristoffer Lindskov; Jensen, Jørgen Arendt

    2006-01-01

    This paper investigates the possibility of using spatial coding based on frequency division for in-vivo synthetic transmit aperture (STA) ultrasound imaging. When using spatial encoding for STA, it is possible to use several transmitters simultaneously and separate the signals at the receiver....... This increases the maximum transmit power compared to conventional STA, where only one transmitter can be active. The signal-to-noise-ratio can therefore he increased and better penetration can be obtained. For frequency division, the coding is achieved by designing a number of transmit waveforms with disjoint...... spectral support, spanning the passband of the ultrasound transducer. The signals can therefore he separated at the receiver using matched filtering. The method is tested using a commercial linear array transducer with a center frequency of 9 MHz and 68% fractional bandwidth. In this paper, the transmit...

  1. Ultra-wideband WDM VCSEL arrays by lateral heterogeneous integration

    Science.gov (United States)

    Geske, Jon

    Advancements in heterogeneous integration are a driving factor in the development of evermore sophisticated and functional electronic and photonic devices. Such advancements will merge the optical and electronic capabilities of different material systems onto a common integrated device platform. This thesis presents a new lateral heterogeneous integration technology called nonplanar wafer bonding. The technique is capable of integrating multiple dissimilar semiconductor device structures on the surface of a substrate in a single wafer bond step, leaving different integrated device structures adjacent to each other on the wafer surface. Material characterization and numerical simulations confirm that the material quality is not compromised during the process. Nonplanar wafer bonding is used to fabricate ultra-wideband wavelength division multiplexed (WDM) vertical-cavity surface-emitting laser (VCSEL) arrays. The optically-pumped VCSEL arrays span 140 nm from 1470 to 1610 nm, a record wavelength span for devices operating in this wavelength range. The array uses eight wavelength channels to span the 140 nm with all channels separated by precisely 20 nm. All channels in the array operate single mode to at least 65°C with output power uniformity of +/- 1 dB. The ultra-wideband WDM VCSEL arrays are a significant first step toward the development of a single-chip source for optical networks based on coarse WDM (CWDM), a low-cost alternative to traditional dense WDM. The CWDM VCSEL arrays make use of fully-oxidized distributed Bragg reflectors (DBRs) to provide the wideband reflectivity required for optical feedback and lasing across 140 rim. In addition, a novel optically-pumped active region design is presented. It is demonstrated, with an analytical model and experimental results, that the new active-region design significantly improves the carrier uniformity in the quantum wells and results in a 50% lasing threshold reduction and a 20°C improvement in the peak

  2. Dynamic divisive normalization predicts time-varying value coding in decision-related circuits.

    Science.gov (United States)

    Louie, Kenway; LoFaro, Thomas; Webb, Ryan; Glimcher, Paul W

    2014-11-26

    Normalization is a widespread neural computation, mediating divisive gain control in sensory processing and implementing a context-dependent value code in decision-related frontal and parietal cortices. Although decision-making is a dynamic process with complex temporal characteristics, most models of normalization are time-independent and little is known about the dynamic interaction of normalization and choice. Here, we show that a simple differential equation model of normalization explains the characteristic phasic-sustained pattern of cortical decision activity and predicts specific normalization dynamics: value coding during initial transients, time-varying value modulation, and delayed onset of contextual information. Empirically, we observe these predicted dynamics in saccade-related neurons in monkey lateral intraparietal cortex. Furthermore, such models naturally incorporate a time-weighted average of past activity, implementing an intrinsic reference-dependence in value coding. These results suggest that a single network mechanism can explain both transient and sustained decision activity, emphasizing the importance of a dynamic view of normalization in neural coding. Copyright © 2014 the authors 0270-6474/14/3416046-12$15.00/0.

  3. Integrated wide-band low-background amplifiers

    International Nuclear Information System (INIS)

    Il'yushchenko, I.I.

    1980-01-01

    Ways of increasing stability and reproduction of characteristics of wide-band integral amplifiers that would to the least extent increase their background noises, are discussed. Considered are some certain flowsheets of integral wide-band amplifiers with low background noise of foreign production which differ from one another by construction of inlet cascades as well as by the applied feedback type. The principal flowsheets of the amplifiers and their main performances are presented. The analysis of the data obtained has revealed that microcircuits made of cascades with a common emitter and local combined feedback are most wide-band among all the considered microcircuits [ru

  4. Introduction to Ultra Wideband for Wireless Communications

    DEFF Research Database (Denmark)

    Nikookar, Homayoun; Prasad, Ramjee

    wireless channels, interference, signal processing as well as applications and standardization activities are addressed. Introduction to Ultra Wideband for Wireless Communications provides easy-to-understand material to (graduate) students and researchers working in the field of commercial UWB wireless......Ultra Wideband (UWB) Technology is the cutting edge technology for wireless communications with a wide range of applications. In Introduction to Ultra Wideband for Wireless Communications UWB principles and technologies for wireless communications are explained clearly. Key issues such as UWB...... communications. Due to tutorial nature of the book it can also be adopted as a textbook on the subject in the Telecommunications Engineering curriculum. Problems at the end of each chapter extend the reader's understanding of the subject. Introduction to Ultra Wideband for Wireless Communications will aslo...

  5. Maritime wideband communication networks video transmission scheduling

    CERN Document Server

    Yang, Tingting

    2014-01-01

    This Springer Brief covers emerging maritime wideband communication networks and how they facilitate applications such as maritime distress, urgency, safety and general communications. It provides valuable insight on the data transmission scheduling and protocol design for the maritime wideband network. This brief begins with an introduction to maritime wideband communication networks including the architecture, framework, operations and a comprehensive survey on current developments. The second part of the brief presents the resource allocation and scheduling for video packet transmission wit

  6. Constructing a two bands optical code-division multiple-access network of bipolar optical access codecs using Walsh-coded liquid crystal modulators

    Science.gov (United States)

    Yen, Chih-Ta; Huang, Jen-Fa; Chih, Ping-En

    2014-08-01

    We propose and experimentally demonstrated the two bands optical code-division multiple-access (OCDMA) network over bipolar Walsh-coded liquid-crystal modulators (LCMs) and driven by green light and red light lasers. Achieving system performance depends on the construction of a decoder that implements a true bipolar correlation using only unipolar signals and intensity detection for each band. We took advantage of the phase delay characteristics of LCMs to construct a prototype optical coder/decoder (codec). Matched and unmatched Walsh signature codes were evaluated to detect correlations among multiuser data in the access network. By using LCMs, a red and green laser light source was spectrally encoded and the summed light dots were complementary decoded. Favorable contrast on auto- and cross-correlations indicates that binary information symbols can be properly recovered using a balanced photodetector.

  7. Wavelength-encoding/temporal-spreading optical code division multiple-access system with in-fiber chirped moiré gratings.

    Science.gov (United States)

    Chen, L R; Smith, P W; de Sterke, C M

    1999-07-20

    We propose an optical code division multiple-access (OCDMA) system that uses in-fiber chirped moiré gratings (CMG's) for encoding and decoding of broadband pulses. In reflection the wavelength-selective and dispersive nature of CMG's can be used to implement wavelength-encoding/temporal-spreading OCDMA. We give examples of codes designed around the constraints imposed by the encoding devices and present numerical simulations that demonstrate the proposed concept.

  8. Novel secure and bandwidth efficient optical code division multiplexed system for future access networks

    Science.gov (United States)

    Singh, Simranjit

    2016-12-01

    In this paper, a spectrally coded optical code division multiple access (OCDMA) system using a hybrid modulation scheme has been investigated. The idea is to propose an effective approach for simultaneous improvement of the system capacity and security. Data formats, NRZ (non-return to zero), DQPSK (differential quadrature phase shift keying), and PoISk (polarisation shift keying) are used to get the orthogonal modulated signal. It is observed that the proposed hybrid modulation provides efficient utilisation of bandwidth, increases the data capacity and enhances the data confidentiality over existing OCDMA systems. Further, the proposed system performance is compared with the current state-of-the-art OCDMA schemes.

  9. Apparatus And Method For Wireless Monitoring Using Ultra-wideband Frequencies

    KAUST Repository

    Sana, Furrukh

    2015-04-23

    A system for and a method of wirelessly monitoring one or more patients can include transmitting ultra-wideband pulses toward the one or more patients, receiving ultra-wideband signals, and sampling the ultra-wideband signals. Sampling the ultra-wideband pulses can be performed with a sample rate that is less than the Nyquist rate. Impulse response can be estimated and/or recovered by exploiting sparsity of the impulse response.

  10. Division of Finance Homepage

    Science.gov (United States)

    Top Department of Administration logo Alaska Department of Administration Division of Finance Search Search the Division of Finance site DOF State of Alaska Finance Home Content Area Accounting Charge Cards You are here Administration / Finance Division of Finance Updates IRIS Expenditure Object Codes

  11. A design of a wavelength-hopping time-spreading incoherent optical code division multiple access system

    International Nuclear Information System (INIS)

    Glesk, I.; Baby, V.

    2005-01-01

    We present the architecture and code design for a highly scalable, 2.5 Gb/s per user optical code division multiple access (OCDMA) system. The system is scalable to 100 potential and more than 10 simultaneous users, each with a bit error rate (BER) of less than 10 -9 . The system architecture uses a fast wavelength-hopping, time-spreading codes. Unlike frequency and phase sensitive coherent OCDMA systems, this architecture utilizes standard on off keyed optical pulses allocated in the time and wavelength dimensions. This incoherent OCDMA approach is compatible with existing WDM optical networks and utilizes off the shelf components. We discuss the novel optical subsystem design for encoders and decoders that enable the realization of a highly scalable incoherent OCDMA system with rapid reconfigurability. A detailed analysis of the scalability of the two dimensional code is presented and select network deployment architectures for OCDMA are discussed (Authors)

  12. Wide-band cable systems at SLAC

    International Nuclear Information System (INIS)

    Struven, W.

    1983-01-01

    SLAC's first cable TV system was installed in 1979 to remotely monitor a narrow pulse which was generated in the west end of the klystron gallery. When Stanford Linear Collider (SLC) experimental work started at the west end of the accelerator, the original 1979 cable was upgraded to a bidirectional system so that 2 MBaud point-to-point data and several video and 9600 baud channels could be transmitted. The implementation of the SLC requires a complete upgrading of the accelerator control system. The system is based on a distributed processing configuration using a PDP11/780 VAX in the Main Control Center (MCC) and Intel single-board computers in a multibus configuration along the accelerator. The high-speed data linking is supplied by a 1 MBaud Time Division Multiple Access (TDMA) Network. The same cable is used to provide video, low-speed data, voice and high-speed point-to-point data services. The transmission system will utilize a wideband midsplit cable facility to collect and distribute signals to all parts of the network

  13. 46 CFR 54.01-2 - Adoption of division 1 of section VIII of the ASME Boiler and Pressure Vessel Code.

    Science.gov (United States)

    2010-10-01

    ... Boiler and Pressure Vessel Code. 54.01-2 Section 54.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... division 1 of section VIII of the ASME Boiler and Pressure Vessel Code. (a) Pressure vessels shall be designed, constructed, and inspected in accordance with section VIII of the ASME Boiler and Pressure Vessel...

  14. Source coherence impairments in a direct detection direct sequence optical code-division multiple-access system.

    Science.gov (United States)

    Fsaifes, Ihsan; Lepers, Catherine; Lourdiane, Mounia; Gallion, Philippe; Beugin, Vincent; Guignard, Philippe

    2007-02-01

    We demonstrate that direct sequence optical code- division multiple-access (DS-OCDMA) encoders and decoders using sampled fiber Bragg gratings (S-FBGs) behave as multipath interferometers. In that case, chip pulses of the prime sequence codes generated by spreading in time-coherent data pulses can result from multiple reflections in the interferometers that can superimpose within a chip time duration. We show that the autocorrelation function has to be considered as the sum of complex amplitudes of the combined chip as the laser source coherence time is much greater than the integration time of the photodetector. To reduce the sensitivity of the DS-OCDMA system to the coherence time of the laser source, we analyze the use of sparse and nonperiodic quadratic congruence and extended quadratic congruence codes.

  15. Source coherence impairments in a direct detection direct sequence optical code-division multiple-access system

    Science.gov (United States)

    Fsaifes, Ihsan; Lepers, Catherine; Lourdiane, Mounia; Gallion, Philippe; Beugin, Vincent; Guignard, Philippe

    2007-02-01

    We demonstrate that direct sequence optical code- division multiple-access (DS-OCDMA) encoders and decoders using sampled fiber Bragg gratings (S-FBGs) behave as multipath interferometers. In that case, chip pulses of the prime sequence codes generated by spreading in time-coherent data pulses can result from multiple reflections in the interferometers that can superimpose within a chip time duration. We show that the autocorrelation function has to be considered as the sum of complex amplitudes of the combined chip as the laser source coherence time is much greater than the integration time of the photodetector. To reduce the sensitivity of the DS-OCDMA system to the coherence time of the laser source, we analyze the use of sparse and nonperiodic quadratic congruence and extended quadratic congruence codes.

  16. Elementary wideband timing of radio pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Pennucci, Timothy T. [University of Virginia, Department of Astronomy, P.O. Box 400325 Charlottesville, VA 22904-4325 (United States); Demorest, Paul B.; Ransom, Scott M., E-mail: pennucci@virginia.edu, E-mail: pdemores@nrao.edu, E-mail: sransom@nrao.edu [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States)

    2014-08-01

    We present an algorithm for the simultaneous measurement of a pulse time-of-arrival (TOA) and dispersion measure (DM) from folded wideband pulsar data. We extend the prescription from Taylor's 1992 work to accommodate a general two-dimensional template 'portrait', the alignment of which can be used to measure a pulse phase and DM. We show that there is a dedispersion reference frequency that removes the covariance between these two quantities and note that the recovered pulse profile scaling amplitudes can provide useful information. We experiment with pulse modeling by using a Gaussian-component scheme that allows for independent component evolution with frequency, a 'fiducial component', and the inclusion of scattering. We showcase the algorithm using our publicly available code on three years of wideband data from the bright millisecond pulsar J1824–2452A (M28A) from the Green Bank Telescope, and a suite of Monte Carlo analyses validates the algorithm. By using a simple model portrait of M28A, we obtain DM trends comparable to those measured by more standard methods, with improved TOA and DM precisions by factors of a few. Measurements from our algorithm will yield precisions at least as good as those from traditional techniques, but is prone to fewer systematic effects and is without ad hoc parameters. A broad application of this new method for dispersion measure tracking with modern large-bandwidth observing systems should improve the timing residuals for pulsar timing array experiments, such as the North American Nanohertz Observatory for Gravitational Waves.

  17. Adaptive DSP Algorithms for UMTS: Blind Adaptive MMSE and PIC Multiuser Detection

    NARCIS (Netherlands)

    Potman, J.

    2003-01-01

    A study of the application of blind adaptive Minimum Mean Square Error (MMSE) and Parallel Interference Cancellation (PIC) multiuser detection techniques to Wideband Code Division Multiple Access (WCDMA), the physical layer of Universal Mobile Telecommunication System (UMTS), has been performed as

  18. Performance of asynchronous fiber-optic code division multiple access system based on three-dimensional wavelength/time/space codes and its link analysis.

    Science.gov (United States)

    Singh, Jaswinder

    2010-03-10

    A novel family of three-dimensional (3-D) wavelength/time/space codes for asynchronous optical code-division-multiple-access (CDMA) systems with "zero" off-peak autocorrelation and "unity" cross correlation is reported. Antipodal signaling and differential detection is employed in the system. A maximum of [(W x T+1) x W] codes are generated for unity cross correlation, where W and T are the number of wavelengths and time chips used in the code and are prime. The conditions for violation of the cross-correlation constraint are discussed. The expressions for number of generated codes are determined for various code dimensions. It is found that the maximum number of codes are generated for S systems. The codes have a code-set-size to code-size ratio greater than W/S. For instance, with a code size of 2065 (59 x 7 x 5), a total of 12,213 users can be supported, and 130 simultaneous users at a bit-error rate (BER) of 10(-9). An arrayed-waveguide-grating-based reconfigurable encoder/decoder design for 2-D implementation for the 3-D codes is presented so that the need for multiple star couplers and fiber ribbons is eliminated. The hardware requirements of the coders used for various modulation/detection schemes are given. The effect of insertion loss in the coders is shown to be significantly reduced with loss compensation by using an amplifier after encoding. An optical CDMA system for four users is simulated and the results presented show the improvement in performance with the use of loss compensation.

  19. Wideband Piezomagnetoelastic Vibration Energy Harvesting

    DEFF Research Database (Denmark)

    Lei, Anders; Thomsen, Erik Vilain

    2014-01-01

    This work presents a small-scale wideband piezomagnetoelastic vibration energy harvester (VEH) aimed for operation at frequencies of a few hundred Hz. The VEH consists of a tape-casted PZT cantilever with thin sheets of iron foil attached on each side of the free tip. The wideband operation...... is achieved by placing the cantilever in a magnetic field induced by either one or two magnets located oppositely of the cantilever. The attraction force created by the magnetic field and iron foils introduces a mechanical force in opposite direction of the cantilevers restoring force causing a spring...

  20. A Low-Complexity Joint Synchronization and Detection Algorithm for Single-Band DS-CDMA UWB Communications

    DEFF Research Database (Denmark)

    Christensen, Lars P.B.

    2005-01-01

    The problem of asynchronous direct-sequence code division multiple access (DS-CDMA) detection over the ultra-wideband (UWB) multipath channel is considered. A joint synchronization, channel-estimation and multi-user detection scheme based on the adaptive linear minimum mean-square error (LMMSE...

  1. Employing optical code division multiple access technology in the all fiber loop vibration sensor system

    Science.gov (United States)

    Tseng, Shin-Pin; Yen, Chih-Ta; Syu, Rong-Shun; Cheng, Hsu-Chih

    2013-12-01

    This study proposes a spectral amplitude coding-optical code division multiple access (SAC-OCDMA) framework to access the vibration frequency of a test object on the all fiber loop vibration sensor (AFLVS). Each user possesses an individual SAC, and fiber Bragg grating (FBG) encoders/decoders using multiple FBG arrays were adopted, providing excellent orthogonal properties in the frequency domain. The system also mitigates multiple access interference (MAI) among users. When an optical fiber is bent to a point exceeding the critical radius, the fiber loop sensor becomes sensitive to external physical parameters (e.g., temperature, strain, and vibration). The AFLVS involves placing a fiber loop with a specific radius on a designed vibration platform.

  2. Gigabit Ethernet signal transmission using asynchronous optical code division multiple access.

    Science.gov (United States)

    Ma, Philip Y; Fok, Mable P; Shastri, Bhavin J; Wu, Ben; Prucnal, Paul R

    2015-12-15

    We propose and experimentally demonstrate a novel architecture for interfacing and transmitting a Gigabit Ethernet (GbE) signal using asynchronous incoherent optical code division multiple access (OCDMA). This is the first such asynchronous incoherent OCDMA system carrying GbE data being demonstrated to be working among multi-users where each user is operating with an independent clock/data rate and is granted random access to the network. Three major components, the GbE interface, the OCDMA transmitter, and the OCDMA receiver are discussed in detail. The performance of the system is studied and characterized through measuring eye diagrams, bit-error rate and packet loss rate in real-time file transfer. Our Letter also addresses the near-far problem and realizes asynchronous transmission and detection of signal.

  3. Effect of beat noise on the performance of two-dimensional time-spreading/wavelength-hopping optical code-division multiple-access systems

    Science.gov (United States)

    Bazan, T.; Harle, D.; Andonovic, I.; Meenakshi, M.

    2005-03-01

    The effect of beat noise on optical code-division multiple-access (OCDMA) systems using a range of two-dimensional (2-D) time-spreading/wavelength-hopping (TW) code families is presented. A derivation of a general formula for the error probability of the system is given. The properties of the 2-D codes--namely, the structure, length, and cross-correlation characteristics--are found to have a great influence on system performance. Improved performance can be obtained by use of real-time dynamic thresholding.

  4. An Analog Correlator for Ultra-Wideband Receivers

    Directory of Open Access Journals (Sweden)

    Tu Chunjiang

    2005-01-01

    Full Text Available We present a new analog circuit exhibiting high bandwidth and low distortion, specially designed for signal correlation in an ultra-wideband receiver front end. The ultra-wideband short impulse signals are correlated with a local pulse template by the correlator. A comparator then samples the output for signal detection. A typical Gilbert mixer core is adopted for multiplication of broadband signals up to . As a result of synchronization of the received signal and the local template, the output voltage level after integration and sampling can reach up to , which is sufficient for detection by the comparator. The circuit dissipates about from double voltage supplies of and using SiGe BiCMOS technology. Simulation results are presented to show the feasibility of this circuit design for use in ultra-wideband receivers.

  5. Adaptive Space-Time-Spreading-Assisted Wideband CDMA Systems Communicating over Dispersive Nakagami- Fading Channels

    Directory of Open Access Journals (Sweden)

    Yang Lie-Liang

    2005-01-01

    Full Text Available In this contribution, the performance of wideband code-division multiple-access (W-CDMA systems using space-time-spreading- (STS- based transmit diversity is investigated, when frequency-selective Nakagami- fading channels, multiuser interference, and background noise are considered. The analysis and numerical results suggest that the achievable diversity order is the product of the frequency-selective diversity order and the transmit diversity order. Furthermore, both the transmit diversity and the frequency-selective diversity have the same order of importance. Since W-CDMA signals are subjected to frequency-selective fading, the number of resolvable paths at the receiver may vary over a wide range depending on the transmission environment encountered. It can be shown that, for wireless channels where the frequency selectivity is sufficiently high, transmit diversity may be not necessitated. Under this case, multiple transmission antennas can be leveraged into an increased bitrate. Therefore, an adaptive STS-based transmission scheme is then proposed for improving the throughput of W-CDMA systems. Our numerical results demonstrate that this adaptive STS-based transmission scheme is capable of significantly improving the effective throughput of W-CDMA systems. Specifically, the studied W-CDMA system's bitrate can be increased by a factor of three at the modest cost of requiring an extra 0.4 dB or 1.2 dB transmitted power in the context of the investigated urban or suburban areas, respectively.

  6. Generalized Wideband Cyclic MUSIC

    Directory of Open Access Journals (Sweden)

    Zhang-Meng Liu

    2009-01-01

    Full Text Available The method of Spectral Correlation-Signal Subspace Fitting (SC-SSF fails to separate wideband cyclostationary signals with coherent second-order cyclic statistics (SOCS. Averaged Cyclic MUSIC (ACM method made up for the drawback to some degree via temporally averaging the cyclic cross-correlation of the array output. This paper interprets ACM from another perspective and proposes a new DOA estimation method by generalizing ACM for wideband cyclostationary signals. The proposed method successfully makes up for the aforementioned drawback of SC-SSF and obtains a more satisfying performance than ACM. It is also demonstrated that ACM is a simplified form of the proposed method when only a single spectral frequency is exploited, and the integration of the frequencies within the signal bandwidth helps the new method to outperform ACM.

  7. Improving WCDMA netwotk capacity using adaptive sectorisation ...

    African Journals Online (AJOL)

    A major problem affecting the capacity of Wideband Code Division Multiple Access (WCDMA) is interference. This work focuses on reducing co-channel interference problem by the application of adaptive sectorisation in nonuniform traffic. It considers an isolated areas of congested traffic called Hot Spots (HS).

  8. Naval Space Forum. March-April 2010

    Science.gov (United States)

    2010-04-01

    UFO ) satellites reach the end of their on-orbit life. It also features a Lockheed Martin-built wideband code division multiple access payload that...variety of military satellite communications (milsatcom) programs, such as the UHF Follow-On ( UFO ) satellite network. Although the WGS satellites close

  9. An Ultra-Wideband Millimeter-Wave Phased Array

    Science.gov (United States)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  10. Mitigation of Beat Noise in Time Wavelength Optical Code-Division Multiple-Access Systems

    Science.gov (United States)

    Bazan, Taher M.; Harle, David; Andonovic, Ivan

    2006-11-01

    This paper presents an analysis of two methods for enhancing the performance of two-dimensional time wavelength Optical code-division multiple-access systems by mitigating the effects of beat noise. The first methodology makes use of an optical hard limiter (OHL) in the receiver prior to the optical correlator; a general formula for the error probability as a function of crosstalk level for systems adopting OHLs is given, and the implications of the OHL's nonideal transfer characteristics are then examined. The second approach adopts pulse position modulation, and system performance is estimated and compared to that associated with on off keying.

  11. Inclusive bit error rate analysis for coherent optical code-division multiple-access system

    Science.gov (United States)

    Katz, Gilad; Sadot, Dan

    2002-06-01

    Inclusive noise and bit error rate (BER) analysis for optical code-division multiplexing (OCDM) using coherence techniques is presented. The analysis contains crosstalk calculation of the mutual field variance for different number of users. It is shown that the crosstalk noise depends deeply on the receiver integration time, the laser coherence time, and the number of users. In addition, analytical results of the power fluctuation at the received channel due to the data modulation at the rejected channels are presented. The analysis also includes amplified spontaneous emission (ASE)-related noise effects of in-line amplifiers in a long-distance communication link.

  12. Secure Communications in High Speed Fiber Optical Networks Using Code Division Multiple Access (CDMA) Transmission

    Energy Technology Data Exchange (ETDEWEB)

    Han, I; Bond, S; Welty, R; Du, Y; Yoo, S; Reinhardt, C; Behymer, E; Sperry, V; Kobayashi, N

    2004-02-12

    This project is focused on the development of advanced components and system technologies for secure data transmission on high-speed fiber optic data systems. This work capitalizes on (1) a strong relationship with outstanding faculty at the University of California-Davis who are experts in high speed fiber-optic networks, (2) the realization that code division multiple access (CDMA) is emerging as a bandwidth enhancing technique for fiber optic networks, (3) the realization that CDMA of sufficient complexity forms the basis for almost unbreakable one-time key transmissions, (4) our concepts for superior components for implementing CDMA, (5) our expertise in semiconductor device processing and (6) our Center for Nano and Microtechnology, which is where the majority of the experimental work was done. Here we present a novel device concept, which will push the limits of current technology, and will simultaneously solve system implementation issues by investigating new state-of-the-art fiber technologies. This will enable the development of secure communication systems for the transmission and reception of messages on deployed commercial fiber optic networks, through the CDMA phase encoding of broad bandwidth pulses. CDMA technology has been developed as a multiplexing technology, much like wavelength division multiplexing (WDM) or time division multiplexing (TDM), to increase the potential number of users on a given communication link. A novel application of the techniques created for CDMA is to generate secure communication through physical layer encoding. Physical layer encoding devices are developed which utilize semiconductor waveguides with fast carrier response times to phase encode spectral components of a secure signal. Current commercial technology, most commonly a spatial light modulator, allows phase codes to be changed at rates of only 10's of Hertz ({approx}25ms response). The use of fast (picosecond to nanosecond) carrier dynamics of semiconductors

  13. Performance analysis of 2D asynchronous hard-limiting optical code-division multiple access system through atmospheric scattering channel

    Science.gov (United States)

    Zhao, Yaqin; Zhong, Xin; Wu, Di; Zhang, Ye; Ren, Guanghui; Wu, Zhilu

    2013-09-01

    Optical code-division multiple access (OCDMA) systems usually allocate orthogonal or quasi-orthogonal codes to the active users. When transmitting through atmospheric scattering channel, the coding pulses are broadened and the orthogonality of the codes is worsened. In truly asynchronous case, namely both the chips and the bits are asynchronous among each active user, the pulse broadening affects the system performance a lot. In this paper, we evaluate the performance of a 2D asynchronous hard-limiting wireless OCDMA system through atmospheric scattering channel. The probability density function of multiple access interference in truly asynchronous case is given. The bit error rate decreases as the ratio of the chip period to the root mean square delay spread increases and the channel limits the bit rate to different levels when the chip period varies.

  14. A Channelization-Based DOA Estimation Method for Wideband Signals

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2016-07-01

    Full Text Available In this paper, we propose a novel direction of arrival (DOA estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR using direct wideband radio frequency (RF digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method.

  15. Turbo coding, turbo equalisation and space-time coding for transmission over fading channels

    CERN Document Server

    Hanzo, L; Yeap, B

    2002-01-01

    Against the backdrop of the emerging 3G wireless personal communications standards and broadband access network standard proposals, this volume covers a range of coding and transmission aspects for transmission over fading wireless channels. It presents the most important classic channel coding issues and also the exciting advances of the last decade, such as turbo coding, turbo equalisation and space-time coding. It endeavours to be the first book with explicit emphasis on channel coding for transmission over wireless channels. Divided into 4 parts: Part 1 - explains the necessary background for novices. It aims to be both an easy reading text book and a deep research monograph. Part 2 - provides detailed coverage of turbo conventional and turbo block coding considering the known decoding algorithms and their performance over Gaussian as well as narrowband and wideband fading channels. Part 3 - comprehensively discusses both space-time block and space-time trellis coding for the first time in literature. Par...

  16. Divisible ℤ-modules

    Directory of Open Access Journals (Sweden)

    Futa Yuichi

    2016-03-01

    Full Text Available In this article, we formalize the definition of divisible ℤ-module and its properties in the Mizar system [3]. We formally prove that any non-trivial divisible ℤ-modules are not finitely-generated.We introduce a divisible ℤ-module, equivalent to a vector space of a torsion-free ℤ-module with a coefficient ring ℚ. ℤ-modules are important for lattice problems, LLL (Lenstra, Lenstra and Lovász base reduction algorithm [15], cryptographic systems with lattices [16] and coding theory [8].

  17. Ultra wideband antennas design, methodologies, and performance

    CERN Document Server

    Galvan-Tejada, Giselle M; Jardón Aguilar, Hildeberto

    2015-01-01

    Ultra Wideband Antennas: Design, Methodologies, and Performance presents the current state of the art of ultra wideband (UWB) antennas, from theory specific for these radiators to guidelines for the design of omnidirectional and directional UWB antennas. Offering a comprehensive overview of the latest UWB antenna research and development, this book:Discusses the developed theory for UWB antennas in frequency and time domainsDelivers a brief exposition of numerical methods for electromagnetics oriented to antennasDescribes solid-planar equivalen

  18. 8th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Tyo, J. Scott; Baum, Carl E; Ultra-Wideband Short-Pulse Electromagnetics 8; UWBSP8

    2007-01-01

    The purpose of the Ultra-Wideband Short-Pulse Electromagnetics Conference series is to focus on advanced technologies for the generation, radiation and detection of ultra-wideband short pulse signals, taking into account their propagation and scattering from and coupling to targets of interest. This Conference series reports on developments in supporting mathematical and numerical methods and presents current and potential future applications of the technology. Ultra-Wideband Short-Pulse Electromagnetics 8 is based on the American Electromagnetics 2006 conference held from June 3-7 in Albuquerque, New Mexico. Topical areas covered in this volume include pulse radiation and measurement, scattering theory, target detection and identification, antennas, signal processing, and communications.

  19. Multiple Access Interference Reduction Using Received Response Code Sequence for DS-CDMA UWB System

    Science.gov (United States)

    Toh, Keat Beng; Tachikawa, Shin'ichi

    This paper proposes a combination of novel Received Response (RR) sequence at the transmitter and a Matched Filter-RAKE (MF-RAKE) combining scheme receiver system for the Direct Sequence-Code Division Multiple Access Ultra Wideband (DS-CDMA UWB) multipath channel model. This paper also demonstrates the effectiveness of the RR sequence in Multiple Access Interference (MAI) reduction for the DS-CDMA UWB system. It suggests that by using conventional binary code sequence such as the M sequence or the Gold sequence, there is a possibility of generating extra MAI in the UWB system. Therefore, it is quite difficult to collect the energy efficiently although the RAKE reception method is applied at the receiver. The main purpose of the proposed system is to overcome the performance degradation for UWB transmission due to the occurrence of MAI during multiple accessing in the DS-CDMA UWB system. The proposed system improves the system performance by improving the RAKE reception performance using the RR sequence which can reduce the MAI effect significantly. Simulation results verify that significant improvement can be obtained by the proposed system in the UWB multipath channel models.

  20. Performance analysis of WS-EWC coded optical CDMA networks with/without LDPC codes

    Science.gov (United States)

    Huang, Chun-Ming; Huang, Jen-Fa; Yang, Chao-Chin

    2010-10-01

    One extended Welch-Costas (EWC) code family for the wavelength-division-multiplexing/spectral-amplitude coding (WDM/SAC; WS) optical code-division multiple-access (OCDMA) networks is proposed. This system has a superior performance as compared to the previous modified quadratic congruence (MQC) coded OCDMA networks. However, since the performance of such a network is unsatisfactory when the data bit rate is higher, one class of quasi-cyclic low-density parity-check (QC-LDPC) code is adopted to improve that. Simulation results show that the performance of the high-speed WS-EWC coded OCDMA network can be greatly improved by using the LDPC codes.

  1. 76 FR 36231 - American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases

    Science.gov (United States)

    2011-06-21

    ...The NRC is amending its regulations to incorporate by reference the 2005 Addenda (July 1, 2005) and 2006 Addenda (July 1, 2006) to the 2004 ASME Boiler and Pressure Vessel Code, Section III, Division 1; 2007 ASME Boiler and Pressure Vessel Code, Section III, Division 1, 2007 Edition (July 1, 2007), with 2008a Addenda (July 1, 2008); 2005 Addenda (July 1, 2005) and 2006 Addenda (July 1, 2006) to the 2004 ASME Boiler and Pressure Vessel Code, Section XI, Division 1; 2007 ASME Boiler and Pressure Vessel Code, Section XI, Division 1, 2007 Edition (July 1, 2007), with 2008a Addenda (July 1, 2008); and 2005 Addenda, ASME OMa Code-2005 (approved July 8, 2005) and 2006 Addenda, ASME OMb Code-2006 (approved July 6, 2006) to the 2004 ASME Code for Operation and Maintenance of Nuclear Power Plants (OM Code). The NRC is also incorporating by reference (with conditions on their use) ASME Boiler and Pressure Vessel Code Case N-722-1, ``Additional Examinations for PWR Pressure Retaining Welds in Class 1 Components Fabricated with Alloy 600/82/182 Materials, Section XI, Division 1,'' Supplement 8, ASME approval date: January 26, 2009, and ASME Boiler and Pressure Vessel Code Case N-770-1, ``Alternative Examination Requirements and Acceptance Standards for Class 1 PWR Piping and Vessel Nozzle Butt Welds Fabricated With UNS N06082 or UNS W86182 Weld Filler Material With or Without Application of Listed Mitigation Activities, Section XI, Division 1,'' ASME approval date: December 25, 2009.

  2. Wideband feeds for the upgraded GMRT

    International Nuclear Information System (INIS)

    Bandari, Hanumanth Rao; Sankarasubramanian, G; Kumar, A Praveen

    2013-01-01

    This paper describes the existing feeds in use at the GMRT Observatory and details the ongoing development of next generation wideband feeds for the upgraded GMRT. The existing feeds include: feed with folded thick dipoles (for 150 MHz), dipole-disc feed (for 325 MHz), dual-band coaxial feed (for 233 MHZ and 610 MHz), and corrugated horn feed (for 1400–1450 MHz). The new broadband feeds covered in this paper are: cone-dipole feeds for 250–500 and 500–1000 MHz, wideband horn feed for 550–900 MHz, and dual ring feed for 130–260 MHz. Design techniques and performance results for these are described.

  3. A precise form of divisive suppression supports population coding in the primary visual cortex.

    Science.gov (United States)

    MacEvoy, Sean P; Tucker, Thomas R; Fitzpatrick, David

    2009-05-01

    The responses of neurons in the primary visual cortex (V1) to an optimally oriented grating are suppressed when a non-optimal grating is superimposed. Although cross-orientation suppression is thought to reflect mechanisms that maintain a distributed code for orientation, the effect of superimposed gratings on V1 population responses is unknown. Using intrinsic signal optical imaging, we found that patterns of tree shrew V1 activity evoked by superimposed equal-contrast gratings were predicted by the averages of patterns evoked by individual component gratings. This prediction held across contrasts, for summed sinusoidal gratings or nonsumming square-wave gratings, and was evident in single-unit extracellular recordings. Intracellular recordings revealed consistent levels of suppression throughout the time course of subthreshold responses. These results indicate that divisive suppression powerfully governs population responses to multiple orientations. Moreover, the specific form of suppression that we observed appears to support independent population codes for stimulus orientation and strength and calls for a reassessment of mechanisms that underlie cross-orientation suppression.

  4. Wideband QAMC reflector's antenna for low profile applications

    Science.gov (United States)

    Grelier, M.; Jousset, M.; Mallégol, S.; Lepage, A. C.; Begaud, X.; LeMener, J. M.

    2011-06-01

    A wideband reflector's antenna based on quasi-artificial magnetic conductor is proposed. To validate the design, an Archimedean spiral has been backed to this new reflector. In comparison to classical solution using absorbent material, the prototype presents a very low thickness of λ/15 at the lowest operating frequency and an improved gain over a 2.4:1 bandwidth. The whole methodology to design this reflector can be applied to other wideband antennas.

  5. Conformal and Spectrally Agile Ultra Wideband Phased Array Antenna for Communication and Sensing

    Science.gov (United States)

    Novak, M.; Alwan, Elias; Miranda, Felix; Volakis, John

    2015-01-01

    There is a continuing need for reducing size and weight of satellite systems, and is also strong interest to increase the functional role of small- and nano-satellites (for instance SmallSats and CubeSats). To this end, a family of arrays is presented, demonstrating ultra-wideband operation across the numerous satellite communications and sensing frequencies up to the Ku-, Ka-, and Millimeter-Wave bands. An example design is demonstrated to operate from 3.5-18.5 GHz with VSWR2 at broadside, and validated through fabrication of an 8 x 8 prototype. This design is optimized for low cost, using Printed Circuit Board (PCB) fabrication. With the same fabrication technology, scaling is shown to be feasible up to a 9-49 GHz band. Further designs are discussed, which extend this wideband operation beyond the Ka-band, for instance from 20-80 GHz. Finally we will discuss recent efforts in the direct integration of such arrays with digital beamforming back-ends. It will be shown that using a novel on-site coding architecture, orders of magnitude reduction in hardware size, power, and cost is accomplished in this transceiver.

  6. Extension of the ITU Channel Models for Wideband (OFDM) Systems

    DEFF Research Database (Denmark)

    Sørensen, Troels Bundgaard; Frederiksen, Frank

    2005-01-01

    for the evaluation of wideband system concepts with frequency dependent characteristics, e.g. frequency domain link adaptation and packet scheduling, both of which are likely to be part of future wideband systems such as based on OFDM. With the suggested procedure the frequency correlation can be kept approximately...

  7. Load control strategies in 2G mobile network for W-CDMA radio ...

    African Journals Online (AJOL)

    Network planning requires a faithful analysis of each individual cell's capacity. In this paper, we examine load control equations as a resource allocation tool to analyse cell capacity for the uplink and downlink of Wideband Code Division Multiple Access (W-CDMA) networks. In the uplink, the noise rise is a parameter of ...

  8. Interference Mitigation for Coexistence of Heterogeneous Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Wu Haitao

    2006-01-01

    Full Text Available Two ultra-wideband (UWB specifications, that is, direct-sequence (DS UWB and multiband-orthogonal frequency division multiplexing (MB-OFDM UWB, have been proposed as the candidates of the IEEE 802.15.3a, competing for the standard of high-speed wireless personal area networks (WPAN. Due to the withdrawal of the standardization process, the two heterogeneous UWB technologies will coexist in the future commercial market. In this paper, we investigate the mutual interference of such coexistence scenarios by physical layer Monte Carlo simulations. The results reveal that the coexistence severely degrades the performance of both UWB systems. Moreover, such interference is asymmetric due to the heterogeneity of the two systems. Therefore, we propose the goodput-oriented utility-based transmit power control (GUTPC algorithm for interference mitigation. The feasible condition and the convergence property of GUTPC are investigated, and the choice of the coefficients is discussed for fairness and efficiency. Numerical results demonstrate that GUTPC improves the goodput of the coexisting systems effectively and fairly with saved power.

  9. The design of wideband metamaterial absorber at E band based on defect

    Science.gov (United States)

    Wang, L. S.; Xia, D. Y.; Ding, X. Y.; Wang, Y.

    2018-01-01

    A kind of wideband metamaterial absorber at E band is designed in this paper; it is composed of round metal cells with defect, dielectric substrate and metal film. The electromagnetic parameters of unit cell are calculated by using the finite element method. The results show that the wideband metamaterial absorber presents nearly perfect absorption above 90% with absorption ranging from 65.38GHz to 67.86GHz; the reason of wideband absorption is the overlap of different absorption frequency which is caused by electromagnetic resonance; the size parameters and position of defect has important effect on its absorption property. It has many advantages, such as simply, easy to preparation and so on. It has potential application on aerospace measurement and control, remote data communication, LTE wideband mobile communication and other fields.

  10. Superharmonic imaging with chirp coded excitation: filtering spectrally overlapped harmonics.

    Science.gov (United States)

    Harput, Sevan; McLaughlan, James; Cowell, David M J; Freear, Steven

    2014-11-01

    Superharmonic imaging improves the spatial resolution by using the higher order harmonics generated in tissue. The superharmonic component is formed by combining the third, fourth, and fifth harmonics, which have low energy content and therefore poor SNR. This study uses coded excitation to increase the excitation energy. The SNR improvement is achieved on the receiver side by performing pulse compression with harmonic matched filters. The use of coded signals also introduces new filtering capabilities that are not possible with pulsed excitation. This is especially important when using wideband signals. For narrowband signals, the spectral boundaries of the harmonics are clearly separated and thus easy to filter; however, the available imaging bandwidth is underused. Wideband excitation is preferable for harmonic imaging applications to preserve axial resolution, but it generates spectrally overlapping harmonics that are not possible to filter in time and frequency domains. After pulse compression, this overlap increases the range side lobes, which appear as imaging artifacts and reduce the Bmode image quality. In this study, the isolation of higher order harmonics was achieved in another domain by using the fan chirp transform (FChT). To show the effect of excitation bandwidth in superharmonic imaging, measurements were performed by using linear frequency modulated chirp excitation with varying bandwidths of 10% to 50%. Superharmonic imaging was performed on a wire phantom using a wideband chirp excitation. Results were presented with and without applying the FChT filtering technique by comparing the spatial resolution and side lobe levels. Wideband excitation signals achieved a better resolution as expected, however range side lobes as high as -23 dB were observed for the superharmonic component of chirp excitation with 50% fractional bandwidth. The proposed filtering technique achieved >50 dB range side lobe suppression and improved the image quality without

  11. DATA QUALITY EVALUATION AND APPLICATION POTENTIAL ANALYSIS OF TIANGONG-2 WIDE-BAND IMAGING SPECTROMETER

    Directory of Open Access Journals (Sweden)

    B. Qin

    2018-04-01

    Full Text Available Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  12. Data Quality Evaluation and Application Potential Analysis of TIANGONG-2 Wide-Band Imaging Spectrometer

    Science.gov (United States)

    Qin, B.; Li, L.; Li, S.

    2018-04-01

    Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  13. Instabilities simulations with wideband feedback systems: CMAD, HEADTAIL, WARP

    International Nuclear Information System (INIS)

    Li, Kevin; Cesaratto, J; Fox, J D; Pivi, M; Rivetta, C; Rumolo, G

    2013-01-01

    Transverse mode coupling (TMCI) and electron cloud instabilities (ECI) pose fundamental limitations on the acceptable beam intensities in the SPS at CERN. This in turn limits the ultimate achievable luminosity in the LHC. Therefore, future luminosity upgrades foresee methods for evading TMCI as well as ECI. Proposed approaches within the LHC Injector Upgrade (LIU) project include new optics with reduced transition energy as well as vacuum chamber coating techniques. As a complementary option, high bandwidth feedback systems may provide instability mitigation by actively damping the intra-bunch motion of unstable modes. In an effort to evaluate the potentials and limitations of such feedback systems and to characterise some of the specifications, a numerical model of a realistic feedback system has been developed and integrated into available instabilities simulation codes. Together with the implementation of this new feedback system model, CMAD and HEADTAIL have been used to investigate the impact of different wideband feedback systems on ECI in the SPS. In this paper, we present some details on the numerical model of the realistic feedback system and its implementation as well as the results obtained from the simulation study using this model together with the instability codes. (author)

  14. Super wideband characteristics of monopolar patch antenna

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2013-12-01

    Full Text Available A simple method of acquiring super wideband characteristics for monopolar patch antenna is proposed. Through adopting a modified cone as feeding and radiating structure, the monopolar patch antenna can reach the impedance bandwidth of more than 1:23.4 for voltage standing wave ratio (VSWR ≤ 2. In the whole operating band, the antenna has the like-monopole omnidirectional radiation patterns and the peak gains of 3.8–8.7 dB. Meanwhile, the height of the antenna is just 0.074λ(c, and the diameter of the radiated body is 0.205λ(c, which is smaller than other ultra-wideband omnidirectional antenna.

  15. Design of a High Linearity Four-Quadrant Analog Multiplier in Wideband Frequency Range

    Directory of Open Access Journals (Sweden)

    Abdul kareem Mokif Obais

    2017-05-01

    Full Text Available In this paper, a voltage mode four quadrant analog multiplier in the wideband frequency rangeis designed using a wideband operational amplifier (OPAMP and squaring circuits. The wideband OPAMP is designed using 10 identical NMOS transistorsand operated with supply voltages of ±12V. Two NMOS transistors and two wideband OPAMP are utilized in the design of the proposed squaring circuit. All the NMOS transistors are based on 0.35µm NMOStechnology. The multiplier has input and output voltage ranges of ±10 V, high range of linearity from -10 V to +10 V, and cutoff frequency of about 5 GHz. The proposed multiplier is designed on PSpice in Orcad 16.6

  16. Timed arrays wideband and time varying antenna arrays

    CERN Document Server

    Haupt, Randy L

    2015-01-01

    Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth

  17. A new metamaterial-based wideband rectangular invisibility cloak

    Science.gov (United States)

    Islam, S. S.; Hasan, M. M.; Faruque, M. R. I.

    2018-02-01

    A new metamaterial-based wideband electromagnetic rectangular cloak is being introduced in this study. The metamaterial unit cell shows sharp transmittances in the C- and X-bands and displays wideband negative effective permittivity region there. The metamaterial unit cell was then applied in designing a rectangular-shaped electromagnetic cloak. The scattering reduction technique was adopted for the cloaking operation. The cloak operates in the certain portion of C-and X-bands that covers more than 4 GHz bandwidth region. The experimental results were provided as well for the metamaterial and the cloak.

  18. [Auditory training with wide-band white noise: effects on the recruitment (III)].

    Science.gov (United States)

    Domínguez Ugidos, L J; Rodríguez Morejón, C; Vallés Varela, H; Iparraguirre Bolinaga, V; Knaster del Olmo, J

    2001-05-01

    The auditory training with wide-band white noise is a methodology for the qualitative recovery of the hearing loss in people suffering from sensorineural hearing loss. It is based on the application of a wide-band white modified noise. In a prospective study, we have assessed the modifications of the recruitment coefficient in a sample of 48 patients who have followed a program of 15 auditory training with wide-band white noise sessions. The average improvement of the recruitment coefficient expressed in percentage is a 7.7498%, which comes up to 23.5249% in the case of a binaural recruitment coefficient. From our results, it can be deduced that the auditory training with wide-band white noise reduces the recruitment. That is to say, the decrease of the recruitment in high intensities both binaurally and in all ears.

  19. A wideband absorber for television studios

    Science.gov (United States)

    Baird, M. D. M.

    The acoustic treatment in BBC television has taken various forms to date, all of which have been relatively expensive, some of which provide inadequate absorption. An investigation has been conducted into the possibilities of producing a new type of wideband absorber which would be more economic, also taking installation time into account, than earlier designs. This Report describes the absorption coefficient measurements made on various combinations of materials, from which a wideband sound absorber has been developed. The absorber works efficiently between 50 Hz and 10 kHz, is simple and easy to construct using readily available materials, and is fire resistant. The design lends itself, if necessary, to on-site fine tuning, and savings in the region of 50 percent can be achieved in terms of cost and space with respect to previous designs.

  20. GaAs Wideband Low Noise Amplifier Design for Breast Cancer Detection System

    DEFF Research Database (Denmark)

    Yan, Lei; Krozer, Viktor; Delcourt, Sebastien

    2009-01-01

    Modern wideband systems require low-noise receivers with bandwidth approaching 10 GHz. This paper presents ultra-wideband stable low-noise amplifier MMIC with cascode and source follower buffer configuration using GaAs technology. Source degeneration, gate and shunt peaking inductors are used...

  1. FIR Filter of DS-CDMA UWB Modem Transmitter

    Science.gov (United States)

    Kang, Kyu-Min; Cho, Sang-In; Won, Hui-Chul; Choi, Sang-Sung

    This letter presents low-complexity digital pulse shaping filter structures of a direct sequence code division multiple access (DS-CDMA) ultra wide-band (UWB) modem transmitter with a ternary spreading code. The proposed finite impulse response (FIR) filter structures using a look-up table (LUT) have the effect of saving the amount of memory by about 50% to 80% in comparison to the conventional FIR filter structures, and consequently are suitable for a high-speed parallel data process.

  2. Optical orthogonal code-division multiple-access system - Part 2: Multibits/sequence-period OOCDMA

    Science.gov (United States)

    Kwon, Hyuck M.

    1994-08-01

    In a recently proposed optical orthogonal code division multiple-access (OOCDMA) system, one bit of user's data is transmitted per sequence-period, and a threshold is employed for the final bit decision. In this paper, a system that can transmit multibits per sequence-period is introduced, and avalanche photodiode (APD) noise, thermal noise, and interference, are included. This system, derived by exploiting orthogonal properties of the OOCDMA code sequence and using a maximum search (instead of a threshold) in the final decision, is log(sub 2) F times higher in throughput, where F is sequence-period. For example, four orders of magnitude are better in bit error probability at - 56 dBW received laser power, with F = 1000 chips, 10 'marks' in a sequence, and 10 users of 30 Mb/s data rate for one-bit/sequence-period and 270 Mb/s data rate for multibits/sequence-period system. Furthermore, an exact analysis is performed for the log(sub 2)F bits/sequence-period system with a hard-limiter placed before the receiver, and its performance is compared to the performance without hard-limiter, for the chip-synchronous case. The improvement from using a hard-limiter is significant in the log(sub 2)F bits/sequence-period OCCDMA system.

  3. 75 FR 24323 - American Society of Mechanical Engineers (ASME) Codes and New and Revised ASME Code Cases

    Science.gov (United States)

    2010-05-04

    ...The NRC proposes to amend its regulations to incorporate by reference the 2005 Addenda through 2008 Addenda of Section III, Division 1, and the 2005 Addenda through 2008 Addenda of Section XI, Division 1, of the ASME Boiler and Pressure Vessel Code (ASME B&PV Code); and the 2005 Addenda and 2006 Addenda of the ASME Code for Operation and Maintenance of Nuclear Power Plants (ASME OM Code). The NRC also proposes to incorporate by reference ASME Code Case N-722-1, ``Additional Examinations for PWR Pressure Retaining Welds in Class 1 Components Fabricated With Alloy 600/82/182 Materials Section XI, Division 1,'' and Code Case N-770, ``Alternative Examination Requirements and Acceptance Standards for Class 1 PWR [Pressurized- Water Reactor] Piping and Vessel Nozzle Butt Welds Fabricated with UNS N06082 or UNS W86182 Weld Filler Material with or without Application of Listed Mitigation Activities.''

  4. Spatial-phase code-division multiple-access system with multiplexed Fourier holography switching for reconfigurable optical interconnection

    Science.gov (United States)

    Takasago, Kazuya; Takekawa, Makoto; Shirakawa, Atsushi; Kannari, Fumihiko

    2000-05-01

    A new, to our knowledge, space-variant optical interconnection system based on a spatial-phase code-division multiple-access technique with multiplexed Fourier holography is described. In this technique a signal beam is spread over wide spatial frequencies by an M -sequence pseudorandom phase code. At a receiver side a selected signal beam is properly decoded, and at the same time its spatial pattern is shaped with a Fourier hologram, which is recorded by light that is encoded with the same M -sequence phase mask as the desired signal beam and by light whose spatial beam pattern is shaped to a signal routing pattern. Using the multiplexed holography, we can simultaneously route multisignal flows into individually specified receiver elements. The routing pattern can also be varied by means of switching the encoding phase code or replacing the hologram. We demonstrated a proof-of-principle experiment with a doubly multiplexed hologram that enables simultaneous routing of two signal beams. Using a numerical model, we showed that the proposed scheme can manage more than 250 routing patterns for one signal flow with one multiplexed hologram at a signal-to-noise ratio of 5.

  5. Wide-band analog frequency modulation of optic signals using indirect techniques

    Science.gov (United States)

    Fitzmartin, D. J.; Balboni, E. J.; Gels, R. G.

    1991-01-01

    The wideband frequency modulation (FM) of an optical carrier by a radio frequency (RF) or microwave signal can be accomplished independent of laser type when indirect modulation is employed. Indirect modulators exploit the integral relation of phase to frequency so that phase modulators can be used to impress frequency modulation on an optical carrier. The use of integrated optics phase modulators, which are highly linear, enables the generation of optical wideband FM signals with very low intermodulation distortion. This modulator can be used as part of an optical wideband FM link for RF and microwave signals. Experimental results from the test of an indirect frequency modulator for an optical carrier are discussed.

  6. Ultra-Wideband, Short Pulse Electromagnetics 9

    CERN Document Server

    Rachidi, Farhad; Kaelin, Armin; Sabath, Frank; UWB SP 9

    2010-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-wideband Short-Pulse Electromagnetics 9 presents selected papers of deep technical content and high scientific quality from the UWB-SP9 Conference, which was held from July 21-25, 2008, in Lausanne, Switzerland. The wide-ranging coverage includes contributions on electromagnetic theory, time-domain computational techniques, modeling, antennas, pulsed-power, UWB interactions, radar systems, UWB communications, and broadband systems and components. This book serves as a state-of-the-art r...

  7. Beat Noise Cancellation in 2-D Optical Code-Division Multiple-Access Systems Using Optical Hard-Limiter Array

    Science.gov (United States)

    Dang, Ngoc T.; Pham, Anh T.; Cheng, Zixue

    We analyze the beat noise cancellation in two-dimensional optical code-division multiple-access (2-D OCDMA) systems using an optical hard-limiter (OHL) array. The Gaussian shape of optical pulse is assumed and the impact of pulse propagation is considered. We also take into account the receiver noise and multiple access interference (MAI) in the analysis. The numerical results show that, when OHL array is employed, the system performance is greatly improved compared with the cases without OHL array. Also, parameters needed for practical system design are comprehensively analyzed.

  8. Wideband CMOS receivers

    CERN Document Server

    Oliveira, Luis

    2015-01-01

    This book demonstrates how to design a wideband receiver operating in current mode, in which the noise and non-linearity are reduced, implemented in a low cost single chip, using standard CMOS technology.  The authors present a solution to remove the transimpedance amplifier (TIA) block and connect directly the mixer’s output to a passive second-order continuous-time Σ∆ analog to digital converter (ADC), which operates in current-mode. These techniques enable the reduction of area, power consumption, and cost in modern CMOS receivers.

  9. Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source

    International Nuclear Information System (INIS)

    Zhang, Chi; Xu, Yiqing; Wei, Xiaoming; Tsia, Kevin K.; Wong, Kenneth K. Y.

    2014-01-01

    Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated by a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier

  10. Ultra-wideband radar sensors and networks

    Science.gov (United States)

    Leach, Jr., Richard R; Nekoogar, Faranak; Haugen, Peter C

    2013-08-06

    Ultra wideband radar motion sensors strategically placed in an area of interest communicate with a wireless ad hoc network to provide remote area surveillance. Swept range impulse radar and a heart and respiration monitor combined with the motion sensor further improves discrimination.

  11. Substrate Effects in Wideband SiGe HBT Mixer Circuits

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2005-01-01

    are also applied to predict short distance substrate coupling effects. Simulation results using extracted equivalent circuit models and substrate coupling networks are compared with experimental results obtained on a wideband mixer circuit implemented in a 0.35 μm, 60 GHz ft SiGe HBT BiCMOS process.......In this paper, the influence from substrate effects on the performance of wideband SiGe HBT mixer circuits is investigated. Equivalent circuit models including substrate networks are extracted from on-wafer test structures and compared with electromagnetic simulations. Electromagnetic simulations...

  12. Compact super-wideband optical antenna

    Science.gov (United States)

    Wang, Wen C.; Forber, Richard; Bui, Kenneth

    2009-05-01

    We present progress on advanced optical antennas, which are compact, small size-weight-power units capable to receive super wideband radiated RF signals from 30 MHz to over 3 GHz. Based on electro-optical modulation of fiber-coupled guided wave light, these dielectric E-field sensors exhibit dipole-like azimuthal omni directionality, and combine small size (channels, and high EO sensing materials. The antenna system photonic link consists of a 1550 nm PM fiber-pigtailed laser, a specialized optical modulator antenna in channel waveguide format, a wideband photoreceiver, and optical phase stabilizing components. The optical modulator antenna design employs a dielectric (no electrode) Mach-Zehnder interferometer (MZI) arranged so that sensing RF bandwidth is not limited by optical transit time effects, and MZI phase drift is bias stabilized. For a prototype optical antenna system that is < 100 in3, < 10 W, < 5 lbs, we present test data on sensitivity (< 20 mV/m-Hz1/2), RF bandwidth, and antenna directionality, and show good agreement with theoretical predictions.

  13. Mutual Coupling Reduction for UWB MIMO Antennas with a Wideband Neutralization Line

    DEFF Research Database (Denmark)

    Zhang, Shuai; Pedersen, Gert F.

    2016-01-01

    A wideband neutralization line is proposed to reduce the mutual coupling of a compact ultrawideband (UWB) MIMO antenna. With the introduced decoupling method, the designed UWB MIMO antenna covers the band of 3.1-5 GHz with an isolation of higher than 22 dB. The proposed wideband neutralization line...

  14. Wideband amplifier design

    CERN Document Server

    Hollister, Allen L

    2007-01-01

    In this book, the theory needed to understand wideband amplifier design using the simplest models possible will be developed. This theory will be used to develop algebraic equations that describe particular circuits used in high frequency design so that the reader develops a ""gut level"" understanding of the process and circuit. SPICE and Genesys simulations will be performed to show the accuracy of the algebraic models. By looking at differences between the algebraic equations and the simulations, new algebraic models will be developed that include parameters originally left out of the model

  15. Wideband two-port beam splitter of a binary fused-silica phase grating.

    Science.gov (United States)

    Wang, Bo; Zhou, Changhe; Feng, Jijun; Ru, Huayi; Zheng, Jiangjun

    2008-08-01

    The usual beam splitter of multilayer-coated film with a wideband spectrum is not easy to achieve. We describe the realization of a wideband transmission two-port beam splitter based on a binary fused-silica phase grating. To achieve high efficiency and equality in the diffracted 0th and -1st orders, the grating profile parameters are optimized using rigorous coupled-wave analysis at a wavelength of 1550 nm. Holographic recording and the inductively coupled plasma dry etching technique are used to fabricate the fused-silica beam splitter grating. The measured efficiency of (45% x 2) = 90% diffracted into the both orders can be obtained with the fabricated grating under Littrow mounting. The physical mechanism of such a wideband two-port beam splitter grating can be well explained by the modal method based on two-beam interference of the modes excited by the incident wave. With the high damage threshold, low coefficient of thermal expansion, and wideband high efficiency, the presented beam splitter etched in fused silica should be a useful optical element for a variety of practical applications.

  16. Detection of moving humans in UHF wideband SAR

    Science.gov (United States)

    Sjögren, Thomas K.; Ulander, Lars M. H.; Frölind, Per-Olov; Gustavsson, Anders; Stenström, Gunnar; Jonsson, Tommy

    2014-06-01

    In this paper, experimental results for UHF wideband SAR imaging of humans on an open field and inside a forest is presented. The results show ability to detect the humans and suggest possible ways to improve the results. In the experiment, single channel wideband SAR mode of the UHF UWB system LORA developed by Swedish Defence Research Agency (FOI). The wideband SAR mode used in the experiment was from 220 to 450 MHz, thus with a fractional bandwidth of 0.68. Three humans walking and one stationary were available in the scene with one of the walking humans in the forest. The signature of the human in the forest appeared on the field, due to azimuth shift from the positive range speed component. One human on the field and the one in the forest had approximately the same speed and walking direction. The signatures in the SAR image were compared as a function of integration time based on focusing using the average relative speed of these given by GPS logs. A signal processing gain was obtained for the human in forest until approximately 15 s and 35 s for the human on the field. This difference is likely explained by uneven terrain and trees in the way, causing a non-straight walking path.

  17. Reduction of the near-far effect in mobile communication systems with Code-Division Multiple-Access

    Science.gov (United States)

    Purchla, Magdalena

    2006-02-01

    In this paper the basic methods for reducing Multiple Access Interference (MAI) and combating the near-far effect in Direct-Sequence Code-Division Multiple-Access (DS-CDMA) mobile communication systems are presented. MAI and the near-far effect are inevitable in DS-CDMA systems with quasi-orthogonal spreading sequences. An effective method of reducing MAI can increase the capacity of the system that is why so many researchers are working in this field. In this article three most important techniques of decreasing MAI are presented: power control, multiuser detection and space-time processing. There is a short introduction to each topic and one or more examples found in literature of algorithms suitable for practical applications (although not all algorithms are yet used in existing systems).

  18. Fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry phase.

    Science.gov (United States)

    Sui, Sai; Ma, Hua; Lv, Yueguang; Wang, Jiafu; Li, Zhiqiang; Zhang, Jieqiu; Xu, Zhuo; Qu, Shaobo

    2018-01-22

    Arbitrary control of electromagnetic waves remains a significant challenge although it promises many important applications. Here, we proposed a fast optimization method of designing a wideband metasurface without using the Pancharatnam-Berry (PB) phase, of which the elements are non-absorptive and capable of predicting the wideband and smooth phase-shift. In our design method, the metasurface is composed of low-Q-factor resonant elements without using the PB phase, and is optimized by the genetic algorithm and nonlinear fitting method, having the advantages that the far field scattering patterns can be quickly synthesized by the hybrid array patterns. To validate the design method, a wideband low radar cross section metasurface is demonstrated, showing good feasibility and performance of wideband RCS reduction. This work reveals an opportunity arising from a metasurface in effective manipulation of microwave and flexible fast optimal design method.

  19. Absorptive coding metasurface for further radar cross section reduction

    Science.gov (United States)

    Sui, Sai; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Feng, Mingde; Xu, Zhuo; Qu, Shaobo

    2018-02-01

    Lossless coding metasurfaces and metamaterial absorbers have been widely used for radar cross section (RCS) reduction and stealth applications, which merely depend on redirecting electromagnetic wave energy into various oblique angles or absorbing electromagnetic energy, respectively. Here, an absorptive coding metasurface capable of both the flexible manipulation of backward scattering and further wideband bistatic RCS reduction is proposed. The original idea is carried out by utilizing absorptive elements, such as metamaterial absorbers, to establish a coding metasurface. We establish an analytical connection between an arbitrary absorptive coding metasurface arrangement of both the amplitude and phase and its far-field pattern. Then, as an example, an absorptive coding metasurface is demonstrated as a nonperiodic metamaterial absorber, which indicates an expected better performance of RCS reduction than the traditional lossless coding metasurface and periodic metamaterial-absorber. Both theoretical analysis and full-wave simulation results show good accordance with the experiment.

  20. H-Division quarterly report, April--June 1976

    International Nuclear Information System (INIS)

    1976-01-01

    The purview of H-Division is the mechanics of fluids and solid bodies. Concise status reports of the projects undertaken by the various groups in the division are given. Representative topics studied include equations of state of various materials, fracture mechanics, penetration of armor by projectiles, turbulence generation, and the development of dynamics computer codes. 31 figures, 2 tables

  1. Effect of direction on loudness for wideband and reverberant sounds

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2006-01-01

    The effect of incidence angle on loudness was investigated for wideband and reverberant sounds. In an adaptive procedure, five listeners matched the loudness of a sound coming from five incidence angles in the horizontal plane to that of the same sound with frontal incidence. The stimuli were...... presented to the listeners via individual binaural synthesis. The results confirm that loudness depends on sound incidence angle, as it does for narrow-band, anechoic sounds. The directional effects, however, were attenuated with the wideband and reverberant stimuli used in the present investigation....

  2. Optical networks for wideband sensor array

    Science.gov (United States)

    Sheng, Lin Horng

    2011-12-01

    This thesis presents the realization of novel systems for optical sensing networks with an array of long-period grating (LPG) sensors. As a launching point of the thesis, the motivation to implement optical sensing network in precisely catering LPG sensors is presented. It highlights the flexibility of the sensing network to act as the foundation in order to boost the application of the various LPG sensor design in biological and chemical sensing. After the thorough study on the various optical sensing networks, sub-carrier multiplexing (SCM) and optical time division multiplexing (OTDM) schemes are adopted in conjunction with tunable laser source (TLS) to facilitate simultaneous interrogation of the LPG sensors array. In fact, these systems are distinct to have the capability to accommodate wideband optical sensors. Specifically, the LPG sensors which is in 20nm bandwidth are identified to operate in these systems. The working principles of the systems are comprehensively elucidated in this thesis. It highlights the mathematical approach to quantify the experimental setup of the optical sensing network. Additionally, the system components of the designs are identified and methodically characterized so that the components well operate in the designed environment. A mockup has been setup to demonstrate the application in sensing of various liquid indices and analyse the response of the LPG sensors in order to evaluate the performance of the systems. Eventually, the resemblance of the demultiplexed spectral response to the pristine spectral response are quantified to have excellent agreement. Finally, the promising result consistency of the systems is verified through repeatability test.

  3. Ultra-wideband RCS reduction using novel configured chessboard metasurface

    International Nuclear Information System (INIS)

    Zhuang Ya-Qiang; Wang Guang-Ming; Xu He-Xiu

    2017-01-01

    A novel artificial magnetic conductor (AMC) metasurface is proposed with ultra-wideband 180° phase difference for radar cross section (RCS) reduction. It is composed of two dual-resonant AMC cells, which enable a broadband phase difference of 180°±30° from 7.9 GHz to 19.2 GHz to be achieved. A novel strategy is devised by dividing each rectangular grid in a chessboard configuration into four triangular grids, leading to a further reduction of peak bistatic RCS. Both full-wave simulation and measurement results show that the proposed metasurface presents a good RCS reduction property over an ultra-wideband frequency range. (paper)

  4. Optically addressed ultra-wideband phased antenna array

    Science.gov (United States)

    Bai, Jian

    Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization

  5. Ultra-wideband MMICs for remote sensing applications

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2003-01-01

    This paper presents an overview of the current activity at the Technical University of Denmark in the field of ultra-wideband monolitic microwave integrated circuits (MMICs) for next-generation high-resolution synthetic aperature radar (SAR) systems. The transfer function requirements for MMIC co...

  6. A New Time-Hopping Multiple Access Communication System Simulator: Application to Ultra-Wideband

    Directory of Open Access Journals (Sweden)

    José M. Páez-Borrallo

    2005-03-01

    Full Text Available Time-hopping ultra-wideband technology presents some very attractive features for future indoor wireless systems in terms of achievable transmission rate and multiple access capabilities. This paper develops an algorithm to design time-hopping system simulators specially suitable for ultra-wideband, which takes advantage of some of the specific characteristics of this kind of systems. The algorithm allows an improvement of both the time capabilities and the achievable sampling rate and can be used to research into the influence of different parameters on the performance of the system. An additional result is the validation of a new general performance formula for time-hopping ultra-wideband systems with multipath channels.

  7. Ultra-Wideband Optical Modulation Spectrometer (OMS) Development: Study of the Optical Setup of a Wide-Band Optical Modulation Spectrometer

    Science.gov (United States)

    Tolls, Volker; Stringfellow, Guy (Technical Monitor)

    2001-01-01

    The purpose of this study is to advance the design of the optical setup for a wide-band Optical Modulation Spectrometer (OMS) for use with astronomical heterodyne receiver systems. This report describes the progress of this investigation achieved from March until December 2001.

  8. SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE

    Directory of Open Access Journals (Sweden)

    F.N. HASOON

    2006-12-01

    Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.

  9. Wideband Acoustic Immittance: Normative Study and Test-Retest Reliability of Tympanometric Measurements in Adults

    Science.gov (United States)

    Sun, Xiao-Ming

    2016-01-01

    Purpose: The purpose of this study was to present normative data of tympanometric measurements of wideband acoustic immittance and to characterize wideband tympanograms. Method: Data were collected in 84 young adults with strictly defined normal hearing and middle ear status. Energy absorbance (EA) was measured using clicks for 1/12-octave…

  10. Teletraffic performance Analysis of Multi-band Overlaid WCDMA Systems

    DEFF Research Database (Denmark)

    Wang, Hua; Iversen, Villy Bæk

    2007-01-01

    Wide-band Code Division Multiple Access (WCDMA) systems are considered to be among the best alternatives for Universal Mobile Telecommunication System (UMTS). In future deployment of WCDMA systems, spectrum overlay among sub-bands with different bandwidth is necessary to support various kinds of ...... of virtual channel so that classical teletraffic theory can be applied. A service class is modelled as a BPP (Binomial-Poisson-Pascal) multi-rate traffic stream....

  11. Distributed MIMO chaotic radar based on wavelength-division multiplexing technology.

    Science.gov (United States)

    Yao, Tingfeng; Zhu, Dan; Ben, De; Pan, Shilong

    2015-04-15

    A distributed multiple-input multiple-output chaotic radar based on wavelength-division multiplexing technology (WDM) is proposed and demonstrated. The wideband quasi-orthogonal chaotic signals generated by different optoelectronic oscillators (OEOs) are emitted by separated antennas to gain spatial diversity against the fluctuation of a target's radar cross section and enhance the detection capability. The received signals collected by the receive antennas and the reference signals from the OEOs are delivered to the central station for joint processing by exploiting WDM technology. The centralized signal processing avoids precise time synchronization of the distributed system and greatly simplifies the remote units, which improves the localization accuracy of the entire system. A proof-of-concept experiment for two-dimensional localization of a metal target is demonstrated. The maximum position error is less than 6.5 cm.

  12. Short-range remote spectral sensor using mid-infrared semiconductor lasers with orthogonal code-division multiplexing approach

    Science.gov (United States)

    Morbi, Zulfikar; Ho, D. B.; Ren, H.-W.; Le, Han Q.; Pei, Shin Shem

    2002-09-01

    Demonstration of short-range multispectral remote sensing, using 3 to 4-micrometers mid- infrared Sb semiconductor lasers based on code-division multiplexing (CDM) architecture, is described. The system is built on a principle similar to intensity- modulated/direct-detection optical-CDMA for communications, but adapted for sensing with synchronous, orthogonal codes to distinguish different wavelength channels with zero interchannel correlation. The concept is scalable for any number of channels, and experiments with a two-wavelength system are conducted. The CDM-signal processing yielded a white-Gaussian-like system noise that is found to be near the theoretical level limited by the detector fundamental intrinsic noise. With sub-mW transmitter average power, the system was able to detect an open-air acetylene gas leak of 10-2 STP ft3/hr from 10-m away with time-varying, random, noncooperative backscatters. A similar experiment detected and positively distinguished hydrocarbon oil contaminants on water from bio-organic oils and detergents. Projection for more advanced systems suggests a multi-kilometer-range capability for watt-level transmitters, and hundreds of wavelength channels can also be accommodated for active hyperspectral remote sensing application.

  13. Paper-based inkjet-printed ultra-wideband fractal antennas

    KAUST Repository

    Maza, Armando Rodriguez; Cook, Benjamin Stassen; Jabbour, Ghassan E.; Shamim, Atif

    2012-01-01

    For the first time, paper-based inkjet-printed ultra-wideband (UWB) fractal antennas are presented. Two new designs, a miniaturised UWB monopole, which utilises a fractal matching network and is the smallest reported inkjet-printed UWB printed

  14. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1978-10-01

    Research activities in the Division of Reactor Engineering in fiscal 1977 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committee on Reactor Physics. (Author)

  15. Code of Ethics

    Science.gov (United States)

    Division for Early Childhood, Council for Exceptional Children, 2009

    2009-01-01

    The Code of Ethics of the Division for Early Childhood (DEC) of the Council for Exceptional Children is a public statement of principles and practice guidelines supported by the mission of DEC. The foundation of this Code is based on sound ethical reasoning related to professional practice with young children with disabilities and their families…

  16. Performance analysis of spectral-phase-encoded optical code-division multiple-access system regarding the incorrectly decoded signal as a nonstationary random process

    Science.gov (United States)

    Yan, Meng; Yao, Minyu; Zhang, Hongming

    2005-11-01

    The performance of a spectral-phase-encoded (SPE) optical code-division multiple-access (OCDMA) system is analyzed. Regarding the incorrectly decoded signal (IDS) as a nonstationary random process, we derive a novel probability distribution for it. The probability distribution of the IDS is considered a chi-squared distribution with degrees of freedom r=1, which is more reasonable and accurate than in previous work. The bit error rate (BER) of an SPE OCDMA system under multiple-access interference is evaluated. Numerical results show that the system can sustain very low BER even when there are multiple simultaneous users, and as the code length becomes longer or the initial pulse becomes shorter, the system performs better.

  17. Wideband excitation in nonlinear vibro-acoustic modulation for damage detection

    Science.gov (United States)

    Klepka, A.; Adamczyk, M.; Pieczonka, L.; Staszewski, W. J.

    2016-04-01

    The paper discusses the use of wideband excitation in nonlinear vibro-acoustic modulation technique (VAM) used for damage detection. In its original form, two mono-harmonic signals (low and high frequency) are used for excitation. The low frequency excitation is typically selected based on a modal analysis test and high frequency excitation is selected arbitrarily in the ultrasonic frequency range. This paper presents a different approach with use of wideband excitation signals. The proposed approach gives the possibility to simplify the testing procedure by omitting the modal test used to determine the value of low frequency excitation. Simultaneous use of wideband excitation for high frequency solves the ambiguity related to the selection of the frequency of acoustic wave. Broadband excitation signals require, however, more elaborate signal processing methods to determine the intensity of modulation for a given bandwidth. The paper discusses the proposed approach and the related signal processing procedure. Experimental validation of the proposed technique is performed on a laminated composite plate with a barely visible impact damage that was generated in an impact test. Piezoceramic actuators are used for vibration excitation and a scanning laser vibrometer is used for noncontact data acquisition.

  18. Age effects in the human middle ear: Wideband acoustical measures

    Science.gov (United States)

    Feeney, M. Patrick; Sanford, Chris A.

    2004-12-01

    Studies that have examined age effects in the human middle ear using either admittance measures at 220 or 660 Hz or multifrequency tympanometry from 200 to 2000 Hz have had conflicting results. Several studies have suggested an increase in admittance with age, while several others have suggested a decrease in admittance with age. A third group of studies found no significant age effect. This study examined 226 Hz tympanometry and wideband energy reflectance and impedance at ambient pressure in a group of 40 young adults and a group of 30 adults with age >=60 years. The groups did not differ in admittance measures of the middle ear at 226 Hz. However, significant age effects were found in wideband energy reflectance and impedance. In particular, in older adults there was a comparative decrease in reflectance from 800 to 2000 Hz but an increase near 4000 Hz. The results suggest a decrease in middle-ear stiffness with age. The findings of this study hold relevance for understanding the aging process in the auditory system, for the establishment of normative data for wideband energy reflectance, for the possibility of a conductive component to presbycusis, and for the interpretation of otoacoustic emission measurements. .

  19. 47 CFR 15.250 - Operation of wideband systems within the band 5925-7250 MHz.

    Science.gov (United States)

    2010-10-01

    ... of wideband systems within the band 5925-7250 MHz. (a) The −10 dB bandwidth of a device operating... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation of wideband systems within the band... variations in temperature and supply voltage. (b) The −10 dB bandwidth of the fundamental emission shall be...

  20. Aliasing-free wideband beamforming using sparse signal representation

    NARCIS (Netherlands)

    Tang, Z.; Blacquière, G.; Leus, G.

    2011-01-01

    Sparse signal representation (SSR) is considered to be an appealing alternative to classical beamforming for direction-of-arrival (DOA) estimation. For wideband signals, the SSR-based approach constructs steering matrices, referred to as dictionaries in this paper, corresponding to different

  1. Catalogue of nuclear fusion codes - 1976

    International Nuclear Information System (INIS)

    1976-10-01

    A catalogue is presented of the computer codes in nuclear fusion research developed by JAERI, Division of Thermonuclear Fusion Research and Division of Large Tokamak Development in particular. It contains a total of about 100 codes under the categories: Atomic Process, Data Handling, Experimental Data Processing, Engineering, Input and Output, Special Languages and Their Application, Mathematical Programming, Miscellaneous, Numerical Analysis, Nuclear Physics, Plasma Physics and Fusion Research, Plasma Simulation and Numerical Technique, Reactor Design, Solid State Physics, Statistics, and System Program. (auth.)

  2. DOD Use of Commercial Wideband Satellite Communications Systems: How Much is Needed, and How Do We Get It?

    National Research Council Canada - National Science Library

    Hutchens, Robert

    2001-01-01

    ..., A key enabler to this end is sufficient wideband satellite communications connectivity DoD's organic wideband satellite communications capabilities are inadequate, so commercial services must be used...

  3. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satel......Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...

  4. 35 Gb/s Ultra-wideband Technology for Advanced Communications

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    be applied, evolving from classic spectral inefficient pulsebased systems to more advanced and flexible modulation schemes. Ultra-wideband technology is suitable for low-power high-speed wireless communication systems over short distances, and is an appealing alternative for next generation networks ranging......The fast development of electronics and portable devices, intended mainly for multimedia applications, is increasing exponentially the data traffic demands per user. To cope with these new data demands in limited bandwidth systems, new technologies must be explored and new transmission schemes must...... from high-speed wireless personal area networks, to the internet of things applications. Its popularity stems from the fact that they can be used as an overlay to existing systems, without interference, operating in parallel to existing wireless systems, which perceive ultra-wideband emissions...

  5. Thermal Studies on the SPS Wideband Transverse Feedback Kicker

    CERN Document Server

    Roggen, Toon; Hofle, Wolfgang; Montesinos, Eric; CERN. Geneva. ATS Department

    2016-01-01

    As part of the SPS wideband transverse feedback system in the framework of the LHC Injector Upgrade (LIU) project, a wideband kicker design is being proposed. Vertical beam instabilities due to intensity dependent effects (electron cloud instability (ECI) and transverse mode coupling instability (TMCI)) are potentially suppressed by using a feedback system driving such a kicker system. One of the options for a kicker is a one meter long slotted-coaxial kicker, providing a substantial vertical kick strength (10ˉ5 –10ˉ4 eV.s/m) over a bandwidth ranging from nearly DC to 1 GHz. The necessary kick strength requires a total power of 4 kW. This note describes thermal studies that assisted in the material choice of the feedthroughs of the slotted-coaxial kicker and guided the design choices.

  6. 7th conference on ultra-wideband, short-pulse electromagnetics

    CERN Document Server

    Schenk, Uwe; Nitsch, Daniel; Sabath, Frank; Ultra-Wideband, Short-Pulse Electromagnetics 7; UWBSP7

    2007-01-01

    Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Ultra-Wideband Short-Pulse Electromagnetics 7 presents selected papers of deep technical content and high scientific quality from the UWB-SP7 Conference, including wide-ranging contributions on electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-res...

  7. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Hirota, Jitsuya; Asaoka, Takumi; Suzuki, Tomoo; Mitani, Hiroshi; Akino, Fujiyoshi

    1977-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1976 are described. Works of the division concern mainly the development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and the development of Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and activities of the Committee on Reactor Physics. (auth.)

  8. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1976-09-01

    Research activities conducted in Reactor Engineering Division in fiscal 1975 are summarized in this report. Works in the division are closely related to the development of multi-purpose High-temperature Gas Cooled Reactor, the development of Liquid Metal Fast Breeder Reactor by Power Reactor and Nuclear Fuel Development Corporation, and engineering research of thermonuclear fusion reactor. Many achievements are described concerning nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of the Committee on Reactor Physics. (auth.)

  9. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1975-11-01

    Research activities in fiscal 1974 in Reactor Engineering Division of eight laboratories and computing center are described. Works in the division are closely related with the development of a multi-purpose High-temperature Gas Cooled Reactor, the development of a Liquid Metal Fast Breeder Reactor in Power Reactor and Nuclear Fuel Development Corporation, and engineering of thermonuclear fusion reactors. They cover nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and aspects of the computing center. (auth.)

  10. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    Matsuura, Shojiro; Nakahara, Yasuaki; Takano, Hideki

    1982-09-01

    Research and development activities in the Division of Reactor Engineering in fiscal 1981 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  11. A wideband optical monitor for a planetary-rotation coating-system

    International Nuclear Information System (INIS)

    Campanelli, M.B.; Smith, D.J.

    1998-01-01

    A substrate-specific, through-planet, wideband optical coating monitor is being developed to increase production yield and the understanding of physical vapor deposition (PVD) coatings fabricated in the Optical Manufacturing Laboratory at the University of Rochester's Laboratory for Laser Energetics. In-situ wideband optical monitoring of planetary rotation systems allows direct monitoring of large, expensive substrates with complex layering schemes. The optical monitor discussed here is under development for coating several large (e.g., 80.7 x 41.7 x 9.0 cm) polarizers for the National Ignition Facility. Wideband optical monitoring of the production substrates is used in concert with an array of crystal monitors for process control, film parameter evaluation, and error detection with associated design reoptimization. The geometry of a planetary rotation system, which produces good uniformity across large substrates, makes optical monitoring more difficult. Triggering and timing techniques for data acquisition become key to the process because the optical coating is available only intermittently for monitoring. Failure to properly consider the effects of the system dynamics during data retrieval and processing may result in significant decreases in the spectral data's reliability. Improved data accuracy allows better determination of film thicknesses, indices, and inhomogeneities and enables in-situ error detection for design reoptimization

  12. Wideband aural acoustic absorbance predicts conductive hearing loss in children.

    Science.gov (United States)

    Keefe, Douglas H; Sanford, Chris A; Ellison, John C; Fitzpatrick, Denis F; Gorga, Michael P

    2012-12-01

    This study tested the hypothesis that wideband aural absorbance predicts conductive hearing loss (CHL) in children medically classified as having otitis media with effusion. Absorbance was measured in the ear canal over frequencies from 0.25 to 8 kHz at ambient pressure or as a swept tympanogram. CHL was defined using criterion air-bone gaps of 20, 25, and 30 dB at octaves from 0.25 to 4 kHz. A likelihood-ratio predictor of CHL was constructed across frequency for ambient absorbance, and across frequency and pressure for absorbance tympanometry. Performance was evaluated at individual frequencies and for any frequency at which a CHL was present. Absorbance and conventional 0.226-kHz tympanograms were measured in children of age three to eight years with CHL and with normal hearing. Absorbance was smaller at frequencies above 0.7 kHz in the CHL group than the control group. Based on the area under the receiver operating characteristic curve, wideband absorbance in ambient and tympanometric tests were significantly better predictors of CHL than tympanometric width, the best 0.226-kHz predictor. Accuracies of ambient and tympanometric wideband absorbance did not differ. Absorbance accurately predicted CHL in children and was more accurate than conventional 0.226-kHz tympanometry.

  13. Chip-interleaved optical code division multiple access relying on a photon-counting iterative successive interference canceller for free-space optical channels.

    Science.gov (United States)

    Zhou, Xiaolin; Zheng, Xiaowei; Zhang, Rong; Hanzo, Lajos

    2013-07-01

    In this paper, we design a novel Poisson photon-counting based iterative successive interference cancellation (SIC) scheme for transmission over free-space optical (FSO) channels in the presence of both multiple access interference (MAI) as well as Gamma-Gamma atmospheric turbulence fading, shot-noise and background light. Our simulation results demonstrate that the proposed scheme exhibits a strong MAI suppression capability. Importantly, an order of magnitude of BER improvements may be achieved compared to the conventional chip-level optical code-division multiple-access (OCDMA) photon-counting detector.

  14. Wideband Dual-Polarization Patch Antenna Array With Parallel Strip Line Balun Feeding

    DEFF Research Database (Denmark)

    Zhang, Jin; Lin, Xianqi; Nie, Liying

    2016-01-01

    A wideband dual-polarization patch antenna array is proposed in this letter. The array is fed by a parallel strip line balun, which is adopted to generate 180° phase shift in a wide frequency range. In addition, this balun has simple structure, very small phase shift error, and good ports isolati...... is higher than 30 dB. The simulation and measurement turns out to be similar. This antenna array can be used in TD-LTE base stations, and the design methods are also useful to other wideband microstrip antennas....

  15. Separate Turbo Code and Single Turbo Code Adaptive OFDM Transmissions

    Directory of Open Access Journals (Sweden)

    Burr Alister

    2009-01-01

    Full Text Available Abstract This paper discusses the application of adaptive modulation and adaptive rate turbo coding to orthogonal frequency-division multiplexing (OFDM, to increase throughput on the time and frequency selective channel. The adaptive turbo code scheme is based on a subband adaptive method, and compares two adaptive systems: a conventional approach where a separate turbo code is used for each subband, and a single turbo code adaptive system which uses a single turbo code over all subbands. Five modulation schemes (BPSK, QPSK, 8AMPM, 16QAM, and 64QAM are employed and turbo code rates considered are and . The performances of both systems with high ( and low ( BER targets are compared. Simulation results for throughput and BER show that the single turbo code adaptive system provides a significant improvement.

  16. The histone codes for meiosis.

    Science.gov (United States)

    Wang, Lina; Xu, Zhiliang; Khawar, Muhammad Babar; Liu, Chao; Li, Wei

    2017-09-01

    Meiosis is a specialized process that produces haploid gametes from diploid cells by a single round of DNA replication followed by two successive cell divisions. It contains many special events, such as programmed DNA double-strand break (DSB) formation, homologous recombination, crossover formation and resolution. These events are associated with dynamically regulated chromosomal structures, the dynamic transcriptional regulation and chromatin remodeling are mainly modulated by histone modifications, termed 'histone codes'. The purpose of this review is to summarize the histone codes that are required for meiosis during spermatogenesis and oogenesis, involving meiosis resumption, meiotic asymmetric division and other cellular processes. We not only systematically review the functional roles of histone codes in meiosis but also discuss future trends and perspectives in this field. © 2017 Society for Reproduction and Fertility.

  17. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya [College of Science, Air Force Engineering University, Xi' an, Shaanxi 710051 (China); Zhang, Jieqiu [College of Science, Air Force Engineering University, Xi' an, Shaanxi 710051 (China); Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Xu, Zhuo [Electronic Materials Research Laboratory, Key Laboratory of Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Zhang, Anxue [School of Electronics and Information Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2014-06-02

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  18. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    International Nuclear Information System (INIS)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu; Chen, Hongya; Zhang, Jieqiu; Xu, Zhuo; Zhang, Anxue

    2014-01-01

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  19. Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation.

    Science.gov (United States)

    Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton

    2012-07-30

    A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).

  20. A Resistive Wideband Space Beam Splitter

    OpenAIRE

    Mahesh, Nivedita; Subrahmanyan, Ravi; Shankar, N. Udaya; Raghunathan, Agaram

    2014-01-01

    We present the design, construction and measurements of the electromagnetic performance of a wideband space beam splitter. The beam splitter is designed to power divide the incident radiation into reflected and transmitted components for interferometer measurement of spectral features in the mean cosmic radio background. Analysis of a 2-element interferometer configuration with a vertical beam splitter between a pair of antennas leads to the requirement that the beam splitter be a resistive s...

  1. Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application

    Science.gov (United States)

    Xuyang, CHEN; Fangfang, SHEN; Yanming, LIU; Wei, AI; Xiaoping, LI

    2018-06-01

    A plasma-based stable, ultra-wideband electromagnetic (EM) wave absorber structure is studied in this paper for stealth applications. The stability is maintained by a multi-layer structure with several plasma layers and dielectric layers distributed alternately. The plasma in each plasma layer is designed to be uniform, whereas it has a discrete nonuniform distribution from the overall view of the structure. The nonuniform distribution of the plasma is the key to obtaining ultra-wideband wave absorption. A discrete Epstein distribution model is put forward to constrain the nonuniform electron density of the plasma layers, by which the wave absorption range is extended to the ultra-wideband. Then, the scattering matrix method (SMM) is employed to analyze the electromagnetic reflection and absorption of the absorber structure. In the simulation, the validation of the proposed structure and model in ultra-wideband EM wave absorption is first illustrated by comparing the nonuniform plasma model with the uniform case. Then, the influence of various parameters on the EM wave reflection of the plasma are simulated and analyzed in detail, verifying the EM wave absorption performance of the absorber. The proposed structure and model are expected to be superior in some realistic applications, such as supersonic aircraft.

  2. Ultra-Wideband Tracking System Design for Relative Navigation

    Science.gov (United States)

    Ni, Jianjun David; Arndt, Dickey; Bgo, Phong; Dekome, Kent; Dusl, John

    2011-01-01

    This presentation briefly discusses a design effort for a prototype ultra-wideband (UWB) time-difference-of-arrival (TDOA) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being designed for use in localization and navigation of a rover in a GPS deprived environment for surface missions. In one application enabled by the UWB tracking, a robotic vehicle carrying equipments can autonomously follow a crewed rover from work site to work site such that resources can be carried from one landing mission to the next thereby saving up-mass. The UWB Systems Group at JSC has developed a UWB TDOA High Resolution Proximity Tracking System which can achieve sub-inch tracking accuracy of a target within the radius of the tracking baseline [1]. By extending the tracking capability beyond the radius of the tracking baseline, a tracking system is being designed to enable relative navigation between two vehicles for surface missions. A prototype UWB TDOA tracking system has been designed, implemented, tested, and proven feasible for relative navigation of robotic vehicles. Future work includes testing the system with the application code to increase the tracking update rate and evaluating the linear tracking baseline to improve the flexibility of antenna mounting on the following vehicle.

  3. Evaluation of strip-line pick-up system for the SPS wideband transverse feedback system

    CERN Document Server

    Kotzian, G; Steinhagen, R J; Valuch, D; Wehrle, U

    2017-01-01

    The proposed SPS Wideband Transverse Feedback sys- tem requires a wide-band pick-up system to be able to de- tect intra-bunch motion within the SPS proton bunches, captured and accelerated in a 200 MHz bucket. We present the electro-magnetic design of transverse beam position pick-up options optimised for installation in the SPS and evaluate their performance reach with respect to direct time domain sampling of the intra-bunch motion. The analy- sis also discusses the achieved subsystem responses of the associated cabling with new low dispersion smooth wall coaxial cables, wide-band generation of intensity and posi- tion signals by means of 180 degree RF hybrids as well as passive techniques to electronically suppress the beam off- set signal, needed to optimise the dynamic range and posi- tion resolution of the planned digital intra-bunch feedback system.

  4. A Novel Compact Wideband TSA Array for Near-Surface Ice Sheet Penetrating Radar Applications

    Science.gov (United States)

    Zhang, Feng; Liu, Xiaojun; Fang, Guangyou

    2014-03-01

    A novel compact tapered slot antenna (TSA) array for near-surface ice sheet penetrating radar applications is presented. This TSA array is composed of eight compact antenna elements which are etched on two 480mm × 283mm FR4 substrates. Each antenna element is fed by a wideband coplanar waveguide (CPW) to coupled strip-line (CPS) balun. The two antenna substrates are connected together with a metallic baffle. To obtain wideband properties, another two metallic baffles are used along broadsides of the array. This array is fed by a 1 × 8 wideband power divider. The measured S11 of the array is less than -10dB in the band of 500MHz-2GHz, and the measured gain is more than 6dBi in the whole band which agrees well with the simulated results.

  5. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1980-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1979 are described. The work of the Division is closely related to development of multi-purpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committees on Reactor Physics and on Decomissioning of Nuclear Facilities. (author)

  6. Wideband Autonomous Cognitive Radios for Networked Satellites Communications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Wideband Autonomous Cognitive Radios (WACRs) are advanced radios that have the ability to sense state of the RF spectrum and the network and self-optimize its...

  7. Separate Turbo Code and Single Turbo Code Adaptive OFDM Transmissions

    Directory of Open Access Journals (Sweden)

    Lei Ye

    2009-01-01

    Full Text Available This paper discusses the application of adaptive modulation and adaptive rate turbo coding to orthogonal frequency-division multiplexing (OFDM, to increase throughput on the time and frequency selective channel. The adaptive turbo code scheme is based on a subband adaptive method, and compares two adaptive systems: a conventional approach where a separate turbo code is used for each subband, and a single turbo code adaptive system which uses a single turbo code over all subbands. Five modulation schemes (BPSK, QPSK, 8AMPM, 16QAM, and 64QAM are employed and turbo code rates considered are 1/2 and 1/3. The performances of both systems with high (10−2 and low (10−4 BER targets are compared. Simulation results for throughput and BER show that the single turbo code adaptive system provides a significant improvement.

  8. Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio-Inspired Optimization Techniques

    Science.gov (United States)

    2017-11-01

    on Bio -Inspired Optimization Techniques by Canh Ly, Nghia Tran, and Ozlem Kilic Approved for public release; distribution is...Research Laboratory Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio -Inspired Optimization Techniques by...SUBTITLE Methodology for Designing and Developing a New Ultra-Wideband Antenna Based on Bio -Inspired Optimization Techniques 5a. CONTRACT NUMBER

  9. Ultra-wideband wireless receiver front-end for high-speed indoor applications

    Directory of Open Access Journals (Sweden)

    Zhe-Yang Huang

    2014-12-01

    Full Text Available Low-noise, ultra-wideband (UWB wireless receiver front-end circuits were presented in this study. A two-stage common-source low-noise amplifier with wideband input impedance matching network, an active-balun and a double-balanced down-conversion mixer were adopted in the UWB wireless receiver front-end. The proposed wireless receiver front-end circuits were implemented in 0.18 μm radio-frequency-CMOS process. The maximum down-conversion power gain of the front-end is 25.8 dB; minimum single-sideband noise figure of the front-end is 4.9 dB over complete UWB band ranging from 3.1 to 10.6 GHz. Power consumption including buffers is 39.2 mW.

  10. Dual-polarization, wideband microstrip antenna array for airborne C-band SAR

    DEFF Research Database (Denmark)

    Granholm, Johan; Skou, Niels

    2000-01-01

    The paper describes the development of a C-band, dual linear polarization wideband antenna array, for use in the next-generation of the Danish airborne polarimetric synthetic aperture radar (SAR) system. The array is made of probe-fed, stacked microstrip patches. The design and performance of the...... of the basic stacked patch element, operating from 4.9 GHz to 5.7 GHz, and a 2×2 element test array of these, are described.......The paper describes the development of a C-band, dual linear polarization wideband antenna array, for use in the next-generation of the Danish airborne polarimetric synthetic aperture radar (SAR) system. The array is made of probe-fed, stacked microstrip patches. The design and performance...

  11. Wideband laser locking to an atomic reference with modulation transfer spectroscopy.

    Science.gov (United States)

    Negnevitsky, V; Turner, L D

    2013-02-11

    We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.

  12. Wideband FM Demodulation and Multirate Frequency Transformations

    Science.gov (United States)

    2016-12-15

    Noble identities to extend the proposed approach to larger wideband to narrowband conversion factors and more practical implementations. We further...framework . . . . . . . . . . . . . . . . . . . . . 8 2 Block diagrams of the alternative MFT system for large conversion factors (a) and the Noble Identity ...of both MFT frameworks with conversion factor R = 128 and normalized radian frequency shift wd = 0.1π under the extreme senario with modulation index

  13. Robust Nearfield Wideband Beamforming Design Based on Adaptive-Weighted Convex Optimization

    Directory of Open Access Journals (Sweden)

    Guo Ye-Cai

    2017-01-01

    Full Text Available Nearfield wideband beamformers for microphone arrays have wide applications in multichannel speech enhancement. The nearfield wideband beamformer design based on convex optimization is one of the typical representatives of robust approaches. However, in this approach, the coefficient of convex optimization is a constant, which has not used all the freedom provided by the weighting coefficient efficiently. Therefore, it is still necessary to further improve the performance. To solve this problem, we developed a robust nearfield wideband beamformer design approach based on adaptive-weighted convex optimization. The proposed approach defines an adaptive-weighted function by the adaptive array signal processing theory and adjusts its value flexibly, which has improved the beamforming performance. During each process of the adaptive updating of the weighting function, the convex optimization problem can be formulated as a SOCP (Second-Order Cone Program problem, which could be solved efficiently using the well-established interior-point methods. This method is suitable for the case where the sound source is in the nearfield range, can work well in the presence of microphone mismatches, and is applicable to arbitrary array geometries. Several design examples are presented to verify the effectiveness of the proposed approach and the correctness of the theoretical analysis.

  14. Wideband feedback system prototype validation

    CERN Document Server

    Li, K; Bjorsvik, E; Fox, J; Hofle, W; Kotzian, G; Rivetta, C; Salvant, B; Turgut, O

    2017-01-01

    A wideband feedback demonstrator system has been de-veloped in collaboration with US-LARP under the joint lead-ership of CERN and SLAC. The system includes widebandkicker structures and amplifiers along with a fast digital re-configurable system up to 4 GS/s for single bunch and multibunch control. Most of the components have been installedin recent years and have been put into operation to test bothintra-bunch damping and individual bunch control in a multibunch train. In this note we report on the MD program,procedure and key findings that were made with this systemin the past year.

  15. Digital Receiver Design for Transmitted Reference Ultra-Wideband Systems

    NARCIS (Netherlands)

    Wang, Y.; Leus, G.; Van der Veen, A.J.

    2009-01-01

    A complete detection, channel estimation, synchronization, and equalization scheme for a transmitted reference (TR) ultra-wideband (UWB) system is proposed in this paper. The scheme is based on a data model which admits a moderate data rate and takes both the interframe interference (IFI) and the

  16. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    International Nuclear Information System (INIS)

    Wu Jia-Liang; Lin Bao-Qin; Da Xin-Yu

    2016-01-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x - or y -polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. (paper)

  17. The Application of NTs in WCDMA Systems

    Institute of Scientific and Technical Information of China (English)

    Jian-Ming Liao; Ping-Fang Liao

    2007-01-01

    Recent efforts to add new services to the wide-band code division multiple accesses (WCDMA) system have increased interest in network processor (NP)-based routers that are easy to extend and evolve. In this paper, an application of NPs in routing engine module (REM) of radio network controller (RNC) in WCDMA system is proposed. The measuring results show that NPs have good performance and efficiency in routing traffic of the communication network and the simulation verifies the fast forwarding function of NPs.

  18. A Low-Complexity Joint Synchronization and Detection Algorithm for Single-Band DS-CDMA UWB Communications

    Directory of Open Access Journals (Sweden)

    Christensen Lars PB

    2005-01-01

    Full Text Available The problem of asynchronous direct-sequence code-division multiple-access (DS-CDMA detection over the ultra-wideband (UWB multipath channel is considered. A joint synchronization, channel-estimation, and multiuser detection scheme based on the adaptive linear minimum mean square error (LMMSE receiver is presented and evaluated. Further, a novel nonrecursive least-squares algorithm capable of reducing the complexity of the adaptation in the receiver while preserving the advantages of the recursive least-squares (RLS algorithm is presented.

  19. Group-Orthogonal Code-Division Multiplex: A Physical-Layer Enhancement for IEEE 802.11n Networks

    Directory of Open Access Journals (Sweden)

    Felip Riera-Palou

    2010-01-01

    Full Text Available The new standard for wireless local area networks (WLANs, named IEEE 802.11n, has been recently released. This new norm builds upon and remains compatible with the previous WLANs standards IEEE 802.11a/g while it is able to achieve transmission rates of up to 600 Mbps. These increased data rates are mainly a consequence of two important new features: (1 multiple antenna technology at transmission and reception, and (2 optional doubling of the system bandwidth thanks to the availability of an additional 20 MHz band. This paper proposes the use of Group-Orthogonal Code Division Multiplex (GO-CDM as a means to improve the performance of the 802.11n standard by further exploiting the inherent frequency diversity. It is explained why GO-CDM synergistically matches with the two aforementioned new features and the performance gains it can offer under different configurations is illustrated. Furthermore, the effects that group-orthogonal has on key implementation issues such as channel estimation, carrier frequency offset, and peak-to-average power ratio (PAPR are also considered.

  20. Wideband Radar Echo Frequency-domain Simulation and Analysis for High Speed Moving Targets

    Directory of Open Access Journals (Sweden)

    Ning Chao

    2014-04-01

    Full Text Available A frequency-domain method is proposed for wideband radar echo simulation of high-speed moving targets. Based on the physical process of electromagnetic waves observing a moving target, a frequency-domain echo model of wideband radar is constructed, and the block diagram of the radar echo simulation in frequency-domain is presented. Then, the impacts of radial velocity and slant range on the matching filtering of LFM radar are analyzed, and some quantitative conclusions on the shift and expansion of the radar profiles are obtained. Simulation results illustrate the correctness and efficiency of the proposed method.

  1. Ultra-Wideband Transceiver for Integrated Communication and Relative Navigation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop an innovative way of using Time Modulated Ultra Wideband (TM-UWB) transceivers (radios) to provide high performance integrated...

  2. Resilience of LTE networks against smart jamming attacks: Wideband model

    KAUST Repository

    Aziz, Farhan M.; Shamma, Jeff S.; Stuber, Gordon L.

    2015-01-01

    communications. We have previously shown that LTE networks are vulnerable to Denial-of-Service (DOS) and loss of service attacks from smart jammers. In this paper, we extend our previous work on resilience of LTE networks to wideband multipath fading channel

  3. A new two dimensional spectral/spatial multi-diagonal code for noncoherent optical code division multiple access (OCDMA) systems

    Science.gov (United States)

    Kadhim, Rasim Azeez; Fadhil, Hilal Adnan; Aljunid, S. A.; Razalli, Mohamad Shahrazel

    2014-10-01

    A new two dimensional codes family, namely two dimensional multi-diagonal (2D-MD) codes, is proposed for spectral/spatial non-coherent OCDMA systems based on the one dimensional MD code. Since the MD code has the property of zero cross correlation, the proposed 2D-MD code also has this property. So that, the multi-access interference (MAI) is fully eliminated and the phase induced intensity noise (PIIN) is suppressed with the proposed code. Code performance is analyzed in terms of bit error rate (BER) while considering the effect of shot noise, PIIN, and thermal noise. The performance of the proposed code is compared with the related MD, modified quadratic congruence (MQC), two dimensional perfect difference (2D-PD) and two dimensional diluted perfect difference (2D-DPD) codes. The analytical and the simulation results reveal that the proposed 2D-MD code outperforms the other codes. Moreover, a large number of simultaneous users can be accommodated at low BER and high data rate.

  4. Eliminating four-wave-mixing crosstalk in wavelength-division-multiplexing systems

    Science.gov (United States)

    Kwong, Wing C.; Yang, Guu-Chang

    1996-11-01

    To reduce four-wave-mixing crosstalk in long-haul wavelength-division multiplexing (WDM) lightwave systems, the use of unequally spaced channels has recently been proposed. Instead of being solved y integer linear programming, the unequal-spaced channel-allocation problem is here treated as constructing suitable optical orthogonal codes in optical code-division multiple-access (CDMA). Three 'algebraic' algorithms on finding the frequency locations of unequally spaced WDM channels are reported. The constructions are based on generating optical CDMA codewords with a predetermined pulse separation and 'aperiodic' autocorrelation sidelobes no greater than one. The algorithms potentially provide a fast and simple alternative to solve the problem, besides the recently reported computer-search method.

  5. Multiband and wideband monopole antenna for GSM900 and other wireless applications

    KAUST Repository

    Abutarboush, Hattan; Nasif, H.; Nilavalan, Rajagopal; Cheung, Sing Wai

    2012-01-01

    In this letter, the design of a compact monopole antenna for multiband and wideband operations is proposed. The antenna has three distinct frequency bands, centered at 0.94, 2.7, and 4.75 GHz. The antenna has a compact size of only 30×40×1.57 mm$ 3 including the ground plane. The multiband and wideband operations are achieved by using an E-shaped slot on the ground plane. The design procedure is also discussed. The frequency bands can be independently controlled by using the parameters of the E-slot. The impedance bandwidth, current distributions, radiation patterns, gain, and efficiency of the antenna are studied by computer simulation and measurements. © 2011 IEEE.

  6. High Performance Wideband CMOS CCI and its Application in Inductance Simulator Design

    Directory of Open Access Journals (Sweden)

    ARSLAN, E.

    2012-08-01

    Full Text Available In this paper, a new, differential pair based, low-voltage, high performance and wideband CMOS first generation current conveyor (CCI is proposed. The proposed CCI has high voltage swings on ports X and Y and very low equivalent impedance on port X due to super source follower configuration. It also has high voltage swings (close to supply voltages on input and output ports and wideband current and voltage transfer ratios. Furthermore, two novel grounded inductance simulator circuits are proposed as application examples. Using HSpice, it is shown that the simulation results of the proposed CCI and also of the presented inductance simulators are in very good agreement with the expected ones.

  7. Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference.

    Science.gov (United States)

    Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng

    2017-04-29

    Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation.

  8. The Large Office Environment - Measurement and Modeling of the Wideband Radio Channel

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Nielsen, Jesper Ødum; Bauch, Gerhard

    2006-01-01

    In a future 4G or WLAN wideband application we can imagine multiple users in a large office environment con-sisting of a single room with partitions. Up to now, indoor radio channel measurement and modelling has mainly concentrated on scenarios with several office rooms and corridors. We present...... here measurements at 5.8GHz for 100 MHz bandwidth and a novel modelling approach for the wideband radio channel in a large office room envi-ronment. An acoustic like reverberation theory is pro-posed that allows to specify a tapped delay line model just from the room dimensions and an average...... calculated from the measurements. The pro-posed model can likely also be applied to indoor hot spot scenarios....

  9. Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide

    DEFF Research Database (Denmark)

    Xiao, Binggang; Li, Sheng-Hua; Xiao, Sanshui

    2016-01-01

    Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN and satel...... and satellite communication signals. Due to planar structures proposed here, it is easy to integrate in the microwave integrated systems, which can play an important role in the microwave communication circuit and system.......Spoof surface plasmon polaritons based notch filter for ultra-wideband microwave waveguide is proposed. Owing to subwavelength confinement, such a filter has advantage in the structure size without sacrificing the performance. The spoof SPP based notch is introduced to suppress the WLAN...

  10. Performance Analysis of Direct-Sequence Code-Division Multiple-Access Communications with Asymmetric Quadrature Phase-Shift-Keying Modulation

    Science.gov (United States)

    Wang, C.-W.; Stark, W.

    2005-01-01

    This article considers a quaternary direct-sequence code-division multiple-access (DS-CDMA) communication system with asymmetric quadrature phase-shift-keying (AQPSK) modulation for unequal error protection (UEP) capability. Both time synchronous and asynchronous cases are investigated. An expression for the probability distribution of the multiple-access interference is derived. The exact bit-error performance and the approximate performance using a Gaussian approximation and random signature sequences are evaluated by extending the techniques used for uniform quadrature phase-shift-keying (QPSK) and binary phase-shift-keying (BPSK) DS-CDMA systems. Finally, a general system model with unequal user power and the near-far problem is considered and analyzed. The results show that, for a system with UEP capability, the less protected data bits are more sensitive to the near-far effect that occurs in a multiple-access environment than are the more protected bits.

  11. A Dual Stage Linear Prediction Approach Towards Wideband FM Demodulation With Multilevel and Partial Response Signaling

    Science.gov (United States)

    2018-01-19

    attributed to the inherent interpolation process in the MFT demodulation approach, which is more error-sensitive to discontinuous waveforms, such as...Multirate Frequency Transformations In the author’s recent work, frequency transformations enacted via multirate signal processing were used for wideband...FM to narrowband FM conversion to enable a wider range of wideband FM signals [9, 11]. The goal of the multirate processing module is to compress the

  12. Wideband 4-diode sampling circuit

    Science.gov (United States)

    Wojtulewicz, Andrzej; Radtke, Maciej

    2016-09-01

    The objective of this work was to develop a wide-band sampling circuit. The device should have the ability to collect samples of a very fast signal applied to its input, strengthen it and prepare for further processing. The study emphasizes the method of sampling pulse shaping. The use of ultrafast pulse generator allows sampling signals with a wide frequency spectrum, reaching several gigahertzes. The device uses a pulse transformer to prepare symmetrical pulses. Their final shape is formed with the help of the step recovery diode, two coplanar strips and Schottky diode. Made device can be used in the sampling oscilloscope, as well as other measurement system.

  13. Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1975-02-01

    This report summarizes main research achievements in the 48th fiscal year which were made by Reactor Engineering Division consisted of eight laboratories and Computing Center. The major research and development projects, with which the research programmes in the Division are associated, are development of High Temperature Gas Cooled Reactor for multi-purpose use, development of Liquid Metal Fast Breeder Reactor conducted by Power Reactor and Nuclear Fuel Development Corporation, and Engineering Research Programme for Thermonuclear Fusion Reactor. Many achievements are reported in various research items such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, heat transfer and fluid dynamics, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology and activities of Computing Center. (auth.)

  14. Inkjet Printing of Paper-Based Wideband and High Gain Antennas

    KAUST Repository

    Cook, Benjamin

    2011-12-07

    This thesis represents a major contribution to wideband and high gain inkjet-printed antennas on paper. This work includes the complete characterization of the inkjet printing process for passive microwave devices on paper substrate as well as several ultra-wideband and high gain antenna designs. The characterization work includes the electrical characterization of the permittivity and loss tangent for paper substrate through 10 GHz, ink conductivity data for variable sintering conditions, and minimum feature sizes obtainable by today’s current inkjet processes for metallic nanoparticles. For the first time ever, inkjet-printed antennas are demonstrated that operate over the entire UWB band and demonstrate gains up to 8dB. This work also presents the first fractal-based inkjet-printed antennas with enhanced bandwidth and reduced production costs, and a novel slow wave log periodic dipole array which shows minimizations of 20% in width over conventional log periodic antennas.

  15. Wideband MIMO Channel Capacity Analysis in Multiprobe Anechoic Chamber Setups

    DEFF Research Database (Denmark)

    Fan, Wei; Kyosti, Pekka; Nielsen, Jesper Ødum

    2016-01-01

    been used to determine the test area size for a limited number of probes. However, it is desirable that the test area size is defined in terms of data rate deviation of the simulated channel in the laboratory from that of the target channel model. This paper reports MIMO capacity analysis results...... for wideband spatio-temporal channel models, with emphasis on the impact of spatial correlation at the transmit (Tx) side, the channel model, and the spatial correlation at the Rx side on the capacity simulation accuracy. Simulation results show that the number of probes is irrelevant to capacity simulation......This paper discusses over the air (OTA) testing for multiple input multiple output (MIMO) capable terminals with emphasis on wideband MIMO channel capacity analysis in a multi-probe anechoic chamber setup. In the literature, the spatial correlation simulation accuracy at the receiver (Rx) side has...

  16. Design of a Compact Wideband Antenna Array for Microwave Imaging Applications

    Directory of Open Access Journals (Sweden)

    J. Puskely

    2013-12-01

    Full Text Available In the paper, wideband antenna arrays aimed at microwave imaging applications and SAR applications operating at Ka band were designed. The antenna array feeding network is realized by a low-loss SIW technology. Moreover, we have replaced the large feed network comprised of various T and Y junctions by a simple broadband network of compact size to more reduce losses in the substrate integrated waveguide and also save space on the PCB. The designed power 8-way divider is complemented by a wideband substrate integrated waveguide to a grounded coplanar waveguide transition and directly connected to the antenna elements. The measured results of antenna array are consistent with our simulation. Obtained results of the developed array demonstrated improvement compared to previously developed binary feed networks with microstrip or SIW splitters.

  17. Spatial Dynamic Wideband Modeling of the MIMO Satellite-to-Earth Channel

    Directory of Open Access Journals (Sweden)

    Andreas Lehner

    2014-01-01

    response (CIR time series depending on the movement profile of a land mobile terminal is presented in this paper. Based on high precise wideband measurements in L-band the model reproduces the correlated shadowing and multipath conditions in rich detail. The model includes time and space variant echo signals appearing and disappearing in dependence on the receive antenna position and movement, and the actual azimuths and elevations to the various signal sources. Attenuation and path delays relative to the hypothetical line of sight (LOS ensure usability for ranging purposes. Parameters for car and pedestrian applications in urban and suburban environments are provided. The channel characteristics are determined independently of the transmitted signal. Therefore the usability, for example, for GPS and GALILEO, as well as wideband communication services from hovering platforms, is given.

  18. Reactor Systems Technology Division code development and configuration/quality control procedures

    International Nuclear Information System (INIS)

    Johnson, E.C.

    1985-06-01

    Procedures are prescribed for executing a code development task and implementing the resulting coding in an official version of a computer code. The responsibilities of the project manager, development staff members, and the Code Configuration/Quality Control Group are defined. Examples of forms, logs, computer job control language, and suggested outlines for reports associated with software production and implementation are included in Appendix A. 1 raf., 2 figs

  19. Realization of Miniaturized Multi-/Wideband Microwave Front-Ends

    Science.gov (United States)

    Al Shamaileh, Khair A.

    The ever-growing demand toward designing microwave front-end components with enhanced access to the radio spectrum (e.g., multi-/wideband functionality) and improved physical features (e.g., miniaturized circuitry, ease and cost of fabrication) is becoming more paramount than ever before. This dissertation proposes new design methodologies, simulations, and experimental validations of passive front-ends (i.e., antennas, couplers, dividers) at microwave frequencies. The presented design concepts optimize both electrical and physical characteristics without degrading the intended performance. The developed designs are essential to the upcoming wireless technologies. The first proposed component is a compact ultra-wideband (UWB) Wilkinson power divider (WPD). The design procedure is accomplished by replacing the uniform transmission lines in each arm of the conventional single-frequency divider with impedance-varying profiles governed by a truncated Fourier series. While such non-uniform transmission lines (NTLs) are obtained through the even-mode analysis, three isolation resistors are optimized in the odd-mode circuit to achieve proper isolation and output ports matching over the frequency range of interest. The proposed design methodology is systematic, and results in single-layered and compact structures. For verification purposes, an equal split WPD is designed, simulated, and measured. The obtained results show that the input and output ports matching as well as the isolation between the output ports are below --10 dB; whereas the transmission parameters vary between --3.2 dB and --5 dB across the 3.1--10.6 GHz band. The designed divider is expected to find applications in UWB antenna diversity, multiple-input-multiple-output (MIMO) schemes, and antenna arrays feeding networks. The second proposed component is a wideband multi-way Bagley power divider (BPD). Wideband functionality is achieved by replacing the single-frequency matching uniform microstrip lines in

  20. Wideband DOA Estimation through Projection Matrix Interpolation

    OpenAIRE

    Selva, J.

    2017-01-01

    This paper presents a method to reduce the complexity of the deterministic maximum likelihood (DML) estimator in the wideband direction-of-arrival (WDOA) problem, which is based on interpolating the array projection matrix in the temporal frequency variable. It is shown that an accurate interpolator like Chebyshev's is able to produce DML cost functions comprising just a few narrowband-like summands. Actually, the number of such summands is far smaller (roughly by factor ten in the numerical ...

  1. Doppler Processing with Ultra-Wideband (UWB) Radar Revisited

    Science.gov (United States)

    2018-01-01

    REPORT TYPE Technical Note 3. DATES COVERED (From - To) December 2017 4. TITLE AND SUBTITLE Doppler Processing with Ultra-Wideband (UWB) Radar...unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This technical note revisits previous work performed at the US Army Research Laboratory related to...target considered previously is proportional to a delayed version of the transmitted signal, up to a complex constant factor. We write the received

  2. Ultra-Wideband Coplanar-Fed Monopoles: A Comparative Study

    Directory of Open Access Journals (Sweden)

    J. Jilkova

    2008-04-01

    Full Text Available The paper provides an experimental comparison of four types of ultra-wideband coplanar-fed planar monopole antennas. Parameters of the open stub completed by an L-shaped monopole and the cross monopole were adopted from the literature. The forked monopole and the coplanar monopole were fabricated and measured. Monopoles were compared from the viewpoint of the impedance bandwidth, gain, directivity patterns and dimensions.

  3. Wideband or Dual-Band Low-Profile Circular Patch Antenna with High Gain and Sidelobe Suppression

    DEFF Research Database (Denmark)

    Squadrito, Paolo; Zhang, Shuai; Pedersen, Gert F.

    2018-01-01

    This paper presents a wideband or dual-band circular disk antenna with high gain and sidelobe suppression (SLS). The antenna has a single layer and single-fed configuration. The antenna can operate with the radiation field superposition of TM12 and TM14 modes at one frequency, which provides high...... gain and SLS. A circle of 10 shorting vias with non-identical diameters are loaded inside the antenna cavity in order to excite the field superposition of TM11 and TM13 modes at another frequency. By modifying the radius of the vias, the resonant frequency with the TM11 and TM13 superposition can...... be tuned closer to or further away from the one with the TM12 and TM14 superposition. In this way, a wideband or dual-band behavior can be obtained with high gain and SLS. The proposed antenna achieves the impedance bandwidth of 6.46% for the wideband case, which is over 6 times wider than the previous...

  4. 32 X 2.5 Gb/s Optical Code Division Multiplexing (O-CDM) For Agile Optical Networking (Phase II) Final Report CRADA No. TC02051.0

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mendez, A. J. [Mendez R & D Associates, El Segundo, CA (United States)

    2017-09-08

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and Mendez R & D Associates (MRDA) to develop and demonstrate a reconfigurable and cost effective design for optical code division multiplexing (O-CDM) with high spectral efficiency and throughput, as applied to the field of distributed computing, including multiple accessing (sharing of communication resources) and bidirectional data distribution in fiber-to-the-premise (FTTx) networks.

  5. Ultra-wideband reflective polarization converter based on anisotropic metasurface

    Science.gov (United States)

    Wu, Jia-Liang; Lin, Bao-Qin; Da, Xin-Yu

    2016-08-01

    In this paper, we propose an ultra-wideband reflective linear cross-polarization converter based on anisotropic metasurface. Its unit cell is composed of a square-shaped resonator with intersectant diagonal and metallic ground sheet separated by dielectric substrate. Simulated results show that the converter can generate resonances at four frequencies under normal incident electromagnetic (EM) wave, leading to the bandwidth expansion of cross-polarization reflection. For verification, the designed polarization converter is fabricated and measured. The measured and simulated results agree well with each other, showing that the fabricated converter can convert x- or y-polarized incident wave into its cross polarized wave in a frequency range from 7.57 GHz to 20.46 GHz with a relative bandwidth of 91.2%, and the polarization conversion efficiency is greater than 90%. The proposed polarization converter has a simple geometry but an ultra wideband compared with the published designs, and hence possesses potential applications in novel polarization-control devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471387, 61271250, and 61571460).

  6. DIVISIONS AND SEGREGATIONS OF THE PATRIMONY

    Directory of Open Access Journals (Sweden)

    CRISTIAN GHEORGHE

    2012-05-01

    Full Text Available For a long time, dispute resolution and alternative techniques like mediation have been dealing with a classic conception: every part involved in dispute resolution was carrying exactly one patrimony. Irrespective of physical or moral person the rule was the same: one person, one patrimony. Alternative dispute resolution, like mediation, dealt with persons in order to reach a mutual agreement affecting their unique patrimony. The rule is already history. Still remain the first premise: every person has a patrimony. But under present Civil code the provision is stopping here. As a result, the uniqueness of the patrimony vanished from new law. Dealing with different patrimonies a dispute solver should be able to understand the new notion and to assist the parties to finals agreements according to the rules of the divisions of the patrimony. First at all we should observe that any division of the patrimony of a person have to have a legal basis. The “liberalisation” of the patrimony is not so advanced in order to accept any voluntary division of the patrimony of the person. Second, the prominent creation in this field are represented by fiducia (a kind of Anglo-Saxon trust concept and assigned patrimony. Fiducia is new for our legal system only, following in fact the Quebec civil code regulation. The assigned patrimony was already been present in our legislation. The Ordinance no 44/2008 was dealing with this concept in commercial field.

  7. Above the nominal limit performance evaluation of multiwavelength optical code-division multiple-access systems

    Science.gov (United States)

    Inaty, Elie; Raad, Robert; Fortier, Paul; Shalaby, Hossam M. H.

    2009-03-01

    We provide an analysis for the performance of a multiwavelength optical code-division multiple-access (MW-OCDMA) network when the system is working above the nominal transmission rate limit imposed by passive encoding-decoding operation. We address the problem of overlapping in such a system and how it can directly affect the bit error rate (BER). A unified mathematical framework is presented under the assumption of one-coincidence sequences with nonrepeating wavelengths. A closed form expression of the multiple access interference limited BER is provided as a function of different system parameters. Results show that the performance of the MW-OCDMA system can be critically affected when working above the nominal limit, an event that can happen when the network operates at a high transmission rate. In addition, the impact of the derived error probability on the performance of two newly proposed medium access control (MAC) protocols, the S-ALOHA and the R3T, is also investigated. It is shown that for low transmission rates, the S-ALOHA is better than the R3T, while the R3T is better at very high transmission rates. In general, it is postulated that the R3T protocol suffers a higher delay mainly because of the presence of additional modes.

  8. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling

    NARCIS (Netherlands)

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    Known elementary wide-band amplifiers suffer from a fundamental tradeoff between noise figure (NF) and source impedance matching, which limits the NF to values typically above 3 dB. Global negative feedback can be used to break this tradeoff, however, at the price of potential instability. In

  9. A wideband Noise-Canceling CMOS LNA exploiting a transformer

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram

    2006-01-01

    Abstract — A broadband LNA incorporating single-ended to differential conversion, has been successfully implemented using a noise-canceling technique and a single on-chip transformer. The LNA achieves a high voltage gain of 19dB, a wideband input match (2.5–4.0 GHz), and a Noise Figure of 4–5.4 dB,

  10. A wideband Noise-Canceling CMOS LNA exploiting a transformer

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram

    2006-01-01

    A broadband LNA incorporating single-ended to differential conversion, has been successfully implemented using a noise-canceling technique and a single on-chip transformer. The LNA achieves a high voltage gain of 19dB, a wideband input match (2.5–4.0 GHz), and a Noise Figure of 4–5.4 dB, while

  11. Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System

    Directory of Open Access Journals (Sweden)

    Jia Ying-xin

    2013-03-01

    Full Text Available According to an ultra-high resolution airborne SAR system with better than 0.1 m resolution, a wideband Linear Frequency Modulated (LFM pulse compression exciter with 14.8 GHz carrier and 3.2 GHz bandwidth is designed and implemented. The selection of signal generation scheme and some key technique points for wideband LFM waveform is presented in detail. Then, an acute test and analysis of the LFM signal is performed. The final airborne experiments demonstrate the validity of the LFM source which is one of the subsystems in an ultra-high resolution airborne SAR system.

  12. Annual report of the Division of High Temperature Engineering

    International Nuclear Information System (INIS)

    1982-10-01

    Research activities conducted in the Division of High Temperature Engineering during fiscal 1981 are described. R and D works of our division are mainly related to a multi-purpose very high-temperature gas-cooled reactor (VHTR) and a fusion reactor. This report deals with the main results obtained on material test, development of computer codes, heat transfer, fluid-dynamics, structural mechanics and the construction of an M + A (Mother and Adapter) section of a HENDEL (Helium Engineering Demonstration Loop) as well. (author)

  13. Novel ultra-wideband photonic signal generation and transmission featuring digital signal processing bit error rate measurements

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Tafur Monroy, Idelfonso

    2009-01-01

    We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal.......We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal....

  14. Dynamics of Gradient Bioceramic Composite Coating on Surface of Titanium Alloy by Wide-Band Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    LIU Qi-bin; ZOU Long-jiang; ZHU Wei-dong; LI Hai-tao; DONG Chuang

    2004-01-01

    The gradient bioceramic coating was prepared on the surface of titanium alloy using wide-band laser cladding. The dynamics of gradient bioceramic composite coating containing hydroxyapatite (HA) prepared with mixture of CaHPO4*2H2O and CaCO3 under the condition of wide-band laser was studied theoretically. The corresponding mathematical model and its numerical solution were presented. The examination experiment showed that HA bioceramic composite coatings can be obtained by appropriately choosing wide-band laser cladding parameters. The microstructure and surface morphology of HA bioceramic coating were observed by SEM and X-ray diffraction. The experimental results showed that the bioceramic coating is composed of HA, β-TCP, CaO, CaTiO3 and TiO2. The surface of bioceramic coating takes coral-shaped structure or short-rod piled structure, which helps osteoblast grow into bioceramic and improves the biocompatibility.

  15. FERD and FERDOR type unfolding codes

    International Nuclear Information System (INIS)

    Burrus, W.R.

    1976-01-01

    FERD and FERDO are unfolding codes which were developed at the Neutron Physics Division of Oak Ridge National Laboratory in 1965 and 1966. FERDO variants such as FERDOR and FORIST have been widely used, and many useful supplementary procedures have been developed for neutron and gamma-ray spectroscopy and other diverse applications. Algorithms for the codes are discussed

  16. Time-division optical interconnects for local-area and micro-area networks

    Science.gov (United States)

    Krol, Mark F.; Boncek, Raymond K.; Johns, Steven T.; Stacy, John L.

    1991-12-01

    This report describes the development of an optical Time-Division Multiple-Access (TDMA) interconnect suitable for applications in local-area and micro-area networks. The advantages of using time-division techniques instead of frequency-division, wavelength-division, or code-division techniques in a shared-medium environment are discussed in detail. Furthermore, a detailed description of the TDMA architecture is presented along with various experiments pertaining to the actual components needed to implement the system. Finally, experimental data is presented for an actual optical TDMA test bed. The experimental data demonstrates the feasibility of the architecture, and shows that currently the system has the capability to accommodate up to 50 channels. The bit-error-rate per channel was measured to be less than 10(exp -9) for pseudo-random bit-sequences.

  17. Comparison of a Ring On-Chip Network and a Code-Division Multiple-Access On-Chip Network

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2007-01-01

    Full Text Available Two network-on-chip (NoC designs are examined and compared in this paper. One design applies a bidirectional ring connection scheme, while the other design applies a code-division multiple-access (CDMA connection scheme. Both of the designs apply globally asynchronous locally synchronous (GALS scheme in order to deal with the issue of transferring data in a multiple-clock-domain environment of an on-chip system. The two NoC designs are compared with each other by their network structures, data transfer principles, network node structures, and their asynchronous designs. Both the synchronous and the asynchronous designs of the two on-chip networks are realized using a hardware-description language (HDL in order to make the entire designs suit the commonly used synchronous design tools and flow. The performance estimation and comparison of the two NoC designs which are based on the HDL realizations are addressed. By comparing the two NoC designs, the advantages and disadvantages of applying direct connection and CDMA connection schemes in an on-chip communication network are discussed.

  18. Real-time wideband holographic surveillance system

    Science.gov (United States)

    Sheen, D.M.; Collins, H.D.; Hall, T.E.; McMakin, D.L.; Gribble, R.P.; Severtsen, R.H.; Prince, J.M.; Reid, L.D.

    1996-09-17

    A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm. 28 figs.

  19. Spectral amplitude coding OCDMA using and subtraction technique.

    Science.gov (United States)

    Hasoon, Feras N; Aljunid, S A; Samad, M D A; Abdullah, Mohamad Khazani; Shaari, Sahbudin

    2008-03-20

    An optical decoding technique is proposed for a spectral-amplitude-coding-optical code division multiple access, namely, the AND subtraction technique. The theory is being elaborated and experimental results have been done by comparing a double-weight code against the existing code, Hadamard. We have proved that the and subtraction technique gives better bit error rate performance than the conventional complementary subtraction technique against the received power level.

  20. A wideband high-linearity RF receiver front-end in CMOS

    NARCIS (Netherlands)

    Arkesteijn, V.J.; Klumperink, Eric A.M.; Nauta, Bram

    This paper presents a wideband high-linearity RF receiver-front-end, implemented in standard 0.18 μm CMOS technology. The design employs a noise-canceling LNA in combination with two passive mixers, followed by lowpass-filtering and amplification at IF. The achieved bandwidth is >2 GHz, with a noise

  1. 10th and 11th conference on Ultra-Wideband Short-Pulse Electromagnetics

    CERN Document Server

    Mokole, Eric; UWB SP 10; UWB SP 11

    2014-01-01

    This book presents contributions of deep technical content and high scientific quality in the areas of electromagnetic theory, scattering, UWB antennas, UWB systems, ground penetrating radar (GPR), UWB communications, pulsed-power generation, time-domain computational electromagnetics, UWB compatibility, target detection and discrimination, propagation through dispersive media, and wavelet and multi-resolution techniques. Ultra-wideband (UWB), short-pulse (SP) electromagnetics are now being used for an increasingly wide variety of applications, including collision avoidance radar, concealed object detection, and communications. Notable progress in UWB and SP technologies has been achieved by investigations of their theoretical bases and improvements in solid-state manufacturing, computers, and digitizers. UWB radar systems are also being used for mine clearing, oil pipeline inspections, archeology, geology, and electronic effects testing. Like previous books in this series, Ultra-Wideband Short-Pulse Electrom...

  2. Wideband CMOS receivers exploiting simultaneous output balancing and noise/distortion canceling

    NARCIS (Netherlands)

    Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, D.M.W.; Nauta, Bram

    2008-01-01

    Abstract— This paper deals with the problem of realizing wideband receiver front-ends in downscaled CMOSTechnologies, which are highly wanted for multi-standard radio receivers and cognitive radio applications. Instead of using many narrowband inductor based receivers, we prefer the use of one

  3. Mapping Urban Social Divisions

    Directory of Open Access Journals (Sweden)

    Susan Ball

    2010-05-01

    Full Text Available Against the background of increased levels of interest in space and images beyond the field of geography, this article (re- introduces earlier work on the semiotics of maps undertaken by geographers in the 1960s. The data limitations, purpose and cultural context in which a user interprets a map's codes and conventions are highlighted in this work, which remains relevant to the interpretation of maps—new and old—forty years later. By means of drawing on geography's contribution to the semiotics of maps, the article goes on to examine the concept of urban social divisions as represented in map images. Using a small number of map images, including two of the most widely known maps of urban social division in Europe and North America, the roles of context, data and purpose in the production and interpretation of maps are discussed. By presenting the examples chronologically the article shows that although advances in data collection and manipulation have allowed researchers to combine different social variables in maps of social division, and to interact with map images, work by geographers on the semiotics of maps is no less relevant today than when it was first proposed forty years ago. URN: urn:nbn:de:0114-fqs1002372

  4. A low-noise, wideband, integrated CMOS transimpedance preamplifier for photodiode applications

    International Nuclear Information System (INIS)

    Binkley, D.M.; Paulus, M.J.; Casey, M.E.; Rochelle, J.M.

    1992-01-01

    In this paper, a low-noise, wideband, integrated CMOS transimpedance preamplifier is presented for silicon avalanche photodiode (APD) applications. The preamplifier, fabricated in a standard 2μ CMOS technology, features a transimpedance gain of 45 kΩ, a risetime of 22 ns, a series noise of 1.6nV/Hz 1/2 , and a wideband equivalent input-noise current of 12 nA for a source capacitance of 12 pF. The measured 22 Na timing resolution of 9.2-ns FWHM and energy resolution of 22.4% FWHM for the RCA C30994 BGO/APD detector module coupled to the preamplifier is comparable to the performance reported using charge-sensitive preamplifiers. This illustrates that transimpedance preamplifiers should be considered for APD applications, especially where APD noise current dominates noise from feedback resistors in the 1--kΩ to 50-kΩ range

  5. Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media

    Science.gov (United States)

    2016-03-04

    AFRL-AFOSR-VA-TR-2016-0112 Ultra-Wideband Electromagnetic Pulse Propagation through Causal Media Natalie Cartwright RESEARCH FOUNDATION OF STATE... Electromagnetic Pulse Propagation through Causal Media 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-13-1-0013 5c.  PROGRAM ELEMENT NUMBER 61102F 6...SUPPLEMENTARY NOTES 14. ABSTRACT When an electromagnetic pulse travels through a dispersive material each frequency of the transmitted pulse changes in both

  6. WCDMA Uplink Interference Assessment from Multiple High Altitude Platform Configurations

    Directory of Open Access Journals (Sweden)

    Grace D

    2008-01-01

    Full Text Available Abstract We investigate the possibility of multiple high altitude platform (HAP coverage of a common cell area using a wideband code division multiple access (WCDMA system. In particular, we study the uplink system performance of the system. The results show that depending on the traffic demand and the type of service used, there is a possibility of deploying 3–6 HAPs covering the same cell area. The results also show the effect of cell radius on performance and the position of the multiple HAP base stations which give the worst performance.

  7. Simultaneous chromatic dispersion and PMD compensation by using coded-OFDM and girth-10 LDPC codes.

    Science.gov (United States)

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2008-07-07

    Low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) is studied as an efficient coded modulation scheme suitable for simultaneous chromatic dispersion and polarization mode dispersion (PMD) compensation. We show that, for aggregate rate of 10 Gb/s, accumulated dispersion over 6500 km of SMF and differential group delay of 100 ps can be simultaneously compensated with penalty within 1.5 dB (with respect to the back-to-back configuration) when training sequence based channel estimation and girth-10 LDPC codes of rate 0.8 are employed.

  8. Iterative optimization of performance libraries by hierarchical division of codes

    International Nuclear Information System (INIS)

    Donadio, S.

    2007-09-01

    The increasing complexity of hardware features incorporated in modern processors makes high performance code generation very challenging. Library generators such as ATLAS, FFTW and SPIRAL overcome this issue by empirically searching in the space of possible program versions for the one that performs the best. This thesis explores fully automatic solution to adapt a compute-intensive application to the target architecture. By mimicking complex sequences of transformations useful to optimize real codes, we show that generative programming is a practical tool to implement a new hierarchical compilation approach for the generation of high performance code relying on the use of state-of-the-art compilers. As opposed to ATLAS, this approach is not application-dependant but can be applied to fairly generic loop structures. Our approach relies on the decomposition of the original loop nest into simpler kernels. These kernels are much simpler to optimize and furthermore, using such codes makes the performance trade off problem much simpler to express and to solve. Finally, we propose a new approach for the generation of performance libraries based on this decomposition method. We show that our method generates high-performance libraries, in particular for BLAS. (author)

  9. Noise-based frequency offset modulation in wideband frequency-selective fading channels

    NARCIS (Netherlands)

    Meijerink, Arjan; Cotton, S.L.; Bentum, Marinus Jan; Scanlon, W.G.

    2009-01-01

    A frequency offset modulation scheme using wideband noise carriers is considered. The main advantage of such a scheme is that it enables fast receiver synchronization without channel adaptation, while providing robustness to multipath fading and in-band interference. This is important for low-power

  10. Quality assurance plan, Westinghouse Water Reactor Divisions

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    The Quality Assurance Program used by Westinghouse Nuclear Energy Systems Water Reactor Divisions is described. The purpose of the program is to assure that the design, materials, and workmanship on Nuclear Steam Supply System (NSSS) equipment meet applicable safety requirements, fulfill the requirements of the contracts with the applicants, and satisfy the applicable codes, standards, and regulatory requirements.

  11. A wideband software reconfigurable modem

    Science.gov (United States)

    Turner, J. H., Jr.; Vickers, H.

    A wideband modem is described which provides signal processing capability for four Lx-band signals employing QPSK, MSK and PPM waveforms and employs a software reconfigurable architecture for maximum system flexibility and graceful degradation. The current processor uses a 2901 and two 8086 microprocessors per channel and performs acquisition, tracking, and data demodulation for JITDS, GPS, IFF and TACAN systems. The next generation processor will be implemented using a VHSIC chip set employing a programmable complex array vector processor module, a GP computer module, customized gate array modules, and a digital array correlator. This integrated processor has application to a wide number of diverse system waveforms, and will bring the benefits of VHSIC technology insertion into avionic antijam communications systems.

  12. Ultra wideband coplanar waveguide fed spiral antenna for humanitarian demining

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne; Appel-Hansen, Jørgen

    2000-01-01

    to 1 bandwidth with a return loss better than 10 dB from 0.4 to 3.8 GHz is presented. A wideband balun covering the frequency range of the antenna was developed. The constructed spiral antenna is very useful in a stepped frequency ground penetrating radar for humanitarian demining due to the very...

  13. A mean field theory of coded CDMA systems

    International Nuclear Information System (INIS)

    Yano, Toru; Tanaka, Toshiyuki; Saad, David

    2008-01-01

    We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems

  14. A mean field theory of coded CDMA systems

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Toru [Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa 223-8522 (Japan); Tanaka, Toshiyuki [Graduate School of Informatics, Kyoto University, Yoshida Hon-machi, Sakyo-ku, Kyoto-shi, Kyoto 606-8501 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)], E-mail: yano@thx.appi.keio.ac.jp

    2008-08-15

    We present a mean field theory of code-division multiple-access (CDMA) systems with error-control coding. On the basis of the relation between the free energy and mutual information, we obtain an analytical expression of the maximum spectral efficiency of the coded CDMA system, from which a mean-field description of the coded CDMA system is provided in terms of a bank of scalar Gaussian channels whose variances in general vary at different code symbol positions. Regular low-density parity-check (LDPC)-coded CDMA systems are also discussed as an example of the coded CDMA systems.

  15. Wideband impedance measurements and modeling of DC motors for EMI predictions

    NARCIS (Netherlands)

    Diouf, F.; Leferink, Frank Bernardus Johannes; Duval, Fabrice; Bensetti, Mohamed

    2015-01-01

    In electromagnetic interference prediction, dc motors are usually modeled as a source and a series impedance. Previous researches only include the impedance of the armature, while neglecting the effect of the motor's rotation. This paper aims at measuring and modeling the wideband impedance of a dc

  16. Compact Wideband and Low-Profile Antenna Mountable on Large Metallic Surfaces

    DEFF Research Database (Denmark)

    Zhang, Shuai; Pedersen, Gert F.

    2017-01-01

    This paper proposes a compact wideband and low-profile antenna mountable on large metallic surfaces. Six rows of coupled microstrip resonators with different lengths are printed on a Teflon block. The lengths of the microstrip resonators in different rows are gradually reduced along the end-fire...

  17. Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling

    Science.gov (United States)

    Zhang, Jingdong; Zheng, Hua; Zhu, Tao; Yin, Guolu; Liu, Min; Bai, Yongzhong; Qu, Dingrong; Qiu, Feng; Huang, Xianbing

    2018-05-01

    The round trip time of the light pulse limits the maximum detectable vibration frequency response range of phase-sensitive optical time domain reflectometry ({\\phi}-OTDR). Unlike the uniform laser pulse interval in conventional {\\phi}-OTDR, we randomly modulate the pulse interval, so that an equivalent sub-Nyquist additive random sampling (sNARS) is realized for every sensing point of the long interrogation fiber. For an {\\phi}-OTDR system with 10 km sensing length, the sNARS method is optimized by theoretical analysis and Monte Carlo simulation, and the experimental results verify that a wide-band spars signal can be identified and reconstructed. Such a method can broaden the vibration frequency response range of {\\phi}-OTDR, which is of great significance in sparse-wideband-frequency vibration signal detection, such as rail track monitoring and metal defect detection.

  18. Comparison of fundamental and wideband harmonic contrast imaging of liver tumors.

    Science.gov (United States)

    Forsberg, F; Liu, J B; Chiou, H J; Rawool, N M; Parker, L; Goldberg, B B

    2000-03-01

    Wideband harmonic imaging (with phase inversion for improved tissue suppression) was compared to fundamental imaging in vivo. Four woodchucks with naturally occurring liver tumors were injected with Imagent (Alliance Pharmaceutical Corp., San Diego, CA). Randomized combinations of dose (0.05, 0.2 and 0.4 ml/kg) and acoustic output power (AO; 5, 25 and 63% or MI Siemens Medical Systems, Issaquah, WA). Tumor vascularity, conspicuity and contrast enhancement were rated by three independent observers. Imagent produced marked tumor enhancement and improved depiction of neovascularity at all dosages and AO settings in both modes. Tumor vascularity and enhancement correlated with mode, dose and AO (P < 0.002). Fundamental imaging produced more enhancement (P < 0.05), but tumor vascularity and conspicuity were best appreciated in harmonic mode (P < 0.05). Under the conditions studied here, the best approach was wideband harmonic imaging with 0.2 ml/kg of Imagent at an AO of 25%.

  19. General Time-Division AltBOC Modulation Technique for GNSS Signals

    Directory of Open Access Journals (Sweden)

    Z. Zhou

    2018-04-01

    Full Text Available In this paper, a general time-division alternate binary offset carrier (GTD-AltBOC modulation method is proposed, which is an extension of TD-AltBOC and time-multiplexed offset-carrier quadrature phase shift keying (TMOC-QPSK with high design flexibility. In this method, binary complex subcarriers and a time-division technique with flexible time slot assignment are used to achieve constant envelope modulation of the signal components with a variable power allocation ratio (PAR. The underlying principle of GTD-AltBOC and the constraints related to the PAR are investigated. For the generation of GTD-AltBOC signals, a lookup table (LUT-based scheme is presented; the minimum required clock rate is half or less of that for existing non-time-division methods. The receiver processing complexities are analyzed for three typical receiving modes, and the power spectral densities (PSDs, cross-correlation functions, multiplexing efficiencies and code-tracking performance are simulated; the results show that GTD-AltBOC enables a significant decrease in receiving complexity compared with existing methods while maintaining high performance in terms of multiplexing efficiency and code tracking.

  20. Statistical physics inspired energy-efficient coded-modulation for optical communications.

    Science.gov (United States)

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2012-04-15

    Because Shannon's entropy can be obtained by Stirling's approximation of thermodynamics entropy, the statistical physics energy minimization methods are directly applicable to the signal constellation design. We demonstrate that statistical physics inspired energy-efficient (EE) signal constellation designs, in combination with large-girth low-density parity-check (LDPC) codes, significantly outperform conventional LDPC-coded polarization-division multiplexed quadrature amplitude modulation schemes. We also describe an EE signal constellation design algorithm. Finally, we propose the discrete-time implementation of D-dimensional transceiver and corresponding EE polarization-division multiplexed system. © 2012 Optical Society of America

  1. Iterated decoding of modified product codes in optical networks

    DEFF Research Database (Denmark)

    Justesen, Jørn

    2009-01-01

    Appendix I of the standard ITU-T G.975 contains several codes that have been proposed for improved performance of optical transmission. While the original application was submarine cables, the codes are now also used in terrestrial systems where wavelength-division multiplexing (WDM) is introduced...

  2. Design and simulations of a spectral efficient optical code division multiple access scheme using alternated energy differentiation and single-user soft-decision demodulation

    Science.gov (United States)

    A. Garba, Aminata

    2017-01-01

    This paper presents a new approach to optical Code Division Multiple Access (CDMA) network transmission scheme using alternated amplitude sequences and energy differentiation at the transmitters to allow concurrent and secure transmission of several signals. The proposed system uses error control encoding and soft-decision demodulation to reduce the multi-user interference at the receivers. The design of the proposed alternated amplitude sequences, the OCDMA energy modulators and the soft decision, single-user demodulators are also presented. Simulation results show that the proposed scheme allows achieving spectral efficiencies higher than several reported results for optical CDMA and much higher than the Gaussian CDMA capacity limit.

  3. Maximum Likelihood DOA Estimation of Multiple Wideband Sources in the Presence of Nonuniform Sensor Noise

    Directory of Open Access Journals (Sweden)

    K. Yao

    2007-12-01

    Full Text Available We investigate the maximum likelihood (ML direction-of-arrival (DOA estimation of multiple wideband sources in the presence of unknown nonuniform sensor noise. New closed-form expression for the direction estimation Cramér-Rao-Bound (CRB has been derived. The performance of the conventional wideband uniform ML estimator under nonuniform noise has been studied. In order to mitigate the performance degradation caused by the nonuniformity of the noise, a new deterministic wideband nonuniform ML DOA estimator is derived and two associated processing algorithms are proposed. The first algorithm is based on an iterative procedure which stepwise concentrates the log-likelihood function with respect to the DOAs and the noise nuisance parameters, while the second is a noniterative algorithm that maximizes the derived approximately concentrated log-likelihood function. The performance of the proposed algorithms is tested through extensive computer simulations. Simulation results show the stepwise-concentrated ML algorithm (SC-ML requires only a few iterations to converge and both the SC-ML and the approximately-concentrated ML algorithm (AC-ML attain a solution close to the derived CRB at high signal-to-noise ratio.

  4. Wavelength-Hopping Time-Spreading Optical CDMA With Bipolar Codes

    Science.gov (United States)

    Kwong, Wing C.; Yang, Guu-Chang; Chang, Cheng-Yuan

    2005-01-01

    Two-dimensional wavelength-hopping time-spreading coding schemes have been studied recently for supporting greater numbers of subscribers and simultaneous users than conventional one-dimensional approaches in optical code-division multiple-access (OCDMA) systems. To further improve both numbers without sacrificing performance, a new code design utilizing bipolar codes for both wavelength hopping and time spreading is studied and analyzed in this paper. A rapidly programmable, integratable hardware design for this new coding scheme, based on arrayed-waveguide gratings, is also discussed.

  5. Generalized optical code construction for enhanced and Modified Double Weight like codes without mapping for SAC-OCDMA systems

    Science.gov (United States)

    Kumawat, Soma; Ravi Kumar, M.

    2016-07-01

    Double Weight (DW) code family is one of the coding schemes proposed for Spectral Amplitude Coding-Optical Code Division Multiple Access (SAC-OCDMA) systems. Modified Double Weight (MDW) code for even weights and Enhanced Double Weight (EDW) code for odd weights are two algorithms extending the use of DW code for SAC-OCDMA systems. The above mentioned codes use mapping technique to provide codes for higher number of users. A new generalized algorithm to construct EDW and MDW like codes without mapping for any weight greater than 2 is proposed. A single code construction algorithm gives same length increment, Bit Error Rate (BER) calculation and other properties for all weights greater than 2. Algorithm first constructs a generalized basic matrix which is repeated in a different way to produce the codes for all users (different from mapping). The generalized code is analysed for BER using balanced detection and direct detection techniques.

  6. Range extension and channel capacity increase in impulse-radio ultra-wideband communications

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Yu, Xianbin; Caballero Jambrina, Antonio

    2010-01-01

    We theoretically analyze the channel capacity of a 5th-order Gaussian pulse-based ultra-wideband (UWB) system and experimentally demonstrate 2 Gbit/s UWB-over-fiber transmission systems incorporating wireless transmission. Both electrical and photonic UWB pulse generation methods are employed...

  7. LDPC coded OFDM over the atmospheric turbulence channel.

    Science.gov (United States)

    Djordjevic, Ivan B; Vasic, Bane; Neifeld, Mark A

    2007-05-14

    Low-density parity-check (LDPC) coded optical orthogonal frequency division multiplexing (OFDM) is shown to significantly outperform LDPC coded on-off keying (OOK) over the atmospheric turbulence channel in terms of both coding gain and spectral efficiency. In the regime of strong turbulence at a bit-error rate of 10(-5), the coding gain improvement of the LDPC coded single-side band unclipped-OFDM system with 64 sub-carriers is larger than the coding gain of the LDPC coded OOK system by 20.2 dB for quadrature-phase-shift keying (QPSK) and by 23.4 dB for binary-phase-shift keying (BPSK).

  8. The Effects of Spatial Diversity and Imperfect Channel Estimation on Wideband MC-DS-CDMA and MC-CDMA

    Science.gov (United States)

    2009-10-01

    In our previous work, we compared the theoretical bit error rates of multi-carrier direct sequence code division multiple access (MC- DS - CDMA ) and...consider only those cases where MC- CDMA has higher frequency diversity than MC- DS - CDMA . Since increases in diversity yield diminishing gains, we conclude

  9. Ultra-Wideband Transceivers for Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Reisenzahn Alexander

    2005-01-01

    Full Text Available Ultra-wideband (UWB radio offers low power consumption, low power spectral density, high immunity against interference, and other benefits, not only for consumer electronics, but also for medical devices. A cochlear implant (CI is an electronic hearing apparatus, requiring a wireless link through human tissue. In this paper we propose an UWB link for a data rate of Mbps and a propagation distance up to 500 mm. Transmitters with step recovery diode and transistor pulse generators are proposed. Two types of antennas and their filter characteristics in the UWB spectrum will be discussed. An ultra-low-power back tunnel diode receiver prototype is described and compared with conventional detector receivers.

  10. Japan Atomic Energy Research Institute, Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1979-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1978 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committees on Reactor Physics and in Decommissioning of Nuclear Facilities. (author)

  11. Performance Analysis of Ultra-Wideband Channel for Short-Range Monopulse Radar at Ka-Band

    Directory of Open Access Journals (Sweden)

    Naohiko Iwakiri

    2012-01-01

    Full Text Available High-range resolution is inherently provided with Ka-band ultra-wideband (UWB vehicular radars. The authors have developed a prototype UWB monopulse radar equipped with a two-element receiving antenna array and reported its measurement results. In this paper, a more detailed verification using these measurements is presented. The measurements were analyzed employing matched filtering and eigendecomposition, and then multipath components were extracted to examine the behavior of received UWB monopulse signals. Next, conventional direction finding algorithms based on narrowband assumption were evaluated using the extracted multipath components, resulting in acceptable angle-of-arrival (AOA from the UWB monopulse signal regardless of wideband signals. Performance degradation due to a number of averaging the received monopulses was also examined to design suitable radar's waveforms.

  12. Ruggedizing Printed Circuit Boards Using a Wideband Dynamic Absorber

    Directory of Open Access Journals (Sweden)

    V.C. Ho

    2003-01-01

    Full Text Available The existing approaches to ruggedizing inherently fragile and sensitive critical components of electronic equipment such as printed circuit boards (PCB for use in hostile industrial and military environment are either insufficient or expensive. This paper addresses a novel approach towards ruggedizing commercial-off-the-shelf PCBs using a miniature wideband dynamic absorber. The optimisation technique used relies on the experimentally measured vibration spectra and complex receptance of the original PCB.

  13. A Wideband Autonomous Cognitive Radio Development and Prototyping System

    Science.gov (United States)

    2017-11-14

    three infrastructure modules (a Network Spectrum Analyzer, a Vector Signal Generator and a Rapid Printed Circuit Board (PCB) Fabrication Unit) and a...Antennas for Mobile Platforms”, 02/01/17-12/31/17 ($100K), Honeywell FM&T. 3. S. K. Jayaweera (Principal Investigator) and C. G. Christodoulou “Wideband...Signal Generator and a Rapid Printed Circuit Board (PCB) Fabrication Unit) and a Software Defined Radio (SDR) testbed made of several USRP SDR

  14. Code-division multiple-access protocol for active RFID systems

    Science.gov (United States)

    Mazurek, Gustaw; Szabatin, Jerzy

    2008-01-01

    Most of the Radio Frequency Identification (RFID) systems operating in HF and UHF bands employ narrowband modulations (FSK or ASK) with Manchester coding. However, these simple transmission schemes are vulnerable to narrowband interference (NBI) generated by other radio systems working in the same frequency band, and also suffer from collision problem and need special anti-collision procedures. This becomes especially important when operating in a noisy, crowded industrial environment. In this paper we show the performance of RFID system with DS-CDMA transmission in comparison to a standard system with FSK modulation defined in ISO 18000-7. Our simulation results show that without any bandwidth expansion the immunity against NBI can be improved by 8 dB and the system capacity can be 7 times higher when using DS-CDMA transmission instead of FSK modulation with Manchester coding.

  15. Uniform Circular Antenna Array Applications in Coded DS-CDMA Mobile Communication Systems

    National Research Council Canada - National Science Library

    Seow, Tian

    2003-01-01

    ...) has greatly increased. This thesis examines the use of an equally spaced circular adaptive antenna array at the mobile station for a typical coded direct sequence code division multiple access (DS-CDMA...

  16. Fixed capacity and variable member grouping assignment of orthogonal variable spreading factor code tree for code division multiple access networks

    Directory of Open Access Journals (Sweden)

    Vipin Balyan

    2014-08-01

    Full Text Available Orthogonal variable spreading factor codes are used in the downlink to maintain the orthogonality between different channels and are used to handle new calls arriving in the system. A period of operation leads to fragmentation of vacant codes. This leads to code blocking problem. The assignment scheme proposed in this paper is not affected by fragmentation, as the fragmentation is generated by the scheme itself. In this scheme, the code tree is divided into groups whose capacity is fixed and numbers of members (codes are variable. A group with maximum number of busy members is used for assignment, this leads to fragmentation of busy groups around code tree and compactness within group. The proposed scheme is well evaluated and compared with other schemes using parameters like code blocking probability and call establishment delay. Through simulations it has been demonstrated that the proposed scheme not only adequately reduces code blocking probability, but also requires significantly less time before assignment to locate a vacant code for assignment, which makes it suitable for the real-time calls.

  17. Investigation on cored-eutectic structure in Ni60/WC composite coatings fabricated by wide-band laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qunshuang, E-mail: maqunshuang@126.com; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan, E-mail: jwang@sdu.edu.cn; Liu, Kun, E-mail: liu_kun@163.com

    2015-10-05

    Highlights: • Perfect composite coatings were fabricated using wide-band laser cladding. • Special cored-eutectic structure was synthesized in Ni60/WC composite coatings. • Cored-eutectic consists of hard carbide compounds and fine lamellar eutectic of M{sub 23}C{sub 6} carbides and γ-Ni(Fe). • Wear resistance of coating layer was significantly improved due to precipitation of M{sub 23}C{sub 6} carbides. - Abstract: Ni60 composite coatings reinforced with WC particles were fabricated on the surface of Q550 steel using LDF4000-100 fiber laser device. The wide-band laser and circular beam laser used in laser cladding were obtained by optical lens. Microstructure, elemental distribution, phase constitution and wear properties of different composite coatings were investigated. The results showed that WC particles were partly dissolved under the effect of wide-band fiber laser irradiation. A special cored-eutectic structure was synthesized due to dissolution of WC particles. According to EDS and XRD results, the inside cores were confirmed as carbides of M{sub 23}C{sub 6} enriched in Cr, W and Fe. These complex carbides were primarily separated out in the molten metal when solidification started. Eutectic structure composed of M{sub 23}C{sub 6} carbides and γ-Ni(Fe) grew around carbides when cooling. Element content of Cr and W is lower at the bottom of cladding layer. In consequence, the eutectic structure formed in this region did not have inside carbides. The coatings made by circular laser beam were composed of dendritic matrix and interdendritic eutectic carbides, lacking of block carbides. Compared to coatings made by circular laser spot, the cored-eutectic structure formed in wide-band coatings had advantages of well-distribution and tight binding with matrix. The uniform power density and energy distribution and the weak liquid convection in molten pool lead to the unique microstructure evolution in composite coatings made by wide-band laser

  18. Iterative equalization for OFDM systems over wideband Multi-Scale Multi-Lag channels

    NARCIS (Netherlands)

    Xu, T.; Tang, Z.; Remis, R.; Leus, G.

    2012-01-01

    OFDM suffers from inter-carrier interference (ICI) when the channel is time varying. This article seeks to quantify the amount of interference resulting from wideband OFDM channels, which are assumed to follow the multi-scale multi-lag (MSML) model. The MSML channel model results in full channel

  19. Metasurface base on uneven layered fractal elements for ultra-wideband RCS reduction

    Science.gov (United States)

    Su, Jianxun; Cui, Yueyang; Li, Zengrui; Yang, Yaoqing Lamar; Che, Yongxing; Yin, Hongcheng

    2018-03-01

    A novel metasurface based on uneven layered fractal elements is designed and fabricated for ultra-wideband radar cross section (RCS) reduction in this paper. The proposed metasurface consists of two fractal subwavelength elements with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Ultra-wideband RCS reduction results from the phase cancellation between two local waves produced by these two unit cells. The diffuse scattering of electromagnetic (EM) waves is caused by the randomized phase distribution, leading to a low monostatic and bistatic RCS simultaneously. This metasurface can achieve -10dB RCS reduction in an ultra-wide frequency range from 6.6 to 23.9 GHz with a ratio bandwidth (fH/fL) of 3.62:1 under normal incidences for both x- and y-polarized waves. Both the simulation and the measurement results are consistent to verify this excellent RCS reduction performance of the proposed metasurface.

  20. WCDMA Uplink Interference Assessment from Multiple High Altitude Platform Configurations

    Directory of Open Access Journals (Sweden)

    A. Mohammed

    2008-06-01

    Full Text Available We investigate the possibility of multiple high altitude platform (HAP coverage of a common cell area using a wideband code division multiple access (WCDMA system. In particular, we study the uplink system performance of the system. The results show that depending on the traffic demand and the type of service used, there is a possibility of deploying 3–6 HAPs covering the same cell area. The results also show the effect of cell radius on performance and the position of the multiple HAP base stations which give the worst performance.

  1. PROXY-BASED PATCHING STREAM TRANSMISSION STRATEGY IN MOBILE STREAMING MEDIA SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Liao Jianxin; Lei Zhengxiong; Ma Xutao; Zhu Xiaomin

    2006-01-01

    A mobile transmission strategy, PMPatching (Proxy-based Mobile Patching) transmission strategy is proposed, it applies to the proxy-based mobile streaming media system in Wideband Code Division Multiple Access (WCDMA) network. Performance of the whole system can be improved by using patching stream to transmit anterior part of the suffix that had been played back, and by batching all the demands for the suffix arrived in prefix period and patching stream transmission threshold period. Experimental results show that this strategy can efficiently reduce average network transmission cost and number of channels consumed in central streaming media server.

  2. Wide-band slow-wave systems simulation and applications

    CERN Document Server

    Staras, Stanislovas

    2012-01-01

    The field of electromagnetics has seen considerable advances in recent years, based on the wide applications of numerical methods for investigating electromagnetic fields, microwaves, and other devices. Wide-Band Slow-Wave Systems: Simulation and Applications presents new technical solutions and research results for the analysis, synthesis, and design of slow-wave structures for modern electronic devices with super-wide pass-bands. It makes available, for the first time in English, significant research from the past 20 years that was previously published only in Russian and Lithuanian. The aut

  3. Paper-based inkjet-printed ultra-wideband fractal antennas

    KAUST Repository

    Maza, Armando Rodriguez

    2012-01-01

    For the first time, paper-based inkjet-printed ultra-wideband (UWB) fractal antennas are presented. Two new designs, a miniaturised UWB monopole, which utilises a fractal matching network and is the smallest reported inkjet-printed UWB printed antenna to date, and a fourth-order Koch Snowflake monopole, which utilises a Sierpinski gasket fractal for ink reduction, are demonstrated. It is shown that fractals prove to be a successful method of reducing fabrication costs in inkjet-printed antennas, while retaining or enhancing printed antenna performance. © 2012 The Institution of Engineering and Technology.

  4. Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank

    Science.gov (United States)

    Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.

    2014-05-01

    Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is

  5. Design of variable-weight quadratic congruence code for optical CDMA

    Science.gov (United States)

    Feng, Gang; Cheng, Wen-Qing; Chen, Fu-Jun

    2015-09-01

    A variable-weight code family referred to as variable-weight quadratic congruence code (VWQCC) is constructed by algebraic transformation for incoherent synchronous optical code division multiple access (OCDMA) systems. Compared with quadratic congruence code (QCC), VWQCC doubles the code cardinality and provides the multiple code-sets with variable code-weight. Moreover, the bit-error rate (BER) performance of VWQCC is superior to those of conventional variable-weight codes by removing or padding pulses under the same chip power assumption. The experiment results show that VWQCC can be well applied to the OCDMA with quality of service (QoS) requirements.

  6. Novel wideband MIMO antennas that can cover the whole LTE spectrum in handsets and portable computers.

    Science.gov (United States)

    Sanad, Mohamed; Hassan, Noha

    2014-01-01

    A dual resonant antenna configuration is developed for multistandard multifunction mobile handsets and portable computers. Only two wideband resonant antennas can cover most of the LTE spectrums in portable communication equipment. The bandwidth that can be covered by each antenna exceeds 70% without using any matching or tuning circuits, with efficiencies that reach 80%. Thus, a dual configuration of them is capable of covering up to 39 LTE (4G) bands besides the existing 2G and 3G bands. 2×2 MIMO configurations have been also developed for the two wideband antennas with a maximum isolation and a minimum correlation coefficient between the primary and the diversity antennas.

  7. A Unified Framework of the Performance Evaluation of Optical Time-Wavelength Code-Division Multiple-Access Systems

    Science.gov (United States)

    Inaty, Elie

    In this paper, we provide an analysis to the performance of optical time-wavelength code-division multiple-access (OTW-CDMA) network when the system is working above the nominal transmission rate limit imposed by the passive encoding-decoding operation. We address the problem of overlapping in such a system and how it can directly affect the bit error rate (BER). A unified mathematical framework is presented under the assumption of one coincidence sequences with non-repeating wavelengths. A closed form expression of the multiple access interference limited BER is provided as a function of different system parameters. Results show that the performance of OTW-CDMA system may be critically affected when working above the nominal limit; an event that may happen when the network operates at high transmission rate. In addition, the impact of the derived error probability on the performance of two newly proposed MAC protocols, the S-ALOHA and the R3T, is also investigated. It is shown that for low transmission rates, the S-ALOHA is better than the R3T; while the R3T is better at very high transmission rates. However, in general it is postulated that the R3T protocol suffers a higher delay mainly because of the presence of additional modes.

  8. S – C – L triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, H; Zulkifli, M Z; Hassan, N A; Muhammad, F D; Harun, S W [Photonics Research Center (Department of Physics), University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2013-10-31

    We propose and demonstrate a wide-band semiconductor optical amplifier (SOA) based triple-wavelength superluminescent source with the output in the S-, C- and L-band regions. The proposed systems uses an ultra-wideband SOA with an amplification range from 1440 to 1620 nm as the linear gain medium. Three fibre Bragg gratings (FBGs) with centre wavelengths of 1500, 1540 and 1580 nm are used to generate the lasing wavelengths in the S-, Cand L-bands respectively, while a variable optical attenuator is used to finely balance the optical powers of the lasing wavelengths. The ultra-wideband SOA generates an amplified spontaneous emission (ASE) spectrum with a peak power of -33 dBm at the highest SOA drive current, and also demonstrates a down-shift in the centre wavelength of the generated spectrum due to the spatial distribution of the carrier densities. The S-band wavelength is the dominant wavelength at high drive currents, with an output power of -6 dBm as compared to the C- and L-bands, which only have powers of -11 and -10 dBm, respectively. All wavelengths have a high average signal-to-noise ratio more than 60 dB at the highest drive current of 390 mA, and the system also shows a high degree of stability, with power fluctuations of less than 3 dB within 70 min. The proposed system can find many applications where a wide-band and stable laser source is crucial, such as in communications and sensing. (control of laser radiation parameters)

  9. S – C – L triple wavelength superluminescent source based on an ultra-wideband SOA and FBGs

    International Nuclear Information System (INIS)

    Ahmad, H; Zulkifli, M Z; Hassan, N A; Muhammad, F D; Harun, S W

    2013-01-01

    We propose and demonstrate a wide-band semiconductor optical amplifier (SOA) based triple-wavelength superluminescent source with the output in the S-, C- and L-band regions. The proposed systems uses an ultra-wideband SOA with an amplification range from 1440 to 1620 nm as the linear gain medium. Three fibre Bragg gratings (FBGs) with centre wavelengths of 1500, 1540 and 1580 nm are used to generate the lasing wavelengths in the S-, Cand L-bands respectively, while a variable optical attenuator is used to finely balance the optical powers of the lasing wavelengths. The ultra-wideband SOA generates an amplified spontaneous emission (ASE) spectrum with a peak power of -33 dBm at the highest SOA drive current, and also demonstrates a down-shift in the centre wavelength of the generated spectrum due to the spatial distribution of the carrier densities. The S-band wavelength is the dominant wavelength at high drive currents, with an output power of -6 dBm as compared to the C- and L-bands, which only have powers of -11 and -10 dBm, respectively. All wavelengths have a high average signal-to-noise ratio more than 60 dB at the highest drive current of 390 mA, and the system also shows a high degree of stability, with power fluctuations of less than 3 dB within 70 min. The proposed system can find many applications where a wide-band and stable laser source is crucial, such as in communications and sensing. (control of laser radiation parameters)

  10. Wideband pulse amplifiers for the NECTAr chip

    International Nuclear Information System (INIS)

    Sanuy, A.; Delagnes, E.; Gascon, D.; Sieiro, X.; Bolmont, J.; Corona, P.; Feinstein, F.; Glicenstein, J-F.; Naumann, C.L.; Nayman, P.; Ribó, M.

    2012-01-01

    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1–3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  11. Wideband pulse amplifiers for the NECTAr chip

    Science.gov (United States)

    Sanuy, A.; Delagnes, E.; Gascon, D.; Sieiro, X.; Bolmont, J.; Corona, P.; Feinstein, F.; Glicenstein, J.-F.; Naumann, C. L.; Nayman, P.; Ribó, M.; Tavernet, J.-P.; Toussenel, F.; Vincent, P.; Vorobiov, S.

    2012-12-01

    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  12. Japan Atomic Energy Research Institute, Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1981-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1980 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  13. WISM - A Wideband Instrument for Snow Measurement: Past Accomplishments, Current Status, and Path Forward

    Science.gov (United States)

    Bonds, Quenton; Racette, Paul; Durham, Tim (Principal Investigator)

    2016-01-01

    Presented are the prior accomplishments, current status and path forward for GSFC's Wideband Instrument for Snow Measurement (WISM). This work is a high level overview of the project, presented via Webinar to the IEEE young professionals.

  14. The effect of structural design parameters on FPGA-based feed-forward space-time trellis coding-orthogonal frequency division multiplexing channel encoders

    Science.gov (United States)

    Passas, Georgios; Freear, Steven; Fawcett, Darren

    2010-08-01

    Orthogonal frequency division multiplexing (OFDM)-based feed-forward space-time trellis code (FFSTTC) encoders can be synthesised as very high speed integrated circuit hardware description language (VHDL) designs. Evaluation of their FPGA implementation can lead to conclusions that help a designer to decide the optimum implementation, given the encoder structural parameters. VLSI architectures based on 1-bit multipliers and look-up tables (LUTs) are compared in terms of FPGA slices and block RAMs (area), as well as in terms of minimum clock period (speed). Area and speed graphs versus encoder memory order are provided for quadrature phase shift keying (QPSK) and 8 phase shift keying (8-PSK) modulation and two transmit antennas, revealing best implementation under these conditions. The effect of number of modulation bits and transmit antennas on the encoder implementation complexity is also investigated.

  15. Joint power control based on service factor for code division multiple access system%TDD-CDMA系统中基于业务统计的联合功率控制算法

    Institute of Scientific and Technical Information of China (English)

    陈波; 戎蒙恬; 胡威

    2008-01-01

    An important feature of the traffic in mobile networks is burstiness. Drawbacks of conventional power control algorithms for time division duplex (TDD)-code division multiple access (CDMA) systems are analyzed. A joint power control algorithm based on service factor is presented to address the TDD-CDMA mobile services in the burst mode according to the Markov modulated Bernoulli process. The joint power control equation is derived. A function model is developed to verify the new algorithm and evaluate its performance. Simulation results show that the new power control algorithm can estimate interference strength more precisely, speed up convergence of power control, and enhance power efficiency and system capacity. It is shown that the proposed algorithm is more robust against rink gain changes, and outperforms the reference algorithms.

  16. A high-speed Schottky detector for ultra-wideband communications

    DEFF Research Database (Denmark)

    Valdecasa, Guillermo Silva; Cimoli, Bruno; Blanco Granja, Ángel

    2017-01-01

    This letter reviews the design procedure of a high‐speed Schottky video detector for high‐data‐rate communications within the ultra‐wideband (UWB) frequencies. The classic design approach for video detectors is extended with a mixer‐like analysis, which results in a more detailed assessment of th....... Using 0 dBm carrier power, the lowest measured conversion loss is 10 dB for a video frequency of 1.1 GHz and better than 13 dB up to 1.8 GHz....

  17. High performance mixed optical CDMA system using ZCC code and multiband OFDM

    Directory of Open Access Journals (Sweden)

    Nawawi N. M.

    2017-01-01

    Full Text Available In this paper, we have proposed a high performance network design, which is based on mixed optical Code Division Multiple Access (CDMA system using Zero Cross Correlation (ZCC code and multiband Orthogonal Frequency Division Multiplexing (OFDM called catenated OFDM. In addition, we also investigate the related changing parameters such as; effective power, number of user, number of band, code length and code weight. Then we theoretically analyzed the system performance comprehensively while considering up to five OFDM bands. The feasibility of the proposed system architecture is verified via the numerical analysis. The research results demonstrated that our developed modulation solution can significantly enhanced the total number of user; improving up to 80% for five catenated bands compared to traditional optical CDMA system, with the code length equals to 80, transmitted at 622 Mbps. It is also demonstrated that the BER performance strongly depends on number of weight, especially with less number of users. As the number of weight increases, the BER performance is better.

  18. High performance mixed optical CDMA system using ZCC code and multiband OFDM

    Science.gov (United States)

    Nawawi, N. M.; Anuar, M. S.; Junita, M. N.; Rashidi, C. B. M.

    2017-11-01

    In this paper, we have proposed a high performance network design, which is based on mixed optical Code Division Multiple Access (CDMA) system using Zero Cross Correlation (ZCC) code and multiband Orthogonal Frequency Division Multiplexing (OFDM) called catenated OFDM. In addition, we also investigate the related changing parameters such as; effective power, number of user, number of band, code length and code weight. Then we theoretically analyzed the system performance comprehensively while considering up to five OFDM bands. The feasibility of the proposed system architecture is verified via the numerical analysis. The research results demonstrated that our developed modulation solution can significantly enhanced the total number of user; improving up to 80% for five catenated bands compared to traditional optical CDMA system, with the code length equals to 80, transmitted at 622 Mbps. It is also demonstrated that the BER performance strongly depends on number of weight, especially with less number of users. As the number of weight increases, the BER performance is better.

  19. Performance of Different OCDMA Codes with FWM and XPM Nonlinear Effects

    Science.gov (United States)

    Rana, Shivani; Gupta, Amit

    2017-08-01

    In this paper, 1 Gb/s non-linear optical code division multiple access system have been simulated and modeled. To reduce multiple user interference multi-diagonal (MD) code which possesses the property of having zero cross-correlation have been deployed. The MD code shows better results than Walsh-Hadamard and multi-weight code under the nonlinear effect of four-wave mixing (FWM) and cross-phase modulation (XPM). The simulation results reveal that effect of FWM reduces when MD codes are employed as compared to other codes.

  20. An ultra-wideband pattern reconfigurable antenna based on graphene coating

    Science.gov (United States)

    Jiang, YanNan; Yuan, Rui; Gao, Xi; Wang, Jiao; Li, SiMin; Lin, Yi-Yu

    2016-11-01

    An ultra-wideband pattern reconfigurable antenna is proposed. The antenna is a dielectric coaxial hollow monopole with a cylindrical graphene-based impedance surface coating. It consists of a graphene sheet coated onto the inner surface of a cylindrical substrate and a set of independent polysilicon DC gating pads mounted on the outside of the cylindrical substrate. By changing the DC bias voltages to the different gating pads, the surface impedance of the graphene coating can be freely controlled. Due to the tunability of graphene's surface impedance, the radiation pattern of the proposed antenna can be reconfigured. A transmission line method is used to illustrate the physical mechanism of the proposed antenna. The results show that the proposed antenna can reconfigure its radiation pattern in the omnidirectional mode with the relative bandwidth of 58.5% and the directional mode over the entire azimuth plane with the relative bandwidth of 67%. Project supported by the National Natural Science Foundation of China (Grant Nos. 61661012, 61461016, and 61361005), the Natural Science Foundation of Guangxi, China (Grant Nos. 2015GXNSFBB139003 and 2014GXNSFAA118283), Program for Innovation Research Team of Guilin University of Electromagnetic Technology, China, and the Dean Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, China.

  1. A Brief Survey of Media Access Control, Data Link Layer, and Protocol Technologies for Lunar Surface Communications

    Science.gov (United States)

    Wallett, Thomas M.

    2009-01-01

    This paper surveys and describes some of the existing media access control and data link layer technologies for possible application in lunar surface communications and the advanced wideband Direct Sequence Code Division Multiple Access (DSCDMA) conceptual systems utilizing phased-array technology that will evolve in the next decade. Time Domain Multiple Access (TDMA) and Code Division Multiple Access (CDMA) are standard Media Access Control (MAC) techniques that can be incorporated into lunar surface communications architectures. Another novel hybrid technique that is recently being developed for use with smart antenna technology combines the advantages of CDMA with those of TDMA. The relatively new and sundry wireless LAN data link layer protocols that are continually under development offer distinct advantages for lunar surface applications over the legacy protocols which are not wireless. Also several communication transport and routing protocols can be chosen with characteristics commensurate with smart antenna systems to provide spacecraft communications for links exhibiting high capacity on the surface of the Moon. The proper choices depend on the specific communication requirements.

  2. Novel Wideband MIMO Antennas That Can Cover the Whole LTE Spectrum in Handsets and Portable Computers

    Directory of Open Access Journals (Sweden)

    Mohamed Sanad

    2014-01-01

    Full Text Available A dual resonant antenna configuration is developed for multistandard multifunction mobile handsets and portable computers. Only two wideband resonant antennas can cover most of the LTE spectrums in portable communication equipment. The bandwidth that can be covered by each antenna exceeds 70% without using any matching or tuning circuits, with efficiencies that reach 80%. Thus, a dual configuration of them is capable of covering up to 39 LTE (4G bands besides the existing 2G and 3G bands. 2×2 MIMO configurations have been also developed for the two wideband antennas with a maximum isolation and a minimum correlation coefficient between the primary and the diversity antennas.

  3. Effects of Compound K-Distributed Sea Clutter on Angle Measurement of Wideband Monopulse Radar

    Directory of Open Access Journals (Sweden)

    Hong Zhu

    2017-01-01

    Full Text Available The effects of compound K-distributed sea clutter on angle measurement of wideband monopulse radar are investigated in this paper. We apply the conditional probability density function (pdf of monopulse ratio (MR error to analyze these effects. Based on the angle measurement procedure of the wideband monopulse radar, this conditional pdf is first deduced in detail for the case of compound K-distributed sea clutter plus noise. Herein, the spatial correlation of the texture components for each channel clutter and the correlation of the texture components between the sum and difference channel clutters are considered, and two extreme situations for each of them are tackled. Referring to the measured sea clutter data, angle measurement performances in various K-distributed sea clutter plus noise circumstances are simulated, and the effects of compound K-distributed sea clutter on angle measurement are discussed.

  4. An inductorless wideband LNA with a new noise canceling technique

    OpenAIRE

    MOGHADAM, POURIA PAZHOUHESH; ABRISHAMIFAR, ADIB

    2017-01-01

    An inductorless wideband low-noise amplifier (LNA) employing a new noise canceling technique for multistandard applications is presented. The main amplifier has a cascode common gate structure, which provides good input impedance matching and isolation. The proposed noise canceling technique not only improves the noise figure and power gain but also embeds a g$_{m}$-boosting technique in itself, which reduces the power consumption of the main amplifier. Using current-steering and ...

  5. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling

    OpenAIRE

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    2004-01-01

    Known elementary wide-band amplifiers suffer from a fundamental tradeoff between noise figure (NF) and source impedance matching, which limits the NF to values typically above 3 dB. Global negative feedback can be used to break this tradeoff, however, at the price of potential instability. In contrast, this paper presents a feedforward noise-canceling technique, which allows for simultaneous noise and impedance matching, while canceling the noise and distortion contributions of the matching d...

  6. Survey of nuclear fuel-cycle codes

    International Nuclear Information System (INIS)

    Thomas, C.R.; de Saussure, G.; Marable, J.H.

    1981-04-01

    A two-month survey of nuclear fuel-cycle models was undertaken. This report presents the information forthcoming from the survey. Of the nearly thirty codes reviewed in the survey, fifteen of these codes have been identified as potentially useful in fulfilling the tasks of the Nuclear Energy Analysis Division (NEAD) as defined in their FY 1981-1982 Program Plan. Six of the fifteen codes are given individual reviews. The individual reviews address such items as the funding agency, the author and organization, the date of completion of the code, adequacy of documentation, computer requirements, history of use, variables that are input and forecast, type of reactors considered, part of fuel cycle modeled and scope of the code (international or domestic, long-term or short-term, regional or national). The report recommends that the Model Evaluation Team perform an evaluation of the EUREKA uranium mining and milling code

  7. Enhanced bit rate-distance product impulse radio ultra-wideband over fiber link

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Jensen, Jesper Bevensee; Caballero Jambrina, Antonio

    2010-01-01

    We report on a record distance and bit rate-wireless impulse radio (IR) ultra-wideband (UWB) link with combined transmission over a 20 km long fiber link. We are able to improve the compliance with the regulated frequency emission mask and achieve bit rate-distance products as high as 16 Gbit/s·m....

  8. Performance optimization of spectral amplitude coding OCDMA system using new enhanced multi diagonal code

    Science.gov (United States)

    Imtiaz, Waqas A.; Ilyas, M.; Khan, Yousaf

    2016-11-01

    This paper propose a new code to optimize the performance of spectral amplitude coding-optical code division multiple access (SAC-OCDMA) system. The unique two-matrix structure of the proposed enhanced multi diagonal (EMD) code and effective correlation properties, between intended and interfering subscribers, significantly elevates the performance of SAC-OCDMA system by negating multiple access interference (MAI) and associated phase induce intensity noise (PIIN). Performance of SAC-OCDMA system based on the proposed code is thoroughly analyzed for two detection techniques through analytic and simulation analysis by referring to bit error rate (BER), signal to noise ratio (SNR) and eye patterns at the receiving end. It is shown that EMD code while using SDD technique provides high transmission capacity, reduces the receiver complexity, and provides better performance as compared to complementary subtraction detection (CSD) technique. Furthermore, analysis shows that, for a minimum acceptable BER of 10-9 , the proposed system supports 64 subscribers at data rates of up to 2 Gbps for both up-down link transmission.

  9. Statistical Modeling, Simulation, and Experimental Verification of Wideband Indoor Mobile Radio Channels

    Directory of Open Access Journals (Sweden)

    Yuanyuan Ma

    2018-01-01

    Full Text Available This paper focuses on the modeling, simulation, and experimental verification of wideband single-input single-output (SISO mobile fading channels for indoor propagation environments. The indoor reference channel model is derived from a geometrical rectangle scattering model, which consists of an infinite number of scatterers. It is assumed that the scatterers are exponentially distributed over the two-dimensional (2D horizontal plane of a rectangular room. Analytical expressions are derived for the probability density function (PDF of the angle of arrival (AOA, the PDF of the propagation path length, the power delay profile (PDP, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOC channel simulator is derived from the nonrealizable reference model by employing the SOC principle. It is shown that the SOC channel simulator approximates closely the reference model with respect to the FCF. The SOC channel simulator enables the performance evaluation of wideband indoor wireless communication systems with reduced realization expenditure. Moreover, the rationality and usefulness of the derived indoor channel model is confirmed by various measurements at 2.4, 5, and 60 GHz.

  10. The Analysis of a Wideband Strip-Helical Antenna with 1.1 Turns

    Directory of Open Access Journals (Sweden)

    Xihui Tang

    2016-01-01

    Full Text Available A wideband strip-helical antenna with 1.1 turns is analyzed numerically and experimentally. By replacing the traditional wire helix with wide metallic strip, the forward traveling current on the strip helix with about one turn smoothly decays to the minimum value at the open end of the helix. Therefore, the strip helix can excite a wideband circular polarization (CP wave with 50-ohm impedance matching. The proposed antenna is printed on a hollow-cylinder with a substrate relative permittivity of εr=2.2 and a thickness of h=0.5 mm. A 50 Ω coaxial cable is directly connected to excite the strip-helical antenna without any additional impedance matching section. The ground plane is placed below the antenna in order to provide a directional radiation pattern. To demonstrate this method, a prototype of 1.1-turn strip-helical antenna is tested. The test shows that the proposed antenna can reach an overlapped bandwidth of 46% with height of 0.52λ0, where λ0 is the wavelength in free space at the center operation frequency.

  11. Ultra-wideband and 60 GHz communications for biomedical applications

    CERN Document Server

    Yuce, Mehmet R

    2013-01-01

    This book investigates the design of devices, systems, and circuits for medical applications using the two recently established frequency bands: ultra-wideband (3.1-10.6 GHz) and 60 GHz ISM band. These two bands provide the largest bandwidths available for communication technologies and present many attractive opportunities for medical applications. The applications of these bands in healthcare are wireless body area network (WBAN), medical imaging, biomedical sensing, wearable and implantable devices, fast medical device connectivity, video data transmission, and vital signs monitoring. The r

  12. Wideband pulse amplifiers for the NECTAr chip

    Energy Technology Data Exchange (ETDEWEB)

    Sanuy, A., E-mail: asanuy@ecm.ub.es [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Delagnes, E. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Gascon, D. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Sieiro, X. [Departament d' Electronica, Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); Bolmont, J.; Corona, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Feinstein, F. [LUPM, Universite Montpellier II and IN2P3/CNRS, CC072, bat. 13, place Eugene Bataillon, 34095 Montpellier (France); Glicenstein, J-F. [IRFU/DSM/CEA, CE-Saclay, Bat. 141 SEN Saclay, F-91191, Gif-sur-Yvette (France); Naumann, C.L.; Nayman, P. [LPNHE, Universite Paris VI and Universite Paris VII and IN2P3/CNRS, Barre 12-22, 1er etage, 4 place Jussieu, 75252 Paris (France); Ribo, M. [Dept. AM i Dept. ECM, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona. Marti i Franques 1, E08028, Barcelona (Spain); and others

    2012-12-11

    The NECTAr collaboration's FE option for the camera of the CTA is a 16 bits and 1-3 GS/s sampling chip based on analog memories including most of the readout functions. This works describes the input amplifiers of the NECTAr ASIC. A fully differential wideband amplifier, with voltage gain up to 20 V/V and a BW of 400 MHz. As it is impossible to design a fully differential OpAmp with an 8 GHz GBW product in a 0.35 CMOS technology, an alternative implementation based on HF linearized transconductors is explored. The output buffer is a class AB miller operational amplifier, with special non-linear current boost.

  13. A GPU-Based Wide-Band Radio Spectrometer

    Science.gov (United States)

    Chennamangalam, Jayanth; Scott, Simon; Jones, Glenn; Chen, Hong; Ford, John; Kepley, Amanda; Lorimer, D. R.; Nie, Jun; Prestage, Richard; Roshi, D. Anish; Wagner, Mark; Werthimer, Dan

    2014-12-01

    The graphics processing unit has become an integral part of astronomical instrumentation, enabling high-performance online data reduction and accelerated online signal processing. In this paper, we describe a wide-band reconfigurable spectrometer built using an off-the-shelf graphics processing unit card. This spectrometer, when configured as a polyphase filter bank, supports a dual-polarisation bandwidth of up to 1.1 GHz (or a single-polarisation bandwidth of up to 2.2 GHz) on the latest generation of graphics processing units. On the other hand, when configured as a direct fast Fourier transform, the spectrometer supports a dual-polarisation bandwidth of up to 1.4 GHz (or a single-polarisation bandwidth of up to 2.8 GHz).

  14. Rate adaptive multilevel coded modulation with high coding gain in intensity modulation direct detection optical communication

    Science.gov (United States)

    Xiao, Fei; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Tian, Qinghua; Tian, Feng; Wang, Yongjun; Rao, Lan; Ullah, Rahat; Zhao, Feng; Li, Deng'ao

    2018-02-01

    A rate-adaptive multilevel coded modulation (RA-MLC) scheme based on fixed code length and a corresponding decoding scheme is proposed. RA-MLC scheme combines the multilevel coded and modulation technology with the binary linear block code at the transmitter. Bits division, coding, optional interleaving, and modulation are carried out by the preset rule, then transmitted through standard single mode fiber span equal to 100 km. The receiver improves the accuracy of decoding by means of soft information passing through different layers, which enhances the performance. Simulations are carried out in an intensity modulation-direct detection optical communication system using MATLAB®. Results show that the RA-MLC scheme can achieve bit error rate of 1E-5 when optical signal-to-noise ratio is 20.7 dB. It also reduced the number of decoders by 72% and realized 22 rate adaptation without significantly increasing the computing time. The coding gain is increased by 7.3 dB at BER=1E-3.

  15. Efficient Wideband Spectrum Sensing with Maximal Spectral Efficiency for LEO Mobile Satellite Systems

    Directory of Open Access Journals (Sweden)

    Feilong Li

    2017-01-01

    Full Text Available The usable satellite spectrum is becoming scarce due to static spectrum allocation policies. Cognitive radio approaches have already demonstrated their potential towards spectral efficiency for providing more spectrum access opportunities to secondary user (SU with sufficient protection to licensed primary user (PU. Hence, recent scientific literature has been focused on the tradeoff between spectrum reuse and PU protection within narrowband spectrum sensing (SS in terrestrial wireless sensing networks. However, those narrowband SS techniques investigated in the context of terrestrial CR may not be applicable for detecting wideband satellite signals. In this paper, we mainly investigate the problem of joint designing sensing time and hard fusion scheme to maximize SU spectral efficiency in the scenario of low earth orbit (LEO mobile satellite services based on wideband spectrum sensing. Compressed detection model is established to prove that there indeed exists one optimal sensing time achieving maximal spectral efficiency. Moreover, we propose novel wideband cooperative spectrum sensing (CSS framework where each SU reporting duration can be utilized for its following SU sensing. The sensing performance benefits from the novel CSS framework because the equivalent sensing time is extended by making full use of reporting slot. Furthermore, in respect of time-varying channel, the spatiotemporal CSS (ST-CSS is presented to attain space and time diversity gain simultaneously under hard decision fusion rule. Computer simulations show that the optimal sensing settings algorithm of joint optimization of sensing time, hard fusion rule and scheduling strategy achieves significant improvement in spectral efficiency. Additionally, the novel ST-CSS scheme performs much higher spectral efficiency than that of general CSS framework.

  16. Noncoherent Spectral Optical CDMA System Using 1D Active Weight Two-Code Keying Codes

    Directory of Open Access Journals (Sweden)

    Bih-Chyun Yeh

    2016-01-01

    Full Text Available We propose a new family of one-dimensional (1D active weight two-code keying (TCK in spectral amplitude coding (SAC optical code division multiple access (OCDMA networks. We use encoding and decoding transfer functions to operate the 1D active weight TCK. The proposed structure includes an optical line terminal (OLT and optical network units (ONUs to produce the encoding and decoding codes of the proposed OLT and ONUs, respectively. The proposed ONU uses the modified cross-correlation to remove interferences from other simultaneous users, that is, the multiuser interference (MUI. When the phase-induced intensity noise (PIIN is the most important noise, the modified cross-correlation suppresses the PIIN. In the numerical results, we find that the bit error rate (BER for the proposed system using the 1D active weight TCK codes outperforms that for two other systems using the 1D M-Seq codes and 1D balanced incomplete block design (BIBD codes. The effective source power for the proposed system can achieve −10 dBm, which has less power than that for the other systems.

  17. Closely Mounted Compact Wideband Diversity Antenna for Mobile Phone Applications

    Directory of Open Access Journals (Sweden)

    Bunggil Yu

    2012-01-01

    Full Text Available Here a compact wideband diversity antenna covering the PCS/UMTS/WiMAX bands with high isolation and low enveloped correlation coefficient (ECC is proposed. To widen the bandwidth, the proposed antenna uses a structure with a gap-coupled feed and an inductively shorted line that has capacitive compensation between the radiator and the ground plane. Also, a suspended line with a parasitic element is used to enhance the isolation between the two antennas.

  18. Semi-blind identification of wideband MIMO channels via stochastic sampling

    OpenAIRE

    Andrieu, Christophe; Piechocki, Robert J.; McGeehan, Joe P.; Armour, Simon M.

    2003-01-01

    In this paper we address the problem of wide-band multiple-input multiple-output (MIMO) channel (multidimensional time invariant FIR filter) identification using Markov chains Monte Carlo methods. Towards this end we develop a novel stochastic sampling technique that produces a sequence of multidimensional channel samples. The method is semi-blind in the sense that it uses a very short training sequence. In such a framework the problem is no longer analytically tractable; hence we resort to s...

  19. Optical network security using unipolar Walsh code

    Science.gov (United States)

    Sikder, Somali; Sarkar, Madhumita; Ghosh, Shila

    2018-04-01

    Optical code-division multiple-access (OCDMA) is considered as a good technique to provide optical layer security. Many research works have been published to enhance optical network security by using optical signal processing. The paper, demonstrates the design of the AWG (arrayed waveguide grating) router-based optical network for spectral-amplitude-coding (SAC) OCDMA networks with Walsh Code to design a reconfigurable network codec by changing signature codes to against eavesdropping. In this paper we proposed a code reconfiguration scheme to improve the network access confidentiality changing the signature codes by cyclic rotations, for OCDMA system. Each of the OCDMA network users is assigned a unique signature code to transmit the information and at the receiving end each receiver correlates its own signature pattern a(n) with the receiving pattern s(n). The signal arriving at proper destination leads to s(n)=a(n).

  20. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.

    1998-01-01

    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  1. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.

    1999-01-01

    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  2. On Analyzing LDPC Codes over Multiantenna MC-CDMA System

    Directory of Open Access Journals (Sweden)

    S. Suresh Kumar

    2014-01-01

    Full Text Available Multiantenna multicarrier code-division multiple access (MC-CDMA technique has been attracting much attention for designing future broadband wireless systems. In addition, low-density parity-check (LDPC code, a promising near-optimal error correction code, is also being widely considered in next generation communication systems. In this paper, we propose a simple method to construct a regular quasicyclic low-density parity-check (QC-LDPC code to improve the transmission performance over the precoded MC-CDMA system with limited feedback. Simulation results show that the coding gain of the proposed QC-LDPC codes is larger than that of the Reed-Solomon codes, and the performance of the multiantenna MC-CDMA system can be greatly improved by these QC-LDPC codes when the data rate is high.

  3. Generation of flat wideband chaos with suppressed time delay signature by using optical time lens.

    Science.gov (United States)

    Jiang, Ning; Wang, Chao; Xue, Chenpeng; Li, Guilan; Lin, Shuqing; Qiu, Kun

    2017-06-26

    We propose a flat wideband chaos generation scheme that shows excellent time delay signature suppression effect, by injecting the chaotic output of general external cavity semiconductor laser into an optical time lens module composed of a phase modulator and two dispersive units. The numerical results demonstrate that by properly setting the parameters of the driving signal of phase modulator and the accumulated dispersion of dispersive units, the relaxation oscillation in chaos can be eliminated, wideband chaos generation with an efficient bandwidth up to several tens of GHz can be achieved, and the RF spectrum of generated chaotic signal is nearly as flat as uniform distribution. Moreover, the periodicity of chaos induced by the external cavity modes can be simultaneously destructed by the optical time lens module, based on this the time delay signature can be completely suppressed.

  4. SPICE analysis of the charge division in resistive semiconductor nanowire diodes

    International Nuclear Information System (INIS)

    Guardiola, C; Money, K; Carabe, A

    2014-01-01

    In this paper we present an analysis of the charge division method in semiconductor nanowire Schottky diodes using an electrical model based on the SPICE simulation code. A semiconductor nanowire prototype that is simulated as an RC network and two readout electronic systems are modelled in order to understand its behaviour and to assess its application as a possible ionizing particle detector in clinical high-LET particle beams. We study the use of resistive charge division along the semiconductor nanowire to calculate the position of deposited charge generated by an ionizing particle as it crosses the nanodevice and to determine the minimal viable spatial resolution. Our aim is to demonstrate the charge division concept in resistive semiconductor nanowire diodes, and to subsequently understand the performance of these nanodevices as radiation sensors and address the design limitations of such an application

  5. New degradation call admission control for increasing WCDMA system capacity

    Institute of Scientific and Technical Information of China (English)

    Liu Ningqing; Lu Zhi; Gu Xuemai

    2006-01-01

    Propose a new degradation call admission control(DCAC)scheme, which can be used in wideband code division multiple access communication system. So-called degradation is that non-real time call has the characteristic of variable bit rate, so decreasing its bit rate can reduce the load of the system, consequently the system can admit new call which should be blocked when the system is close to full load, therefore new call's access probability increases. This paper brings forward design project and does system simulation, simulation proves that DCAC can effectively decrease calls' blocking probability and increase the total number of the on-line users.

  6. Survey of particle codes in the Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    1977-12-01

    In the spring of 1976, the Fusion Plasma Theory Branch of the Division of Magnetic Fusion Energy conducted a survey of all the physics computer codes being supported at that time. The purpose of that survey was to allow DMFE to prepare a description of the codes for distribution to the plasma physics community. This document is the first of several planned and covers those types of codes which treat the plasma as a group of particles

  7. Up to 35 Gbps Ultra-Wideband Wireless Data Transmission Links

    DEFF Research Database (Denmark)

    Puerta Ramírez, Rafael; Rommel, Simon; Vegas Olmos, Juan José

    2016-01-01

    For the first time Ultra-Wideband record data transmission rates up to 35.1 Gbps and 21.6 Gbps are achieved, compliant with the restrictions on the effective radiated power established by both the United States Federal Communications Commission and the European Electronic Communications Committee......, respectively. To achieve these record bit rates, the multi-band approach of Carrierless Amplitude Phase modulation scheme was employed. Wireless transmissions were achieved with a BER below the 7% FEC threshold of 3.8·10-3 ....

  8. Spatial Dynamic Wideband Modeling of the MIMO Satellite-to-Earth Channel

    OpenAIRE

    Lehner, Andreas; Steingass, Alexander

    2014-01-01

    A novel MIMO (multiple input multiple output) satellite channel model that allows the generation of associated channel impulse response (CIR) time series depending on the movement profile of a land mobile terminal is presented in this paper. Based on high precise wideband measurements in L-band the model reproduces the correlated shadowing and multipath conditions in rich detail. The model includes time and space variant echo signals appearing and disappearing in dependence on the receive ...

  9. Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure.

    Science.gov (United States)

    Zhuang, Leimeng; Beeker, Willem; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris

    2013-02-11

    We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For microwave photonic signal processing, this structure is able to serve as a wideband 2 × 2 RF coupler with reconfigurable complex coefficients, and therefore can be used as a polarization network for wideband antennas. Such a device can equip the antennas with not only the polarization rotation capability for linear-polarization signals but also the capability to operate with and tune between two opposite circular polarizations. Operating together with a particular modulation scheme, the device is also able to serve for simultaneous feeding of dual-polarization signals. These photonic-implemented RF functionalities can be applied to wideband antenna systems to perform agile polarization manipulations and tracking operations. An example of such a interleaver has been realized in TriPleX waveguide technology, which was designed with a free spectral range of 20 GHz and a mask footprint of smaller than 1 × 1 cm. Using the realized device, the reconfigurable complex coefficients of the polarization network were demonstrated with a continuous bandwidth from 2 to 8 GHz and an in-band phase ripple of smaller than 5 degree. The waveguide structure of the device allows it to be further integrated with other functional building blocks of a photonic integrated circuit to realize on-chip, complex microwave photonic processors. Of particular interest, it can be included in an optical beamformer for phased array antennas, so that simultaneous wideband beam and polarization trackings can be achieved photonically. To our knowledge, this is the first-time on-chip demonstration of an integrated microwave photonic polarization network for dual linear-polarized antennas.

  10. BER performance comparison of optical CDMA systems with/without turbo codes

    Science.gov (United States)

    Kulkarni, Muralidhar; Chauhan, Vijender S.; Dutta, Yashpal; Sinha, Ravindra K.

    2002-08-01

    In this paper, we have analyzed and simulated the BER performance of a turbo coded optical code-division multiple-access (TC-OCDMA) system. A performance comparison has been made between uncoded OCDMA and TC-OCDMA systems employing various OCDMA address codes (optical orthogonal codes (OOCs), Generalized Multiwavelength Prime codes (GMWPC's), and Generalized Multiwavelength Reed Solomon code (GMWRSC's)). The BER performance of TC-OCDMA systems has been analyzed and simulated by varying the code weight of address code employed by the system. From the simulation results, it is observed that lower weight address codes can be employed for TC-OCDMA systems that can have the equivalent BER performance of uncoded systems employing higher weight address codes for a fixed number of active users.

  11. First Experimental Impulse-Radio Ultra-Wideband Transmission Under the Russian Spectral Emission Mask

    DEFF Research Database (Denmark)

    Grakhova, Elizaveta P.; Rommel, Simon; Jurado-Navas, Antonio

    2016-01-01

    Ultra-wideband impulse-radio wireless transmission under the stringent conditions and complex shape of the Russian spectral emission mask is experimentally demonstrated for the first time. Transmission of 1Gbit/s and 1.25Gbit/s signals over distances of 6m and 3m is achieved with a BER below 3.8×10-3....

  12. Wide-band residual phase-noise measurements on 40-GHz monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Larsson, David; Hvam, Jørn Märcher

    2005-01-01

    We have performed wide-band residual phase-noise measurements on semiconductor 40-GHz mode-locked lasers by employing electrical waveguide components for the radio-frequency circuit. The intrinsic timing jitters of lasers with one, two, and three quantum wells (QW) are compared and our design......-QW laser. There is good agreement between the measured results and existing theory....

  13. Estimating Angle of Arrival (AOA for Wideband Signal by Sensor Delay Line (SDL and Tapped Delay Line (TDL Processors

    Directory of Open Access Journals (Sweden)

    Bassim Sayed Mohammed

    2018-04-01

    Full Text Available Angle of arrival (AOA estimation for wideband signal becomes more necessary for modern communication systems like Global System for Mobile (GSM, satellite, military applications and spread spectrum (frequency hopping and direct sequence. Most of the researchers are focusing on how to cancel the effects of signal bandwidth on AOA estimation performance by using a transversal filter (tap delay line (TDL. Most of the researchers were using two elements array antenna to study these effects. In this research, a general case of proposed (M array elements is used. A transversal filter (TDL in phase adaptive array antenna system is used to calculate the optimum number of taps required to compensate these effect. The proposed system uses a phase adaptive array antenna in conjunction with LMS algorithm to work an angle of arrival (AOA estimator for wideband signals rather than interference canceller. An alternative solution to compensate for the effect of signal bandwidth is proposed by using sensor delay line (SDL instead of fixed delay unit since it has variable time sampling in the time domain and not fixed time delay, depending on the angle of arrival of received signals. The proposed system has the ability to estimate two parameters for received signals simultaneously (the output Signal to Noise Ratio (SNR and AOA, unlike others systems which estimate AOA only. The comparison of the simulation results with Multiple Signal Classification (MUSIC technique showed that the proposed system gives good results for estimating AOA and the output SNR for wideband signals. (SDL processor shows better performance result than (TDL processor. MUSIC technique with both (SDL and (TDL processors shows unacceptable results for estimating (AOA for the wideband signal.

  14. Investigation on wide-band scattering of a 2-D target above 1-D randomly rough surface by FDTD method.

    Science.gov (United States)

    Li, Juan; Guo, Li-Xin; Jiao, Yong-Chang; Li, Ke

    2011-01-17

    Finite-difference time-domain (FDTD) algorithm with a pulse wave excitation is used to investigate the wide-band composite scattering from a two-dimensional(2-D) infinitely long target with arbitrary cross section located above a one-dimensional(1-D) randomly rough surface. The FDTD calculation is performed with a pulse wave incidence, and the 2-D representative time-domain scattered field in the far zone is obtained directly by extrapolating the currently calculated data on the output boundary. Then the 2-D wide-band scattering result is acquired by transforming the representative time-domain field to the frequency domain with a Fourier transform. Taking the composite scattering of an infinitely long cylinder above rough surface as an example, the wide-band response in the far zone by FDTD with the pulsed excitation is computed and it shows a good agreement with the numerical result by FDTD with the sinusoidal illumination. Finally, the normalized radar cross section (NRCS) from a 2-D target above 1-D rough surface versus the incident frequency, and the representative scattered fields in the far zone versus the time are analyzed in detail.

  15. [The effect of technological parameters of wide-band laser cladding on microstructure and sinterability of gradient bioceramics composite coating].

    Science.gov (United States)

    Liu, Qibin; Zhu, Weidong; Zou, Longjiang; Zheng, Min; Dong, Chuang

    2005-12-01

    The gradient bioceramics coating was prepared on the surface of Ti-6Al-4V alloy by using wide-band laser cladding. And the effect of technological parameters of wide-band laser cladding on microstructure and sinterability of gradient bioceramics composite coating was studied. The experimental results indicated that in the circumstances of size of laser doze D and scanning velocity V being fixed, with the increasement of power P, the density of microstructure in bioceramics coating gradually degraded; with the increasement of power P, the pore rate of bioceramics gradually became high. While P = 2.3 KW, the bioceramics coating with dense structure and lower pore rate (5.11%) was obtained; while P = 2.9 KW, the bioceramics coating with disappointing density was formed and its pore rate was up to 21.32%. The microhardness of bioceramics coating demonstrated that while P = 2.3 KW, the largest value of microhardness of bioceramics coating was 1100 HV. Under the condition of our research work, the optimum technological parameters for preparing gradient bioceramics coating by wide-band laser cladding are: P = 2.3 KW, V = 145 mm/min, D = 16 mm x 2 mm.

  16. A Wideband and Compact Circularly-Polarized Rectenna for Low Power Application

    OpenAIRE

    Okba , Abderrahim; Takacs , Alexandru; Aubert , Hervé; Bellion , Anthony; Grenana , D

    2017-01-01

    International audience; This paper presents a wideband and compact circularly polarized rectenna composed by an Archimedean spiral antenna that covers the S and C frequency bands and a silicon Schottky diode. This rectenna (rectifier + antenna) is used for electromagnetic energy harvesting over a wide frequency band, in order to power autonomous wireless sensors used for satellite health monitoring. For low incident power densities (around 14 µW/cm²) the measured efficiency of at least 19% be...

  17. Simulation Performance of Multiple-Input Multiple-Output Systems Employing Single-Carrier Modulation and Orthogonal Frequency Division Multiplexing

    National Research Council Canada - National Science Library

    Saglam, Halil D

    2004-01-01

    ...) systems utilizing Alamouti-based space-time block coding (STBC) technique. The MIMO communication systems using STBC technique employing both single-carrier modulation and orthogonal frequency division multiplexing (OFDM...

  18. Effect of Substrate Permittivity and Thickness on Performance of Single-Layer, Wideband, U-Slot Antennas on Microwave Substrates

    National Research Council Canada - National Science Library

    Natarajan, V; Chatterjee, D

    2004-01-01

    This paper presents effects of substrate permittivity and thickness on the performance characteristics like impedance bandwidth, radiation efficiency and gain of a single-layer, wideband, U-slot antenna...

  19. Variable weight spectral amplitude coding for multiservice OCDMA networks

    Science.gov (United States)

    Seyedzadeh, Saleh; Rahimian, Farzad Pour; Glesk, Ivan; Kakaee, Majid H.

    2017-09-01

    The emergence of heterogeneous data traffic such as voice over IP, video streaming and online gaming have demanded networks with capability of supporting quality of service (QoS) at the physical layer with traffic prioritisation. This paper proposes a new variable-weight code based on spectral amplitude coding for optical code-division multiple-access (OCDMA) networks to support QoS differentiation. The proposed variable-weight multi-service (VW-MS) code relies on basic matrix construction. A mathematical model is developed for performance evaluation of VW-MS OCDMA networks. It is shown that the proposed code provides an optimal code length with minimum cross-correlation value when compared to other codes. Numerical results for a VW-MS OCDMA network designed for triple-play services operating at 0.622 Gb/s, 1.25 Gb/s and 2.5 Gb/s are considered.

  20. Wideband Small-Signal Input dq Admittance Modeling of Six-Pulse Diode Rectifiers

    DEFF Research Database (Denmark)

    Yue, Xiaolong; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    This paper studies the wideband small-signal input dq admittance of six-pulse diode rectifiers. Considering the frequency coupling introduced by ripple frequency harmonics of d-and q-channel switching function, the proposed model successfully predicts the small-signal input dq admittance of six......-pulse diode rectifiers in high frequency regions that existing models fail to explain. Simulation and experimental results verify the accuracy of the proposed model....

  1. Demonstration of two-user, 10-Gbits/s optical code-division multiple-access system implemented by using cascaded longperiod fiber gratings formed in dispersion-compensating fiber with inner-cladding structure

    DEFF Research Database (Denmark)

    Kim, Sun-Jong; Eom, T.J.; Kim, T.Y.

    2005-01-01

    A two-user, 10-Gbits/s optical code-division multiple-access system implemented by using cascaded long-period fiber gratings formed in a dispersion-compensating fiber (DCF) is demonstrated. Our results show that the sensitivity of cladding modes to the refractive index change on the cladding...... surface is greatly reduced by utilizing the inner-cladding mode of the DCF. Two pairs of encoder/decoder are constructed and the performance is evaluated by measuring bit error rate (BER). With an interferer, a BER of 1.5 X 10(-12) is measured at a received optical power of -6 dBm....

  2. Design of a planar ultra-wideband four-way power divider/combiner using defected ground structures

    DEFF Research Database (Denmark)

    Squartecchia, Michele; Cimoli, Bruno; Midili, Virginio

    2017-01-01

    This work presents the design of a planar ultra-wideband (UWB) four-way power divider/combiner. A prototype has been fabricated on a printed circuit board and characterized. For achieving the frequency response required in UWB applications, each branch of the divider is conceived as a three...

  3. Optical CDMA with Embedded Spectral-Polarization Coding over Double Balanced Differential-Detector

    Science.gov (United States)

    Huang, Jen-Fa; Yen, Chih-Ta; Chen, Bo-Hau

    A spectral-polarization coding (SPC) optical code-division multiple-access (OCDMA) configuration structured over arrayed-waveguide grating (AWG) router is proposed. The polarization-division double balanced detector is adopted to execute difference detection and enhances system performance. The signal-to-noise ratio (SNR) is derived by taking the effect of PIIN into account. The result indicates that there would be up to 9-dB SNR improvement than the conventional spectral-amplitude coding (SAC) structures with Walsh-Hadamard codes. Mathematical deriving results of the SNR demonstrate the system embedded with the orthogonal state of polarization (SOP) will suppress effectively phase-induced intensity noise (PIIN). In addition, we will analyze the relations about bit error rate (BER) vs. the number of active users under the different encoding schemes and compare them with our proposed scheme. The BER vs. the effective power under the different encoding scheme with the same number of simultaneous active user conditions are also revealed. Finally, the polarization-matched factor and the difference between simulated and experimental values are discussed.

  4. Progress report: Physics Division, 1982 January 1 to March 1

    International Nuclear Information System (INIS)

    1982-05-01

    The work of the Physics Division at Chalk River Nuclear Laboratories during the quarter is presented. Areas of interest include nuclear physics, neutron sources, the development of a superconducting cyclotron, high current proton accelerators and electron accelerators, diffraction studies and other solid state physics work in organic and inorganic substances, and computer codes. The operation of the MP tandem accelerator and the computer facilities is reviewed

  5. Ultra-wideband ranging precision and accuracy

    International Nuclear Information System (INIS)

    MacGougan, Glenn; O'Keefe, Kyle; Klukas, Richard

    2009-01-01

    This paper provides an overview of ultra-wideband (UWB) in the context of ranging applications and assesses the precision and accuracy of UWB ranging from both a theoretical perspective and a practical perspective using real data. The paper begins with a brief history of UWB technology and the most current definition of what constitutes an UWB signal. The potential precision of UWB ranging is assessed using Cramer–Rao lower bound analysis. UWB ranging methods are described and potential error sources are discussed. Two types of commercially available UWB ranging radios are introduced which are used in testing. Actual ranging accuracy is assessed from line-of-sight testing under benign signal conditions by comparison to high-accuracy electronic distance measurements and to ranges derived from GPS real-time kinematic positioning. Range measurements obtained in outdoor testing with line-of-sight obstructions and strong reflection sources are compared to ranges derived from classically surveyed positions. The paper concludes with a discussion of the potential applications for UWB ranging

  6. Ultra wideband wireless body area networks

    CERN Document Server

    Thotahewa, Kasun Maduranga Silva; Yuce, Mehmet Rasit

    2014-01-01

    This book explores the design of ultra wideband (UWB) technology for wireless body-area networks (WBAN).  The authors describe a novel implementation of WBAN sensor nodes that use UWB for data transmission and narrow band for data reception, enabling low power sensor nodes, with high data rate capability.  The discussion also includes power efficient, medium access control (MAC) protocol design for UWB based WBAN applications and the authors present a MAC protocol in which a guaranteed delivery mechanism is utilized to transfer data with high priority.  Readers will also benefit from this book’s feasibility analysis of the UWB technology for human implant applications through the study of electromagnetic and thermal power absorption of human tissue that is exposed to UWB signals.   • Describes hardware platform development for IR-UWB based WBAN communication; • Discusses power efficient medium access control (MAC) protocol design for IR-UWB based WBAN applications; • Includes feasibility analy...

  7. Impulse radio ultra wide-band over multi-mode fiber for in-home signal distribution

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Rodes, Roberto; Jensen, Jesper Bevensee

    2009-01-01

    We propose and experimentally demonstrate a high speed impulse radio ultra wide-band (IR-UWB) wireless link for in-home network signal distribution. The IR-UWB pulse is distributed over a multimode fiber to the transmitter antenna. Wireless transmitted bit-rates of 1 Gbps at 2 m and 2 Gbps at 1.5 m...

  8. Effects of simultaneous combined exposure to CDMA and WCDMA electromagnetic fields on serum hormone levels in rats

    International Nuclear Information System (INIS)

    Jin, Yeung Bae; Choi, Hyung-Do; Kim, Byung Chan; Pack, Jeong-Ki; Kim, Nam; Lee, Yun-Sil

    2013-01-01

    Despite more than a decade of research on the endocrine system, there have been no published studies about the effects of concurrent exposure of radiofrequency electromagnetic fields (RF-EMF) on this system. The present study investigated the several parameters of the endocrine system including melatonin, thyroid stimulating hormone, stress hormone and sex hormone after code division multiple access (CDMA, 849 MHz) and wideband code division multiple access (WCDMA, 1.95 GHz) signals for simultaneous exposure in rats. Sprague-Dawley rats were exposed to RF-EMF signals for 45 min/day, 5 days/week for up to 8 weeks. The whole-body average specific absorption rate (SAR) of CDMA or WCDMA was 2.0 W/kg (total 4.0 W/kg). At 4 and 8 weeks after the experiment began, each experimental group's 40 rats (male 20, female 20) were autopsied. Exposure for 8 weeks to simultaneous CDMA and WCDMA RF did not affect serum levels in rats of melatonin, thyroid stimulating hormone (TSH), triiodothyronine (T3) and thyroxin (T4), adrenocorticotropic hormone (ACTH) and sex hormones (testosterone and estrogen) as assessed by the ELISA method

  9. Monostatic ultra-wideband GPR antenna for through wall detection

    Directory of Open Access Journals (Sweden)

    Ali Jawad

    2017-01-01

    Full Text Available The aim of this paper is to present a monostatic arc-shaped ultra-wideband (UWB printed monopole antenna system with 3-16 GHz frequency bandwidth suitable for through-wall detection. Ground penetrating radar (GPR technique is used for detection with the gain of 6.2 dB achieved for the proposed antenna using defected ground structure (DGS method. To serve the purpose, a simulation experiment of through-wall detection model is constructed which consists of a monostatic antenna act as transmitter and receiver, concrete wall and human skin model. The time domain reflection of obtained result is then analysed for target detection.

  10. Head and hand detuning effect study of narrow-band against wide-band mobile phone antennas

    DEFF Research Database (Denmark)

    Bahramzy, Pevand; Pedersen, Gert Frølund

    2014-01-01

    Wide-band (WB) and narrow-band (NB) antennas in terms of performance are compared, when interacting with the user’s right head and hand (RHH). The investigations are done through experimental measurements, using standardised head phantom and hand. It is shown that WB antennas detune more than NB ...

  11. Ultra-wideband horn antenna with abrupt radiator

    Science.gov (United States)

    McEwan, Thomas E.

    1998-01-01

    An ultra-wideband horn antenna transmits and receives impulse waveforms for short-range radars and impulse time-of flight systems. The antenna reduces or eliminates various sources of close-in radar clutter, including pulse dispersion and ringing, sidelobe clutter, and feedline coupling into the antenna. Dispersion is minimized with an abrupt launch point radiator element; sidelobe and feedline coupling are minimized by recessing the radiator into a metallic horn. Low frequency cut-off associated with a horn is extended by configuring the radiator drive impedance to approach a short circuit at low frequencies. A tapered feed plate connects at one end to a feedline, and at the other end to a launcher plate which is mounted to an inside wall of the horn. The launcher plate and feed plate join at an abrupt edge which forms the single launch point of the antenna.

  12. Integer-linear-programing optimization in scalable video multicast with adaptive modulation and coding in wireless networks.

    Science.gov (United States)

    Lee, Dongyul; Lee, Chaewoo

    2014-01-01

    The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm.

  13. Integer-Linear-Programing Optimization in Scalable Video Multicast with Adaptive Modulation and Coding in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Dongyul Lee

    2014-01-01

    Full Text Available The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC with adaptive modulation and coding (AMC provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm.

  14. Electro-optical time gating based on Mach-Zehnder modulator for multiple access interference elimination in optical code-division multiple access networks

    Science.gov (United States)

    Chen, Yinfang; Wang, Rong; Fang, Tao; Pu, Tao; Xiang, Peng; Zheng, Jilin; Zhu, Huatao

    2014-05-01

    An electro-optical time gating technique, which is based on an electrical return-to-zero (RZ) pulse driven Mach-Zehnder modulator (MZM) for eliminating multiple access interference (MAI) in optical code-division multiple access (OCDMA) networks is proposed. This technique is successfully simulated in an eight-user two-dimensional wavelength-hopping time-spreading system, as well as in a three-user temporal phase encoding system. Results show that in both systems the MAI noise is efficiently removed and the average received power penalty improved. Both achieve error-free transmissions at a bit rate of 2.5 Gb/s. In addition, we also individually discuss effects of parameters in two systems, such as the extinction ratio of the MZM, the duty cycle of the driven RZ pulse, and the time misalignment between the driven pulse and the decoded autocorrelation peak, on the output bit error rate performance. Our work shows that employing a common MZM as a thresholder provides another probability and an interesting cost-effective choice for a smart size, low energy, and less complex thresholding technique for integrated detection in OCDMA networks.

  15. Band-engineering of TiO2 as a wide-band gap semiconductor using organic chromophore dyes

    Science.gov (United States)

    Wahyuningsih, S.; Kartini, I.; Ramelan, A. H.; Saputri, L. N. M. Z.; Munawaroh, H.

    2017-07-01

    Bond-engineering as applied to semiconductor materials refers to the manipulation of the energy bands in order to control charge transfer processes in a device. When the device in question is a photoelectrochemical cell, the charges affected by drift become the focus of the study. The ideal band gap of semiconductors for enhancement of photocatalyst activity can be lowered to match with visible light absorption and the location of conduction Band (CB) should be raised to meet the reducing capacity. Otherwise, by the addition of the chromofor organic dyes, the wide-band gab can be influences by interacation resulting between TiO2 surface and the dyes. We have done the impruvisation wide-band gap of TiO2 by the addition of organic chromophore dye, and the addition of transition metal dopand. The TiO2 morphology influence the light absorption as well as the surface modification. The organic chromophore dye was syntesized by formation complexes compound of Co(PAR)(SiPA)(PAR)= 4-(2-piridylazoresorcinol), SiPA = Silyl propil amine). The result showed that the chromophore groups adsorbed onto TiO2 surface can increase the visible light absorption of wide-band gab semiconductor. Initial absorption of a chromophore will affect light penetration into the material surfaces. The use of photonic material as a solar cell shows this phenomenon clearly from the IPCE (incident photon to current conversion efficiency) measurement data. Organic chromophore dyes of Co(PAR)(SiPA) exhibited the long wavelength absorption character compared to the N719 dye (from Dyesol).

  16. Optics code development at Los Alamos

    International Nuclear Information System (INIS)

    Mottershead, C.T.; Lysenko, W.P.

    1988-01-01

    This paper is an overview of part of the beam optics code development effort in the Accelerator Technology Division at Los Alamos National Laboratory. The aim of this effort is to improve our capability to design advanced beam optics systems. The work reported is being carried out by a collaboration of permanent staff members, visiting consultants, and student research assistants. The main components of the effort are: building a new framework of common supporting utilities and software tools to facilitate further development; research and development on basic computational techniques in classical mechanics and electrodynamics; and evaluation and comparison of existing beam optics codes, and support for their continuing development. 17 refs

  17. Optics code development at Los Alamos

    International Nuclear Information System (INIS)

    Mottershead, C.T.; Lysenko, W.P.

    1988-01-01

    This paper is an overview of part of the beam optics code development effort in the Accelerator Technology Division at Los Alamos National Laboratory. The aim of this effort is to improve our capability to design advanced beam optics systems. The work reported is being carried out by a collaboration of permanent staff members, visiting consultants, and student research assistants. The main components of the effort are building a new framework of common supporting utilities and software tools to facilitate further development. research and development on basic computational techniques in classical mechanics and electrodynamics, and evaluation and comparison of existing beam optics codes, and support for their continuing development

  18. Performance analysis of wavelength/spatial coding system with fixed in-phase code matrices in OCDMA network

    Science.gov (United States)

    Tsai, Cheng-Mu; Liang, Tsair-Chun

    2011-12-01

    This paper proposes a wavelength/spatial (W/S) coding system with fixed in-phase code (FIPC) matrix in the optical code-division multiple-access (OCDMA) network. A scheme is presented to form the FIPC matrix which is applied to construct the W/S OCDMA network. The encoder/decoder in the W/S OCDMA network is fully able to eliminate the multiple-access-interference (MAI) at the balanced photo-detectors (PD), according to fixed in-phase cross correlation. The phase-induced intensity noise (PIIN) related to the power square is markedly suppressed in the receiver by spreading the received power into each PD while the net signal power is kept the same. Simulation results show that the W/S OCDMA network based on the FIPC matrices cannot only completely remove the MAI but effectively suppress the PIIN to upgrade the network performance.

  19. Adaptive Code Division Multiple Access Protocol for Wireless Network-on-Chip Architectures

    Science.gov (United States)

    Vijayakumaran, Vineeth

    Massive levels of integration following Moore's Law ushered in a paradigm shift in the way on-chip interconnections were designed. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. However, as the bandwidth of the wireless channels is limited, an efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. This thesis proposes using a multiple access mechanism such as Code Division Multiple Access (CDMA) to enable multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. It will be shown that such a hybrid wireless NoC with an efficient CDMA based MAC protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. In this work it is shown that the wireless NoC with the proposed CDMA based MAC protocol

  20. Ultra-wideband real-time data acquisition in steady-state experiments

    International Nuclear Information System (INIS)

    Nakanishi, Hideya; Ohsuna, Masaki; Kojima, Mamoru; Nonomura, Miki; Emoto, Masahiko; Nagayama, Yoshio; Kawahata, Kazuo; Imazu, Setsuo; Okumura, Haruhiko

    2006-01-01

    The ultra-wideband real-time data acquisition (DAQ) system has started its operation at LHD steady-state experiments since 2004. It uses Compact PCI standard digitizers whose acquisition performance is continuously above 80 MB/s for each frontend, and is also capable of grabbing picture frames from high-resolution cameras. Near the end of the 8th LHD experimental period, it achieved a new world record of 84 GB/shot acquired data during about 4,000 s long-pulse discharge (no.56068). Numbers of real-time and batch DAQ were 15 and 30, respectively. To realize 80 MB/s streaming from the digitizer frontend to data storage and network clients, the acquired data are once buffered on the shared memory to be read by network streaming and data saving tasks independently. The former sends 1/N thinned stream by using a set of TCP and UDP sessions for every monitoring clients, and the latter saves raw data into a series of 10 s chunk files. Afterward, the subdivided segmental compression library 'titz' is applied in migrating them to the mass storage for enabling users to retrieve a smaller chunk of huge data. Different compression algorithms, zlib and JPEG-LS, are automatically applied for waveform picture and data, respectively. Newly made utilities and many improvements, such as acquisition status monitor, real-time waveform monitor, and 64 bit counting in digital timing system, have put the ultra-wideband acquisition system fit for practical use by entire stuff. Demonstrated technologies here could be applied for the next generation fusion experiment like ITER. (author)

  1. Finiteness effects in wideband connected arrays: Analytical models to highlight the effects of the loading impedances

    NARCIS (Netherlands)

    Neto, A.; Cavallo, D.; Gerini, G.

    2011-01-01

    Most phased arrays are designed using infinite array theory, which does not account for edge effects. However, this approximation might not be adequate for the design of wideband arrays, for which truncation effects are more significant than in traditional narrow-band arrays. In particular, edge

  2. Demonstration of two-user, 10-Gbits/s optical code-division multiple-access system implemented by using cascaded long-period fiber gratings formed in dispersion-compensating fiber with inner-cladding structure

    Science.gov (United States)

    Kim, Sun-Jong; Eom, Tae-Jung; Kim, Tae-Young; Lee, Byeong Ha; Park, Chang-Soo

    2005-09-01

    A two-user, 10-Gbits/s optical code-division multiple-access system implemented by using cascaded long-period fiber gratings formed in a dispersion-compensating fiber (DCF) is demonstrated. Our results show that the sensitivity of cladding modes to the refractive index change on the cladding surface is greatly reduced by utilizing the inner-cladding mode of the DCF. Two pairs of encoder/decoder are constructed and the performance is evaluated by measuring bit error rate (BER). With an interferer, a BER of 1.5×10-12 is measured at a received optical power of -6 dBm.

  3. Fast frequency hopping codes applied to SAC optical CDMA network

    Science.gov (United States)

    Tseng, Shin-Pin

    2015-06-01

    This study designed a fast frequency hopping (FFH) code family suitable for application in spectral-amplitude-coding (SAC) optical code-division multiple-access (CDMA) networks. The FFH code family can effectively suppress the effects of multiuser interference and had its origin in the frequency hopping code family. Additional codes were developed as secure codewords for enhancing the security of the network. In considering the system cost and flexibility, simple optical encoders/decoders using fiber Bragg gratings (FBGs) and a set of optical securers using two arrayed-waveguide grating (AWG) demultiplexers (DeMUXs) were also constructed. Based on a Gaussian approximation, expressions for evaluating the bit error rate (BER) and spectral efficiency (SE) of SAC optical CDMA networks are presented. The results indicated that the proposed SAC optical CDMA network exhibited favorable performance.

  4. Ultra - Wideband, zero visual signature RF vest antenna for man-portable radios

    OpenAIRE

    Lebaric, Jovan E.; Adler, Richard W.; Limbert, Matthew E.

    2001-01-01

    This paper presents the recent research of the COMbat Wear INtegration (COMWIN) RF Vest antenna presented at MILCOM2000. This version of the ultra-wideband VHF/UHF (30 MHz to 500 MHz) vest antenna, designated as MK-III, is integrated into the existing dismounted Marine/Soldier Kevlar flak vest and has no visual signature. This antenna is one of the three COMWIN antennas developed at the Naval Postgraduate School (NPS) for the Joint Tactical Radio System applications. ...

  5. Photonic Ultra-Wideband 781.25-Mb/s Signal Generation and Transmission Incorporating Digital Signal Processing Detection

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Tafur Monroy, Idelfonso

    2009-01-01

    The generation of photonic ultra-wideband (UWB) impulse signals using an uncooled distributed-feedback laser is proposed. For the first time, we experimentally demonstrate bit-for-bit digital signal processing (DSP) bit-error-rate measurements for transmission of a 781.25-Mb/s photonic UWB signal...

  6. Real-time 2.5 Gbit/s ultra-wideband transmission using a Schottky diode-based envelope detector

    DEFF Research Database (Denmark)

    Rommel, Simon; Cimoli, Bruno; Valdecasa, Guillermo Silva

    2017-01-01

    An experimental demonstration of 2.5 Gbit/s real-time ultra-wideband transmission is presented, using a Schottky diode-based envelope detector fabricated ad-hoc using microstrip technology on a Rogers6002 substrate and surface-mount components. Real-time transmission with a BER below FEC threshold...

  7. Femtosecond Laser System for Research on High-Speed Optical Transmultiplexing and Coding

    National Research Council Canada - National Science Library

    Weiner, Andrew

    1997-01-01

    .... This would fill an important need in both TDM packet networks and bit-parallel WDM linds. The research also aims at experimental tests of an ultrashort pulse code-division, multiple-access (CDMA...

  8. Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies.

    Science.gov (United States)

    Jiang, Yannan; Wang, Lei; Wang, Jiao; Akwuruoha, Charles Nwakanma; Cao, Weiping

    2017-10-30

    The polarization conversion of electromagnetic (EM) waves, especially linear-to-circular (LTC) polarization conversion, is of great significance in practical applications. In this study, we propose an ultra-wideband high-efficiency reflective LTC polarization converter based on a metasurface in the terahertz regime. It consists of periodic unit cells, each cell of which is formed by a double split resonant square ring, dielectric layer, and fully reflective gold mirror. In the frequency range of 0.60 - 1.41 THz, the magnitudes of the reflection coefficients reach approximately 0.7, and the phase difference between the two orthogonal electric field components of the reflected wave is close to 90° or -270°. The results indicate that the relative bandwidth reaches 80% and the efficiency is greater than 88%, thus, ultra-wideband high-efficiency LTC polarization conversion has been realized. Finally, the physical mechanism of the polarization conversion is revealed. This converter has potential applications in antenna design, EM measurement, and stealth technology.

  9. Spectral/spatial optical CDMA code based on Diagonal Eigenvalue Unity

    Science.gov (United States)

    Najjar, Monia; Jellali, Nabiha; Ferchichi, Moez; Rezig, Houria

    2017-11-01

    A new two dimensional Diagonal Eigenvalue Unity (2D-DEU) code is developed for the spectral⧹spatial optical code division multiple access (OCDMA) system. It has a lower cross correlation value compared to two dimensional diluted perfect difference (2D-DPD), two dimensional Extended Enhanced Double Weight (2D-Extended-EDW) codes. Also, for the same code length, the number of users can be generated by the 2D-DEU code is higher than that provided by the others codes. The Bit Error Rate (BER) numerical analysis is developed by considering the effects of shot noise, phase induced intensity noise (PIIN), and thermal noise. The main result shows that BER is strongly affected by PIIN for the higher source power. The 2D-DEU code performance is compared with 2D-DPD, 2D-Extended-EDW and two dimensional multi-diagonals (2D-MD) codes. This comparison proves that the proposed 2D-DEU system outperforms the related codes.

  10. Research on the coding and decoding technology of the OCDMA system

    Science.gov (United States)

    Li, Ping; Wang, Yuru; Lan, Zhenping; Wang, Jinpeng; Zou, Nianyu

    2015-12-01

    Optical Code Division Multiplex Access, OCDMA, is a kind of new technology which is combined the wireless CDMA technology and the optical fiber communication technology together. The address coding technology in OCDMA system has been researched. Besides, the principle of the codec based on optical fiber delay line and non-coherent spectral domain encoding and decoding has been introduced and analysed, and the results was verified by experiment.

  11. Improvement of acoustical characteristics : wideband bamboo based polymer composite

    Science.gov (United States)

    Farid, M.; Purniawan, A.; Rasyida, A.; Ramadhani, M.; Komariyah, S.

    2017-07-01

    Environmental friendly and comfortable materials are desirable for applications in the automobile interior. The objective of this research was to examine and develop bamboo based polymer composites applied to the sound absorption materials of automobile door panels. Morphological analysis of the polyurethane/bamboo powder composite materials was carried out using scanning electron microscope to reveal the microscopic material behavior and followed by the FTIR and TGA testing. The finding demonstrated that this acoustical polymer composite materials provided a potential wideband sound absorption material. The range of frequency can be controlled between 500 and 4000 Hz with an average of sound absorption coefficient around 0.411 and it met to the door panels criteria.

  12. Variable-length code construction for incoherent optical CDMA systems

    Science.gov (United States)

    Lin, Jen-Yung; Jhou, Jhih-Syue; Wen, Jyh-Horng

    2007-04-01

    The purpose of this study is to investigate the multirate transmission in fiber-optic code-division multiple-access (CDMA) networks. In this article, we propose a variable-length code construction for any existing optical orthogonal code to implement a multirate optical CDMA system (called as the multirate code system). For comparison, a multirate system where the lower-rate user sends each symbol twice is implemented and is called as the repeat code system. The repetition as an error-detection code in an ARQ scheme in the repeat code system is also investigated. Moreover, a parallel approach for the optical CDMA systems, which is proposed by Marić et al., is also compared with other systems proposed in this study. Theoretical analysis shows that the bit error probability of the proposed multirate code system is smaller than other systems, especially when the number of lower-rate users is large. Moreover, if there is at least one lower-rate user in the system, the multirate code system accommodates more users than other systems when the error probability of system is set below 10 -9.

  13. Progress toward NuPack, the ASME code for Type B containments

    International Nuclear Information System (INIS)

    Turula, P.

    1995-01-01

    This paper presented a brief status report on the development of an ASME Code Division for nuclear packaging and discussed some of the more interesting policy decisions as to what is and is not covered in terms of analytical methods, criteria, scope, and other aspects. The process of the development of this Division has been very slow and inconsistent. There were many participants with many diverse interests. The Division 3 rules are close to being ready to be issued. They are a compromise between many needs and the result is certainly not perfect. Opportunities for fine tuning and expanding this document will present themselves after it is issued as future needs become clear

  14. Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator

    Science.gov (United States)

    Hou, Jian; Yan, Xiao-peng; Li, Ping; Hao, Xin-hong

    2018-03-01

    The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillatorʼs phase trajectory in a small-scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system. Project supported by the National Natural Science Foundation of China (Grant No. 61673066).

  15. A wideband (3 to 5 GHz) wide-scan connected array of dipoles with low cross polarization

    NARCIS (Netherlands)

    Cavallo, D.; Neto, A.; Gerini, G.

    2012-01-01

    A wideband, wide-scan prototype phased array of connected dipoles has been manufactured and tested from 3 to 5 GHz. The array comprises 7 × 7 elements, each fed by a loop-shaped transformer to avoid common-mode resonances. Such resonances typically affect this type of arrays, with consequent

  16. A study on the radionuclide migration by means of the code LISA

    International Nuclear Information System (INIS)

    Frenquellucci, F.; Deserti, M.

    1989-01-01

    LISA code (Long Term Isolation Safety Assessment) has been developed by J.R.C. EUROATOM Ispra (Radiochemistry Division) and it's utilized in order to study migration of radionuclides through porous media. Aim of the present work is to analyze LISA's input and output files. A brief description of the code is also performed. As LISA is a research and in development code, its structure is rather complex and an exhaustive description of input/output files is helpful for the user. Version 3 of LISA code, loaded on ENEA's IBM 3090, is avaylable by ENEA-VEL Bologna

  17. A Wideband Magnetoresistive Sensor for Monitoring Dynamic Fault Slip in Laboratory Fault Friction Experiments.

    Science.gov (United States)

    Kilgore, Brian D

    2017-12-02

    A non-contact, wideband method of sensing dynamic fault slip in laboratory geophysical experiments employs an inexpensive magnetoresistive sensor, a small neodymium rare earth magnet, and user built application-specific wideband signal conditioning. The magnetoresistive sensor generates a voltage proportional to the changing angles of magnetic flux lines, generated by differential motion or rotation of the near-by magnet, through the sensor. The performance of an array of these sensors compares favorably to other conventional position sensing methods employed at multiple locations along a 2 m long × 0.4 m deep laboratory strike-slip fault. For these magnetoresistive sensors, the lack of resonance signals commonly encountered with cantilever-type position sensor mounting, the wide band response (DC to ≈ 100 kHz) that exceeds the capabilities of many traditional position sensors, and the small space required on the sample, make them attractive options for capturing high speed fault slip measurements in these laboratory experiments. An unanticipated observation of this study is the apparent sensitivity of this sensor to high frequency electomagnetic signals associated with fault rupture and (or) rupture propagation, which may offer new insights into the physics of earthquake faulting.

  18. A numerical study of super-resolution through fast 3D wideband algorithm for scattering in highly-heterogeneous media

    KAUST Repository

    Lé tourneau, Pierre-David; Wu, Ying; Papanicolaou, George; Garnier, Josselin; Darve, Eric

    2016-01-01

    We present a wideband fast algorithm capable of accurately computing the full numerical solution of the problem of acoustic scattering of waves by multiple finite-sized bodies such as spherical scatterers in three dimensions. By full solution, we

  19. Fusion safety codes International modeling with MELCOR and ATHENA- INTRA

    CERN Document Server

    Marshall, T; Topilski, L; Merrill, B

    2002-01-01

    For a number of years, the world fusion safety community has been involved in benchmarking their safety analyses codes against experiment data to support regulatory approval of a next step fusion device. This paper discusses the benchmarking of two prominent fusion safety thermal-hydraulic computer codes. The MELCOR code was developed in the US for fission severe accident safety analyses and has been modified for fusion safety analyses. The ATHENA code is a multifluid version of the US-developed RELAP5 code that is also widely used for fusion safety analyses. The ENEA Fusion Division uses ATHENA in conjunction with the INTRA code for its safety analyses. The INTRA code was developed in Germany and predicts containment building pressures, temperatures and fluid flow. ENEA employs the French-developed ISAS system to couple ATHENA and INTRA. This paper provides a brief introduction of the MELCOR and ATHENA-INTRA codes and presents their modeling results for the following breaches of a water cooling line into the...

  20. Translation of ARAC computer codes

    International Nuclear Information System (INIS)

    Takahashi, Kunio; Chino, Masamichi; Honma, Toshimitsu; Ishikawa, Hirohiko; Kai, Michiaki; Imai, Kazuhiko; Asai, Kiyoshi

    1982-05-01

    In 1981 we have translated the famous MATHEW, ADPIC and their auxiliary computer codes for CDC 7600 computer version to FACOM M-200's. The codes consist of a part of the Atmospheric Release Advisory Capability (ARAC) system of Lawrence Livermore National Laboratory (LLNL). The MATHEW is a code for three-dimensional wind field analysis. Using observed data, it calculates the mass-consistent wind field of grid cells by a variational method. The ADPIC is a code for three-dimensional concentration prediction of gases and particulates released to the atmosphere. It calculates concentrations in grid cells by the particle-in-cell method. They are written in LLLTRAN, i.e., LLNL Fortran language and are implemented on the CDC 7600 computers of LLNL. In this report, i) the computational methods of the MATHEW/ADPIC and their auxiliary codes, ii) comparisons of the calculated results with our JAERI particle-in-cell, and gaussian plume models, iii) translation procedures from the CDC version to FACOM M-200's, are described. Under the permission of LLNL G-Division, this report is published to keep the track of the translation procedures and to serve our JAERI researchers for comparisons and references of their works. (author)

  1. High-speed ultra-wideband wireless signals over fiber systems: photonic generation and DSP detection

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2009-01-01

    We firstly review the efforts in the literature on ultra-wideband (UWB)-over-fiber systems. Secondly, we present experimental results on photonic generation of high-speed UWB signals by both direct modulation and external optical injecting an uncooled semiconductor laser. Furthermore, we introduce...... the use of digital signal processing (DSP) technology to receive the generated UWB signal at 781.25 Mbit/s. Error-free transmission is achieved....

  2. Controls on Magmatic and Hydrothermal Processes at Yellowstone Supervolcano: The Wideband Magnetotelluric Component of an Integrated MT/Seismic Investigation

    Science.gov (United States)

    Schultz, A.; Bennington, N. L.; Bowles-martinez, E.; Imamura, N.; Cronin, R. A.; Miller, D. J.; Hart, L.; Gurrola, R. M.; Neal, B. A.; Scholz, K.; Fry, B.; Carbonari, R.

    2017-12-01

    Previous seismic and magnetotelluric (MT) studies beneath Yellowstone (YS) have provided insight into the origin and migration of magmatic fluids within the volcanic system. However, important questions remain concerning the generation of magmatism at YS, the migration and storage of these magmatic fluids, as well as their relationships to hydrothermal expressions. Analysis of regional-scale EarthScope MT data collected previously suggests a relative absence of continuity in crustal partial melt accumulations directly beneath YS. This is in contrast to some seismic interpretations, although such long-period MT data have limited resolving power in the upper-to-mid crustal section. A wideband MT experiment was designed as a component of an integrated MT/seismic project to examine: the origin and location of magmatic fluids at upper mantle/lower crustal depths, the preferred path of migration for these magmatic fluids into the mid- to upper-crust, the resulting distribution of the magma reservoir, the composition of the magma reservoir, and implications for future volcanism at YS. A high-resolution wideband MT survey was carried out in the YS region in the summer of 2017, with more than forty-five wideband stations installed within and immediately surrounding the YS National Park boundary. These data provided nearly six decades of bandwidth ( 10-3 Hz -to- 103 Hz). Extraordinary permitting restrictions prevented us from using conventional installation methods at many of our sites, and an innovative "no-dig" subaerial method of wideband MT was developed and used successfully. Using these new data along with existing MT datasets, we are inverting for the 3D resistivity structure at upper crustal through upper mantle scales at YS. Complementary to this MT work, a joint inversion for the 3D crustal velocity structure is being carried out using both ambient noise and earthquake travel time data. Taken together, these data should better constrain the crustal velocity

  3. Rate-Compatible LDPC Codes with Linear Minimum Distance

    Science.gov (United States)

    Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel

    2009-01-01

    A recently developed method of constructing protograph-based low-density parity-check (LDPC) codes provides for low iterative decoding thresholds and minimum distances proportional to block sizes, and can be used for various code rates. A code constructed by this method can have either fixed input block size or fixed output block size and, in either case, provides rate compatibility. The method comprises two submethods: one for fixed input block size and one for fixed output block size. The first mentioned submethod is useful for applications in which there are requirements for rate-compatible codes that have fixed input block sizes. These are codes in which only the numbers of parity bits are allowed to vary. The fixed-output-blocksize submethod is useful for applications in which framing constraints are imposed on the physical layers of affected communication systems. An example of such a system is one that conforms to one of many new wireless-communication standards that involve the use of orthogonal frequency-division modulation

  4. Some new classes of division algebras and potential applications to space-time block coding

    OpenAIRE

    Steele, Andrew

    2014-01-01

    In this thesis we study some new classes of nonassociative division algebras. First we introduce a generalisation of both associative cyclic algebras and of Waterhouse's nonassociative quaternions. An important aspect of these algebras is the simplicity of their construction, which is a modification of the classical definition of associative cyclic algebras. By taking the parameter used in the classical definition from a larger field, we lose the property of associativity but gain many new ex...

  5. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar, E-mail: gjeschke@ethz.ch [ETH Zurich, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, CH-8093 Zurich (Switzerland)

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.

  6. Parallelization of quantum molecular dynamics simulation code

    International Nuclear Information System (INIS)

    Kato, Kaori; Kunugi, Tomoaki; Shibahara, Masahiko; Kotake, Susumu

    1998-02-01

    A quantum molecular dynamics simulation code has been developed for the analysis of the thermalization of photon energies in the molecule or materials in Kansai Research Establishment. The simulation code is parallelized for both Scalar massively parallel computer (Intel Paragon XP/S75) and Vector parallel computer (Fujitsu VPP300/12). Scalable speed-up has been obtained with a distribution to processor units by division of particle group in both parallel computers. As a result of distribution to processor units not only by particle group but also by the particles calculation that is constructed with fine calculations, highly parallelization performance is achieved in Intel Paragon XP/S75. (author)

  7. Library system for a one dimensional tokamak transport code: (LIBJT60), 1

    International Nuclear Information System (INIS)

    Hirayama, Toshio

    1982-12-01

    A library system is developed to control and manage huge programs in terms of FORTRAN source. It is applied to widely used one dimensional tokamak transport codes (LIBJT60), which have been developed in the Division of Large Tokamak Development. The structure of data and program in the transport code turn out to be flexible enough to respond to various demands and this gigantic code frame work can be decomposed into groups of a compact code with a specific function. Some editing support tools for programming and debugging are also developed to save programming work. By applying this library system, users can obtain a code whose functions can be efficiently developed. (author)

  8. Ultra-wideband balanced schottky envelope detector for data communication with high bitrate to carrier frequency ratio

    DEFF Research Database (Denmark)

    Granja, Angel Blanco; Cimoli, Bruno; Rodriguez, Sebastian

    2017-01-01

    This paper reports on an ultra-wideband (UWB) Schottky diode based balanced envelope detector for the L-, S-, C- and X- bands. The proposed circuit consists of a balun that splits the input signal into two 180° out of phase signals, a balanced detector, that demodulates the two signals, a low pass...

  9. Coding Across Multicodes and Time in CDMA Systems Employing MMSE Multiuser Detector

    Directory of Open Access Journals (Sweden)

    Park Jeongsoon

    2004-01-01

    Full Text Available When combining a multicode CDMA system with convolutional coding, two methods have been considered in the literature. In one method, coding is across time in each multicode channel while in the other the coding is across both multicodes and time. In this paper, a performance/complexity analysis of decoding metrics and trellis structures for the two schemes is carried out. It is shown that the latter scheme can exploit the multicode diversity inherent in convolutionally coded direct sequence code division multiple access (DS-CDMA systems which employ minimum mean squared error (MMSE multiuser detectors. In particular, when the MMSE detector provides sufficiently different signal-to-interference ratios (SIRs for the multicode channels, coding across multicodes and time can obtain significant performance gain over coding across time, with nearly the same decoding complexity.

  10. Spectral Amplitude Coding (SAC)-OCDMA Network with 8DPSK

    Science.gov (United States)

    Aldhaibani, A. O.; Aljunid, S. A.; Fadhil, Hilal A.; Anuar, M. S.

    2013-09-01

    Optical code division multiple access (OCDMA) technique is required to meet the increased demand for high speed, large capacity communications in optical networks. In this paper, the transmission performance of a spectral amplitude coding (SAC)-OCDMA network is investigated when a conventional single-mode fiber (SMF) is used as the transmission link using 8DPSK modulation. The DW has a fixed weight of two. Simulation results reveal that the transmission distance is limited mainly by the fiber dispersion when high coding chip rate is used. For a two-user SAC-OCDMA network operating with 2 Gbit/s data rate and two wavelengths for each user, the maximum allowable transmission distance is about 15 km.

  11. A Novel Ropes-DrivenWideband Piezoelectric Vibration Energy Harvester

    Directory of Open Access Journals (Sweden)

    Jinhui Zhang

    2016-12-01

    Full Text Available This paper presents a novel piezoelectric vibration energy harvester (PVEH in which a high-frequency generating beam (HFGB is driven by an array of low-frequency driving beams (LFDBs using ropes. Two mechanisms based on frequency upconversion and multimodal harvesting work together to broaden the frequency bandwidth of the proposed vibration energy harvester (VEH. The experimental results show that the output power of generating beam (GB remains unchanged with the increasing number of driving beams (DBs, compared with the traditional arrays of beams vibration energy harvester (AB-VEH, and the output power and bandwidth behavior can be adjusted by parameters such as acceleration, rope margin, and stiffness of LFDBs, which shows the potential to achieve unlimited wideband vibration energy-harvesting for a variable environment.

  12. Westinghouse Water Reactor Divisions quality assurance plan

    International Nuclear Information System (INIS)

    1977-09-01

    The Quality Assurance Program used by Westinghouse Water Reactor Divisions is described. The purpose of the program is to assure that the design, materials, and workmanship on Nuclear Steam Supply System (NSSS) equipment meet applicable safety requirements, fulfill the requirements of the contracts with the applicants, and satisfy the applicable codes, standards, and regulatory requirements. This program satisfies the NRC Quality Assurance Criteria, 10CFR50 Appendix B, to the extent that these criteria apply to safety related NSSS equipment. Also, it follows the regulatory position provided in NRC regulatory guides and the requirements of ANSI Standard N45.2.12 as identified in this Topical Report

  13. Fresh Prime Codes Evaluation for Synchronous PPM and OPPM Signaling for Optical CDMA Networks

    Science.gov (United States)

    Karbassian, M. Massoud; Ghafouri-Shiraz, H.

    2007-06-01

    In this paper, we have proposed a novel prime spreading sequence family hereby referred to as “Double-Padded Modified Prime Code (DPMPC)” for direct-detection synchronous optical code-division multiple-access (OCDMA) networks. The new code is applied to both pulse-position and overlapping pulse-position modulation CDMA networks, and their performances were evaluated and compared with existing prime codes family. In addition, we have analyzed the system throughput and also introduced a new interference cancellation technique which significantly improves the bit error probability of OCDMA networks.

  14. Environmental Sciences Division. Annual progress report for period ending September 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    The energy crisis and creation of ERDA were dominant factors affecting the activities of the Environmental Sciences Division during the past year. Efforts primarily centered on coal conversion effluents, aquatic effects from power plants, terrestrial modeling of both radioactive and nonradioactive waste transport, mineral cycling, forest management, and information handling codes and techniques. A bibliography of publications, presentation, these, and other professional activities is included. (PCS)

  15. Compact electromagnetic bandgap structures for notch band in ultra-wideband applications.

    Science.gov (United States)

    Rotaru, Mihai; Sykulski, Jan

    2010-01-01

    This paper introduces a novel approach to create notch band filters in the front-end of ultra-wideband (UWB) communication systems based on electromagnetic bandgap (EBG) structures. The concept presented here can be implemented in any structure that has a microstrip in its configuration. The EBG structure is first analyzed using a full wave electromagnetic solver and then optimized to work at WLAN band (5.15-5.825 GHz). Two UWB passband filters are used to demonstrate the applicability and effectiveness of the novel EBG notch band feature. Simulation results are provided for two cases studied.

  16. Efficient coding schemes with power allocation using space-time-frequency spreading

    Institute of Scientific and Technical Information of China (English)

    Jiang Haining; Luo Hanwen; Tian Jifeng; Song Wentao; Liu Xingzhao

    2006-01-01

    An efficient space-time-frequency (STF) coding strategy for multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) systems is presented for high bit rate data transmission over frequency selective fading channels. The proposed scheme is a new approach to space-time-frequency coded OFDM (COFDM) that combines OFDM with space-time coding, linear precoding and adaptive power allocation to provide higher quality of transmission in terms of the bit error rate performance and power efficiency. In addition to exploiting the maximum diversity gain in frequency, time and space, the proposed scheme enjoys high coding advantages and low-complexity decoding. The significant performance improvement of our design is confirmed by corroborating numerical simulations.

  17. A hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks.

    Science.gov (United States)

    Choi, Yong-Kyu; Hosoya, Kenta; Lee, Chung Ghiu; Hanawa, Masanori; Park, Chang-Soo

    2011-03-28

    We propose and experimentally demonstrate a hybrid WDM/OCDMA ring with a dynamic add/drop function based on Fourier code for local area networks. Dynamic function is implemented by mechanically tuning the Fourier encoder/decoder for optical code division multiple access (OCDMA) encoding/decoding. Wavelength division multiplexing (WDM) is utilized for node assignment and 4-chip Fourier code recovers the matched signal from the codes. For an optical source well adapted to WDM channels and its short optical pulse generation, reflective semiconductor optical amplifiers (RSOAs) are used with a fiber Bragg grating (FBG) and gain-switched. To demonstrate we experimentally investigated a two-node hybrid WDM/OCDMA ring with a 4-chip Fourier encoder/decoder fabricated by cascading four FBGs with the bit error rate (BER) of <10(-9) for the node span of 10.64 km at 1.25 Gb/s.

  18. Development of wide-band, time and energy resolving, optical photon detectors with application to imaging astronomy

    International Nuclear Information System (INIS)

    Miller, A.J.; Cabrera, B.; Romani, R.W.; Figueroa-Feliciano, E.; Nam, S.W.; Clarke, R.M.

    2000-01-01

    Superconducting transition edge sensors (TESs) are showing promise for the wide-band spectroscopy of individual photons from the mid-infrared (IR), through the optical, and into the near ultraviolet (UV). Our TES sensors are ∼20 μm square, 40 nm thick tungsten (W) films with a transition temperature of about 80 mK. We typically attain an energy resolution of 0.15 eV FWHM over the optical range with relative timing resolution of 100 ns. Single photon events with sub-microsecond risetimes and few microsecond falltimes have been achieved allowing count rates in excess of 30 kHz per pixel. Additionally, tungsten is approximately 50% absorptive in the optical (dropping to 10% in the IR) giving these devices an intrinsically high quantum efficiency. These combined traits make our detectors attractive for fast spectrophotometers and photon-starved applications such as wide-band, time and energy resolved astronomical observations. We present recent results from our work toward the fabrication and testing of the first TES optical photon imaging arrays

  19. Computational Fair Division

    DEFF Research Database (Denmark)

    Branzei, Simina

    Fair division is a fundamental problem in economic theory and one of the oldest questions faced through the history of human society. The high level scenario is that of several participants having to divide a collection of resources such that everyone is satisfied with their allocation -- e.g. two...... heirs dividing a car, house, and piece of land inherited. The literature on fair division was developed in the 20th century in mathematics and economics, but computational work on fair division is still sparse. This thesis can be seen as an excursion in computational fair division divided in two parts....... The first part tackles the cake cutting problem, where the cake is a metaphor for a heterogeneous divisible resource such as land, time, mineral deposits, and computer memory. We study the equilibria of classical protocols and design an algorithmic framework for reasoning about their game theoretic...

  20. Ultra-wideband short-pulse radar with range accuracy for short range detection

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T; Pankonin, Jeffrey; Heintzleman, Richard E; Kinzie, Nicola Jean; Popovic, Zorana P

    2014-10-07

    An ultra-wideband (UWB) radar transmitter apparatus comprises a pulse generator configured to produce from a sinusoidal input signal a pulsed output signal having a series of baseband pulses with a first pulse repetition frequency (PRF). The pulse generator includes a plurality of components that each have a nonlinear electrical reactance. A signal converter is coupled to the pulse generator and configured to convert the pulsed output signal into a pulsed radar transmit signal having a series of radar transmit pulses with a second PRF that is less than the first PRF.

  1. Fiber extended ultra-wideband radar for breath tracking through 10 cm concrete

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    2016-01-01

    This article presents an Ultra-Wideband (UWB) radar with a 20 km NZ-DSF extension on the transmitter side. The radar is based on telecom class signal generation, antennas, and a recording module operating at 20 Gsa/s. The radar is transmitting a pulse covering the frequencies from 3.4 to 9.9 GHz........ The radar system was able to track the breathing of a human through a 10 cm concrete obstacle. The frequency output was verified through the use of a metal pendulum with a fixed oscillation period...

  2. Fiber extended ultra-wideband radar for breath tracking through 10 cm concrete

    DEFF Research Database (Denmark)

    Suhr, Lau Frejstrup; Tafur Monroy, Idelfonso; Vegas Olmos, Juan José

    2016-01-01

    This article presents an Ultra-Wideband (UWB) radar with a 20 km NZ-DSF extension on the transmitter side. The radar is based on telecom class signal generation, antennas, and a recording module operating at 20 Gsa/s. The radar is transmitting a pulse covering the frequencies from 3.4 to 9.9 GHz....... The radar system was able to track the breathing of a human through a 10 cm concrete obstacle. The frequency output was verified through the use of a metal pendulum with a fixed oscillation period...

  3. On infinitely divisible semimartingales

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas; Rosiński, Jan

    2015-01-01

    to non Gaussian infinitely divisible processes. First we show that the class of infinitely divisible semimartingales is so large that the natural analog of Stricker's theorem fails to hold. Then, as the main result, we prove that an infinitely divisible semimartingale relative to the filtration generated...... by a random measure admits a unique decomposition into an independent increment process and an infinitely divisible process of finite variation. Consequently, the natural analog of Stricker's theorem holds for all strictly representable processes (as defined in this paper). Since Gaussian processes...... are strictly representable due to Hida's multiplicity theorem, the classical Stricker's theorem follows from our result. Another consequence is that the question when an infinitely divisible process is a semimartingale can often be reduced to a path property, when a certain associated infinitely divisible...

  4. Ultra-Wideband Geo-Regioning: A Novel Clustering and Localization Technique

    Directory of Open Access Journals (Sweden)

    Armin Wittneben

    2007-12-01

    Full Text Available Ultra-wideband (UWB technology enables a high temporal resolution of the propagation channel. Consequently, a channel impulse response between transmitter and receiver can be interpreted as signature for their relative positions. If the position of the receiver is known, the channel impulse response indicates the position of the transmitter and vice versa. This work introduces UWB geo-regioning as a clustering and localization method based on channel impulse response fingerprinting, develops a theoretical framework for performance analysis, and evaluates this approach by means of performance results based on measured channel impulse responses. Complexity issues are discussed and performance dependencies on signal-to-noise ratio, a priori knowledge, observation window, and system bandwidth are investigated.

  5. Survey of timing/synchronization of operating wideband digital communications networks

    Science.gov (United States)

    Mitchell, R. L.

    1978-01-01

    In order to benefit from experience gained from the synchronization of operational wideband digital networks, a survey was made of three such systems: Data Transmission Company, Western Union Telegraph Company, and the Computer Communications Group of the Trans-Canada Telephone System. The focus of the survey was on deployment and operational experience from a practical (as opposed to theoretical) viewpoint. The objective was to provide a report on the results of deployment how the systems performed, and wherein the performance differed from that predicted or intended in the design. It also attempted to determine how the various system designers would use the benefit of hindsight if they could design those same systems today.

  6. Estimation of small perturbation effects in multiversion calculations by the PRIZMA-D code

    International Nuclear Information System (INIS)

    Kandiev, Ya.Z.; Malakhov, A.A.; Serova, E.V.; Spirina, S.G.

    2005-01-01

    The PRIZMA-D code is intended for solving by the Monte Carlo method of the problems, connected with calculations of nuclear reactors and critical assemblies. Taking into account the effect of the perturbation on the distribution of the source division points is carried out by means of the method of small iterations for the division points. This method is described in the paper. Possibilities of its application are shown by the examples of calculations of some problems. The comparative results are presented [ru

  7. UTag: Long-range Ultra-wideband Passive Radio Frequency Tags

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F

    2007-03-14

    Long-range, ultra-wideband (UWB), passive radio frequency (RF) tags are key components in Radio Frequency IDentification (RFID) system that will revolutionize inventory control and tracking applications. Unlike conventional, battery-operated (active) RFID tags, LLNL's small UWB tags, called 'UTag', operate at long range (up to 20 meters) in harsh, cluttered environments. Because they are battery-less (that is, passive), they have practically infinite lifetimes without human intervention, and they are lower in cost to manufacture and maintain than active RFID tags. These robust, energy-efficient passive tags are remotely powered by UWB radio signals, which are much more difficult to detect, intercept, and jam than conventional narrowband frequencies. The features of long range, battery-less, and low cost give UTag significant advantage over other existing RFID tags.

  8. Millimeter-wave silicon-based ultra-wideband automotive radar transceivers

    Science.gov (United States)

    Jain, Vipul

    Since the invention of the integrated circuit, the semiconductor industry has revolutionized the world in ways no one had ever anticipated. With the advent of silicon technologies, consumer electronics became light-weight and affordable and paved the way for an Information-Communication-Entertainment age. While silicon almost completely replaced compound semiconductors from these markets, it has been unable to compete in areas with more stringent requirements due to technology limitations. One of these areas is automotive radar sensors, which will enable next-generation collision-warning systems in automobiles. A low-cost implementation is absolutely essential for widespread use of these systems, which leads us to the subject of this dissertation---silicon-based solutions for automotive radars. This dissertation presents architectures and design techniques for mm-wave automotive radar transceivers. Several fully-integrated transceivers and receivers operating at 22-29 GHz and 77-81 GHz are demonstrated in both CMOS and SiGe BiCMOS technologies. Excellent performance is achieved indicating the suitability of silicon technologies for automotive radar sensors. The first CMOS 22-29-GHz pulse-radar receiver front-end for ultra-wideband radars is presented. The chip includes a low noise amplifier, I/Q mixers, quadrature voltage-controlled oscillators, pulse formers and variable-gain amplifiers. Fabricated in 0.18-mum CMOS, the receiver achieves a conversion gain of 35-38.1 dB and a noise figure of 5.5-7.4 dB. Integration of multi-mode multi-band transceivers on a single chip will enable next-generation low-cost automotive radar sensors. Two highly-integrated silicon ICs are designed in a 0.18-mum BiCMOS technology. These designs are also the first reported demonstrations of mm-wave circuits with high-speed digital circuits on the same chip. The first mm-wave dual-band frequency synthesizer and transceiver, operating in the 24-GHz and 77-GHz bands, are demonstrated. All

  9. Construction and performance research on variable-length codes for multirate OCDMA multimedia networks

    Science.gov (United States)

    Li, Chuan-qi; Yang, Meng-jie; Luo, De-jun; Lu, Ye; Kong, Yi-pu; Zhang, Dong-chuang

    2014-09-01

    A new kind of variable-length codes with good correlation properties for the multirate asynchronous optical code division multiple access (OCDMA) multimedia networks is proposed, called non-repetition interval (NRI) codes. The NRI codes can be constructed by structuring the interval-sets with no repetition, and the code length depends on the number of users and the code weight. According to the structural characteristics of NRI codes, the formula of bit error rate (BER) is derived. Compared with other variable-length codes, the NRI codes have lower BER. A multirate OCDMA multimedia simulation system is designed and built, the longer codes are assigned to the users who need slow speed, while the shorter codes are assigned to the users who need high speed. It can be obtained by analyzing the eye diagram that the user with slower speed has lower BER, and the conclusion is the same as the actual demand in multimedia data transport.

  10. A wideband superconducting filter at Ku-band based on interdigital coupling

    Science.gov (United States)

    Jiang, Ying; Wei, Bin; Cao, Bisong; Li, Qirong; Guo, Xubo; Jiang, Linan; Song, Xiaoke; Wang, Xiang

    2018-04-01

    In this paper, an interdigital-type resonator with strong electric coupling is proposed for the wideband high-frequency (>10 GHz) filter design. The proposed microstrip resonator consists of an H-shaped main line part with its both ends installed with interdigital finger parts. Strong electric coupling is achieved between adjacent resonators. A six-pole high-temperature superconducting filter at Ku-band using this resonator is designed and fabricated. The filter has a center frequency of 15.11 GHz with a fractional bandwidth of 30%. The insertion loss of the passband is less than 0.3 dB, and the return loss is greater than 14 dB without any tuning.

  11. Transmission over UWB channels with OFDM system using LDPC coding

    Science.gov (United States)

    Dziwoki, Grzegorz; Kucharczyk, Marcin; Sulek, Wojciech

    2009-06-01

    Hostile wireless environment requires use of sophisticated signal processing methods. The paper concerns on Ultra Wideband (UWB) transmission over Personal Area Networks (PAN) including MB-OFDM specification of physical layer. In presented work the transmission system with OFDM modulation was connected with LDPC encoder/decoder. Additionally the frame and bit error rate (FER and BER) of the system was decreased using results from the LDPC decoder in a kind of turbo equalization algorithm for better channel estimation. Computational block using evolutionary strategy, from genetic algorithms family, was also used in presented system. It was placed after SPA (Sum-Product Algorithm) decoder and is conditionally turned on in the decoding process. The result is increased effectiveness of the whole system, especially lower FER. The system was tested with two types of LDPC codes, depending on type of parity check matrices: randomly generated and constructed deterministically, optimized for practical decoder architecture implemented in the FPGA device.

  12. Age and Gender Effects on Wideband Absorbance in Adults with Normal Outer and Middle Ear Function

    Science.gov (United States)

    Mazlan, Rafidah; Kei, Joseph; Ya, Cheng Li; Yusof, Wan Nur Hanim Mohd; Saim, Lokman; Zhao, Fei

    2015-01-01

    Purpose: This study examined the effects of age and gender on wideband energy absorbance in adults with normal middle ear function. Method: Forty young adults (14 men, 26 women, aged 20-38 years), 31 middle-aged adults (16 men, 15 women, aged 42-64 years), and 30 older adults (20 men, 10 women, aged 65-82 years) were assessed. Energy absorbance…

  13. Cell Division Synchronization

    Science.gov (United States)

    The report summarizes the progress in the design and construction of automatic equipment for synchronizing cell division in culture by periodic...Concurrent experiments in hypothermic synchronization of algal cell division are reported.

  14. Argonne Physics Division Colloquium

    Science.gov (United States)

    [Argonne Logo] [DOE Logo] Physics Division Home News Division Information Contact PHY Org Chart Physics Division Colloquium Auditorium, Building 203, Argonne National Laboratory Fridays at 11:00 AM 2017 : Sereres Johnston 15 Sep 2017 Joint Physics and Materials Science Colloquium J. C. Séamus Davis, Cornell

  15. Spectrally-Precoded OFDM for 5G Wideband Operation in Fragmented sub-6GHz Spectrum

    OpenAIRE

    Pitaval, Renaud-Alexandre; Popović, Branislav M.; Mohamad, Medhat; Nilsson, Rickard; van de Beek, Jaap

    2016-01-01

    We consider spectrally-precoded OFDM waveforms for 5G wideband transmission in sub-6GHz band. In this densely packed spectrum, a low out-of-band (OOB) waveform is a critical 5G component to achieve the promised high spectral efficiency. By precoding data symbols before OFDM modulation, it is possible to achieve extremely low out-of-band emission with very sharp spectrum transition enabling an efficient and flexible usage of frequency resources. Spectrally-precoded OFDM shows promising results...

  16. Zero-Forcing Pre-coding for MIMO WiMAX Transceivers

    DEFF Research Database (Denmark)

    Cattoni, Andrea Fabio; Le Moullec, Yannick; Sacchi, Claudio

    2013-01-01

    with the benefits of space division multiple access. In MU-MIMO systems, the base stations transmit signals to two or more users over the same channel, for this reason every user can experience inter-user interference. This paper provides a capacity analysis of an online, interference-based pre-coding algorithm...... of the analyzed technique in a possible FPGA-based software defined radio....

  17. The new Wide-band Solar Neutrino Trigger for Super-Kamiokande

    Science.gov (United States)

    Carminati, Giada

    Super-Kamiokande observes low energy electrons induced by the elastic scattering of 8B solar neutrinos. The transition region between vacuum and matter oscillations, with neutrino energy near 3 MeV, is still partially unexplored by any detector. Super-Kamiokande can study this intermediate regime adding a new software trigger. The Wide-band Intelligent Trigger (WIT) has been developed to simultaneously trigger and reconstruct very low energy electrons (above 2.49 kinetic MeV) with an e_ciency close to 100%. The WIT system, comprising 256-Hyperthreaded CPU cores and one 10-Gigabit Ethernet network switch, has been recently installed and integrated in the online DAQ system of SK and the complete system is currently in an advanced status of online data testing.

  18. Low-noise wide-band amplifiers for stochastic beam cooling experiments

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1982-01-01

    Noise characteristics of the continuous-wave wide-band amplifier systems for stochastic beam cooling experiments are presented. Also, the noise performance, bandwidth capability and gain stability of components used in these amplifiers are summarized and compared in the 100 MHz to 40 GHz frequency range. This includes bipolar and field-effect transistors, parametric amplifier, Schottky diode mixer and maser. Measurements of the noise characteristics and scattering parameters of variety GaAs FETs as a function of ambient temperature are also given. Performance data and design information are presented on a broadband 150-500 MHz preamplifier having noise temperature of approximately 35 0 K at ambient temperature of 20 0 K. An analysis of preamplifier stability based on scattering parameters concept is included

  19. Wideband and UWB Antennas for Wireless Applications: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Renato Cicchetti

    2017-01-01

    Full Text Available A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible, and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc. and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems.

  20. A Butterfly-Shaped Wideband Microstrip Patch Antenna for Wireless Communication

    Directory of Open Access Journals (Sweden)

    Liling Sun

    2015-01-01

    Full Text Available A novel butterfly-shaped patch antenna for wireless communication is introduced in this paper. The antenna is designed for wideband wireless communications and radio-frequency identification (RFID systems. Two symmetrical quasi-circular arms and two symmetrical round holes are incorporated into the patch of a microstrip antenna to expand its bandwidth. The diameter and position of the circular slots are optimized to achieve a wide bandwidth. The validity of the design concept is demonstrated by means of a prototype having a bandwidth of about 40.1%. The return loss of the butterfly-shaped antenna is greater than 10 dB between 4.15 and 6.36 GHz. The antenna can serve simultaneously most of the modern wireless communication standards.

  1. Design of Wideband Dual-Polarized Planar Antenna Using Multimode Concept

    Directory of Open Access Journals (Sweden)

    Deqiang Yang

    2016-01-01

    Full Text Available A wideband dual-polarized planar antenna is designed and analyzed by using the theory of characteristic modes (TCM. The eigenvalue, eigencurrent, characteristic pattern, and modal weighting coefficient are analyzed to bring physical insight to this kind of antenna. The results demonstrate that there are two modes resonant in the operating band for each polarization, which have been combined to form a wider frequency band. A bandwidth of 60.2% (1.72–3.2 GHz for VSWR < 1.5 with high isolation of 32 dB is achieved simultaneously. The size of the radiator structure is 0.33λ0 × 0.33λ0 × 0.22λ0 (λ0 refers to the center operating frequency.

  2. The research of atmospheric 2D optical PPM CDMA system with turbo coding

    Science.gov (United States)

    Zhou, Xiuli; Li, Zaoxia

    2007-11-01

    The atmospheric two-dimensional optical code-division multiple-access (CDMA) systems using pulse-position modulation (PPM) and Turbo-coded were presented. We analyzed the bit-error rate (BER) of the proposed system using pulse-position modulation (PPM) with considering the effects of the scintillation, avalanche photodiode noise, thermal noise, and multi-user interference. We showed that the atmospheric two dimensional (2D) optical PPM CDMA systems can realize high-speed communications when the logarithm variance of the scintillation is less than 0.1, and the turbo-coded atmospheric optical CDMA system has better bit error rate(BER) performance than the atmospheric optical PPM CDMA systems without turbo-coded. We also showed that the turbo-coded system has better performance than the multi-user detection system.

  3. A Differentially Driven Dual-Polarized Dual-Wideband Complementary Antenna for 2G/3G/LTE Applications

    Directory of Open Access Journals (Sweden)

    Botao Feng

    2014-01-01

    Full Text Available A novel differentially driven dual-polarized dual-wideband complementary patch antenna with high isolation is proposed for 2G/3G/LTE applications. In order to generate dual-polarization and dual-wideband properties, a pair of biorthogonal dual-layer η-shaped tapered line feeding structures is utilized to feed two pairs of dual-layer U-shaped patches, respectively. The upper-layer U-shaped patches mainly serve the upper frequency band, while the lower-layer ones chiefly work for the lower frequency band. Besides, a horned reflector is introduced to improve radiation patterns and provide stable gain. The prototype antenna can achieve a bandwidth of 25.7% (0.78 GHz–1.01 GHz with a stable gain of 7.8±0.7 dBi for the lower band, and a bandwidth of 45.7% (1.69 GHz–2.69 GHz with a gain of 9.5±1.1 dBi for the upper band. Input isolation exceeding 30 dB has been obtained in the wide bandwidth. Thus, it can be potentially used as a base station antenna for 2G/3G/LTE networks.

  4. Wideband RCS Reduction of Microstrip Array Antenna Based on Absorptive Frequency Selective Surface and Microstrip Resonators

    Directory of Open Access Journals (Sweden)

    Jingjing Xue

    2017-01-01

    Full Text Available An approach for wideband radar cross section (RCS reduction of a microstrip array antenna is presented and discussed. The scheme is based on the microstrip resonators and absorptive frequency selective surface (AFSS with a wideband absorptive property over the low band 1.9–7.5 GHz and a transmission characteristic at high frequency 11.05 GHz. The AFSS is designed to realize the out-of-band RCS reduction and preserve the radiation performance simultaneously, and it is placed above the antenna with the operating frequency of 11.05 GHz. Moreover, the microstrip resonators are loaded to obtain the in-band RCS reduction. As a result, a significant RCS reduction from 1.5 GHz to 13 GHz for both types of polarization has been accomplished. Compared with the reference antenna, the simulated results exhibit that the monostatic RCS of the proposed array antenna in x- and y-polarization can be reduced as much as 17.6 dB and 21.5 dB, respectively. And the measured results agree well with the simulated ones.

  5. Ultra-wideband spectral analysis using S2 technology

    International Nuclear Information System (INIS)

    Krishna Mohan, R.; Chang, T.; Tian, M.; Bekker, S.; Olson, A.; Ostrander, C.; Khallaayoun, A.; Dollinger, C.; Babbitt, W.R.; Cole, Z.; Reibel, R.R.; Merkel, K.D.; Sun, Y.; Cone, R.; Schlottau, F.; Wagner, K.H.

    2007-01-01

    This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution (∼25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 μs) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed

  6. Ultra-wideband spectral analysis using S2 technology

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Mohan, R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)]. E-mail: krishna@spectrum.montana.edu; Chang, T. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Tian, M. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Bekker, S. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Olson, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Ostrander, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Khallaayoun, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Dollinger, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cole, Z. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Reibel, R.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Merkel, K.D. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Sun, Y. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cone, R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Schlottau, F. [University of Colorado, Boulder, CO 80309 (United States); Wagner, K.H. [University of Colorado, Boulder, CO 80309 (United States)

    2007-11-15

    This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution ({approx}25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 {mu}s) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed.

  7. Coding Military Command as a Promiscuous Practice

    DEFF Research Database (Denmark)

    Ashcraft, Karen Lee; Muhr, Sara Louise

    2018-01-01

    by translating the vague promise of queering leadership into a tangible method distinguished by specific habits. The article formulates this analytical practice out of empirical provocations encountered by the authors: namely, a striking mismatch between their experiences in military fields and the dominant......Despite abundant scholarship addressed to gender equity in leadership, much leadership literature remains invested in gender binaries. Metaphors of leadership are especially dependent on gender oppositions, and this article treats the scholarly practice of coding leadership through gendered...... metaphor as a consequential practice of leadership unto itself. Drawing on queer theory, the article develops a mode of analysis, called ‘promiscuous coding’, conducive to disrupting the gender divisions that currently anchor most leadership metaphors. Promiscuous coding can assist leadership scholars...

  8. Multi element synthetic aperture transmission using a frequency division approach

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2003-01-01

    transmitted into the tissue is low. This paper describes a novel method in which the available spectrum is divided into 2N overlapping subbands. This will assure a smooth broadband high resolution spectrum when combined. The signals are grouped into two subsets in which all signals are fully orthogonal...... can therefore be used for flow imaging, unlike with Hadamard and Golay coding. The frequency division approach increases the SNR by a factor of N2 compared to conventional pulsed synthetic aperture imaging, provided that N transmission centers are used. Simulations and phantom measurements...

  9. A new two-code keying scheme for SAC-OCDMA systems enabling bipolar encoding

    Science.gov (United States)

    Al-Khafaji, Hamza M. R.; Ngah, Razali; Aljunid, S. A.; Rahman, T. A.

    2015-03-01

    In this paper, we propose a new two-code keying scheme for enabling bipolar encoding in a high-rate spectral-amplitude coding optical code-division multiple-access (SAC-OCDMA) system. The mathematical formulations are derived for the signal-to-noise ratio and bit-error rate (BER) of SAC-OCDMA system based on the suggested scheme using multi-diagonal (MD) code. Performance analyses are assessed considering the effects of phase-induced intensity noise, as well as shot and thermal noises in photodetectors. The numerical results demonstrated that the proposed scheme exhibits an enhanced BER performance compared to the existing unipolar encoding with direct detection technique. Furthermore, the performance improvement afforded by this scheme is verified using simulation experiments.

  10. Topology-selective jamming of fully-connected, code-division random-access networks

    Science.gov (United States)

    Polydoros, Andreas; Cheng, Unjeng

    1990-01-01

    The purpose is to introduce certain models of topology selective stochastic jamming and examine its impact on a class of fully-connected, spread-spectrum, slotted ALOHA-type random access networks. The theory covers dedicated as well as half-duplex units. The dominant role of the spatial duty factor is established, and connections with the dual concept of time selective jamming are discussed. The optimal choices of coding rate and link access parameters (from the users' side) and the jamming spatial fraction are numerically established for DS and FH spreading.

  11. On results using automated wideband instrumentation for radar measurements and characterization

    Science.gov (United States)

    Govoni, Mark A.; Dogaru, Traian; Le, Calvin; Sobczak, Kevin

    2017-05-01

    Experiences are shared from a recent radar measurement and characterization effort. A regimented data collection procedure ensures repeatability and provides an expedited alternative to typical narrowband capabilities. Commercially-available instrumentation is repurposed to support wideband data collections spanning a contiguous range of frequencies from 700 MHz to 40 GHz. Utilizing a 4-port network analyzer, both monostatic and quasi-monostatic measurements are achievable. Polarization is varied by way of a custom-designed antenna mount that allows for the mechanical reorientation of the antennas. Computational electromagnetic modeling is briefly introduced and serves in validating the legitimacy of the collection capability. Data products presented will include high-range resolution profiles and inverse synthetic aperture radar (ISAR) imagery.

  12. Coherent time-stretch transformation for real-time capture of wideband signals.

    Science.gov (United States)

    Buckley, Brandon W; Madni, Asad M; Jalali, Bahram

    2013-09-09

    Time stretch transformation of wideband waveforms boosts the performance of analog-to-digital converters and digital signal processors by slowing down analog electrical signals before digitization. The transform is based on dispersive Fourier transformation implemented in the optical domain. A coherent receiver would be ideal for capturing the time-stretched optical signal. Coherent receivers offer improved sensitivity, allow for digital cancellation of dispersion-induced impairments and optical nonlinearities, and enable decoding of phase-modulated optical data formats. Because time-stretch uses a chirped broadband (>1 THz) optical carrier, a new coherent detection technique is required. In this paper, we introduce and demonstrate coherent time stretch transformation; a technique that combines dispersive Fourier transform with optically broadband coherent detection.

  13. Nupack, the new ASME code for radioactive material transportation packaging containments

    International Nuclear Information System (INIS)

    Turula, P.

    1998-01-01

    The American Society of Mechanical Engineers (ASME) has added a new division to the nuclear construction section of its Boiler and Pressure Vessel Code (B and PVC). This Division, commonly referred to as Nupack, has been written to provide a consistent set of technical requirements for containment vessels of transportation packagings for high-level radioactive materials. This paper provides an introduction to Nupack, discusses some of its technical provisions, and describes how it can be used for the design and construction of packaging components. Nupack's general provisions and design requirements are emphasized, while treatment of materials, fabrication and inspection is left for another paper

  14. Division par sexe, hiérarchisation des statuts et socialisation corporelle dans les clubs sportifs de judo : vers une neutralisation situationnelle

    OpenAIRE

    Klein , Emmanuelle

    2013-01-01

    The framework for the practise of judo is a particular one; it stages elements that make the study of gender division in judo sport clubs particularly interesting. Indeed, the socialisation of the body and the integration of non-official codes of the sport aim at de-Gendering the bodies and the judokas, thus promoting the emergence of neutralized gender relations between judokas. From a situational analysis of the gender division, it was then possible to highlight the fact that gendered statu...

  15. Experimental Facilities Division/User Program Division technical progress report 1999-2000

    International Nuclear Information System (INIS)

    2001-01-01

    In October 1999, the two divisions of the Advanced Photon Source (APS), the Accelerator Systems Division (ASD) and the Experimental Facilities Division (XFD), were reorganized into four divisions (see high-level APS organizational chart, Fig. 1.1). In addition to ASD and XFD, two new divisions were created, the APS Operations Division (AOD), to oversee APS operations, and the User Program Division (UPD), to serve the APS user community by developing and maintaining the highest quality user technical and administration support. Previous XFD Progress Reports (ANL/APS/TB-30 and ANL/APS/TB-34) covered a much broader base, including APS user administrative support and what was previously XFD operations (front ends, interlocks, etc.) This Progress Report summarizes the main scientific and technical activities of XFD, and the technical support, research and development (R and D) activities of UPD from October 1998 through November 2000. The report is divided into four major sections, (1) Introduction, (2) SRI-CAT Beamlines, Technical Developments, and Scientific Applications, (3) User Technical Support, and (4) Major Plans for the Future. Sections 2 and 3 describe the technical activities and research accomplishments of the XFD and UPD personnel in supporting the synchrotron radiation instrumentation (SRI) collaborative access team (CAT) and the general APS user community. Also included in this report is a comprehensive list of publications (Appendix 1) and presentations (Appendix 2) by XFD and UPD staff during the time period covered by this report. The organization of section 2, SRI CAT Beamlines, Technical Developments, and Scientific Applications has been made along scientific techniques/disciplines and not ''geographical'' boundaries of the sectors in which the work was performed. Therefore items under the subsection X-ray Imaging and Microfocusing could have been (and were) performed on several different beamlines by staff in different divisions. The management of

  16. Performance of an Error Control System with Turbo Codes in Powerline Communications

    Directory of Open Access Journals (Sweden)

    Balbuena-Campuzano Carlos Alberto

    2014-07-01

    Full Text Available This paper reports the performance of turbo codes as an error control technique in PLC (Powerline Communications data transmissions. For this system, computer simulations are used for modeling data networks based on the model classified in technical literature as indoor, and uses OFDM (Orthogonal Frequency Division Multiplexing as a modulation technique. Taking into account the channel, modulation and turbo codes, we propose a methodology to minimize the bit error rate (BER, as a function of the average received signal noise ratio (SNR.

  17. Division of atomic physics

    International Nuclear Information System (INIS)

    Kroell, S.

    1994-01-01

    The Division of Atomic Physics, Lund Institute of Technology (LTH), is responsible for the basic physics teaching in all subjects at LTH and for specialized teaching in Optics, Atomic Physics, Atomic and Molecular Spectroscopy and Laser Physics. The Division has research activities in basic and applied optical spectroscopy, to a large extent based on lasers. It is also part of the Physics Department, Lund University, where it forms one of eight divisions. Since the beginning of 1980 the research activities of our division have been centred around the use of lasers. The activities during the period 1991-1992 is described in this progress reports

  18. Calculations of a wideband metamaterial absorber using equivalent medium theory

    Science.gov (United States)

    Huang, Xiaojun; Yang, Helin; Wang, Danqi; Yu, Shengqing; Lou, Yanchao; Guo, Ling

    2016-08-01

    Metamaterial absorbers (MMAs) have drawn increasing attention in many areas due to the fact that they can achieve electromagnetic (EM) waves with unity absorptivity. We demonstrate the design, simulation, experiment and calculation of a wideband MMA based on a loaded double-square-loop (DSL) array of chip resisters. For a normal incidence EM wave, the simulated results show that the absorption of the full width at half maximum is about 9.1 GHz, and the relative bandwidth is 87.1%. Experimental results are in agreement with the simulations. More importantly, equivalent medium theory (EMT) is utilized to calculate the absorptions of the DSL MMA, and the calculated absorptions based on EMT agree with the simulated and measured results. The method based on EMT provides a new way to analysis the mechanism of MMAs.

  19. A photonic ultra-wideband pulse generator based on relaxation oscillations of a semiconductor laser

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Pawlik, Michal

    2009-01-01

    A photonic ultra-wideband (UWB) pulse generator based on relaxation oscillations of a semiconductor laser is proposed and experimentally demonstrated. We numerically simulate the modulation response of a direct modulation laser (DML) and show that due to the relaxation oscillations of the laser......, the generated signals with complex shape in time domain match the Federal Communications Commission (FCC) mask in the frequency domain. Experimental results using a DML agree well with simulation predictions. Furthermore, we also experimentally demonstrate the generation of FCC compliant UWB signals...

  20. ASME Code requirements for multi-canister overpack design and fabrication

    International Nuclear Information System (INIS)

    SMITH, K.E.

    1998-01-01

    The baseline requirements for the design and fabrication of the MCO include the application of the technical requirements of the ASME Code, Section III, Subsection NB for containment and Section III, Subsection NG for criticality control. ASME Code administrative requirements, which have not historically been applied at the Hanford site and which have not been required by the US Nuclear Regulatory Commission (NRC) for licensed spent fuel casks/canisters, were not invoked for the MCO. As a result of recommendations made from an ASME Code consultant in response to DNFSB staff concerns regarding ASME Code application, the SNF Project will be making the following modifications: issue an ASME Code Design Specification and Design Report, certified by a Registered Professional Engineer; Require the MCO fabricator to hold ASME Section III or Section VIII, Division 2 accreditation; and Use ASME Authorized Inspectors for MCO fabrication. Incorporation of these modifications will ensure that the MCO is designed and fabricated in accordance with the ASME Code. Code Stamping has not been a requirement at the Hanford site, nor for NRC licensed spent fuel casks/canisters, but will be considered if determined to be economically justified

  1. Theoretical design and analysis of wideband active hard electromagnetic surfaces using non-Foster circuit loaded anisotropic metasurfaces

    Science.gov (United States)

    Li, Yunbo; Li, Aobo; Sievenpiper, Daniel

    2018-02-01

    The electromagnetic (EM) hard surface which can both support transverse electric and transverse magnetic surface wave modes has the important ability to reduce the EM blockage of metallic obstacles. We propose a method to design an electrically thin hard surface with wide bandwidth by loading with non-Foster elements. The wideband hard surface composed of an anisotropic impedance coating can be considered as a kind of active metasurface. We develop a method to determine the values of the loading non-Foster circuit which can minimize the dispersion of the unit cells. For this method, we derive accurate values for the loading non-Foster elements through theoretical analysis. We also determine the fundamental limitations on the bandwidth due to stability requirements. To verify our theoretical design, we simulate the transmission performance between the two ports on opposite sides of a metallic rhombus-shaped obstacle coated with the non-Foster based metasurface. The simulated results show that the blockage has been largely reduced over a broad bandwidth from 0.2 GHz to 1.5 GHz. Finally, we provide a discussion on how the resistive part of the non-Foster circuit can affect the performance of the wideband hard surface coating.

  2. Technical activities, 1990: Surface Science Division

    International Nuclear Information System (INIS)

    Powell, C.J.

    1991-05-01

    The report summarizes technical activities and accomplishments of the NIST Surface Science Division during Fiscal Year 1990. Overviews are presented of the Division and of its three constituent groups: Surface Dynamical Processes, Thin Films and Interfaces, and Surface Spectroscopies and Standards. These overviews are followed by reports of selected technical accomplishments during the year. A summary is given of Division outputs and interactions that includes lists of publications, talks, committee assignments, seminars (including both Division seminars and Interface Science seminars arranged through the Division), conferences organized, and a standard reference material certified. Finally, lists are given of Division staff and of guest scientists who have worked in the Division during the past year

  3. Experimental Performance Comparison of 60 GHz DCM OFDM and Impulse BPSK Ultra-Wideband with Combined Optical Fibre and Wireless Transmission

    DEFF Research Database (Denmark)

    Beltrán, Marta; Jensen, Jesper Bevensee; Yu, Xianbin

    2010-01-01

    We present an experimental performance comparison of 1.44Gbps dual-carrier modulation OFDM and BPSK impulse-radio ultra-wideband in the 60GHz band with combined fibre, up to 40km, and 5m wireless transmission. Impulse-radio exhibits better dispersion tolerance requiring lower optical power....

  4. A Novel Manufacturing Process for Compact, Low-Weight and Flexible Ultra-Wideband Cavity Backed Textile Antennas

    Directory of Open Access Journals (Sweden)

    Dries Van Baelen

    2018-01-01

    Full Text Available A novel manufacturing procedure for the fabrication of ultra-wideband cavity-backed substrate integrated waveguide antennas on textile substrates is proposed. The antenna cavity is constructed using a single laser-cut electrotextile patch, which is folded around the substrate. Electrotextile slabs protruding from the laser-cut patch are then vertically folded and glued to form the antenna cavity instead of rigid metal tubelets to implement the vertical cavity walls. This approach drastically improves mechanical flexibility, decreases the antenna weight to slightly more than 1 g and significantly reduces alignment errors. As a proof of concept, a cavity-backed substrate integrated waveguide antenna is designed and realized for ultra-wideband operation in the [5.15–5.85] GHz band. Antenna performance is validated in free space as well as in two on body measurement scenarios. Furthermore, the antenna’s figures of merit are characterized when the prototype is bent at different curvature radii, as commonly encountered during deployment on the human body. Also the effect of humidity content on antenna performance is studied. In all scenarios, the realized antenna covers the entire operating frequency band, meanwhile retaining a stable radiation pattern with a broadside gain above 5 dBi, and a radiation efficiency of at least 70%.

  5. Generation of wideband chaos with suppressed time-delay signature by delayed self-interference.

    Science.gov (United States)

    Wang, Anbang; Yang, Yibiao; Wang, Bingjie; Zhang, Beibei; Li, Lei; Wang, Yuncai

    2013-04-08

    We demonstrate experimentally and numerically a method using the incoherent delayed self-interference (DSI) of chaotic light from a semiconductor laser with optical feedback to generate wideband chaotic signal. The results show that, the DSI can eliminate the domination of laser relaxation oscillation existing in the chaotic laser light and therefore flatten and widen the power spectrum. Furthermore, the DSI depresses the time-delay signature induced by external cavity modes and improves the symmetry of probability distribution by more than one magnitude. We also experimentally show that this DSI signal is beneficial to the random number generation.

  6. Wideband satellite phase coherent beacon observations at auroral and equatorial latitudes - A review

    International Nuclear Information System (INIS)

    Rino, C.L.; Livingston, R.C.; Cousins, M.D.; Fair, B.C.

    1978-01-01

    This paper presents a brief review of some of the principal results from the first two years of operation of the Wideband satellite which transmits phase-coherent signals from S-band to VHF. The auroral zone data show narrow regions of enhanced scintillation well equatorward of the discrete aurora. Such enhancements can be explained as a purely geometrical effect if the irregularities within the major precipitation regions have a sheet-like structure. Evidence of a localized irregularity source at the poleward boundary of the plasma trough is also found. Model computations are discussed and applied to the interpretation of equatorial data

  7. An Efficient Code-Timing Estimator for DS-CDMA Systems over Resolvable Multipath Channels

    Directory of Open Access Journals (Sweden)

    Jian Li

    2005-04-01

    Full Text Available We consider the problem of training-based code-timing estimation for the asynchronous direct-sequence code-division multiple-access (DS-CDMA system. We propose a modified large-sample maximum-likelihood (MLSML estimator that can be used for the code-timing estimation for the DS-CDMA systems over the resolvable multipath channels in closed form. Simulation results show that MLSML can be used to provide a high correct acquisition probability and a high estimation accuracy. Simulation results also show that MLSML can have very good near-far resistant capability due to employing a data model similar to that for adaptive array processing where strong interferences can be suppressed.

  8. A Wideband Dual-Polarized Antenna Using Planar Quasi-Open-Sleeve Dipoles for Base Station Applications

    Directory of Open Access Journals (Sweden)

    Guan-xi Zhang

    2015-01-01

    Full Text Available A wideband dual-polarized antenna for WLAN, WiMAX, and LTE base station applications is presented in this paper. The proposed antenna consists of two pairs of orthogonal planar quasi-open-sleeve dipoles along the centerlines, a balanced feeding structure and a square ground plane. The planar quasi-open-sleeve dipole comprises a pair of bowtie-shaped planar dipoles with two parallel curve parasitic elements. The introduced parallel curve parasitic elements change the path of the current of the original bowtie-shaped planar dipoles at high frequencies and hence wideband characteristic is achieved. Two pairs of the planar quasi-open-sleeve dipoles placed orthogonally further broaden the bandwidth of the antenna with dual-polarization characteristics. The proposed antenna achieves a 10-dB return loss bandwidth from 2.32 to 4.03 GHz (53.9% bandwidth using the planar quasi-open-sleeve dipole structures. The isolation between the two ports remains more than 32 dB in the whole bandwidth. Measured results show that the proposed antenna keeps the cross-polarization under −33 dB and the front-to-back ratio better than 15 dB in the operating band. The antenna has an area of 0.3λ  × 0.3λ at 2.32 GHz making it easy to be extended to an array element.

  9. Analysis of preservice inspection relief requests and recommendations for ASME code changes

    International Nuclear Information System (INIS)

    Cook, J.F.

    1985-05-01

    NRC regulations require that preservice inspection (PSI) of nuclear plants be performed in accordance with referenced editions and addenda of Division 1 rules of Section XI, ''Rules for Inservice Inspection of Nuclear Power Plant Components'', of the ASME Boiler and Pressure Vessel Code (ASME Code). The regulations permit applicants to request and obtain relief from the NRC from specific ASME Code requirements that are determined to be impractical. Applicant requests for relief from preservice inspection (PSI) requirements were compiled and analyzed. From this data, covering a total of 178 relief requests, common problems with examination requirements were identified. Changes to examination requirements to solve selected problems are proposed. By following later ASME Code requirements, 46 out of the 178 relief requests can be eliminated. Implementing proposed Code changes would eliminate another 25 relief requests, leaving 107 relief requests out of the original 178 relief requests covered by this survey

  10. Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous OCDMA systems

    Science.gov (United States)

    Li, Chuan-qi; Yang, Meng-jie; Zhang, Xiu-rong; Chen, Mei-juan; He, Dong-dong; Fan, Qing-bin

    2014-07-01

    A construction scheme of variable-weight optical orthogonal codes (VW-OOCs) for asynchronous optical code division multiple access (OCDMA) system is proposed. According to the actual situation, the code family can be obtained by programming in Matlab with the given code weight and corresponding capacity. The formula of bit error rate (BER) is derived by taking account of the effects of shot noise, avalanche photodiode (APD) bulk, thermal noise and surface leakage currents. The OCDMA system with the VW-OOCs is designed and improved. The study shows that the VW-OOCs have excellent performance of BER. Despite of coming from the same code family or not, the codes with larger weight have lower BER compared with the other codes in the same conditions. By taking simulation, the conclusion is consistent with the analysis of BER in theory. And the ideal eye diagrams are obtained by the optical hard limiter.

  11. Elastic-plastic code in the static regime for two-dimensional structures

    International Nuclear Information System (INIS)

    Giuliani, S.

    1976-07-01

    The finite-element computer code STEP-2D, which was conceived as a numerical tool for basic research in fracture mechanics presently under way in the Materials Division of JRC Ispra is described. The code employs 8-node isoparametric elements for calculating elastic-plastic stress and strain distributions in 2-D geometries. The von Mises yield criterion is used. Material strain hardening is described by means of either the isotropic or the so-called 'overlay' model. An incremental solution is employed in the plastic range. The program has been written in Fortran IV and compiled on an IBM 370-165

  12. Spectral-Amplitude-Coded OCDMA Optimized for a Realistic FBG Frequency Response

    Science.gov (United States)

    Penon, Julien; El-Sahn, Ziad A.; Rusch, Leslie A.; Larochelle, Sophie

    2007-05-01

    We develop a methodology for numerical optimization of fiber Bragg grating frequency response to maximize the achievable capacity of a spectral-amplitude-coded optical code-division multiple-access (SAC-OCDMA) system. The optimal encoders are realized, and we experimentally demonstrate an incoherent SAC-OCDMA system with seven simultaneous users. We report a bit error rate (BER) of 2.7 x 10-8 at 622 Mb/s for a fully loaded network (seven users) using a 9.6-nm optical band. We achieve error-free transmission (BER < 1 x 10-9) for up to five simultaneous users.

  13. Ultrafast two-photon absorption optical thresholding of spectrally coded pulses

    Science.gov (United States)

    Zheng, Z.; Shen, S.; Sardesai, H.; Chang, C.-C.; Marsh, J. H.; Karkhanehchi, M. M.; Weiner, A. M.

    1999-08-01

    We report studies on two-photon absorption (TPA) GaAs p-i-n waveguide photodetectors as optical thresholders for proposed ultrashort pulse optical code-division multiple-access (CDMA) systems. For either chirped optical pulses or spectrally phase coded pseudonoise bursts, the TPA photocurrent response reveals a strong pulseshape dependence and shows good agreement with theoretical predictions and results from conventional SHG measurements. The performance limits of the TPA optical thresholders set by the encoded bandwidth in the spectral encoding-decoding process are also discussed based on numerical simulations. Our results show the feasibility of applying such devices as nonlinear intensity discriminators in ultrahigh-speed optical network applications.

  14. The effect of total noise on two-dimension OCDMA codes

    Science.gov (United States)

    Dulaimi, Layth A. Khalil Al; Badlishah Ahmed, R.; Yaakob, Naimah; Aljunid, Syed A.; Matem, Rima

    2017-11-01

    In this research, we evaluate the performance of total noise effect on two dimension (2-D) optical code-division multiple access (OCDMA) performance systems using 2-D Modified Double Weight MDW under various link parameters. The impact of the multi-access interference (MAI) and other noise effect on the system performance. The 2-D MDW is compared mathematically with other codes which use similar techniques. We analyzed and optimized the data rate and effective receive power. The performance and optimization of MDW code in OCDMA system are reported, the bit error rate (BER) can be significantly improved when the 2-D MDW code desired parameters are selected especially the cross correlation properties. It reduces the MAI in the system compensate BER and phase-induced intensity noise (PIIN) in incoherent OCDMA The analysis permits a thorough understanding of PIIN, shot and thermal noises impact on 2-D MDW OCDMA system performance. PIIN is the main noise factor in the OCDMA network.

  15. The effect of total noise on two-dimension OCDMA codes

    Directory of Open Access Journals (Sweden)

    Khalil Al Dulaimi Layth A.

    2017-01-01

    Full Text Available In this research, we evaluate the performance of total noise effect on two dimension (2-D optical code-division multiple access (OCDMA performance systems using 2-D Modified Double Weight MDW under various link parameters. The impact of the multi-access interference (MAI and other noise effect on the system performance. The 2-D MDW is compared mathematically with other codes which use similar techniques. We analyzed and optimized the data rate and effective receive power. The performance and optimization of MDW code in OCDMA system are reported, the bit error rate (BER can be significantly improved when the 2-D MDW code desired parameters are selected especially the cross correlation properties. It reduces the MAI in the system compensate BER and phase-induced intensity noise (PIIN in incoherent OCDMA The analysis permits a thorough understanding of PIIN, shot and thermal noises impact on 2-D MDW OCDMA system performance. PIIN is the main noise factor in the OCDMA network.

  16. FY16 ASME High Temperature Code Activities

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, M. J. [Chromtech Inc., Oak Ridge, TN (United States); Jetter, R. I. [R. I Jetter Consulting, Pebble Beach, CA (United States); Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    One of the objectives of the ASME high temperature Code activities is to develop and validate both improvements and the basic features of Section III, Division 5, Subsection HB, Subpart B (HBB). The overall scope of this task is to develop a computer program to be used to assess whether or not a specific component under specified loading conditions will satisfy the elevated temperature design requirements for Class A components in Section III, Division 5, Subsection HB, Subpart B (HBB). There are many features and alternative paths of varying complexity in HBB. The initial focus of this task is a basic path through the various options for a single reference material, 316H stainless steel. However, the program will be structured for eventual incorporation all the features and permitted materials of HBB. Since this task has recently been initiated, this report focuses on the description of the initial path forward and an overall description of the approach to computer program development.

  17. E-Division activities report

    International Nuclear Information System (INIS)

    Barschall, H.H.

    1984-07-01

    E (Experimental Physics) Division carries out basic and applied research in atomic and nuclear physics, in materials science, and in other areas related to the missions of the Laboratory. Some of the activities are cooperative efforts with other divisions of the Laboratory, and, in a few cases, with other laboratories. Many of the experiments are directly applicable to problems in weapons and energy, some have only potential applied uses, and others are in pure physics. This report presents abstracts of papers published by E (Experimental Physics) Division staff members between July 1983 and June 1984. In addition, it lists the members of the scientific staff of the division, including visitors and students, and some of the assignments of staff members on scientific committees. A brief summary of the budget is included

  18. Progress report of Applied Physics Division. 1 October 1980 - 30 June 1981. Acting Division Chief - Dr. J. Parry

    International Nuclear Information System (INIS)

    2004-01-01

    In September 1980, the Commission approved a reorganization of Physics Division, Engineering Research Division and Instrumentation and Control Division to form two new research divisions to be known as Applied Physics Division and Nuclear Technology Division. The Applied Physics Division will be responsible for applied science programs, particularly those concerned with nuclear techniques. The Division is organized as four sections with the following responsibilities: (1) Nuclear Applications and Energy Studies Section. Program includes studies in nuclear physics, nuclear applications, ion implantation and neutron scattering. (2) Semiconductor and Radiation Physics Section. Studies in semiconductor radiation detectors, radiation standards and laser applications. (3) Electronic Systems Section. This includes systems analysis, digital systems, instrument design, project instrumentation and instrument maintenance. (4) Fusion Physics Section. This covers work carried out by staff currently attached to university groups (author)

  19. 3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution Over a 50 km Fiber With Wireless Transmission

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Gamatham, Romeo

    2010-01-01

    A 3.125 Gb/s photonic impulse radio ultra-wideband signal is created using the incoherent optical field summation resulting from the cross gain modulation of an uncooled distributed feedback laser injected with an external cavity laser. After 50 km of fiber and wireless transmission over 2.9-3.3-m...

  20. Division Quilts: A Measurement Model

    Science.gov (United States)

    Pratt, Sarah S.; Lupton, Tina M.; Richardson, Kerri

    2015-01-01

    As teachers seek activities to assist students in understanding division as more than just the algorithm, they find many examples of division as fair sharing. However, teachers have few activities to engage students in a quotative (measurement) model of division. Efraim Fischbein and his colleagues (1985) defined two types of whole-number…

  1. Validation and verification of the ORNL Monte Carlo codes for nuclear safety analysis

    International Nuclear Information System (INIS)

    Emmett, M.B.

    1993-01-01

    The process of ensuring the quality of computer codes can be very time consuming and expensive. The Oak Ridge National Laboratory (ORNL) Monte Carlo codes all predate the existence of quality assurance (QA) standards and configuration control. The number of person-years and the amount of money spent on code development make it impossible to adhere strictly to all the current requirements. At ORNL, the Nuclear Engineering Applications Section of the Computing Applications Division is responsible for the development, maintenance, and application of the Monte Carlo codes MORSE and KENO. The KENO code is used for doing criticality analyses; the MORSE code, which has two official versions, CGA and SGC, is used for radiation transport analyses. Because KENO and MORSE were very thoroughly checked out over the many years of extensive use both in the United States and in the international community, the existing codes were open-quotes baselined.close quotes This means that the versions existing at the time the original configuration plan is written are considered to be validated and verified code systems based on the established experience with them

  2. Iterative channel decoding of FEC-based multiple-description codes.

    Science.gov (United States)

    Chang, Seok-Ho; Cosman, Pamela C; Milstein, Laurence B

    2012-03-01

    Multiple description coding has been receiving attention as a robust transmission framework for multimedia services. This paper studies the iterative decoding of FEC-based multiple description codes. The proposed decoding algorithms take advantage of the error detection capability of Reed-Solomon (RS) erasure codes. The information of correctly decoded RS codewords is exploited to enhance the error correction capability of the Viterbi algorithm at the next iteration of decoding. In the proposed algorithm, an intradescription interleaver is synergistically combined with the iterative decoder. The interleaver does not affect the performance of noniterative decoding but greatly enhances the performance when the system is iteratively decoded. We also address the optimal allocation of RS parity symbols for unequal error protection. For the optimal allocation in iterative decoding, we derive mathematical equations from which the probability distributions of description erasures can be generated in a simple way. The performance of the algorithm is evaluated over an orthogonal frequency-division multiplexing system. The results show that the performance of the multiple description codes is significantly enhanced.

  3. [The Ethics and Deontology division of the French National Council of Medical Doctors, eight years of activity, 1993-2001].

    Science.gov (United States)

    Hoerni, Bernard

    2011-01-01

    The activity of the division of Ethics and deontology of the French National council of medical doctors is analysed by its former president (1993-2001). Among a lot of topics, a new version of the professionnal Code of deontology and patients' information were the main subjects of reflection and action.

  4. Characterization of the bistable wideband optical filter on the basis of nonlinear 2D photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Guryev, I. V., E-mail: guryev@ieee.org; Sukhoivanov, I. A., E-mail: guryev@ieee.org; Andrade Lucio, J. A., E-mail: guryev@ieee.org; Manzano, O. Ibarra, E-mail: guryev@ieee.org; Rodriguez, E. Vargaz, E-mail: guryev@ieee.org; Gonzales, D. Claudio, E-mail: guryev@ieee.org; Chavez, R. I. Mata, E-mail: guryev@ieee.org; Gurieva, N. S., E-mail: guryev@ieee.org [University of Guanajuato, Engineering division (Mexico)

    2014-05-15

    In our work, we investigated the wideband optical filter on the basis of nonlinear photonic crystal. The all-optical flip-flop using ultra-short pulses with duration lower than 200 fs is obtained in such filters. Here we pay special attention to the stability problem of the nonlinear element. To investigate this problem, the temporal response demonstrating the flip-flop have been computed within the certain range of the wavelengths as well as at different input power.

  5. Comparison of Concussion Rates Between NCAA Division I and Division III Men's and Women's Ice Hockey Players.

    Science.gov (United States)

    Rosene, John M; Raksnis, Bryan; Silva, Brie; Woefel, Tyler; Visich, Paul S; Dompier, Thomas P; Kerr, Zachary Y

    2017-09-01

    Examinations related to divisional differences in the incidence of sports-related concussions (SRC) in collegiate ice hockey are limited. To compare the epidemiologic patterns of concussion in National Collegiate Athletic Association (NCAA) ice hockey by sex and division. Descriptive epidemiology study. A convenience sample of men's and women's ice hockey teams in Divisions I and III provided SRC data via the NCAA Injury Surveillance Program during the 2009-2010 to 2014-2015 academic years. Concussion counts, rates, and distributions were examined by factors including injury activity and position. Injury rate ratios (IRRs) and injury proportion ratios (IPRs) with 95% confidence intervals (CIs) were used to compare concussion rates and distributions, respectively. Overall, 415 concussions were reported for men's and women's ice hockey combined. The highest concussion rate was found in Division I men (0.83 per 1000 athlete-exposures [AEs]), followed by Division III women (0.78/1000 AEs), Division I women (0.65/1000 AEs), and Division III men (0.64/1000 AEs). However, the only significant IRR was that the concussion rate was higher in Division I men than Division III men (IRR = 1.29; 95% CI, 1.02-1.65). The proportion of concussions from checking was higher in men than women (28.5% vs 9.4%; IPR = 3.02; 95% CI, 1.63-5.59); however, this proportion was higher in Division I women than Division III women (18.4% vs 1.8%; IPR = 10.47; 95% CI, 1.37-79.75). The proportion of concussions sustained by goalkeepers was higher in women than men (14.2% vs 2.9%; IPR = 4.86; 95% CI, 2.19-10.77), with findings consistent within each division. Concussion rates did not vary by sex but differed by division among men. Checking-related concussions were less common in women than men overall but more common in Division I women than Division III women. Findings highlight the need to better understand the reasons underlying divisional differences within men's and women's ice hockey and the

  6. Permanent phonetic identification code for radiation workers

    International Nuclear Information System (INIS)

    Khatua, R.; Somasundaram, S.; Srivastava, D.N.

    1987-01-01

    This report describes a system of self-checking short and easily memorisable 4-digit 'Permanent Phonetic Radiation Code' (PPRC) using radix 128 for Indians occupationally exposed to radiation, to facilitate entry of all radiation dose data pertaining to an individual in a single record of a file. The logic of PPRC is computer compatible. The necessary computer program has been developed in Health Physics Division for printing the PPRCs in Devanagari script through dot-matrix printers for making it understandable to the majority of the persons concerned. (author)

  7. Design Considerations for Autocalibrations of Wide-Band ΔΣ Fractional-N PLL Synthesizers

    Directory of Open Access Journals (Sweden)

    Jaewook Shin

    2011-01-01

    Full Text Available Autocalibration of VCO frequency and loop gain is an essential process in PLL frequency synthesizers. In a wide tuning-range fractional-N PLL frequency synthesizer, high-speed and high-precision automatic calibration is especially important for shortening the lock time and improving the phase noise. This paper reviews the design issues of the PLL auto-calibration and discusses on the limitations of the previous techniques. A very simple and efficient auto-calibration method based on a high-speed frequency-to-digital converter (FDC is proposed and verified through simulations. The proposed method is highly suited for a very wide-band ΔΣ fractional-N PLL.

  8. An open-structure sound insulator against low-frequency and wide-band acoustic waves

    Science.gov (United States)

    Chen, Zhe; Fan, Li; Zhang, Shu-yi; Zhang, Hui; Li, Xiao-juan; Ding, Jin

    2015-10-01

    To block sound, i.e., the vibration of air, most insulators are based on sealed structures and prevent the flow of the air. In this research, an acoustic metamaterial adopting side structures, loops, and labyrinths, arranged along a main tube, is presented. By combining the accurately designed side structures, an extremely wide forbidden band with a low cut-off frequency of 80 Hz is produced, which demonstrates a powerful low-frequency and wide-band sound insulation ability. Moreover, by virtue of the bypass arrangement, the metamaterial is based on an open structure, and thus air flow is allowed while acoustic waves can be insulated.

  9. An IQ mismatch calibration and compensation technique for wideband wireless transceivers

    International Nuclear Information System (INIS)

    Peng Jin; Zhou Liguo; Yao Heng; Yuan Fang; Shi Yin; Fang Zhi

    2014-01-01

    An IQ mismatch calibration and compensation technique based on the digital baseband for wideband wireless communication transmitters is proposed. The digital baseband transmits the signal used for IQ mismatch calibration. The signal passes through the RF transmitter path, the calibration loop (which is composed of a square power detector and a band-pass filter in the RF transceiver) and the variable gain amplifier of the receiver. The digital baseband samples the signal for IQ mismatch estimation and compensates for it. Compared with the self-calibration technique in the RF chip, the proposed technique saves area and power consumption for the wireless local area network solution. This technique has been successfully used for the 802.11n system and satisfies the requirement of the standard by achieving over 50 dB image suppression. (semiconductor integrated circuits)

  10. Ultra-Wideband Phased Array for Millimeter-Wave 5G and ISM

    Science.gov (United States)

    Novak, Markus H.; Volakis, John L.; Miranda, Felix A.

    2016-01-01

    Growing mobile data consumption has prompted the exploration of the millimeter-wave spectrum for large bandwidth, high speed communications. However, the allocated bands are spread across a wide swath of spectrum: fifth generation mobile architecture (5G): 28, 38, 39, 64-71 GHz, as well as Industrial, Scientific, and Medical bands (ISM): 24 and 60 GHz. Moreover, high gain phased arrays are required to overcome the significant path loss associated with these frequencies. Further, it is necessary to incorporate several of these applications in a single, small size and low cost platform. To this end, we have developed a scanning, Ultra-Wideband (UWB) array which covers all 5G, ISM, and other mm-W bands from 24-72 GHz. Critically, this is accomplished using mass-production Printed Circuit Board (PCB) fabrication.

  11. Low-sampling-rate ultra-wideband digital receiver using equivalent-time sampling

    KAUST Repository

    Ballal, Tarig

    2014-09-01

    In this paper, we propose an all-digital scheme for ultra-wideband symbol detection. In the proposed scheme, the received symbols are sampled many times below the Nyquist rate. It is shown that when the number of symbol repetitions, P, is co-prime with the symbol duration given in Nyquist samples, the receiver can sample the received data P times below the Nyquist rate, without loss of fidelity. The proposed scheme is applied to perform channel estimation and binary pulse position modulation (BPPM) detection. Results are presented for two receivers operating at two different sampling rates that are 10 and 20 times below the Nyquist rate. The feasibility of the proposed scheme is demonstrated in different scenarios, with reasonable bit error rates obtained in most of the cases.

  12. Low-sampling-rate ultra-wideband digital receiver using equivalent-time sampling

    KAUST Repository

    Ballal, Tarig; Al-Naffouri, Tareq Y.

    2014-01-01

    In this paper, we propose an all-digital scheme for ultra-wideband symbol detection. In the proposed scheme, the received symbols are sampled many times below the Nyquist rate. It is shown that when the number of symbol repetitions, P, is co-prime with the symbol duration given in Nyquist samples, the receiver can sample the received data P times below the Nyquist rate, without loss of fidelity. The proposed scheme is applied to perform channel estimation and binary pulse position modulation (BPPM) detection. Results are presented for two receivers operating at two different sampling rates that are 10 and 20 times below the Nyquist rate. The feasibility of the proposed scheme is demonstrated in different scenarios, with reasonable bit error rates obtained in most of the cases.

  13. Simulation realization of 2-D wavelength/time system utilizing MDW code for OCDMA system

    Science.gov (United States)

    Azura, M. S. A.; Rashidi, C. B. M.; Aljunid, S. A.; Endut, R.; Ali, N.

    2017-11-01

    This paper presents a realization of Wavelength/Time (W/T) Two-Dimensional Modified Double Weight (2-D MDW) code for Optical Code Division Multiple Access (OCDMA) system based on Spectral Amplitude Coding (SAC) approach. The MDW code has the capability to suppress Phase-Induce Intensity Noise (PIIN) and minimizing the Multiple Access Interference (MAI) noises. At the permissible BER 10-9, the 2-D MDW (APD) had shown minimum effective received power (Psr) = -71 dBm that can be obtained at the receiver side as compared to 2-D MDW (PIN) only received -61 dBm. The results show that 2-D MDW (APD) has better performance in achieving same BER with longer optical fiber length and with less received power (Psr). Also, the BER from the result shows that MDW code has the capability to suppress PIIN ad MAI.

  14. Simulation realization of 2-D wavelength/time system utilizing MDW code for OCDMA system

    Directory of Open Access Journals (Sweden)

    Azura M. S. A.

    2017-01-01

    Full Text Available This paper presents a realization of Wavelength/Time (W/T Two-Dimensional Modified Double Weight (2-D MDW code for Optical Code Division Multiple Access (OCDMA system based on Spectral Amplitude Coding (SAC approach. The MDW code has the capability to suppress Phase-Induce Intensity Noise (PIIN and minimizing the Multiple Access Interference (MAI noises. At the permissible BER 10-9, the 2-D MDW (APD had shown minimum effective received power (Psr = -71 dBm that can be obtained at the receiver side as compared to 2-D MDW (PIN only received -61 dBm. The results show that 2-D MDW (APD has better performance in achieving same BER with longer optical fiber length and with less received power (Psr. Also, the BER from the result shows that MDW code has the capability to suppress PIIN ad MAI.

  15. Cardinality enhancement utilizing Sequential Algorithm (SeQ code in OCDMA system

    Directory of Open Access Journals (Sweden)

    Fazlina C. A. S.

    2017-01-01

    Full Text Available Optical Code Division Multiple Access (OCDMA has been important with increasing demand for high capacity and speed for communication in optical networks because of OCDMA technique high efficiency that can be achieved, hence fibre bandwidth is fully used. In this paper we will focus on Sequential Algorithm (SeQ code with AND detection technique using Optisystem design tool. The result revealed SeQ code capable to eliminate Multiple Access Interference (MAI and improve Bit Error Rate (BER, Phase Induced Intensity Noise (PIIN and orthogonally between users in the system. From the results, SeQ shows good performance of BER and capable to accommodate 190 numbers of simultaneous users contrast with existing code. Thus, SeQ code have enhanced the system about 36% and 111% of FCC and DCS code. In addition, SeQ have good BER performance 10-25 at 155 Mbps in comparison with 622 Mbps, 1 Gbps and 2 Gbps bit rate. From the plot graph, 155 Mbps bit rate is suitable enough speed for FTTH and LAN networks. Resolution can be made based on the superior performance of SeQ code. Thus, these codes will give an opportunity in OCDMA system for better quality of service in an optical access network for future generation's usage

  16. Cardinality enhancement utilizing Sequential Algorithm (SeQ) code in OCDMA system

    Science.gov (United States)

    Fazlina, C. A. S.; Rashidi, C. B. M.; Rahman, A. K.; Aljunid, S. A.

    2017-11-01

    Optical Code Division Multiple Access (OCDMA) has been important with increasing demand for high capacity and speed for communication in optical networks because of OCDMA technique high efficiency that can be achieved, hence fibre bandwidth is fully used. In this paper we will focus on Sequential Algorithm (SeQ) code with AND detection technique using Optisystem design tool. The result revealed SeQ code capable to eliminate Multiple Access Interference (MAI) and improve Bit Error Rate (BER), Phase Induced Intensity Noise (PIIN) and orthogonally between users in the system. From the results, SeQ shows good performance of BER and capable to accommodate 190 numbers of simultaneous users contrast with existing code. Thus, SeQ code have enhanced the system about 36% and 111% of FCC and DCS code. In addition, SeQ have good BER performance 10-25 at 155 Mbps in comparison with 622 Mbps, 1 Gbps and 2 Gbps bit rate. From the plot graph, 155 Mbps bit rate is suitable enough speed for FTTH and LAN networks. Resolution can be made based on the superior performance of SeQ code. Thus, these codes will give an opportunity in OCDMA system for better quality of service in an optical access network for future generation's usage

  17. DEEP WIDEBAND SINGLE POINTINGS AND MOSAICS IN RADIO INTERFEROMETRY: HOW ACCURATELY DO WE RECONSTRUCT INTENSITIES AND SPECTRAL INDICES OF FAINT SOURCES?

    Energy Technology Data Exchange (ETDEWEB)

    Rau, U.; Bhatnagar, S.; Owen, F. N., E-mail: rurvashi@nrao.edu [National Radio Astronomy Observatory, Socorro, NM-87801 (United States)

    2016-11-01

    Many deep wideband wide-field radio interferometric surveys are being designed to accurately measure intensities, spectral indices, and polarization properties of faint source populations. In this paper, we compare various wideband imaging methods to evaluate the accuracy to which intensities and spectral indices of sources close to the confusion limit can be reconstructed. We simulated a wideband single-pointing (C-array, L-Band (1–2 GHz)) and 46-pointing mosaic (D-array, C-Band (4–8 GHz)) JVLA observation using a realistic brightness distribution ranging from 1 μ Jy to 100 mJy and time-, frequency-, polarization-, and direction-dependent instrumental effects. The main results from these comparisons are (a) errors in the reconstructed intensities and spectral indices are larger for weaker sources even in the absence of simulated noise, (b) errors are systematically lower for joint reconstruction methods (such as Multi-Term Multi-Frequency-Synthesis (MT-MFS)) along with A-Projection for accurate primary beam correction, and (c) use of MT-MFS for image reconstruction eliminates Clean-bias (which is present otherwise). Auxiliary tests include solutions for deficiencies of data partitioning methods (e.g., the use of masks to remove clean bias and hybrid methods to remove sidelobes from sources left un-deconvolved), the effect of sources not at pixel centers, and the consequences of various other numerical approximations within software implementations. This paper also demonstrates the level of detail at which such simulations must be done in order to reflect reality, enable one to systematically identify specific reasons for every trend that is observed, and to estimate scientifically defensible imaging performance metrics and the associated computational complexity of the algorithms/analysis procedures.

  18. Fast decoder for local quantum codes using Groebner basis

    Science.gov (United States)

    Haah, Jeongwan

    2013-03-01

    Based on arXiv:1204.1063. A local translation-invariant quantum code has a description in terms of Laurent polynomials. As an application of this observation, we present a fast decoding algorithm for translation-invariant local quantum codes in any spatial dimensions using the straightforward division algorithm for multivariate polynomials. The running time is O (n log n) on average, or O (n2 log n) on worst cases, where n is the number of physical qubits. The algorithm improves a subroutine of the renormalization-group decoder by Bravyi and Haah (arXiv:1112.3252) in the translation-invariant case. This work is supported in part by the Insitute for Quantum Information and Matter, an NSF Physics Frontier Center, and the Korea Foundation for Advanced Studies.

  19. Resilience of LTE networks against smart jamming attacks: Wideband model

    KAUST Repository

    Aziz, Farhan M.

    2015-12-03

    LTE/LTE-A networks have been successfully providing advanced broadband services to millions of users worldwide. Lately, it has been suggested to use LTE networks for mission-critical applications like public safety, smart grid and military communications. We have previously shown that LTE networks are vulnerable to Denial-of-Service (DOS) and loss of service attacks from smart jammers. In this paper, we extend our previous work on resilience of LTE networks to wideband multipath fading channel, SINR estimation in frequency domain and computation of utilities based on observable parameters under the framework of single-shot and repeated games with asymmetric information. In a single-shot game formulation, network utility is severely compromised at its solutions, i.e. at the Nash Equilibria (NE). We propose evolved repeated-game strategy algorithms to combat smart jamming attacks that can be implemented in existing deployments using current technology. © 2015 IEEE.

  20. Design of high-gain, wideband antenna using microwave hyperbolic metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan, E-mail: yan.z@chula.ac.th [International School of Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330 (Thailand)

    2016-05-15

    In this work, we apply hyperbolic metasurfaces (HMSs) to design high-gain and wideband antennas. It is shown that HMSs formed by a single layer of split-ring resonators (SRRs) can be excited to generate highly directive beams. In particular, we suggest two types of the SRR-HMS: a capacitively loaded SRR (CLSRR)-HMS and a substrate-backed double SRR (DSRR)-HMS. Both configurations ensure that the periodicity of the structures is sufficiently small for satisfying the effective medium theory. For the antenna design, we propose a two-layer-stacked configuration for the 2.4 GHz frequency band based on the DSRR-HMS excited by a folded monopole. Measurement results confirm numerical simulations and demonstrate that an antenna gain of more than 5 dBi can be obtained for the frequency range of 2.1 - 2.6 GHz, with a maximum gain of 7.8 dBi at 2.4 GHz.

  1. Translational Control of Cell Division by Elongator

    Directory of Open Access Journals (Sweden)

    Fanelie Bauer

    2012-05-01

    Full Text Available Elongator is required for the synthesis of the mcm5s2 modification found on tRNAs recognizing AA-ending codons. In order to obtain a global picture of the role of Elongator in translation, we used reverse protein arrays to screen the fission yeast proteome for translation defects. Unexpectedly, this revealed that Elongator inactivation mainly affected three specific functional groups including proteins implicated in cell division. The absence of Elongator results in a delay in mitosis onset and cytokinesis defects. We demonstrate that the kinase Cdr2, which is a central regulator of mitosis and cytokinesis, is under translational control by Elongator due to the Lysine codon usage bias of the cdr2 coding sequence. These findings uncover a mechanism by which the codon usage, coupled to tRNA modifications, fundamentally contributes to gene expression and cellular functions.

  2. Data Converter for Multistandard Mobile Phones

    DEFF Research Database (Denmark)

    Yurttas, Aziz; Bruun, Erik; Jensen, Rasmus Glarborg

    2004-01-01

    This paper describes an analog to digital converter (ADC) for mobile communication systems using a direct down conversion architecture. The ADC can be programmed to meet the requirements of different communication standards, including GSM (Global System for Mobile communication) and WCDMA (Wideband...... Code Division Multiple Access). The ADC is realized with a pipeline ADC architecture for WCDMA and a Sigma-Delta architecture for GSM. In order to have an optimized area and power consumption, the basic building blocks (opamps) of the converters are shared between the two converter architectures....... The entire ADC consumes about 5.5 mW and occupies an active area of about 0.36 mm(2). A test circuit has been developed and fabricated and measurements show that both the required programmability and the required performance can be obtained using the proposed configurations....

  3. Nupack, the new Asme code for radioactive material transportation packaging containments

    International Nuclear Information System (INIS)

    Turula, P.

    1998-01-01

    The American Society of Mechanical Engineers (ASME) has added a new division to the nuclear construction section of its Boiler and Pressure Vessel Code (B and PVC). This Division, commonly referred to as 'Nupack', has been written to provide a consistent set of technical requirements for containment vessels of transportation packagings for high-level radioactive materials. This paper provides an introduction to Nupack, discusses some of its technical provisions, and describes how it can be used the design and construction of packaging components. Nupack's general provisions and design requirements are emphasized, while treatment of materials, fabrication and inspection is left for another paper. Participation in the Nupack development work described in this paper was supported by the U.S. Department of Energy. (authors)

  4. Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)

    Science.gov (United States)

    Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher R.; Lambert, Kevin M.; Miranda, Felix A.

    2015-01-01

    This poster describes the implementation of a 6x6 element, dual linear polarized array with beamformer that operates from about 8-40 GHz. It is implemented using a relatively new multi-layer microfabrication process. The beamformer includes baluns that feed dual-polarized differential antenna elements and reactive splitters that cover the full frequency range of operation. This fixed beam array (FBA) serves as the feed for a multi-band instrument designed to measure snow water equivalent (SWE) from an airborne platform known as the Wideband Instrument for Snow Measurements (WISM).

  5. 77 FR 40586 - Coastal Programs Division

    Science.gov (United States)

    2012-07-10

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Coastal Programs Division AGENCY: Coastal Programs Division, Office of Ocean and Coastal Resource Management, National Ocean.... FOR FURTHER INFORMATION CONTACT: Kerry Kehoe, Coastal Programs Division (NORM/3), Office of Ocean and...

  6. Experimental Characterization of Ultra-Wideband Channel Parameter Measurements in an Underground Mine

    Directory of Open Access Journals (Sweden)

    B. Nkakanou

    2011-01-01

    Full Text Available Experimental results for an ultra-wideband (UWB channel parameters in an underground mining environment over a frequency range of 3 GHz to 10 GHz are reported. The measurements were taken both in LOS and NLOS cases in two different size mine galleries. In the NLOS case, results were acquired for different corridor obstruction angles. The results were obtained during an extensive measurement campaign in the UWB frequency, and the measurement procedure allows both the large- and small-scale parameters such as the path loss exponent, coherence bandwidth, and so forth, to be quantified. The capacity of the UWB channel as a function of the physical depth of the mine gallery has also been recorded for comparison purposes.

  7. Time-Domain Diversity in Ultra-Wideband MIMO Communications

    Directory of Open Access Journals (Sweden)

    Alain Sibille

    2005-03-01

    Full Text Available The development of ultra-wideband (UWB communications is impeded by the drastic transmitted power limitations imposed by regulation authorities due to the “polluting” character of these radio emissions with respect to existing services. Technical solutions must be researched in order either to limit the level of spectral pollution by UWB devices or to increase their reception sensitivity. In the present work, we consider pulse-based modulations and investigate time-domain multiple-input multiple-output (MIMO diversity as one such possible solution. The basic principles of time-domain diversity in the extreme (low multipath density or intermediate (dense multipath UWB regimes are addressed, which predict the possibility of a MIMO gain equal to the product Nt×Nr of the numbers of transmit/receive antenna elements when the channel is not too severe. This analysis is confirmed by simulations using a parametric empirical stochastic double-directional channel model. They confirm the potential interest of MIMO approaches solutions in order to bring a valuable performance gain in UWB communications.

  8. Wideband quin-stable energy harvesting via combined nonlinearity

    Directory of Open Access Journals (Sweden)

    Chen Wang

    2017-04-01

    Full Text Available In this work, we propose a wideband quintuple-well potential piezoelectric-based vibration energy harvester using a combined nonlinearity: the magnetic nonlinearity induced by magnetic force and the piecewise-linearity produced by mechanical impact. With extra stable states compared to other multi-stable harvesters, the quin-stable harvester can distribute its potential energy more uniformly, which provides shallower potential wells and results in lower excitation threshold for interwell motion. The mathematical model of this quin-stable harvester is derived and its equivalent piecewise-nonlinear restoring force is measured in the experiment and identified as piecewise polynomials. Numerical simulations and experimental verifications are performed in different levels of sinusoid excitation ranging from 1 to 25 Hz. The results demonstrate that, with lower potential barriers compared with tri-stable counterpart, the quin-stable arrangement can escape potential wells more easily for doing high-energy interwell motion over a wider band of frequencies. Moreover, by utilizing the mechanical stoppers, this harvester can produce significant output voltage under small tip deflections, which results in a high power density and is especially suitable for a compact MEMS approach.

  9. A Wideband Channel Model for Intravehicular Nomadic Systems

    Directory of Open Access Journals (Sweden)

    François Bellens

    2011-01-01

    Full Text Available The increase in electronic entertainment equipments within vehicles has rendered the idea of replacing the wired links with intra-vehicle personal area networks. Ultra-wideband (UWB seems an appropriate candidate technology to meet the required data rates for interconnecting such devices. In particular, the multiband OFDM (MB-OFDM is able to provide very high transfer rates (up to 480 MBps over relatively short distances and low transmit power. In order to evaluate the performances of UWB systems within vehicles, a reliable channel model is needed. In this paper, a nomadic system where a base station placed in the center of the dashboard wants to communicate with fixed devices placed at the rear seat is investigated. A single-input single-output (SISO channel model for intra-vehicular communication (IVC systems is proposed, based on reverberation chamber theory. The model is based on measurements conducted in real traffic conditions, with a varying number of passengers in the car. Temporal variations of the wireless channels are also characterized and parametrized. The proposed model is validated by comparing model-independent statistics with the measurements.

  10. Wide-band neutrino beams at 1000 GeV

    International Nuclear Information System (INIS)

    Malensek, A.; Stutte, L.

    1983-01-01

    In a previous publication, S. Mori discussed various broad-band neutrino and antineutrino beams using 1000 GeV protons on target. A new beam (SST) has been designed which provides the same neutrino flux as the quadrupole triplet (QT) while suppressing the wrong sign flux by a factor of 18. It also provides more than twice as much high energy antineutrino flux than the sign-selected bare target (SSBT) and in addition, has better neutrino suppression. While it is possible to increase the flux obtained from the single horn system over that previously described, the conclusion which states any horn focussing system seems to be of marginal use for Tevatron neutrino physics, is unchanged. Neutrino and antineutrino event rates and wrong sign backgrounds were computed using NUADA for a 100 metric ton detector of radius 1.5 meters. Due to radiation considerations and the existing transformer location, the horn beam is placed in its usual position inside the Target Tube. All other beams are placed in Fronthall. Thus, for the wide-band Fronthall trains a decay distance of 520 meters is used, versus 400 meters for the horn train

  11. Monte-Carlo method - codes for the study of criticality problems (on IBM 7094); Methode de Monte- Carlo - codes pour l'etude des problemes de criticite (IBM 7094)

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, J; Rabot, H; Robin, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The two codes presented here allow to determine the multiplication constant of media containing fissionable materials under numerous and divided forms; they are based on the Monte-Carlo method. The first code apply to x, y, z, geometries. The volume to be studied ought to be divisible in parallelepipeds, the media within each parallelepiped being limited by non-secant surfaces. The second code is intended for r, 0, z geometries. The results include an analysis of collisions in each medium. Applications and examples with informations on time and accuracy are given. (authors) [French] Les deux codes presentes dans ce rapport permettent la determination des coefficients de multiplication de milieux contenant des matieres fissiles sous des formes tres variees et divisees, ils reposent sur la methode de Monte-Carlo. Le premier code s'applique aux geometries x, y, z, le volume a etudier doit pouvoir etre decompose en parallelepipedes, les milieux a l'interieur de chaque parallelepipede etant limites par des surfaces non secantes. Le deuxieme code s'applique aux geometries r, 0, z. Les resultats comportent une analyse des collisions dans chaque milieu. Des applications et des exemples avec les indications de temps et de precision sont fournis. (auteurs)

  12. Theoretical Division progress report

    International Nuclear Information System (INIS)

    Cooper, N.G.

    1979-04-01

    This report presents highlights of activities in the Theoretical (T) Division from October 1976-January 1979. The report is divided into three parts. Part I presents an overview of the Division: its unique function at the Los Alamos Scientific Laboratory (LASL) and within the scientific community as a whole; the organization of personnel; the main areas of research; and a survey of recent T-Division initiatives. This overview is followed by a survey of the 13 groups within the Division, their main responsibilities, interests, and expertise, consulting activities, and recent scientific accomplisments. The remainder of the report, Parts II and III, is devoted to articles on selected research activities. Recent efforts on topics of immediate interest to energy and weapons programs at LASL and elsewhere are described in Part II, Major National Programs. Separate articles present T-Divison contributions to weapons research, reactor safety and reactor physics research, fusion research, laser isotope separation, and other energy research. Each article is a compilation of independent projects within T Division, all related to but addressing different aspects of the major program. Part III is organized by subject discipline, and describes recent scientific advances of fundamental interest. An introduction, defining the scope and general nature of T-Division efforts within a given discipline, is followed by articles on the research topics selected. The reporting is done by the scientists involved in the research, and an attempt is made to communicate to a general audience. Some data are given incidentally; more technical presentations of the research accomplished may be found among the 47 pages of references. 110 figures, 5 tables

  13. A computerized energy systems code and information library at Soreq

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, I; Shapira, M; Caner, D; Sapier, D [Israel Atomic Energy Commission, Yavne (Israel). Soreq Nuclear Research Center

    1996-12-01

    In the framework of the contractual agreement between the Ministry of Energy and Infrastructure and the Division of Nuclear Engineering of the Israel Atomic Energy Commission, both Soreq-NRC and Ben-Gurion University have agreed to establish, in 1991, a code center. This code center contains a library of computer codes and relevant data, with particular emphasis on nuclear power plant research and development support. The code center maintains existing computer codes and adapts them to the ever changing computing environment, keeps track of new code developments in the field of nuclear engineering, and acquires the most recent revisions of computer codes of interest. An attempt is made to collect relevant codes developed in Israel and to assure that proper documentation and application instructions are available. En addition to computer programs, the code center collects sample problems and international benchmarks to verify the codes and their applications to various areas of interest to nuclear power plant engineering and safety evaluation. Recently, the reactor simulation group at Soreq acquired, using funds provided by the Ministry of Energy and Infrastructure, a PC work station operating under a Linux operating system to give users of the library an easy on-line way to access resources available at the library. These resources include the computer codes and their documentation, reports published by the reactor simulation group, and other information databases available at Soreq. Registered users set a communication line, through a modem, between their computer and the new workstation at Soreq and use it to download codes and/or information or to solve their problems, using codes from the library, on the computer at Soreq (authors).

  14. A computerized energy systems code and information library at Soreq

    International Nuclear Information System (INIS)

    Silverman, I.; Shapira, M.; Caner, D.; Sapier, D.

    1996-01-01

    In the framework of the contractual agreement between the Ministry of Energy and Infrastructure and the Division of Nuclear Engineering of the Israel Atomic Energy Commission, both Soreq-NRC and Ben-Gurion University have agreed to establish, in 1991, a code center. This code center contains a library of computer codes and relevant data, with particular emphasis on nuclear power plant research and development support. The code center maintains existing computer codes and adapts them to the ever changing computing environment, keeps track of new code developments in the field of nuclear engineering, and acquires the most recent revisions of computer codes of interest. An attempt is made to collect relevant codes developed in Israel and to assure that proper documentation and application instructions are available. En addition to computer programs, the code center collects sample problems and international benchmarks to verify the codes and their applications to various areas of interest to nuclear power plant engineering and safety evaluation. Recently, the reactor simulation group at Soreq acquired, using funds provided by the Ministry of Energy and Infrastructure, a PC work station operating under a Linux operating system to give users of the library an easy on-line way to access resources available at the library. These resources include the computer codes and their documentation, reports published by the reactor simulation group, and other information databases available at Soreq. Registered users set a communication line, through a modem, between their computer and the new workstation at Soreq and use it to download codes and/or information or to solve their problems, using codes from the library, on the computer at Soreq (authors)

  15. A Novel Real-coded Quantum-inspired Genetic Algorithm and Its Application in Data Reconciliation

    Directory of Open Access Journals (Sweden)

    Gao Lin

    2012-06-01

    Full Text Available Traditional quantum-inspired genetic algorithm (QGA has drawbacks such as premature convergence, heavy computational cost, complicated coding and decoding process etc. In this paper, a novel real-coded quantum-inspired genetic algorithm is proposed based on interval division thinking. Detailed comparisons with some similar approaches for some standard benchmark functions test validity of the proposed algorithm. Besides, the proposed algorithm is used in two typical nonlinear data reconciliation problems (distilling process and extraction process and simulation results show its efficiency in nonlinear data reconciliation problems.

  16. PMD compensation in fiber-optic communication systems with direct detection using LDPC-coded OFDM.

    Science.gov (United States)

    Djordjevic, Ivan B

    2007-04-02

    The possibility of polarization-mode dispersion (PMD) compensation in fiber-optic communication systems with direct detection using a simple channel estimation technique and low-density parity-check (LDPC)-coded orthogonal frequency division multiplexing (OFDM) is demonstrated. It is shown that even for differential group delay (DGD) of 4/BW (BW is the OFDM signal bandwidth), the degradation due to the first-order PMD can be completely compensated for. Two classes of LDPC codes designed based on two different combinatorial objects (difference systems and product of combinatorial designs) suitable for use in PMD compensation are introduced.

  17. Analysis of PPM-CDMA and OPPM-CDMA communication systems with new optical code

    Science.gov (United States)

    Liu, F.; Ghafouri-Shiraz, H.

    2005-11-01

    A novel type of optical spreading sequences, named the 'new-Modified Prime Code (nMPC)', is proposed for use in synchronous direct-detection optical code-division multiple-access (CDMA) systems which employ both pulse position modulation (PPM) and overlapping pulse position modulation (OPPM) schemes. The upper bounds on the bit error rate (BER) for nMPC used in PPM-CDMA systems are derived and compared with the respective systems, using a modified prime code (MPC) and a padded modified prime code (PMPC). The nMPC is further applied to the OPPM-CDMA system and the system with a proposed interference cancellation scheme. Our results show that under the same conditions the PPM-CDMA system performances are more improved with the use of nMPC than with the two other traditional codes. Moreover, they show that the system performances are significantly enhanced by the proposed interference reduction methods, if the nMPC is used in the OPPM-CDMA systems.

  18. Prokaryotic cell division: flexible and diverse

    NARCIS (Netherlands)

    den Blaauwen, T.

    2013-01-01

    Gram-negative rod-shaped bacteria have different approaches to position the cell division initiating Z-ring at the correct moment in their cell division cycle. The subsequent maturation into a functional division machine occurs in vastly different species in two steps with appreciable time in

  19. A Novel Technique to Detect Code for SAC-OCDMA System

    Science.gov (United States)

    Bharti, Manisha; Kumar, Manoj; Sharma, Ajay K.

    2018-04-01

    The main task of optical code division multiple access (OCDMA) system is the detection of code used by a user in presence of multiple access interference (MAI). In this paper, new method of detection known as XOR subtraction detection for spectral amplitude coding OCDMA (SAC-OCDMA) based on double weight codes has been proposed and presented. As MAI is the main source of performance deterioration in OCDMA system, therefore, SAC technique is used in this paper to eliminate the effect of MAI up to a large extent. A comparative analysis is then made between the proposed scheme and other conventional detection schemes used like complimentary subtraction detection, AND subtraction detection and NAND subtraction detection. The system performance is characterized by Q-factor, BER and received optical power (ROP) with respect to input laser power and fiber length. The theoretical and simulation investigations reveal that the proposed detection technique provides better quality factor, security and received power in comparison to other conventional techniques. The wide opening of eye in case of proposed technique also proves its robustness.

  20. Fusion energy division computer systems network

    International Nuclear Information System (INIS)

    Hammons, C.E.

    1980-12-01

    The Fusion Energy Division of the Oak Ridge National Laboratory (ORNL) operated by Union Carbide Corporation Nuclear Division (UCC-ND) is primarily involved in the investigation of problems related to the use of controlled thermonuclear fusion as an energy source. The Fusion Energy Division supports investigations of experimental fusion devices and related fusion theory. This memo provides a brief overview of the computing environment in the Fusion Energy Division and the computing support provided to the experimental effort and theory research