WorldWideScience

Sample records for wide-gap ii-vi semiconductor

  1. Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport

    Science.gov (United States)

    Su, Ching-Hua; Sha, Yi-Gao

    1995-01-01

    The studies on the crystal growth and characterization of II-VI wide band gap compound semiconductors, such as ZnTe, CdS, ZnSe and ZnS, have been conducted over the past three decades. The research was not quite as extensive as that on Si, III-V, or even narrow band gap II-VI semiconductors because of the high melting temperatures as well as the specialized applications associated with these wide band gap semiconductors. In the past several years, major advances in the thin film technology such as Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapor Deposition (MOCVD) have demonstrated the applications of these materials for the important devices such as light-emitting diode, laser and ultraviolet detectors and the tunability of energy band gap by employing ternary or even quaternary systems of these compounds. At the same time, the development in the crystal growth of bulk materials has not advanced far enough to provide low price, high quality substrates needed for the thin film growth technology.

  2. II-VI semiconductor compounds

    CERN Document Server

    1993-01-01

    For condensed matter physicists and electronic engineers, this volume deals with aspects of II-VI semiconductor compounds. Areas covered include devices and applications of II-VI compounds; Co-based II-IV semi-magnetic semiconductors; and electronic structure of strained II-VI superlattices.

  3. Proceedings of wide band gap semiconductors

    International Nuclear Information System (INIS)

    Moustakas, T.D.; Pankove, J.I.; Hamakawa, Y.

    1992-01-01

    This book contains the proceedings of wide band gap semiconductors. Wide band gap semiconductors are under intense study because of their potential applications in photonic devices in the visible and ultraviolet part of the electromagnetic spectrum, and devices for high temperature, high frequency and high power electronics. Additionally, due to their unique mechanical, thermal, optical, chemical, and electronic properties many wide band gap semiconductors are anticipated to find applications in thermoelectric, electrooptic, piezoelectric and acoustooptic devices as well as protective coatings, hard coatings and heat sinks. Material systems covered in this symposium include diamond, II-VI compounds, III-V nitrides, silicon carbide, boron compounds, amorphous and microcrystalline semiconductors, chalcopyrites, oxides and halides. The various papers addressed recent experimental and theoretical developments. They covered issues related to crystal growth (bulk and thin films), structure and microstructure, defects, doping, optoelectronic properties and device applications. A theoretical session was dedicated to identifying common themes in the heteroepitaxy and the role of defects in doping, compensation and phase stability of this unique class of materials. Important experimental milestones included the demonstrations of bright blue injection luminescence at room temperatures from junctions based on III-V nitrides and a similar result from multiple quantum wells in a ZnSe double heterojunction at liquid nitrogen temperatures

  4. Spin-dependent recombination processes in wide band gap II-Mn-VI compounds

    International Nuclear Information System (INIS)

    Godlewski, M.; Yatsunenko, S.; Khachapuridze, A.; Ivanov, V.Yu.

    2004-01-01

    Mechanisms of optical detection of magnetic resonance in wide band gap II-Mn-VI diluted magnetic semiconductor (DMS) are discussed based on the results of photoluminescence (PL), PL kinetics, electron spin resonance (ESR) and optically detected magnetic resonance (ODMR) and optically detected cyclotron resonance (ODCR) investigations. Spin-dependent interactions between localized spins of Mn 2+ ions and spins/magnetic moments of free, localized or bound carriers are responsible for the observed ODMR signals. We conclude that these interactions are responsible for the observed rapid shortening of the PL decay time of 4 T 1 → 6 A 1 intra-shell emission of Mn 2+ ions and also for the observed delocalization of excitons in low dimensional structures

  5. II-VI Narrow-Bandgap Semiconductors for Optoelectronics

    Science.gov (United States)

    Baker, Ian

    The field of narrow-gap II-VI materials is dominated by the compound semiconductor mercury cadmium telluride, (Hg1-x Cd x Te or MCT), which supports a large industry in infrared detectors, cameras and infrared systems. It is probably true to say that HgCdTe is the third most studied semiconductor after silicon and gallium arsenide. Hg1-x Cd x Te is the material most widely used in high-performance infrared detectors at present. By changing the composition x the spectral response of the detector can be made to cover the range from 1 μm to beyond 17 μm. The advantages of this system arise from a number of features, notably: close lattice matching, high optical absorption coefficient, low carrier generation rate, high electron mobility and readily available doping techniques. These advantages mean that very sensitive infrared detectors can be produced at relatively high operating temperatures. Hg1-x Cd x Te multilayers can be readily grown in vapor-phase epitaxial processes. This provides the device engineer with complex doping and composition profiles that can be used to further enhance the electro-optic performance, leading to low-cost, large-area detectors in the future. The main purpose of this chapter is to describe the applications, device physics and technology of II-VI narrow-bandgap devices, focusing on HgCdTe but also including Hg1-x Mn x Te and Hg1-x Zn x Te. It concludes with a review of the research and development programs into third-generation infrared detector technology (so-called GEN III detectors) being performed in centers around the world.

  6. Review of wide band-gap semiconductors technology

    Directory of Open Access Journals (Sweden)

    Jin Haiwei

    2016-01-01

    Full Text Available Silicon carbide (SiC and gallium nitride (GaN are typical representative of the wide band-gap semiconductor material, which is also known as third-generation semiconductor materials. Compared with the conventional semiconductor silicon (Si or gallium arsenide (GaAs, wide band-gap semiconductor has the wide band gap, high saturated drift velocity, high critical breakdown field and other advantages; it is a highly desirable semiconductor material applied under the case of high-power, high-temperature, high-frequency, anti-radiation environment. These advantages of wide band-gap devices make them a hot spot of semiconductor technology research in various countries. This article describes the research agenda of United States and European in this area, focusing on the recent developments of the wide band-gap technology in the US and Europe, summed up the facing challenge of the wide band-gap technology.

  7. Monolayer II-VI semiconductors: A first-principles prediction

    Science.gov (United States)

    Zheng, Hui; Chen, Nian-Ke; Zhang, S. B.; Li, Xian-Bin

    A systematic study of 32 honeycomb monolayer II-VI semiconductors is carried out by first-principles methods. It appears that BeO, MgO, CaO, ZnO, CdO, CaS, SrS, SrSe, BaTe, and HgTe honeycomb monolayers have a good dynamic stability which is revealed by phonon calculations. In addition, from the molecular dynamic (MD) simulation of other unstable candidates, we also find two extra monolayers dynamically stable, which are tetragonal BaS and orthorhombic HgS. The honeycomb monolayers exist in form of either a planar perfect honeycomb or a low-buckled 2D layer, all of which possess a band gap and most of them are in the ultraviolet region. Interestingly, the dynamically stable SrSe has a gap near visible light, and displays exotic electronic properties with a flat top of the valence band, and hence has a strong spin polarization upon hole doping. The honeycomb HgTe has been reported to achieve a topological nontrivial phase under appropriate in-plane tensile strain and spin-orbital coupling (SOC). Some II-VI partners with less than 5% lattice mismatch may be used to design novel 2D heterojunction devices. If synthesized, potential applications of these 2D II-VI families could include optoelectronics, spintronics, and strong correlated electronics. Distinguished Student (DS) Program of APS FIP travel funds.

  8. Wide gap semiconductor microwave devices

    International Nuclear Information System (INIS)

    Buniatyan, V V; Aroutiounian, V M

    2007-01-01

    A review of properties of wide gap semiconductor materials such as diamond, diamond-like carbon films, SiC, GaP, GaN and AlGaN/GaN that are relevant to electronic, optoelectronic and microwave applications is presented. We discuss the latest situation and perspectives based on experimental and theoretical results obtained for wide gap semiconductor devices. Parameters are taken from the literature and from some of our theoretical works. The correspondence between theoretical results and parameters of devices is critically analysed. (review article)

  9. First-principles calculations of the II-VI semiconductor β-HgS: Metal or semiconductor

    International Nuclear Information System (INIS)

    Delin, A.

    2002-06-01

    Relativistic all-electron full-potential first-principles calculations have been performed in order to study the symmetry of the energy levels around the valence band maximum in the zinc blende II-VI semiconductors β-HgS, HgSe, and HgTe. It is demonstrated that in general, an inverted band-structure does not necessarily lead to a zero fundamental energy gap for systems with zinc blende symmetry. Specifically, β-HgS is found to have at the same time an inverted band structure, and a small, slightly indirect, fundamental energy gap. Possibly, the energy levels around the valence band maximum order differently in each of these systems. (author)

  10. Computational nano-materials design for high-TC ferromagnetism in wide-gap magnetic semiconductors

    International Nuclear Information System (INIS)

    Katayama-Yoshida, H.; Sato, K.; Fukushima, T.; Toyoda, M.; Kizaki, H.; Dinh, V.A.; Dederichs, P.H.

    2007-01-01

    We propose materials design of high-T C wide band-gap dilute magnetic semiconductors (DMSs) based on first-principles calculations by using the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) method. First, we discuss a unified physical picture of ferromagnetism in II-VI and III-V DMSs and show that DMS family is categorized into two groups depending on the electronic structure. One is the system where Zener's double exchange mechanism dominates in the ferromagnetic interaction, and in the other systems Zener's p-d exchange mechanism dominates. Next, we develop an accurate method for T C calculation for the DMSs and show that the mean field approximation completely fails to predict Curie temperature of DMS in particular for wide-gap DMS where the exchange interaction is short-ranged. The calculated T C of homogeneous DMSs by using the present method agrees very well with available experimental values. For more realistic material design, we simulate spinodal nano-decomposition by applying the Monte Carlo method to the Ising model with ab initio chemical pair interactions between magnetic impurities in DMS. It is found that by controlling the dimensionality of the decomposition various characteristic phases occur in DMS such as 3D Dairiseki-phase and 1D Konbu-phase, and it is suggested that super-paramagnetic blocking phenomena should be important to understand the magnetism of wide-gap DMS. Based on the present simulations for spinodal nano-decomposition, we propose a new crystal growth method of positioning by seeding and shape controlling method in 100 Tera-bit density of nano-magnets in the semiconductor matrix with high-T C (or high-T B )

  11. Magnetism in the p-type Monolayer II-VI semiconductors SrS and SrSe

    Science.gov (United States)

    Lin, Heng-Fu; Lau, Woon-Ming; Zhao, Jijun

    2017-01-01

    Using density functional theory calculations, we study the electronic and magnetic properties of the p-type monolayer II-VI semiconductors SrX (X = S,Se). The pristine SrS and SrSe monolayers are large band gap semiconductor with a very flat band in the top valence band. Upon injecting hole uniformly, ferromagnetism emerges in those system in a large range of hole density. By varying hole density, the systems also show complicated phases transition among nonmagnetic semiconductor, half metal, magnetic semiconductor, and nonmagnetic metal. Furthermore, after introducing p-type dopants in SrS and SrSe via substitutionary inserting P (or As) dopants at the S (or Se) sites, local magnetic moments are formed around the substitutional sites. The local magnetic moments are stable with the ferromagnetic order with appreciable Curie temperature. The ferromagnetism originates from the instability of the electronic states in SrS and SrSe with the large density of states at the valence band edge, which demonstrates a useful strategy for realizing the ferromagnetism in the two dimensional semiconductors. PMID:28378761

  12. High-field Faraday rotation in II-VI-based semimagnetic semiconductors

    NARCIS (Netherlands)

    Savchuk, AI; Fediv, [No Value; Nikitin, PI; Perrone, A; Tatzenko, OM; Platonov, VV

    The effects of d-d exchange interaction have been studied by measuring high-field Faraday rotation in II-VI-based semimagnetic semiconductors. For Cd1-xMnxTe crystals with x = 0.43 and at room temperature a saturation in magnetic field dependence of the Faraday rotation has been observed. In the

  13. The band gap of II-Vi ternary alloys in a tight-binding description

    Energy Technology Data Exchange (ETDEWEB)

    Olguin, Daniel; Blanquero, Rafael [Instituto Politecnico Nacional, Mexico, D.F (Mexico); De Coss, Romeo [Instituto Politecnico Nacional, Yucatan (Mexico)

    2001-02-01

    We present tight-binding calculations for the band gap of II-Vi pseudobinary ternary alloys. We use an sp{sup 3} s* tight-binding Hamiltonian which include spin-orbit coupling. The band gap composition dependence is calculated using a extended version of the virtual crystal approximation, which introduce an empirical correction factor that takes into account the non-linear dependence of the band gap with the composition. The results compare quite well with the experimental data, both for the ternary alloys with wide band gap and for the narrow band gap ones. [Spanish] Presentamos el calculo de la banda de energia prohibida de aleaciones ternarias de compuestos II-VI. El calculo, que incluye interaccion espin-orbita, se hace con el metodo de enlace fuerte, utilizando una base ortogonal de cinco orbitales atomicos por atomo (sp{sup 3} s*), en conjunto con la aproximacion del cristal virtual. En la aproximacion del cristal virtual, incluimos un factor de correccion que toma en cuenta la no linealidad de la banda de energia prohibida como funcion de la concentracion. Con esta correccion nuestros resultados reproducen aceptablemente los datos experimentales hallados en la literatura.

  14. Charge separation sensitized by advanced II-VI semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, David F. [Univ.of California, Merced, CA (United States)

    2017-04-11

    This proposal focuses on how the composition and morphology of pure and alloyed II-VI semiconductor heterostructures control their spectroscopic and dynamical properties. The proposed research will use a combination of synthesis development, electron microscopy, time-resolved electronic spectroscopy and modeling calculations to study these nanostructures. The proposed research will examine the extent to which morphology, compression due to lattice mismatch and alloy effects can be used to tune the electron and hole energies and the spectroscopic properties of II-VI heterojunctions. It will also use synthesis, optical spectroscopy and HRTEM to examine the role of lattice mismatch and hence lattice strain in producing interfacial defects, and the extent to which defect formation can be prevented by controlling the composition profile through the particles and across the interfaces. Finally, we will study the magnitude of the surface roughness in core/shell nanostructures and the role of shell thickness variability on the inhomogeneity of interfacial charge transfer rates.

  15. Study of surface modifications for improved selected metal (II-VI) semiconductor based devices

    Science.gov (United States)

    Blomfield, Christopher James

    Metal-semiconductor contacts are of fundamental importance to the operation of all semiconductor devices. There are many competing theories of Schottky barrier formation but as yet no quantitative predictive model exists to adequately explain metal-semiconductor interfaces. The II-VI compound semiconductors CdTe, CdS and ZnSe have recently come to the fore with the advent of high efficiency photovoltaic cells and short wavelength light emitters. Major problems still exist however in forming metal contacts to these materials with the desired properties. This work presents results which make a significant contribution to the theory of metal/II-VI interface behaviour in terms of Schottky barriers to n-type CdTe, CdS and ZnSe.Predominantly aqueous based wet chemical etchants were applied to the surfaces of CdTe, CdS and ZnSe which were subsequently characterised by X-ray photoelectron spectroscopy. The ionic nature of these II-VI compounds meant that they behaved as insoluble salts of strong bases and weak acids. Acid etchants induced a stoichiometric excess of semiconductor anion at the surface which appeared to be predominantly in the elemental or hydrogenated state. Alkaline etchants conversely induced a stoichiometric excess of semiconductor cation at the surface which appeared to be in an oxidised state.Metal contacts were vacuum-evaporated onto these etched surfaces and characterised by current-voltage and capacitance-voltage techniques. The surface preparation was found to have a clear influence upon the electrical properties of Schottky barriers formed to etched surfaces. Reducing the native surface oxide produced near ideal Schottky diodes. An extended study of Au, Ag and Sb contacts to [mathematical formula] substrates again revealed the formation of several discrete Schottky barriers largely independent of the metal used; for [mathematical formula]. Deep levels measured within this study and those reported in the literature led to the conclusion that Fermi

  16. Etch Pit Studies of II-VI-Wide Bandgap Semiconductor Materials ZnSe, ZnCdSe, and ZnCdMgSe Grown on InP

    National Research Council Canada - National Science Library

    Semendy, Fred

    1999-01-01

    Etch pit density (EPD) determination studies have been conducted on II-VI semiconductor materials ZnSe, ZnCdSe, and ZnCdMgSe grown on InP surfaces for the first time by using various etching solutions under different...

  17. Attractive electron correlation in wide band gap semiconductors by electron-photon interaction

    International Nuclear Information System (INIS)

    Takeda, Hiroyuki; Yoshino, Katsumi

    2004-01-01

    We theoretically demonstrate attractive electron correlation in wide band gap semiconductors by electron-photon interaction. At low temperature, wavevectors of electromagnetic waves absorbed in wide band gap semiconductors cannot be neglected for wavevectors of electron waves; that is, electromagnetic waves affect the movements of electrons. In particular, attractive interaction occurs between two electrons when one electron changes from a valence band to a conduction band and the other electron changes from a conduction band to a valence band

  18. Emission Channeling Studies on the Behaviour of Light Alkali Atoms in Wide-Band-Gap Semiconductors

    CERN Multimedia

    Recknagel, E; Quintel, H

    2002-01-01

    % IS342 \\\\ \\\\ A major problem in the development of electronic devices based on diamond and wide-band-gap II-VI compound semiconductors, like ZnSe, is the extreme difficulty of either n- or p-type doping. The only reports of successful n-type doping of diamond involves ion implanted Li, which was found to be an intersititial donor. Recent theoretical calculations suggest that Na, P and N dopant atoms are also good candidates for n-type doping of diamond. No experimental evidence has been obtained up to now, mainly because of the complex and partly unresolved defect situation created during ion implantation, which is necessary to incorporate potential donor atoms into diamond. \\\\ \\\\In the case of ZnSe, considerable effort has been invested in trying to fabricate pn-junctions in order to make efficient, blue-light emitting diodes. However, it has proved to be very difficult to obtain p-type ZnSe, mainly because of electrical compensation related to background donor impurities. Li and Na are believed to be ampho...

  19. Wide-gap layered oxychalcogenide semiconductors: Materials, electronic structures and optoelectronic properties

    International Nuclear Information System (INIS)

    Ueda, Kazushige; Hiramatsu, Hidenori; Hirano, Masahiro; Kamiya, Toshio; Hosono, Hideo

    2006-01-01

    Applying the concept of materials design for transparent conductive oxides to layered oxychalcogenides, several p-type and n-type layered oxychalcogenides were proposed as wide-gap semiconductors and their basic optical and electrical properties were examined. The layered oxychalcogenides are composed of ionic oxide layers and covalent chalcogenide layers, which bring wide-gap and conductive properties to these materials, respectively. The electronic structures of the materials were examined by normal/inverse photoemission spectroscopy and energy band calculations. The results of the examinations suggested that these materials possess unique features more than simple wide-gap semiconductors. Namely, the layered oxychalcogenides are considered to be extremely thin quantum wells composed of the oxide and chalcogenide layers or 2D chalcogenide crystals/molecules embedded in an oxide matrix. Observation of step-like absorption edges, large band gap energy and large exciton binding energy demonstrated these features originating from 2D density of states and quantum size effects in these layered materials

  20. Fracto-mechanoluminescence induced by impulsive deformation of II-VI semiconductors.

    Science.gov (United States)

    Tiwari, Ratnesh; Dubey, Vikas; Ramrakhiani, Meera; Chandra, B P

    2015-09-01

    When II-VI semiconductors are fractured, initially the mechanoluminescence (ML) intensity increases with time, attains a maximum value Im at a time tm, at which the fracture is completed. After tm, the ML intensity decreases with time, Im increase linearly with the impact velocity v0 and IT initially increase linearly with v0 and then it attains a saturation value for a higher value of v0. For photoluminescence, the temperature dependence comes mainly from luminescence efficiency, ηo; however, for the ML excitation, there is an additional factor, rt dependent on temperature. During fracture, charged dislocations moving near the tip of moving cracks produce intense electric field, causes band bending. Consequently, tunneling of electrons from filled electron traps to the conduction band takes place, whereby the radiative electron-hole recombination give rise to the luminescence. In the proposed mechanism, expressions are derived for the rise, the time tm corresponding to the ML intensity versus time curve, the ML intensity Im corresponding to the peak of ML intensity versus time curve, the total fracto-mechanoluminescence (FML) intensity IT, and fast and slow decay of FML intensity of II-VI semiconductors. The FML plays a significant role in understanding the processes involved in biological detection, earthquake lights and mine failure. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Multicolor (UV-IR) Photodetectors Based on Lattice-Matched 6.1 A II/VI and III/V Semiconductors

    Science.gov (United States)

    2015-08-27

    copyright information. 13. SUPPLEMENTARY NOTES. Enter information not included elsewhere such as: prepared in cooperation with; translation of; report...II-VI heterojunctions such as multi-color photodetectors and solar cells [2]. Mixing lattice-matched II-VI and III-V semiconductors could be an...at 77 K, further silicon oxide surface passivation can be done to suppress the surface leakage [10] in the future work. Figure 10 The dark I-V

  2. Anhydrous crystals of DNA bases are wide gap semiconductors.

    Science.gov (United States)

    Maia, F F; Freire, V N; Caetano, E W S; Azevedo, D L; Sales, F A M; Albuquerque, E L

    2011-05-07

    We present the structural, electronic, and optical properties of anhydrous crystals of DNA nucleobases (guanine, adenine, cytosine, and thymine) found after DFT (Density Functional Theory) calculations within the local density approximation, as well as experimental measurements of optical absorption for powders of these crystals. Guanine and cytosine (adenine and thymine) anhydrous crystals are predicted from the DFT simulations to be direct (indirect) band gap semiconductors, with values 2.68 eV and 3.30 eV (2.83 eV and 3.22 eV), respectively, while the experimentally estimated band gaps we have measured are 3.83 eV and 3.84 eV (3.89 eV and 4.07 eV), in the same order. The electronic effective masses we have obtained at band extremes show that, at low temperatures, these crystals behave like wide gap semiconductors for electrons moving along the nucleobases stacking direction, while the hole transport are somewhat limited. Lastly, the calculated electronic dielectric functions of DNA nucleobases crystals in the parallel and perpendicular directions to the stacking planes exhibit a high degree of anisotropy (except cytosine), in agreement with published experimental results.

  3. Anisotropic formation and distribution of stacking faults in II-VI semiconductor nanorods.

    Science.gov (United States)

    Hughes, Steven M; Alivisatos, A Paul

    2013-01-09

    Nanocrystals of cadmium selenide exhibit a form of polytypism with stable forms in both the wurtzite and zinc blende crystal structures. As a result, wurtzite nanorods of cadmium selenide tend to form stacking faults of zinc blende along the c-axis. These faults were found to preferentially form during the growth of the (001) face, which accounts for 40% of the rod's total length. Since II-VI semiconductor nanorods lack inversion symmetry along the c-axis of the particle, the two ends of the nanorod may be identified by this anisotropic distribution of faults.

  4. White organic light-emitting devices incorporating nanoparticles of II-VI semiconductors

    International Nuclear Information System (INIS)

    Ahn, Jin H; Bertoni, Cristina; Dunn, Steve; Wang, Changsheng; Talapin, Dmitri V; Gaponik, Nikolai; Eychmueller, Alexander; Hua Yulin; Bryce, Martin R; Petty, Michael C

    2007-01-01

    A blue-green fluorescent organic dye and red-emitting nanoparticles, based on II-VI semiconductors, have been used together in the fabrication of white organic light-emitting devices. In this work, the materials were combined in two different ways: in the form of a blend, and as separate layers deposited on the opposite sides of the substrate. The blended-layer structure provided purer white emission. However, this device also exhibited a number of disadvantages, namely a high drive voltage, a low efficiency and some colour instability. These problems could be avoided by using a device structure that was fabricated using separate dye and nanoparticle layers

  5. Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.

    Science.gov (United States)

    Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe

    2015-09-01

    Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics.

  6. Analytical Electron Diffraction from Iii-V and II-Vi Semiconductors

    Science.gov (United States)

    Spellward, Paul

    Available from UMI in association with The British Library. This thesis describes the development and evaluation of a number of new TEM-based techniques for the measurement of composition in ternary III-V and II-VI semiconductors. New methods of polarity determination in binary and ternary compounds are also presented. The theory of high energy electron diffraction is outlined, with particular emphasis on zone axis diffraction from well-defined strings. An account of TEM microstructural studies of Cd_{rm x}Hg _{rm 1-x}Te and CdTe epitaxial layers, which provided the impetus for developing the diffraction-based analytical techniques, is given. The wide range of TEM-based compositional determination techniques is described. The use of HOLZ deficiency lines to infer composition from a lattice parameter measurement is evaluated. In the case of Cd_{ rm x}Hg_{rm 1-x}Te, it is found to be inferior to other techniques developed. Studies of dynamical aspects of HOLZ diffraction can yield information about the dispersion surface from which a measure of composition may be obtained. This technique is evaluated for Al_{rm x}Ga_{rm 1-x} As, in which it is found to be of some use, and for Cd_{rm x}Hg _{rm 1-x}Te, in which the large Debye-Waller factor associated with mercury in discovered to render the method of little value. A number of critical voltages may be measured in medium voltage TEMs. The (111) zone axis critical voltage of Cd_{rm x}Hg _{rm 1-x}Te is found to vary significantly with x and forms the basis of an accurate technique for composition measurement in that ternary compound. Other critical voltage phenomena are investigated. In Al _{rm x}Ga_ {rm 1-x}As and other light ternaries, a non-systematic critical voltage is found to vary with x, providing a good indicator of composition. Critical voltage measurements may be made by conventional CBED or by various other techniques, which may also simultaneously yield information on the spatial variation of composition. The

  7. Acceptors in II-IV Semiconductors - Incorporation and Complex Formation

    CERN Multimedia

    2002-01-01

    A strong effort is currently devoted to the investigation of defects and the electrical activation of dopant atoms in II-VI semiconductors. In particular, the knowledge about the behaviour of acceptors, prerequisite for the fabrication of p-type semiconductors, is rather limited. The perturbed $\\,{\\gamma\\gamma}$ -angular correlation technique (PAC) and the photoluminescence spectroscopy (PL) using the radioactive isotopes $^{77}\\!$Br and $^{111}\\!$Ag will be applied for investigating the behaviour of acceptor dopant atoms and their interactions with defects in II-VI semiconductors. The main topic will be the identification of the technical conditions for the incorporation of electrically active acceptors in the II-VI semiconductors ~ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe with particular emphasis on the compounds~ CdTe, ZnSe, and ZnTe. The investigations will be supplemented by first exploratory PL experiments with the group V acceptors $^{71}\\!$As and $^{121}\\!$Sb. With help of the probe $^{111}\\!$Ag, the pos...

  8. New highly fluorescent biolabels based on II-VI semiconductor hybrid organic-inorganic nanostructures for bioimaging

    International Nuclear Information System (INIS)

    Santos, B.S.; Farias, P.M.A.; Menezes, F.D.; Brasil, A.G.; Fontes, A.; Romao, L.; Amaral, J.O.; Moura-Neto, V.; Tenorio, D.P.L.A.; Cesar, C.L.; Barbosa, L.C.; Ferreira, R.

    2008-01-01

    Semiconductor quantum dots based on II-VI materials may be prepared to develop good biolabeling properties. In this study we present some well-succeeded results related to the preparation, functionalization and bioconjugation of CdY (Y = S, Se and Te) to biological systems (live cells and fixed tissues). These nanostructured materials were prepared using colloidal synthesis in aqueous media resulting nanoparticles with very good optical properties and an excellent resistance to photodegradation

  9. Pulsed laser deposition of II-VI and III-V semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Mele, A.; Di Palma, T.M.; Flamini, C.; Giardini Guidoni, A. [Rome, Univ. `La Sapienza` (Italy). Dep. di Chimica

    1998-12-01

    Pulsed laser irradiation of a solid target involves electronic excitation and heating, followed by expansion from the target of the elliptical gas cloud (plume) which can be eventually condensed on a suitable substrate. Pulsed laser ablation has been found to be a valuable technique to prepare II-VI and III-V thin films of semiconductor materials. Pulsed laser ablation deposition is discussed in the light of the results of an investigation on CdS, CdSe, CdTe and CdSe/CdTe multilayers and AIN, GaN and InN together with Al-Ga-In-N heterostructures. [Italiano] L`irradiazione di un target solido, mediante un fascio laser impulsato, genera una serie di processi che possono essere schematizzati come segue: riscaldamento ed eccitazione elettronica del target, da cui consegue l`espulsione di materiale sotto forma di una nube gassosa di forma ellissoidale (plume), che espande e puo` essere fatta depositare su un opportuno substrato. L`ablazione lasersi e` rivelata una tecnica valida per preparare film sottili di composti di elementi del II-VI e del III-V gruppo della tavola periodica. La deposizione via ablazione laser viene discussa alla luce dei risultati ottenuti nella preparazione di film di CdS, CdSe, CdTe e di film multistrato di CdSe/CdTe, di film di AIN, GaN, InN e di eterostrutture di Al-Ga-In-N.

  10. Structural and elastic properties of AIBIIIC 2 VI semiconductors

    Science.gov (United States)

    Kumar, V.; Singh, Bhanu P.

    2018-01-01

    The plane wave pseudo-potential method within density functional theory has been used to calculate the structural and elastic properties of AIBIIIC 2 VI semiconductors. The electronic band structure, density of states, lattice constants (a and c), internal parameter (u), tetragonal distortion (η), energy gap (Eg), and bond lengths of the A-C (dAC) and B-C (dBC) bonds in AIBIIIC 2 VI semiconductors have been calculated. The values of elastic constants (Cij), bulk modulus (B), shear modulus (G), Young's modulus (Y), Poisson's ratio (υ), Zener anisotropy factor (A), Debye temperature (ϴD) and G/B ratio have also been calculated. The values of all 15 parameters of CuTlS2 and CuTlSe2 compounds, and 8 parameters of 20 compounds of AIBIIIC 2 VI family, except AgInS2 and AgInSe2, have been calculated for the first time. Reasonably good agreement has been obtained between the calculated, reported and available experimental values.

  11. Electronic materials with a wide band gap: recent developments

    Directory of Open Access Journals (Sweden)

    Detlef Klimm

    2014-09-01

    Full Text Available The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gap Eg = 0.66 eV after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (Eg = 1.12 eV. This improved the signal-to-noise ratio for classical electronic applications. Both semiconductors have a tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or various anions and cations, other semiconductors with wider Eg were obtained. These are transparent to visible light and belong to the group of wide band gap semiconductors. Nowadays, some nitrides, especially GaN and AlN, are the most important materials for optical emission in the ultraviolet and blue regions. Oxide crystals, such as ZnO and β-Ga2O3, offer similarly good electronic properties but still suffer from significant difficulties in obtaining stable and technologically adequate p-type conductivity.

  12. Crystallization of II-VI semiconductor compounds forming long microcrystalline linear assemblies

    Directory of Open Access Journals (Sweden)

    Marcelino Becerril

    2013-04-01

    Full Text Available In this work we report the formation of long microcrystalline linear self-assemblies observed during the thin film growth of several II-VI compounds. Polycrystalline CdTe, CdS, CdCO3, and nanocrystalline CdTe:Al thin films were prepared on glass substrates by different deposition techniques. In order to observe these crystalline formations in the polycrystalline materials, the thin film growth was suspended before the grains reached to form a continuous layer. The chains of semiconductor crystals were observed among many isolated and randomly distributed grains. Since CdTe, CdTe:Al, CdS and CdCO3 are not ferroelectric and/or ferromagnetic materials, the relevant problem would be to explain what is the mechanism through which the grains are held together to form linear chains. It is well known that some nanocrystalline materials form rods and wires by means of electrostatic forces. This occurs in polar semiconductors, where it is assumed that the attraction forces between surface polar faces of the small crystals are the responsible for the chains formation. Since there are not too many mechanisms responsible for the attraction we assume that a dipolar interaction is the force that originates the formation of chain-like grain clusters. The study of this property can be useful for the understanding of nucleation processes in the growth of semiconductor thin films.

  13. Method for making graded I-III-VI.sub.2 semiconductors and solar cell obtained thereby

    Science.gov (United States)

    Devaney, Walter E.

    1987-08-04

    Improved cell photovoltaic conversion efficiencies are obtained by the simultaneous elemental reactive evaporation process of Mickelsen and Chen for making semiconductors by closer control of the evaporation rates and substrate temperature during formation of the near contact, bulk, and near junction regions of a graded I-III-VI.sub.2, thin film, semiconductor, such as CuInSe.sub.2 /(Zn,Cd)S or another I-III-VI.sub.2 /II-VI heterojunction.

  14. Emission Channeling Investigation of Implantation Defects and Impurities in II-VI-Semiconductors

    CERN Multimedia

    Trojahn, I; Malamud, G; Straver, J; Ronnqvist, C; Jahn, S-G; Restle, M

    2002-01-01

    Detailed knowledge on the behaviour of implantation damage and its influence on the lattice position and environment of implanted dopants in II-VI-compound semiconductors is necessary for a clear interpretation of results from other investigation methods and finally for technical utilization. Besides, a precise localization of impurities could help to clarify the discussion about the instability of the electrical properties of some dopants, called " aging ".\\\\ \\\\We intend to use the emission channeling method to investigate: \\\\ \\\\i) The behaviour of implantation damage which shall be probed by the lattice location of isoelectronic isotopes (Zn,Cd,Hg,Se,Te) directly after implantation at different temperatures, doses and vacancy densities and after annealing treatments, and ii) the precise lattice sites of the acceptor Ag and donor In under different conditions by implanting precursors Cd and In isotopes. \\\\ \\\\Further on we would like to test the application of a two-dimensional position and energy sensitive e...

  15. Study of radiation defects by in-situ measurements of the Hall effect in narrow-gap semiconductors

    International Nuclear Information System (INIS)

    Favre, J.

    1990-01-01

    Semiconducting compounds of II-VI, III-V and IV-VI groups were irradiated in liquid hydrogen by high energy (0.7 to 2.7 MeV) electrons. The Hall coefficient and resistivity variations were measured in situ during irradiation. The doping by irradiation induced defects is of p-type in III-V group compounds, while n-type doping occurs in II-VI and IV-VI group materials. A semiconductor to insulator or reverse transition was observed under irradiation when the chemical potential crossed the band edges. In IV-VI group compounds the two successive transitions take place in initially p-type samples. A metastable behaviour, characteristic to strong compensation, appears in the vicinity of those semiconductor - insulator transitions in IV-VI compounds. The slope of free carrier concentration vs. fluence variation was analyzed. It was compared to defect creation rates, calculated in the framework of a cascade model. The charge state of created defects was deduced in this way. - In IV-VI group compounds, the presence of localized levels degenerated with the conduction band and, in PbTe, of additional defect associated levels in the forbidden gap, was demonstrated. Those results are consistent with the saturation of electron concentration increase at high fluence as well as with the analysis of annealing experiments. - In Hg 1-x Cd x Te compounds, the analysis of electron concentration versus fluence increase indicates that only mercury Frenkel pairs are electrically active. The variation with cadmium content of the defect associated level energy was deduced from the saturation values of the electron concentration [fr

  16. Combined Electrical, Optical and Nuclear Investigations of Impurities and Defects in II-VI Semiconductors

    CERN Multimedia

    2002-01-01

    % IS325 \\\\ \\\\ To achieve well controlled bipolar conductivity in II-VI semiconductors represents a fundamental problem in semiconductor physics. The doping problems are controversely discussed, either in terms of self compensation or of compensation and passivation by unintentionally introduced impurities. \\\\ \\\\It is the goal of our experiments at the new ISOLDE facility, to shed new light on these problems and to look for ways to circumvent it. For this aim the investigation of impurities and native defects and the interaction between each other shall be investigated. The use of radioactive ion beams opens the access to controlled site selective doping of only one sublattice via nuclear transmutation. The compensating and passivating mechanisms will be studied by combining nuclear, electrical and optical methods like Perturbed Angular Correlation~(PAC), Hall Effect~(HE), Deep Level Transient Spectroscopy~(DLTS), Photoluminescence Spectroscopy~(PL) and electron paramagnetic resonance (EPR). \\\\ \\\\We intend to ...

  17. Thermophysical Properties of Selected II-VI Semiconducting Melts

    Science.gov (United States)

    Li, C.; Su, Ching-Hua; Lehoczky, S. L.; Scripa, R. N.; Ban, H.; Lin, B.

    2004-01-01

    Thermophysical properties are essential for the accurate predication of the crystal growth process by computational modeling. Currently, the temperature dependent thermophysical property data for the II-VI semiconductor melts are scarce. This paper reports the results of the temperature dependence of melt density, viscosity and electrical conductivity of selected II-VI compounds, including HgTe, HgCdTe and HgZnTe. The melt density was measured using a pycnometric method, and the viscosity and electrical conductivity were measured by a transient torque method. The results were compared with and showed good agreement with the existing data in the literature.

  18. On the Integration of Wide Band-gap Semiconductors in Single Phase Boost PFC Converters

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos

    Power semiconductor technology has dominated the evolution of switched mode power supplies (SMPS). Advances in silicon (Si) technology, as the introduction of metal oxide field effect transistor (MOSFET), isolated gate bipolar transistors (IGBT), superjunction vertical structures and Schottky...... diodes, or the introduction of silicon carbide (SiC) diodes, provided large steps in miniaturization and efficiency improvement of switched mode power converters. Gallium nitride (GaN) and SiC semiconductor devices have already been around for some years. The first one proliferated due to the necessity...... of high frequency operation in optoelectronics applications. On the other hand, Schottky SiC power diodes were introduced in 2001 as an alternative to eliminate reverse recovery issues in Si rectifiers. Wide band-gap semiconductors offer an increased electrical field strength and electron mobility...

  19. Contribution to the study of electronic structure of crystalline semiconductors (Si, Ge, GaAs, Gap, ZnTe, ZnSe

    Directory of Open Access Journals (Sweden)

    Bouhafs B.

    2012-06-01

    Full Text Available The band structure of semiconductors was described by several theorists since the Fifties. The main objective of the present paper is to do a comparative study between various families of semi-conductors IV (Si,Ge, III-V (GaAs, GaP and II-VI (ZnSe, ZnTe with both methods; tight Binding1 method and pseudo potential method2. This work enables us to understand as well as the mechanism of conduction process in these semiconductors and powers and limits of the above methods. The obtained results allow to conclude that both methods are in a good agreement to describe the morphology of band structures of the cited semiconductors. This encourages us to study in the future the electronic behaviour through the structure of bands for more complex systems such as the heterostructures.

  20. Band-engineering of TiO2 as a wide-band gap semiconductor using organic chromophore dyes

    Science.gov (United States)

    Wahyuningsih, S.; Kartini, I.; Ramelan, A. H.; Saputri, L. N. M. Z.; Munawaroh, H.

    2017-07-01

    Bond-engineering as applied to semiconductor materials refers to the manipulation of the energy bands in order to control charge transfer processes in a device. When the device in question is a photoelectrochemical cell, the charges affected by drift become the focus of the study. The ideal band gap of semiconductors for enhancement of photocatalyst activity can be lowered to match with visible light absorption and the location of conduction Band (CB) should be raised to meet the reducing capacity. Otherwise, by the addition of the chromofor organic dyes, the wide-band gab can be influences by interacation resulting between TiO2 surface and the dyes. We have done the impruvisation wide-band gap of TiO2 by the addition of organic chromophore dye, and the addition of transition metal dopand. The TiO2 morphology influence the light absorption as well as the surface modification. The organic chromophore dye was syntesized by formation complexes compound of Co(PAR)(SiPA)(PAR)= 4-(2-piridylazoresorcinol), SiPA = Silyl propil amine). The result showed that the chromophore groups adsorbed onto TiO2 surface can increase the visible light absorption of wide-band gab semiconductor. Initial absorption of a chromophore will affect light penetration into the material surfaces. The use of photonic material as a solar cell shows this phenomenon clearly from the IPCE (incident photon to current conversion efficiency) measurement data. Organic chromophore dyes of Co(PAR)(SiPA) exhibited the long wavelength absorption character compared to the N719 dye (from Dyesol).

  1. Halogen doping of II-VI semiconductors during molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Waag, A.; Litz, Th.; Fischer, F.; Heinke, H.; Scholl, S.; Hommel, D.; Landwehr, G. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Bilger, G. (Zentrum fuer Sonnenenergie und Wasserstoff-Forschung, Stuttgart (Germany))

    1994-04-14

    Results on the halogen doping of CdTe, (CdMn)Te as well as (CdMg)Te thin films and quantum well structures are reported. The structures were grown by molecular beam epitaxy. The samples have been investigated by Van der Pauw, photoconductivity, X-ray diffraction, XPS and SIMS measurements. ZnCl[sub 2] and ZnBr[sub 2] have been used as dopant sources. Free carrier concentrations at room temperature above 10[sup 18] cm[sup -3] can easily be achieved for CdTe for a wide range of Cd/Te flux ratios and substrate temperatures. In the ternary alloys, the free carrier concentration decreases drastically with increasing x-values, despite a constant incorporation of the dopant species. In addition, persistent photoconductivity has been observed in n-type doped ternary thin films at low temperatures. The decrease of the free carrier concentration with x-value is common to other wide-gap ternary alloys, and the reason for it is discussed in the frame of DX-like deep donor impurities in ternary II-VI compounds. In first experiments on planar halogen doping of CdTe, a doping level of 5x10[sup 18] cm[sup -3] could be reached in the doped regions, the highest value ever reported for CdTe. A clear influence of dopant incorporation on the structural quality of CdTe thin films has been seen even for dopant concentrations of as low as 10[sup 18] cm[sup -3]. The FWHM of the rocking curves decreased by a factor of 2 with increasing dopant incorporation. SIMS as well as XPS measurements demonstrate that the Cl/Zn and Br/Zn ratio in the doped films is 2/1, but no chemical shift corresponding to Zn-Cl or Zn-Br bonds could be detected. A model for the incorporation of the halogens is proposed on the basis of these results

  2. Chemical trend of exchange coupling in diluted magnetic II-VI semiconductors: Ab initio calculations

    Science.gov (United States)

    Chanier, T.; Virot, F.; Hayn, R.

    2009-05-01

    We have calculated the chemical trend of magnetic exchange parameters ( Jdd , Nα , and Nβ ) of Zn-based II-VI semiconductors ZnA ( A=O , S, Se, and Te) doped with Co or Mn. We show that a proper treatment of electron correlations by the local spin-density approximation (LSDA)+U method leads to good agreement between experimental and theoretical values of the nearest-neighbor exchange coupling Jdd between localized 3d spins in contrast to the LSDA method. The exchange couplings between localized spins and doped electrons in the conduction band Nα are in good agreement with experiment as well. But the values for Nβ (coupling to doped holes in the valence band) indicate a crossover from weak coupling (for A=Te and Se) to strong coupling (for A=O ) and a localized hole state in ZnO:Mn. This hole localization explains the apparent discrepancy between photoemission and magneto-optical data for ZnO:Mn.

  3. Bioengineered II-VI semiconductor quantum dot-carboxymethylcellulose nanoconjugates as multifunctional fluorescent nanoprobes for bioimaging live cells

    Science.gov (United States)

    Mansur, Alexandra A. P.; Mansur, Herman S.; Mansur, Rafael L.; de Carvalho, Fernanda G.; Carvalho, Sandhra M.

    2018-01-01

    Colloidal semiconductor quantum dots (QDs) are light-emitting ultra-small nanoparticles, which have emerged as a new class of nanoprobes with unique optical properties for bioimaging and biomedical diagnostic. However, to be used for most biomedical applications the biocompatibility and water-solubility are mandatory that can achieved through surface modification forming QD-nanoconjugates. In this study, semiconductor II-VI quantum dots of type MX (M = Cd, Pb, Zn, X = S) were directly synthesized in aqueous media and at room temperature using carboxymethylcellulose sodium salt (CMC) behaving simultaneously as stabilizing and surface biofunctional ligand. These nanoconjugates were extensively characterized using UV-visible spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, dynamic light scattering and zeta potential. The results demonstrated that the biopolymer was effective on nucleating and stabilizing the colloidal nanocrystals of CdS, ZnS, and PbS with the average diameter ranging from 2.0 to 5.0 nm depending on the composition of the semiconductor core, which showed quantum-size confinement effect. These QD/polysaccharide conjugates showed luminescent activity from UV-visible to near-infrared range of the spectra under violet laser excitation. Moreover, the bioassays performed proved that these novel nanoconjugates were biocompatible and behaved as composition-dependent fluorescent nanoprobes for in vitro live cell bioimaging with very promising perspectives to be used in numerous biomedical applications and nanomedicine.

  4. The study of response of wide band gap semiconductor detectors using the Geant4

    Directory of Open Access Journals (Sweden)

    Hussain Riaz

    2014-01-01

    Full Text Available The energy dependence on the intrinsic efficiency, absolute efficiency, full energy peak absolute efficiency and peak-to-total ratio have been studied for various wide band gap semiconductor detectors using the Geant4 based Monte Carlo simulations. The detector thickness of 1-4 mm and the area in 16-100 mm2 range were considered in this work. In excellent agreement with earlier work (Rybka et al., [20], the Geant4 simulated values of detector efficiencies have been found to decrease with incident g-ray energy. Both for the detector thickness and the detector area, the increasing trends have been observed for total efficiency as well as for full-energy peak efficiency in 0.1 MeV-50 MeV range. For Cd1-xZnxTe, the detector response remained insensitive to changes in relative proportions of Zn. For various wide band gap detectors studied in this work, the detection efficiency of TlBr was found highest over the entire range of energy, followed by the HgI2, CdTe, and then by CZT.

  5. Time-resolved optical studies of wide-gap II-VI semiconductor heterostructures

    Science.gov (United States)

    Wang, Hong

    ZnSe and ZnSe-based quantum well and superlattice structures are potential candidates for light emitting devices and other optical devices such as switches and modulators working in the blue-green wavelength range. Carrier dynamics studies of these structures are important in evaluating device performance as well as understanding the underlying physical processes. In this thesis, a carrier dynamics investigation is conducted for temperature from 77K to 295K on CdZnSSe/ZnSSe single quantum well structure (SQW) and ZnSe/ZnSTe superlattice fabricated by molecular beam epitaxy (MBE). Two experimental techniques with femtosecond time resolution are used in this work: up-conversion technique for time- resolved photoluminescence (PL) and pump-probe technique for time-resolved differential absorption studies. For both heterostructures, the radiative recombination is dominated by exciton transition due to the large exciton binding energy as a result of quantum confinement effect. The measured decay time of free exciton PL in CdZnSSe/ZnSSe SQW increases linearly with increasing temperature which agrees with the theoretical prediction by considering the conservation of momentum requirement for radiative recombination. However, the recombination of free carriers is also observed in CdZnSSe/ZnSSe SQW for the whole temperature range studied. On the other hand, in ZnSe/ZnSTe superlattice structures, the non- radiative recombination processes are non-negligible even at 77K and become more important in higher temperature range. The relaxation processes such as spectral hole burning, carrier thermalization and hot-carrier cooling are observed in ZnSe/ZnSTe superlattices at room temperature (295K) by the femtosecond pump-probe measurements. A rapid cooling of the thermalized hot- carrier from 763K to 450K within 4ps is deduced. A large optical nonlinearity (i.e., the induced absorption change) around the heavy-hole exciton energy is also obtained.

  6. Tuning the band gap of PbCrO{sub 4} through high-pressure: Evidence of wide-to-narrow semiconductor transitions

    Energy Technology Data Exchange (ETDEWEB)

    Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Física Aplicada-ICMUV, Universitat de València, MALTA ConsoliderTeam, C/Dr. Moliner 50, 46100 Burjassot (Spain); Bandiello, E.; Segura, A. [Departamento de Física Aplicada-ICMUV, Universitat de València, MALTA ConsoliderTeam, C/Dr. Moliner 50, 46100 Burjassot (Spain); Hamlin, J.J.; Maple, M.B. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Rodriguez-Hernandez, P.; Muñoz, A. [Departamento de Física Fundamental II, Instituto de Materiales y Nanotecnología, Universidad de La Laguna, MALTA ConsoliderTeam, La Laguna, 38205 Tenerife (Spain)

    2014-02-25

    Highlights: • Electronic and optical properties of PbCrO{sub 4} are studied under compression. • Band-gap collapses are observed and correlated with structural phase transitions. • PbCrO{sub 4} band-gap is reduced from 2.3 to 0.8 eV in a 20 GPa range. • PbCrO{sub 4} is an n-type semiconductor with donor levels associated to Frenkel defects. • A deep-to-shallow donor transformation at HP induces a large resistivity decrease. -- Abstract: The electronic transport properties and optical properties of lead(II) chromate (PbCrO{sub 4}) have been studied at high pressure by means of resistivity, Hall-effect, and optical-absorption measurements. Band-structure first-principle calculations have been also performed. We found that the low-pressure phase is a direct band-gap semiconductor (Eg = 2.3 eV) that shows a high resistivity. At 3.5 GPa, associated to a structural phase transition, a band-gap collapse takes place, becoming Eg = 1.8 eV. At the same pressure the resistivity suddenly decreases due to an increase of the carrier concentration. In the HP phase, PbCrO{sub 4} behaves as an n-type semiconductor, with a donor level probably associated to the formation of oxygen vacancies. At 15 GPa a second phase transition occurs to a phase with Eg = 1.2 eV. In this phase, the resistivity increases as pressure does probably due to the self-compensation of donor levels and the augmentation of the scattering of electrons with ionized impurities. In the three phases the band gap red shifts under compression. At 20 GPa, Eg reaches a value of 0.8 eV, behaving PbCrO{sub 4} as a narrow-gap semiconductor.

  7. Growth of Bulk Wide Bandgap Semiconductor Crystals and Their Potential Applications

    Science.gov (United States)

    Chen, Kuo-Tong; Shi, Detang; Morgan, S. H.; Collins, W. Eugene; Burger, Arnold

    1997-01-01

    Developments in bulk crystal growth research for electro-optical devices in the Center for Photonic Materials and Devices since its establishment have been reviewed. Purification processes and single crystal growth systems employing physical vapor transport and Bridgman methods were assembled and used to produce high purity and superior quality wide bandgap materials such as heavy metal halides and II-VI compound semiconductors. Comprehensive material characterization techniques have been employed to reveal the optical, electrical and thermodynamic properties of crystals, and the results were used to establish improved material processing procedures. Postgrowth treatments such as passivation, oxidation, chemical etching and metal contacting during the X-ray and gamma-ray device fabrication process have also been investigated and low noise threshold with improved energy resolution has been achieved.

  8. Device Physics of Narrow Gap Semiconductors

    CERN Document Server

    Chu, Junhao

    2010-01-01

    Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only the semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The last chapter applies the understanding of device physics to photoconductive detectors, photovoltaic infrared detector...

  9. Luminescence in colloidal Mn2+-doped semiconductor nanocrystals

    International Nuclear Information System (INIS)

    Beaulac, Remi; Archer, Paul I.; Gamelin, Daniel R.

    2008-01-01

    Recent advances in nanocrystal doping chemistries have substantially broadened the variety of photophysical properties that can be observed in colloidal Mn 2+ -doped semiconductor nanocrystals. A brief overview is provided, focusing on Mn 2+ -doped II-VI semiconductor nanocrystals prepared by direct chemical synthesis and capped with coordinating surface ligands. These Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation. A brief outlook on future research directions is provided. - Graphical abstract: Mn 2+ -doped semiconductor nanocrystals are organized into three major groups according to the location of various Mn 2+ -related excited states relative to the energy gap of the host semiconductor nanocrystals. The positioning of these excited states gives rise to three distinct relaxation scenarios following photoexcitation

  10. Penta-SiC5 monolayer: A novel quasi-planar indirect semiconductor with a tunable wide band gap

    Science.gov (United States)

    Naseri, Mosayeb

    2018-03-01

    In this paper, by using of the first principles calculations in the framework of the density functional theory, we systematically investigated the structure, stability, electronic and optical properties of a novel two-dimensional pentagonal monolayer semiconductors namely penta-SiC5 monolayer. Comparing elemental silicon, diamond, and previously reported 2D carbon allotropes, our calculation shows that the predicted penta-SiC5 monolayer has a metastable nature. The calculated results indicate that the predicted monolayer is an indirect semiconductor with a wide band gap of about 2.82 eV by using Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional level of theory which can be effectively tuned by external biaxial strains. The obtained exceptional electronic properties suggest penta-SiC5 monolayer as promising candidates for application in new electronic devices in nano scale.

  11. Growth and characterization of ZnCdMgSe-based green light emitters and distributed Bragg reflectors towards II-VI based semiconductor disk lasers

    International Nuclear Information System (INIS)

    De Jesus, Joel; Gayen, Swapan K.; Garcia, Thor A.; Tamargo, Maria C.; Kartazaev, Vladimir; Jones, Brynmor E.; Schlosser, Peter J.; Hastie, Jennifer E.

    2015-01-01

    We report the structural and optical properties of molecular beam epitaxy grown II-VI semiconductor multiple quantum well (MQW) structures and distributed Bragg reflector (DBR) on InP substrates for application in developing optically-pumped semiconductor disk lasers (SDLs) operating in the green spectral range. One sample was grown directly on an InP substrate with an InGaAs buffer layer, while another had a 5-period ZnCdMgSe-based DBR grown on the InGaAs/InP substrate. X-ray diffraction and scanning electron microscopy measurements revealed sharp superlattice peaks and abrupt layer interfaces, while steady-state photoluminescence measurements demonstrated surface emission between 540-570 nm. Under pulsed excitation both samples exhibited features of amplified spontaneous emission (ASE) or stimulated emission, accompanied by luminescence lifetime shortening. The sample with the DBR showed higher surface luminescence and the onset of ASE at lower pump power. To further explore the design and performance of a ZnCdMgSe-based DBR, a 20-period DBR was grown and a reflectivity of 83% was obtained at ∝560 nm. We estimate that a DBR with ∝40 periods would be needed for optimal performance in a SDL using these materials. These results show the potential of II-VI MQW structures on InP substrates for the development of SDLs operational in the green-yellow wavelength range. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Raman spectra of Cu{sub 2}B{sup II}C{sup IV}X{sub 4}{sup VI} magnetic quaternary semiconductor compounds with tetragonal stannite type structure

    Energy Technology Data Exchange (ETDEWEB)

    Rincón, C., E-mail: crincon@ula.ve; Quintero, M.; Power, Ch.; Moreno, E.; Quintero, E.; Morocoima, M. [Centro de Estudios de Semiconductores, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida (Venezuela, Bolivarian Republic of); Henao, J. A.; Macías, M. A. [Grupo de Investigación en Química Estructural, Facultad de Ciencias, Escuela de Química, Universidad Industrial de Santander, Apartado Aéreo 678, Bucaramanga (Colombia)

    2015-05-28

    A comparative study of the Raman spectra of Cu{sub 2}B{sup II}C{sup IV}S{sub 4}{sup VI} and Cu{sub 2}B{sup II}C{sup IV}Se{sub 4}{sup VI}(where B = Mn or Fe) magnetic quaternary semiconductor compounds with stannite-type structure (I4{sup ¯}2m) has been done. Most of the fourteen Raman lines expected for these materials were observed in the spectra. The two strongest lines observed have been assigned to the IR inactive A{sub 1}{sup 1} and A{sub 1}{sup 2} stannite modes that originated from the motion of the S or Se anion around the Cu and C{sup IV} cations remaining at rest. The shift in the frequency of these two lines of about 150 cm{sup −1} to lower energies observed in Cu{sub 2}B{sup II}C{sup IV}Se{sub 4}{sup VI} compounds as compared to those in Cu{sub 2}B{sup II}C{sup IV}S{sub 4}{sup VI} ones, can then be explained as due to the anion mass effect. Based on the fact that values of these frequencies depend mainly on anion mass and bond-stretching forces between nearest-neighbor atoms, the vibrational frequencies v{sup ¯}(A{sub 1}{sup 2}) and v{sup ¯}(A{sub 1}{sup 2}) of both modes for several Cu{sub 2}B{sup II}C{sup IV}X{sub 4}{sup VI} stannite compounds (where X = S, Se, or Te) very close to the experimental data reported for these materials were calculated from a simple model that relates these stretching forces to the anion-cation bond-distances.

  13. Manipulation of spin states in single II-VI-semiconductor quantum dots; Manipulation von Spinzustaenden in einzelnen II-VI-Halbleiter-Quantenpunkten

    Energy Technology Data Exchange (ETDEWEB)

    Hundt, Andreas

    2007-10-09

    Semiconductor quantum dots (QD) are objects on the nanometer scale, where charge carriers are confined in all three dimensions. This leads to a reduced interaction with the semiconductor lattice and to a discrete density of states. The spin state of a particle defines the polarisation of the emitted light when relaxating to an energetically lower state. Spin exchange and optical transition selection rules (conservation law for spin) define the optical control of spin states. In the examined QD in II-VI seminconductor systems the large polar character of the bindings enables to observe particle interactions by spectroscopy of the photo-luminescence (PL), making QD attractive for basic research. This work subjects in its first part single negatively charged non-magnetic QD. The odd number of carriers allows to study the latter in an unpaired state. By using polarization-resolved micro-PL spectroscopy, the spin-states of single, isolated QD can be studied reproducibly. Of special interest are exchange interactions in this few-particle system named trion. By excitation spectroscopy energetically higher states can be identified and characterized. The exchange interactions appearing here lead to state mixing and fine structure patterns in the spectra. Couplings in excited hole states show the way to the optical orientation of the resident electron spin. The spin configuration of the trion triplet state can be used to optically control the resident electron spin. Semimagnetic QD are focused in the second part of this work. The interaction with a paramagnetic environment of manganese spins leads to new magneto-optical properties of the QD. They reveal on a single dot level by line broadening due to spin fluctuations and by the giant Zeeman effect of the dot ensemble. Of special interest in this context is the influence of the reduced system dimension and the relatively larger surface of the system on the exchange mechanisms. The strong temperature dependence of the spin

  14. Laser Cooling of 2-6 Semiconductors

    Science.gov (United States)

    2016-08-12

    AFRL-AFOSR-JP-TR-2016-0067 Laser Cooling of II-VI Semiconductors Qihua Xiong NANYANG TECHNOLOGICAL UNIVERSITY Final Report 08/12/2016 DISTRIBUTION A...From - To) 15 May 2013 to 14 May 2016 4. TITLE AND SUBTITLE Laser Cooling of II-VI Semiconductors 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-13-1...13. SUPPLEMENTARY NOTES 14. ABSTRACT The breakthrough of laser cooling in semiconductor has stimulated strong interest in further scaling up towards

  15. Ternary chalcopyrite semiconductors

    CERN Document Server

    Shay, J L; Pamplin, B R

    2013-01-01

    Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications covers the developments of work in the I-III-VI2 and II-IV-V2 ternary chalcopyrite compounds. This book is composed of eight chapters that focus on the crystal growth, characterization, and applications of these compounds to optical communications systems. After briefly dealing with the status of ternary chalcopyrite compounds, this book goes on describing the crystal growth of II-IV-V2 and I-III-VI2 single crystals. Chapters 3 and 4 examine the energy band structure of these semiconductor compounds, illustrat

  16. Direct synthesis of II-VI compound nanocrystals in polymer matrix

    International Nuclear Information System (INIS)

    Antolini, F.; Di Luccio, T.; Laera, A.M.; Mirenghi, L.; Piscopiello, E.; Re, M.; Tapfer, L.

    2007-01-01

    The production of II-VI semiconductor compound - polymer matrix nanocomposites by a direct in-situ thermolysis process is described. Metal-thiolate precursor molecules embedded in a polymer matrix decompose by a thermal annealing and the nucleation of semiconductor nanocrystals occurs. It is shown that the nucleation of nanoparticles and the formation of the nanocomposite can be also achieved by laser beam irradiation; this opens the way towards a ''lithographic'' in-situ nanocomposite production process. A possible growth and nanocomposite formation mechanism, describing the structural and chemical transformation of the precursor molecules, their decomposition and the formation of the nanoparticles, is presented. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Kinetics of singlet and triplet excitons in a wide-band-gap copolymer

    NARCIS (Netherlands)

    Loi, MA; Gadermaier, C; List, EJW; Leising, G; Graupner, W; Bongiovanni, G; Mura, A; Pireaux, JJ; Kaeriyama, K

    2000-01-01

    Transient and photomodulation spectroscopy is used in order to determine decay times and densities of both emitting and absorbing species in the wide band-gap semiconductor poly-2,5-diheptyl-1,4-phenylene-alt-2, S-thienylene (PDHPT). The wide band gap of this material is a consequence of the large

  18. Photophysical Properties of II-VI Semiconductor Nanocrystals

    Science.gov (United States)

    Gong, Ke

    As it is well known, semiconductor nanocrystals (also called quantum dots, QDs) are being actively pursued for use in many different types of luminescent optical materials. These materials include the active media for luminescence downconversion in artificial lighting, lasers, luminescent solar concentrators and many other applications. Chapter 1 gives general introduction of QDs, which describe the basic physical properties and optical properties. Based on the experimental spectroscopic study, a semiquantitative method-effective mass model is employed to give theoretical prediction and guide. The following chapters will talks about several topics respectively. A predictive understanding of the radiative lifetimes is therefore a starting point for the understanding of the use of QDs for these applications. Absorption intensities and radiative lifetimes are fundamental properties of any luminescent material. Meantime, achievement of high efficiency with high working temperature and heterostructure fabrication with manipulation of lattice strain are not easy and need systematic investigation. To make accurate connections between extinction coefficients and radiative recombination rates, chapter 2 will consider three closely related aspects of the size dependent spectroscopy of II-VI QDs. First, it will consider the existing literature on cadmium selenide (CdSe) QD absorption spectra and extinction coefficients. From these results and fine structure considerations Boltzmann weighted radiative lifetimes are calculated. These lifetimes are compared to values measured on very high quality CdSe and CdSe coated with zinc selenide (ZnSe) shells. Second, analogous literature data are analyzed for cadmium telluride (CdTe) nanocrystals and compared to lifetimes measured for very high quality QDs. Furthermore, studies of the absorption and excitation spectra and measured radiative lifetimes for CdTe/CdSe Type-II core/shell QDs are reported. These results are also analyzed in

  19. Structural Fluctuations and Thermophysical Properties of Molten II-VI Compounds

    Science.gov (United States)

    Su, Ching-Hua; Zhu, Shen; Li, Chao; Scripa, R.; Lehoczky, Sandra L.; Kim, Y. W.; Baird, J. K.; Lin, B.; Ban, Heng; Benmore, Chris

    2003-01-01

    The objectives of the project are to conduct ground-based experimental and theoretical research on the structural fluctuations and thermophysical properties of molten II-VI compounds to enhance the basic understanding of the existing flight experiments in microgravity materials science programs as well as to study the fundamental heterophase fluctuation phenomena in these melts by: 1) conducting neutron scattering analysis and measuring quantitatively the relevant thermophysical properties of the II-VI melts (such as viscosity, electrical conductivity, thermal diffusivity and density) as well as the relaxation characteristics of these properties to advance the understanding of the structural properties and the relaxation phenomena in these melts and 2) performing theoretical analyses on the melt systems to interpret the experimental results. All the facilities required for the experimental measurements have been procured, installed and tested. It has long been recognized that liquid Te presents a unique case having properties between those of metals and semiconductors. The electrical conductivity for Te melt increases rapidly at melting point, indicating a semiconductor-metal transition. Te melts comprise two features, which are usually considered to be incompatible with each other: covalently bound atoms and metallic-like behavior. Why do Te liquids show metallic behavior? is one of the long-standing issues in liquid metal physics. Since thermophysical properties are very sensitive to the structural variations of a melt, we have conducted extensive thermophysical measurements on Te melt.

  20. Role of 3d electrons in formation of ionic-covalent bonds in II-VI based ternary compounds

    International Nuclear Information System (INIS)

    Lawniczak-Jablonska, K.; Iwanowski, R.J.; Perera, R.C.C.

    1997-01-01

    In the II-VI compounds doped with transition metals (diluted magnetic semiconductors) a substitution of cation by the introduced magnetic ion leads to hybridization of its 3d states with the sp states of the host semiconductor. The degree of hybridization of the 3d states and its interaction with the host material band states has been a subject of numerous discussions. Inner shell absorption spectroscopy provides very useful means of electronic structure analysis in a wide variety of systems. Due to its selectivity for atomic species and the selection rules for electron transitions, the soft X-ray absorption technique offers quite unique opportunity to measure directly the site-selective local density of the unoccupied d states in the compounds studied. Results are reported for ZnS compounds with Mn, Fe, Co or Ni substitutions for Zn

  1. Hard gap in epitaxial semiconductor-superconductor nanowires

    DEFF Research Database (Denmark)

    Chang, W.; Albrecht, S. M.; Jespersen, T. S.

    2015-01-01

    a continuum of subgap states---a situation that nullifies topological protection. Here, we report a hard superconducting gap induced by proximity effect in a semiconductor, using epitaxial Al-InAs superconductor-semiconductor nanowires. The hard gap, along with favorable material properties and gate...

  2. Mechanisms of current flow in metal-semiconductor ohmic contacts

    International Nuclear Information System (INIS)

    Blank, T. V.; Gol'dberg, Yu. A.

    2007-01-01

    Published data on the properties of metal-semiconductor ohmic contacts and mechanisms of current flow in these contacts (thermionic emission, field emission, thermal-field emission, and also current flow through metal shunts) are reviewed. Theoretical dependences of the resistance of an ohmic contact on temperature and the charge-carrier concentration in a semiconductor were compared with experimental data on ohmic contacts to II-VI semiconductors (ZnSe, ZnO), III-V semiconductors (GaN, AlN, InN, GaAs, GaP, InP), Group IV semiconductors (SiC, diamond), and alloys of these semiconductors. In ohmic contacts based on lightly doped semiconductors, the main mechanism of current flow is thermionic emission with the metal-semiconductor potential barrier height equal to 0.1-0.2 eV. In ohmic contacts based on heavily doped semiconductors, the current flow is effected owing to the field emission, while the metal-semiconductor potential barrier height is equal to 0.3-0.5 eV. In alloyed In contacts to GaP and GaN, a mechanism of current flow that is not characteristic of Schottky diodes (current flow through metal shunts formed by deposition of metal atoms onto dislocations or other imperfections in semiconductors) is observed

  3. Wide Band Gap Semiconductors Symposium Held in Boston, Massachusetts on 2-6 December 1991. Materials Research Society Symposium Proceedings. Volume 242

    Science.gov (United States)

    1992-01-01

    AND PROPERTIES OF WIDE BAND-GAP Il-VI STRAINED- LAYER SUPERLATTICE 227 Hailong Wang. Jie Cui. Aidong Shen. Liang Xu, Yunliang Chen. and Yuhua Shen IN...WANG JIE CUI AIDONG SHEN LIANG XU YUNLIANG CHEN AND YUHUA SHEN Shanghai Institute of Optics and Fine Mechanics, Academia Sinica P.O.Box 800-216 Shanghai...He Zujou, Cao Huazhe, Su Wuda, Chen Zhongcai, Zhon Feng and Wang Erguang, Thin Solid Films, 139,261(1986). 22) Xin Li and T.L.Tansley, J.AppI.Phys

  4. FY 1977 Annual report on Sunshine Project results. Research and development of photovoltaic power generation systems. (Research and development of solar cells of II-VI group compound semiconductor); 1977 nendo taiyoko hatsuden system no kenkyu kaihatsu seika hokokusho. II-VI zoku kagobutsu handotai taiyo denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at establishment of techniques for pollution-free production of II-VI group compound semiconductor type solar cells. The research items are (1) measures against aging, (2) methods for production of II-VI group compound semiconductors and for forming their joints, and (3) method for assembling solar cell devices.For the item (1), the aging tests are conducted for sintered film type CdS/CdTe solar cells. The C electrode is found to be less aged than the others. The aging tests for the CdS/Cu{sub 2}S cells indicate that it takes 10 years or longer for the performance to be halved under commercial conditions. For the item (2), the sintered film type CdS/CdTe solar cells can be produced by a mass-producible process of screen printing and belt furnace. This production method is promising for producing the solar cells at low cost. For the item (3), it is found that series resistance of the solar cell devices increases as the assembly area increases, resulting in decreased conversion efficiency. The divided structure of the CdTe layer is desired to avoid the above problem. Dividing each unit device increases intrinsic conversion efficiency, but decreases effective power generation area ratio. It is therefore necessary to improve printing precision. (NEDO)

  5. Ionic exchange of Hf donor impurities in the wide-gap semiconductor Tm2O3

    International Nuclear Information System (INIS)

    Munoz, E.L.; Darriba, G.N.; Bibiloni, A.G.; Errico, L.A.; Renteria, M.

    2010-01-01

    The ionic exchange of Hf donor impurities in substitutional cationic sites of the cubic (bixbyite) phase of the wide-gap semiconductor Tm 2 O 3 was studied. The doping process was performed by ball-milling-assisted solid-state reaction of Tm 2 O 3 and neutron-activated m-HfO 2 . 181 Ta atoms, obtained by the β-decay of the 181 Hf-isotope, were used as probes in time-differential perturbed-angular-correlation (TDPAC) experiments carried out after each step of the doping process. The measured hyperfine interactions at 181 Ta sites enabled the electric-field gradient (EFG) characterization at representative Hf impurity sites of each step of the process. The efficiency and substitutional character of the exchange process is discussed and elucidated in the framework of an empirical EFG systematic established in isostructural rare-earth bixbyite sesquioxides.

  6. Tuning and synthesis of semiconductor nanostructures by mechanical compression

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyou; Li, Binsong

    2015-11-17

    A mechanical compression method can be used to tune semiconductor nanoparticle lattice structure and synthesize new semiconductor nanostructures including nanorods, nanowires, nanosheets, and other three-dimensional interconnected structures. II-VI or IV-VI compound semiconductor nanoparticle assemblies can be used as starting materials, including CdSe, CdTe, ZnSe, ZnS, PbSe, and PbS.

  7. L-Asparagine crystals with wide gap semiconductor features: optical absorption measurements and density functional theory computations.

    Science.gov (United States)

    Zanatta, G; Gottfried, C; Silva, A M; Caetano, E W S; Sales, F A M; Freire, V N

    2014-03-28

    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p-carboxyl, C 2p-side chain, and C 2p-carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical

  8. L-asparagine crystals with wide gap semiconductor features: Optical absorption measurements and density functional theory computations

    Energy Technology Data Exchange (ETDEWEB)

    Zanatta, G.; Gottfried, C. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, 90035-003 Porto Alegre-RS (Brazil); Silva, A. M. [Universidade Estadual do Piauí, 64260-000 Piripiri-Pi (Brazil); Caetano, E. W. S., E-mail: ewcaetano@gmail.com [Instituto de Educação, Ciência e Tecnologia do Ceará, 60040-531 Fortaleza-CE (Brazil); Sales, F. A. M.; Freire, V. N. [Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, 60455-760 Fortaleza-CE (Brazil)

    2014-03-28

    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p–carboxyl, C 2p–side chain, and C 2p–carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical

  9. Single-particle spectroscopy of I-III-VI semiconductor nanocrystals: spectral diffusion and suppression of blinking by two-color excitation.

    Science.gov (United States)

    Sharma, Dharmendar Kumar; Hirata, Shuzo; Bujak, Lukasz; Biju, Vasudevanpillai; Kameyama, Tatsuya; Kishi, Marino; Torimoto, Tsukasa; Vacha, Martin

    2016-07-14

    Ternary I-III-VI semiconductor nanocrystals have been explored as non-toxic alternatives to II-VI semiconductors for optoelectronic and sensing applications, but large photoluminescence spectral width and moderate brightness restrict their practical use. Here, using single-particle photoluminescence spectroscopy on nanocrystals of (AgIn)xZn2(1-x)S2 we show that the photoluminescence band is inhomogeneously broadened and that size distribution is the dominant factor in the broadening. The residual homogeneous linewidth of individual nanocrystals reaches up to 75% of the ensemble spectral width. Single nanocrystals undergo spectral diffusion which also contributes to the inhomogeneous band. Excitation with two lasers with energies above and below the bandgap reveals coexistence of two emitting donor states within one particle. Spectral diffusion in such particles is due to temporal activation and deactivation of one such state. Filling of a trap state with a lower-energy laser enables optical modulation of photoluminescence intermittency (blinking) and leads to an almost two-fold increase in brightness.

  10. Ultrawide band gap amorphous oxide semiconductor, Ga–Zn–O

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghwan, E-mail: JH.KIM@lucid.msl.titech.ac.jp [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Miyokawa, Norihiko; Sekiya, Takumi; Ide, Keisuke [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Toda, Yoshitake [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox SE-6, 4259 Nagatsuta, Midori-ku, Yokohama (Japan)

    2016-09-01

    We fabricated amorphous oxide semiconductor films, a-(Ga{sub 1–x}Zn{sub x})O{sub y}, at room temperature on glass, which have widely tunable band gaps (E{sub g}) ranging from 3.47–4.12 eV. The highest electron Hall mobility ~ 7 cm{sup 2} V{sup −1} s{sup −1} was obtained for E{sub g} = ~ 3.8 eV. Ultraviolet photoemission spectroscopy revealed that the increase in E{sub g} with increasing the Ga content comes mostly from the deepening of the valence band maximum level while the conduction band minimum level remains almost unchanged. These characteristics are explained by their electronic structures. As these films can be fabricated at room temperature on plastic, this achievement extends the applications of flexible electronics to opto-electronic integrated circuits associated with deep ultraviolet region. - Highlights: • Incorporation of H/H{sub 2}O stabilizes the amorphous phase. • Ultrawide band gap (~ 3.8 eV) amorphous oxide semiconductor was fabricated. • The increase in band gap comes mostly from the deepening of the valence band maximum level. • Donor level is more likely aligned to the valence band maximum level.

  11. Electron states in semiconductor quantum dots

    International Nuclear Information System (INIS)

    Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.

    2014-01-01

    In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications

  12. Thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap semiconductors SiC, GaN, and ZnO

    Directory of Open Access Journals (Sweden)

    Zheng Huang

    2015-09-01

    Full Text Available We have investigated the thermoelectric properties of the 3C, 2H, 4H, and 6H polytypes of the wide-band-gap(n-type semiconductors SiC, GaN, and ZnO based on first-principles calculations and Boltzmann transport theory. Our results show that the thermoelectric performance increases from 3C to 6H, 4H, and 2H structures with an increase of hexagonality for SiC. However, for GaN and ZnO, their power factors show a very weak dependence on the polytype. Detailed analysis of the thermoelectric properties with respect to temperature and carrier concentration of 4H-SiC, 2H-GaN, and 2H-ZnO shows that the figure of merit of these three compounds increases with temperature, indicating the promising potential applications of these thermoelectric materials at high temperature. The significant difference of the polytype-dependent thermoelectric properties among SiC, GaN, and ZnO might be related to the competition between covalency and ionicity in these semiconductors. Our calculations may provide a new way to enhance the thermoelectric properties of wide-band-gap semiconductors through atomic structure design, especially hexagonality design for SiC.

  13. Grüne oberflächenemittierende Halbleiterlaser (VCSEL) auf Basis von II-VI-Verbindungen

    OpenAIRE

    Kruse, Carsten

    2004-01-01

    Semiconductor-based laser diodes represent a key technology, which is used e.g. for optical data storage, data transmission and metrology purposes. However, the usual edge-emitting device design has some drawbacks concerning the properties of the emitted laser beam. This can be overcome by a more sophisticated approach called vertical-cavity surface emitting laser (VCSEL). The aim of the research within this thesis was the realization of a green fully-epitaxial VCSEL based on the II-VI materi...

  14. Epitaxial crystal growth by sputter deposition: Applications to semiconductors. Part 2

    International Nuclear Information System (INIS)

    Greene, J.E.

    1984-01-01

    The understanding of the physics of ion-surface interactions has progressed sufficiently to allow sputter depositinn to be used as a crystal growth technique for depositing a wide variety of single crystal elemental, compound, alloy, and superlattice semiconductors. In many cases, films with essentially bulk values of carrier concentrations and mobilities have been obtained. The controlled use of low energy particle bombardment of the growing film during sputter deposition has been shown to affect all stages of crystal growth ranging from adatom mobilities and nucleation kinetics to elemental incorporation probabilities. Such effects provide inherent advantages for sputter deposition over other vapor phase techniques for the low temperature growth of compound and alloy semiconductors and are essential in allowing the growth of new and unique single crystal metastable semiconductors. Part 1 of this review includes sections on experimental techniques, the physics of ion-surface interactions, and ion bombardment effects on film nucleation and growth, while Part 2 presents a discussion of recent results in the growth of elemental, III-V, II-VI, IV-VI, metastable, and other compound semiconductors

  15. Ionic exchange of Hf donor impurities in the wide-gap semiconductor Tm{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, E.L.; Darriba, G.N. [Departamento de Fisica-IFLP (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Bibiloni, A.G. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Errico, L.A. [Departamento de Fisica-IFLP (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Universidad Nacional del Noroeste Bonaerense (UNNOBA), Monteagudo 2772, 2700 Pergamino, Buenos Aires (Argentina); Renteria, M., E-mail: renteria@fisica.unlp.edu.a [Departamento de Fisica-IFLP (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina)

    2010-04-16

    The ionic exchange of Hf donor impurities in substitutional cationic sites of the cubic (bixbyite) phase of the wide-gap semiconductor Tm{sub 2}O{sub 3} was studied. The doping process was performed by ball-milling-assisted solid-state reaction of Tm{sub 2}O{sub 3} and neutron-activated m-HfO{sub 2}. {sup 181}Ta atoms, obtained by the {beta}-decay of the {sup 181}Hf-isotope, were used as probes in time-differential perturbed-angular-correlation (TDPAC) experiments carried out after each step of the doping process. The measured hyperfine interactions at {sup 181}Ta sites enabled the electric-field gradient (EFG) characterization at representative Hf impurity sites of each step of the process. The efficiency and substitutional character of the exchange process is discussed and elucidated in the framework of an empirical EFG systematic established in isostructural rare-earth bixbyite sesquioxides.

  16. High-Temperature, Wirebondless, Ultra-Compact Wide Bandgap Power Semiconductor Modules for Space Power Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicon carbide (SiC) and other wide band-gap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and...

  17. Structural, optical and electrical properties of tin oxide thin films for application as a wide band gap semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Riti; Ahmad, Shabir; Aziz, Anver; Siddiqui, Azher Majid, E-mail: amsiddiqui@jmi.ac.in [Department of Physics, Jamia Millia Islamia, New Delhi-110025 (India)

    2015-08-28

    Tin oxide (SnO) thin films were synthesized using thermal evaporation technique. Ultra pure metallic tin was deposited on glass substrates using thermal evaporator under high vacuum. The thickness of the tin deposited films was kept at 100nm. Subsequently, the as-deposited tin films were annealed under oxygen environment for a period of 3hrs to obtain tin oxide films. To analyse the suitability of the synthesized tin oxide films as a wide band gap semiconductor, various properties were studied. Structural parameters were studied using XRD and SEM-EDX. The optical properties were studied using UV-Vis Spectrophotometry and the electrical parameters were calculated using the Hall-setup. XRD and SEM confirmed the formation of SnO phase. Uniform texture of the film can be seen through the SEM images. Presence of traces of unoxidised Sn has also been confirmed through the XRD spectra. The band gap calculated was around 3.6eV and the optical transparency around 50%. The higher value of band gap and lower value of optical transparency can be attributed to the presence of unoxidised Sn. The values of resistivity and mobility as measured by the Hall setup were 78Ωcm and 2.92cm{sup 2}/Vs respectively. The reasonable optical and electrical parameters make SnO a suitable candidate for optoelectronic and electronic device applications.

  18. Optical characterization of wide-gap detector-grade semiconductors

    International Nuclear Information System (INIS)

    Elshazly, E.S.

    2011-01-01

    Wide bandgap semiconductors are being widely investigated because they have the potential to satisfy the stringent material requirements of high resolution, room temperature gamma-ray spectrometers. In particular, Cadmium Zinc Telluride (Cd 1-x Zn x Te, x∼0.1) and Thallium Bromide (Tl Br), due to their combination of high resistivity, high atomic number and good electron mobility, have became very promising candidates for use in X- and gamma-ray detectors operating at room temperature. In this study, carrier trapping times were measured in CZT and Tl Br as a function of temperature and material quality. Carrier lifetimes and tellurium inclusion densities were measured in detector-grade Cadmium Zinc Telluride (CZT) crystals grown by the High Pressure Bridgman method and Modified Bridgman method. Excess carriers were produced in the material using a pulsed YAG laser with a 1064 nm wavelength and 7 ns pulse width. Infrared microscopy was used to measure the tellurium defect densities in CZT crystals. The electronic decay was optically measured at room temperature. Spatial mapping of lifetimes and defect densities in CZT was performed to determine the relationship between defect density and electronic decay. A significant and strong correlation was found between the volume fraction of tellurium inclusions and the carrier trapping time. Carrier trapping times and tellurium inclusions were measured in CZT in the temperature range from 300 K to 110 K and the results were analyzed using a theoretical trapping model. Spatial mapping of carrier trapping times and defect densities in CZT was performed to determine the relationship between defect density and electronic decay. While a strong correlation between trapping time and defect density of tellurium inclusions was observed, there was no significant change in the trap energy. Carrier trapping times were measured in detector grade thallium bromide (Tl Br) and compared with the results for cadmium zinc telluride (CZT) in

  19. Technology of substrates for molecular beam homo epitaxy of wide - gap AII-BVI semiconductors and construction of a simplified setup for this process

    International Nuclear Information System (INIS)

    Mycielski, A.; Szadkowski, A.; Kaliszek, W.

    2000-01-01

    The technology of 'epi-ready' substrate plates (for MBE) of the wide gap AII-BVI semiconductor compounds, i. e. - preparation of the ultra pure elements, synthesis of the source material, crystallization by the physical vapour transport technique, cutting of the oriented plates, mechano-chemical polishing and preparation of the 'epi-ready' surface - is described, as well as the construction of a simplified version of the MBE setup for covering the substrate plates with the homoepitaxial layer. The results of the characterization of the substrate crystals and plates are presented. (author)

  20. Optical studies of wide bandgap semiconductor epilayers and quantum well structures

    International Nuclear Information System (INIS)

    May, L.

    1998-09-01

    This thesis contains research on the optical properties of wide bandgap semiconductors, which are potentially useful for blue and UV emitters. The research covers materials from both the II-VI and III-V groups. In Chapter 1, a general introduction to the topic of blue and UV emitters is presented. The properties required of materials used for these applications are outlined, and the technological significance of these devices is discussed, in order to place this work into context. In Chapter 2, the main experimental techniques used in this work are outlined. These are photoluminescence spectroscopy (PL), photoluminescence excitation spectroscopy (PLE) and white light reflectivity. Chapter 3 begins with a discussion of the properties of ZnS. Then, following a brief outline of the sample growth technique, the optical studies of a series of ZnS single epitaxial layers are presented. The samples were characterised by photoluminescence spectroscopy, and the effect of strain on their properties studied in some detail. The results of tellurium and nitrogen doping studies are also presented. The chapter concludes with a study of ZnCdS epilayers. Chapter 4 begins with the growth and PL characterisation of a series of ZnS/ZnCdS multiple quantum well structures. Optically pumped stimulated emission experiments were then carried out on selected MQW samples. The results of these experiments are presented in the latter part of Chapter 4, followed by a discussion of the lasing mechanisms in II-VI quantum well structures. In Chapter 5, the growth and characterisation of a series of GaN epilayers are described. After an introduction outlining some of the key properties of GaN, the MOCVD growth procedure is described. Studies of the samples by PL, PLE and reflectivity are then presented. Finally, a study of p-type GaN epilayers is presented, and excimer laser annealing is investigated as a possible means of activating the dopant

  1. Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method

    International Nuclear Information System (INIS)

    Dolgonos, Alex; Mason, Thomas O.; Poeppelmeier, Kenneth R.

    2016-01-01

    The direct optical band gap of semiconductors is traditionally measured by extrapolating the linear region of the square of the absorption curve to the x-axis, and a variation of this method, developed by Tauc, has also been widely used. The application of the Tauc method to crystalline materials is rooted in misconception–and traditional linear extrapolation methods are inappropriate for use on degenerate semiconductors, where the occupation of conduction band energy states cannot be ignored. A new method is proposed for extracting a direct optical band gap from absorption spectra of degenerately-doped bulk semiconductors. This method was applied to pseudo-absorption spectra of Sn-doped In 2 O 3 (ITO)—converted from diffuse-reflectance measurements on bulk specimens. The results of this analysis were corroborated by room-temperature photoluminescence excitation measurements, which yielded values of optical band gap and Burstein–Moss shift that are consistent with previous studies on In 2 O 3 single crystals and thin films. - Highlights: • The Tauc method of band gap measurement is re-evaluated for crystalline materials. • Graphical method proposed for extracting optical band gaps from absorption spectra. • The proposed method incorporates an energy broadening term for energy transitions. • Values for ITO were self-consistent between two different measurement methods.

  2. Estimation of Bulk modulus and microhardness of tetrahedral semiconductors

    International Nuclear Information System (INIS)

    Gorai, Sanjay Kumar

    2012-01-01

    A general empirical formula was found for calculating of bulk modulus (B) and microhardness (H) from electronegativity and principal quantum number of II-VI, III-V semiconductors. Constant C1, appearing the in the expression of bulk modulus and constants C2 and C3, appearing in the expression of microhardness and the exponent M have following values respectively The numerical values of C1,C2, C3 and M are respectively 206.6, 8.234, 1.291, -1.10 for II-VI 72.4, 31.87, 7.592, -0.95 for III-V semiconductors. Both electro-negativity and principal quantum number can effectively reflect on the chemical bonding behaviour of constituent atoms in these semiconductors. The calculated values of bulk modulus and microhardness are in good agreement with the reported values in the literature. Present study helps in designing novel semiconductor materials, and to further explore the mechanical properties of these semiconductors.

  3. Wide-Gap Chalcopyrites

    CERN Document Server

    Siebentritt, Susanne

    2006-01-01

    Chalcopyrites, in particular those with a wide band gap, are fascinating materials in terms of their technological potential in the next generation of thin-film solar cells and in terms of their basic material properties. They exhibit uniquely low defect formation energies, leading to unusual doping and phase behavior and to extremely benign grain boundaries. This book collects articles on a number of those basic material properties of wide-gap chalcopyrites, comparing them to their low-gap cousins. They explore the doping of the materials, the electronic structure and the transport through interfaces and grain boundaries, the formation of the electric field in a solar cell, the mechanisms and suppression of recombination, the role of inhomogeneities, and the technological role of wide-gap chalcopyrites.

  4. MBE growth and design of II-VI heterostructures for epitaxial lift-off

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Ian A.; Vallance, Erin C.; Prior, Kevin A. [School of Engineering and Physical Science, Heriot-Watt University, Edinburgh (United Kingdom); Moug, Richard T.; Tamargo, Maria C. [Department of Chemistry, City College of New York, New York, NY (United States)

    2012-08-15

    Epitaxial lift-off (ELO) is a post-growth process that allows the active part of a semiconductor structure to be transferred from its growth substrate to a new one. This is a well established technique for III-V semiconductors, and has previously been demonstrated for ZnSe-based alloys grown on GaAs using a metastable MgS sacrificial layer, taking advantage of the huge difference in etch rates of MgS and ZnSe. We report here the first successful extension of this process to II-VI layers grown on InP by using a MgSe sacrificial layer. By using the correct etching conditions, MgSe has been found to work effectively as a sacrificial layer. 5 x 5 mm{sup 2} square pieces of material can be lifted and deposited on glass substrates without any deterioration in the structural or optical properties; as confirmed by optical microscopy and photoluminescence (PL) measurements. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Ohmic metallization technology for wide band-gap semiconductors

    International Nuclear Information System (INIS)

    Iliadis, A.A.; Vispute, R.D.; Venkatesan, T.; Jones, K.A.

    2002-01-01

    Ohmic contact metallizations on p-type 6H-SiC and n-type ZnO using a novel approach of focused ion beam (FIB) surface-modification and direct-write metal deposition will be reviewed, and the properties of such focused ion beam assisted non-annealed contacts will be reported. The process uses a Ga focused ion beam to modify the surface of the semiconductor with different doses, and then introduces an organometallic compound in the Ga ion beam, to effect the direct-write deposition of a metal on the modified surface. Contact resistance measurements by the transmission line method produced values in the low 10 -4 Ω cm 2 range for surface-modified and direct-write Pt and W non-annealed contacts, and mid 10 -5 Ω cm 2 range for surface-modified and pulse laser deposited TiN contacts. An optimum Ga surface-modification dosage window is determined, within which the current transport mechanism of these contacts was found to proceed mainly by tunneling through the metal-modified-semiconductor interface layer

  6. Graded core/shell semiconductor nanorods and nanorod barcodes

    Science.gov (United States)

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  7. Indium oxide—a transparent, wide-band gap semiconductor for (opto)electronic applications

    International Nuclear Information System (INIS)

    Bierwagen, Oliver

    2015-01-01

    The present review takes a semiconductor physics perspective to summarize the state-of-the art of In 2 O 3 in relation to applications. After discussing conventional and novel applications, the crystal structure, synthesis of single-crystalline material, band-structure and optical transparency are briefly introduced before focussing on the charge carrier transport properties. The issues of unintentional n-type conductivity and its likely causes, the surface electron accumulation, and the lack of p-type conductivity will be presented. Intentional doping will be demonstrated to control the electron concentration and resistivity over a wide range, but is also subject to compensation. The control of the surface accumulation in relation to Schottky and ohmic contacts will be demonstrated. In the context of scattering mechanisms, the electron mobility and its limits will be discussed. Finally, the Seebeck coefficient and its significance will be shown, and ferromagnetic doping of In 2 O 3 will be critically discussed. With this overview most if not all ingredients for the use of In 2 O 3 as semiconductor material in novel or improved conventional devices will be given. (invited review)

  8. Multi-crystalline II-VI based multijunction solar cells and modules

    Science.gov (United States)

    Hardin, Brian E.; Connor, Stephen T.; Groves, James R.; Peters, Craig H.

    2015-06-30

    Multi-crystalline group II-VI solar cells and methods for fabrication of same are disclosed herein. A multi-crystalline group II-VI solar cell includes a first photovoltaic sub-cell comprising silicon, a tunnel junction, and a multi-crystalline second photovoltaic sub-cell. A plurality of the multi-crystalline group II-VI solar cells can be interconnected to form low cost, high throughput flat panel, low light concentration, and/or medium light concentration photovoltaic modules or devices.

  9. Anion Exchange in II-VI Semiconducting Nanostructures via Atomic Templating.

    Science.gov (United States)

    Agarwal, Rahul; Krook, Nadia M; Ren, Ming-Liang; Tan, Liang Z; Liu, Wenjing; Rappe, Andrew M; Agarwal, Ritesh

    2018-03-14

    Controlled chemical transformation of nanostructures is a promising technique to obtain precisely designed novel materials, which are difficult to synthesize otherwise. We report high-temperature vapor-phase anion-exchange reactions to chemically transform II-VI semiconductor nanostructures (100-300 nm length scale) while retaining the single crystallinity, crystal structure, morphology, and even defect distribution of the parent material via atomic templating. The concept of atomic templating is employed to obtain kinetically controlled, thermodynamically metastable structural phases such as zincblende CdSe and CdS from zincblende CdTe upon complete chemical replacement of Te with Se or S. The underlying transformation mechanisms are explained through first-principles density functional theory calculations. Atomic templating is a unique path to independently tune materials' phase and composition at the nanoscale, allowing the synthesis of novel materials.

  10. Origin and role of gap states in organic semiconductor studied by UPS: as the nature of organic molecular crystals

    International Nuclear Information System (INIS)

    Yang, Jin-Peng; Bussolotti, Fabio; Kera, Satoshi; Ueno, Nobuo

    2017-01-01

    This article reviews experimental studies on ‘bridging electronic structure and charge transport property of organic semiconductors’ performed using ultraviolet photoelectron spectroscopy (UPS) and related methods mainly in Chiba University, Japan, in particular on the investigation of the origin and the role of electronic states existing in the highest occupied molecular orbital band–lowest unoccupied molecular orbital band (HOMO–LUMO) gap. We summarize experimental observations including direct measurements of ‘invisible’ gap states with ultrahigh sensitivity UPS, which demonstrate that there exist intrinsic gap states in organic semiconductors. We firstly describe the nature of organic molecular solids to understand features of organic semiconductors because such intrinsic gap states are a result of the interplay of these features, which give the principal difference between the organic semiconductor and inorganic counterpart. We then discuss (i) the origin and role of the band gap states in relation to intermolecular interaction/band dispersion and electron–phonon coupling, (ii) the Fermi level pinning issue in organic semiconductors, and (iii) the method of computing the Fermi level position within the HOMO–LUMO gap for experimental groups. The gap states of organic semiconductors appear easily when a weak perturbation is applied to the organic system, namely by contact with other material, by injecting a charge, by elevating temperature, and by exposure to 1 atm gas. What we finally found is that tailing states of HOMO and LUMO always exist, and their energy distributions must not be symmetric; they thus produce a larger Fermi level shift from the mid gap position than previously thought. Furthermore, as shown by computational work, Fermi level pinning , which is a well-known phenomena in semiconductor devices field, occurs in weakly interacting organic/conductor systems without any gap states if the system temperature is not zero ( T

  11. Origin and role of gap states in organic semiconductor studied by UPS: as the nature of organic molecular crystals

    Science.gov (United States)

    Yang, Jin-Peng; Bussolotti, Fabio; Kera, Satoshi; Ueno, Nobuo

    2017-10-01

    This article reviews experimental studies on ‘bridging electronic structure and charge transport property of organic semiconductors’ performed using ultraviolet photoelectron spectroscopy (UPS) and related methods mainly in Chiba University, Japan, in particular on the investigation of the origin and the role of electronic states existing in the highest occupied molecular orbital band-lowest unoccupied molecular orbital band (HOMO-LUMO) gap. We summarize experimental observations including direct measurements of ‘invisible’ gap states with ultrahigh sensitivity UPS, which demonstrate that there exist intrinsic gap states in organic semiconductors. We firstly describe the nature of organic molecular solids to understand features of organic semiconductors because such intrinsic gap states are a result of the interplay of these features, which give the principal difference between the organic semiconductor and inorganic counterpart. We then discuss (i) the origin and role of the band gap states in relation to intermolecular interaction/band dispersion and electron-phonon coupling, (ii) the Fermi level pinning issue in organic semiconductors, and (iii) the method of computing the Fermi level position within the HOMO-LUMO gap for experimental groups. The gap states of organic semiconductors appear easily when a weak perturbation is applied to the organic system, namely by contact with other material, by injecting a charge, by elevating temperature, and by exposure to 1 atm gas. What we finally found is that tailing states of HOMO and LUMO always exist, and their energy distributions must not be symmetric; they thus produce a larger Fermi level shift from the mid gap position than previously thought. Furthermore, as shown by computational work, Fermi level pinning, which is a well-known phenomena in semiconductor devices field, occurs in weakly interacting organic/conductor systems without any gap states if the system temperature is not zero (T  >  0). We

  12. Scattering amplitudes and static atomic correction factors for the composition-sensitive 002 reflection in sphalerite ternary III-V and II-VI semiconductors.

    Science.gov (United States)

    Schowalter, M; Müller, K; Rosenauer, A

    2012-01-01

    Modified atomic scattering amplitudes (MASAs), taking into account the redistribution of charge due to bonds, and the respective correction factors considering the effect of static atomic displacements were computed for the chemically sensitive 002 reflection for ternary III-V and II-VI semiconductors. MASAs were derived from computations within the density functional theory formalism. Binary eight-atom unit cells were strained according to each strain state s (thin, intermediate, thick and fully relaxed electron microscopic specimen) and each concentration (x = 0, …, 1 in 0.01 steps), where the lattice parameters for composition x in strain state s were calculated using continuum elasticity theory. The concentration dependence was derived by computing MASAs for each of these binary cells. Correction factors for static atomic displacements were computed from relaxed atom positions by generating 50 × 50 × 50 supercells using the lattice parameter of the eight-atom unit cells. Atoms were randomly distributed according to the required composition. Polynomials were fitted to the composition dependence of the MASAs and the correction factors for the different strain states. Fit parameters are given in the paper.

  13. Strain sensitivity of band gaps of Sn-containing semiconductors

    DEFF Research Database (Denmark)

    Li, Hong; Castelli, Ivano Eligio; Thygesen, Kristian Sommer

    2015-01-01

    Tuning of band gaps of semiconductors is a way to optimize materials for applications within photovoltaics or as photocatalysts. One way to achieve this is through applying strain to the materials. We investigate the effect of strain on a range of Sn-containing semiconductors using density...

  14. Sandwich-like nano-system for simultaneous removal of Cr(VI) and Cd(II) from water and soil.

    Science.gov (United States)

    Wang, Dongfang; Zhang, Guilong; Dai, Zhangyu; Zhou, Linglin; Bian, Po; Zheng, Kang; Wu, Zhengyan; Cai, Dongqing

    2018-05-07

    In this work, a novel nano-system with sandwich-like structure was synthesized via face-to-face combination of two pieces of waste cotton fabrics (CFs) carrying ferrous sulfide (FeS) and carboxyl-functionalized ferroferric oxide (CFFM) respectively, and the obtained nano system was named as FeS/CFFM/CF. Therein, FeS has high reduction and adsorption capabilities for hexavalent chromium (Cr(VI)), CFFM possesses a high adsorption ability on cadmium ion (Cd(II)) through electrostatics attraction and chelation, and CF displays high immobilization ability for FeS and CFFM and adsorption performance on Cd(II). FeS/CFFM/CF could simultaneously remove Cr(VI) and Cd(II) from water, inhibit the uptake of Cr and Cd by fish and water spinach, ensuring the food safety. Besides, this technology could efficiently control migration of Cr(VI) and Cd(II) in sand-soil mixture, which was favorable to prevent their wide diffusion. Importantly, FeS/CFFM/CF possessed a high flexibility and could be conveniently produced with needed scale and shape, and easily separated from water and soil, displaying a promising approach to remediate Cr(VI)/Cd(II)-contaminated water and soil and a huge application potential.

  15. Syntheses of polystyrene supported chelating resin containing the Schiff base derived from salicylaldehyde and triethylene tetramine and its copper(II), nickel(II), cobalt(II), iron(III), zinc(II), cadmium(II), molybdenum(VI), zirconium(IV) and uranium(VI) complexes

    International Nuclear Information System (INIS)

    Syamal, A.; Singh, M.M.

    1998-01-01

    A new polymer-anchored chelating ligand has been synthesized by the reaction of chloromethylated polystyrene (containing 0.94 mmol of Cl per gram of resin and 1% cross-linked with divinylbenzene) and the Schiff base derived from salicylaldehyde and triethylenetetramine. A new series of polystyrene supported, Cu(II), Ni(II), Co(II), Fe(III), Zn(II), Cd(II), Zr(IV), dioxomolybdenum (VI) and dioxouranium (VI) complexes of the formulae PS-LCu, PS-LNi, PS-LCo, PS-LFeCl.DMF, PS-LZn, PS-LCd, PS-LZr(OH) 2 . DMF, PS L MoO 2 and PS-LUO 2 (where PS-LH 2 = polymer-anchored Schiff base and DMF dimethyl-formamide) have been synthesized and characterised by elemental analysis, infrared, electronic spectra and magnetic susceptibility measurements. The complexes PS-LCu, PS-LNi and PS-LCo have square planar structure, PS-LFeCl.DMF, PS-LMoO 2 and PS-LUO 2 have octahedral structure, PS L Zn and PS-LCd are tetrahedral and PS-LZr(OH) 2 .DMF is pentagonal bipyramidal. The polymer-anchored Cu(II), Co(II) and Fe(III) complexes are paramagnetic while Ni(II), Zn(II), Cd(II), Zr(IV), dioxomolybdenum(VI) and dioxouranium(VI) complexes are diamagnetic. The negative shift of the v (C=N) (azomethine) and the positive shift of v (C--O)(phenolic) are indicative of ONNO donor behaviour of the polymer-anchored Schiff base. (author)

  16. Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haitao [Univ. of California, Berkeley, CA (United States)

    2007-05-17

    In the last two decades, the field of nanoscience andnanotechnology has witnessed tremendous advancement in the synthesis andapplication of group II-VI colloidal nanocrystals. The synthesis based onhigh temperature decomposition of organometallic precursors has becomeone of the most successful methods of making group II-VI colloidalnanocrystals. This methodis first demonstrated by Bawendi and coworkersin 1993 to prepare cadmium chalcogenide colloidal quantum dots and laterextended by others to prepare other group II-VI quantum dots as well asanisotropic shaped colloidal nanocrystals, such as nanorod and tetrapod.This dissertation focuses on the chemistry of this type of nanocrystalsynthesis. The synthesis of group II-VI nanocrystals was studied bycharacterizing the molecular structures of the precursors and productsand following their time evolution in the synthesis. Based on theseresults, a mechanism was proposed to account for the 2 reaction betweenthe precursors that presumably produces monomer for the growth ofnanocrystals. Theoretical study based on density functional theorycalculations revealed the detailed free energy landscape of the precursordecomposition and monomerformation pathway. Based on the proposedreaction mechanism, a new synthetic method was designed that uses wateras a novel reagent to control the diameter and the aspect ratio of CdSeand CdS nanorods.

  17. Social Set Visualizer (SoSeVi) II

    DEFF Research Database (Denmark)

    Flesch, Benjamin; Vatrapu, Ravi

    2016-01-01

    This paper reports the second iteration of the Social Set Visualizer (SoSeVi), a set theoretical visual analytics dashboard of big social data. In order to further demonstrate its usefulness in large-scale visual analytics tasks of individual and collective behavior of actors in social networks......, the current iteration of the Social Set Visualizer (SoSeVi) in version II builds on recent advancements in visualizing set intersections. The development of the SoSeVi dashboard involved cutting-edge open source visual analytics libraries (D3.js) and creation of new visualizations such as of actor mobility...

  18. Effects of Calcination Holding Time on Properties of Wide Band Gap Willemite Semiconductor Nanoparticles by the Polymer Thermal Treatment Method

    Directory of Open Access Journals (Sweden)

    Ibrahim Mustapha Alibe

    2018-04-01

    Full Text Available Willemite is a wide band gap semiconductor used in modern day technology for optoelectronics application. In this study, a new simple technique with less energy consumption is proposed. Willemite nanoparticles (NPs were produced via a water–based solution consisting of a metallic precursor, polyvinylpyrrolidone (PVP, and underwent a calcination process at 900 °C for several holding times between 1–4 h. The FT–IR and Raman spectra indicated the presence of metal oxide bands as well as the effective removal of PVP. The degree of the crystallization and formation of the NPs were determined by XRD. The mean crystallite size of the NPs was between 18.23–27.40 nm. The morphology, particle shape and size distribution were viewed with HR-TEM and FESEM analysis. The willemite NPs aggregate from the smaller to larger particles with an increase in calcination holding time from 1–4 h with the sizes ranging between 19.74–29.71 nm. The energy values obtained from the experimental band gap decreased with increasing the holding time over the range of 5.39 eV at 1 h to at 5.27 at 4 h. These values match well with band gap obtained from the Mott and Davis model for direct transition. The findings in this study are very promising and can justify the use of these novel materials as a potential candidate for green luminescent optoelectronic applications.

  19. Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis

    International Nuclear Information System (INIS)

    Liu, Haitao

    2007-01-01

    In the last two decades, the field of nanoscience and nanotechnology has witnessed tremendous advancement in the synthesis and application of group II-VI colloidal nanocrystals. The synthesis based on high temperature decomposition of organometallic precursors has become one of the most successful methods of making group II-VI colloidal nanocrystals. This method is first demonstrated by Bawendi and coworkers in 1993 to prepare cadmium chalcogenide colloidal quantum dots and later extended by others to prepare other group II-VI quantum dots as well as anisotropic shaped colloidal nanocrystals, such as nanorod and tetrapod. This dissertation focuses on the chemistry of this type of nanocrystal synthesis. The synthesis of group II-VI nanocrystals was studied by characterizing the molecular structures of the precursors and products and following their time evolution in the synthesis. Based on these results, a mechanism was proposed to account for the 2 reaction between the precursors that presumably produces monomer for the growth of nanocrystals. Theoretical study based on density functional theory calculations revealed the detailed free energy landscape of the precursor decomposition and monomer formation pathway. Based on the proposed reaction mechanism, a new synthetic method was designed that uses water as a novel reagent to control the diameter and the aspect ratio of CdSe and CdS nanorods

  20. Low Cost, Epitaxial Growth of II-VI Materials for Multijunction Photovoltaic Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, Brian E. [PLANT PV, Inc., Oakland, CA (United States); Peters, Craig H. [PLANT PV, Inc., Oakland, CA (United States)

    2014-04-30

    Multijunction solar cells have theoretical power conversion efficiencies in excess of 29% under one sun illumination and could become a highly disruptive technology if fabricated using low cost processing techniques to epitaxially grow defect tolerant, thin films on silicon. The PLANT PV/Molecular Foundry team studied the feasibility of using cadmium selenide (CdSe) as the wide band-gap, top cell and Si as the bottom cell in monolithically integrated tandem architecture. The greatest challenge in developing tandem solar cells is depositing wide band gap semiconductors that are both highly doped and have minority carrier lifetimes greater than 1 ns. The proposed research was to determine whether it is possible to rapidly grow CdSe films with sufficient minority carrier lifetimes and doping levels required to produce an open-circuit voltage (Voc) greater than 1.1V using close-space sublimation (CSS).

  1. Comparative study of adsorption properties of Turkish fly ashes II. The case of chromium (VI) and cadmium (II)

    International Nuclear Information System (INIS)

    Bayat, Belgin

    2002-01-01

    The purpose of the study described in this paper was to compare the removal of Cr(VI) and Cd(II) from an aqueous solution using two different Turkish fly ashes; Afsin-Elbistan and Seyitomer as adsorbents. The influence of four parameters (contact time, solution pH, initial metal concentration in solution and ash quality) on the removal at 20±2 deg. C was studied. Fly ashes were found to have a higher adsorption capacity for the adsorption of Cd(II) as compared to Cr(VI) and both Cr(VI) and Cd(II) required an equilibrium time of 2 h. The adsorption of Cr(VI) was higher at pH 4.0 for Afsin-Elbistan fly ash (25.46%) and pH 3.0 for Seyitomer fly ash (30.91%) while Cd(II) was adsorbed to a greater extent (98.43% for Afsin-Elbistan fly ash and 65.24% for Seyitomer fly ash) at pH 7.0. The adsorption of Cd(II) increased with an increase in the concentrations of these metals in solution while Cr(VI) adsorption decreased by both fly ashes. The lime (crystalline CaO) content in fly ash seemed to be a significant factor in influencing Cr(VI) and Cd(II) ions removal. The linear forms of the Langmuir and Freundlich equations were utilised for experiments with metal concentrations of 55±2 mg/l for Cr(VI) and 6±0.2 mg/l for Cd(II) as functions of solution pH (3.0-8.0). The adsorption of Cr(VI) on both fly ashes was not described by both the Langmuir and Freundlich isotherms while Cd(II) adsorption on both fly ashes satisfied only the Langmuir isotherm model. The adsorption capacities of both fly ashes were nearly three times less than that of activated carbon for the removal of Cr(VI) while Afsin-Elbistan fly ash with high-calcium content was as effective as activated carbon for the removal of Cd(II). Therefore, there are possibilities for use the adsorption of Cd(II) ions onto fly ash with high-calcium content in practical applications in Turkey

  2. The role of rare earths in narrow energy gap semiconductors

    International Nuclear Information System (INIS)

    Partin, D.L.; Heremans, J.; Morelli, D.T.; Thrush, C.M.

    1991-01-01

    Narrow energy band gap semiconductors are potentially useful for various devices, including infrared detectors and diode lasers. Rare earth elements have been introduced into lead chalcogenide semiconductors using the molecular beam epitaxy growth process. Europium and ytterbium increase the energy band gap, and nearly lattice-matched heterojunctions have been grown. In some cases, valence changes in the rare earth element cause doping of the alloy. In this paper some initial investigations of the addition of europium to indium antimonide are reported, including the variation of lattice parameter and optical transmission with composition and a negative magnetoresistance effect

  3. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  4. Impact ionisation rate calculations in wide band gap semiconductors

    International Nuclear Information System (INIS)

    Harrison, D.

    1998-09-01

    Calculations of band-to-band impact ionisation rates performed in the semi-classical Fermi's Golden Rule approximation are presented here for the semiconductors GaAs, In 0.53 Ga 0.47 As and Si 0.5 Ge 0.5 at 300K. The crystal band structure is calculated using the empirical pseudopotential method. To increase the speed with which band structure data at arbitrary k-vectors can be obtained, an interpolation scheme has been developed. Energies are quadratically interpolated on adapted meshes designed to ensure accuracy is uniform throughout the Brillouin zone, and pseudowavefunctions are quadratically interpolated on a regular mesh. Matrix elements are calculated from the pseudowavefunctions, and include the terms commonly neglected in calculations for narrow band gap materials and an isotropic approximation to the full wavevector and frequency dependent dielectric function. The numerical integration of the rate over all distinct energy and wavevector conserving transitions is performed using two different algorithms. Results from each are compared and found to be in good agreement, indicating that the algorithms are reliable. The rates for electrons and holes in each material are calculated as functions of the k-vector of the impacting carriers, and found to be highly anisotropic. Average rates for impacting carriers at a given energy are calculated and fitted to Keldysh-type expressions with higher than quadratic dependence of the rate on energy above threshold being obtained in all cases. The average rates calculated here are compared to results obtained by other workers, with reasonable agreement being obtained for GaAs, and poorer agreement obtained for InGaAs and SiGe. Possible reasons for the disagreement are investigated. The impact ionisation thresholds are examined and k-space and energy distributions of generated carriers are determined. The role of threshold anisotropy, variation in the matrix elements and the shape of the bands in determining

  5. Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel

    Science.gov (United States)

    Manjuladevi, M.; Anitha, R.; Manonmani, S.

    2018-03-01

    The adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II), ions from aqueous solutions by Cucumis melo peel-activated carbon was investigated under laboratory conditions to assess its potential in removing metal ions. The adsorption behavior of metal ions onto CMAC was analyzed with Elovich, intra-particle diffusion rate equations and pseudo-first-order model. The rate constant of Elovich and intra-particle diffusion on CMAC increased in the sequence of Cr(VI) > Ni(II) > Cd(II) > Pb(II). According to the regression coefficients, it was observed that the kinetic adsorption data can fit better by the pseudo-first-order model compared to the second-order Lagergren's model with R 2 > 0.957. The maximum adsorption of metal ions onto the CMAC was found to be 97.95% for Chromium(VI), 98.78% for Ni(II), 98.55% for Pb(II) and 97.96% for Cd(II) at CMAC dose of 250 mg. The adsorption capacities followed the sequence Ni(II) ≈ Pb(II) > Cr(VI) ≈ Cd(II) and Ni(II) > Pb(II) > Cd(II) > Cr(VI). The optimum adsorption conditions selected were adsorbent dosage of 250 mg, pH of 3.0 for Cr(VI) and 6.0 for Ni(II), Cd(II) and Pb(II), adsorption concentration of 250 mg/L and contact time of 180.

  6. II-I2-IV-VI4 (II = Sr,Ba; I = Cu,Ag; IV = Ge,Sn; VI = S,Se): Earth-Abundant Chalcogenides for Thin Film Photovoltaics

    Science.gov (United States)

    Zhu, Tong; Huhn, William P.; Shin, Donghyeop; Mitzi, David B.; Blum, Volker; Saparov, Bayrammurad

    Chalcogenides such as CdTe, CIGSSe, and CZTSSe are successful for thin film photovoltaics (PV) but contain elements that are rare, toxic, or prone to the formation of detrimental antisite disorder. Recently, the BaCu2SnS4-xSex system has been shown to offer a prospective path to circumvent these problems. While early prototypes show efficiencies of a few percent, many avenues remain to optimize the materials, including the underlying chemical composition. In this work, we explore 16 compounds II-I2-IV-VI4 to help identify new candidate materials for PV, with predictions based on both known experimental and computationally derived structures that belong to five different space groups. We employ hybrid density functional theory (HSE06) to explore the band gap tunability by substituting different elements, and other characteristics such as the effective mass and the absorption coefficient. Compounds containing Cu (rather than Ag) are found to have direct or nearly direct band gaps. Depending on the compound, replacing S with Se leads to a decrease of the predicted band gaps by 0.2-0.8 eV and to somewhat decreasing hole effective masses.

  7. Rectification at Graphene-Semiconductor Interfaces: Zero-Gap Semiconductor-Based Diodes

    Directory of Open Access Journals (Sweden)

    S. Tongay

    2012-01-01

    Full Text Available Using current-voltage (I-V, capacitance-voltage (C-V, and electric-field-modulated Raman measurements, we report on the unique physics and promising technical applications associated with the formation of Schottky barriers at the interface of a one-atom-thick zero-gap semiconductor (graphene and conventional semiconductors. When chemical-vapor-deposited graphene is transferred onto n-type Si, GaAs, 4H-SiC, and GaN semiconductor substrates, there is a strong van-der-Waals attraction that is accompanied by charge transfer across the interface and the formation of a rectifying (Schottky barrier. Thermionic-emission theory in conjunction with the Schottky-Mott model within the context of bond-polarization theory provides a surprisingly good description of the electrical properties. Applications can be made to sensors, where in forward bias there is exponential sensitivity to changes in the Schottky-barrier height due to the presence of absorbates on the graphene, and to analog devices, for which Schottky barriers are integral components. Such applications are promising because of graphene’s mechanical stability, its resistance to diffusion, its robustness at high temperatures, and its demonstrated capability to embrace multiple functionalities.

  8. Some organodioxygen complexes of molybdenum(VI), tungsten(VI), zinc(II) and cadmium(II) containing some monodentate and multidentate ligands

    International Nuclear Information System (INIS)

    Tarafder, M.T.H.; Leo Man Lin; Grouse, Karen A.; Mariotto, Gino

    2003-08-01

    Several novel organodioxygen complexes of the type [M(O)(O 2 ) 2 L](MMo(VI), W(VI)) and [M'(O 2 )L](M'= Cd(II) and Zn(II)) have been synthesized using monodentate, bidentate and tridentate ligands, L pyridine, picolinic acid, diethylenetriamine, 1,2-phenylenediamine, triphenylphosphine oxide. These complexes were characterized by elemental analyses, conductivity measurements, infrared, Raman spectral studies. For dioxygen complexes, the v(O=O) stretches of the superoxo moities were only Raman active, because of apparent linearity of the M-O 2 moieties, giving peaks at 1020-1030 cm -1 . The complexes were all thermodynamically stable. The dioxygen complexes containing bidentate co-ligands were found to show oxygen transfer reactions to various organic and inorganic substrates. Mechanisms have been postulated. (author)

  9. Beryllium(II), manganese(II) and uranyl(VI)-salicylamide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, P L; Agarwala, B V; Dey, A K [Allahabad Univ. (India)

    1977-01-01

    The preparation, composition, general properties and i.r. absorption spectra of the solid chelates formed by salicylamide with beryllium(II), manganese(II) and uranyl(VI) are described. The complexes have been synthesized by refluxing a mixture of ethanolic solutions of the reactants (metal:ligand :: 1:2) for several hours in the presence of alkali. Attempts to isolate the complexes by the interaction of ethanolic solutions of the metal salts and the ligand in the absence of alkali did not succeed.

  10. Semiconductor radiation detector

    Science.gov (United States)

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  11. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.

    Science.gov (United States)

    Joe-Wong, Claresta; Brown, Gordon E; Maher, Kate

    2017-09-05

    Hexavalent chromium is a water-soluble pollutant, the mobility of which can be controlled by reduction of Cr(VI) to less soluble, environmentally benign Cr(III). Iron(II/III)-bearing clay minerals are widespread potential reductants of Cr(VI), but the kinetics and pathways of Cr(VI) reduction by such clay minerals are poorly understood. We reacted aqueous Cr(VI) with two abiotically reduced clay minerals: an Fe-poor montmorillonite and an Fe-rich nontronite. The effects of ionic strength, pH, total Fe content, and the fraction of reduced structural Fe(II) [Fe(II)/Fe(total)] were examined. The last variable had the largest effect on Cr(VI) reduction kinetics: for both clay minerals, the rate constant of Cr(VI) reduction varies by more than 3 orders of magnitude with Fe(II)/Fe(total) and is described by a linear free energy relationship. Under all conditions examined, Cr and Fe K-edge X-ray absorption near-edge structure spectra show that the main Cr-bearing product is a Cr(III)-hydroxide and that Fe remains in the clay structure after reacting with Cr(VI). This study helps to quantify our understanding of the kinetics of Cr(VI) reduction by Fe(II/III)-bearing clay minerals and may improve predictions of Cr(VI) behavior in subsurface environments.

  12. Effect of Organic Matter on Cr(VI Removal from Groundwaters by Fe(II Reductive Precipitation for Groundwater Treatment

    Directory of Open Access Journals (Sweden)

    Anna Gröhlich

    2017-06-01

    Full Text Available Due to its toxicity, Cr(VI is undesirable in groundwater. Its chemical reduction to Cr(III species, followed by precipitation is the most widely practiced treatment technique for the removal of Cr(VI from polluted waters. The resulting Cr(III species present low solubility, is much less toxic, and can be subsequently removed either by precipitation, or by adsorption onto iron oxy-hydroxides and co-precipitation. The effects of several parameters, such as the pH value of water to be treated, the applied Fe(II dose, and the presence of appropriate mineral surfaces, are well investigated and understood. However, the impact of the presence of humic acids (HAs in this process has only been considered by rather few studies. The main aim of this study was to determine the effect of humic substances on Fe(II reductive precipitation of Cr(VI within a pH range relevant for drinking water treatment. Jar test experiments were performed, using artificial groundwater of defined composition and initial Cr(VI concentration 100 μg/L, ferrous sulphate dosages 0.25–2 mg Fe(II/L, and pH values 6.5–8. It was found that Cr(VI and total chromium (Cr(total can be reliably removed in the absence of HAs in the tested pH range with the addition of Fe(II dosage of 1 mg Fe(II/L. Further on, the results indicated that the reduction of Cr(VI is only slightly affected by the presence of HAs. However, increased residual total Cr concentrations were found at lower Fe(II dosages and/or higher pH values. Additionally, the removal of the Cr(III species formed during Cr(VI reduction was strongly inhibited by the presence of HAs under the examined experimental conditions, since residual concentrations higher than 60 μg/L were determined. The results of this study will have implications to the ongoing discussion of a new, stricter, European Union regulation limit, regarding the presence of total chromium in drinking water.

  13. Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array.

    Science.gov (United States)

    Rai, Satish C; Wang, Kai; Ding, Yong; Marmon, Jason K; Bhatt, Manish; Zhang, Yong; Zhou, Weilie; Wang, Zhong Lin

    2015-06-23

    A high-performance broad band UV/visible photodetector has been successfully fabricated on a fully wide bandgap ZnO/ZnS type-II heterojunction core/shell nanowire array. The device can detect photons with energies significantly smaller (2.2 eV) than the band gap of ZnO (3.2 eV) and ZnS (3.7 eV), which is mainly attributed to spatially indirect type-II transition facilitated by the abrupt interface between the ZnO core and ZnS shell. The performance of the device was further enhanced through the piezo-phototronic effect induced lowering of the barrier height to allow charge carrier transport across the ZnO/ZnS interface, resulting in three orders of relative responsivity change measured at three different excitation wavelengths (385, 465, and 520 nm). This work demonstrates a prototype UV/visible photodetector based on the truly wide band gap semiconducting 3D core/shell nanowire array with enhanced performance through the piezo-phototronic effect.

  14. Key Topics in Producing New Ultraviolet Led and Laser Devices Based on Transparent Semiconductor Zinc Oxide

    International Nuclear Information System (INIS)

    Tuezemen, S.

    2004-01-01

    Recently, it has been introduced that ZnO as II-VI semiconductor is promising various technological applications, especially for optoelectronic short wavelength light emitting devices due to its wide and direct band gap profile. The most important advantage of ZnO over the other currently used wide band gap semiconductors such as GaN is that its nearly 3 times higher exciton binding energy (60 meV), which permits efficient excitonic emission at room temperature and above. As-grown ZnO is normally n-type because of the Zn-rich defects such as zinc interstitials (Zn i ) oxygen vacancies (Vo), natively acting as shallow donors and main source of n-type conductivity in as-grown material. Therefore, making p-type ZnO has been more difficult due to unintentional compensation of possible acceptors by these residual donors. In order to develop electro luminescent and laser devices based on the ultraviolet (UV) exciton emission of ZnO, it will be important to fabricate good p-n junctions. Attempts to observe p-type conductivity in ours and our collaborators' laboratories in USA, either by co-doping with N or tuning O pressure have been first successful achievements, resulting in hole concentrations up to 10 1 9 cm - 3 in reactively sputtered thin layers of ZnO. Moreover, in order to produce ZnO based quantum well lasers similar to the previously introduced n-AlGaAs/GaAs/p-AlGaAs structures; we have attempted to grow Zn 1 -xSn x O thin films to enlarge the band gap energy. An increase up to 170 meV has been observed in Zn 1 -xSn x O thin films and this is enough barrier to be able to trap electron-hole pairs in quantum well structures. As a result, two important key issues; p-type conductivity and enhancement of the band gap energy in order to step forward towards the production of electro luminescent UV LEDs and quantum well lasers have been investigated and will be presented in this study

  15. Oral-facial-digital syndrome with mesoaxial polysyndactyly, common AV canal, hirschsprung disease and sacral dysgenesis: Probably a transitional type between II, VI, variant of type VI or a new type

    Directory of Open Access Journals (Sweden)

    Rabah M. Shawky

    2014-07-01

    Full Text Available We report a 4 month old male infant, the first in order of birth of healthy first cousin consanguineous parents who has many typical features of oral-facial-digital syndrome type VI (OFDS VI including hypertelorism, bilateral convergent squint, depressed nasal bridge, and wide upturned nares, low set posteriorly rotated ears, long philtrum, gum hyperplasia with notches of the alveolar borders, high arched palate, and hyperplastic oral frenula. He has mesoaxial and postaxial, polysyndactyly which is the specific feature of OFDS VI, however the cerebellum is normal on MRI brain. He has also some rare congenital anomalies including common atrioventricular canal, hirschsprung disease, and sacral dysgenesis. This patient may have a transitional type between II and VI, a variant of type VI or a new type.

  16. Synthesis and characterization of nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) complexes of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide

    International Nuclear Information System (INIS)

    Syamal, A.; Maurya, M.R.

    1986-01-01

    Synthesis of a new Schiff base derived from salicylaldehyde and 5-methylpyrazole-3-carbohydrazide, and its coordination compounds with nickel(II), cobalt(II), copper(II), manganese(II), zinc(II), zirconium(IV), dioxouranium(VI) and dioxomolybdenum(VI) are described. The ligand and the complexes have been characterized on the basis of analytical, conductance, molecular weight, i.r., electronic and n.m.r. spectra and magnetic susceptibility measurements. The stoichiometries of the complexes are represented as NiL . 3H 2 O, CoL . 2H 2 O, CuL, MnL . 2H 2 O, ZnL . H 2 O, Zr(OH) 2 (LH) 2 , Zr(OH) 2 L . 2MeOH, UO 2 L . MeOH and MoO 2 L . MeOH (where LH 2 =Schiff base). The copper(II) complex shows a subnormal magnetic moment due to antiferromagnetic exchange interaction while the nickel(II), cobalt(II) and manganese(II) complexes show normal magnetic moments at room temperature. The i.r. and n.m.r. spectral studies show that the Schiff base behaves as a dibasic and tridentate ligand coordinating through the deprotonated phenolic oxygen, enolic oxygen and azomethine nitrogen. (orig.)

  17. Density functional study of the group II phosphide semiconductor compounds under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, Ali [Simulation Laboratory, Department of Physics, Faculty of Science, Shahrekord University, PB 115, Shahrekord (Iran, Islamic Republic of)], E-mail: mokhtari@sci.sku.ac.ir

    2008-04-02

    The full-potential all-electron linearized augmented plane wave plus local orbital (FP-LAPW+lo) method, as implemented in the suite of software WIEN2k, has been used to systematically investigate the structural and electronic properties of the group II phosphide semiconductor compounds M{sub 3}P{sub 2} (M = Be, Mg and Ca). The exchange-correlation functional was approximated as a generalized gradient functional introduced by Perdew-Burke-Ernzerhof (GGA96) and Engel-Vosko (EV-GGA). Internal parameters were optimized by relaxing the atomic positions in the force directions using the Hellman-Feynman approach. The structural parameters, bulk modules, cohesive energy, band structures and density of states have been calculated and compared to the available experimental and theoretical results. These compounds are predicted to be semiconductors with the direct band gap of about 1.60, 2.55 and 2.62 eV for Be{sub 3}P{sub 2}, Mg{sub 3}P{sub 2} and Ca{sub 3}P{sub 2}, respectively. The effects of hydrostatic pressure on the behavior of band parameters such as band gap, valence bandwidths and anti-symmetric gap (the energy gap between two parts of the valence bands) are investigated using both GGA96 and EV-GGA. The contribution of s, p and d orbitals of different atoms to the density of states is discussed in detail.

  18. Density functional study of the group II phosphide semiconductor compounds under hydrostatic pressure

    International Nuclear Information System (INIS)

    Mokhtari, Ali

    2008-01-01

    The full-potential all-electron linearized augmented plane wave plus local orbital (FP-LAPW+lo) method, as implemented in the suite of software WIEN2k, has been used to systematically investigate the structural and electronic properties of the group II phosphide semiconductor compounds M 3 P 2 (M = Be, Mg and Ca). The exchange-correlation functional was approximated as a generalized gradient functional introduced by Perdew-Burke-Ernzerhof (GGA96) and Engel-Vosko (EV-GGA). Internal parameters were optimized by relaxing the atomic positions in the force directions using the Hellman-Feynman approach. The structural parameters, bulk modules, cohesive energy, band structures and density of states have been calculated and compared to the available experimental and theoretical results. These compounds are predicted to be semiconductors with the direct band gap of about 1.60, 2.55 and 2.62 eV for Be 3 P 2 , Mg 3 P 2 and Ca 3 P 2 , respectively. The effects of hydrostatic pressure on the behavior of band parameters such as band gap, valence bandwidths and anti-symmetric gap (the energy gap between two parts of the valence bands) are investigated using both GGA96 and EV-GGA. The contribution of s, p and d orbitals of different atoms to the density of states is discussed in detail

  19. Optical Characterization of Rare Earth-doped Wide Band Gap Semiconductors

    National Research Council Canada - National Science Library

    Hommerich, Uwe

    1999-01-01

    ...+) PL intensity under below gap excitation. Photoluminescence excitation (PLE) studies revealed that oxygen/carbon introduces a broad below gap PLE band, which provides an efficient pathway for E(3+) excitation...

  20. Transport Gap and exciton binding energy determination in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Stefan; Schoell, Achim; Reinert, Friedrich; Umbach, Eberhard [University of Wuerzburg (Germany). Experimental Physics II; Casu, Benedetta [Inst. f. Physik. u. Theor. Chemie, Tuebingen (Germany)

    2008-07-01

    The transport gap of an organic semiconductor is defined as the energy difference between the HOMO and LUMO levels in the presence of a hole or electron, respectively, after relaxation has occurred. Its knowledge is mandatory for the optimisation of electronic devices based on these materials. UV photoelectron spectroscopy (UPS) and inverse photoelectron spectroscopy (IPES) are routinely applied to measure these molecular levels. However, the precise determination of the transport gap on the basis of the respective data is not an easy task. It involves fundamental questions about the properties of organic molecules and their condensates, about their reaction on the experimental probe, and on the evaluation of the spectroscopic data. In particular electronic relaxation processes, which occur on the time scale of the photo excitation, have to be considered adequately. We determined the transport gap for the organic semiconductors PTCDA, Alq3, DIP, CuPc, and PBI-H4. After careful data analysis and comparison to the respective values for the optical gap we obtain values for the exciton binding energies between 0.1-0.5 eV. This is considerably smaller than commonly believed and indicates a significant delocalisation of the excitonic charge over various molecular units.

  1. Karakterisasi Adsorben dari Kulit Manggis dan Kinerjanya pada Adsorpsi Logam Pb(II dan Cr(VI - (Adsorbent Characterization from Mangosteen Peel and Its Adsorption Performance on Pb(II and Cr(VI

    Directory of Open Access Journals (Sweden)

    Ulfa Haura

    2017-06-01

    Full Text Available The usage of biomass waste-based adsorbent for the adsorption of hazardous metal in wastewater is not only reducing waste but also lowering adsorbent price. This research aims to study the characteristics of adsorbent from mangosteen peel (Garcinia Mangostana L. and activated charcoal from mangosteen peel, also to compare the adsorption performance on metal ion Pb(II and Cr(VI. Synthetic wastewater used from a solution of Pb(NO32 and K2Cr2O7 with variations in initial concentration of 20, 40, 80, 100 and 200 mg/L. Adsorption performed at pH 5, ratio of adsorbent and waste solution 1/200 (w/v, 60 rpm, 0.5 gs nano-sized adsorbent. Characterization using SEM, FTIR and SEM-EDS showed that both adsorbents characteristics met the requirements of SNI 06-3730-1995. The highest adsorption capacity of activated carbon to adsorb Pb(II and Cr(VI were 38.543 mg/g and 36.838 mg/g while biosorbent adsorb Pb(II and Cr(VI respectively 3.98 mg/g and 36.12 mg/g.Keywords: adsorption, biosorbent, Cr(VI, mangosteen peel, Pb(IIABSTRAKPenggunaan adsorben berbasis limbah biomassa untuk adsorpsi kandungan logam berbahaya dari limbah cair industri selain dapat mengurangi limbah juga dapat menekan harga jual adsorben. Penelitian ini bertujuan untuk mempelajari karakteristik adsorben yang terbuat dari limbah kulit manggis (Garcinia mangostana L. dan arang aktif dari limbah kulit manggis serta membandingkan kinerja kedua jenis adsorben tersebut pada proses adsorpsi ion logam Pb(II dan Cr(VI. Limbah sintetis yang digunakan berupa ion dari Pb(II dan Cr(VI dari larutan Pb(NO32 dan K2Cr2O7 dengan variasi konsentrasi awal 20, 40, 80, 100 dan 200 mg/L. Proses adsorpsi dilakukan pada pH 5, rasio perbandingan berat adsorben dan volume larutan limbah 1:200, kecepatan pengadukan 60 rpm, adsorben berukuran nano dengan berat adsorben 0,5 g. Masing-masing adsorben dikarakterisasi menggunakan SEM untuk mengetahui sturktur morfologi, FTIR untuk mengetahui gugus fungsi dan SEM-EDS untuk

  2. Weak antilocalization induced by Rashba spin-orbit interaction in layered III-VI compound semiconductor GaSe thin films

    Science.gov (United States)

    Takasuna, Shoichi; Shiogai, Junichi; Matsuzaka, Shunichiro; Kohda, Makoto; Oyama, Yutaka; Nitta, Junsaku

    2017-10-01

    Magnetoconductance (MC) at low temperature was measured to investigate spin-related transport affected by spin-orbit interaction (SOI) in III-VI compound n -type GaSe thin films. Results reveal that MC shows weak antilocalization (WAL). Its temperature and gate voltage dependences reveal that the dominant spin relaxation is governed by the D'yakonov-Perel' mechanism associated with the Rashba SOI. The estimated Rashba SOI strength in GaSe is much stronger than that of III-V compound GaAs quantum wells, although the energy gap and spin split-off band in GaSe closely resemble those in GaAs. The angle dependence of WAL amplitude in the in-plane magnetic field direction is almost isotropic. This isotropy indicates that the strength of the Dresselhaus SOI is negligible compared with the Rashba SOI strength. The SOI effect in n -GaSe thin films differs greatly from those of III-V compound semiconductors and transition-metal dichalcogenides.

  3. ECG-ViEW II, a freely accessible electrocardiogram database

    Science.gov (United States)

    Park, Man Young; Lee, Sukhoon; Jeon, Min Seok; Yoon, Dukyong; Park, Rae Woong

    2017-01-01

    The Electrocardiogram Vigilance with Electronic data Warehouse II (ECG-ViEW II) is a large, single-center database comprising numeric parameter data of the surface electrocardiograms of all patients who underwent testing from 1 June 1994 to 31 July 2013. The electrocardiographic data include the test date, clinical department, RR interval, PR interval, QRS duration, QT interval, QTc interval, P axis, QRS axis, and T axis. These data are connected with patient age, sex, ethnicity, comorbidities, age-adjusted Charlson comorbidity index, prescribed drugs, and electrolyte levels. This longitudinal observational database contains 979,273 electrocardiograms from 461,178 patients over a 19-year study period. This database can provide an opportunity to study electrocardiographic changes caused by medications, disease, or other demographic variables. ECG-ViEW II is freely available at http://www.ecgview.org. PMID:28437484

  4. Radiative d–d transitions at tungsten centers in II–VI semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, V. V., E-mail: ushakov@lebedev.ru; Krivobok, V. S.; Pruchkina, A. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-03-15

    The luminescence spectra of W impurity centers in II–VI semiconductors, specifically, ZnSe, CdS, and CdSe, are studied. It is found that, if the electron system of 5d (W) centers is considered instead of the electron system of 3d (Cr) centers, the spectral characteristics of the impurity radiation are substantially changed. The electron transitions are identified in accordance with Tanabe–Sugano diagrams of crystal field theory. With consideration for the specific features of the spectra, it is established that, in the crystals under study, radiative transitions at 5d W centers occur between levels with different spins in the region of a weak crystal field.

  5. Two dimensional tunable photonic crystals and n doped semiconductor materials

    International Nuclear Information System (INIS)

    Elsayed, Hussein A.; El-Naggar, Sahar A.; Aly, Arafa H.

    2015-01-01

    In this paper, we theoretically investigate the effect of the doping concentration on the properties of two dimensional semiconductor photonic band structures. We consider two structures; type I(II) that is composed of n doped semiconductor (air) rods arranged into a square lattice of air (n doped semiconductor). We consider three different shapes of rods. Our numerical method is based on the frequency dependent plane wave expansion method. The numerical results show that the photonic band gaps in type II are more sensitive to the changes in the doping concentration than those of type I. In addition, the width of the gap of type II is less sensitive to the shape of the rods than that of type I. Moreover, the cutoff frequency can be strongly tuned by the doping concentrations. Our structures could be of technical use in optical electronics for semiconductor applications

  6. Non-linear spin transport in magnetic semiconductor superlattices

    International Nuclear Information System (INIS)

    Bejar, Manuel; Sanchez, David; Platero, Gloria; MacDonald, A.H.

    2004-01-01

    The electronic spin dynamics in DC-biased n-doped II-VI semiconductor multiquantum wells doped with magnetic impurities is presented. Under certain range of electronic doping, conventional semiconductor superlattices present self-sustained oscillations. Magnetically doped wells (Mn) present large spin splittings due to the exchange interaction. The interplay between non-linear interwell transport, the electron-electron interaction and the exchange between electrons and the magnetic impurities produces interesting time-dependent features in the spin polarization current tuned by an external magnetic field

  7. Green synthesis of water soluble semiconductor nanocrystals and their applications

    Science.gov (United States)

    Wang, Ying

    II-VI semiconductor nanomaterials, e.g. CdSe and CdTe, have attracted great attention over the past decades due to their fascinating optical and electrical properties. The research presented here focuses on aqueous semiconductor nanomaterials. The work can be generally divided into three parts: synthesis, property study and application. The synthetic work is devoted to develop new methods to prepare shape- and structure-controlled II-VI semiconductor nanocrystals including nanoparticles and nanowires. CdSe and CdSe CdS semiconductor nanocrystals have been synthesized using sodium citrate as a stabilizer. Upon prolonged illumination with visible light, photoluminescence quantum yield of those quantum dots can be enhanced up to 5000%. The primary reason for luminescence enhancement is considered to be the removing of specific surface states (photocorrosion) and the smoothing of the CdSe core surface (photoannealing). CdTe nanowires are prepared through self-organization of stabilizer-depleted CdTe nanoparticles. The dipolar-dipolar attraction is believed to be the driving force of nanowire formation. The rich surface chemistry of CdTe nanowire is reflected by the formation of silica shell with different morphologies when nanowires with different capping ligands are used. Te and Se nanowires are prepared by chemical decomposition of CdTe and CdSe nanoparticles in presence of an external chemical stimulus, EDTA. These results not only provide a new example of NP→NW transformation, but also lead to a better understanding of the molecular process occurring in the stabilizer-depleted nanoparticles. The applications of those semiconductor materials are primarily based on the construction of nano-structured ultrathin films with desirable functions by using layer-by-layer technique (LBL). We demonstrate that light-induced micro-scale multicolor luminescent patterns can be obtained on photoactivable CdSe/CdS nanoparticles thin films by combining the advantages of LBL as

  8. Study of the removal of mercury(II) and chromium(VI) from aqueous solutions by Moroccan stevensite

    International Nuclear Information System (INIS)

    Benhammou, A.; Yaacoubi, A.; Nibou, L.; Tanouti, B.

    2005-01-01

    The objective of the present study was to investigate the adsorption of the heavy metals mercury(II) and chromium(VI), from aqueous solutions, onto Moroccan stevensite. A mineralogical and physicochemical characterization of natural stevensite was carried out. In order to improve the adsorption capacity of stevensite for Cr(VI), a preparation of stevensite was carried out. It consists in saturating the stevensite by ferrous iron Fe(II) and reducing the total Fe by Na 2 S 2 O 4 . Then, the adsorption experiments were studied in batch reactors at 25 ± 3 deg. C. The influence of the pH solution on the Cr(VI) and Hg(II) adsorption was studied in the pH range of 1.5-7.0. The optimum pH for the Cr(VI) adsorption is in the pH range of 2.0-5.0 while that of Hg(II) is at the pH values above 4.0. The adsorption kinetics were tested by a pseudo-second-order model. The adsorption rate of Hg(II) is 54.35 mmol kg -1 min -1 and that of Cr(VI) is 7.21 mmol kg -1 min -1 . The adsorption equilibrium time for Hg(II) and Cr(VI) was reached within 2 and 12 h, respectively. The adsorption isotherms were described by the Dubinin-Radushkevich model. The maximal adsorption capacity for Cr(VI) increases from 13.7 (raw stevensite) to 48.86 mmol kg -1 (modified stevensite) while that of Hg(II) decreases from 205.8 to 166.9 mmol kg -1 . The mechanism of Hg(II) and Cr(VI) adsorption was discussed

  9. Reduction of neptunium(V) and uranium(VI) in bicarbonate solutions by iron(II)

    International Nuclear Information System (INIS)

    Gogolev, A.V.; Zakharova, E.V.; Rodygina, N.I.; Fedoseev, A.M.; Shilov, V.P.

    2006-01-01

    Interaction of Np(VI) and Fe(II) compounds in bicarbonate solutions is investigated. Interaction of Np(V) with Fe(II) in the presence of phthalate-ions is studied briefly. Fe(II) compounds reduce Np(V) compounds in saturated with Ar or CO 2 solutions with any bicarbonate-ion concentrations. Chemical reaction kinetics is studied. Reduction of U(VI) by Fe(II) compounds takes place in the case of diluted bicarbonate solutions. UO 2 and FeOOH are products of reaction at raised temperatures [ru

  10. High-Temperature Electronics: A Role for Wide Bandgap Semiconductors?

    Science.gov (United States)

    Neudeck, Philip G.; Okojie, Robert S.; Chen, Liang-Yu

    2002-01-01

    It is increasingly recognized that semiconductor based electronics that can function at ambient temperatures higher than 150 C without external cooling could greatly benefit a variety of important applications, especially-in the automotive, aerospace, and energy production industries. The fact that wide bandgap semiconductors are capable of electronic functionality at much higher temperatures than silicon has partially fueled their development, particularly in the case of SiC. It appears unlikely that wide bandgap semiconductor devices will find much use in low-power transistor applications until the ambient temperature exceeds approximately 300 C, as commercially available silicon and silicon-on-insulator technologies are already satisfying requirements for digital and analog very large scale integrated circuits in this temperature range. However, practical operation of silicon power devices at ambient temperatures above 200 C appears problematic, as self-heating at higher power levels results in high internal junction temperatures and leakages. Thus, most electronic subsystems that simultaneously require high-temperature and high-power operation will necessarily be realized using wide bandgap devices, once the technology for realizing these devices become sufficiently developed that they become widely available. Technological challenges impeding the realization of beneficial wide bandgap high ambient temperature electronics, including material growth, contacts, and packaging, are briefly discussed.

  11. Hydrogen in semiconductors II

    CERN Document Server

    Nickel, Norbert H; Weber, Eicke R; Nickel, Norbert H

    1999-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition ...

  12. Mechanistic insight into chromium(VI) reduction by oxalic acid in the presence of manganese(II)

    Energy Technology Data Exchange (ETDEWEB)

    Wrobel, Katarzyna; Corrales Escobosa, Alma Rosa; Gonzalez Ibarra, Alan Alexander; Mendez Garcia, Manuel; Yanez Barrientos, Eunice; Wrobel, Kazimierz, E-mail: kazimier@ugto.mx

    2015-12-30

    Over the past few decades, reduction of hexavalent chromium (Cr(VI)) has been studied in many physicochemical contexts. In this research, we reveal the mechanism underlying the favorable effect of Mn(II) observed during Cr(VI) reduction by oxalic acid using liquid chromatography with spectrophotometric diode array detector (HPLC–DAD), nitrogen microwave plasma atomic emission spectrometry (HPLC–MP-AES), and high resolution mass spectrometry (ESI–QTOFMS). Both reaction mixtures contained potassium dichromate (0.67 mM Cr(VI)) and oxalic acid (13.3 mM), pH 3, one reaction mixture contained manganese sulfate (0.33 mM Mn(II)). In the absence of Mn(II) only trace amounts of reaction intermediates were generated, most likely in the following pathways: (1) Cr(VI) → Cr(IV) and (2) Cr(VI) + Cr(IV) → 2Cr(V). In the presence of Mn(II), the active reducing species appeared to be Mn(II) bis-oxalato complex (J); the proposed reaction mechanism involves a one-electron transfer from J to any chromium compound containing Cr=O bond, which is reduced to Cr−OH, and the generation of Mn(III) bis-oxalato complex (K). Conversion of K to J was observed, confirming the catalytic role of Mn(II). Since no additional acidification was required, the results obtained in this study may be helpful in designing a new, environmentally friendly strategy for the remediation of environments contaminated with Cr(VI).

  13. High thermal stability solution-processable narrow-band gap molecular semiconductors.

    Science.gov (United States)

    Liu, Xiaofeng; Hsu, Ben B Y; Sun, Yanming; Mai, Cheng-Kang; Heeger, Alan J; Bazan, Guillermo C

    2014-11-19

    A series of narrow-band gap conjugated molecules with specific fluorine substitution patterns has been synthesized in order to study the effect of fluorination on bulk thermal stability. As the number of fluorine substituents on the backbone increase, one finds more thermally robust bulk structures both under inert and ambient conditions as well as an increase in phase transition temperatures in the solid state. When integrated into field-effect transistor devices, the molecule with the highest degree of fluorination shows a hole mobility of 0.15 cm(2)/V·s and a device thermal stability of >300 °C. Generally, the enhancement in thermal robustness of bulk organization and device performance correlates with the level of C-H for C-F substitution. These findings are relevant for the design of molecular semiconductors that can be introduced into optoelectronic devices to be operated under a wide range of conditions.

  14. Removal of uranium(VI) from the aqueous phase by iron(II) minerals in presence of bicarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Regenspurg, Simona, E-mail: regens@gfz-potsdam.de [Industrial Ecology, Royal Institute of Technology (KTH), SE 10044 Stockholm (Sweden); Schild, Dieter; Schaefer, Thorsten; Huber, Florian [Institut fuer Nukleare Entsorgung (INE), Forschungszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen (Germany); Malmstroem, Maria E. [Industrial Ecology, Royal Institute of Technology (KTH), SE 10044 Stockholm (Sweden)

    2009-09-15

    Uranium(VI) mobility in groundwater is strongly affected by sorption of mobile U(VI) species (e.g. uranyl, UO{sub 2}{sup 2+}) to mineral surfaces, precipitation of U(VI) compounds, such as schoepite (UO{sub 2}){sub 4}O(OH){sub 6}.6H{sub 2}O), and by reduction to U(IV), forming sparingly soluble phases (uraninite; UO{sub 2}). The latter pathway, in particular, would be very efficient for long-term immobilization of U. In nature, Fe(II) is an important reducing agent for U(VI) because it frequently occurs either dissolved in natural waters, sorbed to matrix minerals, or structurally bound in many minerals. Redox reactions between U(VI) and Fe(II) depend not only on the availability of Fe(II) in the environment, but also on the chemical conditions in the aqueous solution. Under natural groundwater condition U(VI) forms complexes with many anionic ligands, which strongly affect its speciation. Carbonate, in particular, is known to form stable complexes with U, raising the question, if U(VI), when complexed by carbonate, can be reduced to UO{sub 2}. The goal of this study was to find out if Fe(II) when structurally bound in a mineral (as magnetite, Fe{sub 3}O{sub 4}) or sorbed to a mineral surface (as corundum, Al{sub 2}O{sub 3}) can reduce U(VI) to U(IV) in the presence of HCO{sub 3}{sup -}. Batch experiments were conducted under anaerobic conditions to observe U removal from the aqueous phase by the two minerals depending on HCO{sub 3}{sup -} addition (1 mM), U concentration (0.01-30 {mu}M) and pH value (6-10). Immediately after the experiments, the mineral surfaces were analyzed by X-ray photoelectron spectroscopy (XPS) to obtain information on the redox state of U bound to the solid surfaces. XPS results gave evidence that U(VI) can be reduced both by magnetite and by corundum amended with Fe(II). In the presence of HCO{sub 3}{sup -} the amount of reduced U on the mineral surfaces increased compared to carbonate-free solutions. This can be explained by the formation

  15. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II–VI semiconductor phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P., E-mail: bpchandra4@yahoo.co.in [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, Chattisgarh (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, Chattisgarh (India); Jha, Piyush [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, Chattisgarh (India)

    2015-04-15

    Elastico-mechanoluminescence (EML) has recently attracted the attention of a large number of researchers because of its potential in different types of mechano-optical devices. For understanding the mechanism of EML the relationships between elastico-mechanoluminescence (EML) and crystal-structure of a large number of persistent luminescent materials and II–VI semiconductor phosphors known to date are investigated. It is found that, although most of the non-centrosymmetric crystals exhibit EML, certain non-centrosymmetric crystals do not show EML. Whereas, many centrosymmetric crystals do not exhibit EML, certain centrosymmetric crystals exhibit EML. Piezoelectric ZnS:Cu,Cl single crystals do not show EML, but piezoelectric ZnS:Cu,Cl microcrystalline phosphors show very intense EML. Piezoelectric single crystals of undoped ZnS do not show EML. It seems that EML is related to local piezoelectrification near the impurities in crystals where piezoelectric constant is high. Suitable piezoelectric field near the local piezoelectric region and stable charge carriers in traps are required for appearance of EML. The EML of persistent luminescent materials and II–VI semiconductor phosphors can be understood on the basis of piezoelectrically-induced trap-depth reduction model of EML. Using suitable dopants both in non-centrosymmetric and centrosymmetric crystals intense elastico-mechanoluminescent materials emitting desired colours can be tailored, which may find applications in several mechano-optical devices.

  16. Elastico-mechanoluminescence and crystal-structure relationships in persistent luminescent materials and II–VI semiconductor phosphors

    International Nuclear Information System (INIS)

    Chandra, B.P.; Chandra, V.K.; Jha, Piyush

    2015-01-01

    Elastico-mechanoluminescence (EML) has recently attracted the attention of a large number of researchers because of its potential in different types of mechano-optical devices. For understanding the mechanism of EML the relationships between elastico-mechanoluminescence (EML) and crystal-structure of a large number of persistent luminescent materials and II–VI semiconductor phosphors known to date are investigated. It is found that, although most of the non-centrosymmetric crystals exhibit EML, certain non-centrosymmetric crystals do not show EML. Whereas, many centrosymmetric crystals do not exhibit EML, certain centrosymmetric crystals exhibit EML. Piezoelectric ZnS:Cu,Cl single crystals do not show EML, but piezoelectric ZnS:Cu,Cl microcrystalline phosphors show very intense EML. Piezoelectric single crystals of undoped ZnS do not show EML. It seems that EML is related to local piezoelectrification near the impurities in crystals where piezoelectric constant is high. Suitable piezoelectric field near the local piezoelectric region and stable charge carriers in traps are required for appearance of EML. The EML of persistent luminescent materials and II–VI semiconductor phosphors can be understood on the basis of piezoelectrically-induced trap-depth reduction model of EML. Using suitable dopants both in non-centrosymmetric and centrosymmetric crystals intense elastico-mechanoluminescent materials emitting desired colours can be tailored, which may find applications in several mechano-optical devices

  17. In vitro evaluation of bioremediation capacity of a commercial probiotic, Bacillus coagulans, for chromium (VI) and lead (II) toxicity.

    Science.gov (United States)

    Belapurkar, Pranoti; Goyal, Pragya; Kar, Anand

    2016-01-01

    The bioaccumulation of heavy metals including chromium (VI) (Cr (VI)) and lead (II) (Pb (II)) causes fatal toxicity in humans. Some naturally occurring bacterial genera such as Bacillus and Pseudomonas help in bioremediation of these heavy metals and some of the species of Bacillus are proven probiotics. However, no study has been conducted on Bacillus coagulans , which is a proven probiotic species of genus Bacillus . The primary objective of the present study was to assess the potential of a proven probiotic, B. coagulans , marketed as "Sporlac-DS," to survive in the presence of Cr (VI) and Pb (II) and its ability to reduce its concentration in vitro . The Minimum inhibitory concentration (MIC) of the organism for Cr (VI) and Pb (II) was determined followed by its biochemical and morphological characterization. Its antibiotic sensitivity and probiotic efficacy were assessed. Further, its bioremediation capacity was observed in vitro by determining the residual Cr (VI) and Pb (II) concentration after 72 h. B. coagulans could tolerate up to 512 ppm concentration of Cr (VI) and had an MIC of 128 ppm for Pb (II). After 72 h, the organism reduced 32 ppm Cr (VI) and 64 ppm Pb (II) by 93% and 89%, respectively. When B. coagulans was studied before and after growing on Cr (VI) and Pb (II) for 24 h, an increase was seen in sensitivity toward the tested antibiotics whereas no change was observed in morphological and biochemical characters. It also showed no change in their bile and acid tolerance, indicating that it retains its probiotic efficacy. The tested probiotic B. coagulans may have a potential role in bioremediation of Cr (VI) and Pb (II), in vivo .

  18. New technology for the control of narrow-gap semiconductors

    International Nuclear Information System (INIS)

    Antoniou, I.; Bozhevolnov, V.; Melnikov, Yu.; Yafyasov, A.

    2003-01-01

    We present the results of the year work in the frame of the EU ESPRIT Project 28890 NTCONGS 'New technology for the control of narrow-gap semiconductors'. This work has involved both theoretical and experimental study, as well as the development of new specific equipment, towards the creation of a new generation of nanoelectronic devices able to operate at 77 K and even at room temperature

  19. Wave mechanics applied to semiconductor heterostructures

    International Nuclear Information System (INIS)

    Bastard, G.

    1990-01-01

    This book examines the basic electronic and optical properties of two dimensional semiconductor heterostructures based on III-V and II-VI compounds. The book explores various consequences of one-dimensional size-quantization on the most basic physical properties of heterolayers. Beginning with basic quantum mechanical properties of idealized quantum wells and superlattices, the book discusses the occurrence of bound states when the heterostructure is imperfect or when it is shone with near bandgap light

  20. A comparison of the wide gap and narrow gap resistive plate chamber

    International Nuclear Information System (INIS)

    Cerron Zeballos, E.; Crotty, I.; Hatzifotiadou, D.; Valverde, J.L.; Neupane, S.; Peskov, V.; Singh, S.; Williams, M.C.S.; Zichichi, A.

    1996-01-01

    In this paper we study the performance of a wide gap RPC and compare it with that of a narrow gap RPC, both operated in avalanche mode. We have studied the total charge produced in the avalanche. We have measured the dependence of the performance with rate. In addition we have considered the effect of the tolerance of gas gap and calculated the power dissipated in these two types of RPC. We find that the narrow gap RPC has better timing ability; however the wide gap has superior rate capability, lower power dissipation in the gas volume and can be constructed with less stringent mechanical tolerances. (orig.)

  1. A comparison of the wide gap and narrow gap resistive plate chamber

    CERN Document Server

    Cerron-Zeballos, E; Hatzifotiadou, D; Lamas-Valverde, J; Neupane, S; Peskov, Vladimir; Singh, S; Williams, M C S; Zichichi, Antonino

    1996-01-01

    In this paper we study the performance of a wide gap RPC and compare it with that of a narrow gap RPC, both operated in avalanche mode. We have studied the total charge produced in the avalanche. We have measured the dependence of the performance with rate. In addition we have considered the effect of the tolerance of gas gap and calculated the power dissipated in these two types of RPC. We find that the narrow gap RPC has better timing ability; however the wide gap has superior rate capability, lower power dissipation in the gas volume and can be constructed with less stringent mechanical tolerances.

  2. Theory of tamm surface states on the boundary between Hgsub(1-x)Cdsub(x)Te type semimetal and narrow-gap semiconductor

    International Nuclear Information System (INIS)

    Mekhtiyev, M.A.; Kalina, V.A.

    1980-01-01

    The conditions of appearance of tamm surface states and their energy spectrum on the boundary of semimetals and narrow-gap semiconductors are considered. By the Green function method the equation for surface state energy is obtained. The solution of the latter is analyzed in particular cases when energy of heavy hole zones of the semimetal and semiconductor is the same and when the heavy hole gap of the semiconductor is shifted down relatively to the semimetal of the same name gap as well as accurate computer calculation. It is shown that neither in parabolic limits, nor in cases of a strongly unparabolic semiconductor (semimetal) and a parabolic semimetal (semiconductor) the equation obtained has no solutions at small quasipulse values i.e. there are no surface states. In the case when the heavy hole zone of a semiconductor is shifted down for the value of the order of narrow-gap semiconductor the effective mass of surface states turns to be twice heavier than that of the semimetal volumetrical electrons [ru

  3. Adsorption of Cu(II) and Cr(VI) ions by chitosan: kinetics and ...

    African Journals Online (AJOL)

    The ability of chitosan as an adsorbent for Cu (II) and Cr (VI) ions in aqueous solution was studied. The experiments were done as batch processes. Equilibrium studies were done on both cross-linked and non-cross-linked chitosan for both metals. Cr (VI) adsorption behaviour could be described using the Langmuir ...

  4. Two-dimensional inorganic–organic hybrid semiconductors composed of double-layered ZnS and monoamines with aromatic and heterocyclic aliphatic rings: Syntheses, structures, and properties

    International Nuclear Information System (INIS)

    Wang, Sujing; Li, Jing

    2015-01-01

    As an addition to the II–VI based inorganic–organic hybrid semiconductor family, five new two-dimensional (2D) double-layered structures have been synthesized employing monoamines with different aromatic or heterocyclic aliphatic rings. Zn 2 S 2 (bza) (1), Zn 2 S 2 (mbza) (2), Zn 2 S 2 (fbza) (3), Zn 2 S 2 (pca) (4), and Zn 2 S 2 (thfa) (5) (bza=benzylamine, mbza=4-methoxybenzylamine, fbza=4-flurobenzylamine, pca=3-picolylamine, and thfa=tetrahydrofurfurylamine) are prepared by solvothermal reactions and characterized by different analytical methods, including powder X-ray diffraction, optical diffuse reflection, thermogravimetric analysis and photoluminescence spectroscopy. The powder X-ray diffraction patterns show that all five compounds adopt 2D double-layered structures. Optical diffuse reflectance spectra of these compounds suggest that they have notably lower band gaps than those of the similar compounds composed of aliphatic alkyl amines. Their photoluminescence properties and thermal stability are also analyzed. - Graphical abstract: Five new members of two-dimensional double-layered 2D-Zn 2 S 2 (L) (L=Ligand) structures employing monoamines with different aromatic or heterocyclic aliphatic rings have been designed, synthesized, and characterized. - Highlights: • A new sub-family of II-VI based hybrid semiconductors are designed, synthesized, and structurally characterized using amines with aromatic or aliphatic cyclic rings. • These compounds have notably lower band gaps than those made of aliphatic alkyl amines, greatly broadening the range of band gaps of this material family. • They emit strongly with systematically tunable emission intensity and energy

  5. The features of modelling semiconductor lasers with a wide contact

    Directory of Open Access Journals (Sweden)

    Rzhanov Alexey

    2017-01-01

    Full Text Available The aspects of calculating the dynamics and statics of powerful semiconductor laser diodes radiation are investigated. It takes into account the main physical mechanisms influencing power, spectral composition, far and near field of laser radiation. It outlines a dynamic distributed model of a semiconductor laser with a wide contact and possible algorithms for its implementation.

  6. X-ray diffraction study of epitaxial heterostructures of II-VI CdTe and ZnTe semiconductors; Etude par diffraction de rayons X d`heterostructures epitaxiees a base des semi-conducteurs II-VI CdTe et ZnTe

    Energy Technology Data Exchange (ETDEWEB)

    Bouchet-Boudet, N.

    1996-10-07

    This work deals with the structural study of II-VI semiconductor (CdTe and ZnTe) heterostructures by X-ray diffraction and reflectivity. These heterostructures have a high lattice parameter misfit and are grown by Molecular Beam Epitaxy. Two main subjects are developed: the characterization of ZnTe wires, grown by step propagation on a CdTe (001) vicinal surface, and the study of the vertical correlations in Cd{sub 0.8}Zn{sub 0.2}Te / CdTe superlattices and superlattices made of ZnTe fractional layers spaced by CdTe. The growth of organised system is up to date; its aim is to realize quantum boxes (or wires) superlattices which are laterally and vertically ordered. The deformation along the growth axis induced by a ZnTe fractional layer inserted in a CdTe matrix is modelled, in the kinematical approximation, to reproduce the reflectivity measured around the substrate (004) Bragg peak. The lateral periodicity of the wires, deposited on a vicinal surface is a new and difficult subject. Some results are obtained on a vertical superlattice grown on a 1 deg. mis-cut surface. The in-plane and out-of-plane correlation lengths of a Cd{sub 0.8}Zn{sub 0.2}Te / CdTe superlattice are deduced from the diffused scattered intensity measured at grazing incidence. The calculations are made within the `distorted Wave Born Approximation`. The vertical correlation in ZnTe boxes (or wines) superlattices can be measured around Bragg peaks. It is twice bigger in a superlattice grown on a 2 deg. mis-cut substrate than a nominal one. (author). 74 refs.

  7. In vitro evaluation of bioremediation capacity of a commercial probiotic, Bacillus coagulans, for chromium (VI and lead (II toxicity

    Directory of Open Access Journals (Sweden)

    Pranoti Belapurkar

    2016-01-01

    Full Text Available Introduction: The bioaccumulation of heavy metals including chromium (VI (Cr (VI and lead (II (Pb (II causes fatal toxicity in humans. Some naturally occurring bacterial genera such as Bacillus and Pseudomonas help in bioremediation of these heavy metals and some of the species of Bacillus are proven probiotics. However, no study has been conducted on Bacillus coagulans, which is a proven probiotic species of genus Bacillus. Objectives: The primary objective of the present study was to assess the potential of a proven probiotic, B. coagulans, marketed as “Sporlac-DS,” to survive in the presence of Cr (VI and Pb (II and its ability to reduce its concentration in vitro. Materials and Methods: The Minimum inhibitory concentration (MIC of the organism for Cr (VI and Pb (II was determined followed by its biochemical and morphological characterization. Its antibiotic sensitivity and probiotic efficacy were assessed. Further, its bioremediation capacity was observed in vitro by determining the residual Cr (VI and Pb (II concentration after 72 h. Results: B. coagulans could tolerate up to 512 ppm concentration of Cr (VI and had an MIC of 128 ppm for Pb (II. After 72 h, the organism reduced 32 ppm Cr (VI and 64 ppm Pb (II by 93% and 89%, respectively. When B. coagulans was studied before and after growing on Cr (VI and Pb (II for 24 h, an increase was seen in sensitivity toward the tested antibiotics whereas no change was observed in morphological and biochemical characters. It also showed no change in their bile and acid tolerance, indicating that it retains its probiotic efficacy. Conclusion: The tested probiotic B. coagulans may have a potential role in bioremediation of Cr (VI and Pb (II, in vivo.

  8. Analytical applications of N-phenyl-n-butyro hydroxamic and N-p-tolyl-n-butyro hydroxamic acids towards chromium (VI), copper (II), iron (III) and uranium (VI)

    International Nuclear Information System (INIS)

    Elkhadir, A. Y. F.

    2001-05-01

    Two aliphatic hydroxamic acids were prepared; N-phenyl-n-butyro hydroxamic acid and N-p-tolyl-n-butyro hydroxamic acid, by the reaction of β-phenylhydroxylamine and p-tolyl hydroxylamine with n-butyryl chloride. The acids were identified by: their melting points, characteristic reactions with acidic solutions of vanadium (V) and iron (III), infrared spectroscopy, nitrogen content and molecular weight determination. The extractability of these acids towards Cr (VI), Cu (II), Fe (III) and U (VI) were investigated at different pH values and molar acid concentrations. N-phenyl-n- butyro hydroxamic acid has a maximum extraction (98.80%) for Cr (VI) at 4 M H 2 SO 4 , (83.25%) for Cu (II) at pH 6, (99.17%) for Fe (III) at pH 5 and (99.76%) at 4 M HNO 3 for U (VI) respectively. N-p-tolyl-n-butyro hydroxamic acid has a maximum extraction (98.40%) for Cr (VI)at 4 M H 2 SO 4 , (81.30%) for Cu (II) at pH 6, (92.80%) for Fe (III) at pH 5 and (99.64%) for U (VI) at 4 M HNO 3 , respectively. The ratios of the metal to ligands were determined by job method (continuous variation method) and were found to be 1:2 for Cr (VI) and U (VI). (Author)

  9. Analytical applications of N-phenyl-n-butyro hydroxamic and N-p-tolyl-n-butyro hydroxamic acids towards chromium (VI), copper (II), iron (III) and uranium (VI)

    Energy Technology Data Exchange (ETDEWEB)

    Elkhadir, A Y. F. [Department of Chemistry, Faculty of Science, University of Khartoum, Khartoum (Sudan)

    2001-05-01

    Two aliphatic hydroxamic acids were prepared; N-phenyl-n-butyro hydroxamic acid and N-p-tolyl-n-butyro hydroxamic acid, by the reaction of {beta}-phenylhydroxylamine and p-tolyl hydroxylamine with n-butyryl chloride. The acids were identified by: their melting points, characteristic reactions with acidic solutions of vanadium (V) and iron (III), infrared spectroscopy, nitrogen content and molecular weight determination. The extractability of these acids towards Cr (VI), Cu (II), Fe (III) and U (VI) were investigated at different pH values and molar acid concentrations. N-phenyl-n- butyro hydroxamic acid has a maximum extraction (98.80%) for Cr (VI) at 4 M H{sub 2}SO{sub 4}, (83.25%) for Cu (II) at pH 6, (99.17%) for Fe (III) at pH 5 and (99.76%) at 4 M HNO{sub 3} for U (VI) respectively. N-p-tolyl-n-butyro hydroxamic acid has a maximum extraction (98.40%) for Cr (VI)at 4 M H{sub 2} SO{sub 4}, (81.30%) for Cu (II) at pH 6, (92.80%) for Fe (III) at pH 5 and (99.64%) for U (VI) at 4 M HNO{sub 3}, respectively. The ratios of the metal to ligands were determined by job method (continuous variation method) and were found to be 1:2 for Cr (VI) and U (VI). (Author)

  10. Searching Room Temperature Ferromagnetism in Wide Gap Semiconductors Fe-doped Strontium Titanate and Zinc Oxide

    CERN Document Server

    Pereira, LMC; Wahl, U

    Scientific findings in the very beginning of the millennium are taking us a step further in the new paradigm of technology: spintronics. Upgrading charge-based electronics with the additional degree of freedom of the carriers spin-state, spintronics opens a path to the birth of a new generation of devices with the potential advantages of non-volatility and higher processing speed, integration densities and power efficiency. A decisive step towards this new age lies on the attribution of magnetic properties to semiconductors, the building block of today's electronics, that is, the realization of ferromagnetic semiconductors (FS) with critical temperatures above room temperature. Unfruitful search for intrinsic RT FS lead to the concept of Dilute(d) Magnetic Semiconductors (DMS): ordinary semiconductor materials where 3 d transition metals randomly substitute a few percent of the matrix cations and, by some long-range mechanism, order ferromagnetically. The times are of intense research activity and the last fe...

  11. Vertical dielectric screening of few-layer van der Waals semiconductors.

    Science.gov (United States)

    Koo, Jahyun; Gao, Shiyuan; Lee, Hoonkyung; Yang, Li

    2017-10-05

    Vertical dielectric screening is a fundamental parameter of few-layer van der Waals two-dimensional (2D) semiconductors. However, unlike the widely-accepted wisdom claiming that the vertical dielectric screening is sensitive to the thickness, our first-principles calculation based on the linear response theory (within the weak field limit) reveals that this screening is independent of the thickness and, in fact, it is the same as the corresponding bulk value. This conclusion is verified in a wide range of 2D paraelectric semiconductors, covering narrow-gap ones and wide-gap ones with different crystal symmetries, providing an efficient and reliable way to calculate and predict static dielectric screening of reduced-dimensional materials. Employing this conclusion, we satisfactorily explain the tunable band gap in gated 2D semiconductors. We further propose to engineer the vertical dielectric screening by changing the interlayer distance via vertical pressure or hybrid structures. Our predicted vertical dielectric screening can substantially simplify the understanding of a wide range of measurements and it is crucial for designing 2D functional devices.

  12. Polyethylene imine modified hydrochar adsorption for chromium (VI) and nickel (II) removal from aqueous solution.

    Science.gov (United States)

    Shi, Yuanji; Zhang, Tao; Ren, Hongqiang; Kruse, Andrea; Cui, Ruofan

    2018-01-01

    An adsorbent hydrochar was synthesized from corn cobs and modified with polyethylene imine (PEI). The hydrochars before and after modification were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis. FTIR and XPS revealed that the PEI was grafted onto the hydrochar via ether and imine bonds formed with glutaraldehyde. The maximum adsorption capacities for Cr(VI) (33.663mg/g) and Ni(II) (29.059mg/g) on the modified hydrochars were 365% and 43.7% higher, respectively, than those on the unmodified hydrochar. A pseudo-second-order model described the adsorption of Ni(II) and Cr(VI) on all the adsorbents. The adsorption of Cr(VI) was endothermic, spontaneous, increased disorder, and obeyed the Langmuir model. By contrast, the adsorption of Ni(II) was exothermic, spontaneous, decreased disorder, and obeyed the Freundlich model. XPS confirmed that the adsorption sites and mechanisms for Ni(II) and Cr(VI) on the modified hydrochars were different. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Characterizing Surfaces of the Wide Bandgap Semiconductor Ilmenite with Scanning Probe Microcopies

    Science.gov (United States)

    Wilkins, R.; Powell, Kirk St. A.

    1997-01-01

    Ilmenite (FeTiO3) is a wide bandgap semiconductor with an energy gap of about 2.5eV. Initial radiation studies indicate that ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Two scanning probe microscopy methods have been used to characterize the surface of samples taken from Czochralski grown single crystals. The two methods, atomic force microscopy (AFM) and scanning tunneling microscopy (STM), are based on different physical principles and therefore provide different information about the samples. AFM provides a direct, three-dimensional image of the surface of the samples, while STM give a convolution of topographic and electronic properties of the surface. We will discuss the differences between the methods and present preliminary data of each method for ilmenite samples.

  14. Complexes of Cu(II), Ni(II), Co(II), oxovanadium(IV) and dioxouranium(VI) with N,N'-ethylenebis (2-hydroxy-4-methylpropiophenoneimine)

    International Nuclear Information System (INIS)

    Patel, M.M.; Patel, M.R.; Patel, M.N.; Patel, R.P.

    1982-01-01

    Complexes of Cu(II), Ni(II), Co(II), oxovanadium(IV) and dioxouranium(VI) with the schiff base, N,N'-ethylenebis(2-hydroxy-4-methylpropiophenoneimine)(4-MeOHPEN), have been synthesised and characterised on the basis of elemental analyses, conductivity, magnetic moment, electronic and infrared spectral data. Square-planar structures are suggested for Cu(II), Ni(II) and Co(II) complexes while a distorted square-pyramidal structure is suggested for the oxovanadium(IV) complex. (author)

  15. Thermoelectricity in correlated narrow-gap semiconductors

    Science.gov (United States)

    Tomczak, Jan M.

    2018-05-01

    We review many-body effects, their microscopic origin, as well as their impact on thermoelectricity in correlated narrow-gap semiconductors. Members of this class—such as FeSi and FeSb2—display an unusual temperature dependence in various observables: insulating with large thermopowers at low temperatures, they turn bad metals at temperatures much smaller than the size of their gaps. This insulator-to-metal crossover is accompanied by spectral weight-transfers over large energies in the optical conductivity and by a gradual transition from activated to Curie–Weiss-like behaviour in the magnetic susceptibility. We show a retrospective of the understanding of these phenomena, discuss the relation to heavy-fermion Kondo insulators—such as Ce3Bi4Pt3 for which we present new results—and propose a general classification of paramagnetic insulators. From the latter, FeSi emerges as an orbital-selective Kondo insulator. Focussing on intermetallics such as silicides, antimonides, skutterudites, and Heusler compounds we showcase successes and challenges for the realistic simulation of transport properties in the presence of electronic correlations. Further, we explore new avenues in which electronic correlations may contribute to the improvement of thermoelectric performance.

  16. Towards colorless transparent organic transistors: potential of benzothieno[3,2-b]benzothiophene-based wide-gap semiconductors.

    Science.gov (United States)

    Moon, Hanul; Cho, Hyunsu; Kim, Mincheol; Takimiya, Kazuo; Yoo, Seunghyup

    2014-05-21

    Colorless, highly transparent organic thin-film transistors (TOTFTs) with high performance are realized based on benzothieno[3,2-b]benzothiophene (BTBT) derivatives that simultaneously exhibit a wide energy gap and high transport properties. Multilayer transparent source/drain electrodes maintain the transparency, and ultrathin fluoropolymer dielectric layers enable stable, low-voltage operation of the proposed TOTFTs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Exploration of the Infrared Sensitivity for a ZnSe Electrode of an IR Image Converter

    Science.gov (United States)

    Kurt, H. Hilal

    2018-05-01

    Significant improvement has been carried out in the field of the II-VI group semiconductor device technology. Semiconductors based on the II-VI group are attractive due to their alternative uses for thermal imaging systems and photonic applications. This study focuses on experimental work on the optical, electrical and structural characterization of an infrared (IR) photodetector zinc selenide (ZnSe). In addition, the IR sensitivity of the ZnSe has primarily been investigated by exploiting the IR responses of the material for various gas pressures, p, and interelectrode distances, d, in the IR converter. The experimental findings include the results of plasma current and plasma discharge emission under various illumination conditions in the IR region. The electron density distributions inside the gas discharge gap have also been simulated in two-dimensional media. Experimentally, the current-voltage, current-time, and discharge light emission plots are produced for a wide experimental parameter range. Consequently, the structural and optical properties have been studied through atomic force microscopy and Fourier-transform infrared spectroscopy techniques to obtain a comprehensive knowledge of the material.

  18. Twisted bilayer blue phosphorene: A direct band gap semiconductor

    Science.gov (United States)

    Ospina, D. A.; Duque, C. A.; Correa, J. D.; Suárez Morell, Eric

    2016-09-01

    We report that two rotated layers of blue phosphorene behave as a direct band gap semiconductor. The optical spectrum shows absorption peaks in the visible region of the spectrum and in addition the energy of these peaks can be tuned with the rotational angle. These findings makes twisted bilayer blue phosphorene a strong candidate as a solar cell or photodetection device. Our results are based on ab initio calculations of several rotated blue phosphorene layers.

  19. High-Temperature, Wirebondless, Ultracompact Wide Bandgap Power Semiconductor Modules

    Science.gov (United States)

    Elmes, John

    2015-01-01

    Silicon carbide (SiC) and other wide bandgap semiconductors offer great promise of high power rating, high operating temperature, simple thermal management, and ultrahigh power density for both space and commercial power electronic systems. However, this great potential is seriously limited by the lack of reliable high-temperature device packaging technology. This Phase II project developed an ultracompact hybrid power module packaging technology based on the use of double lead frames and direct lead frame-to-chip transient liquid phase (TLP) bonding that allows device operation up to 450 degC. The new power module will have a very small form factor with 3-5X reduction in size and weight from the prior art, and it will be capable of operating from 450 degC to -125 degC. This technology will have a profound impact on power electronics and energy conversion technologies and help to conserve energy and the environment as well as reduce the nation's dependence on fossil fuels.

  20. Metal contacts on ZnSe and GaN

    Energy Technology Data Exchange (ETDEWEB)

    Duxstad, Kristin Joy [Univ. of California, Berkeley, CA (United States). Materials Science and Mineral Engineering

    1997-05-01

    Recently, considerable interest has been focused on the development of blue light emitting materials and devices. The focus has been on GaN and ZnSe, direct band gap semiconductors with bands gaps of 3.4 and 2.6 eV, respectively. To have efficient, reliable devices it is necessary to have thermally and electrically stable Ohmic contacts. This requires knowledge of the metal-semiconductor reaction behavior. To date few studies have investigated this behavior. Much information has accumulated over the years on the behavior of metals on Si and GaAs. This thesis provides new knowledge for the more ionic wide band gap semiconductors. The initial reaction temperatures, first phases formed, and phase stability of Pt, Pd, and Ni on both semiconductors were investigated. The reactions of these metals on ZnSe and GaN are discussed in detail and correlated with predicted behavior. In addition, comparisons are made between these highly ionic semiconductors and Si and GaAs. The trends observed here should also be applicable to other II-VI and III-Nitride semiconductor systems, while the information on phase formation and stability should be useful in the development of contacts for ZnSe and GaN devices.

  1. Single-layer group IV-V and group V-IV-III-VI semiconductors: Structural stability, electronic structures, optical properties, and photocatalysis

    Science.gov (United States)

    Lin, Jia-He; Zhang, Hong; Cheng, Xin-Lu; Miyamoto, Yoshiyuki

    2017-07-01

    Recently, single-layer group III monochalcogenides have attracted both theoretical and experimental interest at their potential applications in photonic devices, electronic devices, and solar energy conversion. Excited by this, we theoretically design two kinds of highly stable single-layer group IV-V (IV =Si ,Ge , and Sn; V =N and P) and group V-IV-III-VI (IV =Si ,Ge , and Sn; V =N and P; III =Al ,Ga , and In; VI =O and S) compounds with the same structures with single-layer group III monochalcogenides via first-principles simulations. By using accurate hybrid functional and quasiparticle methods, we show the single-layer group IV-V and group V-IV-III-VI are indirect bandgap semiconductors with their bandgaps and band edge positions conforming to the criteria of photocatalysts for water splitting. By applying a biaxial strain on single-layer group IV-V, single-layer group IV nitrides show a potential on mechanical sensors due to their bandgaps showing an almost linear response for strain. Furthermore, our calculations show that both single-layer group IV-V and group V-IV-III-VI have absorption from the visible light region to far-ultraviolet region, especially for single-layer SiN-AlO and SnN-InO, which have strong absorption in the visible light region, resulting in excellent potential for solar energy conversion and visible light photocatalytic water splitting. Our research provides valuable insight for finding more potential functional two-dimensional semiconductors applied in optoelectronics, solar energy conversion, and photocatalytic water splitting.

  2. Thermal, spectral, magnetic and biological studies of thiosemicarbazones complexes with metal ions: Cu(II), Co(II), Ni(II), Fe(III), Zn(II), Mn(II) and UO2(VI)

    International Nuclear Information System (INIS)

    Mashaly, M.M.; Seleem, H.S.; El-Behairy, M.A.; Habib, H.A.

    2004-01-01

    Thiosemicarbazones ligands, isatin-3-thiosemicarbazone(HIT) and N-acetylisatin-3-thiosemicarbazone (HAIT), which have tridentate ONN coordinating sites were prepared. The complexes of both ligands with Cu(II), Co(II), Ni(II), Fe(III), Zn(II), Mn(II) and UO 2 (VI) ions were isolated. The ligands and their metal complexes were characterized by elemental analysis, IR, UV-Vis and mass spectra, also by conductance, magnetic moment and TG-DSC measurements. All the transition metal complexes have octahedral configurations, except Cu-complexes which have planar geometry and the UO 2 (VI) complexes which have coordination number 8 and may acquire the distorted dodecahedral geometry. Thermal studies explored the possibility of obtaining new complexes. Inversion from octahedral to square-planar configuration occurred upon heating the parent Ni-HIAT complex to form the corresponding pyrolytic product. The antifungal activity against the tested organisms showed that some metal complexes enhanced the activity with respect to the parent ligands. (author)

  3. 77 FR 36579 - II-VI, Inc., Infrared Optics-Saxonburg Division, Saxonburg, PA; Leased Workers From Adecco, Carol...

    Science.gov (United States)

    2012-06-19

    ...., Infrared Optics-Saxonburg Division, Saxonburg, PA; Leased Workers From Adecco, Carol Harris, Unlimited Staffing, and Staffmark, Working On-Site at II-VI, Inc., Infrared Optics-Saxonburg Division, Saxonburg, PA... workers and former workers of II-VI, Inc., Infrared Optics-Saxonburg Division, Saxonburg, Pennsylvania...

  4. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  5. Traditional Semiconductors in the Two-Dimensional Limit.

    Science.gov (United States)

    Lucking, Michael C; Xie, Weiyu; Choe, Duk-Hyun; West, Damien; Lu, Toh-Ming; Zhang, S B

    2018-02-23

    Interest in two-dimensional materials has exploded in recent years. Not only are they studied due to their novel electronic properties, such as the emergent Dirac fermion in graphene, but also as a new paradigm in which stacking layers of distinct two-dimensional materials may enable different functionality or devices. Here, through first-principles theory, we reveal a large new class of two-dimensional materials which are derived from traditional III-V, II-VI, and I-VII semiconductors. It is found that in the ultrathin limit the great majority of traditional binary semiconductors studied (a series of 28 semiconductors) are not only kinetically stable in a two-dimensional double layer honeycomb structure, but more energetically stable than the truncated wurtzite or zinc-blende structures associated with three dimensional bulk. These findings both greatly increase the landscape of two-dimensional materials and also demonstrate that in the double layer honeycomb form, even ordinary semiconductors, such as GaAs, can exhibit exotic topological properties.

  6. Ordered perovskites with cationic vacancies. 10. Compounds of type A/sub 2/sup(II)Bsub(1/4)sup(II)Bsub(1/2)sup(III)vacantsub(1/4)Msup(VI)O/sub 6/ equal to A/sub 8/sup(II)Bsup(II)B/sub 2/sup(III)vacantM/sub 4/sup(VI)O/sub 24/ with Asup(II), Bsup(II) = Ba, Sr, Ca and Msup(VI) = U, W

    Energy Technology Data Exchange (ETDEWEB)

    Betz, B; Schittenhelm, H J; Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1982-01-01

    Perovskites of type Ba/sub 8/Bsup(II)B/sub 2/sup(III)vacantU/sub 4/sup(VI)O/sub 24/ show polymorphic phase transformations of order disorder type. An 1:1 ordered orthorhombic HT form is transformed into a higher ordered LT modification with a fourfold cell content (four formula units Ba/sub 8/Bsup(II)B/sub 2/sup(III)vacantU/sub 4/O/sub 24/), compared to cubic 1:1 ordered perovskites A/sub 2/BMO/sub 6/. In the series Ba/sub 8/BaB/sub 2/sup(III)vacantW/sub 4/O/sub 24/ and Sr/sub 8/SrB/sub 2/sup(III)vacantW/sub 4/O/sub 24/ different ordering phenomena are observed. In comparison with 1:1 ordered cubic perovskites A/sub 2/BMO/sub 6/, the cell contains eight formula units A/sub 8/sup(II)Bsup(II) B/sub 2/sup(III)vacantW/sub 4/O/sub 2/4. The higher ordered cells with Usup(VI) and Wsup(VI) are face centered, which has its origin in an ordering of cationic vacancies.

  7. A 380 V High Efficiency and High Power Density Switched-Capacitor Power Converter using Wide Band Gap Semiconductors

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2018-01-01

    . This paper presents such a high voltage low power switched-capacitor DC-DC converter with an input voltage upto 380 V (compatible with rectified European mains) and an output power experimentally validated up to 21.3 W. The wideband gap semiconductor devices of GaN switches and SiC diodes are combined...... to compose the proposed power stage. Their switching and loss characteristics are analyzed with transient waveforms and thermal images. Different isolated driving circuits are compared and a compact isolated halfbridge driving circuit is proposed. The full-load efficiencies of 98.3% and 97.6% are achieved......State-of-the-art switched-capacitor DC-DC power converters mainly focus on low voltage and/or high power applications. However, at high voltage and low power levels, new designs are anticipated to emerge and a power converter that has both high efficiency and high power density is highly desirable...

  8. Two-dimensional inorganic–organic hybrid semiconductors composed of double-layered ZnS and monoamines with aromatic and heterocyclic aliphatic rings: Syntheses, structures, and properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Sujing; Li, Jing, E-mail: jingli@rutgers.edu

    2015-04-15

    As an addition to the II–VI based inorganic–organic hybrid semiconductor family, five new two-dimensional (2D) double-layered structures have been synthesized employing monoamines with different aromatic or heterocyclic aliphatic rings. Zn{sub 2}S{sub 2}(bza) (1), Zn{sub 2}S{sub 2}(mbza) (2), Zn{sub 2}S{sub 2}(fbza) (3), Zn{sub 2}S{sub 2}(pca) (4), and Zn{sub 2}S{sub 2}(thfa) (5) (bza=benzylamine, mbza=4-methoxybenzylamine, fbza=4-flurobenzylamine, pca=3-picolylamine, and thfa=tetrahydrofurfurylamine) are prepared by solvothermal reactions and characterized by different analytical methods, including powder X-ray diffraction, optical diffuse reflection, thermogravimetric analysis and photoluminescence spectroscopy. The powder X-ray diffraction patterns show that all five compounds adopt 2D double-layered structures. Optical diffuse reflectance spectra of these compounds suggest that they have notably lower band gaps than those of the similar compounds composed of aliphatic alkyl amines. Their photoluminescence properties and thermal stability are also analyzed. - Graphical abstract: Five new members of two-dimensional double-layered 2D-Zn{sub 2}S{sub 2}(L) (L=Ligand) structures employing monoamines with different aromatic or heterocyclic aliphatic rings have been designed, synthesized, and characterized. - Highlights: • A new sub-family of II-VI based hybrid semiconductors are designed, synthesized, and structurally characterized using amines with aromatic or aliphatic cyclic rings. • These compounds have notably lower band gaps than those made of aliphatic alkyl amines, greatly broadening the range of band gaps of this material family. • They emit strongly with systematically tunable emission intensity and energy.

  9. Structure and magnetism of transition-metal implanted dilute magnetic semiconductors

    CERN Document Server

    Pereira, Lino; Temst, K; Araújo, JP; Wahl, U

    The discovery of a dilute magnetic semiconductor (DMS) in which ferromagnetism is carrier-mediated and persists above room temperature is a critical step towards the development of semiconductor-based spintronics. Among the many types of DMS materials which have been investigated, the current research interest can be narrowed down to two main classes of materials: (1) narrow-gap III-V semiconductors, mostly GaAs and InAs, doped with Mn; (2) wide-gap oxides and nitrides doped with 3d transition metals, mostly Mn- and Co-doped ZnO and Mn-doped GaN. With a number of interesting functionalities deriving from the carrier-mediated ferromagnetism and demonstrated in various proof-of-concept devices, Mn-doped GaAs has become, among DMS materials, one of the best candidates for technological application. However, despite major developments over the last 15 years, the maximum Curie temperature (185 K) remains well below room temperature. On the other hand, wide-gap DMS materials appear to exhibit ferromagnetic behavior...

  10. CdS_xTe_1_-_x ternary semiconductors band gaps calculation using ground state and GW approximations

    International Nuclear Information System (INIS)

    Kheloufi, Nawal; Bouzid, Abderrazak

    2016-01-01

    We present band gap calculations of zinc-blende ternary CdS_xTe_1_-_x semiconductors within the standard DFT and quasiparticle calculations employing pseudopotential method. The DFT, the local density approximation (LDA) and the Generalized Gradient Approximation (GGA) based calculations have given very poor results compared to experimental data. The quasiparticle calculations have been investigated via the one-shot GW approximation. The present paper discuses and confirms the effect of inclusion of the semicore states in the cadmium (Cd) pseudopotential. The obtained GW quasiparticle band gap using Cd"+"2"0 pseudopotential has been improved compared to the obtained results from the available pseudopotential without the treatment of semicore states. Our DFT and quasiparticle band gap results are discussed and compared to the available theoretical calculations and experimental data. - Graphical abstract: Band gaps improvement concerning the binary and ternary alloys using the GW approximation and Cd"2"0"+ pseudopotential with others levels of approximations (the LDA and GGA approximation employing the Cd"1"2"+ and the LDA within Cd"2"0"+ pseudopotential). - Highlights: • The direct Γ- Γ and indirect Γ- X and Γ- L bands gaps show a nonlinear behavior when S content is enhanced. • The quasiparticle band gap result for the investigated semiconductors is improved using the GW approximation. • All CdS_xTe_1_-_x compounds in all compositions range from 0 to 1 are direct band gap semiconductors.

  11. A study of the cavity polariton under strong excitation:dynamics and nonlinearities in II-VI micro-cavities

    International Nuclear Information System (INIS)

    Muller, Markus

    2000-01-01

    This work contains an experimental study of the photoluminescence dynamics of cavity polaritons in strong coupling micro-cavities based on II-VI semiconductor compounds. The small exciton size and the strong exciton binding energy in these materials allowed us to study the strong coupling regime between photon and exciton up to high excitation densities, exploring the linear and non-linear emission regimes. Our main experimental techniques are picosecond time-resolved and angular photoluminescence spectroscopy. In the linear regime and for a negative photon-exciton detuning, we observe a suppression of the polariton relaxation by the emission of acoustic phonons leading to a non-equilibrium polariton distribution on the lower branch. This 'bottleneck' effect, which has already been described for polaritons in bulk semiconductors, results from the pronounced photon like character of the polaritons near k(parallel) = 0 in this configuration. At high excitation densities, non-linear relaxation processes, namely final state stimulation of the relaxation and polariton-polariton scattering, bypass this bottleneck giving rise to a very rapid relaxation down to the bottom of the band. We show that this dramatic change in the relaxation dynamics is finally responsible of the super-linear increase of the polariton emission from these states. (author) [fr

  12. Structure and properties of phosphorene-like IV-VI 2D materials.

    Science.gov (United States)

    Ma, Zhinan; Wang, Bo; Ou, Liangkai; Zhang, Yan; Zhang, Xu; Zhou, Zhen

    2016-10-14

    Because of the excellent physical and chemical properties of phosphorene, phosphorene and phosphorene-like materials have attracted extensive attention. Since phosphorus belongs to group V, some group IV-VI compounds could also form phosphorene-like configurations. In this work, GeO, SnO, GeS, and SnS monolayers were constructed to investigate the structural and electronic properties by employing first-principles computations. Phonon spectra suggest that these monolayers are dynamically stable and could be realized in experiments. These monolayers are all semiconductors with the band gaps of 2.26 ∼ 4.13 eV. Based on the monolayers, GeO, SnO, GeS, and SnS bilayers were also constructed. The band gaps of these bilayers are smaller than those of the corresponding monolayers. Moreover, the optical properties of these monolayers and bilayers were calculated, and the results indicate that the SnO, GeS and SnS bilayers exhibit obvious optical absorption in the visible spectrum. All the results suggest that phosphorene-like IV-VI materials are promising candidates for electronic and optical devices.

  13. Catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid under an irradiation of simulated solar light.

    Science.gov (United States)

    Li, Ying; Chen, Cheng; Zhang, Jing; Lan, Yeqing

    2015-05-01

    The catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid with simulated solar light was investigated. The results demonstrated that Cu(II) could significantly accelerate Cr(VI) reduction and the reaction obeyed to pseudo zero-order kinetics with respect to Cr(VI). The removal of Cr(VI) was related to the initial concentrations of Cu(II), citric acid, and the types of organic acids. The optimal removal of Cr(VI) was achieved at pH 4, and the rates of Cu(II) photocatalytic reduction of Cr(VI) by organic acids were in the order: tartaric acid (two α-OH groups, two -COOH groups)>citric acid (one α-OH group, three -COOH groups)>malic acid (one α-OH group, two -COOH groups)>lactic acid (one α-OH group, one -COOH group)≫succinic acid (two -COOH groups), suggesting that the number of α-OH was the key factor for the reaction, followed by the number of -COOH. The formation of Cu(II)-citric acid complex could generate Cu(I) and radicals through a pathway of metal-ligand-electron transfer, promoting the reduction of Cr(VI). This study is helpful to fully understanding the conversion of Cr(VI) in the existence of both organic acids and Cu(II) with solar light in aquatic environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Extension of the radiative lifetime of Wannier-Mott excitons in semiconductor nanoclusters

    International Nuclear Information System (INIS)

    Kukushkin, V. A.

    2015-01-01

    The purpose of the study is to calculate the radiative lifetime of Wannier-Mott excitons in three-dimensional potential wells formed of direct-gap narrow-gap semiconductor nanoclusters in wide-gap semiconductors and assumed to be large compared to the exciton radius. Calculations are carried out for the InAs/GaAs heterosystem. It is shown that, as the nanocluster dimensions are reduced to values on the order of the exciton radius, the exciton radiative lifetime becomes several times longer compared to that in a homogeneous semiconductor. The increase in the radiative lifetime is more pronounced at low temperatures. Thus, it is established that the placement of Wannier-Mott excitons into direct-gap semiconductor nanoclusters, whose dimensions are of the order of the exciton radius, can be used for considerable extension of the exciton radiative lifetime

  15. Synthesis and characterization of polychelates of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), oxovanadium(IV) and dioxouranium(VI) with 2,4-dihydroxybenzaldehyde-urea-formaldehyde polymer

    International Nuclear Information System (INIS)

    Patel, G.C.; Pancholi, H.B.; Patel, M.M.

    1991-01-01

    Polychelates of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), oxovandium(IV) and dioxouranium(VI) with 2,4-dihydroxybenzaldehyde (2,4-DB)-urea(U)-formaldehyde(F) polymer (2,4-DBUF) have been prepared. Elemental analyses of the polychelates indicate a metal:ligand ratio of 1:2. The structures of the polychelates have been assigned on the basis of their elemental analyses, IR, reflectance spectra, magnetic moment, thermal data and their electrical conductivity behaviour. (author). 1 tab., 18 refs

  16. Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures.

    Science.gov (United States)

    Lo, Shun S; Mirkovic, Tihana; Chuang, Chi-Hung; Burda, Clemens; Scholes, Gregory D

    2011-01-11

    The development of elegant synthetic methodologies for the preparation of monocomponent nanocrystalline particles has opened many possibilities for the preparation of heterostructured semiconductor nanostructures. Each of the integrated nanodomains is characterized by its individual physical properties, surface chemistry, and morphology, yet, these multicomponent hybrid particles present ideal systems for the investigation of the synergetic properties that arise from the material combination in a non-additive fashion. Of particular interest are type-II heterostructures, where the relative band alignment of their constituent semiconductor materials promotes a spatial separation of the electron and hole following photoexcitation, a highly desirable property for photovoltaic applications. This article highlights recent progress in both synthetic strategies, which allow for material and architectural modulation of novel nanoheterostructures, as well as the experimental work that provides insight into the photophysical properties of type-II heterostructures. The effects of external factors, such as electric fields, temperature, and solvent are explored in conjunction with exciton and multiexciton dynamics and charge transfer processes typical for type-II semiconductor heterostructures.

  17. Role of VI/II ratio on the growth of ZnO nanostructures using chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Urgessa, Z.N., E-mail: zelalem.urgessa@nmmu.ac.za [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Oluwafemi, O.S. [Department of Chemistry and Chemical Technology, Walter Sisulu University, Mthatha Campus, Private Bag XI, 5117 (South Africa); Botha, J.R. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-05-15

    In this paper the growth process and morphological evolution of ZnO nanostructures were investigated in a series of experiments using chemical bath deposition. The experimental results indicate that the morphological evolution depends on the reaction conditions, particularly on OH{sup -} to Zn{sup 2+} ratio (which directly affects the pH). For low VI/II ratios, quasi-spherical nanoparticles of an average diameter 30 nm are obtained, whereas for larger VI/II ratios, nanorods with an average diameter less than 100 nm are produced, which indicates that by systematically controlling the VI/II ratio, it is possible to produce different shapes and sizes of ZnO nanostructures. A possible mechanism for the nanostructural change of the as-synthesized ZnO from particle to rod was elucidated based on the relative densities of H{sup +} and OH{sup -} in the solution.

  18. Role of VI/II ratio on the growth of ZnO nanostructures using chemical bath deposition

    International Nuclear Information System (INIS)

    Urgessa, Z.N.; Oluwafemi, O.S.; Botha, J.R.

    2012-01-01

    In this paper the growth process and morphological evolution of ZnO nanostructures were investigated in a series of experiments using chemical bath deposition. The experimental results indicate that the morphological evolution depends on the reaction conditions, particularly on OH − to Zn 2+ ratio (which directly affects the pH). For low VI/II ratios, quasi-spherical nanoparticles of an average diameter 30 nm are obtained, whereas for larger VI/II ratios, nanorods with an average diameter less than 100 nm are produced, which indicates that by systematically controlling the VI/II ratio, it is possible to produce different shapes and sizes of ZnO nanostructures. A possible mechanism for the nanostructural change of the as-synthesized ZnO from particle to rod was elucidated based on the relative densities of H + and OH − in the solution.

  19. Semiconductor nanocrystals formed in SiO2 by ion implantation

    International Nuclear Information System (INIS)

    Zhu, J.G.; White, C.W.; Budai, J.D.; Withrow, S.P.; Chen, Y.

    1994-11-01

    Nanocrystals of group IV (Si, Ge and SiGe), III-V (GaAs), and II-VI (CdSe) semiconductor materials have been fabricated inside SiO 2 by ion implantation and subsequent thermal annealing. The microstructure of these nanocrystalline semiconductor materials has been studied by transmission electron microscopy (TEM). The nanocrystals form in near-spherical shape with random crystal orientations in amorphous SiO 2 . Extensive studies on the nanocrystal size distributions have been carried out for the Ge nanocrystals by changing the implantation doses and the annealing temperatures. Remarkable roughening of the nanocrystals occurs when the annealing temperature is raised over the melting temperature of the implanted semiconductor material. Strong red photoluminescence peaked around 1.67 eV has been achieved in samples with Si nanocrystals in SiO 2

  20. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    KAUST Repository

    Wu, Xue-Jun; Chen, Junze; Tan, Chaoliang; Zhu, Yihan; Han, Yu; Zhang, Hua

    2016-01-01

    . Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective

  1. On the band gap dependence of refractive indices of some quaternary III-V and II-VI compounds of device interest

    International Nuclear Information System (INIS)

    Ghosh, D.K.; Chatterjee, U.; Samanta, L.K.

    1988-01-01

    The credibility of the model proposed by Ghosh in predicting the refractive indices of mixed semiconductor crystals of technological importance within their miscibility range as a function of band gap is demonstrated. The high-frequency refractive indices of four quaternary alloys Al x Ga 1-x-y In y P (y = 0.49, 0 ≤ x ≤ 0.51), InSb x As 1-x-y P y (y = 2.2x, 0 ≤ x ≤ 0.313, 0 ≤ y ≤ 0.638), Cd x Zn 1-x-y Hg y Se (x + y = 1, 0.153 ≤ x ≤ 0.684, 0.316 ≤ y ≤ 0.847), and CdS 1-x-y Se x Te y (x + y = 1, 0.15 ≤ x ≤ 0.93, 0.07 ≤ y ≤ 0.85) are calculated according to the relation n 2 -1 = A/(E g + B) 2 where A is an energy gap dependent constant and B is a constant depending on crystal ionicity. The calculated values show excellent agreement with the experimental data thus justifying the validity of the model

  2. Below-bandgap photoreflection spectroscopy of semiconductor laser structures

    International Nuclear Information System (INIS)

    Sotnikov, Aleksandr E; Chernikov, Maksim A; Ryabushkin, Oleg A; Trubenko, P; Moshegov, N; Ovchinnikov, A

    2004-01-01

    A new method of modulated light reflection - below-bandgap photoreflection, is considered. Unlike the conventional photoreflection method, the proposed method uses optical pumping by photons of energy smaller than the bandgap of any layer of a semiconductor structure under study. Such pumping allows one to obtain the modulated reflection spectrum for all layers of the structure without excitation of photoluminescence. This method is especially promising for the study of wide-gap semiconductors. The results of the study of semiconductor structures used in modern high-power multimode semiconductor lasers are presented. (laser applications and other topics in quantum electronics)

  3. Tl4CdI6 – Wide band gap semiconductor: First principles modelling of the structural, electronic, optical and elastic properties

    International Nuclear Information System (INIS)

    Piasecki, M.; Brik, M.G.; Kityk, I.V.

    2015-01-01

    A novel infrared optoelectronic material Tl 4 CdI 6 was studied using the density functional theory (DFT)-based techniques. Its structural, electronic, optical and elastic properties were all calculated in the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) and the local density approximation (LDA) with the Ceperley-Alder–Perdew-Zunger (CA–PZ) functionals. The studied material is a direct band gap semiconductor with the calculated band gaps of 2.043 eV (GGA) and 1.627 eV (LDA). The wavelength dependence of the refractive index was fitted to the Sellmeier equation in the spectral range from 400 to 2000 nm. Good agreement between the GGA-calculated values of refractive index and experimental data was achieved. To the best of our knowledge, this is the first consistent theoretical description of the title compound, which includes calculations and analysis of the structural, electronic, optical and elastic properties. - Graphical abstract: Display Omitted - Highlights: • Infrared optoelectronic material Tl 4 CdI 6 was studied using ab initio methods. • Structural, electronic, optical and elastic properties were calculated. • Independent components of the elastic constants tensor were calculated. • Good agreement with available experimental results was achieved

  4. Time-resolved optically-detected magnetic resonance of II-VI diluted-magnetic-semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, V.Yu.; Karczewski, G. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Godlewski, M. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Dept. Mathem. and Natural Sci. College of Sci., Card. S. Wyszynski Univ., Warsaw (Poland); Yakovlev, D.R. [Experimental Physics 2, University of Dortmund, 44221 Dortmund (Germany); A. F. Ioffe Physico-Technical Institute, 194017 St. Petersburg (Russian Federation); Ryabchenko, S.M. [Institute of Physics NAS Ukraine, 03028 Kiev (Ukraine); Waag, A. [Institute of Semiconductor Technology, Braunschweig Technical University, 38106 Braunschweig (Germany)

    2007-01-15

    Time-resolved optically-detected magnetic resonance (ODMR) technique was used to study spin dynamics of Mn{sup 2+} ions in (Zn,Mn)Se- and (Cd,Mn)Te-based diluted magnetic semiconductor quantum wells. Times of spin-lattice relaxation have been measured directly from a dynamical shift of exciton luminescence lines after a pulsed impact of 60 GHz microwave radiation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified Becke-Johnson potential plus an on-site Coulomb U

    International Nuclear Information System (INIS)

    Zhang, Yubo; Zhang, Jiawei; Wang, Youwei; Gao, Weiwei; Abtew, Tesfaye A.; Zhang, Peihong; Zhang, Wenqing

    2013-01-01

    Diamond-like Cu-based multinary semiconductors are a rich family of materials that hold promise in a wide range of applications. Unfortunately, accurate theoretical understanding of the electronic properties of these materials is hindered by the involvement of Cu d electrons. Density functional theory (DFT) based calculations using the local density approximation or generalized gradient approximation often give qualitative wrong electronic properties of these materials, especially for narrow-gap systems. The modified Becke-Johnson (mBJ) method has been shown to be a promising alternative to more elaborate theory such as the GW approximation for fast materials screening and predictions. However, straightforward applications of the mBJ method to these materials still encounter significant difficulties because of the insufficient treatment of the localized d electrons. We show that combining the promise of mBJ potential and the spirit of the well-established DFT + U method leads to a much improved description of the electronic structures, including the most challenging narrow-gap systems. A survey of the band gaps of about 20 Cu-based semiconductors calculated using the mBJ + U method shows that the results agree with reliable values to within ±0.2 eV

  6. Materials Research Society Symposium Proceedings on Diamond, SiC and Nitride Wide Bandgap Semiconductors Held at San Francisco, California on 4-8 April 1994. Volume 339.

    Science.gov (United States)

    1994-04-08

    Investigaciones Cientificas y TUcnicas, Argentina. REFERENCES 1. Wide-band-gap Semiconductors, ed. C. G. Van de Walle, Proc. Seventh Trieste ICTP-IUPAP...Department E 16, Technical University of Munich, D-85747 Garching, Germany ** Departamento e Centro de Fisica (INIC), University of Aveiro, 3800...Departamento de Fisica , Universidade de Aveiro, 3800 Aveiro, Portugal ** National Institute for Research in Inorganic Materials, Namiki 1-1

  7. CdS{sub x}Te{sub 1-x} ternary semiconductors band gaps calculation using ground state and GW approximations

    Energy Technology Data Exchange (ETDEWEB)

    Kheloufi, Nawal; Bouzid, Abderrazak, E-mail: a_bouzid34@hotmail.com

    2016-06-25

    We present band gap calculations of zinc-blende ternary CdS{sub x}Te{sub 1-x} semiconductors within the standard DFT and quasiparticle calculations employing pseudopotential method. The DFT, the local density approximation (LDA) and the Generalized Gradient Approximation (GGA) based calculations have given very poor results compared to experimental data. The quasiparticle calculations have been investigated via the one-shot GW approximation. The present paper discuses and confirms the effect of inclusion of the semicore states in the cadmium (Cd) pseudopotential. The obtained GW quasiparticle band gap using Cd{sup +20} pseudopotential has been improved compared to the obtained results from the available pseudopotential without the treatment of semicore states. Our DFT and quasiparticle band gap results are discussed and compared to the available theoretical calculations and experimental data. - Graphical abstract: Band gaps improvement concerning the binary and ternary alloys using the GW approximation and Cd{sup 20+} pseudopotential with others levels of approximations (the LDA and GGA approximation employing the Cd{sup 12+} and the LDA within Cd{sup 20+} pseudopotential). - Highlights: • The direct Γ- Γ and indirect Γ- X and Γ- L bands gaps show a nonlinear behavior when S content is enhanced. • The quasiparticle band gap result for the investigated semiconductors is improved using the GW approximation. • All CdS{sub x}Te{sub 1-x} compounds in all compositions range from 0 to 1 are direct band gap semiconductors.

  8. Perovskite phases in the systems Asup(II)O-Usup(VI)O/sub 3/. 2. On the system A/sub 2/sup(II)Bsup(II)Usup(VI)O/sub 6/, with Asup(II), Bsup(II) = Ba, Sr, Ca

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, A J; Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1980-07-01

    Studies on the system A/sub 2/sup(II)Bsup(II)Usup(VI)O/sub 6/ with Asup(II), Bsup(II) = Ba, Sr, Ca or combinations of these have shown that the alkaline earth ions cannot substitute each other in all proportions. The perovskites were studied by X-ray diffraction and vibrational spectroscopic methods. The lattice vibration region of the far infrared spectra proved to be of particular value in providing information on the occupancy of the A and B sites. Analysis of the spectra shows that, in the majority of cases, contary to the geometrical predictions some of the larger alkaline earth ions occupy the six-coordinated B sites and some smaller ions the A positions. The number of ions that take in this A reversible B site-exchange can amount to 20%, but is normally smaller.

  9. Transparent wide band gap crystals follow indirect allowed transition and bipolaron hopping mechanism

    Directory of Open Access Journals (Sweden)

    Feroz A. Mir

    2014-01-01

    Full Text Available Recently, we carried out structural, optical and dielectric studies on micro-crystals of Oxypeucedanin (C16H14O5, isolated from the roots of plant Prangos pabularia (Mir et al. (2014 [3,4]. The obtained trend in frequency exponent (s with frequency (ω indicates that the universal dynamic response is followed by this compound. From optical absorption spectroscopy, the optical band gap (Eg was estimated around 3.76 eV and system is showing indirect allowed transition. Using Eg in certain relation of s, a close value of s (as much close obtained by fitting ac conductivity was obtained. This method was further used for other similar systems and again same trend was obtained. So a general conclusion was made that the high transmitting wide band insulators or semiconductors may follow bipolaron hopping transport mechanism.

  10. Crystal-field investigations of rare-earth-doped wide band gap semiconductors

    CERN Multimedia

    Muller, S; Wahl, U

    Crystal field investigations play a central role in the studies of rare earth doped semiconductors. Optical stark level spectroscopy and lattice location studies of radioactive rare earth isotopes implanted at ISOLDE have provided important insight into these systems during the last years. It has been shown that despite a major site preference of the probe atoms in the lattice, several defect configurations do exist. These sites are visible in the optical spectra but their origin and nature aren't deducible from these spectra alone. Hyperfine measurements on the other hand should reveal these defect configurations and yield the parameters necessary for a description of the optical properties at the atomic scale. In order to study the crystal field with this alternative approach, we propose a new concept for perturbed $\\gamma\\gamma$-angular correlation (PAC) experiments at ISOLDE based on digital signal processing in contrast to earlier analog setups. The general functionality of the spectrometer is explained ...

  11. The microscopic origin of the doping limits in semiconductors and wide-gap materials and recent developments in overcoming these limits: a review

    International Nuclear Information System (INIS)

    Zhang, S.B.

    2002-01-01

    This paper reviews the recent developments in first-principles total energy studies of the phenomenological equilibrium 'doping limit rule' that governs the maximum electrical conductivity of semiconductors via extrinsic or intrinsic doping. The rule relates the maximum equilibrium carrier concentrations (electrons or holes) of a wide range of materials to their respective band alignments. The microscopic origin of the mysterious 'doping limit rule' is the spontaneous formation of intrinsic defects: e.g., in n-type semiconductors, the formation of cation vacancies. Recent developments in overcoming the equilibrium doping limits are also discussed: it appears that a common route to significantly increase carrier concentrations is to expand the physically accessible range of the dopant atomic chemical potential by non-equilibrium doping processes, which not only suppresses the formation of the intrinsic defects but also lowers the formation energy of the impurities, thereby significantly increasing their solubility. (author)

  12. Defect Characterization, Imaging, and Control in Wide-Bandgap Semiconductors and Devices

    Science.gov (United States)

    Brillson, L. J.; Foster, G. M.; Cox, J.; Ruane, W. T.; Jarjour, A. B.; Gao, H.; von Wenckstern, H.; Grundmann, M.; Wang, B.; Look, D. C.; Hyland, A.; Allen, M. W.

    2018-03-01

    Wide-bandgap semiconductors are now leading the way to new physical phenomena and device applications at nanoscale dimensions. The impact of defects on the electronic properties of these materials increases as their size decreases, motivating new techniques to characterize and begin to control these electronic states. Leading these advances have been the semiconductors ZnO, GaN, and related materials. This paper highlights the importance of native point defects in these semiconductors and describes how a complement of spatially localized surface science and spectroscopy techniques in three dimensions can characterize, image, and begin to control these electronic states at the nanoscale. A combination of characterization techniques including depth-resolved cathodoluminescence spectroscopy, surface photovoltage spectroscopy, and hyperspectral imaging can describe the nature and distribution of defects at interfaces at both bulk and nanoscale surfaces, their metal interfaces, and inside nanostructures themselves. These features as well as temperature and mechanical strain inside wide-bandgap device structures at the nanoscale can be measured even while these devices are operating. These advanced capabilities enable several new directions for describing defects at the nanoscale, showing how they contribute to device degradation, and guiding growth processes to control them.

  13. Nonvolatile Memories Using Quantum Dot (QD) Floating Gates Assembled on II-VI Tunnel Insulators

    Science.gov (United States)

    Suarez, E.; Gogna, M.; Al-Amoody, F.; Karmakar, S.; Ayers, J.; Heller, E.; Jain, F.

    2010-07-01

    This paper presents preliminary data on quantum dot gate nonvolatile memories using nearly lattice-matched ZnS/Zn0.95Mg0.05S/ZnS tunnel insulators. The GeO x -cladded Ge and SiO x -cladded Si quantum dots (QDs) are self-assembled site-specifically on the II-VI insulator grown epitaxially over the Si channel (formed between the source and drain region). The pseudomorphic II-VI stack serves both as a tunnel insulator and a high- κ dielectric. The effect of Mg incorporation in ZnMgS is also investigated. For the control gate insulator, we have used Si3N4 and SiO2 layers grown by plasma- enhanced chemical vapor deposition.

  14. Hubbard U calculations for gap states in dilute magnetic semiconductors.

    Science.gov (United States)

    Fukushima, T; Katayama-Yoshida, H; Sato, K; Bihlmayer, G; Mavropoulos, P; Bauer, D S G; Zeller, R; Dederichs, P H

    2014-07-09

    On the basis of constrained density functional theory, we present ab initio calculations for the Hubbard U parameter of transition metal impurities in dilute magnetic semiconductors, choosing Mn in GaN as an example. The calculations are performed by two methods: (i) the Korringa-Kohn-Rostoker (KKR) Green function method for a single Mn impurity in GaN and (ii) the full-potential linearized augmented plane-wave (FLAPW) method for a large supercell of GaN with a single Mn impurity in each cell. By changing the occupancy of the majority t2 gap state of Mn, we determine the U parameter either from the total energy differences E(N + 1) and E(N - 1) of the (N ± 1)-electron excited states with respect to the ground state energy E(N), or by using the single-particle energies for n(0) ± 1/2 occupancies around the charge-neutral occupancy n0 (Janak's transition state model). The two methods give nearly identical results. Moreover the values calculated by the supercell method agree quite well with the Green function values. We point out an important difference between the 'global' U parameter calculated using Janak's theorem and the 'local' U of the Hubbard model.

  15. Kinetics and equilibrium studies for sorption of Cu (II) and Cr (VI) ions onto polymeric composite resins

    International Nuclear Information System (INIS)

    El-Zahhhar, A.A.; Abdel-Aziz, H.M.; Siyam, T.

    2005-01-01

    The sorption behavior of Cu (II) and Cr (VI) ions from aqueous solutions was studied using polymeric composite resins. Batch sorption experiments were performed as a function of hydrogen ion concentration, complexing agent concentration, resin weight and ionic strength. Kinetic parameters as a function of initial ion concentration were determined to predict the sorption behavior of Cu (II) and Cr (VI) onto polymeric composite resins. The equilibrium data could be fitted by the frendlich adsorption isotherm equation

  16. Organic / IV, III-V Semiconductor Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Pang-Leen Ong

    2010-03-01

    Full Text Available We present a review of the emerging class of hybrid solar cells based on organic-semiconductor (Group IV, III-V, nanocomposites, which states separately from dye synthesized, polymer-metal oxides and organic-inorganic (Group II-VI nanocomposite photovoltaics. The structure of such hybrid cell comprises of an organic active material (p-type deposited by coating, printing or spraying technique on the surface of bulk or nanostructured semiconductor (n-type forming a heterojunction between the two materials. Organic components include various photosensitive monomers (e.g., phtalocyanines or porphyrines, conjugated polymers, and carbon nanotubes. Mechanisms of the charge separation at the interface and their transport are discussed. Also, perspectives on the future development of such hybrid cells and comparative analysis with other classes of photovoltaics of third generation are presented.

  17. Structural transformations of sVI tert-butylamine hydrates to sII binary hydrates with methane.

    Science.gov (United States)

    Prasad, Pinnelli S R; Sugahara, Takeshi; Sloan, E Dendy; Sum, Amadeu K; Koh, Carolyn A

    2009-10-22

    Binary clathrate hydrates with methane (CH(4), 4.36 A) and tert-butylamine (t-BuNH(2), 6.72 A) as guest molecules were synthesized at different molar concentrations of t-BuNH(2) (1.00-9.31 mol %) with methane at 7.0 MPa and 250 K, and were characterized by powder X-ray diffraction (PXRD) and Raman microscopy. A structural transformation from sVI to sII of t-BuNH(2) hydrate was clearly observed on pressurizing with methane. The PXRD showed sII signatures and the remnant sVI signatures were insignificant, implying the metastable nature of sVI binary hydrates. Raman spectroscopic data on these binary hydrates suggest that the methane molecules occupy the small cages and vacant large cages. The methane storage capacity in this system was nearly doubled to approximately 6.86 wt % for 5.56 mol % > t-BuNH(2) > 1.0 mol %.

  18. Quantum theory of the electronic and optical properties of low-dimensional semiconductor systems

    Science.gov (United States)

    Lau, Wayne Heung

    This thesis examines the electronic and optical properties of low-dimensional semiconductor systems. A theory is developed to study the electron-hole generation-recombination process of type-II semimetallic semiconductor heterojunctions based on a 3 x 3 k·p matrix Hamiltonian (three-band model) and an 8 x 8 k·p matrix Hamiltonian (eight-band model). A novel electron-hole generation and recombination process, which is called activationless generation-recombination process, is predicted. It is demonstrated that the current through the type-II semimetallic semiconductor heterojunctions is governed by the activationless electron-hole generation-recombination process at the heterointerfaces, and that the current-voltage characteristics are essentially linear. A qualitative agreement between theory and experiments is observed. The numerical results of the eight-band model are compared with those of the threeband model. Based on a lattice gas model, a theory is developed to study the influence of a random potential on the ionization equilibrium conditions for bound electron-hole pairs (excitons) in III--V semiconductor heterostructures. It is demonstrated that ionization equilibrium conditions for bound electron-hole pairs change drastically in the presence of strong disorder. It is predicted that strong disorder promotes dissociation of excitons in III--V semiconductor heterostructures. A theory of polariton (photon dressed by phonon) spontaneous emission in a III--V semiconductor doped with semiconductor quantum dots (QDs) or quantum wells (QWs) is developed. For the first time, superradiant and subradiant polariton spontaneous emission phenomena in a polariton-QD (QW) coupled system are predicted when the resonance energies of the two identical QDs (QWs) lie outside the polaritonic energy gap. It is also predicted that when the resonance energies of the two identical QDs (QWs) lie inside the polaritonic energy gap, spontaneous emission of polariton in the polariton

  19. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes.

    Science.gov (United States)

    Wu, Kaifeng; Song, Nianhui; Liu, Zheng; Zhu, Haiming; Rodríguez-Córdoba, William; Lian, Tianquan

    2013-08-15

    Recent studies of group II-VI colloidal semiconductor heterostuctures, such as CdSe/CdS core/shell quantum dots (QDs) or dot-in-rod nanorods, show that type II and quasi-type II band alignment can facilitate electron transfer and slow down charge recombination in QD-molecular electron acceptor complexes. To explore the general applicability of this wave function engineering approach for controlling charge transfer properties, we investigate exciton relaxation and dissociation dynamics in InP (a group III-V semiconductor) and InP/CdS core/shell (a heterostructure beween group III-V and II-VI semiconductors) QDs by transient absorption spectroscopy. We show that InP/CdS QDs exhibit a quasi-type II band alignment with the 1S electron delocalized throughout the core and shell and the 1S hole confined in the InP core. In InP-methylviologen (MV(2+)) complexes, excitons in the QD can be dissociated by ultrafast electron transfer to MV(2+) from the 1S electron level (with an average time constant of 11.4 ps) as well as 1P and higher electron levels (with a time constant of 0.39 ps), which is followed by charge recombination to regenerate the complex in its ground state (with an average time constant of 47.1 ns). In comparison, InP/CdS-MV(2+) complexes show similar ultrafast charge separation and 5-fold slower charge recombination rates, consistent with the quasi-type II band alignment in these heterostructures. This result demonstrates that wave function engineering in nanoheterostructures of group III-V and II-VI semiconductors provides a promising approach for optimizing their light harvesting and charge separation for solar energy conversion applications.

  20. E-beam-pumped semiconductor lasers

    Science.gov (United States)

    Rice, Robert R.; Shanley, James F.; Ruggieri, Neil F.

    1995-04-01

    The collapse of the Soviet Union opened many areas of laser technology to the West. E-beam- pumped semiconductor lasers (EBSL) were pursued for 25 years in several Soviet Institutes. Thin single crystal screens of II-VI alloys (ZnxCd1-xSe, CdSxSe1-x) were incorporated in laser CRTs to produce scanned visible laser beams at average powers greater than 10 W. Resolutions of 2500 lines were demonstrated. MDA-W is conducting a program for ARPA/ESTO to assess EBSL technology for high brightness, high resolution RGB laser projection application. Transfer of II-VI crystal growth and screen processing technology is underway, and initial results will be reported. Various techniques (cathodoluminescence, one- and two-photon laser pumping, etc.) have been used to assess material quality and screen processing damage. High voltage (75 kV) video electronics were procured in the U.S. to operate test EBSL tubes. Laser performance was documented as a function of screen temperature, beam voltage and current. The beam divergence, spectrum, efficiency and other characteristics of the laser output are being measured. An evaluation of the effect of laser operating conditions upon the degradation rate is being carried out by a design-of-experiments method. An initial assessment of the projected image quality will be performed.

  1. Micro-Raman spectroscopy as a tool for the characterization of silicon carbide in power semiconductor material processing

    Science.gov (United States)

    De Biasio, M.; Kraft, M.; Schultz, M.; Goller, B.; Sternig, D.; Esteve, R.; Roesner, M.

    2017-05-01

    Silicon carbide (SiC) is a wide band-gap semi-conductor material that is used increasingly for high voltage power devices, since it has a higher breakdown field strength and better thermal conductivity than silicon. However, in particular its hardness makes wafer processing difficult and many standard semi-conductor processes have to be specially adapted. We measure the effects of (i) mechanical processing (i.e. grinding of the backside) and (ii) chemical and thermal processing (i.e. doping and annealing), using confocal microscopy to measure the surface roughness of ground wafers and micro-Raman spectroscopy to measure the stresses induced in the wafers by grinding. 4H-SiC wafers with different dopings were studied before and after annealing, using depth-resolved micro-Raman spectroscopy to observe how doping and annealing affect: i.) the damage and stresses induced on the crystalline structure of the samples and ii.) the concentration of free electrical carriers. Our results show that mechanical, chemical and thermal processing techniques have effects on this semiconductor material that can be observed and characterized using confocal microscopy and high resolution micro Raman spectroscopy.

  2. Effect of pH and Fe/U ratio on the U(VI) removal rate by the synergistic effect of Fe(II) and O2

    Science.gov (United States)

    Fu, Yukui; Luo, Yingfeng; Fang, Qi; Xie, Yanpei; Wang, Zhihong; Zhu, Xiangyu

    2018-02-01

    As for the decommissioned uranium deposits of acid in-situ leaching, both of the concentrations of U(VI) and Fe(II) are relatively high in groundwater. In the presence of O2, the oxidation of Fe(II) into Fe(III) that forms Fe-hydroxides could effectively remove U(VI) in the forms of sorption or co-precipitation. In this process, pH condition and Fe content will have a significant effect on the U(VI) removal rate by the synergistic effect of Fe(II) and O2. In the present work, a series of batch experiments were carried out to investigate the effect of pH values and Fe/U mass ratio on the U(VI) removal rate by the synergistic effect of Fe(II) and O2. Experiment results show that the removal rate of U(VI) is mainly controlled by pH and secondly by Fe/U mass ratio. In the neutral conditions with pH at 7 and 8, the removal rate of U(VI) reaches up to 90% for all solutions with different initial Fe(II) concentrations. The optimal pH for the removal rate of U(VI) is above 7. In the acidic conditions with pH below 6, the effect of Fe/U mass ratio on the removal rate of U(VI) becomes more obvious and the optimal Fe/U mass ratio for U(VI) removal is 1:2.

  3. Quadrupole interaction in ternary chalcopyrite semiconductors experiments and theory

    CERN Document Server

    Dietrich, M; Degering, D; Deicher, M; Kortus, J; Magerle, R; Möller, A; Samokhvalov, V; Unterricker, S; Vianden, R

    2000-01-01

    Electric field gradients have been measured at substitutional lattice sites in ternary semiconductors using perturbed gamma - gamma angular correlation spectroscopy. The experimental results for A/sup I/B/sup III/C/sub 2//sup VI/ chalcopyrite structure compounds and Square Operator A/sup II/B/sub 2//sup III/C/sub 4//sup VI/ defect chalcopyrites are compared with ab-initio calculations. The latter were carried out with the WIEN code that uses the full potential linearized augmented plane wave method within a density functional theory. The agreement between experiment and theory is in most cases very good. Furthermore, the anion displacements in AgGaX/sub 2/- compounds (X: S, Se, Te) have been determined theoretically by determining the minimum of the total energy of the electrons in an elementary cell. (20 refs).

  4. Where science fiction meets reality? With oxide semiconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Fortunato, E.; Martins, R. [CENIMAT/I3N, Departamento de Ciencia dos Materiais, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, CEMOP-UNINOVA, 2829-516 Caparica (Portugal)

    2011-09-15

    Transparent electronics is today one of the most advanced topics for a wide range of device applications, where the key components are wide band gap semiconductors, where oxides of different origin play an important role, not only as passive components but also as active components similar to what we observe in conventional semiconductors. As passive components they include the use of these materials as dielectrics for a wide range of electronic devices and also as transparent electrical conductors for use in several optoelectronic applications, such as liquid crystal displays, organic light emitting diodes, solar cells, optical sensors etc. As active materials, they exploit the use of truly electronic semiconductors where the main emphasis is being put on transparent thin film transistors, light emitting diodes, lasers, ultraviolet sensors and integrated circuits among others. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Solvent extraction of W(VI) and Hg(II) with malachite green and rhodamine-B respectively into organic solvents

    International Nuclear Information System (INIS)

    Patil, V.B.; David, M.M.; Turel, Z.R.

    1992-01-01

    Aqueous malachite green and alcoholic rhodamine-B have been used for the extraction of tungsten( W(VI)) and mercury( Hg(II)) respectively into nitrobenzene. This paper deals with developing a rapid method and selective method for the extraction of tungsten(W(VI)) and mercury (Hg(II)) using malachite green and rhodamine-B respectively. 185 W and 203 Hg were used as tracers for studying the extraction process.(author). 2 refs., 2 tab

  6. Designing Phononic Crystals with Wide and Robust Band Gaps

    Science.gov (United States)

    Jia, Zian; Chen, Yanyu; Yang, Haoxiang; Wang, Lifeng

    2018-04-01

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  7. Designing Phononic Crystals with Wide and Robust Band Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanyu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jia, Zian [State University of New York at Stony Brook; Yang, Haoxiang [State University of New York at Stony Brook; Wang, Lifeng [State University of New York at Stony Brook

    2018-04-16

    Phononic crystals (PnCs) engineered to manipulate and control the propagation of mechanical waves have enabled the design of a range of novel devices, such as waveguides, frequency modulators, and acoustic cloaks, for which wide and robust phononic band gaps are highly preferable. While numerous PnCs have been designed in recent decades, to the best of our knowledge, PnCs that possess simultaneous wide and robust band gaps (to randomness and deformations) have not yet been reported. Here, we demonstrate that by combining the band-gap formation mechanisms of Bragg scattering and local resonances (the latter one is dominating), PnCs with wide and robust phononic band gaps can be established. The robustness of the phononic band gaps are then discussed from two aspects: robustness to geometric randomness (manufacture defects) and robustness to deformations (mechanical stimuli). Analytical formulations further predict the optimal design parameters, and an uncertainty analysis quantifies the randomness effect of each designing parameter. Moreover, we show that the deformation robustness originates from a local resonance-dominant mechanism together with the suppression of structural instability. Importantly, the proposed PnCs require only a small number of layers of elements (three unit cells) to obtain broad, robust, and strong attenuation bands, which offer great potential in designing flexible and deformable phononic devices.

  8. Interaction between U(VI) and Fe(II) in aqueous solution under anaerobic conditions. Closed system experiments

    International Nuclear Information System (INIS)

    Myllykylae, E.; Ollila, K.

    2011-01-01

    The aim of these experiments is to investigate the potential reduction of U(VI) carbonate and hydroxide complexes by aqueous Fe(II). This reduction phenomenon could be important under the disposal conditions of spent fuel. If groundwater enters the copper/iron canister, alpha radiolysis of the water may locally induce oxidizing conditions on the surface of UO 2 fuel, leading to the dissolution of UO 2 as more soluble U(VI) species. A potential reducing agent in the intruding water is Fe(II)(aq) from anaerobic corrosion of the copper/iron canister. The reduction of U(VI) to U(IV) would substantially decrease the solubility of U as well as co-precipitate other actinides and radionuclides. The interaction experiments were conducted in 0.01 M NaCl and 0.002 M NaHCO 3 solutions using an initial uranium concentration of either 8.4 x 10 -8 or 4.2 x 10 -7 mol/L with an initial Fe(II) concentration of 1.8 x 10 -6 in the NaCl solutions and 1.3 x 10 -6 mol/L in the NaHCO 3 solutions. Only after an equilibration period for U(VI) complexation was Fe(II) added to the solutions. The reaction times varied from 1 week to 5 months. For extra protection against O 2 , even inside a glove-box (N 2 atmosphere), the plastic reaction vessels were closed in metallic containers. The concentrations of U, Fe TOT and Fe(II) were analysed as a function of time for unfiltered, micro- and ultrafiltered samples. In addition, the precipitate on the ultrafilters was analysed with ESEM-EDS. The evolution of pH and Eh values was measured. The oxidation state of U in solution was preliminarily analysed for chosen periods. The results of the tests in 0.01 M NaCl showed an initial rapid decrease in U concentration after the addition of Fe(II) to the solution. The U found on test vessel walls at the end of the reaction periods, as well as the ESEM-EDS analyses of the filtered precipitates from the test solutions, showed that precipitation of U had occurred. The oxidation state analyses showed the presence

  9. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water

    International Nuclear Information System (INIS)

    Guo, Xiaoyao; Du, Bin; Wei, Qin; Yang, Jian; Hu, Lihua; Yan, Liangguo; Xu, Weiying

    2014-01-01

    Highlights: • Graphenes magnetic composite nanoparticles (Fe 3 O 4 -GS) were used to adsorb metal ions. • The adsorption of metal ions onto Fe 3 O 4 -GS could be well interpreted by the Freundlich equation. • The adsorption of metal ions onto Fe 3 O 4 -GS fit pseudo-second order kinetic model. • Thermodynamic studies illustrated that the adsorption process was endothermic and spontaneous in nature. - Abstract: In the present study, a kind of graphenes magnetic material (Fe 3 O 4 -GS) was prepared by compositing graphene sheet with ferroferric oxide, and shown to be effictive for removing Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) ions from aqueous solution. The synthesized sorbent was characterized by SEM, TEM, FTIR, XRD, XPS and BET, respectively. The pH ZPC value of the sorbent was estimated to be 3.5 by alkaline-titration methods. Fe 3 O 4 -GS can be simply recovered from water with magnetic separation at low magnetic field within one minute. The sorption capacities of the metals were 17.29, 27.95, 23.03, 27.83 and 22.07 mg g −1 for Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II), respectively. Kinetic data showed good correlation with pseudo-second-order equation and the Freundlich model was found to fit for the isotherm data of all the heavy metal ions. It was found that the metals sorption was accomplished mainly via chelation or ion exchange. The results of thermodynamic studies illustrate that the adsorption process was endothermic and spontaneous in nature

  10. Magnetic properties of diluted magnetic semiconductors

    NARCIS (Netherlands)

    Jonge, de W.J.M.; Swagten, H.J.M.

    1991-01-01

    A review will be given of the magnetic characteristics of diluted magnetic semiconductors and the relation with the driving exchange mechanisms. II–VI as well as IV–VI compounds will be considered. The relevance of the long-range interaction and the role of the carrier concentration will be

  11. Photoemission study of the temperature-dependent energy-gap formation in the Kondo semiconductor CeRhAs

    International Nuclear Information System (INIS)

    Shimada, K.; Arita, M.; Takeda, Y.; Namatame, H.; Taniguchi, M.; Higashiguchi, M.; Oguchi, T.; Sasakawa, T.; Suemitsu, T.; Takabatake, T.

    2004-01-01

    Full text: The orthorhombic CeRhAs, known as a Kondo semiconductor, has attracted much interest for its unusual energy-gap formation associated with the successive 1st order phase transitions. In order to elucidate the mechanism of the energy- gap formation, we have done high-resolution temperature-dependent photoemission spectroscopy on the undulator beamlines of a compact electron-storage ring, HiSOR, at Hiroshima University. We have observed directly the energy-gap formation in the Ce 4f states and in the conduction bands. Comparing with the isostructural Kondo semimetal CeRhSb, we discuss the energy gap formation in CeRhAs

  12. Graphene-insulator-semiconductor capacitors as superior test structures for photoelectric determination of semiconductor devices band diagrams

    Directory of Open Access Journals (Sweden)

    K. Piskorski

    2018-05-01

    Full Text Available We report on the advantages of using Graphene-Insulator-Semiconductor (GIS instead of Metal-Insulator-Semiconductor (MIS structures in reliable and precise photoelectric determination of the band alignment at the semiconductor-insulator interface and of the insulator band gap determination. Due to the high transparency to light of the graphene gate in GIS structures large photocurrents due to emission of both electrons and holes from the substrate and negligible photocurrents due to emission of carriers from the gate can be obtained, which allows reliable determination of barrier heights for both electrons, Ee and holes, Eh from the semiconductor substrate. Knowing the values of both Ee and Eh allows direct determination of the insulator band gap EG(I. Photoelectric measurements were made of a series of Graphene-SiO2-Si structures and an example is shown of the results obtained in sequential measurements of the same structure giving the following barrier height values: Ee = 4.34 ± 0.01 eV and Eh = 4.70 ± 0.03 eV. Based on this result and results obtained for other structures in the series we conservatively estimate the maximum uncertainty of both barrier heights estimations at ± 0.05 eV. This sets the SiO2 band gap estimation at EG(I = 7.92 ± 0.1 eV. It is shown that widely different SiO2 band gap values were found by research groups using various determination methods. We hypothesize that these differences are due to different sensitivities of measurement methods used to the existence of the SiO2 valence band tail.

  13. Graphene-insulator-semiconductor capacitors as superior test structures for photoelectric determination of semiconductor devices band diagrams

    Science.gov (United States)

    Piskorski, K.; Passi, V.; Ruhkopf, J.; Lemme, M. C.; Przewlocki, H. M.

    2018-05-01

    We report on the advantages of using Graphene-Insulator-Semiconductor (GIS) instead of Metal-Insulator-Semiconductor (MIS) structures in reliable and precise photoelectric determination of the band alignment at the semiconductor-insulator interface and of the insulator band gap determination. Due to the high transparency to light of the graphene gate in GIS structures large photocurrents due to emission of both electrons and holes from the substrate and negligible photocurrents due to emission of carriers from the gate can be obtained, which allows reliable determination of barrier heights for both electrons, Ee and holes, Eh from the semiconductor substrate. Knowing the values of both Ee and Eh allows direct determination of the insulator band gap EG(I). Photoelectric measurements were made of a series of Graphene-SiO2-Si structures and an example is shown of the results obtained in sequential measurements of the same structure giving the following barrier height values: Ee = 4.34 ± 0.01 eV and Eh = 4.70 ± 0.03 eV. Based on this result and results obtained for other structures in the series we conservatively estimate the maximum uncertainty of both barrier heights estimations at ± 0.05 eV. This sets the SiO2 band gap estimation at EG(I) = 7.92 ± 0.1 eV. It is shown that widely different SiO2 band gap values were found by research groups using various determination methods. We hypothesize that these differences are due to different sensitivities of measurement methods used to the existence of the SiO2 valence band tail.

  14. Investigations of small-gap semiconductors: HgTe, HgMnTe and PbMnTe in the far infrared region using Fourierspectroscopic methods

    International Nuclear Information System (INIS)

    Roschger, I.

    1985-05-01

    A special method was developed in the framework of this thesis to solve the inherent problem of dynamic range in Fourier spectrometry by using optical compensation. The so-called dual beam spectrometer consists of two coupled interferometers. This technique was adapted for measurements on small gap semiconductors. The investigated sample was n-HgTe, for which a resonant acceptor absorption in the conduction band was predicted. By alloying Mn-ions into the inverted gap-HgTe-crystal the band gap can be tuned to an open gap band structure. The mixed crystal exhibits additional structures in the phonon spectrum. The model of Barker and Verleur (including clustering) was applied. The substitution of Mn-ions in the IV-VI-compound PbTe leads to semimagnetic effects resolved by magneto-reflectivity measurements. The extrapolation in the fan-charts to zero-magnetic field suggests residual spin splitting either in the conduction and/or in the valence band. To evaluate the data an oscillator fit was applied to cyclotron absorption (Faraday- and Voigt-configuration) and was proved to be in agreement with the experimental data. Zero field splitting appears in PbMnTe in the valence band and indicates a weak ferromagnetism already observed in other measurements cited in the literature. Kramers-Kronig-data were in agreement with the theoretical results of the Barker-Verleur-model. The influence of clustering in the mixed crystal HgMnTe on the phonon spectra must be taken into account for Mn concentrations > 20%. The existence of the resonance acceptor state in HgTe was proved by optical transmission measurements. (Author, shortened by G.Q.)

  15. Adsorption of Cu (II), Pb (II) and Cr (VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose.

    Science.gov (United States)

    Xu, Qinghua; Wang, Yulu; Jin, Liqiang; Wang, Yu; Qin, Menghua

    2017-10-05

    A novel nanocomposite based on black wattle (BW) tannin and nanocellulose was prepared and applied in heavy metal ions adsorptive removal from aqueous solutions. Firstly, nanocrystalline cellulose was oxidized by sodium periodate to get dialdehyde nanocellulose (DANC). BW tannin was then covalently immobilized onto DANC, which was used as both the matrix and crosslinker, to obtain tannin-nanocellulose (TNCC) composite. The resulting nanocomposite was characterized using FTIR, AFM, and TG. The successful immobilization was confirmed by the chromogenic reaction between FeCl 3 and TNCC and FT-IR analysis. AFM images revealed that TNCC was ellipsoidal particles with lengths ranging from 100-400nm. Zeta potential measurement showed that TNCC was negative charged at a pH range from 1-12. Compared to the original tannin, the thermal stability of TNCC was slightly increased by the addition of nanocellulose. TNCC demonstrated the maximum adsorption efficiency at pH2 for Cr(VI) and pH 6 for Cu(II) and Pb(II), respectively. The adsorption for these three metal ions followed pseudo second-order kinetics, indicating the chemisorption nature. The adsorption isotherms all fitted well with the Sips model, and the calculated maximum adsorption capacities were 51.846mgg -1 , 53.371mgg -1 and 104.592mgg -1 for Cu(II), Pb(II) and Cr (VI), respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Study on Characteristic of CdZnTe Semiconductor Detectors for Alpha Particle Measurement

    International Nuclear Information System (INIS)

    Kang, Sang Mook; Ha, Jang Ho; Kim, Yong Kyun; Park, Se Hwan; Kim, Han Soo; Chung, Chong Eun

    2005-01-01

    The last 2-3 years have seen continued effort in the development of a wide band gap room-temperature compound semiconductor devices aimed principally at photon imaging covering hard X-rays, synchrotrons, and low to medium energy gamma rays. Especially, among the semiconductor materials of a wide band gap, CdZnTe(CZT) has commonly used X-ray and gammaray detection applications because of the opportunity to achieve and excellent spectral and spatial resolution. It has recently been demonstrated that CZT can be used as an ancillary detector with the ability to detect both alpha particles and X-ray at room temperature. CZT detectors are relatively inexpensive compared with some silicon detectors, and are priced about the same as amorphous silicon and photodiodes which are routinely used for charged particle detection. In this paper, we investigated the use of the CZT semiconductor material as an alpha particles detector

  17. Electronic paramagnetic resonance in the Mn In X (X:Te,S) diluted magnetic semiconductor system; Resonancia paramagnetica electronica en el sistema semiconductor magnetico diluido Cd Mn In X (X:Te,S)

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Bernardo; Betancourt, Luis; Sagredo, Vicente [Universidad de los Andes, Merida (Venezuela). Dept. de Fisica; Alcala, Rafael [Zaragoza Univ. (Spain). Dept. de Fisica de la Materia Condensada

    1997-12-31

    Semiconductor compounds wit the II-III-VI stoichiometry are very interesting materials since they present very good semiconducting characteristics and, along with strong magnetic properties, these II Mn In VI compounds have a great potential as opt and magneto-electronic devices. Among the possible magnetic properties of the materials is the presence of the spin-glass phase. Electron paramagnetic resonance is one of the techniques used to confirm this phase. The chosen crystals were chosen by chemical vapor transport. The absorption lines of these two families with 0.1 x 1 were all Lorentzian in shape and centred at g=2. A large broadening of the resonance line width was observed when lowering the temperature to below 80 K. This behaviour was fitted to the known existing models, and good values of the calculated parameters were obtained (author). 18 refs., 2 figs., 2 tabs.

  18. FIR spectroscopy of iron-based semimagnetic semiconductors

    NARCIS (Netherlands)

    Hausenblas, M.; Claessen, L.M.; Wittlin, A.; Twardowski, A.; Ortenberg, von M.; Jonge, de W.J.M.; Wyder, P.

    1989-01-01

    We report far-infrared studies of low energy levels of Fe2+ ions in ZnSe and related wide-gap semimagnetic semiconductors in magnetic fields up to 20 T. Transitions between 5E levels are observed and the experimental results are in good agreement with the standard model of single iron impurities in

  19. Electronic paramagnetic resonance in the Mn In X (X:Te,S) diluted magnetic semiconductor system

    International Nuclear Information System (INIS)

    Vincent, Bernardo; Betancourt, Luis; Sagredo, Vicente; Alcala, Rafael

    1996-01-01

    Semiconductor compounds wit the II-III-VI stoichiometry are very interesting materials since they present very good semiconducting characteristics and, along with strong magnetic properties, these II Mn In VI compounds have a great potential as opt and magneto-electronic devices. Among the possible magnetic properties of the materials is the presence of the spin-glass phase. Electron paramagnetic resonance is one of the techniques used to confirm this phase. The chosen crystals were chosen by chemical vapor transport. The absorption lines of these two families with 0.1 x 1 were all Lorentzian in shape and centred at g=2. A large broadening of the resonance line width was observed when lowering the temperature to below 80 K. This behaviour was fitted to the known existing models, and good values of the calculated parameters were obtained (author)

  20. Structural Fluctuation and Thermophysical Properties of Molten II-VI Compounds

    Science.gov (United States)

    2003-01-01

    The objectives of the project is to conduct ground-based experimental and theoretical research on the structural fluctuations and thermophysical properties of molten II-VI compounds to enhance the basic understanding of the existing flight experiments in microgravity materials science programs and to study the fundamental heterophase fluctuations phenomena in these melts by: 1) Conducting neutron scattering analysis and measuring quantitatively the relevant thermophysical properties of the II-VI melts such as viscosity, electrical conductivity, thermal diffusivity and density as well as the relaxation characteristics of these properties to advance the understanding of the structural properties and the relaxation phenomena in these melts and 2) Performing theoretical analyses on the melt systems to interpret the experimental results. All the facilities required for the experimental measurements have been procured, installed and tested. A relaxation phenomenon, which shows a slow drift of the measured thermal conductivity toward the equilibrium value after cooling of the sample, was observed for the first time. An apparatus based on the transient torque induced by a rotating magnetic field has been developed to determine the viscosity and electrical conductivity of semiconducting liquids. Viscosity measurements on molten tellurium showed similar relaxation behavior as the measured diffusivity. Neutron scattering experiments were performed on the HgTe and HgZnTe melts and the results on pair distribution showed better resolution than previous reported.

  1. Fundamentals of semiconductor lasers

    CERN Document Server

    Numai, Takahiro

    2015-01-01

    This book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.   The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.    Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.

  2. Probing the exciton density of states in semiconductor nanocrystals using integrated photoluminescence spectroscopy

    CERN Document Server

    Filonovich, S A; Vasilevskiy, M I; Rolo, A G; Gomes, M J M; Artemiev, M V; Talapin, D V; Rogach, A L

    2002-01-01

    We present the results of a comparative analysis of the absorption and photoluminescence excitation (PLE) spectra vs. integrated photoluminescence (IPL) measured as a function of the excitation wavelength for a number of samples containing II-VI semiconductor nanocrystals (NCs) produced by different techniques. The structure of the absorption and PL spectra due to excitons confined in NCs and difficulties with the correct interpretation of the transmittance and PLE results are discussed. It is shown that, compared to the conventional PLE, the IPL intensity plotted against the excitation wavelength (IPLE spectra) reproduce better the structure of the absorption spectra. Therefore, IPLE spectroscopy can be successfully used for probing the quantized electron-hole (e-h) transitions in semiconductor nanocrystals. (author)

  3. Sorption Studies of Chromium(VI and Mercury(II by High Temperature Activated Carbon from Syzygium Jambolanum Nut

    Directory of Open Access Journals (Sweden)

    S. Sophie Beulah

    2010-01-01

    Full Text Available High temperature activated Syzygium Jambolanum nut carbon (HSJC has been effectively used for the removal of Cr(VI and Hg(II from aqueous solution by batch experiments. Effect of pH, carbon dose and equilibration time were determined. Adsorption followed Freundlich and Langmuir isotherms. Kinetic studies indicated that the removal process followed reversible first order equation. Desorption of Cr(VI was done with 1 M NaOH and 10% H2O2 mixture and Hg(II with 2% Na2S in 1% NaOH. The performance of HSJC was compared with a commercial activated carbon (CAC.

  4. Positron annihilation spectroscopic characterization of defects in wide band gap oxide semiconductors

    Science.gov (United States)

    Sarkar, A.; Luitel, Homnath; Gogurla, N.; Sanyal, D.

    2017-03-01

    Annealing effect of granular ZnO has been studied by Doppler broadened electron positron annihilated γ-ray (0.511 MeV) line shape measurement. Ratio curve analysis shows that granular ZnO samples contain both Zn and O vacancies. Such defects exist as agglomerates of several vacancies and start to recover above 400 °C annealing. It has also been observed that due to annealing temperature difference of 125 °C (from 325 °C to 450 °C), huge change occurs in low temperature photoluminescence (PL) of ZnO. Significant reduction of free to bound (FB) transition ~3.315 eV is observed for increasing the annealing temperature. It has been conjectured that ~3.315 eV PL in ZnO is related to particular decoration (unknown) of both Zn and O vacancies. The methodology of revealing defect-property correlation as employed here can also be applied to other types of semiconductors.

  5. Analytical recovery of Cr (VI), Mo (VI), Ti (IV) and Co (II) by N-phenyl-meta-nitro-benzohydroxamic and N-P-tolyl-meta-nitro-benzohydroxamic acids

    International Nuclear Information System (INIS)

    Ahmed, Abdul Aziz Malik Mohamed

    2000-05-01

    Two hydroxamic acids were prepared; N-phenyl-m-nitro-benzohydroxamic and N-p-tolyl-m-nitro-benzo hydroxamic acids. N-phenyl-m-nitro-benzohydroxamic was prepared by coupling the β-phenyl hydroxylamine with m-nitro-benzoyl chloride in ratio 1:1 in alkaline medium at zero degree centigrade. It recrystallized from a mixture of benzene and petroleum ether (2:1) with the yield of 67%. The product was characterized by: A-nitrogen content which was found to be 10.7% (lit. 10.9%). B-infra-red spectroscopy. C-the molecular weight which was determined by titration, was found to be 257.7 gram (lit. 257 gram). D-the molecular weight which was determined by elevation of the boiling point, was found to be 253.7 gram (lit. 257 gram). E-characteristic violet color reaction with vanadium and blood-red reaction with ferric chloride solutions. F-melting point 117 degree centigrade. N-p-tolyl-m-nitro benzo hydroxamic acid was prepared by coupling the p-tolyl-hydroxylamine with m-nitro benzoyl chloride using the same procedure. It was recrystallized from a mixture of benzene and petroleum ether (2:1) with the yield of 63%. The product was characterized by: A-nitrogen content which was found to be 10.1% (lit. 10.3). B-infra-red spectroscopy. C-the molecular weight which was determined by titration, was found to be 271.6 gram (lit. 272). D-the molecular weight which was determined by elevation of the boiling point, was found to be 269.9 gram (lit. 272 gram). E.characteristic violet color reaction with vanadium and blood-red color with ferric chloride solutions. F-melting point which was found to be 105 degree centigrade (lit. 106 degree c). the two hydroxamic acids were used as analytical reagents for extraction of metal ions Ti (IV), Cr (VI), Mo (VI) and Co (II). With an equal volume of the organic and aqueous phase, and only one extraction, N-phenyl-m-nitro-benzohydroxamic acid was found to have a maximum extraction of 30.18% for Ti (IV) at pH 2.0, of 97.06% for Cr (VI) at 3MH 2 SO 4

  6. Enhancement strategies for Cu(II), Cr(III) and Cr(VI) remediation by a variety of seaweed species.

    Science.gov (United States)

    Murphy, V; Hughes, H; McLoughlin, P

    2009-07-15

    Various chemical treatments have been applied to six brown, red and green seaweed species with a view to enhancing their metal removal for Cu(II), Cr(III) and Cr(VI). Treatment with acetone resulted in the greatest enhancement for both cationic and anionic species with relatively low mass losses (15-35%), indicating its low risk to biomass operational stability. Cation binding was increased by 69%, while the total Cr removal was augmented by 15%. Cr(VI) binding was shown to be an adsorption-coupled reduction, whereby Cr(VI) was bound to the biomass surface at pH 2 and subsequently reduced to Cr(III). Acetone treatment also resulted in biomasses that were capable of converting up to 83% of Cr(VI) in solution to Cr(III). Blocking of carboxyl and amino functionalities had significant negative effects both on total Cr removal as well as percentage conversion of Cr(VI) to Cr(III). Results therefore indicated the significant role played by these moieties in metal binding to these seaweeds. Potentiometric titrations displayed agreement between the degree of esterification and the decrease in Cu(II) removal for Ulva spp. and Polysiphonia lanosa. FTIR analysis identified changes in biomass functionality and availability after chemical modification, the results of which were in agreement with metal removal studies. In conclusion, these biosorbents represent suitable candidates to replace conventional removal technologies for metal bearing wastewaters, in particular for the detoxification of hazardous Cr(VI) waste streams.

  7. Ag-based semiconductor photocatalysts in environmental purification

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiade; Fang, Wen [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); Yu, Changlin, E-mail: yuchanglinjx@163.com [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); School of Environment Engineering and biology Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000 Guangdong Province (China); Zhou, Wanqin [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002 (China); Zhu, Lihua [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province (China); Xie, Yu, E-mail: xieyu_121@163.com [College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, Jiangxi (China)

    2015-12-15

    Graphical abstract: Ag-based semiconductors as promising visible light-driven photocatalysts have aroused much interesting due to their strong visible light responsibility. Formation of heterojunction could largely promote the electron/hole pair separation, resulting in highly photocatalytic activity and stability. - Highlights: • Recent research progress in the fabrication and application of Ag-based semiconductor photocatalyts. • The advantages and disadvantages of Ag-based semiconductor as photocatalysts. • Strategies in design Ag-based semiconductor photocatalysts with high performance. - Abstract: Over the past decades, with the fast development of global industrial development, various organic pollutants discharged in water have become a major source of environmental pollution in waste fields. Photocatalysis, as green and environmentally friendly technology, has attracted much attention in pollutants degradation due to its efficient degradation rate. However, the practical application of traditional semiconductor photocatalysts, e.g. TiO{sub 2}, ZnO, is limited by their weak visible light adsorption due to their wide band gaps. Nowadays, the study in photocatalysts focuses on new and narrow band gap semiconductors. Among them, Ag-based semiconductors as promising visible light-driven photocatalysts have aroused much interesting due to their strong visible light responsibility. Most of Ag-based semiconductors could exhibit high initial photocatalytic activity. But they easy suffer from poor stability because of photochemical corrosion. Design heterojunction, increasing specific surface area, enriching pore structure, regulating morphology, controlling crystal facets, and producing plasmonic effects were considered as the effective strategies to improve the photocatalytic performance of Ag-based photocatalyts. Moreover, combining the superior properties of carbon materials (e.g. carbon quantum dots, carbon nano-tube, carbon nanofibers, graphene) with Ag

  8. Ag-based semiconductor photocatalysts in environmental purification

    International Nuclear Information System (INIS)

    Li, Jiade; Fang, Wen; Yu, Changlin; Zhou, Wanqin; Zhu, Lihua; Xie, Yu

    2015-01-01

    Graphical abstract: Ag-based semiconductors as promising visible light-driven photocatalysts have aroused much interesting due to their strong visible light responsibility. Formation of heterojunction could largely promote the electron/hole pair separation, resulting in highly photocatalytic activity and stability. - Highlights: • Recent research progress in the fabrication and application of Ag-based semiconductor photocatalyts. • The advantages and disadvantages of Ag-based semiconductor as photocatalysts. • Strategies in design Ag-based semiconductor photocatalysts with high performance. - Abstract: Over the past decades, with the fast development of global industrial development, various organic pollutants discharged in water have become a major source of environmental pollution in waste fields. Photocatalysis, as green and environmentally friendly technology, has attracted much attention in pollutants degradation due to its efficient degradation rate. However, the practical application of traditional semiconductor photocatalysts, e.g. TiO 2 , ZnO, is limited by their weak visible light adsorption due to their wide band gaps. Nowadays, the study in photocatalysts focuses on new and narrow band gap semiconductors. Among them, Ag-based semiconductors as promising visible light-driven photocatalysts have aroused much interesting due to their strong visible light responsibility. Most of Ag-based semiconductors could exhibit high initial photocatalytic activity. But they easy suffer from poor stability because of photochemical corrosion. Design heterojunction, increasing specific surface area, enriching pore structure, regulating morphology, controlling crystal facets, and producing plasmonic effects were considered as the effective strategies to improve the photocatalytic performance of Ag-based photocatalyts. Moreover, combining the superior properties of carbon materials (e.g. carbon quantum dots, carbon nano-tube, carbon nanofibers, graphene) with Ag

  9. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating.

    Science.gov (United States)

    Knutson, Jeremy L; Martin, James D; Mitzi, David B

    2005-06-27

    Structural distortions within the extensive family of organic/inorganic hybrid tin iodide perovskite semiconductors are correlated with their experimental exciton energies and calculated band gaps. The extent of the in- and out-of-plane angular distortion of the SnI4(2-) perovskite sheets is largely determined by the relative charge density and steric requirements of the organic cations. Variation of the in-plane Sn-I-Sn bond angle was demonstrated to have the greatest impact on the tuning of the band gap, and the equatorial Sn-I bond distances have a significant secondary influence. Extended Hückel tight-binding band calculations are employed to decipher the crystal orbital origins of the structural effects that fine-tune the band structure. The calculations suggest that it may be possible to tune the band gap by as much as 1 eV using the templating influence of the organic cation.

  10. Uranium(VI) retention on quartz and kaolinite. Experiments and modelling

    International Nuclear Information System (INIS)

    Mignot, G.

    2001-01-01

    The behaviour of uranium in the geosphere is an important issue for safety performance assessment of nuclear waste repositories, or in the context of contaminated sites due to mining activity related to nuclear field. Under aerobic conditions, the fate of uranium is mainly governed by the ability of minerals to sorb U(VI) aqueous species. Hence, a thorough understanding of U(VI) sorption processes on minerals is required to provide a valuable prediction of U(VI) migration in the environment. In this study, we performed sorption/desorption experiments of U(VI) on quartz and kaolinite, for systems favouring the formation in solution (i) of UO 2 2+ and monomeric hydrolysis products or (ii) of di-/tri-meric uranyl aqueous species, and / or U(VI)-colloids or UO 2 (OH) 2 precipitates, or (iii) of uranyl-carbonate complexes. Particular attention was paid to determine the surface characteristics of the solids and their modification due to dissolution/precipitation processes during experiments. A double layer surface complexation model was applied to our experimental data in order to derive surface complexation equilibria and intrinsic constants which allow a valuable description of U(VI) retention over a wide range of pH, ionic strength, initial concentration of uranium [0.1-10μM] and solid - solution equilibration time. U(VI) sorption on quartz was successfully modeled by using two sets of adsorption equilibria, assuming (i) the formation of the surface complexes SiOUO 2 + , SiOUO 2 OH and SiO(UO 2 ) 3 (OH) 5 , or (ii) the formation of the mono-dentate complex SiO(UO 2 ) 3 (OH) 5 and of the bidentate complex (SiO) 2 UO 2 . Assumptions on the density of each type of surface sites of kaolinite and on their acid-base properties were made from potentiometric titrations of kaolinite suspensions. We proposed on such a basis a set of surface complexation equilibria which accounts for U(VI) uptake on kaolinite over a wide range of chemical conditions, with aluminol edge sites as

  11. Visible light photoreduction of CO.sub.2 using heterostructured catalysts

    Science.gov (United States)

    Matranga, Christopher; Thompson, Robert L; Wang, Congjun

    2015-03-24

    The method provides for use of sensitized photocatalyst for the photocatalytic reduction of CO.sub.2 under visible light illumination. The photosensitized catalyst is comprised of a wide band gap semiconductor material, a transition metal co-catalyst, and a semiconductor sensitizer. The semiconductor sensitizer is photoexcited by visible light and forms a Type II band alignment with the wide band gap semiconductor material. The wide band gap semiconductor material and the semiconductor sensitizer may be a plurality of particles, and the particle diameters may be selected to accomplish desired band widths and optimize charge injection under visible light illumination by utilizing quantum size effects. In a particular embodiment, CO.sub.2 is reduced under visible light illumination using a CdSe/Pt/TiO2 sensitized photocatalyst with H.sub.2O as a hydrogen source.

  12. Design and exploration of semiconductors from first principles: A review of recent advances

    Science.gov (United States)

    Oba, Fumiyasu; Kumagai, Yu

    2018-06-01

    Recent first-principles approaches to semiconductors are reviewed, with an emphasis on theoretical insight into emerging materials and in silico exploration of as-yet-unreported materials. As relevant theory and methodologies have developed, along with computer performance, it is now feasible to predict a variety of material properties ab initio at the practical level of accuracy required for detailed understanding and elaborate design of semiconductors; these material properties include (i) fundamental bulk properties such as band gaps, effective masses, dielectric constants, and optical absorption coefficients; (ii) the properties of point defects, including native defects, residual impurities, and dopants, such as donor, acceptor, and deep-trap levels, and formation energies, which determine the carrier type and density; and (iii) absolute and relative band positions, including ionization potentials and electron affinities at semiconductor surfaces, band offsets at heterointerfaces between dissimilar semiconductors, and Schottky barrier heights at metal–semiconductor interfaces, which are often discussed systematically using band alignment or lineup diagrams. These predictions from first principles have made it possible to elucidate the characteristics of semiconductors used in industry, including group III–V compounds such as GaN, GaP, and GaAs and their alloys with related Al and In compounds; amorphous oxides, represented by In–Ga–Zn–O transparent conductive oxides (TCOs), represented by In2O3, SnO2, and ZnO; and photovoltaic absorber and buffer layer materials such as CdTe and CdS among group II–VI compounds and chalcopyrite CuInSe2, CuGaSe2, and CuIn1‑ x Ga x Se2 (CIGS) alloys, in addition to the prototypical elemental semiconductors Si and Ge. Semiconductors attracting renewed or emerging interest have also been investigated, for instance, divalent tin compounds, including SnO and SnS; wurtzite-derived ternary compounds such as ZnSnN2 and Cu

  13. Electron Transfer Pathways Facilitating U(VI) Reduction by Fe(II) on Al- vs Fe-Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, S. D. [Pacific Northwest National Laboratory, Physical Sciences Division, P.O. Box; Becker, U. [The University of Michigan, Department of Earth; Rosso, K. M. [Pacific Northwest National Laboratory, Physical Sciences Division, P.O. Box

    2017-09-06

    This study continues mechanistic development of heterogeneous electron transfer (ET) pathways at mineral surfaces in aquatic environments that enable the reduction U(VI) by surface-associated Fe(II). Using computational molecular simulation within the framework of Marcus Theory, our findings highlight the importance of the configurations and interaction of the electron donor and acceptor species with the substrate, with respect to influencing its electronic structure and thereby the ability of semiconducting minerals to facilitate ET. U(VI) reduction by surface-associated Fe(II) (adsorbed or structurally incorporated into the lattice) on an insulating, corundum (001) surface (α-Al2O3) occurs when proximal inner-sphere (IS) surface complexes are formed, such that ET occurs through a combination of direct exchange (i.e., Fe d- and U f-orbitals overlap through space) and superexchange via intervening surface oxygen atoms. U(VI) reduction by coadsorbed Fe(II) on the isostructural semiconducting hematite (α-Fe2O3) basal surface requires either their direct electronic interaction (e.g., IS complexation) or mediation of this interaction indirectly through the surface via an intrasurface pathway. Conceptually possible longer-range ET by charge-hopping through surface Fe atoms was investigated to determine whether this indirect pathway is competitive with direct ET. The calculations show that energy barriers are large for this conduction-based pathway; interfacial ET into the hematite surface is endothermic (+80.1 kJ/mol) and comprises the rate-limiting step (10–6 s–1). The presence of the IS adsorbates appears to weaken the electronic coupling between underlying Fe ions within the surface, resulting in slower intra-surface ET (10–5 s–1) than expected in the bulk basal plane. Our findings lay out first insights into donor-acceptor communication via a charge-hopping pathway through the surface for heterogeneous reduction of U(VI) by Fe(II) and help provide a basis

  14. 77 FR 27081 - II-VI, Incorporated, Infrared Optics-Saxonburg Division, Saxonburg, Pennsylvania; Notice of...

    Science.gov (United States)

    2012-05-08

    ..., Infrared Optics--Saxonburg Division, Saxonburg, Pennsylvania; Notice of Affirmative Determination Regarding... Assistance (TAA) applicable to workers and former workers of II-VI, Incorporated, Infrared Optics--Saxonburg...). The workers were engaged in employment related to the production of infrared and CO 2 laser optics...

  15. Nanostructured Semiconductor Electrodes for Solar Energy Conversion and Innovations in Undergraduate Chemical Lab Curriculum

    Science.gov (United States)

    Lee, Sudarat

    This dissertation presents the methodology and discussion of preparing nanostructured, high aspect ratio p-type phosphide-based binary and ternary semiconductors via "top-down" anodic etching, a process which creates nanostructures from a large parent entity, and "bottom-up" vapor-liquid-solid growth, a mechanism which builds up small clusters of molecules block-by-block. Such architecture is particularly useful for semiconducting materials with incompatible optical absorption depth and charge carrier diffusion length, as it not only relaxes the requirement for high-grade crystalline materials, but also increases the carrier collection efficiencies for photons with energy greater than or equal to the band gap. The main focus of this dissertation is to obtain nanostructured p-type phosphide semiconductors for photoelectrochemical (PEC) cell applications. Chapter II in the thesis describes a methodology for creating high-aspect ratio p-GaP that function as a photocathode under white light illumination. Gallium phosphide (GaP, band gap: 2.26 eV) is a suitable candidate for solar conversion and energy storage due to its ability to generate large photocurrent and photovoltage to drive fuel-forming reactions. Furthermore, the band edge positions of GaP can provide sufficient kinetics for the reduction of protons and carbon dioxide. The structure is prepared by anodic etching, and the resulting macroporous structures are subsequently doped with Zn by thermally driving in Zn from conformal ZnO films prepared by atomic layer deposition (ALD). The key finding of this work is a viable doping strategy involving ALD ZnO films for making functioning p-type GaP nanostructures. Chapter III compares the GaP nanowires grown from gold (Au) and tin (Sn) VLS catalysts in a benign solid sublimation growth scheme in terms of crystal structure and photoactivity. Sn is less noble than Au, allowing complete removal of Sn metal catalysts from the nanowires through wet chemical etching which

  16. Performance of TcI/TcVI/TcII Chagas-Flow ATE-IgG2a for universal and genotype-specific serodiagnosis of Trypanosoma cruzi infection.

    Directory of Open Access Journals (Sweden)

    Glaucia Diniz Alessio

    2017-03-01

    Full Text Available Distinct Trypanosoma cruzi genotypes have been considered relevant for patient management and therapeutic response of Chagas disease. However, typing strategies for genotype-specific serodiagnosis of Chagas disease are still unavailable and requires standardization for practical application. In this study, an innovative TcI/TcVI/TcII Chagas Flow ATE-IgG2a technique was developed with applicability for universal and genotype-specific diagnosis of T. cruzi infection. For this purpose, the reactivity of serum samples (percentage of positive fluorescent parasites-PPFP obtained from mice chronically infected with TcI/Colombiana, TcVI/CL or TcII/Y strain as well as non-infected controls were determined using amastigote-AMA, trypomastigote-TRYPO and epimastigote-EPI in parallel batches of TcI, TcVI and TcII target antigens. Data demonstrated that "α-TcII-TRYPO/1:500, cut-off/PPFP = 20%" presented an excellent performance for universal diagnosis of T. cruzi infection (AUC = 1.0, Se and Sp = 100%. The combined set of attributes "α-TcI-TRYPO/1:4,000, cut-off/PPFP = 50%", "α-TcII-AMA/1:1,000, cut-off/PPFP = 40%" and "α-TcVI-EPI/1:1,000, cut-off/PPFP = 45%" showed good performance to segregate infections with TcI/Colombiana, TcVI/CL or TcII/Y strain. Overall, hosts infected with TcI/Colombiana and TcII/Y strains displayed opposite patterns of reactivity with "α-TcI TRYPO" and "α-TcII AMA". Hosts infected with TcVI/CL strain showed a typical interweaved distribution pattern. The method presented a good performance for genotype-specific diagnosis, with global accuracy of 69% when the population/prototype scenario include TcI, TcVI and TcII infections and 94% when comprise only TcI and TcII infections. This study also proposes a receiver operating reactivity panel, providing a feasible tool to classify serum samples from hosts infected with distinct T. cruzi genotypes, supporting the potential of this method for universal and genotype-specific diagnosis

  17. Behavior of copper (II )and uranium ( VI) in precipitation chromatography in the system anion exchange resin - hexacyanoferrate (II )

    International Nuclear Information System (INIS)

    Seneda, Jose Antonio

    1997-01-01

    In this work it is shown the efficiency of precipitation chromatography for separation and concentration of metallic elements by using a strong anionic-exchange resin saturated with hexacyanoferrate (II). Metallic cations, like Cu (II) and U (VI), are retained from highly diluted solutions and enriched into the resin, in the form of the correspondent insoluble hexacyanoferrate (II), precipitated inside the resin, which permitted the visual observation of a chromatographic zone on the top of the column. It will be discussed the conditions of sorption and elution of the cations uptake by the resin. This system permits the enrichment of the above mentioned cations onto the resin and offers the possibility of interesting separations as well. (author)

  18. Tl{sub 4}CdI{sub 6} – Wide band gap semiconductor: First principles modelling of the structural, electronic, optical and elastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Piasecki, M., E-mail: m.piasecki@ajd.czest.pl [Institute of Physics, Jan Dlugosz University, Armii Krajowej 13/15, 42-200 Czestochowa (Poland); Brik, M.G. [College of Sciences, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Institute of Physics, University of Tartu, Ravila 14C, Tartu 50411 (Estonia); Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Kityk, I.V. [Faculty of Electrical Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa (Poland)

    2015-08-01

    A novel infrared optoelectronic material Tl{sub 4}CdI{sub 6} was studied using the density functional theory (DFT)-based techniques. Its structural, electronic, optical and elastic properties were all calculated in the generalized gradient approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) and the local density approximation (LDA) with the Ceperley-Alder–Perdew-Zunger (CA–PZ) functionals. The studied material is a direct band gap semiconductor with the calculated band gaps of 2.043 eV (GGA) and 1.627 eV (LDA). The wavelength dependence of the refractive index was fitted to the Sellmeier equation in the spectral range from 400 to 2000 nm. Good agreement between the GGA-calculated values of refractive index and experimental data was achieved. To the best of our knowledge, this is the first consistent theoretical description of the title compound, which includes calculations and analysis of the structural, electronic, optical and elastic properties. - Graphical abstract: Display Omitted - Highlights: • Infrared optoelectronic material Tl{sub 4}CdI{sub 6} was studied using ab initio methods. • Structural, electronic, optical and elastic properties were calculated. • Independent components of the elastic constants tensor were calculated. • Good agreement with available experimental results was achieved.

  19. Synthesis and characterization of chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), cadmium(II) and dioxouranium(VI) complexes of 4(2-pyridyl)-1-(2,4-dihydroxybenzaldehyde)-3-thiosemicarbazone

    International Nuclear Information System (INIS)

    Abu El-Reash, G.M.; Ibrahim, M.M.; Kenawy; El-Ayaan, Usama; Khattab, M.A.

    1994-01-01

    A few complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and dioxouranium(VI) with 4(2-pyridyl)-1-(2,4-dihydroxybenzaldehyde)-3-thiosemicarbazone have been synthesised and characterized on the basis of elemental analysis, IR, electronic NMR, and magnetic moment data. An octahedral structure is proposed for the Cr(III), Fe(III), Co(II) and Ni(H 3 PBT) 2 Cl 2 .2H 2 O complexes; a tetrahedral structure for the Mn(II) and Ni 2 (PBT)OAc.H 2 0 complexes and a square planar structure for the Cu(II) complexes. The antimicrobial and antifungal activities of H 3 PBT and of its metal(II) complexes are investigated. The results reveal that H 3 PBT exhibits greater antimicrobial activities than its complexes. (author). 34 refs., 4 figs., 2 tabs

  20. Optical properties and quantum confinement of nanocrystalline II-IV semiconductor particles

    NARCIS (Netherlands)

    Dijken, Albert van

    1999-01-01

    In this thesis, experiments are described that were performed on suspensions of nanocrystalline II-IV semiconductor particles.The object of this research is to study quantum size effects in relation to the luminescence properties of these particles. A pre-requisite for performing studies of

  1. Optical band gaps of organic semiconductor materials

    Science.gov (United States)

    Costa, José C. S.; Taveira, Ricardo J. S.; Lima, Carlos F. R. A. C.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2016-08-01

    UV-Vis can be used as an easy and forthright technique to accurately estimate the band gap energy of organic π-conjugated materials, widely used as thin films/composites in organic and hybrid electronic devices such as OLEDs, OPVs and OFETs. The electronic and optical properties, including HOMO-LUMO energy gaps of π-conjugated systems were evaluated by UV-Vis spectroscopy in CHCl3 solution for a large number of relevant π-conjugated systems: tris-8-hydroxyquinolinatos (Alq3, Gaq3, Inq3, Al(qNO2)3, Al(qCl)3, Al(qBr)3, In(qNO2)3, In(qCl)3 and In(qBr)3); triphenylamine derivatives (DDP, p-TTP, TPB, TPD, TDAB, m-MTDAB, NPB, α-NPD); oligoacenes (naphthalene, anthracene, tetracene and rubrene); oligothiophenes (α-2T, β-2T, α-3T, β-3T, α-4T and α-5T). Additionally, some electronic properties were also explored by quantum chemical calculations. The experimental UV-Vis data are in accordance with the DFT predictions and indicate that the band gap energies of the OSCs dissolved in CHCl3 solution are consistent with the values presented for thin films.

  2. Electronic structure study of wide band gap magnetic semiconductor (La0.6Pr0.4)0.65Ca0.35MnO3 nanocrystals in paramagnetic and ferromagnetic phases

    Science.gov (United States)

    Dwivedi, G. D.; Joshi, Amish G.; Kumar, Shiv; Chou, H.; Yang, K. S.; Jhong, D. J.; Chan, W. L.; Ghosh, A. K.; Chatterjee, Sandip

    2016-04-01

    X-ray circular magnetic dichroism (XMCD), X-ray photoemission spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS) techniques were used to study the electronic structure of nanocrystalline (La0.6Pr0.4)0.65Ca0.35MnO3 near Fermi-level. XMCD results indicate that Mn3+ and Mn4+ spins are aligned parallel to each other at 20 K. The low M-H hysteresis curve measured at 5 K confirms ferromagnetic ordering in the (La0.6Pr0.4)0.65Ca0.35MnO3 system. The low temperature valence band XPS indicates that coupling between Mn3d and O2p is enhanced and the electronic states near Fermi-level have been suppressed below TC. The valence band UPS also confirms the suppression of electronic states near Fermi-level below Curie temperature. UPS near Fermi-edge shows that the electronic states are almost absent below 0.5 eV (at 300 K) and 1 eV (at 115 K). This absence clearly demonstrates the existence of a wide band-gap in the system since, for hole-doped semiconductors, the Fermi-level resides just above the valence band maximum.

  3. Binding of dioxouranium(VI) and platinum(II) to ribonuclease-S

    Energy Technology Data Exchange (ETDEWEB)

    Marzotto, A [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi

    1976-12-01

    The preferred binding sites of RNase-S to dioxouranium(VI) and platinum(II) has been determined by Wyckoff et al., (J.Biol.Chem., v242, 1967, p.3749; ibid p.3984; ibid v245, 1970, p.305) elaborating protein and of heavy-atom derivatives reported by Wyckoff and coworkers. The major sites are exposed at the surface of the protein molecule and are not directly involved in the biological properties; the coordination geometry of the groups bound to the metal ions have been examined in comparison with model compounds.

  4. Expanding the knowledge of the geographic distribution of Trypanosoma cruzi TcII and TcV/TcVI genotypes in the Brazilian Amazon.

    Directory of Open Access Journals (Sweden)

    Valdirene Dos Santos Lima

    Full Text Available Trypanosoma cruzi infection is a complex sylvatic enzooty involving a wide range of animal species. Six discrete typing units (DTUs of T. cruzi, named TcI to TcVI, are currently recognized. One unanswered question concerning the epidemiology of T. cruzi is the distribution pattern of TcII and hybrid DTUs in nature, including their virtual absence in the Brazilian Amazon, the current endemic area of Chagas disease in Brazil. Herein, we characterized biological samples that were collected in previous epizootiological studies carried out in the Amazon Basin in Brazil. We performed T. cruzi genotyping using four polymorphic genes to identify T. cruzi DTUs: mini-exon, 1f8, histone 3 and gp72. This analysis was conducted in the following biological samples: (i two T. cruzi isolates obtained by culturing of stools from the triatomine species Rhodnius picttipes and (ii five serum samples from dogs in which trypomastigotes were observed during fresh blood examination. We report for the first time the presence of TcII and hybrid DTUs (TcV/TcVI in the Amazon region in mixed infections with TcI. Furthermore, sequencing of the constitutive gene, gp72, demonstrated diversity in TcII even within the same forest fragment. These data show that TcII is distributed in the five main Brazilian biomes and is likely more prevalent than currently described. It is very probable that there is no biological or ecological barrier to the transmission and establishment of any DTU in any biome in Brazil.

  5. Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors

    Science.gov (United States)

    Peaker, A. R.; Markevich, V. P.; Coutinho, J.

    2018-04-01

    The term junction spectroscopy embraces a wide range of techniques used to explore the properties of semiconductor materials and semiconductor devices. In this tutorial review, we describe the most widely used junction spectroscopy approaches for characterizing deep-level defects in semiconductors and present some of the early work on which the principles of today's methodology are based. We outline ab-initio calculations of defect properties and give examples of how density functional theory in conjunction with formation energy and marker methods can be used to guide the interpretation of experimental results. We review recombination, generation, and trapping of charge carriers associated with defects. We consider thermally driven emission and capture and describe the techniques of Deep Level Transient Spectroscopy (DLTS), high resolution Laplace DLTS, admittance spectroscopy, and scanning DLTS. For the study of minority carrier related processes and wide gap materials, we consider Minority Carrier Transient Spectroscopy (MCTS), Optical DLTS, and deep level optical transient spectroscopy together with some of their many variants. Capacitance, current, and conductance measurements enable carrier exchange processes associated with the defects to be detected. We explain how these methods are used in order to understand the behaviour of point defects and the determination of charge states and negative-U (Hubbard correlation energy) behaviour. We provide, or reference, examples from a wide range of materials including Si, SiGe, GaAs, GaP, GaN, InGaN, InAlN, and ZnO.

  6. Spectroscopic studies on novel donor-acceptor and low band-gap polymeric semiconductors

    International Nuclear Information System (INIS)

    Cravino, A.

    2002-11-01

    Novel low band-gap conjugated polymeric semiconductors as well as conjugated electron donor chains carrying electron acceptor substituents were electrochemically prepared and investigated by means of different spectroscopic techniques. Using in situ FTIR and ESR spectroelectrochemistry, the spectroscopic features of injected positive charges are found to be different as opposed to the negative charge carriers on the same conjugated polymer. These results, for which the theoretical models so far developed do not account, demonstrate the different structure and delocalization of charge carriers with opposite signs. In addition, vibrational spectroscopy results proof the enhanced 'quinoid' character of low band-gap conjugated chains. Excited state spectroscopy was applied to study photoexcitations in conjugated polymers carrying tetracyanoanthraquinone type or fullerene moieties. This novel class of materials, hereafter called double-cable polymers, was found promising as alternative to the conjugated polymer:fullerene mixtures currently used for the preparation of 'bulk-heterojunction' polymeric solar cells. (author)

  7. WOCSDICE󈧇 The 27th Workshop on Compound Semiconductor Devices and Integrated Circuits Held in Europe May 26 - 28, 2003 Forigen, Switzerland

    Science.gov (United States)

    2003-05-28

    Rodrigues-Girones, M. Saglam, A. Megej, H.L. Hartnagel vi Recent Advances, Remaining Challenges in Wide Bandgap Semiconductors Colin ...R. H. Friend, and H. Sirringhaus, Science, 299, pp. 1881-1884, 2003. 19. C. J. Drury , C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. de Leeuw

  8. Advanced electron microscopy of wide band-gap semiconductor materials

    International Nuclear Information System (INIS)

    Fay, M.W.

    2000-10-01

    The microstructure of GaN layers grown by metal organic vapour phase epitaxy on (0001) sapphire substrates using a novel precursor for deposition of AlN buffer layers has been investigated and compared to layers grown using low temperature GaN buffer layers and state-of-the-art material. It has been shown that the quality of layers grown using the novel precursor is comparable to the state-of-the-art material. TEM analysis has been performed of multiple quantum wells of InGaN grown within GaN epitaxial layers by metal organic vapour phase epitaxy. Elementally sensitive TEM techniques have been used to determine the spatial distribution of In and Ga within these structures. Fluctuations in In sensitive images are observed on the nm-scale. Clear evidence of segregation of In during layer growth has been seen. Models of the In segregation are in good agreement with experimental results. Elementally sensitive techniques have been used to investigate the elemental distributions in TiAl and NiAu contacts to GaN. Annealing of TiAl contacts has been seen to result in the formation of a thin interfacial Ti rich phase, and of N depletion at the surface of the GaN layer to the depth of tens of nm. Annealing NiAu contacts at 700 deg. C was seen to result in the formation of Ga-rich interfacial phases, of both crystalline and amorphous structure. ZnS and ZnCdS layers grown on (001) GaP supplied by the University of Hull have been investigated. ZnS layers were found to contain a high density of inclined stacking faults throughout the layer, originating from the interface with the substrate. Energy sensitive techniques have been used to investigate ZnCdS quantum well structures. The use of a ZnCdS superlattice structure around a ZnCdS quantum well to approximate a reduced barrier was seen to result in less thickness variations than when no barrier was used. (author)

  9. 77 FR 21586 - II-VI, Incorporated, Infrared Optics-Saxonburg Division, Saxonburg, PA; Notice of Affirmative...

    Science.gov (United States)

    2012-04-10

    ..., Infrared Optics--Saxonburg Division, Saxonburg, PA; Notice of Affirmative Determination Regarding... Assistance (TAA) applicable to workers and former workers of II-VI, Incorporated, Infrared Optics--Saxonburg...). The workers were engaged in employment related to the production of infrared and CO 2 laser optics...

  10. Calculating the optical properties of defects and surfaces in wide band gap materials

    Science.gov (United States)

    Deák, Peter

    2018-04-01

    The optical properties of a material critically depend on its defects, and understanding that requires substantial and accurate input from theory. This paper describes recent developments in the electronic structure theory of defects in wide band gap materials, where the standard local or semi-local approximations of density functional theory fail. The success of the HSE06 screened hybrid functional is analyzed in case of Group-IV semiconductors and TiO2, and shown that it is the consequence of error compensation between semi-local and non-local exchange, resulting in a proper derivative discontinuity (reproduction of the band gap) and a total energy which is a linear function of the fractional occupation numbers (removing most of the electron self-interaction). This allows the calculation of electronic transitions with accuracy unseen before, as demonstrated on the single-photon emitter NV(-) center in diamond and on polaronic states in TiO2. Having a reliable tool for electronic structure calculations, theory can contribute to the understanding of complicated cases of light-matter interaction. Two examples are considered here: surface termination effects on the blinking and bleaching of the light-emission of the NV(-) center in diamond, and on the efficiency of photocatalytic water-splitting by TiO2. Finally, an outlook is presented for the application of hybrid functionals in other materials, as, e.g., ZnO, Ga2O3 or CuGaS2.

  11. Analysis of MBE-grown II-VI hetero-interfaces and quantum-dots by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Utz

    2012-10-16

    The material system of interest in this thesis are II-VI-semiconductors. The first part of this thesis focuses on the formation of self-assembled CdSe-based quantum dots (QD) on ZnSe. The lattice constants of ZnSe and CdSe differ as much as about 7% and therefore a CdSe layer grown on top of ZnSe experiences a huge strain. The aspired strain relief constitutes in the self-assembly of QDs (i.e. a roughened layer structure). Additionally, this QD layer is intermixed with Zn as this is also a possibility to decrease the strain in the layer. For CdSe on ZnSe, in Molecular Beam Epitaxy (MBE), various QD growth procedures were analysed with respect to the resulting Cd-content of the non-stoichiometric ternary (Zn,Cd)Se. The evaluation was performed by Raman Spectroscopy as the phonon frequency depends on the Cd-content. The second part of the thesis emphasis on the interface properties of n-ZnSe on n-GaAs. Different growth start procedures of the ZnSe epilayer may lead to different interface configurations with characteristic band-offsets and carrier depletion layer widths. The analysis is mainly focused on the individual depletion layer widths in the GaAs and ZnSe. This non-destructive analysis is performed by evaluating the Raman signal which comprises of phonon scattering from the depleted regions and coupled plasmon-phonon scattering from regions with free carriers.

  12. Analysis of MBE-grown II-VI hetero-interfaces and quantum-dots by Raman spectroscopy

    International Nuclear Information System (INIS)

    Bass, Utz

    2012-01-01

    The material system of interest in this thesis are II-VI-semiconductors. The first part of this thesis focuses on the formation of self-assembled CdSe-based quantum dots (QD) on ZnSe. The lattice constants of ZnSe and CdSe differ as much as about 7% and therefore a CdSe layer grown on top of ZnSe experiences a huge strain. The aspired strain relief constitutes in the self-assembly of QDs (i.e. a roughened layer structure). Additionally, this QD layer is intermixed with Zn as this is also a possibility to decrease the strain in the layer. For CdSe on ZnSe, in Molecular Beam Epitaxy (MBE), various QD growth procedures were analysed with respect to the resulting Cd-content of the non-stoichiometric ternary (Zn,Cd)Se. The evaluation was performed by Raman Spectroscopy as the phonon frequency depends on the Cd-content. The second part of the thesis emphasis on the interface properties of n-ZnSe on n-GaAs. Different growth start procedures of the ZnSe epilayer may lead to different interface configurations with characteristic band-offsets and carrier depletion layer widths. The analysis is mainly focused on the individual depletion layer widths in the GaAs and ZnSe. This non-destructive analysis is performed by evaluating the Raman signal which comprises of phonon scattering from the depleted regions and coupled plasmon-phonon scattering from regions with free carriers.

  13. Sorption study of 226Ra(II) et 238U(VI) on to peat organic matter, in mining environment

    International Nuclear Information System (INIS)

    Bordelet, Gabrielle

    2014-01-01

    The environmental footprint of former uranium mining sites is a major concern for society. In order to guarantee the protection of ecosystems and thus a minimal radiological impact on the biosphere, it is important to understand and to be able to model the phenomena controlling the migration of uranium and its decay products, specially radium ( 226 Ra) (AREVA's Envir-at-Mines project). In the environment, among solid phases which can retain 238 U(VI) and 226 Ra(II), peat is known to have relevant affinity for U(VI). Because peat is usually composed at 90% dry weight of organic matter, the aim of this study was to qualify and quantify peat organic matter affinity for 238 U(VI) and 226 Ra(II). Peat samples extracted from Les Sagnes (close to a former uranium mining site in Limousin area, France) was characterised and batch adsorption/desorption experiments were conducted. The results indicate that 226 Ra(II) adsorption onto that peat is higher than 97% for pH ≥ 4-6 (depending on the organic/mineral ratio in dry peat) corresponding to K d values about 4500 ± 500 mL/g and 238 U(VI) adsorption is higher than 80% at pH ≥ 3 with K d maximal values reaching 11000 mL/g around pH 4.5. Only a little desorption was measured after one month. An ion exchange modelling for radium adsorption onto one type of organic matter sorption site was enough to fit the experimental adsorption K d for the peat over the whole range of pH. However, uranium sorption on peat can be modelled on that organic sorption site only from pH 1 to 5. From pH 5 to 10, to explain the experimental uranium adsorption K d values (close to 1500 mL/g), uranium sorption onto mineral phases (such as smectite and iron oxide in this study) has to be considered. An operational data set is given for both 238 U(VI) and 226 Ra(II) sorption onto Les Sagnes peat. Unlike usual peat, peat from Les Sagnes contains more than 10% dry weight of mineral matter. That is why it is necessary to model sorption of those two

  14. Nanostructured pyronin Y thin films as a new organic semiconductor: Linear/nonlinear optics, band gap and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Zahran, H.Y. [Metallurgical Lab.1, Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Metallurgical Lab.1, Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Alamri, F.H. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia)

    2017-05-15

    Pyronin Y dye (PY) is a kind of xanthene derivatives. Thin films of pyronin Y were deposited onto highly cleaned glass substrates using low-cost/spin coating technique. The structure properties of pyronin Y thin films with different thicknesses were investigated by using X-ray diffraction (XRD) and atomic force microscope (AFM). PY thin films for all the studied thicknesses have an amorphous structure supporting the short range order of the grain size. AFM supports the nanostructure with spherical/clusters morphologies of the investigated thin films. The optical constants of pyronin Y thin films for various thicknesses were studied by using UV–vis–NIR spectrophotometer in the wavelength range 350–2500 nm. The transmittance T(λ), reflectance R(λ) spectral and absorbance (abs(λ)) were obtained for all film thicknesses at room temperature and the normal light incident. These films showed a high transmittance in the wide scale wavelengths. For different thicknesses of the studied thin films, the optical band gaps were determined and their values around 2 eV. Real and imaginary dielectric constants, dissipation factor and the nonlinear optical parameters were calculated in the wavelengths to the range 300–2500 nm. The pyronin Y is a new organic semiconductor with a good optical absorption in UV–vis regions and it is suitable for nonlinear optical applications. - Highlights: • Pyronin Y (PY) nanostructured thin films were deposited by using spin coating technique. • XRD/AFM were used to study the structure of PY films. • The optical band gap was calculated on the basis of Tauc's model. • Linear/nonlinear optical parameters are calculated and interpreted via the applied optical theories. • PY thin films is a new organic semiconductor for its application in optoelectronic devices.

  15. Band gaps from the Tran-Blaha modified Becke-Johnson approach: A systematic investigation

    Science.gov (United States)

    Jiang, Hong

    2013-04-01

    The semi-local Becke-Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha (TB-mBJ) have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators. In this work, we have investigated the performance of the TB-mBJ potential for the description of electronic band structures in a comprehensive set of semiconductors and insulators. We point out that a perturbative use of the TB-mBJ potential can give overall better results. By investigating a set of IIB-VI and III-V semiconductors, we point out that although the TB-mBJ approach can describe the band gap of these materials quite well, the binding energies of semi-core d-states in these materials deviate strongly from experiment. The difficulty of the TB-mBJ potential to describe the localized states is likely the cause for the fact that the electronic band structures of Cu2O and La2O3 are still poorly described. Based on these observations, we propose to combine the TB-mBJ approach with the Hubbard U correction for localized d/f states, which is able to provide overall good descriptions for both the band gaps and semi-core states binding energies. We further apply the approach to calculate the band gaps of a set of Ti(IV)-oxides, many of which have complicated structures so that the more advanced methods like GW are expensive to treat directly. An overall good agreement with experiment is obtained, which is remarkable considering its little computational efforts compared to GW.

  16. Effect of van der Waals interaction on the properties of SnS2 layered semiconductor

    International Nuclear Information System (INIS)

    Seminovski, Y.; Palacios, P.; Wahnón, P.

    2013-01-01

    Nowadays, dispersion correction applied on layered semiconductors is a topic of interest. Among the known layered semiconductors, SnS 2 polytypes are wide gap semiconductors with a van der Waals interaction between their layers, which could form good materials to be used in photovoltaic applications. The present work gives an approach to the SnS 2 geometrical and electronic characterization using an empirical dispersion correction added to the Perdew–Burke–Ernzerhof functional and subsequent actualization of the electronic charge density using the screened hybrid Heyd–Scuseria–Ernzerhof functional using a density functional code. The obtained interlayer distance and band-gap are in good agreement with experimental values when van der Waals dispersion forces are included. - Highlights: ► Tin disulphide (SnS 2 ) has been calculated using density functional theory methods. ► A dispersion correction was also applied for two different SnS 2 polytypes. ► Geometrical parameters and band-gaps were obtained using both approaches. ► Our calculations give a good agreement of the computed band gap with experiment

  17. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure

    International Nuclear Information System (INIS)

    Peter, A. John; Lee, Chang Woo

    2012-01-01

    Photo-induced spin dependent electron transmission through a narrow gap InSb/InGa x Sb 1−x semiconductor symmetric well is theoretically studied using transfer matrix formulism. The transparency of electron transmission is calculated as a function of electron energy for different concentrations of gallium. Enhanced spin-polarized photon assisted resonant tunnelling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level and compressed spin-polarization are observed. Our results show that Dresselhaus spin-orbit coupling is dominant for the photon effect and the computed polarization efficiency increases with the photon effect and the gallium concentration

  18. Electronic structure of filled tetrahedral semiconductors

    NARCIS (Netherlands)

    Wood, D.M.; Zunger, Alex; Groot, R. de

    1985-01-01

    We discuss the susceptibility of zinc-blende semiconductors to band-structure modification by insertion of small atoms at their tetrahedral interstitial states. GaP is found to become a direct-gap semiconductor with two He atoms present at its interstitial sites; Si does not. Analysis of the factors

  19. Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study.

    Science.gov (United States)

    Pinakidou, Fani; Kaprara, Efthimia; Katsikini, Maria; Paloura, Eleni C; Simeonidis, Konstantinos; Mitrakas, Manassis

    2016-05-01

    The feasibility of implementing a Sn(II) oxy-hydroxide (Sn6O4(OH)4) for the reduction and adsorption of Cr(VI) in drinking water treatment was investigated using XAFS spectroscopies at the Cr-K-edge. The analysis of the Cr-K-edge XANES and EXAFS spectra verified the effective use of Sn6O4(OH)4 for successful Cr(VI) removal. Adsorption isotherms, as well as dynamic Rapid Small Scale Test (RSSCT) in NSF water matrix showed that Sn6O4(OH)4 can decrease Cr(VI) concentration below the upcoming regulation limit of 10μg/L for drinking water. Moreover, an uptake capacity of 7.2μg/mg at breakthrough concentration of 10μg/L was estimated from the RSSCT, while the residual Cr(VI) concentration ranged at sub-ppb level for a significant period of the experiment. Furthermore, no evidence for the formation of Cr(OH)3 precipitates was found. On the contrary, Cr(III)-oxyanions were chemisorbed onto SnO2, which was formed after Sn(II)-oxidation during Cr(VI)-reduction. Nevertheless, changes in the type of Cr(III)-inner sphere complexes were observed after increasing surface coverage: Cr(III)-oxyanions preferentially sorb in a geometry which combines both bidentate binuclear ((2)C) and monodentate ((1)V) geometries, at the expense of the present bidentate mononuclear ((2)E) contributions. On the other hand, the pH during sorption does not affect the adsorption mechanism of Cr(III)-species. The implementation of Sn6O4(OH)4 in water treatment technology combines the advantage of rapidly reducing a large amount of Cr(VI) due to donation of two electrons by Sn(II) and also the strong chemisorption of Cr(III) in a combination of the (2)C and (1)V configurations, which enhances the safe disposal of spent adsorbents. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Self-assembling peptide semiconductors

    Science.gov (United States)

    Tao, Kai; Makam, Pandeeswar; Aizen, Ruth; Gazit, Ehud

    2017-01-01

    Semiconductors are central to the modern electronics and optics industries. Conventional semiconductive materials bear inherent limitations, especially in emerging fields such as interfacing with biological systems and bottom-up fabrication. A promising candidate for bioinspired and durable nanoscale semiconductors is the family of self-assembled nanostructures comprising short peptides. The highly ordered and directional intermolecular π-π interactions and hydrogen-bonding network allow the formation of quantum confined structures within the peptide self-assemblies, thus decreasing the band gaps of the superstructures into semiconductor regions. As a result of the diverse architectures and ease of modification of peptide self-assemblies, their semiconductivity can be readily tuned, doped, and functionalized. Therefore, this family of electroactive supramolecular materials may bridge the gap between the inorganic semiconductor world and biological systems. PMID:29146781

  1. Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study

    International Nuclear Information System (INIS)

    Pinakidou, Fani; Kaprara, Efthimia; Katsikini, Maria; Paloura, Eleni C.; Simeonidis, Konstantinos; Mitrakas, Manassis

    2016-01-01

    The feasibility of implementing a Sn(II) oxy-hydroxide (Sn_6O_4(OH)_4) for the reduction and adsorption of Cr(VI) in drinking water treatment was investigated using XAFS spectroscopies at the Cr-K-edge. The analysis of the Cr-K-edge XANES and EXAFS spectra verified the effective use of Sn_6O_4(OH)_4 for successful Cr(VI) removal. Adsorption isotherms, as well as dynamic Rapid Small Scale Test (RSSCT) in NSF water matrix showed that Sn_6O_4(OH)_4 can decrease Cr(VI) concentration below the upcoming regulation limit of 10 μg/L for drinking water. Moreover, an uptake capacity of 7.2 μg/mg at breakthrough concentration of 10 μg/L was estimated from the RSSCT, while the residual Cr(VI) concentration ranged at sub-ppb level for a significant period of the experiment. Furthermore, no evidence for the formation of Cr(OH)_3 precipitates was found. On the contrary, Cr(III)-oxyanions were chemisorbed onto SnO_2, which was formed after Sn(II)-oxidation during Cr(VI)-reduction. Nevertheless, changes in the type of Cr(III)-inner sphere complexes were observed after increasing surface coverage: Cr(III)-oxyanions preferentially sorb in a geometry which combines both bidentate binuclear ("2C) and monodentate ("1V) geometries, at the expense of the present bidentate mononuclear ("2E) contributions. On the other hand, the pH during sorption does not affect the adsorption mechanism of Cr(III)-species. The implementation of Sn_6O_4(OH)_4 in water treatment technology combines the advantage of rapidly reducing a large amount of Cr(VI) due to donation of two electrons by Sn(II) and also the strong chemisorption of Cr(III) in a combination of the "2C and "1V configurations, which enhances the safe disposal of spent adsorbents. - Highlights: • Effective Cr(VI) removal from drinking water by Sn_6O_4(OH)_4 • Sn_6O_4(OH)_4 transformation to SnO_2 after Cr(VI) reduction to Cr(III) • Strong Cr(III) sorption onto SnO_2 by formation of inner sphere complexes • Cr(III) sorption

  2. Efficient color-tunable multiexcitonic dual wavelength emission from Type II semiconductor tetrapods.

    Science.gov (United States)

    Wu, Wen-Ya; Li, Mingjie; Lian, Jie; Wu, Xiangyang; Yeow, Edwin K L; Jhon, Mark H; Chan, Yinthai

    2014-09-23

    We synthesized colloidal InP/ZnS seeded CdS tetrapods by harnessing the structural stability of the InP/ZnS seed nanocrystals at the high reaction temperatures needed to grow the CdS arms. Because of an unexpected Type II band alignment at the interface of the InP/ZnS core and CdS arms that enhanced the occurrence of radiative excitonic recombination in CdS, these tetrapods were found to be capable of exhibiting highly efficient multiexcitonic dual wavelength emission of equal intensity at spectrally distinct wavelengths of ∼485 and ∼675 nm. Additionally, the Type II InP/ZnS seeded CdS tetrapods displayed a wider range of pump-dependent emission color-tunability (from red to white to blue) within the context of a CIE 1931 chromaticity diagram and possessed higher photostability due to suppressed multiexcitonic Auger recombination when compared to conventional Type I CdSe seeded CdS tetrapods. By employing time-resolved spectroscopy measurements, we were able to attribute the wide emission color-tunability to the large valence band offset between InP and CdS. This work highlights the importance of band alignment in the synthetic design of semiconductor nanoheterostructures, which can exhibit color-tunable multiwavelength emission with high efficiency and photostability.

  3. Magnetotransport investigations of single- and heterostructure epitaxial films of IV/VI-semiconductors

    International Nuclear Information System (INIS)

    Ambrosch, K.-E.

    1985-01-01

    Lead salts are small gap semiconductors that are used for infrared detectors and lasers. PbMnTe and PbEuTe are semimagnetic semiconductors. Magnetotransport properties of epitaxial films and epitaxial heterostructures (PbTe / PbSnTe) are investigated. Epitaxial films of PbSnTe, PbMnTe and PbEuTe have been used for Shubnikov de Haas - experiments in tilted magnetic fields. This method allows the quantitative determination of the electric carrier distribution with respect to the crystal directions. The nonequal distribution is caused by strain effects that are more important for PbMnTe than for PbSnTe and PbEuTe. Magnetoresistance experiments show a deviation from cubic symmetry that leads to the same results for the carrier distribution as the Shubnikov de Haas effect. Magnetoresistance experiments performed with PbTe / PbSnTe heterostructures show no megnetoresistance if the magnetic field is in plane with the layers. The difference of the magnetoresistance for single films and heterostructures is explained by 'quasitwodimensional' carriers. Shubnikov de Haas experiments performed on heterostructures as a function of the tilt angle of the magnetic field show different behaviour compared to that of single films. Using additional information about effective masses and strain it was possible to distinguish between 'two-' and 'threedimensional' electronic systems. The distribution of carriers in single films and heterostructures has been determined by means of magnetotransport experiments. The results are explained by strain effects of the crystal lattice. In addition heterostructures show a 'quasitwodimensional' behaviour caused by interaction of their layers. (Author)

  4. Transmission electron microscopy in situ investigation of dislocation mobility in semiconductors

    CERN Document Server

    Vanderschaeve, G; Insa, P D T; Caillard, D

    2000-01-01

    TEM in situ straining experiments provide a unique way to investigate in real time the behaviour of individual dislocations under applied stress. The results obtained on a variety of semiconductors are presented: numerous dislocation sources are observed which makes it possible to measure the dislocation velocity as a function of different physical parameters (local shear stress, temperature, dislocation character, length of the moving dislocation, ...). The experimental results are consistent with a dislocation glide governed by the Peierls mechanism, even for II-VI compounds which have a significant degree of ionic character. For compounds, a linear dependence of the dislocation velocity on the length of the moving segment is noticed, whereas for elemental semiconductors a transition between a length-dependent and a length-independent velocity regime is observed. Analysed in the framework of the kink diffusion model (Hirth and Lothe theory), these results allow an estimation of the kink formation and migrat...

  5. Thermoelectric properties of thin film and superlattice structure of IV-VI and V-VI compound semiconductors

    International Nuclear Information System (INIS)

    Blumers, Mathias

    2012-01-01

    The basic material property governing the efficiency of thermoelectric applications is the thermoelectric figure of merit Z=S 2 .σ/k, where S is the Seebeck-coefficient, σ is the electrical conductivity and k the thermal conductivity. A promising concept of increasing Z by one and two dimensional quantum well superlattices (QW-SL) was introduced in the early 1990s in terms of theoretical predictions. The realization of such low dimensional systems is done by use of semiconductor compounds with different energy gaps. The ambition of the Nitherma project was to investigate the thermoelectric properties of superlattices and Multi-Quantum-Well-structures (MQW) made of Pb 1-x Sr x Te and Bi 2 (Se x Te 1-x ) 3 , respectively. Therefore SL- and MQW-structures of this materials were grown and Z was determined by measuring of S, σ and κ parallel to the layer planes. Aim of this thesis is the interpretation of the transport measurements (S,σ,κ) of low dimensional structures and the improvement of preparation and measurement techniques. The influence of low dimensionality on the thermal conductivity in SL- and MQW-structures was investigated by measurements on structures with different layer thicknesses. In addition, measurements of the Seebeck-coefficient were performed, also to verify the results of the participating groups.

  6. Zinc Alloys for the Fabrication of Semiconductor Devices

    Science.gov (United States)

    Ryu, Yungryel; Lee, Tae S.

    2009-01-01

    ZnBeO and ZnCdSeO alloys have been disclosed as materials for the improvement in performance, function, and capability of semiconductor devices. The alloys can be used alone or in combination to form active photonic layers that can emit over a range of wavelength values. Materials with both larger and smaller band gaps would allow for the fabrication of semiconductor heterostructures that have increased function in the ultraviolet (UV) region of the spectrum. ZnO is a wide band-gap material possessing good radiation-resistance properties. It is desirable to modify the energy band gap of ZnO to smaller values than that for ZnO and to larger values than that for ZnO for use in semiconductor devices. A material with band gap energy larger than that of ZnO would allow for the emission at shorter wavelengths for LED (light emitting diode) and LD (laser diode) devices, while a material with band gap energy smaller than that of ZnO would allow for emission at longer wavelengths for LED and LD devices. The amount of Be in the ZnBeO alloy system can be varied to increase the energy bandgap of ZnO to values larger than that of ZnO. The amount of Cd and Se in the ZnCdSeO alloy system can be varied to decrease the energy band gap of ZnO to values smaller than that of ZnO. Each alloy formed can be undoped or can be p-type doped using selected dopant elements, or can be n-type doped using selected dopant elements. The layers and structures formed with both the ZnBeO and ZnCdSeO semiconductor alloys - including undoped, p-type-doped, and n-type-doped types - can be used for fabricating photonic and electronic semiconductor devices for use in photonic and electronic applications. These devices can be used in LEDs, LDs, FETs (field effect transistors), PN junctions, PIN junctions, Schottky barrier diodes, UV detectors and transmitters, and transistors and transparent transistors. They also can be used in applications for lightemitting display, backlighting for displays, UV and

  7. Effect of van der Waals interaction on the properties of SnS{sub 2} layered semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Seminovski, Y. [Instituto de Energía Solar, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Dpt. TEAT, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Palacios, P., E-mail: pablo.palacios@upm.es [Instituto de Energía Solar, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Dpt. FyQATA, EIAE, Universidad Politécnica de Madrid, Pz. Cardenal Cisneros, 3, 28040 Madrid (Spain); Wahnón, P. [Instituto de Energía Solar, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Dpt. TEAT, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2013-05-01

    Nowadays, dispersion correction applied on layered semiconductors is a topic of interest. Among the known layered semiconductors, SnS{sub 2} polytypes are wide gap semiconductors with a van der Waals interaction between their layers, which could form good materials to be used in photovoltaic applications. The present work gives an approach to the SnS{sub 2} geometrical and electronic characterization using an empirical dispersion correction added to the Perdew–Burke–Ernzerhof functional and subsequent actualization of the electronic charge density using the screened hybrid Heyd–Scuseria–Ernzerhof functional using a density functional code. The obtained interlayer distance and band-gap are in good agreement with experimental values when van der Waals dispersion forces are included. - Highlights: ► Tin disulphide (SnS{sub 2}) has been calculated using density functional theory methods. ► A dispersion correction was also applied for two different SnS{sub 2} polytypes. ► Geometrical parameters and band-gaps were obtained using both approaches. ► Our calculations give a good agreement of the computed band gap with experiment.

  8. Platinum nanoparticles on gallium nitride surfaces: effect of semiconductor doping on nanoparticle reactivity.

    Science.gov (United States)

    Schäfer, Susanne; Wyrzgol, Sonja A; Caterino, Roberta; Jentys, Andreas; Schoell, Sebastian J; Hävecker, Michael; Knop-Gericke, Axel; Lercher, Johannes A; Sharp, Ian D; Stutzmann, Martin

    2012-08-01

    Platinum nanoparticles supported on n- and p-type gallium nitride (GaN) are investigated as novel hybrid systems for the electronic control of catalytic activity via electronic interactions with the semiconductor support. In situ oxidation and reduction were studied with high pressure photoemission spectroscopy. The experiments revealed that the underlying wide-band-gap semiconductor has a large influence on the chemical composition and oxygen affinity of supported nanoparticles under X-ray irradiation. For as-deposited Pt cuboctahedra supported on n-type GaN, a higher fraction of oxidized surface atoms was observed compared to cuboctahedral particles supported on p-type GaN. Under an oxygen atmosphere, immediate oxidation was recorded for nanoparticles on n-type GaN, whereas little oxidation was observed for nanoparticles on p-type GaN. Together, these results indicate that changes in the Pt chemical state under X-ray irradiation depend on the type of GaN doping. The strong interaction between the nanoparticles and the support is consistent with charge transfer of X-ray photogenerated free carriers at the semiconductor-nanoparticle interface and suggests that GaN is a promising wide-band-gap support material for photocatalysis and electronic control of catalysis.

  9. Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure

    DEFF Research Database (Denmark)

    Kjærgaard, Morten; Nichele, F; Suominen, Henri Juhani

    2016-01-01

    topological matter is by coupling a 2D electron gas with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al......, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e(2)/h...

  10. Reflection technique for thermal mapping of semiconductors

    Science.gov (United States)

    Walter, Martin J.

    1989-06-20

    Semiconductors may be optically tested for their temperatures by illuminating them with tunable monochromatic electromagnetic radiation and observing the light reflected off of them. A transition point will occur when the wavelength of the light corresponds with the actual band gap energy of the semiconductor. At the transition point, the image of the semiconductor will appreciably darken as the light is transmitted through it, rather than being reflected off of it. The wavelength of the light at the transition point corresponds to the actual band gap energy and the actual temperature of the semiconductor.

  11. Hypersonic modes in nanophononic semiconductors.

    Science.gov (United States)

    Hepplestone, S P; Srivastava, G P

    2008-09-05

    Frequency gaps and negative group velocities of hypersonic phonon modes in periodically arranged composite semiconductors are presented. Trends and criteria for phononic gaps are discussed using a variety of atomic-level theoretical approaches. From our calculations, the possibility of achieving semiconductor-based one-dimensional phononic structures is established. We present results of the location and size of gaps, as well as negative group velocities of phonon modes in such structures. In addition to reproducing the results of recent measurements of the locations of the band gaps in the nanosized Si/Si{0.4}Ge{0.6} superlattice, we show that such a system is a true one-dimensional hypersonic phononic crystal.

  12. Preparation and properties of N-Phenylbutyrohydroxamic acid and N-p-Chlorophenylbutyrohydroxamic acid and their uses as extracting agents for Chromium (VI), Molybdenum (VI), Titanium (IV) and Uranium (VI)

    Energy Technology Data Exchange (ETDEWEB)

    Abu Elnour, Sawsan Hassan [Department of Chemistry, Faculty of Science, University of Khartoum, Khartoum (Sudan)

    1993-05-01

    Two lignads, N-phenylbutyrohydroxamic acid (1), N-p-chlorophenylbutyryl chloride with {beta} phenyl-hydroylamine and N-p-chlorophenylhydroxylamine, respectively. The acids prepared were identified and characterised through their reactions with Vanadiun (V) and iron (III), their melting points, infra-red spectra and nitrogen content. The extractive properties of these acids towards the metals Cr (VI), Mo (VI), Ti (IV) and U (VI) were examined at different PH values. The percentage of maximum extraction with the two acids was found to be as follows : for Cr (VI) at PH 1, (100%) for both acids, Mo (VI) at PH 2 (33.34%) with acid (I) and (16.67%) with acid (II) and U (VI) at PH 6 (72%) with acid (I) and (76%) with acid (II). The metal: Ligand complexes ratios were determined by using the continuous variation method, the ratio of the two ligands with four metals was found to be 1:2. Finally the suitability of the two acids for spectrophotometric determination of four metals was examined.(Author) 90 refs. , 24 tabs. , 24 figs

  13. Preparation and properties of N-Phenylbutyrohydroxamic acid and N-p-Chlorophenylbutyrohydroxamic acid and their uses as extracting agents for Chromium (VI), Molybdenum (VI), Titanium (IV) and Uranium (VI)

    International Nuclear Information System (INIS)

    Abu Elnour, Sawsan Hassan

    1993-05-01

    Two lignads, N-phenylbutyrohydroxamic acid (1), N-p-chlorophenylbutyryl chloride with β phenyl-hydroylamine and N-p-chlorophenylhydroxylamine, respectively. The acids prepared were identified and characterised through their reactions with Vanadiun (V) and iron (III), their melting points, infra-red spectra and nitrogen content. The extractive properties of these acids towards the metals Cr (VI), Mo (VI), Ti (IV) and U (VI) were examined at different PH values. The percentage of maximum extraction with the two acids was found to be as follows : for Cr (VI) at PH 1, (100%) for both acids, Mo (VI) at PH 2 (33.34%) with acid (I) and (16.67%) with acid (II) and U (VI) at PH 6 (72%) with acid (I) and (76%) with acid (II). The metal: Ligand complexes ratios were determined by using the continuous variation method, the ratio of the two ligands with four metals was found to be 1:2. Finally the suitability of the two acids for spectrophotometric determination of four metals was examined.(Author)

  14. Wide band gap p-type windows by CBD and SILAR methods

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R.; Goncalves, E.; Ennaoui, A.; Lux-Steiner, M.Ch

    2004-03-22

    Chemical deposition methods, namely, chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) have been used to deposit wide band gap p-type CuI and CuSCN thin films at room temperature (25 deg. C) in aqueous medium. Growth of these films requires the use of Cu (I) cations as a copper ions source. This is achieved by complexing Cu (II) ions using Na{sub 2}S{sub 2}O{sub 3}. The anion sources are either KI as iodine or KSCN as thiocyanide ions for CuI and CuSCN films, respectively. The preparative parameters are optimized with the aim to use these p-type materials as windows for solar cells. Different substrates are used, namely: glass, fluorine doped tin oxide coated glass and CuInS{sub 2} (CIS). X-ray diffraction, scanning electron microscopy, atomic force microscopy and optical absorption spectroscopy are used for structural, surface morphological and optical studies, and the results are discussed.

  15. Wide band gap p-type windows by CBD and SILAR methods

    International Nuclear Information System (INIS)

    Sankapal, B.R.; Goncalves, E.; Ennaoui, A.; Lux-Steiner, M.Ch.

    2004-01-01

    Chemical deposition methods, namely, chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR) have been used to deposit wide band gap p-type CuI and CuSCN thin films at room temperature (25 deg. C) in aqueous medium. Growth of these films requires the use of Cu (I) cations as a copper ions source. This is achieved by complexing Cu (II) ions using Na 2 S 2 O 3 . The anion sources are either KI as iodine or KSCN as thiocyanide ions for CuI and CuSCN films, respectively. The preparative parameters are optimized with the aim to use these p-type materials as windows for solar cells. Different substrates are used, namely: glass, fluorine doped tin oxide coated glass and CuInS 2 (CIS). X-ray diffraction, scanning electron microscopy, atomic force microscopy and optical absorption spectroscopy are used for structural, surface morphological and optical studies, and the results are discussed

  16. Spin diffusion in the Mn2+ ion system of II-VI diluted magnetic semiconductor heterostructures

    Science.gov (United States)

    Maksimov, A. A.; Yakovlev, D. R.; Debus, J.; Tartakovskii, I. I.; Waag, A.; Karczewski, G.; Wojtowicz, T.; Kossut, J.; Bayer, M.

    2010-07-01

    The magnetization dynamics in diluted magnetic semiconductor heterostructures based on (Zn,Mn)Se and (Cd,Mn)Te were studied optically and simulated numerically. In samples with inhomogeneous magnetic ion distribution, these dynamics are contributed by spin-lattice relaxation and spin diffusion in the Mn spin system. A spin-diffusion coefficient of 7×10-8cm2/s was evaluated for Zn0.99Mn0.01Se from comparison of experiment and theory. Calculations of the exciton giant Zeeman splitting and the magnetization dynamics in ordered alloys and digitally grown parabolic quantum wells show perfect agreement with the experimental data. In both structure types, spin diffusion contributes essentially to the magnetization dynamics.

  17. The reactivity of Fe(II) associated with goethite formed during short redox cycles toward Cr(VI) reduction under oxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tomaszewski, Elizabeth J.; Lee, Seungyeol; Rudolph, Jared; Xu, Huifang; Ginder-Vogel, Matthew (UW)

    2017-08-01

    Chromium (Cr) is a toxic metal that causes a myriad of health problems and enters the environment as a result of anthropogenic activities and/or natural processes. The toxicity and solubility of chromium is linked to its oxidation state; Cr(III) is poorly soluble and relatively nontoxic, while Cr(VI) is soluble and a known carcinogen. Solid Fe(II) in iron-bearing minerals, such as pyrite, magnetite, and green rusts, reduce the oxidation state of chromium, reducing its toxicity and mobility. However, these minerals are not the only potential sources of solid-associated Fe(II) available for Cr(VI) reduction. For example, ferric (Fe(III)) (hydr)oxides, such as goethite or hematite, can have Fe(II) in the solid without phase transformation; however, the reactivity of Fe(II) within Fe(III) (hydr)oxides with contaminants, has not been previously investigated. Here, we cyclically react goethite with dissolved Fe(II) followed by dissolved O2, leading to the formation of reactive Fe(II) associated with goethite. In separate reactors, the reactivity of this Fe(II) is probed under oxic conditions, by exposure to chromate (CrO42 -) after either one, two, three or four redox cycles. Cr is not present during redox cycling; rather, it is introduced to a subset of the solid after each oxidation half-cycle. Analysis of X-ray absorption near edge structure (XANES) spectra reveals that the extent of Cr(VI) reduction to Cr(III) depends not only on solid Fe(II) content but also surface area and mean size of ordered crystalline domains, determined by BET surface area analysis and X-ray diffraction (XRD), respectively. Shell-by-shell fitting of the extended X-ray absorption fine structure (EXAFS) spectra demonstrates chromium forms both single and double corner sharing complexes on the surface of goethite, in addition to sorbed Cr(III) species. Finally, transmission electron microscope (TEM) imaging and X-ray energy-dispersive spectroscopy (EDS) illustrate that Cr preferentially

  18. Is There a Better Semiconductor Firm in Taiwan?

    Directory of Open Access Journals (Sweden)

    Cheng-Wen LEE

    2017-06-01

    Full Text Available The authors investigate the firm value of semiconductor industry in Taiwan in order to differentiate between outstanding semiconductor company and weak semiconductor company. The authors use GAP which is analytical tool to perform four steps: the original maps, sorting maps with clustering trees, summary sufficient maps, and sediment maps. The findings offer a good instruction for policymakers to make related policies in semiconductor firms. Additionally, the paper helps to find firms needed to be reformed through classification by GAP.

  19. Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study

    Energy Technology Data Exchange (ETDEWEB)

    Pinakidou, Fani; Kaprara, Efthimia [Aristotle University of Thessaloniki, School of Chemical Engineering, Analytical Chemistry Laboratory, 54124 Thessaloniki (Greece); Katsikini, Maria; Paloura, Eleni C.; Simeonidis, Konstantinos [Aristotle University of Thessaloniki, School of Physics, Department of Solid State Physics, 54124 Thessaloniki (Greece); Mitrakas, Manassis, E-mail: manasis@eng.auth.gr [Aristotle University of Thessaloniki, School of Chemical Engineering, Analytical Chemistry Laboratory, 54124 Thessaloniki (Greece)

    2016-05-01

    The feasibility of implementing a Sn(II) oxy-hydroxide (Sn{sub 6}O{sub 4}(OH){sub 4}) for the reduction and adsorption of Cr(VI) in drinking water treatment was investigated using XAFS spectroscopies at the Cr-K-edge. The analysis of the Cr-K-edge XANES and EXAFS spectra verified the effective use of Sn{sub 6}O{sub 4}(OH){sub 4} for successful Cr(VI) removal. Adsorption isotherms, as well as dynamic Rapid Small Scale Test (RSSCT) in NSF water matrix showed that Sn{sub 6}O{sub 4}(OH){sub 4} can decrease Cr(VI) concentration below the upcoming regulation limit of 10 μg/L for drinking water. Moreover, an uptake capacity of 7.2 μg/mg at breakthrough concentration of 10 μg/L was estimated from the RSSCT, while the residual Cr(VI) concentration ranged at sub-ppb level for a significant period of the experiment. Furthermore, no evidence for the formation of Cr(OH){sub 3} precipitates was found. On the contrary, Cr(III)-oxyanions were chemisorbed onto SnO{sub 2}, which was formed after Sn(II)-oxidation during Cr(VI)-reduction. Nevertheless, changes in the type of Cr(III)-inner sphere complexes were observed after increasing surface coverage: Cr(III)-oxyanions preferentially sorb in a geometry which combines both bidentate binuclear ({sup 2}C) and monodentate ({sup 1}V) geometries, at the expense of the present bidentate mononuclear ({sup 2}E) contributions. On the other hand, the pH during sorption does not affect the adsorption mechanism of Cr(III)-species. The implementation of Sn{sub 6}O{sub 4}(OH){sub 4} in water treatment technology combines the advantage of rapidly reducing a large amount of Cr(VI) due to donation of two electrons by Sn(II) and also the strong chemisorption of Cr(III) in a combination of the {sup 2}C and {sup 1}V configurations, which enhances the safe disposal of spent adsorbents. - Highlights: • Effective Cr(VI) removal from drinking water by Sn{sub 6}O{sub 4}(OH){sub 4} • Sn{sub 6}O{sub 4}(OH){sub 4} transformation to SnO{sub 2} after Cr(VI

  20. Semiconductors: Still a Wide Open Frontier for Scientists/Engineers

    Science.gov (United States)

    Seiler, David G.

    1997-10-01

    A 1995 Business Week article described several features of the explosive use of semiconductor chips today: ``Booming'' personal computer markets are driving high demand for microprocessors and memory chips; (2) New information superhighway markets will `ignite' sales of multimedia and communication chips; and (3) Demand for digital-signal-processing and data-compression chips, which speed up video and graphics, is `red hot.' A Washington Post article by Stan Hinden said that technology is creating an unstoppable demand for electronic elements. This ``digital pervasiveness'' means that a semiconductor chip is going into almost every high-tech product that people buy - cars, televisions, video recorders, telephones, radios, alarm clocks, coffee pots, etc. ``Semiconductors are everywhere.'' Silicon and compound semiconductors are absolutely essential and are pervasive enablers for DoD operations and systems. DoD's Critical Technologies Plan of 1991 says that ``Semiconductor materials and microelectronics are critically important and appropriately lead the list of critical defense technologies.'' These trends continue unabated. This talk describes some of the frontiers of semiconductors today and shows how scientists and engineers can effectively contribute to its advancement. Cooperative, multidisciplinary efforts are increasing. Specific examples will be given for scanning capacitance microscopy and thin-film metrology.

  1. Efeito da toxicidade de Cr (VI e Zn (II no crescimento do fungo filamentoso Aspergillus niger isolado de efluente industrial Toxicity effect of Cr (VI and Zn (II on growth of filamentous fungi Aspergillus niger isolated from industrial effluent

    Directory of Open Access Journals (Sweden)

    Maria do Socorro Vale

    2011-09-01

    Full Text Available Processos convencionais de tratamento de efluentes utilizam microrganismos vivos, o que sugere limitações relativas À toxicidade de metais para os microrganismos. O experimento consistiu em adicionar soluções monoelementares de Cr (VI e Zn(II em diferentes concentrações (0, 20, 50, 100, 200, 300, 400, 500 mg.L-1 ao meio de crescimento e observar a influência dos metais no crescimento micelial e germinativo do fungo Aspergillus Níger por verificação visual da expansão radial do micélio e da germinação de esporos, seguida de registro fotográfico. Os resultados mostraram que o metabolismo do fungo foi completamente inibido em concentrações acima de 500 mg Zn (II.L-1 e 150 mg Cr (VI.L-1. O ED50 (concentração de ingrediente ativo capaz de inibir 50% do crescimento micelial do fungo para os dois íons metálicos, nas condições estudadas, está na faixa entre 100 e 150 mg.L-1. Palavras-chave: metais pesados; inibição; crescimento micelial; Aspergillus niger; ED50.Many standard processes of wastewater treatment use live microorganisms, which suggests limitations on a metal toxicity to the microorganism. The experiment consisted in adding mono elementary solutions of Cr (VI and Zn (II at different concentrations (0, 20, 50, 100, 200, 300, 400, 500 mg.L-1 to the growth mean, and to observe the influence of metals on mycelial and germinative growth of the Aspergillus niger fungus, by means of visual observation of the radial expansion of the mycelius and the germination of spores, followed by photograph registration. The results showed that the metabolism of the fungus was completely inhibited at concentrations above 500 mg Zn (II.L-1 and 150 mg Cr (VI.L-1. The ED50 (concentration of active ingredient capable of inhibiting 50% of mycelial growth of the fungus for both metal ions, under the studied conditions, is in the range between 100 and 150 mg.L-1.

  2. Study on the wide-angle Michelson interferometer with large air gap.

    Science.gov (United States)

    Gao, Haiyang; Tang, Yuanhe; Hua, Dengxin; Liu, Hanchen

    2011-10-10

    A wide-angle Michelson interferometer with large air gap is proposed to effectively reduce the size of the glass arms and constraint on material. It provides a novel and practical instrument for ground based wind measurement of the upper atmosphere. The field widening conditions for the large air gap are calculated in theory. For the five spectral lines of 557.7 nm, 630.0 nm, 732.0 nm, 834.6 nm, and 865.7 nm, the optimal results under ideal condition are obtained with air gaps of 1.0 cm, 1.5 cm, and 2.0 cm, respectively. With the fixed optical path difference (OPD) of 7.495 cm, three pairs of glass arms are optimized. The pair with length of 1.5 cm for air gap, 5.765 cm for H-ZF12, and 2.956 cm for H-ZLaF54, has better effect of field widening than the other two pairs and its OPD variation is only within 0.30 wavelengths at incident angle of 3°. For developing a more practical wide-angle Michelson interferometer, the H-K9L glass with size of 4.445 cm is employed as the arm material of solid interferometer. The experiment for field of view of 3° is designed and the data processing and analysis for 60 images show the agreement between experimental results and theoretical simulation. The OPD variations are only within 0.27 wavelengths for image edge. The feasibility and practicality of the wide-angle Michelson interferometer with large air gap is proved by means of theory and experiment. © 2011 Optical Society of America

  3. First-principles electronic structure of Mn-doped GaAs, GaP, and GaN semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, T C [Computer Science and Mathematics Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6164 (United States); Temmerman, W M [Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Szotek, Z [Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Svane, A [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Petit, L [Computer Science and Mathematics Division and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6164 (United States)

    2007-04-23

    We present first-principles electronic structure calculations of Mn-doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin-density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for the magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn d levels in GaAs. We find good agreement between computed values and estimates from photoemission experiments.

  4. First-principles electronic structure of Mn-doped GaAs, GaP, and GaN semiconductors

    International Nuclear Information System (INIS)

    Schulthess, T C; Temmerman, W M; Szotek, Z; Svane, A; Petit, L

    2007-01-01

    We present first-principles electronic structure calculations of Mn-doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin-density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for the magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extracting binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn d levels in GaAs. We find good agreement between computed values and estimates from photoemission experiments

  5. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator.

    Science.gov (United States)

    Farajollahpour, T; Jafari, S A

    2018-01-10

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the 'ARPES-dark' state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  6. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator

    Science.gov (United States)

    Farajollahpour, T.; Jafari, S. A.

    2018-01-01

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the ‘ARPES-dark’ state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  7. In situ measurement of the energy gap of a semiconductor using a microcontroller-based system

    International Nuclear Information System (INIS)

    Mukaro, R; Taele, B M; Tinarwo, D

    2006-01-01

    This paper describes a microcontroller-based laboratory technique for automatic in situ measurement of the energy gap of germanium. The design is based on the original undergraduate laboratory experiment in which students manually measure the variation of the reverse saturation current of a germanium diode with temperature using a current-to-voltage converter. After collecting the results students later analyse them to determine the energy gap of the semiconductor. The objective of this work was to introduce interfacing and computerized measurement systems in the undergraduate laboratory. The microcontroller-based data acquisition system and its implementation in automatic in situ measurement of the band gap of germanium diode is presented. The system which uses an LM335 temperature sensor for measuring temperature transmits the measured data to the computer via the RS232 serial port while a C++ software program developed to run on the computer monitors the serial port for incoming information sent by the microcontroller. This information is displayed on the computer screen as it comes and automatically saved to a data file. Once all the data are received, the computer performs least-squares fit to the data to compute the energy gap which is displayed on the screen together with its error estimate. For the IN34A germanium diode used the value of the energy gap obtained was 0.50 ± 0.02 eV

  8. In situ measurement of the energy gap of a semiconductor using a microcontroller-based system

    Energy Technology Data Exchange (ETDEWEB)

    Mukaro, R [Department of Physics, Bindura University of Science, P/Bag 1020, Bindura (Zimbabwe); Taele, B M [Department of Physics and Electronics, National University of Lesotho, Roma 180 (Lesotho); Tinarwo, D [Department of Physics, Bindura University of Science, P/Bag 1020, Bindura (Zimbabwe)

    2006-05-01

    This paper describes a microcontroller-based laboratory technique for automatic in situ measurement of the energy gap of germanium. The design is based on the original undergraduate laboratory experiment in which students manually measure the variation of the reverse saturation current of a germanium diode with temperature using a current-to-voltage converter. After collecting the results students later analyse them to determine the energy gap of the semiconductor. The objective of this work was to introduce interfacing and computerized measurement systems in the undergraduate laboratory. The microcontroller-based data acquisition system and its implementation in automatic in situ measurement of the band gap of germanium diode is presented. The system which uses an LM335 temperature sensor for measuring temperature transmits the measured data to the computer via the RS232 serial port while a C++ software program developed to run on the computer monitors the serial port for incoming information sent by the microcontroller. This information is displayed on the computer screen as it comes and automatically saved to a data file. Once all the data are received, the computer performs least-squares fit to the data to compute the energy gap which is displayed on the screen together with its error estimate. For the IN34A germanium diode used the value of the energy gap obtained was 0.50 {+-} 0.02 eV.

  9. Electronic properties of electron and hole in type-II semiconductor nano-heterostructures

    Science.gov (United States)

    Rahul, K. Suseel; Souparnika, C.; Salini, K.; Mathew, Vincent

    2016-05-01

    In this project, we record the orbitals of electron and hole in type-II (CdTe/CdSe/CdTe/CdSe) semiconductor nanocrystal using effective mass approximation. In type-II the band edges of both valance and conduction band are higher than that of shell. So the electron and hole get confined in different layers of the hetero-structure. The energy eigen values and eigen functions are calculated by solving Schrodinger equation using finite difference matrix method. Based on this we investigate the effect of shell thickness and well width on energy and probability distribution of ground state (1s) and few excited states (1p,1d,etc). Our results predict that, type-II quantum dots have significant importance in photovoltaic applications.

  10. Electronic properties of electron and hole in type-II semiconductor nano-heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Rahul, K. Suseel [Department of Physics, Central University of Kerala, Riverside Transit Campus, Kasaragod, Kerala. India (India); Department of Physics, Sri Vyasa NSS College, Wadakkancheri, Thrissur, Kerala, PIN:680623. India (India); Souparnika, C. [Department of Physics, Sri Vyasa NSS College, Wadakkancheri, Thrissur, Kerala, PIN:680623. India (India); Salini, K.; Mathew, Vincent, E-mail: vincent@cukerala.ac.in [Department of Physics, Central University of Kerala, Riverside Transit Campus, Kasaragod, Kerala. India (India)

    2016-05-06

    In this project, we record the orbitals of electron and hole in type-II (CdTe/CdSe/CdTe/CdSe) semiconductor nanocrystal using effective mass approximation. In type-II the band edges of both valance and conduction band are higher than that of shell. So the electron and hole get confined in different layers of the hetero-structure. The energy eigen values and eigen functions are calculated by solving Schrodinger equation using finite difference matrix method. Based on this we investigate the effect of shell thickness and well width on energy and probability distribution of ground state (1s) and few excited states (1p,1d,etc). Our results predict that, type-II quantum dots have significant importance in photovoltaic applications.

  11. Correlation between the band gap expansion and melting temperature depression of nanostructured semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianwei, E-mail: jwl189@163.com; Zhao, Xinsheng [Laboratory for Quantum Design of Functional Material, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China); Liu, Xinjuan [Center for Coordination Bond and Electronic Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Zheng, Xuejun [School of Mechanical Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China); Yang, Xuexian [Department of Physics, Jishou University, Jishou 416000, Hunan (China); Zhu, Zhe [School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2015-09-28

    The band gap and melting temperature of a semiconductor are tunable with the size and shape of the specimen at the nanometer scale, and related mechanisms remain as yet unclear. In order to understand the common origin of the size and shape effect on these two seemingly irrelevant properties, we clarify, correlate, formulate, and quantify these two properties of GaAs, GaN, InP, and InN nanocrystals from the perspectives of bond order-length-strength correlation using the core-shell configuration. The consistency in the theoretical predictions, experimental observations, and numerical calculations verify that the broken-bond-induced local bond contraction and strength gain dictates the band gap expansion, while the atomic cohesive energy loss due to bond number reduction depresses the melting point. The fraction of the under-coordinated atoms in the skin shell quantitatively determines the shape and size dependency. The atomic under-coordination in the skin down to a depth of two atomic layers inducing a change in the local chemical bond is the common physical origin.

  12. Conductivity in transparent oxide semiconductors.

    Science.gov (United States)

    King, P D C; Veal, T D

    2011-08-24

    Despite an extensive research effort for over 60 years, an understanding of the origins of conductivity in wide band gap transparent conducting oxide (TCO) semiconductors remains elusive. While TCOs have already found widespread use in device applications requiring a transparent contact, there are currently enormous efforts to (i) increase the conductivity of existing materials, (ii) identify suitable alternatives, and (iii) attempt to gain semiconductor-engineering levels of control over their carrier density, essential for the incorporation of TCOs into a new generation of multifunctional transparent electronic devices. These efforts, however, are dependent on a microscopic identification of the defects and impurities leading to the high unintentional carrier densities present in these materials. Here, we review recent developments towards such an understanding. While oxygen vacancies are commonly assumed to be the source of the conductivity, there is increasing evidence that this is not a sufficient mechanism to explain the total measured carrier concentrations. In fact, many studies suggest that oxygen vacancies are deep, rather than shallow, donors, and their abundance in as-grown material is also debated. We discuss other potential contributions to the conductivity in TCOs, including other native defects, their complexes, and in particular hydrogen impurities. Convincing theoretical and experimental evidence is presented for the donor nature of hydrogen across a range of TCO materials, and while its stability and the role of interstitial versus substitutional species are still somewhat open questions, it is one of the leading contenders for yielding unintentional conductivity in TCOs. We also review recent work indicating that the surfaces of TCOs can support very high carrier densities, opposite to the case for conventional semiconductors. In thin-film materials/devices and, in particular, nanostructures, the surface can have a large impact on the total

  13. Ultratrace Determination of Cr(VI and Pb(II by Microsample Injection System Flame Atomic Spectroscopy in Drinking Water and Treated and Untreated Industrial Effluents

    Directory of Open Access Journals (Sweden)

    Jameel Ahmed Baig

    2013-01-01

    Full Text Available Simple and robust analytical procedures were developed for hexavalent chromium (Cr(VI and lead (Pb(II by dispersive liquid-liquid microextraction (DLLME using microsample injection system coupled with flame atomic absorption spectrophotometry (MIS-FAAS. For the current study, ammonium pyrrolidine dithiocarbamate (APDC, carbon tetrachloride, and ethanol were used as chelating agent, extraction solvent, and disperser solvent, respectively. The effective variables of developed method have been optimized and studied in detail. The limit of detection of Cr(VI and Pb(II were 0.037 and 0.054 µg/L, respectively. The enrichment factors in both cases were 400 with 40 mL of initial volumes. The relative standard deviations (RSDs, were 96%. The proposed method was successfully applied to the determination of Cr(VI and Pb(II at ultratrace levels in natural drinking water and industrial effluents wastewater of Denizli. Moreover, the proposed method was compared with the literature reported method.

  14. Polarized emission in II–VI and perovskite colloidal quantum dots

    NARCIS (Netherlands)

    Isarov, Maya; Tan, Liang Z.; Tilchin, Jenya; Rabouw, Freddy T.; Bodnarchuk, Maryna I.; Moes, Relinde; Carmi, Rotem; Barak, Yahel; Kostadinov, Alyssa; Meir, Itay; Vanmaekelbergh, Daniel; Kovalenko, Maksym V.; Rappe, Andrew M.; Lifshitz, Efrat

    2017-01-01

    The polarized emission of colloidal quantum dots from II–VI and perovskite semiconductors were investigated thoroughly, revealing information about the optical transitions in these materials and their potential use in various opto-electronic or spintronic applications. The studies included recording

  15. On increasing the efficiency of a streamer semiconductor laser

    International Nuclear Information System (INIS)

    Rusakov, K I; Parashchuk, V V

    2007-01-01

    The influence of intense electric and optical fields produced by a streamer discharge in wide-gap semiconductors on their spectroscopic properties is studied. The effect is manifested in the reversible change of the luminescence parameters of the active medium. Methods are proposed for increasing the service life and efficiency of a streamer laser in limiting regimes, which are based on the use of semiconductor protective layers of a certain crystallographic orientation and a crystal microrelief with the size of elements of the order of the wavelength of light. Streamer emission was observed and studied in new promising Eu:CaGa 2 S 4 and Eu:Ca 4 Ga 2 S 7 materials. (lasers)

  16. Conserved water-mediated hydrogen bond network between TM-I, -II, -VI, and -VII in 7TM receptor activation

    DEFF Research Database (Denmark)

    Nygaard, Rie; Hansen, Louise Valentin; Mokrosinski, Jacek

    2010-01-01

    Five highly conserved polar residues connected by a number of structural water molecules together with two rotamer micro-switches, TrpVI:13 and TyrVII:20, constitute an extended hydrogen bond network between the intracellular segments of TM-I, -II, -VI, and -VII of 7TM receptors. Molecular dynamics...... to apparently function as a catching trap for water molecules. Mutational analysis of the beta2-adrenergic receptor demonstrated that the highly conserved polar residues of the hydrogen bond network were all important for receptor signaling but served different functions, some dampening constitutive activity...... (AsnI:18, AspII:10, and AsnVII:13), whereas others (AsnVII:12 and AsnVII:16) located one helical turn apart and sharing a water molecule were shown to be essential for agonist-induced signaling. It is concluded that the conserved water hydrogen bond network of 7TM receptors constitutes an extended...

  17. Radiation effects on II-VI compound-based detectors

    CERN Document Server

    Cavallini, A; Dusi, W; Auricchio, N; Chirco, P; Zanarini, M; Siffert, P; Fougeres, P

    2002-01-01

    The performance of room temperature CdTe and CdZnTe detectors exposed to a radiation source can be strongly altered by the interaction of the ionizing particles and the material. Up to now, few experimental data are available on the response of II-VI compound detectors to different types of radiation sources. We have carried out a thorough investigation on the effects of gamma-rays, neutrons and electron irradiation both on CdTe : Cl and Cd sub 0 sub . sub 9 Zn sub 0 sub . sub 1 Te detectors. We have studied the detector response after radiation exposure by means of dark current measurements and of quantitative spectroscopic analyses at low and medium energies. The deep traps present in the material have been characterized by means of PICTS (photo-induced current transient spectroscopy) analyses, which allow to determine the trap apparent activation energy and capture cross-section. The evolution of the trap parameters with increasing irradiation doses has been monitored for all the different types of radiati...

  18. Characterization of β-FeSi II films as a novel solar cell semiconductor

    Science.gov (United States)

    Fukuzawa, Yasuhiro; Ootsuka, Teruhisa; Otogawa, Naotaka; Abe, Hironori; Nakayama, Yasuhiko; Makita, Yunosuke

    2006-04-01

    β-FeSi II is an attractive semiconductor owing to its extremely high optical absorption coefficient (α>10 5 cm -1), and is expected to be an ideal semiconductor as a thin film solar cell. For solar cell use, to prepare high quality β-FeSi II films holding a desired Fe/Si ratio, we chose two methods; one is a molecular beam epitaxy (MBE) method in which Fe and Si were evaporated by using normal Knudsen cells, and occasionally by e-gun for Si. Another one is the facing-target sputtering (FTS) method in which deposition of β-FeSi II films is made on Si substrate that is placed out of gas plasma cloud. In both methods to obtain β-FeSi II films with a tuned Fe/Si ratio, Fe/Si super lattice was fabricated by varying Fe and Si deposition thickness. Results showed significant in- and out-diffusion of host Fe and Si atoms at the interface of Si substrates into β-FeSi II layers. It was experimentally demonstrated that this diffusion can be suppressed by the formation of template layer between the epitaxial β-FeSi II layer and the substrate. The template layer was prepared by reactive deposition epitaxy (RDE) method. By fixing the Fe/Si ratio as precisely as possible at 1/2, systematic doping experiments of acceptor (Ga and B) and donor (As) impurities into β-FeSi II were carried out. Systematical changes of electron and hole carrier concentration in these samples along variation of incorporated impurities were observed through Hall effect measurements. Residual carrier concentrations can be ascribed to not only the remaining undesired impurities contained in source materials but also to a variety of point defects mainly produced by the uncontrolled stoichiometry. A preliminary structure of n-β-FeSi II/p-Si used as a solar cell indicated a conversion efficiency of 3.7%.

  19. Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states

    International Nuclear Information System (INIS)

    Galatage, R. V.; Zhernokletov, D. M.; Dong, H.; Brennan, B.; Hinkle, C. L.; Wallace, R. M.; Vogel, E. M.

    2014-01-01

    The origin of the anomalous frequency dispersion in accumulation capacitance of metal-insulator-semiconductor devices on InGaAs and InP substrates is investigated using modeling, electrical characterization, and chemical characterization. A comparison of the border trap model and the disorder induced gap state model for frequency dispersion is performed. The fitting of both models to experimental data indicate that the defects responsible for the measured dispersion are within approximately 0.8 nm of the surface of the crystalline semiconductor. The correlation between the spectroscopically detected bonding states at the dielectric/III-V interface, the interfacial defect density determined using capacitance-voltage, and modeled capacitance-voltage response strongly suggests that these defects are associated with the disruption of the III-V atomic bonding and not border traps associated with bonding defects within the high-k dielectric.

  20. Empirical tight-binding modeling of ordered and disordered semiconductor structures

    International Nuclear Information System (INIS)

    Mourad, Daniel

    2010-01-01

    In this thesis, we investigate the electronic and optical properties of pure as well as of substitutionally alloyed II-VI and III-V bulk semiconductors and corresponding semiconductor quantum dots by means of an empirical tight-binding (TB) model. In the case of the alloyed systems of the type A x B 1-x , where A and B are the pure compound semiconductor materials, we study the influence of the disorder by means of several extensions of the TB model with different levels of sophistication. Our methods range from rather simple mean-field approaches (virtual crystal approximation, VCA) over a dynamical mean-field approach (coherent potential approximation, CPA) up to calculations where substitutional disorder is incorporated on a finite ensemble of microscopically distinct configurations. In the first part of this thesis, we cover the necessary fundamentals in order to properly introduce the TB model of our choice, the effective bond-orbital model (EBOM). In this model, one s- and three p-orbitals per spin direction are localized on the sites of the underlying Bravais lattice. The matrix elements between these orbitals are treated as free parameters in order to reproduce the properties of one conduction and three valence bands per spin direction and can then be used in supercell calculations in order to model mixed bulk materials or pure as well as mixed quantum dots. Part II of this thesis deals with unalloyed systems. Here, we use the EBOM in combination with configuration interaction calculations for the investigation of the electronic and optical properties of truncated pyramidal GaN quantum dots embedded in AlN with an underlying zincblende structure. Furthermore, we develop a parametrization of the EBOM for materials with a wurtzite structure, which allows for a fit of one conduction and three valence bands per spin direction throughout the whole Brillouin zone of the hexagonal system. In Part III, we focus on the influence of alloying on the electronic and

  1. Technical realisation of the VISA-II Project, Phase II, Chapter X, Vol. VI; Tehnicka realizacija projekta VISA-II, II faza, Glava X, Album VI

    Energy Technology Data Exchange (ETDEWEB)

    Pavicevic, M; Nikolic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1963-01-15

    The second phase of the 'Project VISA-2 described in this chapter of Vol. VI includes the project specifications and technical drawings of the 'measuring system of VISA-2 for testing the VISA-2 channels outside and in the reactor'. In addition to the task objective, description of the measuring system, action plan, description of the work done it contains the definition of the task 'Leak testing' and instructions for the instrumentation personnel on duty. [Serbo-Croat] Druga faza zadatka {sup T}ehnicka realizacija projekta VISA-2' opisana u ovom poglavlju Albuma VI, sadrzi tehnicki opis i crteze 'Mernog sistema VISA-2 i ispitivanje kanala VISA-2 van reaktora i u reaktoru'. Pored definicije zadatka, opisa mernog sistema VISA-2, razrade zadatka, tekstualnog dela projekta i opisa izvedenih radova, ovo poglavlje obuhvata definiciju i razradu podzadatka 'Ispitivanje hermeticnosti' i dodatak sa instrukcijama za dezurne instrumentatore u vezi eksperimenta VISA-2.

  2. Multisensor system for determination of iron(II), iron(III), uranium(VI) and uranium(IV) in complex solutions

    International Nuclear Information System (INIS)

    Legin, A.V.; Seleznev, B.L.; Rudnitskaya, A.M.; Vlasov, Yu.G.; Tverdokhlebov, S.V.; Mack, B.; Abraham, A.; Arnold, T.; Baraniak, L.; Nitsche, H.

    1999-01-01

    Development and analytical evaluation of a multisensor system based on the principles of 'electronic tongue' for the determination of low contents of uranium(VI), uranium(IV), iron(II) and iron(III) in complex aqueous media have been carried out. A set of 29 different chemical sensors on the basis of all- solid-state crystalline and vitreous materials with enhanced electronic conductivity and redox and ionic cross-sensitivity have been incorporated into the sensor array. Multidimensional data have been processed by pattern recognition methods such as artificial neural networks and partial least squares. It has been demonstrated that Fe(II) and Fe(III) contents in the range from 10 -7 to 10 -4 mol L -1 of total iron concentration can be determined with the average precision of about 25 %. U(VI) and U(IV) contents can been determined with the average precision of 10-40% depending on the concentration. The developed multisensor system can be applied in future for the analysis of mining and borehole waters as well other contaminated natural media, including on-site measurements. (author)

  3. On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals

    NARCIS (Netherlands)

    Houtepen, Arjan J.; Hens, Zeger; Owen, Jonathan S.; Infante, Ivan

    2017-01-01

    One of the greatest challenges in the field of semiconductor nanomaterials is to make trap-free nanocrystalline structures to attain a remarkable improvement of their optoelectronic performances. In semiconductor nanomaterials, a very high number of atoms is located on the surface and these atoms

  4. Predicting chromium (VI) adsorption rate in the treatment of liquid ...

    African Journals Online (AJOL)

    Administrator

    The adsorption rate of chromium (VI) on commercial activated carbon during the ... time and initial chromium (VI) ion concentration. .... model, the separation factor r, according to Calvo et al (2001) cited .... Lead (II) and nickel (II) adsorption kinetics .... heavy metal by Talaromyces helicus: a trained fungus for copper and.

  5. ZnSe Light Emitting Diode Quantum Efficiency and Emission Characterization

    Directory of Open Access Journals (Sweden)

    Sahbudin U.K.

    2016-01-01

    Full Text Available ZnSe has demonstrated as a potential candidate in realizing advance LED in some appications for current and future works that utilize a cheaper preparation technique. Blue and white LEDs have been shown to spread across compound semiconductors. This II-VI compound semiconductor with a direct and wide band gap is used in the study which focused on a preparation and its characterization. The device is developed using a circular chip of ZnSe but only part of the active region is designed to allow shorter computation time. Analyses of the proposed LED are performed in an environment that allows optical transition and nonradiative recombination mechanisms. Voltage variation from 0 V to 1.5 V is maintained throughout the observation. The curent-voltage plot shows the p-n junction or diode behavior with central emissive layer. The two dimensions surface emission rate obtained indicates that voltage increment causes the emission concentration to become higher near the central pcontact. The LED efficiency is assessed in terms of internal quantum efficiency and emitting rate.

  6. Efficient photocatalytic degradation of perfluorooctanoic acid by a wide band gap p-block metal oxyhydroxide InOOH

    Science.gov (United States)

    Xu, Jingjing; Wu, Miaomiao; Yang, Jingwen; Wang, Zhengmei; Chen, Mindong; Teng, Fei

    2017-09-01

    In this work, we prepared a new wide band gap semiconductor, p-block metal oxyhydroxide InOOH, which exhibits efficient activity for perfluorooctanoic acid (PFOA) degradation under mild conditions and UV light irradiation. The apparent rate constant for PFOA degradation by InOOH is 27.6 times higher than that for P25 titania. Results show that ionized PFOA (C7F15COO-) can be adsorbed much more efficiently on the surface of InOOH than P25. Then, the adsorbed C7F15COO- can be decomposed directly by photo-generated holes to form C7F15COOrad radicals. This process is the key step for the photocalytic degradation of PFOA. Major degradation intermediates, fluoride ions and perfluorinated carboxylic acids (PFCAs) with shorter chain lengths were detected during PFOA degradation. A possible pathway for photocatalytic degradation of PFOA is proposed based on the experimental results. Therefore, this studies indicates a potential new material and method for the efficient treatment of PFCA pollutants under mild conditions.

  7. Multisensor system for determination of iron(II), iron(III) and uranium(VI) in complex solutions

    International Nuclear Information System (INIS)

    Legin, A.V.; Seleznev, B.L.; Rudnitskaya, A.M.; Vlasov, Yu.G.

    1998-01-01

    The aim of the present paper is the development and analytical evaluation of a multisensor system for determination of low content of iron(II), iron(III) and uranium(VI) in complex aqueous media. Sensor array included sensors on the basis of chalcogenide vitreous materials with redox and ionic cross-sensitivities, crystalline silver sulphide electrode, noble metal electrodes Pt, Au, Ag and redox sensor on the basis of oxide glass. Potentiometric measurements have been taken in a conventional electrochemical cell vs. a standard Ag/AgCl reference electrode. All measurements have been taken at room temperature. Calibration solutions contained UO 2 (NO 3 ) 2 in concentration range 10 -6 -1,610 -5 mol/L, K 3 Fe(CN) 6 and K 4 Fe(CN) 6 or FeSO 4 (NH 4 ) 2 SO 4 and FeCl 3 , with the ratio of Fe(II)/Fe(III) concentration from 100:1 to 1:100, the total concentration of Fe was 10 -4 and 10 -5 mol/L. All solutions have been made on the background electrolyte of calcium and magnesium chlorides and sulphates with the fixed content of 5-27 mmol/L of each component which is a typical one for groundwater or mining water. Sensor potentials have been processed by a back-propagation artificial neural net. Average error of determination of Fe(II) and Fe(III) is about 20 %, of uranium(VI) - 40 %. It was found that sensitivity of the sensor array to iron and uranium is irrespective of the chemical form of these species

  8. Optical investigations and control of spindynamics in Mn doped II-VI quantum dots; Optische Untersuchung und Kontrolle der Spindynamik in Mn dotierten II-VI Quantenpunkten

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Thomas

    2009-05-13

    The present thesis deals with the spin of charge carriers confined in CdSe/ZnSe quantum dots (QDs) closely linked to the polarization of emitted photons. II-VI material systems can be adequately mixed with the B-group element manganese. Such semimagnetic nanostructures offer a number of characteristic optical and electronic features. This is caused by an exchange interaction between the spin of optically excited carriers and the 3d electrons of the Mn ions. Within the framework of this thesis addressing of well defined spin states was realized by optical excitation of charge carriers. The occupation of different spin states was detected by the degree of polarization of the emitted photoluminescence (PL) light. For that purpose different optical methods of time-resolved and time-integrated spectroscopy as well as investigations in magnetic fields were applied. (orig.)

  9. International Conference on Narrow Gap Semiconductors Held in Southampton, England on 19-23 July 1992. Abstracts Booklet

    Science.gov (United States)

    1992-07-01

    University, Liniz. Narrow gap semiconductors offer the possibility to investigate in detail the role of conduction electrons in spin relaxation processes. In...crucial role on device performance. Hg1 ,-Zn.Te (N2T) is considered an alternative material to Hg1 -. Cd.Te (NCT) for infrared detectors. To the best of our... iaSb -AlSb-InAs-AlSh-GaSb), focusing on the effects of a magnetic fiheld parallel to the tunneling current, that is, perpendicular to the materials

  10. Electrochemical alkaline Fe(VI) water purification and remediation.

    Science.gov (United States)

    Licht, Stuart; Yu, Xingwen

    2005-10-15

    Fe(VI) is an unusual and strongly oxidizing form of iron, which provides a potentially less hazardous water-purifying agent than chlorine. A novel on-line electrochemical Fe(VI) water purification methodology is introduced. Fe(VI) addition had been a barrier to its effective use in water remediation, because solid Fe(VI) salts require complex (costly) syntheses steps and solutions of Fe(VI) decompose. Online electrochemical Fe(VI) water purification avoids these limitations, in which Fe(VI) is directly prepared in solution from an iron anode as the FeO42- ion, and is added to the contaminant stream. Added FeO42- decomposes, by oxidizing a wide range of water contaminants including sulfides (demonstrated in this study) and other sulfur-containing compounds, cyanides (demonstrated in this study), arsenic (demonstrated in this study), ammonia and other nitrogen-containing compounds (previously demonstrated), a wide range of organics (phenol demonstrated in this study), algae, and viruses (each previously demonstrated).

  11. Modelling the metal–semiconductor band structure in implanted ohmic contacts to GaN and SiC

    International Nuclear Information System (INIS)

    Pérez-Tomás, A; Fontserè, A; Placidi, M; Jennings, M R; Gammon, P M

    2013-01-01

    Here we present a method to model the metal–semiconductor (M–S) band structure to an implanted ohmic contact to a wide band gap semiconductor (WBG) such as GaN and SiC. The performance and understanding of the M–S contact to a WBG semiconductor is of great importance as it influences the overall performance of a semiconductor device. In this work we explore in a numerical fashion the ohmic contact properties to a WBG semiconductor taking into account the partial ionization of impurities and analysing its dependence on the temperature, the barrier height, the impurity level band energy and carrier concentration. The effect of the M–S Schottky barrier lowering and the Schottky barrier inhomogeneities are discussed. The model is applied to a fabricated ohmic contact to GaN where the M–S band structure can be completely determined. (paper)

  12. Electron Band Alignment at Interfaces of Semiconductors with Insulating Oxides: An Internal Photoemission Study

    Directory of Open Access Journals (Sweden)

    Valeri V. Afanas'ev

    2014-01-01

    Full Text Available Evolution of the electron energy band alignment at interfaces between different semiconductors and wide-gap oxide insulators is examined using the internal photoemission spectroscopy, which is based on observations of optically-induced electron (or hole transitions across the semiconductor/insulator barrier. Interfaces of various semiconductors ranging from the conventional silicon to the high-mobility Ge-based (Ge, Si1-xGex, Ge1-xSnx and AIIIBV group (GaAs, InxGa1-xAs, InAs, GaP, InP, GaSb, InSb materials were studied revealing several general trends in the evolution of band offsets. It is found that in the oxides of metals with cation radii larger than ≈0.7 Å, the oxide valence band top remains nearly at the same energy (±0.2 eV irrespective of the cation sort. Using this result, it becomes possible to predict the interface band alignment between oxides and semiconductors as well as between dissimilar insulating oxides on the basis of the oxide bandgap width which are also affected by crystallization. By contrast, oxides of light elements, for example, Be, Mg, Al, Si, and Sc exhibit significant shifts of the valence band top. General trends in band lineup variations caused by a change in the composition of semiconductor photoemission material are also revealed.

  13. Induced Charge Fluctuations in Semiconductor Detectors with a Cylindrical Geometry

    Science.gov (United States)

    Samedov, Victor V.

    2018-01-01

    Now, compound semiconductors are very appealing for hard X-ray room-temperature detectors for medical and astrophysical applications. Despite the attractive properties of compound semiconductors, such as high atomic number, high density, wide band gap, low chemical reactivity and long-term stability, poor hole and electron mobility-lifetime products degrade the energy resolution of these detectors. The main objective of the present study is in development of a mathematical model of the process of the charge induction in a cylindrical geometry with accounting for the charge carrier trapping. The formulae for the moments of the distribution function of the induced charge and the formulae for the mean amplitude and the variance of the signal at the output of the semiconductor detector with a cylindrical geometry were derived. It was shown that the power series expansions of the detector amplitude and the variance in terms of the inverse bias voltage allow determining the Fano factor, electron mobility lifetime product, and the nonuniformity level of the trap density of the semiconductor material.

  14. Nonresonant Faraday rotation in glassy semiconductors

    Science.gov (United States)

    van den Keybus, P.; Grevendonk, W.

    1986-06-01

    Nonresonant interband Faraday rotation in amorphous semiconductors, as a function of photon energy, may be described by an equation derived for direct transitions in crystalline semiconductors. In this paper it is shown how this equation may be obtained for the former case also, assuming a parabolic density of states function N(E) and a correlation between valence- and conduction-band states. The analysis of experiments on chalcogenide glasses reveals a Faraday-rotation energy gap EFRg that is significantly larger than the optical gap Eoptg. The effect is attributed to transitions between extended states, so that it is meaningful to compare EFRg with the mobility gap Eμg. For oxide glasses both gaps are comparable but for chalcogenide glasses EFRg is too large by a few tenths of 1 eV.

  15. Kinetics and Mechanism of Paracetamol Oxidation by Chromium(VI in Absence and Presence of Manganese(II and Sodiumdodecyl Sulphate

    Directory of Open Access Journals (Sweden)

    Maqsood Ahmad Malik

    2007-11-01

    Full Text Available The kinetics of paracetamol oxidation are first order each in [paracetamol] and [HClO4]. The kinetic study shows that the oxidation proceeds in two steps. The effects of anionic micelles of sodiumdodecyl sulphate (SDS and complexing agents (ethylenediammine tetraacetic acid (EDTA and 2,2′-bipyridyl (bpy were also studied. Fast kinetic spectrophotometric method has been described for the determination of paracetamol. The method is based on the catalytic effect of manganese(II on the oxidation of paracetamol by chromium(VI in the presence of HClO4 (= 0.23 mol dm−3. Optimum reaction time is 4 to 6 minutes at a temperature of 30∘C. The addition of manganese(II ions largely decreased the absorbance of chromium(VI at 350 nm. This reaction can be utilized for the determination of paracetamol in drugs.

  16. Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors

    Science.gov (United States)

    Jiang, Zeyu; Liu, Zhirong; Li, Yuanchang; Duan, Wenhui

    2017-06-01

    Using first-principles G W Bethe-Salpeter equation calculations and the k .p theory, we unambiguously show that for two-dimensional (2D) semiconductors, there exists a robust linear scaling law between the quasiparticle band gap (Eg) and the exciton binding energy (Eb), namely, Eb≈Eg/4 , regardless of their lattice configuration, bonding characteristic, as well as the topological property. Such a parameter-free universality is never observed in their three-dimensional counterparts. By deriving a simple expression for the 2D polarizability merely with respect to Eg, and adopting the screened hydrogen model for Eb, the linear scaling law can be deduced analytically. This work provides an opportunity to better understand the fantastic consequence of the 2D nature for materials, and thus offers valuable guidance for their property modulation and performance control.

  17. Designing defect-based qubit candidates in wide-gap binary semiconductors for solid-state quantum technologies

    Science.gov (United States)

    Seo, Hosung; Ma, He; Govoni, Marco; Galli, Giulia

    2017-12-01

    The development of novel quantum bits is key to extending the scope of solid-state quantum-information science and technology. Using first-principles calculations, we propose that large metal ion-vacancy pairs are promising qubit candidates in two binary crystals: 4 H -SiC and w -AlN. In particular, we found that the formation of neutral Hf- and Zr-vacancy pairs is energetically favorable in both solids; these defects have spin-triplet ground states, with electronic structures similar to those of the diamond nitrogen-vacancy center and the SiC divacancy. Interestingly, they exhibit different spin-strain coupling characteristics, and the nature of heavy metal ions may allow for easy defect implantation in desired lattice locations and ensure stability against defect diffusion. To support future experimental identification of the proposed defects, we report predictions of their optical zero-phonon line, zero-field splitting, and hyperfine parameters. The defect design concept identified here may be generalized to other binary semiconductors to facilitate the exploration of new solid-state qubits.

  18. Quaternary alloys based on II-VI semiconductors

    CERN Document Server

    Tomashyk, Vasyl

    2014-01-01

    Systems Based on ZnSSystems Based on ZnSeSystems Based on ZnTeSystems Based on CdSSystems Based on CdSeSystems Based on CdTeSystems Based on HgSSystems Based on HgSeSystems Based on HgTeIndexReferences appear at the end of each chapter.

  19. Tailoring Mixed-Halide, Wide-Gap Perovskites via Multistep Conversion Process

    NARCIS (Netherlands)

    Bae, D.; Palmstrom, A.; Roelofs, K.; Mei, Bastian Timo; Chorkendorf, I.; Bent, S.F.; Vesborg, P.C.

    2016-01-01

    Wide-band-gap mixed-halide CH3NH3PbI3–XBrX-based solar cells have been prepared by means of a sequential spin-coating process. The spin-rate for PbI2 as well as its repetitive deposition are important in determining the cross-sectional shape and surface morphology of perovskite, and, consequently,

  20. A Unifying Perspective on Oxygen Vacancies in Wide Band Gap Oxides.

    Science.gov (United States)

    Linderälv, Christopher; Lindman, Anders; Erhart, Paul

    2018-01-04

    Wide band gap oxides are versatile materials with numerous applications in research and technology. Many properties of these materials are intimately related to defects, with the most important defect being the oxygen vacancy. Here, using electronic structure calculations, we show that the charge transition level (CTL) and eigenstates associated with oxygen vacancies, which to a large extent determine their electronic properties, are confined to a rather narrow energy range, even while band gap and the electronic structure of the conduction band vary substantially. Vacancies are classified according to their character (deep versus shallow), which shows that the alignment of electronic eigenenergies and CTL can be understood in terms of the transition between cavity-like localized levels in the large band gap limit and strong coupling between conduction band and vacancy states for small to medium band gaps. We consider both conventional and hybrid functionals and demonstrate that the former yields results in very good agreement with the latter provided that band edge alignment is taken into account.

  1. Selective photochemical dry etching of compound semiconductors

    International Nuclear Information System (INIS)

    Ashby, C.I.H.

    1988-01-01

    When laser-driven etching of a semiconductor requires direct participation of photogenerated carriers, the etching quantum yield will be sensitive to the electronic properties of a specific semiconductor material. The band-gap energy of the semiconductor determines the minimum photon energy needed for carrier-driven etching since sub-gap photons do not generate free carriers. However, only those free carriers that reach the reacting surface contribute to etching and the ultimate carrier flux to the surface is controlled by more subtle electronic properties than the lowest-energy band gap. For example, the initial depth of carrier generation and the probability of carrier recombination between the point of generation and the surface profoundly influence the etching quantum yield. Appropriate manipulation of process parameters can provide additional reaction control based on such secondary electronic properties. Applications to selective dry etching of GaAs and related materials are discussed

  2. Hydrogenated Graphene Nanoflakes: Semiconductor to Half-Metal Transition and Remarkable Large Magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yungang; Wang, Zhiguo; Yang, Ping; Sun, Xin; Zu, Xiaotao; Gao, Fei

    2012-03-08

    The electronic and magnetic properties of graphene nanoflakes (GNFs) can be tuned by patterned adsorption of hydrogen. Controlling the H coverage from bare GNFs to half hydrogenated and then to fully hydrogenated GNFs, the transformation of small-gap semiconductor {yields} half-metal {yields} wide-gap semiconductor occurs, accompanied by a magnetic {yields} magnetic {yields} nonmagnetic transfer and a nonmagnetic {yields} magnetic {yields} nonmagnetic transfer for triangular and hexagonal nanoflakes, respectively. The half hydrogenated GNFs, associated with strong spin polarization around the Fermi level, exhibit the unexpected large spin moment that is scaled squarely with the size of flakes. The induced spin magnetizations of these nanoflakes align parallel and lead to a substantial collective character, enabling the half hydrogenated GNFs to be spin-filtering flakes. These hydrogenation-dependent behaviors are then used to realize an attractive approach to engineer the transport properties, which provides a new route to facilitate the design of tunable spin devices.

  3. Evidence of Type-II Band Alignment in III-nitride Semiconductors: Experimental and theoretical investigation for In0.17Al0.83N/GaN heterostructures

    Science.gov (United States)

    Wang, Jiaming; Xu, Fujun; Zhang, Xia; An, Wei; Li, Xin-Zheng; Song, Jie; Ge, Weikun; Tian, Guangshan; Lu, Jing; Wang, Xinqiang; Tang, Ning; Yang, Zhijian; Li, Wei; Wang, Weiying; Jin, Peng; Chen, Yonghai; Shen, Bo

    2014-01-01

    Type-II band alignment structure is coveted in the design of photovoltaic devices and detectors, since it is beneficial for the transport of photogenerated carriers. Regrettably, for group-III-nitride wide bandgap semiconductors, all existing devices are limited to type-I heterostructures, owing to the unavailable of type-II ones. This seriously restricts the designing flexibility for optoelectronic devices and consequently the relevant performance of this material system. Here we show a brandnew type-II band alignment of the lattice-matched In0.17Al0.83N/GaN heterostructure from the perspective of both experimental observations and first-principle theoretical calculations. The band discontinuity is dominated by the conduction band offset ΔEC, with a small contribution from the valence band offset ΔEV which equals 0.1 eV (with being above). Our work may open up new prospects to realize high-performance III-Nitrides optoelectronic devices based on type-II energy band engineering. PMID:25283334

  4. Modeling of Wide-Band-Gap Semiconductor Alloys

    National Research Council Canada - National Science Library

    Lambrecht, W

    1998-01-01

    .... The band structure and the total energy properties of LiGaO2 were studied in relation to its possible role as a substrate for GaN growth and as a model system for cation ordering on wurtzite based lattices...

  5. Pressure-induced structural and semiconductor-semiconductor transitions in C o0.5M g0.5C r2O4

    Science.gov (United States)

    Rahman, S.; Saqib, Hajra; Zhang, Jinbo; Errandonea, D.; Menéndez, C.; Cazorla, C.; Samanta, Sudeshna; Li, Xiaodong; Lu, Junling; Wang, Lin

    2018-05-01

    The effect of pressure on the structural, vibrational, and electronic properties of Mg-doped Cr bearing spinel C o0.5M g0.5C r2O4 was studied up to 55 GPa at room-temperature using x-ray diffraction, Raman spectroscopy, electrical transport measurements, and ab initio calculations. We found that the ambient-pressure phase is cubic (spinel-type, F d 3 ¯m ) and underwent a pressure-induced structural transition to a tetragonal phase (space group I 4 ¯m 2 ) above 28 GPa. The ab initio calculation confirmed this first-order phase transition. The resistivity of the sample decreased at low pressures with the existence of a low-pressure (LP) phase and started to increase with the emergence of a high-pressure (HP) phase. The temperature dependent resistivity experiments at different pressures illustrated the wide band gap semiconducting nature of both the LP and HP phases with different activation energies, suggesting a semiconductor-semiconductor transition at HP. No evidence of chemical decomposition or a semiconductor-metal transition was observed in our studies.

  6. Thermoelectric properties of thin film and superlattice structure of IV-VI and V-VI compound semiconductors; Thermoelektrische Eigenschaften duenner Schichten und Uebergitterstrukturen von IV-VI- und V-VI-Verbundhalbleitern

    Energy Technology Data Exchange (ETDEWEB)

    Blumers, Mathias

    2012-02-29

    The basic material property governing the efficiency of thermoelectric applications is the thermoelectric figure of merit Z=S{sup 2}.{sigma}/k, where S is the Seebeck-coefficient, {sigma} is the electrical conductivity and k the thermal conductivity. A promising concept of increasing Z by one and two dimensional quantum well superlattices (QW-SL) was introduced in the early 1990s in terms of theoretical predictions. The realization of such low dimensional systems is done by use of semiconductor compounds with different energy gaps. The ambition of the Nitherma project was to investigate the thermoelectric properties of superlattices and Multi-Quantum-Well-structures (MQW) made of Pb{sub 1-x}Sr{sub x}Te and Bi{sub 2}(Se{sub x}Te{sub 1-x}){sub 3}, respectively. Therefore SL- and MQW-structures of this materials were grown and Z was determined by measuring of S, {sigma} and {kappa} parallel to the layer planes. Aim of this thesis is the interpretation of the transport measurements (S,{sigma},{kappa}) of low dimensional structures and the improvement of preparation and measurement techniques. The influence of low dimensionality on the thermal conductivity in SL- and MQW-structures was investigated by measurements on structures with different layer thicknesses. In addition, measurements of the Seebeck-coefficient were performed, also to verify the results of the participating groups.

  7. Development of Neutron Interferometer with Wide-Gapped ''BSE''s for Precision Measurements

    International Nuclear Information System (INIS)

    Seki, Y.; Kitaguchi, M.; Hino, M.; Funahashi, H.; Taketani, K.; Otake, Y.; Shimizu, H. M.

    2007-01-01

    We are developing large-dimensional cold-neutron interferometers with multilayer mirrors in order to investigate small interactions. In particular Jamin type interferometers composed of wide-gapped 'BSE's, which divide the beam completely, can realize the precision measurement of topological Aharonov-Casher effect. We have made a prototype with 200 μm gapped BSEs and confirmed the spatial separation of its two paths at monochromatic cold-neutron beamline MINE2 on JRR-3M reactor in JAEA

  8. Semiconductors bonds and bands

    CERN Document Server

    Ferry, David K

    2013-01-01

    As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.

  9. Cyclopentadienyl molybdenum(II/VI) N-heterocyclic carbene complexes: Synthesis, structure, and reactivity under oxidative conditions

    KAUST Repository

    Li, Shenyu

    2010-04-26

    A series of N-heterocyclic carbene (NHC) complexes CpMo(CO) 2(NHC)X (NHC = IMe = 1,3-dimethylimidazol-2-ylidene, X = Br, 1; NHC = 1,3-dipropylimidazol-2-ylidene, X = Br, 2; NHC = IMes = 1,3-bis(2,4,6- trimethylphenyl)imidazol-2-ylidene, X = Br, 3; NHC = IBz = 1,3-dibenzylimidazol- 2-ylidene, X = Br, 4a, and X = Cl, 4b; NHC = 1-methyl-3-propylimidazol-2- ylidene, X = Br, 5) and [CpMo(CO)2(IMes)(CH3CN)][BF 4] (6) have been synthesized and fully characterized. The stability of metal-NHC ligand bonds in these compounds under oxidative conditions has been investigated. The thermally stable Mo(VI) dioxo NHC complex [CpMoO 2(IMes)][BF4] (9) has been isolated by the oxidation of the ionic complex 6 by TBHP (tert-butyl hydrogen peroxide). Complex 6 can be applied as a very active (TOFs up to 3400 h-1) and selective olefin epoxidation catalyst. While under oxidative conditions (in the presence of TBHP), compounds 1-5 decompose into imidazolium bromide and imidazolium polyoxomolybdate. The formation of polyoxomolybdate as oxidation products had not been observed in a similar epoxidation catalyzed by Mo(II) and Mo(VI) complexes. DFT studies suggest that the presence of Br- destabilizes the CpMo(VI) oxo NHC carbene species, consistent with the experimental observations. © 2010 American Chemical Society.

  10. Effects of increasing number of rings on the ion sensing ability of CdSe quantum dots: a theoretical study

    Science.gov (United States)

    Malik, Pragati; Kakkar, Rita

    2018-04-01

    A computational study on the structural and electronic properties of a special class of artificial atoms, known as quantum dots, has been carried out. These are semiconductors with unique optical and electronic properties and have been widely used in various applications, such as bio-sensing, bio-imaging, and so on. We have considered quantum dots belonging to II-VI types of semiconductors, due to their wide band gap, possession of large exciton binding energies and unique optical and electronic properties. We have studied their applications as chemical ion sensors by beginning with the study of the ion sensing ability of (CdSe) n ( n = 3, 6, 9 which are in the size range of 0.24, 0.49, 0.74 nm, respectively) quantum dots for cations of the zinc triad, namely Zn2+, Cd2+, Hg2+, and various anions of biological and environmental importance, and studied the effect of increasing number of rings on their ion sensing ability. The various structural, electronic, and optical properties, their interaction energies, and charge transfer on interaction with metal ions and anions have been calculated and reported. Our studies indicate that the CdSe quantum dots can be employed as sensors for both divalent cations and anions, but they can sense cations better than anions.

  11. The O VI Mystery: Mismatch between X-Ray and UV Column Densities

    Science.gov (United States)

    Mathur, S.; Nicastro, F.; Gupta, A.; Krongold, Y.; McLaughlin, B. M.; Brickhouse, N.; Pradhan, A.

    2017-12-01

    The UV spectra of Galactic and extragalactic sightlines often show O VI absorption lines at a range of redshifts, and from a variety of sources from the Galactic circumgalactic medium to active galactic nuclei (AGN) outflows. Inner shell O VI absorption is also observed in X-ray spectra (at λ =22.03 Å), but the column density inferred from the X-ray line was consistently larger than that from the UV line. Here we present a solution to this discrepancy for the z = 0 systems. The O II Kβ line {}4{S}0\\to {(}3D)3{p}4P at 562.40 eV (≡22.04 Å) is blended with the O VI Kα line in X-ray spectra. We estimate the strength of this O II line in two different ways, and show that in most cases the O II line accounts for the entire blended line. The small amount of O VI equivalent width present in some cases has column density entirely consistent with the UV value. This solution to the O VI discrepancy, however, does not apply to high column-density systems like AGN outflows. We discuss other possible causes to explain their UV/X-ray mismatch. The O VI and O II lines will be resolved by gratings on board the proposed mission Arcus and the concept mission Lynx, and would allow the detection of weak O VI lines not just at z = 0, but also at higher redshift.

  12. Surface capped fluorescent semiconductor nanoparticles: radiolytic synthesis and some of its biological applications

    International Nuclear Information System (INIS)

    Saha, A.

    2006-01-01

    Semiconductor nanocrystals or colloidal quantum dots (QD's) have generated great research interest because of their unusual properties arising out of quantum confinement effects. Many researchers in the field of nanotechnology focus on the 'high quality' semiconductor quantum dots. A good synthetic route should yield nanoparticles with narrow size distribution, good crystallinity, high photostability, desired surface properties and high photoluminescence quantum efficiency. In the domain of colloidal chemistry, reverse micellar synthesis, high temperature thermolysis using organometallic precursors and synthesis in aqueous media using polyphosphates or thiols as stabilizers are the most prominent ones. In contrast, γ-radiation assisted synthesis can offer a simplified approach to prepare size-controlled nanoparticles at room temperature. Syntheses of thiol-capped II-VI nanoparticles by radiolytic method, its characterization and some of its luminescence-based applications of biological relevance will be presented. The versatility of thiols (RSH) can be emphasized here as changing the R-group imparts different functionality to the particles and thus chemical behavior of the particles can be manipulated according to the application intended for. (authors)

  13. Terahertz plasmonics with semiconductor surfaces and antennas

    NARCIS (Netherlands)

    Gómez Rivas, J.; Berrier, A.

    2009-01-01

    Semiconductors have a Drude-like behavior at terahertz (THz) frequencies similar to metals at optical frequencies. Narrow band gap semiconductors have a dielectric constant with a negative real component and a relatively small imaginary component. This permittivity is characteristic of noble metals

  14. New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang [College of Environmental Science and Engineering, Anhui Normal University, South Jiuhua Road, 189, 241002 Wuhu (China); Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Fiol, Núria [Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Villaescusa, Isabel, E-mail: Isabel.Villaescusa@udg.edu [Chemical Engineering Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain); Poch, Jordi [Applied Mathematics Department, Escola Politècnica Superior, Universitat de Girona, Ma Aurèlia Capmany, 61, 17071 Girona (Spain)

    2016-01-15

    In the last decades Cr(VI) sorption equilibrium and kinetic studies have been carried out using several types of biomasses. However there are few researchers that consider all the simultaneous processes that take place during Cr(VI) sorption (i.e., sorption/reduction of Cr(VI) and simultaneous formation and binding of reduced Cr(III)) when formulating a model that describes the overall sorption process. On the other hand Cr(VI) scarcely exists alone in wastewaters, it is usually found in mixtures with divalent metals. Therefore, the simultaneous removal of Cr(VI) and divalent metals in binary mixtures and the interactive mechanism governing Cr(VI) elimination have gained more and more attention. In the present work, kinetics of Cr(VI) sorption onto exhausted coffee from Cr(VI)–Cu(II) binary mixtures has been studied in a stirred batch reactor. A model including Cr(VI) sorption and reduction, Cr(III) sorption and the effect of the presence of Cu(II) in these processes has been developed and validated. This study constitutes an important advance in modeling Cr(VI) sorption kinetics especially when chromium sorption is in part based on the sorbent capacity of reducing hexavalent chromium and a metal cation is present in the binary mixture. - Highlights: • A kinetic model including Cr(VI) reduction, Cr(VI) and Cr(III) sorption/desorption • Synergistic effect of Cu(II) on Cr(VI) elimination included in the model • Model validation by checking it against independent sets of data.

  15. New approach in modeling Cr(VI) sorption onto biomass from metal binary mixtures solutions

    International Nuclear Information System (INIS)

    Liu, Chang; Fiol, Núria; Villaescusa, Isabel; Poch, Jordi

    2016-01-01

    In the last decades Cr(VI) sorption equilibrium and kinetic studies have been carried out using several types of biomasses. However there are few researchers that consider all the simultaneous processes that take place during Cr(VI) sorption (i.e., sorption/reduction of Cr(VI) and simultaneous formation and binding of reduced Cr(III)) when formulating a model that describes the overall sorption process. On the other hand Cr(VI) scarcely exists alone in wastewaters, it is usually found in mixtures with divalent metals. Therefore, the simultaneous removal of Cr(VI) and divalent metals in binary mixtures and the interactive mechanism governing Cr(VI) elimination have gained more and more attention. In the present work, kinetics of Cr(VI) sorption onto exhausted coffee from Cr(VI)–Cu(II) binary mixtures has been studied in a stirred batch reactor. A model including Cr(VI) sorption and reduction, Cr(III) sorption and the effect of the presence of Cu(II) in these processes has been developed and validated. This study constitutes an important advance in modeling Cr(VI) sorption kinetics especially when chromium sorption is in part based on the sorbent capacity of reducing hexavalent chromium and a metal cation is present in the binary mixture. - Highlights: • A kinetic model including Cr(VI) reduction, Cr(VI) and Cr(III) sorption/desorption • Synergistic effect of Cu(II) on Cr(VI) elimination included in the model • Model validation by checking it against independent sets of data

  16. The band gap in silicon nanocrystallites

    International Nuclear Information System (INIS)

    Ranjan, V.; Kapoor, Manish; Singh, Vijay A.

    2002-01-01

    The gap in semiconductor nanocrystallites has been extensively studied both theoretically and experimentally over the last two decades. We have compared a recent 'state-of-the-art' theoretical calculation with a recent 'state-of-the-art' experimental observation of the gap in Si nanocrystallite. We find that the two are in substantial disagreement, with the disagreement being more pronounced at smaller sizes. Theoretical calculations appear to overestimate the gap. To reconcile the two we present two scenarios. (i) Recognizing that the experimental observations are for a distribution of crystallite sizes, we proffer a phenomenological model to reconcile the theory with the experiment. We suggest that similar considerations must dictate comparisons between the theory and experiment vis-a-vis other properties such as radiative rate, decay constant, and absorption coefficient. (ii) Either surface passivation or surface orientation may also resolve the conflict between the theory and the experiment. We have carried out tight-binding calculations on silicon clusters to study the role of surface passivation and surface orientation. (author)

  17. Dilute ferromagnetic semiconductors prepared by the combination of ion implantation with pulse laser melting

    International Nuclear Information System (INIS)

    Zhou, Shengqiang

    2015-01-01

    Combining semiconducting and ferromagnetic properties, dilute ferromagnetic semiconductors (DFS) have been under intensive investigation for more than two decades. Mn doped III–V compound semiconductors have been regarded as the prototype of DFS from both experimental and theoretic investigations. The magnetic properties of III–V:Mn can be controlled by manipulating free carriers via electrical gating, as for controlling the electrical properties in conventional semiconductors. However, the preparation of DFS presents a big challenge due to the low solubility of Mn in semiconductors. Ion implantation followed by pulsed laser melting (II-PLM) provides an alternative to the widely used low-temperature molecular beam epitaxy (LT-MBE) approach. Both ion implantation and pulsed-laser melting occur far enough from thermodynamic equilibrium conditions. Ion implantation introduces enough dopants and the subsequent laser pulse deposit energy in the near-surface region to drive a rapid liquid-phase epitaxial growth. Here, we review the experimental study on preparation of III–V:Mn using II-PLM. We start with a brief description about the development of DFS and the physics behind II-PLM. Then we show that ferromagnetic GaMnAs and InMnAs films can be prepared by II-PLM and they show the same characteristics of LT-MBE grown samples. Going beyond LT-MBE, II-PLM is successful to bring two new members, GaMnP and InMnP, into the family of III–V:Mn DFS. Both GaMnP and InMnP films show the signature of DFS and an insulating behavior. At the end, we summarize the work done for Ge:Mn and Si:Mn using II-PLM and present suggestions for future investigations. The remarkable advantage of II-PLM approach is its versatility. In general, II-PLM can be utilized to prepare supersaturated alloys with mismatched components. (topical review)

  18. Operation experience of the UE44 fixed gap APPLE II at SLS

    International Nuclear Information System (INIS)

    Schmidt, T; Calvi, M; Schmitt, T; Strocov, V N; Zimoch, D

    2013-01-01

    All soft x-ray beamlines at the Swiss Light Source (SLS) are served with variable polarization from APPLE II [1] type and electromagnetic undulators. Three APPLE II type undulators are used: a twin and a single standard APPLE II (UE56 and UE54) and a fixed gap APPLE II (UE44) which follows the adjustable-phase undulator approach by R. Carr [2], [3]. The demand to rotate the linear polarization vector from 0 – 180° required all four magnet arrays to be shiftable. This opened the possibility to also vary the energy by a suitable shift of the magnet arrays with a simplified support structure lacking in any gap drive system [4], [5]. The current photon beam quality in linear and circular mode and the pros and cons of the operation of the UE44 will be discussed, namely the underestimated influence of gradients in the complex field distribution. As a consequence the spectra are degraded, but can be recovered by use of distributed coils or by a simple change in the operation mode.

  19. Efficient simultaneous removal of U(VI) and Cu(II) from aqueous solution using core-shell nZVI@SA/CMC-Ca beads

    International Nuclear Information System (INIS)

    Shuhong Hu; Xiaoyan Lin; Wenhui Zhao; Ministry of Education, Sichuan; Xuegang Luo

    2018-01-01

    Core-shell nanoscale zero-valent iron@alginate/carboxymethyl cellulose sodium composite loaded with calcium (nZVI@SA/CMC-Ca) beads were synthesized in this study using coaxial electronic injection method. The adsorbent structure was characterized via FT-IR, SEM, EDX and XPS. The adsorption behavior of U(VI) and Cu(II) on core-shell nZVI@SA/CMC-Ca beads was studied under various experimental parameters like pH, contact time and temperature. The isotherm and the kinetic data, pertaining to the adsorption of U(VI) and Cu(II) by core-shell nZVI@SA/CMC-Ca beads obeyed both the Langmuir and Freundlich isotherms model and the pseudo-second-order kinetics model, respectively. The thermodynamic parameters revealed the spontaneous and endothermic nature of the adsorption. The experiment of regeneration and reusability suggested core-shell nZVI@SA/CMC-Ca bead was a regenerated material. (author)

  20. Design of medium band gap Ag-Bi-Nb-O and Ag-Bi-Ta-O semiconductors for driving direct water splitting with visible light.

    Science.gov (United States)

    Wang, Limin; Cao, Bingfei; Kang, Wei; Hybertsen, Mark; Maeda, Kazuhiko; Domen, Kazunari; Khalifah, Peter G

    2013-08-19

    Two new metal oxide semiconductors belonging to the Ag-Bi-M-O (M = Nb, Ta) chemical systems have been synthesized as candidate compounds for driving overall water splitting with visible light on the basis of cosubstitution of Ag and Bi on the A-site position of known Ca2M2O7 pyrochlores. The low-valence band edge energies of typical oxide semiconductors prevents direct water splitting in compounds with band gaps below 3.0 eV, a limitation which these compounds are designed to overcome through the incorporation of low-lying Ag 4d(10) and Bi 6s(2) states into compounds of nominal composition "AgBiM2O7". It was found that the "AgBiTa2O7" pyrochlores are in fact a solid solution with an approximate range of Ag(x)Bi(5/6)Ta2O(6.25+x/2) with 0.5 semiconductors with the onset of strong direct absorption at 2.72 and 2.96 eV, respectively. Electronic structure calculations for an ordered AgBiNb2O7 structure show that the band gap reduction and the elevation of the valence band primarily result from hybridized Ag d(10)-O 2p orbitals that lie at higher energy than the normal O 2p states in typical pyrochlore oxides. While the minimum energy gap is direct in the band structure, the lowest energy dipole allowed optical transitions start about 0.2 eV higher in energy than the minimum energy transition and involve different bands. This suggests that the minimum electronic band gap in these materials is slightly smaller than the onset energy for strong absorption in the optical measurements. The elevated valence band energies of the niobate and tantalate compounds are experimentally confirmed by the ability of these compounds to reduce 2 H(+) to H2 gas when illuminated after functionalization with a Pt cocatalyst.

  1. Damage induced in semiconductors by swift heavy ion irradiation

    International Nuclear Information System (INIS)

    Levalois, M.; Marie, P.

    1999-01-01

    The behaviour of semiconductors under swift heavy ion irradiation is different from that of metals or insulators: no spectacular effect induced by the inelastic energy loss has been reported in these materials. We present here a review of irradiation effects in the usual semiconductors (silicon, germanium and gallium arsenide). The damage is investigated by means of electrical measurements. The usual mechanisms of point defect creation can account for the experimental results. Besides, some results obtained on the wide gap semiconductor silicon carbide are reported. Concerning the irradiation effects induced by heavy ions in particle detectors, based on silicon substrate, we show that the deterioration of the detector performances can be explained from the knowledge of the substrate properties which are strongly perturbed after high doses of irradiation. Finally, some future ways of investigation are proposed. The silicon substrate is a good example to compare the irradiation effects with different particles such as electrons, neutrons and heavy ions. It is then necessary to use parameters which account for the local energy deposition, in order to describe the damage in the material

  2. Non-enzymatic U(VI) interactions with biogenic mackinawite

    Science.gov (United States)

    Veeramani, H.; Qafoku, N. P.; Kukkadapu, R. K.; Murayama, M.; Hochella, M. F.

    2011-12-01

    Reductive immobilization of hexavalent uranium [U(VI)] by stimulation of dissimilatory metal and/or sulfate reducing bacteria (DMRB or DSRB) has been extensively researched as a remediation strategy for subsurface U(VI) contamination. These bacteria derive energy by reducing oxidized metals as terminal electron acceptors, often utilizing organic substrates as electron donors. Thus, when evaluating the potential for in-situ uranium remediation in heterogeneous subsurface media, it is important to understand how the presence of alternative electron acceptors such as Fe(III) and sulfate affect U(VI) remediation and the long term behavior and reactivity of reduced uranium. Iron, an abundant subsurface element, represents a substantial sink for electrons from DMRB, and the reduction of Fe(III) leads to the formation of dissolved Fe(II) or to reactive biogenic Fe(II)- and mixed Fe(II)/Fe(III)- mineral phases. Consequently, abiotic U(VI) reduction by reactive forms of biogenic Fe(II) minerals could be a potentially important process for uranium immobilization. In our study, the DMRB Shewanella putrefaciens CN32 was used to synthesize a biogenic Fe(II)-bearing sulfide mineral: mackinawite, that has been characterized by XRD, SEM, HRTEM and Mössbauer spectroscopy. Batch experiments involving treated biogenic mackinawite and uranium (50:1 molar ratio) were carried out at room temperature under strict anoxic conditions. Following complete removal of uranium from solution, the biogenic mackinawite was analyzed by a suite of analytical techniques including XAS, HRTEM and Mössbauer spectroscopy to determine the speciation of uranium and investigate concomitant Fe(II)-phase transformation. Determining the speciation of uranium is critical to success of a remediation strategy. The present work elucidates non-enzymatic/abiotic molecular scale redox interactions between biogenic mackinawite and uranium.

  3. Density functional theory and beyond-opportunities for quantum methods in materials modeling semiconductor technology

    International Nuclear Information System (INIS)

    Shankar, Sadasivan; Simka, Harsono; Haverty, Michael

    2008-01-01

    In the semiconductor industry, the use of new materials has been increasing with the advent of nanotechnology. As critical dimensions decrease, and the number of materials increases, the interactions between heterogeneous materials themselves and processing increase in complexity. Traditionally, applications of ab initio techniques are confined to electronic structure and band gap calculations of bulk materials, which are then used in coarse-grained models such as mesoscopic and continuum models. Density functional theory is the most widely used ab initio technique that was successfully extended to several applications. This paper illustrates applications of density functional theory to semiconductor processes and proposes further opportunities for use of such techniques in process development

  4. Catalysts, Protection Layers, and Semiconductors

    DEFF Research Database (Denmark)

    Chorkendorff, Ib

    2015-01-01

    Hydrogen is the simplest solar fuel to produce and in this presentation we shall give a short overview of the pros and cons of various tandem devices [1]. The large band gap semiconductor needs to be in front, but apart from that we can chose to have either the anode in front or back using either...... acid or alkaline conditions. Since most relevant semiconductors are very prone to corrosion the advantage of using buried junctions and using protection layers offering shall be discussed [2-4]. Next we shall discuss the availability of various catalysts for being coupled to these protections layers...... and how their stability may be evaluated [5, 6]. Examples of half-cell reaction using protection layers for both cathode and anode will be discussed though some of recent examples under both alkaline and acidic conditions. Si is a very good low band gap semiconductor and by using TiO2 as a protection...

  5. Power Scaling Feasibility or Chromium-Doped II-VI Laser Sources and the Demonstration of a Chromium-Doped Zinc Selenide Face-Cooled Disk Laser

    National Research Council Canada - National Science Library

    McKay, Jason

    2002-01-01

    ...+:ZnSe disk laser design that can produce sufficient output power. Cr2+:II-VI laser materials are found to be susceptible to overheating and thermal lensing, but are otherwise satisfactory laser materials...

  6. Quasi-particle electronic band structure and alignment of the V-VI-VII semiconductors SbSI, SbSBr, and SbSeI for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); McKechnie, Scott; Azarhoosh, Pooya; Schilfgaarde, Mark van [Department of Physics, Kings College London, London WC2R 2LS (United Kingdom); Scanlon, David O. [University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Walsh, Aron, E-mail: a.walsh@bath.ac.uk [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E" 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2016-03-14

    The ternary V-VI-VII chalcohalides consist of one cation and two anions. Trivalent antimony—with a distinctive 5s{sup 2} electronic configuration—can be combined with a chalcogen (e.g., S or Se) and halide (e.g., Br or I) to produce photoactive ferroelectric semiconductors with similarities to the Pb halide perovskites. We report—from relativistic quasi-particle self-consistent GW theory—that these materials have a multi-valley electronic structure with several electron and hole basins close to the band extrema. We predict ionisation potentials of 5.3–5.8 eV from first-principles for the three materials, and assess electrical contacts that will be suitable for achieving photovoltaic action from these unconventional compounds.

  7. Microscopical Studies of Structural and Electronic Properties of Semiconductors

    CERN Multimedia

    2002-01-01

    The electronic and structural properties of point defects in semiconductors, e.g. radiation defects, impurities or passivating defects can excellently be studied by the hyperfine technique of Perturbed Angular Correlation (PAC). The serious limitation of this method, the small number of chemically different radioactive PAC probe atoms can be widely overcome by means of ISOLDE. Providing shortliving isotopes, which represent common dopants as well as suitable PAC probe atoms, the ISOLDE facility enables a much broader application of PAC to problems in semiconductor physics.\\\\ Using the probe atom $^{111m}$ Cd , the whole class of III-V compounds becomes accessible for PAC investigations. First successful experiments in GaAs, InP and GaP have been performed, concerning impurity complex formation and plasma induced defects. In Si and Ge, the electronic properties~-~especially their influence on acceptor-donor interaction~-~could be exemplarily st...

  8. [CH(3)(CH(2))(11)NH(3)]SnI(3): a hybrid semiconductor with MoO(3)-type tin(II) iodide layers.

    Science.gov (United States)

    Xu, Zhengtao; Mitzi, David B

    2003-10-20

    The organic-inorganic hybrid [CH(3)(CH(2))(11)NH(3)]SnI(3) presents a lamellar structure with a Sn-I framework isotypic to that of MoO(3). The SnI(3)(-) layer consists of edge and corner-sharing SnI(6) octahedra in which one of the six Sn-I bonds is distinctly elongated (e.g., 3.62 A), indicating lone-pair stereoactivity for the Sn(II) atom. The overall electronic character remains comparable with that of the well-studied SnI(4)(2)(-)-based perovskite semiconductors, such as [CH(3)(CH(2))(11)NH(3)](2)SnI(4), with a red-shifted and broadened exciton peak associated with the band gap, apparently due to the increased dimensionality of the Sn-I framework. The title compound offers, aside from the hybrid perovskites, a new type of solution-processable Sn-I network for potential applications in semiconductive devices.

  9. Nuclear Electrical and Optical Studies of Hydrogen in Semiconductors.

    CERN Multimedia

    Dietrich, M; Toulemonde, M

    2002-01-01

    During the last years, the understanding of H and its interaction with dopant atoms in Si, Ge and III-V semiconductors has improved considerably concerning the stability of the formed complexes their structural arrangements, and the implications of this interaction on the electrical properties of the semiconductors " passivation " The perturbed angular correlation technique (PAC) has contributed to the understanding of this phenomena on an atomistic scale using radioactive isotopes provided by ISOLDE. \\\\ \\\\The aim of the proposed experiments is twofold: \\\\ \\\\\\begin{enumerate} \\item The H passivation mechanism of acceptors in GaN and ternary III-V compounds (AlGaAs, GaInP, AlGaN) shall be investigated, using the PAC probe atom $^{111m}$Cd as a 'representative' of group II-B metal acceptors. The problems addressed in these technological important systems are microscopic structure, formation and stability of the hydrogen correlated complexes as function of doping and stoichiometry (i.e. the size of the band gap)...

  10. Solution-Processed Wide-Bandgap Organic Semiconductor Nanostructures Arrays for Nonvolatile Organic Field-Effect Transistor Memory.

    Science.gov (United States)

    Li, Wen; Guo, Fengning; Ling, Haifeng; Liu, Hui; Yi, Mingdong; Zhang, Peng; Wang, Wenjun; Xie, Linghai; Huang, Wei

    2018-01-01

    In this paper, the development of organic field-effect transistor (OFET) memory device based on isolated and ordered nanostructures (NSs) arrays of wide-bandgap (WBG) small-molecule organic semiconductor material [2-(9-(4-(octyloxy)phenyl)-9H-fluoren-2-yl)thiophene]3 (WG 3 ) is reported. The WG 3 NSs are prepared from phase separation by spin-coating blend solutions of WG 3 /trimethylolpropane (TMP), and then introduced as charge storage elements for nonvolatile OFET memory devices. Compared to the OFET memory device with smooth WG 3 film, the device based on WG 3 NSs arrays exhibits significant improvements in memory performance including larger memory window (≈45 V), faster switching speed (≈1 s), stable retention capability (>10 4 s), and reliable switching properties. A quantitative study of the WG 3 NSs morphology reveals that enhanced memory performance is attributed to the improved charge trapping/charge-exciton annihilation efficiency induced by increased contact area between the WG 3 NSs and pentacene layer. This versatile solution-processing approach to preparing WG 3 NSs arrays as charge trapping sites allows for fabrication of high-performance nonvolatile OFET memory devices, which could be applicable to a wide range of WBG organic semiconductor materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. sup 7 sup 5 As NQR/NMR study of successive phase transitions and energy gap formation in Kondo semiconductor CeRhAs

    CERN Document Server

    Matsumura, M; Takabatake, T; Tsuji, S; Tou, H; Sera, M

    2003-01-01

    sup 7 sup 5 As NQR/NMR studies were performed to investigate the successive phase transitions found recently, the gap formation and their interplay in a Kondo semiconductor CeRhAs. NQR/NMR spectra in their respective phases change, reflecting lattice modulation modes, q sub 1 = (0, 1/2, 1/2), q sub 2 = (0, 1/3, 1/3) and q sub 3 = (1/3, 0, 0). In particular for well-resolved three NQR lines corresponding to the q sub 3 mode in the lowest temperature phase, the nuclear spin-lattice relaxation rate (T sub 1 T) sup - sup 1 shows an activation type T-dependence, suggesting a gap opening over the entire Fermi surface, in contrast to the V-shaped gap in isostructural CeNiSn and CeRhSn. The evaluated gap of 272 K and the bandwidth of about 4000 K are one order of magnitude larger than those in CeNiSn and CeRhSb. A lattice modulation forms a gap different from the V-shaped gap. (author)

  12. Electronic structure study of wide band gap magnetic semiconductor (La{sub 0.6}Pr{sub 0.4}){sub 0.65}Ca{sub 0.35}MnO{sub 3} nanocrystals in paramagnetic and ferromagnetic phases

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, G. D.; Chou, H.; Yang, K. S.; Jhong, D. J.; Chan, W. L. [Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Joshi, Amish G. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Kumar, Shiv; Ghosh, A. K. [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Chatterjee, Sandip, E-mail: schatterji.app@iitbhu.ac.in [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-04-25

    X-ray circular magnetic dichroism (XMCD), X-ray photoemission spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS) techniques were used to study the electronic structure of nanocrystalline (La{sub 0.6}Pr{sub 0.4}){sub 0.65}Ca{sub 0.35}MnO{sub 3} near Fermi-level. XMCD results indicate that Mn{sup 3+} and Mn{sup 4+} spins are aligned parallel to each other at 20 K. The low M-H hysteresis curve measured at 5 K confirms ferromagnetic ordering in the (La{sub 0.6}Pr{sub 0.4}){sub 0.65}Ca{sub 0.35}MnO{sub 3} system. The low temperature valence band XPS indicates that coupling between Mn3d and O2p is enhanced and the electronic states near Fermi-level have been suppressed below T{sub C}. The valence band UPS also confirms the suppression of electronic states near Fermi-level below Curie temperature. UPS near Fermi-edge shows that the electronic states are almost absent below 0.5 eV (at 300 K) and 1 eV (at 115 K). This absence clearly demonstrates the existence of a wide band-gap in the system since, for hole-doped semiconductors, the Fermi-level resides just above the valence band maximum.

  13. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites.

    Science.gov (United States)

    Sutter-Fella, Carolin M; Li, Yanbo; Amani, Matin; Ager, Joel W; Toma, Francesca M; Yablonovitch, Eli; Sharp, Ian D; Javey, Ali

    2016-01-13

    Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH3NH3PbI3-xBrx perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamic range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ Eg ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells.

  14. Wake fields in semiconductor plasmas

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Mahajan, S.M.

    1994-05-01

    It is shown that an intense short laser pulse propagating through a semiconductor plasma will generated longitudinal Langmuir waves in its wake. The measurable wake field can be used as a diagnostic to study nonlinear optical phenomena. For narrow gap semiconductors (for examples InSb) with Kane-type dispersion relation, the system can simulate, at currently available laser powers, the physics underlying wake-field accelerators. (author). 9 refs, 1 fig

  15. Reducing elution in anion exchange chromatography as a pretreatment of colorimetry of chromium(VI) and vanadium(V)

    International Nuclear Information System (INIS)

    Shigetomi, Yasumasa; Hatamoto, Takeji; Nagoshi, Kimie; Yamashige, Takashi.

    1976-01-01

    In order to increase the selectivity of the colorimetry of chromium and vanadium, the separation by means of anion exchange chromatography was tested. The column, phi 0.8x5.0 cm packing (50--100 mesh) Dowex 1x4 anion exchange resin was used for the separation of chromium. The solution containing chromium (VI), zinc(II), cadmium(II), iron(III) and reducing organic substances contained in industrial waste water was introduced into the column and then the substances other than chromium(VI) were removed by washing the column with distilled water. Finally chromium(VI) was reduced to chromium(III) by hydroxylamine in the eluent and eluted. The concentration of sulfuric acid and hydroxylamine in the eluent were 0.1 mol/l and 0.001 mol/l respectively. For analyzing chromium(III) in the mixture of chromium(VI) and chromium(III), after removal of chromium(VI) it should be oxidized to chromium(VI) anion with the oxidant, e.g., sodium peroxide or hydrogen peroxide, before introducing it into the column. In terms of the pretreatment by using the acetate form resin column, chromium (VI) and chromium(III) can be determined separately in the solution whose concentration ranges from 0.05 ppm to 0.5 ppm despite the presence of contaminants, which interfere with the colorimetric determination of chromium(VI) using diphenylcarbonohydrazide, in the original solution. The separation of vanadium(V) in the solution containing copper(II), cobalt(II) and etc. was made using the mixed solution of hydrochloric acid (2 mol/l) and hydroxylamine (0.2 mol/l) similarly to chromium(VI). In terms of the similar pretreatment vanadium could be determined precisely as far as 0.1 ppm by the colorimetry using 4-(2-pyridylazo) resorcinol despite the presence of copper(II), cobalt(II), nickel(II) and etc in the original solution. (auth.)

  16. Tuning of band gap due to fluorination of graphyne and graphdiyne

    International Nuclear Information System (INIS)

    Bhattacharya, B; Singh, N B; Sarkar, U

    2014-01-01

    The electronic properties of graphyne and graphdiyne consisting of sp and sp 2 hybridized carbon atom have been investigated within the density functional theory (DFT) method. The corresponding changes in the electronic properties due to systematic functionalization by fluorine at different possible sites are reported. Our band structure calculations clearly infer that all fluorographyne are wide band gap semiconductor and the band gap can be tuned by fluorination and the possibility of modulating the band gap provides flexibility for its use in nanoelectronic devices. Projected density of state (PDOS) analysis provides the clear idea about the bonding nature of these novel materials in details and Crystal Orbital Hamilton Population (-COHP) analysis shed insight on the orbital participating in bonding and antibonding

  17. Correlation of Photocatalytic Activity with Band Structure of Low-dimensional Semiconductor Nanostructures

    Science.gov (United States)

    Meng, Fanke

    Photocatalytic hydrogen generation by water splitting is a promising technique to produce clean and renewable solar fuel. The development of effective semiconductor photocatalysts to obtain efficient photocatalytic activity is the key objective. However, two critical reasons prevent wide applications of semiconductor photocatalysts: low light usage efficiency and high rates of charge recombination. In this dissertation, several low-dimensional semiconductors were synthesized with hydrothermal, hydrolysis, and chemical impregnation methods. The band structures of the low-dimensional semiconductor materials were engineered to overcome the above mentioned two shortcomings. In addition, the correlation between the photocatalytic activity of the low-dimensional semiconductor materials and their band structures were studied. First, we studied the effect of oxygen vacancies on the photocatalytic activity of one-dimensional anatase TiO2 nanobelts. Given that the oxygen vacancy plays a significant role in band structure and photocatalytic performance of semiconductors, oxygen vacancies were introduced into the anatase TiO2 nanobelts during reduction in H2 at high temperature. The oxygen vacancies of the TiO2 nanobelts boosted visible-light-responsive photocatalytic activity but weakened ultraviolet-light-responsive photocatalytic activity. As oxygen vacancies are commonly introduced by dopants, these results give insight into why doping is not always beneficial to the overall photocatalytic performance despite increases in absorption. Second, we improved the photocatalytic performance of two-dimensional lanthanum titanate (La2Ti2 O7) nanosheets, which are widely studied as an efficient photocatalyst due to the unique layered crystal structure. Nitrogen was doped into the La2Ti2O7 nanosheets and then Pt nanoparticles were loaded onto the La2Ti2O7 nanosheets. Doping nitrogen narrowed the band gap of the La2Ti 2O7 nanosheets by introducing a continuum of states by the valence

  18. Group III nitride semiconductors for short wavelength light-emitting devices

    Science.gov (United States)

    Orton, J. W.; Foxon, C. T.

    1998-01-01

    The group III nitrides (AlN, GaN and InN) represent an important trio of semiconductors because of their direct band gaps which span the range 1.95-6.2 eV, including the whole of the visible region and extending well out into the ultraviolet (UV) range. They form a complete series of ternary alloys which, in principle, makes available any band gap within this range and the fact that they also generate efficient luminescence has been the main driving force for their recent technological development. High brightness visible light-emitting diodes (LEDs) are now commercially available, a development which has transformed the market for LED-based full colour displays and which has opened the way to many other applications, such as in traffic lights and efficient low voltage, flat panel white light sources. Continuously operating UV laser diodes have also been demonstrated in the laboratory, exciting tremendous interest for high-density optical storage systems, UV lithography and projection displays. In a remarkably short space of time, the nitrides have therefore caught up with and, in some ways, surpassed the wide band gap II-VI compounds (ZnCdSSe) as materials for short wavelength optoelectronic devices. The purpose of this paper is to review these developments and to provide essential background material in the form of the structural, electronic and optical properties of the nitrides, relevant to these applications. We have been guided by the fact that the devices so far available are based on the binary compound GaN (which is relatively well developed at the present time), together with the ternary alloys AlGaN and InGaN, containing modest amounts of Al or In. We therefore concentrate, to a considerable extent, on the properties of GaN, then introduce those of the alloys as appropriate, emphasizing their use in the formation of the heterostructures employed in devices. The nitrides crystallize preferentially in the hexagonal wurtzite structure and devices have so

  19. State of the art in semiconductor detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1990-01-01

    The state of the art in semiconductor detectors for elementary particle physics and X-ray astronomy is briefly reviewed. Semiconductor detectors are divided into two groups; i) classical semiconductor diode detectors and ii) semiconductor memory detectors. Principles of signal formation for both groups of detectors are described and their performance is compared. New developments of silicon detectors are reported here. (orig.)

  20. Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications

    Science.gov (United States)

    Zhang, Liping; Jaroniec, Mietek

    2018-02-01

    Semiconductor photocatalysts show a great potential for environmental and energy-related applications, however one of the major disadvantages is their relatively low photocatalytic performance due to the recombination of electron-hole pairs. Therefore, intensive research is being conducted toward design of heterojunctions, which have been shown to be effective for improving the charge-transfer properties and efficiency of photocatalysts. According to the type of band alignment and direction of internal electric field, heterojunctions are categorized into five different types, each of which is associated with its own charge transfer characteristics. Since the design of heterojunctions requires the knowledge of band edge positions of component semiconductors, the commonly used techniques for the assessment of band edge positions are reviewed. Among them the electronegativity-based calculation method is applied for a large number of popular visible-light-active semiconductors, including some widely investigated bismuth-containing semiconductors. On basis of the calculated band edge positions and the type of component semiconductors reported, heterojunctions composed of the selected bismuth-containing semiconductors are proposed. Finally, the most popular synthetic techniques for the fabrication of heterojunctions are briefly discussed.

  1. Picosecond kinetics of the electron-hole layers formation in wide-bandgap II-VI type-II heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Filatov, E.V.; Zaitsev, S.V.; Tartakovskii, I.I.; Maksimov, A.A. [Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow region (Russian Federation); Yakovlev, D.R. [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Experimentelle Physik II, Technische Universitaet Dortmund (Germany); Waag, A. [Institute of Semiconductor Technology, Braunschweig Technical University, 38106 Braunschweig (Germany)

    2010-06-15

    Considerable slowdown of luminescence kinetics of the direct optical transition was discovered in ZnSe/BeTe type-II heterostructures under high levels of optical pumping. The effect is attributed to forming of a potential barrier for holes in the ZnSe layer due to band bending at high densities of spatially separated carriers. That results in a longer time of the photoexcited holes energy relaxation to their ground state in the BeTe layer. The decrease of overlapping of electron and hole wavefunctions in the ZnSe layer in thick ZnSe/BeTe structures at high levels of optical excitation reveals an additional important effect, that leads to sufficient retardation of radiative recombination time for photoexcited carriers (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. From Large-Scale Synthesis to Lighting Device Applications of Ternary I-III-VI Semiconductor Nanocrystals: Inspiring Greener Material Emitters.

    Science.gov (United States)

    Chen, Bingkun; Pradhan, Narayan; Zhong, Haizheng

    2018-01-18

    Quantum dots with fabulous size-dependent and color-tunable emissions remained as one of the most exciting inventories in nanomaterials for the last 3 decades. Even though a large number of such dot nanocrystals were developed, CdSe still remained as unbeatable and highly trusted lighting nanocrystals. Beyond these, the ternary I-III-VI family of nanocrystals emerged as the most widely accepted greener materials with efficient emissions tunable in visible as well as NIR spectral windows. These bring the high possibility of their implementation as lighting materials acceptable to the community and also to the environment. Keeping these in mind, in this Perspective, the latest developments of ternary I-III-VI nanocrystals from their large-scale synthesis to device applications are presented. Incorporating ZnS, tuning the composition, mixing with other nanocrystals, and doping with Mn ions, light-emitting devices of single color as well as for generating white light emissions are also discussed. In addition, the future prospects of these materials in lighting applications are also proposed.

  3. EDITORIAL: Focus on Dilute Magnetic Semiconductors FOCUS ON DILUTE MAGNETIC SEMICONDUCTORS

    Science.gov (United States)

    Chambers, Scott A.; Gallagher, Bryan

    2008-05-01

    -orbit coupling. They have also led to the demonstration of a wide range of novel phenomena including some, like tunneling anisotropic magnetoresistance, which have subsequently been achieved in metal ferromagnetic systems. However despite considerable effort over many years the maximum Curie point achieved in (Ga,Mn)As is still less than 200 K. So unless some major new breakthrough is achieved these materials are unlikely to be of use for practical spin electronics technologies. In 2000, Dietl et al [1] published a seminal paper in which mean field theory was used to predict which of the common diamagnetic semiconductors would exhibit a Curie point above ambient if doped with 5 at.% Mn and a hole concentration of 3.5 × 1020 cm-3. Of the many host semiconductors simulated, only ZnO and GaN were predicted to exhibit a critical temperature in excess of 300 K. Since 2000, high-Tc DMS research has proliferated in both experimental and theoretical arenas. Many papers have been published containing claims of new DMS materials based largely on limited film growth, powder diffraction, and magnetometry. In these papers, a film which exhibits a hysteretic SQUID or VSM loop at 300 K and phase purity with only the host semiconductor detected by XRD are often claimed to be true ferromagnetic DMSs. Many of these papers are flawed because the criteria for a well-defined DMS are much more extensive. These include: (i) a random dopant distribution, (ii) a well-known and preferably unique charge state and preferentially a unique local structural environment for the dopant, (iii) a demonstrated coupling of the dopant spin to the host band structure, leading to spin polarization of the majority carriers, and (iv) a rational dependence of the saturation magnetization and Curie point on the magnetic dopant and carrier concentrations. Implicit in this list is that trivial causes of ferromagnetism, such as magnetic contamination and magnetic secondary phase formation, are eliminated. Yet, in many

  4. Copper(II) and molybdenum(VI) complexes of a tridentate ONN donor isothiosemicarbazone: synthesis, characterization, X-ray, TGA and DFT

    Czech Academy of Sciences Publication Activity Database

    Fasihizad, A.; Akbari, A.; Ahmadi, M.; Dušek, Michal; Henriques, Margarida Isabel Sousa; Pojarová, Michaela

    2016-01-01

    Roč. 115, Sep (2016), s. 297-305 ISSN 0277-5387 R&D Projects: GA ČR(CZ) GA14-03276S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : isothiosemicarbazone * Copper(II) complex * molybdenum(VI) complex * crystal structure * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.926, year: 2016

  5. Semiconductor Physical Electronics

    CERN Document Server

    Li, Sheng

    2006-01-01

    Semiconductor Physical Electronics, Second Edition, provides comprehensive coverage of fundamental semiconductor physics that is essential to an understanding of the physical and operational principles of a wide variety of semiconductor electronic and optoelectronic devices. This text presents a unified and balanced treatment of the physics, characterization, and applications of semiconductor materials and devices for physicists and material scientists who need further exposure to semiconductor and photonic devices, and for device engineers who need additional background on the underlying physical principles. This updated and revised second edition reflects advances in semicondutor technologies over the past decade, including many new semiconductor devices that have emerged and entered into the marketplace. It is suitable for graduate students in electrical engineering, materials science, physics, and chemical engineering, and as a general reference for processing and device engineers working in the semicondi...

  6. Carrier concentration induced ferromagnetism in semiconductors

    International Nuclear Information System (INIS)

    Story, T.

    2007-01-01

    In semiconductor spintronics the key materials issue concerns ferromagnetic semiconductors that would, in particular, permit an integration (in a single multilayer heterostructure) of standard electronic functions of semiconductors with magnetic memory function. Although classical semiconductor materials, such as Si or GaAs, are nonmagnetic, upon substitutional incorporation of magnetic ions (typically of a few atomic percents of Mn 2+ ions) and very heavy doping with conducting carriers (at the level of 10 20 - 10 21 cm -3 ) a ferromagnetic transition can be induced in such diluted magnetic semiconductors (also known as semimagnetic semiconductors). In the lecture the spectacular experimental observations of carrier concentration induced ferromagnetism will be discussed for three model semiconductor crystals. p - Ga 1-x Mn x As currently the most actively studied and most perspective ferromagnetic semiconductor of III-V group, in which ferromagnetism appears due to Mn ions providing both local magnetic moments and acting as acceptor centers. p - Sn 1-x Mn x Te and p - Ge 1-x Mn x Te classical diluted magnetic semiconductors of IV-VI group, in which paramagnet-ferromagnet and ferromagnet-spin glass transitions are found for very high hole concentration. n - Eu 1-x Gd x Te mixed magnetic crystals, in which the substitution of Gd 3+ ions for Eu 2+ ions creates very high electron concentration and transforms antiferromagnetic EuTe (insulating compound) into ferromagnetic n-type semiconductor alloy. For each of these materials systems the key physical features will be discussed concerning: local magnetic moments formation, magnetic phase diagram as a function of magnetic ions and carrier concentration as well as Curie temperature and magnetic anisotropy engineering. Various theoretical models proposed to explain the effect of carrier concentration induced ferromagnetism in semiconductors will be briefly discussed involving mean field approaches based on Zener and RKKY

  7. The Three-Dimensional Velocity Distribution of Wide Gap Taylor-Couette Flow Modelled by CFD

    Directory of Open Access Journals (Sweden)

    David Shina Adebayo

    2016-01-01

    Full Text Available A numerical investigation is conducted for the flow between two concentric cylinders with a wide gap, relevant to bearing chamber applications. This wide gap configuration has received comparatively less attention than narrow gap journal bearing type geometries. The flow in the gap between an inner rotating cylinder and an outer stationary cylinder has been modelled as an incompressible flow using an implicit finite volume RANS scheme with the realisable k-ε model. The model flow is above the critical Taylor number at which axisymmetric counterrotating Taylor vortices are formed. The tangential velocity profiles at all axial locations are different from typical journal bearing applications, where the velocity profiles are quasilinear. The predicted results led to two significant findings of impact in rotating machinery operations. Firstly, the axial variation of the tangential velocity gradient induces an axially varying shear stress, resulting in local bands of enhanced work input to the working fluid. This is likely to cause unwanted heat transfer on the surface in high torque turbomachinery applications. Secondly, the radial inflow at the axial end-wall boundaries is likely to promote the transport of debris to the junction between the end-collar and the rotating cylinder, causing the build-up of fouling in the seal.

  8. Structural trends in off stoichiometric chalcopyrite type compound semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, Christiane

    2011-03-15

    Energy supply is one of the most controversial topics that are currently discussed in our global community. Most of the energy delivered to the customer today has its origin in fossil and nuclear power plants. Indefinable risks and the radioactive waste repository problem of the latter as well as the global scarcity of fossil resources cause the renewable energies to grow more and more important for achieving sustainability. The main renewable energy sources are wind power, hydroelectric power and solar energy. On the photovoltaic (PV) market different materials are competing as part of different kinds of technologies, with the largest contribution still coming from wafer based crystalline silicon solar cells (95 %). Until now thin film solar cells only contribute a small portion to the whole PV market, but large capacities are under construction. Thin film photovoltaic shows a number of advantages in comparison to wafer based crystalline silicon PV. Among these material usage and production cost reduction are two prominent examples. The type of PV materials, which are analyzed in this work, are high potential compounds that are widely used as absorber layer in thin film solar cells. These are compound semiconductors of the type CuB{sup III}C{sup VI}{sub 2} (B{sup III} = In, Ga and C{sup VI} = Se, S). Several years of research have already gone into understanding the efficiency limiting factors for solar cell devices fabricated from this compound. Most of the studies concerning electronic defects are done by spectroscopic methods mostly performed using thin films from different kinds of synthesis, without any real knowledge regarding the structural origin of these defects. This work shows a systematic fundamental structural study of intrinsic point defects that are present within the material at various compositions in CuB{sup III}C{sup VI}{sub 2} compound semiconductors. The study is done on reference powder samples with well determined chemical composition and

  9. Structural trends in off stoichiometric chalcopyrite type compound semiconductors

    International Nuclear Information System (INIS)

    Stephan, Christiane

    2011-01-01

    Energy supply is one of the most controversial topics that are currently discussed in our global community. Most of the energy delivered to the customer today has its origin in fossil and nuclear power plants. Indefinable risks and the radioactive waste repository problem of the latter as well as the global scarcity of fossil resources cause the renewable energies to grow more and more important for achieving sustainability. The main renewable energy sources are wind power, hydroelectric power and solar energy. On the photovoltaic (PV) market different materials are competing as part of different kinds of technologies, with the largest contribution still coming from wafer based crystalline silicon solar cells (95 %). Until now thin film solar cells only contribute a small portion to the whole PV market, but large capacities are under construction. Thin film photovoltaic shows a number of advantages in comparison to wafer based crystalline silicon PV. Among these material usage and production cost reduction are two prominent examples. The type of PV materials, which are analyzed in this work, are high potential compounds that are widely used as absorber layer in thin film solar cells. These are compound semiconductors of the type CuB III C VI 2 (B III = In, Ga and C VI = Se, S). Several years of research have already gone into understanding the efficiency limiting factors for solar cell devices fabricated from this compound. Most of the studies concerning electronic defects are done by spectroscopic methods mostly performed using thin films from different kinds of synthesis, without any real knowledge regarding the structural origin of these defects. This work shows a systematic fundamental structural study of intrinsic point defects that are present within the material at various compositions in CuB III C VI 2 compound semiconductors. The study is done on reference powder samples with well determined chemical composition and using advanced diffraction techniques

  10. The effects of heavy doping on the electronic states in semiconductors

    International Nuclear Information System (INIS)

    Sernelius, B.E.

    1987-01-01

    The physics of semiconductors is reviewed. Topics included in the discussion are energy of the dopant system (kinetic energy in a many-valley semiconductor, exchange energy in an ellipsoidal Fermi volume, energy in a polar semiconductor), self energy shifts, band-gap narrowing, and piezo experiments. 31 refs., 27 figs

  11. ZnO-based semiconductors with tunable band gap for solar sell applications

    Science.gov (United States)

    Itagaki, N.; Matsushima, K.; Yamashita, D.; Seo, H.; Koga, K.; Shiratani, M.

    2014-03-01

    In this study, we discuss the potential advantages of a new ZnO-based semiconductor, ZnInON (ZION), for application in multi quantum-well (MQW) photovoltaics. ZION is a pseudo-binary alloy of ZnO and InN, which has direct and tunable band gaps over the entire visible spectrum. It was found from simulation results that owing to the large piezoelectric constant, the spatial overlap of the electron and hole wave functions in the QWs is significantly small on the order of 10-2, where the strong piezoelectric field enhances the separation of photo generated carriers. As a result, ZION QWs have low carrier recombination rate of 1014-1018 cm-3s-1, which is much lower than that in conventional QWs such as InGaAs/GaAs QW (1019 cm-3s-1) and InGaN/GaN QW (1018-1018 cm-3s-1). The long carrier life time in ZION QWs (˜1μs) should enable the extraction of photo-generated carriers from well layers before the recombination, and thus increase Voc and Jsc. These simulation results are consistent with our experimental data showing that both Voc and Jsc of a p-i-n solar cell with strained ZION MQWs and thus the efficiency were increased by the superimposition of laser light with lower photon energy than the band gap energy of the QWs. Since the laser light contributed not to carrier generation but to the carrier extraction from the QWs, and no increase in Voc and Jsc was observed for relaxed ZION MQWs, the improvement in the efficiency was attributed to the long carrier lifetime in the strained ZION QWs.

  12. Compound Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    Kim, Y. K.; Park, S. H.; Lee, W. G.; Ha, J. H.

    2005-01-01

    In 1945, Van Heerden measured α, β and γ radiations with the cooled AgCl crystal. It was the first radiation measurement using the compound semiconductor detector. Since then the compound semiconductor has been extensively studied as radiation detector. Generally the radiation detector can be divided into the gas detector, the scintillator and the semiconductor detector. The semiconductor detector has good points comparing to other radiation detectors. Since the density of the semiconductor detector is higher than that of the gas detector, the semiconductor detector can be made with the compact size to measure the high energy radiation. In the scintillator, the radiation is measured with the two-step process. That is, the radiation is converted into the photons, which are changed into electrons by a photo-detector, inside the scintillator. However in the semiconductor radiation detector, the radiation is measured only with the one-step process. The electron-hole pairs are generated from the radiation interaction inside the semiconductor detector, and these electrons and charged ions are directly collected to get the signal. The energy resolution of the semiconductor detector is generally better than that of the scintillator. At present, the commonly used semiconductors as the radiation detector are Si and Ge. However, these semiconductor detectors have weak points. That is, one needs thick material to measure the high energy radiation because of the relatively low atomic number of the composite material. In Ge case, the dark current of the detector is large at room temperature because of the small band-gap energy. Recently the compound semiconductor detectors have been extensively studied to overcome these problems. In this paper, we will briefly summarize the recent research topics about the compound semiconductor detector. We will introduce the research activities of our group, too

  13. Enhanced Materials Based on Submonolayer Type-II Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Tamargo, Maria C [City College of New York, NY (United States); Kuskovsky, Igor L. [City Univ. (CUNY), NY (United States) Queens College; Meriles, Carlos [City College of New York, NY (United States); Noyan, Ismail C. [Columbia Univ., New York, NY (United States)

    2017-04-15

    We have investigated a nanostructured material known as sub-monolayer type-II QDs, made from wide bandgap II-VI semiconductors. Our goal is to understand and exploit their tunable optical and electrical properties by taking advantage of the type-II band alignment and quantum confinement effects. Type-II ZnTe quantum dots (QDs) in a ZnSe host are particularly interesting because of their relatively large valence band and conduction band offsets. In the current award we have developed new materials based on sub-monolayer type-II QDs that may be advantageous for photovoltaic and spintronics applications. We have also expanded the structural characterization of these materials by refining the X-ray diffraction methodologies needed to investigate them. In particular, we have 1) demonstrated ZnCdTe/ZnCdSe type-II QDs materials that have ideal properties for the development of novel high efficiency “intermediate band solar cells”, 2) we developed a comprehensive approach to describe and model the growth of these ultra-small type-II QDs, 3) analysis of the evolution of the photoluminescence (PL) emission, combined with other characterization probes allowed us to predict the size and density of the QDs as a function of the growth conditions, 4) we developed and implemented novel sophisticated X-ray diffraction techniques from which accurate size and shape of the buried type-II QDs could be extracted, 5) a correlation of the shape anisotropy with polarization dependent PL was observed, confirming the QDs detailed shape and providing insight about the effects of this shape anisotropy on the physical properties of the type-II QD systems, and 6) a detailed “time-resolved Kerr rotation” investigation has led to the demonstration of enhanced electron spin lifetimes for the samples with large densities of type-II QDs and an understanding of the interplay between the QDs and Te-isoelectroic centers, a defect that forms in the spacer layers that separate the QDs.

  14. Strain effects in the common-cation II-VI heterostructures: case of ZnS/ZnSe superlattices

    CERN Document Server

    Tit, N

    2003-01-01

    The electronic band-structures of the strained-layer ZnS/ZnSe (001) superlattices (SLs) have been investigated using the sp sup 3 s* tight-binding method, which includes the strain and spin-orbit effects. The SL band-structures are studied versus the biaxial strain, layer thickness, and band offsets. The results suggest that the common-cation II-VI heterojunction exhibit a vanishingly small conduction-band offset (CBO). It is shown that the SL valence-band top state is always a heavy-hole localized within ZnSe slabs; whereas the conduction-band edge state (electron) is sensitive to the biaxial strain (or VBO). To assess the strain effects, we considered three differently strained SLs corresponding to the three substrates: (i) ZnSe; (ii) ZnS sub 0 sub . sub 5 Se sub 0 sub . sub 5; and (iii) ZnS. The results show that all the studied SLs are of type-I except those strained to ZnS (case iii), that may exhibit type-I to type-II transition. One striking result obtained here is the existence of a critical VBO (V su...

  15. KENO-VI Primer: A Primer for Criticality Calculations with SCALE/KENO-VI Using GeeWiz

    International Nuclear Information System (INIS)

    Bowman, Stephen M.

    2008-01-01

    The SCALE (Standardized Computer Analyses for Licensing Evaluation) computer software system developed at Oak Ridge National Laboratory is widely used and accepted around the world for criticality safety analyses. The well-known KENO-VI three-dimensional Monte Carlo criticality computer code is one of the primary criticality safety analysis tools in SCALE. The KENO-VI primer is designed to help a new user understand and use the SCALE/KENO-VI Monte Carlo code for nuclear criticality safety analyses. It assumes that the user has a college education in a technical field. There is no assumption of familiarity with Monte Carlo codes in general or with SCALE/KENO-VI in particular. The primer is designed to teach by example, with each example illustrating two or three features of SCALE/KENO-VI that are useful in criticality analyses. The primer is based on SCALE 6, which includes the Graphically Enhanced Editing Wizard (GeeWiz) Windows user interface. Each example uses GeeWiz to provide the framework for preparing input data and viewing output results. Starting with a Quickstart section, the primer gives an overview of the basic requirements for SCALE/KENO-VI input and allows the user to quickly run a simple criticality problem with SCALE/KENO-VI. The sections that follow Quickstart include a list of basic objectives at the beginning that identifies the goal of the section and the individual SCALE/KENO-VI features that are covered in detail in the sample problems in that section. Upon completion of the primer, a new user should be comfortable using GeeWiz to set up criticality problems in SCALE/KENO-VI. The primer provides a starting point for the criticality safety analyst who uses SCALE/KENO-VI. Complete descriptions are provided in the SCALE/KENO-VI manual. Although the primer is self-contained, it is intended as a companion volume to the SCALE/KENO-VI documentation. (The SCALE manual is provided on the SCALE installation DVD.) The primer provides specific examples of

  16. Large Bandgap Semiconductors for Solar Water Splitting

    DEFF Research Database (Denmark)

    Malizia, Mauro

    Photoelectrochemical water splitting represents an eco-friendly technology that could enable the production of hydrogen using water as reactant and solar energy as primary energy source. The exploitation of solar energy for the production of hydrogen would help modern society to reduce the reliance...... on fossil fuels as primary feedstock for hydrogen production and diminish the emission of greenhouse gases in the atmosphere, weakening the global warming phenomenon.The dissertation reports the development of GaP (gallium phosphide) photocathodes as a large bandgap semiconductor for photoelectrochemical...... water splitting devices having tandem design. The increase of the photovoltage produced by GaP under illumination was the main goal of this work. GaP has a bandgap of 2.25 eV and could in theory produce a photovoltage of approximately 1.7 V. Instead, the photovoltage produced by the semiconductor...

  17. Ternary alloys based on II-VI semiconductor compounds

    CERN Document Server

    Tomashyk, Vasyl; Shcherbak, Larysa

    2013-01-01

    Phase Equilibria in the Systems Based on ZnSSystems Based on ZnSeSystems Based on ZnTeSystems Based on CdSSystem Based on CdSeSystem Based on CdTeSystems Based on HgSSystems Based on HgSeSystems Based on HgTeIndexReferences appear at the end of each chapter.

  18. Wide Bandgap Semiconductor Detector Optimization for Flash X-Ray Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Roecker, Caleb Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Schirato, Richard C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-17

    Charge trapping, resulting in a decreased and spatially dependent electric field, has long been a concern for wide bandgap semiconductor detectors. While significant work has been performed to characterize this degradation at varying temperatures and radiation environments, this work concentrates upon examining the event-to-event response in a flash X-ray environment. The following work investigates if charge trapping is a problem for CZT detectors, with particular emphasis on flash X-ray radiation fields at cold temperatures. Results are compared to a non-flash radiation field, using an Am-241 alpha source and similar temperature transitions. Our ability to determine if a response change occurred was hampered by the repeatability of our flash X-ray systems; a small response change was observed with the Am-241 source. Due to contrast of these results, we are in the process of revisiting the Am-241 measurements in the presence of a high radiation environment. If the response change is more pronounced in the high radiation environment, a similar test will be performed in the flash X-ray environment.

  19. Bipolar magnetic semiconductor in silicene nanoribbons

    International Nuclear Information System (INIS)

    Farghadan, Rouhollah

    2017-01-01

    Highlights: • A new electronic phase for silicene nanoribbon in the presence of electric and magnetic fields. • Bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps in silicene. • Robust bipolar magnetic semiconductor features in a rough silicene. • Perfect and reversible spin polarization in silicene nanoribbon junctions. - Abstract: A theoretical study was presented on generation of spin polarization in silicene nanoribbons using the single-band tight-binding approximation and the non-equilibrium Green’s function formalism. We focused on the effect of electric and exchange magnetic fields on the spin-filter capabilities of zigzag-edge silicene nanoribbons in the presence of the intrinsic spin-orbit interaction. The results show that a robust bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps can be obtained when exchange magnetic and electric field strengths are both larger than the intrinsic spin-orbit interaction. Therefore, zigzag silicene nanoribbons could act as bipolar and perfect spin filter devices with a large spin-polarized current and a reversible spin polarization in the vicinity of the Fermi energy. We also investigated the effect of edge roughness and found that the bipolar magnetic semiconductor features are robust against edge disorder in silicene nanoribbon junctions. These results may be useful in multifunctional spin devices based on silicene nanoribbons.

  20. Bipolar magnetic semiconductor in silicene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Farghadan, Rouhollah, E-mail: rfarghadan@kashanu.ac.ir

    2017-08-01

    Highlights: • A new electronic phase for silicene nanoribbon in the presence of electric and magnetic fields. • Bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps in silicene. • Robust bipolar magnetic semiconductor features in a rough silicene. • Perfect and reversible spin polarization in silicene nanoribbon junctions. - Abstract: A theoretical study was presented on generation of spin polarization in silicene nanoribbons using the single-band tight-binding approximation and the non-equilibrium Green’s function formalism. We focused on the effect of electric and exchange magnetic fields on the spin-filter capabilities of zigzag-edge silicene nanoribbons in the presence of the intrinsic spin-orbit interaction. The results show that a robust bipolar magnetic semiconductor with controllable spin-flip and spin-conserved gaps can be obtained when exchange magnetic and electric field strengths are both larger than the intrinsic spin-orbit interaction. Therefore, zigzag silicene nanoribbons could act as bipolar and perfect spin filter devices with a large spin-polarized current and a reversible spin polarization in the vicinity of the Fermi energy. We also investigated the effect of edge roughness and found that the bipolar magnetic semiconductor features are robust against edge disorder in silicene nanoribbon junctions. These results may be useful in multifunctional spin devices based on silicene nanoribbons.

  1. 2 W high efficiency PbS mid-infrared surface emitting laser

    Science.gov (United States)

    Ishida, A.; Sugiyama, Y.; Isaji, Y.; Kodama, K.; Takano, Y.; Sakata, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Zogg, H.

    2011-09-01

    High efficiency laser operation with output power exceeding 2 W was obtained for vertical external-cavity PbS based IV-VI compound surface emitting quantum-well structures. The laser showed external quantum efficiency as high as 16%. Generally, mid-infrared III-V or II-VI semiconductor laser operation utilizing interband electron transitions are restricted by Auger recombination and free carrier absorption. Auger recombination is much lower in the IV-VI semiconductors, and the free-carrier absorption is significantly reduced by an optically pumped laser structure including multi-step optical excitation layers.

  2. Electromagnetic pulse-driven spin-dependent currents in semiconductor quantum rings.

    Science.gov (United States)

    Zhu, Zhen-Gang; Berakdar, Jamal

    2009-04-08

    We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with a Rashba spin-orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic pulses. The equilibrium persistent charge and persistent spin-dependent currents are investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2) effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent currents. The period of the oscillation of the total charge current with the delay time between the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields control to a certain extent the total charge and the total spin-dependent currents. The calculations are applicable to nanometre rings fabricated in heterojunctions of III-V and II-VI semiconductors containing several hundreds of electrons.

  3. Fuel penetration of intersubassembly gaps in LMFBRs: a calculational method with the SIMMER-II code

    International Nuclear Information System (INIS)

    DeVault, G.P.

    1983-01-01

    Early fuel removal from the active core of a liquid-metal-cooled fast breeder reactor (LMFBR) undergoing a core-disruptive accident may reduce the potential for large energetics resulting from recriticalities. A possible avenue for early fuel removal in heterogeneous core LMFBRs is the failure of duct walls in disrupted driver subassemblies followed by fuel penetration into the gaps between blanket subassemblies. The SIMMER-II code was modified to simulate flow between subassembly gaps. Calculations with the modified SIMMER-II code indicate the capabilities of the method and the potential for fuel mass reduction in the active core

  4. Hexagonal perovskites with cationic vacancies. 14. The rhombohedral 12 L-stacking polytypes Ba/sub 2/La/sub 2/Bsup(II)(W/sub 2/sup(VI)vacantO/sub 12/)

    Energy Technology Data Exchange (ETDEWEB)

    Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.). Lehrstuhl fuer Anorganische Chemie 2

    1980-02-01

    Rhombohedral 12 L-stacking polytypes with cationic vacancies of type Ba/sub 2/La/sub 2/Bsup(II)(W/sub 2/sup(VI)vacantO/sub 12/) are reported for Bsup(II) = Mg, Zn (white), Ni (light brown) and Co (brown). For Bsup(II) = Cu, as a consequence of the Jahn Teller effect, a triclinic distorted lattice is observed.

  5. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    Science.gov (United States)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Poudel, Bed (Inventor); Kumar, Shankar (Inventor); Wang, Wenzhong (Inventor); Dresselhaus, Mildred (Inventor)

    2009-01-01

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  6. Beat-wave generation of plasmons in semiconductor plasmas

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Mahajan, S.M.

    1995-08-01

    It is shown that in semiconductor plasmas, it is possible to generate large amplitude plasma waves by the beating of two laser beams with frequency difference close to the plasma frequency. For narrow gap semiconductor (for example n-type InSb), the system can simulate the physics underlying beat wave generation in relativistic gaseous plasmas. (author). 7 refs

  7. Structural, optical and electrical characterization of vacuum-evaporated nanocrystalline CdSe thin films for photosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vipin; Sharma, D.K.; Sharma, Kapil [Krishna Institute of Engineering and Technology, Department of Physics, Ghaziabad (India); Dwivedi, D.K. [M.M.M University of Technology, Department of Physics, Gorakhpur (India)

    2016-11-15

    II-VI nanocrystalline semiconductors offer a wide range of applications in electronics, optoelectronics and photonics. Thin films of CdSe were deposited onto ultra-clean glass substrates by vacuum evaporation method. The as-deposited films were annealed in vacuum at 350 K. The structural, elemental, morphological, optical and electrical investigations of annealed films were carried out. The X-ray diffraction pattern of the films shows that films were polycrystalline in nature having hexagonal structure with preferential orientation of grains along (002) plane. SEM image indicates that the films were uniform and well covered to the glass substrate. EDAX analysis confirms the stoichiometric composition of the film. Raman spectra were used to observe the characteristic vibrational modes of CdSe. The energy band gap of these films was obtained by absorption spectra. The films were found to have a direct type of transition of band gap occurring at 1.75 eV. The dark electrical conductivity and photoconductivity reveals that the films were semiconducting in nature indicating the suitability of these films for photosensor applications. The Hall effect measurement reveals that the films have n-type electrical conductivity. (orig.)

  8. Optical investigations and control of spindynamics in Mn doped II-VI quantum dots

    International Nuclear Information System (INIS)

    Schmidt, Thomas

    2009-01-01

    The present thesis deals with the spin of charge carriers confined in CdSe/ZnSe quantum dots (QDs) closely linked to the polarization of emitted photons. II-VI material systems can be adequately mixed with the B-group element manganese. Such semimagnetic nanostructures offer a number of characteristic optical and electronic features. This is caused by an exchange interaction between the spin of optically excited carriers and the 3d electrons of the Mn ions. Within the framework of this thesis addressing of well defined spin states was realized by optical excitation of charge carriers. The occupation of different spin states was detected by the degree of polarization of the emitted photoluminescence (PL) light. For that purpose different optical methods of time-resolved and time-integrated spectroscopy as well as investigations in magnetic fields were applied. (orig.)

  9. Hydrogen discharges operating at atmospheric pressure in a semiconductor gas discharge system

    Energy Technology Data Exchange (ETDEWEB)

    Aktas, K; Acar, S; Salamov, B G [Physics Department, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)

    2011-08-15

    Analyses of physical processes which initiate electrical breakdown and spatial stabilization of current and control it with a photosensitive cathode in a semiconductor gas discharge system (SGDS) are carried out in a wide pressure range up to atmospheric pressure p, interelectrode distance d and diameter D of the electrode areas of the semiconductor cathode. The study compares the breakdown and stability curves of the gas discharge in the planar SGDS where the discharge gap is filled with hydrogen and air in two cases. The impact of the ionizing component of the discharge plasma on the control of the stable operation of the planar SGDS is also investigated at atmospheric pressure. The loss of stability is primarily due to modification of the semiconductor-cathode properties on the interaction with low-energy hydrogen ions and the formation of a space charge of positive ions in the discharge gap which changes the discharge from Townsend to glow type. The experimental results show that the discharge current in H{sub 2} is more stable than in air. The breakdown voltages are measured for H{sub 2} and air with parallel-plane electrodes, for pressures between 28 and 760 Torr. The effective secondary electron emission (SEE) coefficient is then determined from the breakdown voltage results and compared with the experimental results. The influence of the SEE coefficient is stated in terms of the differences between the experimental breakdown law.

  10. Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide

    KAUST Repository

    Li, Yongfeng; Deng, Rui; Lin, Weinan; Tian, Yufeng; Peng, Haiyang; Yi, Jiabao; Yao, Bin; Wu, Tao

    2013-01-01

    As a long-lived theme in solid-state physics, the Kondo effect reflects the many-body physics involving the short-range Coulomb interactions between itinerant electrons and localized spins in metallic materials. Here we show that the Kondo effect is present in ZnO, a prototypical wide-band-gap oxide, doped with a rare-earth element (Gd). The localized 4f electrons of Gd ions do not produce remanent magnetism, but interact strongly with the host electrons, giving rise to a saturating resistance upturn and negative magnetoresistance at low temperatures. Furthermore, the Kondo temperature and resistance can be electrostatically modulated using electric-double-layer gating with liquid ionic electrolyte. Our experiments provide the experimental evidence of tunable Kondo effect in ZnO, underscoring the magnetic interactions between localized and itinerant electrons and the emergent transport behaviors in such doped wide-band-gap oxides.

  11. Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide

    KAUST Repository

    Li, Yongfeng

    2013-04-29

    As a long-lived theme in solid-state physics, the Kondo effect reflects the many-body physics involving the short-range Coulomb interactions between itinerant electrons and localized spins in metallic materials. Here we show that the Kondo effect is present in ZnO, a prototypical wide-band-gap oxide, doped with a rare-earth element (Gd). The localized 4f electrons of Gd ions do not produce remanent magnetism, but interact strongly with the host electrons, giving rise to a saturating resistance upturn and negative magnetoresistance at low temperatures. Furthermore, the Kondo temperature and resistance can be electrostatically modulated using electric-double-layer gating with liquid ionic electrolyte. Our experiments provide the experimental evidence of tunable Kondo effect in ZnO, underscoring the magnetic interactions between localized and itinerant electrons and the emergent transport behaviors in such doped wide-band-gap oxides.

  12. Producing p-type conductivity in self-compensating semiconductor material

    International Nuclear Information System (INIS)

    Vechten, J.A. van; Woodall, J.M.

    1981-01-01

    This relates to compound type semiconductor materials that exhibit self-compensated n-type conductivity. The process described imparts p-type conductivity to a body of normally n-conductivity self-compensated compound semiconductor material by bombarding it with charged particles, either electrons, protons or ions. Other possible steps include introducing an acceptor impurity and applying a coating onto the crystal body. This technique will allow new semiconductor structures to be made. For example, there are some compound semiconductor materials that exhibit n-conductivity only that have energy gap widths that would permit electrical to light conversion at frequency and colours not readily achieved in semiconductor devices. (U.K.)

  13. Modification of Poly- and Oligosaccharides with Os(VI) pyridine. Voltammetry of the Os(VI) Adducts Obtained by Ligand Exchange

    Czech Academy of Sciences Publication Activity Database

    Trefulka, Mojmír; Paleček, Emil

    2013-01-01

    Roč. 25, č. 8 (2013), s. 1813-1817 ISSN 1040-0397 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional research plan: CEZ:AV0Z50040702 Institutional support: RVO:68081707 Keywords : OS(VI)-MODIFIED POLYSACCHARIDES * STRIPPING VOLTAMMETRY * TRANS-ESTERIFICATION Subject RIV: BO - Biophysics Impact factor: 2.502, year: 2013

  14. Synergetic effects of II-VI sensitization upon TiO2 for photoelectrochemical water splitting; a tri-layered structured scheme

    International Nuclear Information System (INIS)

    Mumtaz, Asad; Mohamed, Norani Muti

    2014-01-01

    World's energy demands are growing on a higher scale increasing the need of more reliable and long term renewable energy resources. Efficient photo-electrochemical (PEC) devices based on novel nano-structured designs for solar-hydrogen generation need to be developed. This study provides an insight of the tri-layered-TiO2 based nanostructures. Observing the mechanism of hydrogen production, the comparison of the structural order during the synthesis is pronounced. The sequence in the tri-layered structure affects the photogenerated electron (e − ) and hole (h + ) pair transfer and separation. It is also discussed that not only the semiconductors band gaps alignment is important with respect to the water redox potential but also the interfacial regions. Quasi-Fermi-level adjustment at the interfacial regions plays a key role in deciding the solar to hydrogen efficiency. More efficient multicomponent semiconductor nano-design (MCSN) could be developed with the approach given in this study

  15. Removal of Cr(VI) and Ni(II) from aqueous solution by fused yeast: Study of cations release and biosorption mechanism

    International Nuclear Information System (INIS)

    Yin Hua; He Baoyan; Peng Hui; Ye Jinshao; Yang Feng; Zhang Na

    2008-01-01

    Biosorption of Cr(VI) and Ni(II) by a fused yeast from Candida tropicalis and Candida lipolytica under varying range of pH, initial metal concentration and reaction time was investigated. Net cation release and Cr removal reached 2.000 mmol/l and 81.37% when treating 20 mg/l Cr(VI) at pH 2 with 25 mg/l biomass for 30 min, while for Ni were 0.351 mmol/l and 64.60%, respectively. Trace metal elements such as Co, Cu, Mn, Mo, Se and Zn played active role in biosorption as important ingredients of functional enzymes. Cr(VI) was reduced to less toxic Cr(III) and chelated with extracellular secretions, and further accumulated inside the cells. For Ni biosorption, however, largely a passive uptake process influenced by ion gradient led to lower adsorption capacity and cations release. Fourier transform infrared (FTIR) spectrum analysis indicated that amide and pyridine on cells were involved in binding with Cr, but for Ni, bound-OH and nitro-compounds were the main related functional groups. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis confirmed that considerable amounts of metals precipitated on cell surface when dealing with high concentration metals

  16. Phosphorous dimerization in GaP high-pressure polymorph

    Energy Technology Data Exchange (ETDEWEB)

    Lavina, Barbara [Univ. of Nevada, Las Vegas, NV (United States). High Pressure Science and Engineering Center (HiPSEC), Dept. of Physics and Astronomy; Kim, Eunja [Univ. of Nevada, Las Vegas, NV (United States). Dept. of Physics and Astronomy; Cynn, Hyunchae [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Weck, Philippe F [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seaborg, Kelly [Univ. of Nevada, Las Vegas, NV (United States). High Pressure Science and Engineering Center (HiPSEC), Dept. of Physics and Astronomy; Siska, Emily [Univ. of Nevada, Las Vegas, NV (United States). High Pressure Science and Engineering Center (HiPSEC); Meng, Yue [Carnegie Inst. of Washington, Argonne, IL (United States). Geophysical Lab., High Pressure Collaborative Access Team (HPCAT); Evans, Williams [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-01

    We report on the experimental and theoretical characterization of a novel GaP polymorph formed by laser heating of a single crystal of GaP-II in its stable region near 43 GPa. Thereby formed unstrained multigrain sample at 43 GPa and 1300 K, allowed high-resolution crystallographic analysis. We find an oS24 as an energetically optimized crystal structure contrary to oS8 reported by Nelmes et al. (1997). Our DFT calculation confirms a stable existence of oS24 between 18 – 50 GPa. The emergence of the oS24 structure is related to the differentiation of phosphorous atoms between those forming P-P dimers and those forming P-Ga bonds only. Bonding anisotropy explains the symmetry lowering with respect to what is generally expected for semiconductors high-pressure polymorphs. The metallization of GaP does not occur through a uniform change of the nature of its bonds but through the formation of an anisotropic phase containing different bond types.

  17. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1995-01-01

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups; (i) classical semiconductor diode detectors and (ii) semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported. copyright 1995 American Institute of Physics

  18. Introduction to cathodoluminescence in semiconductors

    International Nuclear Information System (INIS)

    Dussac, M.

    1985-01-01

    The use of cathodoluminescence in a scanning electron microscope leads to acquire a spectrum in a place of the sample surface, or to register the intensity profile of a special emission band along a scanning line, or also to realize a map of the irradiated sample. Composition variations can then, at ambient temperature, be determined, also defects can be shown, together with grain joints and dislocations, radiative and non radiative regions can be distinguished and, at low temperature, elementary processes of luminescence can be studied and impurities identified in semiconductors. Through this analysis method is applicable to every insulating or semiconductor material (that is to say to every material having a gap), in this article only crystalline semi-conductor will be studied [fr

  19. Phase diagrams and switching of voltage and magnetic field in dilute magnetic semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo, R. [Departamento de Matematica Aplicada y Ciencias de la Computacion, Universidad de Cantabria, 39005 Santander (Spain); Carretero, M.; Bonilla, L.L. [G. Millan Institute, Fluid Dynamics, Nanoscience and Industrial Maths., Universidad Carlos III de Madrid, 28911 Leganes (Spain); Unidad Asociada al Instituto de Ciencia de Materiales, CSIC, 28049 Cantoblanco, Madrid (Spain); Platero, G. [Instituto de Ciencia de Materiales, CSIC, 28049 Cantoblanco, Madrid (Spain)

    2010-04-15

    The response of an n-doped dc voltage biased II-VI multi-quantum well dilute magnetic semiconductor nanostructure having its first well doped with magnetic (Mn) impurities is analyzed by sweeping wide ranges of both the voltage and the Zeeman level splitting induced by an external magnetic field. The level splitting versus voltage phase diagram shows regions of stable self-sustained current oscillations immersed in a region of stable stationary states. Transitions between stationary states and self-sustained current oscillations are systematically analyzed by both voltage and level splitting abrupt switching. Sudden voltage or/and magnetic field changes may switch on current oscillations from an initial stationary state, and reciprocally, current oscillations may disappear after sudden changes of voltage or/and magnetic field changes into the stable stationary states region. The results show how to design such a device to operate as a spin injector and a spin oscillator by tuning the Zeeman splitting (through the applied external magnetic field), the applied voltage and the sample configuration parameters (doping density, barrier and well widths, etc.) to select the desired stationary or oscillatory behavior. Phase diagram of Zeeman level splitting {delta} vs. dimensionless applied voltage {phi} for N = 10 QWs. White region: stable stationary states; black: stable self-sustained current oscillations. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. THE SURPRISINGLY CONSTANT STRENGTH OF O VI ABSORBERS OVER COSMIC TIME

    International Nuclear Information System (INIS)

    Fox, Andrew J.

    2011-01-01

    O VI absorption is observed in a wide range of astrophysical environments, including the local interstellar medium, the disk and halo of the Milky Way, high-velocity clouds, the Magellanic Clouds, starburst galaxies, the intergalactic medium (IGM), damped Lyα systems, and gamma-ray-burst host galaxies. Here, a new compilation of 775 O VI absorbers drawn from the literature is presented, all observed at high resolution (instrumental FWHM ≤ 20 km s -1 ) and covering the redshift range z = 0-3. In galactic environments [log N(H I) ∼> 20], the mean O VI column density is shown to be insensitive to metallicity, taking a value log N(O VI) ∼ 14.5 for galaxies covering the range -1.6 ∼ 4 K) clouds and hot (∼10 6 K) plasma, although many such layers would have to be intersected by a typical galaxy-halo sight line to build up the characteristic galactic N(O VI). The alternative, widely used model of single-phase photoionization for intergalactic O VI is ruled out by kinematic evidence in the majority of IGM O VI components at low and high redshift.

  1. Simulated solarlight catalytic reduction of Cr(VI) on microwave–ultrasonication synthesized flower-like CuO in the presence of tartaric acid

    International Nuclear Information System (INIS)

    Xu, Zhihui; Yu, Yaqun; Fang, Di; Liang, Jianru; Zhou, Lixiang

    2016-01-01

    In this study, flower-like CuO was successfully synthesized by a microwave–ultrasound assisted method and well characterized by X-ray diffractions, Fourier transform infrared spectrum, scanning electron microscopy, transmission electron microscopy, specific surface area, UV–vis diffused reflection spectra, X-ray photoelectron spectroscopy and point of zero charge. The photocatalytic performance of the as-prepared CuO was examined on the Cr(VI) reduction in the presence of tartaric acid under simulated solarlight irradiation. The results show that the developed CuO catalyst exhibited good photocatalytic activity with 100% reduction of Cr(VI) after irradiation of 30 min under the test condition of c(Cr(VI)) = 100 μM, catalyst loading = 400 mg/L, c(tartaric acid) = 4 mM and initial pH = 3. The reaction mechanism was proposed. The effects of test parameters, such as catalyst loading, tartaric acid concentration and initial pH, on Cr(VI) reduction efficiency were also investigated. It is worth mentioning that the developed catalyst can work at a relatively wide range of pH with quite high catalytic performance. - Highlights: • Flower-like CuO microstructure was prepared by MW-US assisted method. • The prepared CuO can catalyze the reduction Cr(VI) by tartaric acid under simulated solarlight. • The formation of ≡Cu(II)-tartaric acid complex play a key role in the reduction of Cr(VI). • The catalyst can operate effectively at a relatively wide range of pH.

  2. Two-dimensional silica: Structural, mechanical properties, and strain-induced band gap tuning

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Enlai; Xie, Bo [Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084 (China); Xu, Zhiping, E-mail: xuzp@tsinghua.edu.cn [Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2016-01-07

    Two-dimensional silica is of rising interests not only for its practical applications as insulating layers in nanoelectronics, but also as a model material to understand crystals and glasses. In this study, we examine structural and electronic properties of hexagonal and haeckelite phases of silica bilayers by performing first-principles calculations. We find that the corner-sharing SiO{sub 4} tetrahedrons in these two phases are locally similar. The robustness and resilience of these tetrahedrons under mechanical perturbation allow effective strain engineering of the electronic structures with band gaps covering a very wide range, from of that for insulators, to wide-, and even narrow-gap semiconductors. These findings suggest that the flexible 2D silica holds great promises in developing nanoelectronic devices with strain-tunable performance, and lay the ground for the understanding of crystalline and vitreous phases in 2D, where bilayer silica provides an ideal test-bed.

  3. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges.

    Science.gov (United States)

    Duan, Xidong; Wang, Chen; Pan, Anlian; Yu, Ruqin; Duan, Xiangfeng

    2015-12-21

    The discovery of graphene has ignited intensive interest in two-dimensional layered materials (2DLMs). These 2DLMs represent a new class of nearly ideal 2D material systems for exploring fundamental chemistry and physics at the limit of single-atom thickness, and have the potential to open up totally new technological opportunities beyond the reach of existing materials. In general, there are a wide range of 2DLMs in which the atomic layers are weakly bonded together by van der Waals interactions and can be isolated into single or few-layer nanosheets. The van der Waals interactions between neighboring atomic layers could allow much more flexible integration of distinct materials to nearly arbitrarily combine and control different properties at the atomic scale. The transition metal dichalcogenides (TMDs) (e.g., MoS2, WSe2) represent a large family of layered materials, many of which exhibit tunable band gaps that can undergo a transition from an indirect band gap in bulk crystals to a direct band gap in monolayer nanosheets. These 2D-TMDs have thus emerged as an exciting class of atomically thin semiconductors for a new generation of electronic and optoelectronic devices. Recent studies have shown exciting potential of these atomically thin semiconductors, including the demonstration of atomically thin transistors, a new design of vertical transistors, as well as new types of optoelectronic devices such as tunable photovoltaic devices and light emitting devices. In parallel, there have also been considerable efforts in developing diverse synthetic approaches for the rational growth of various forms of 2D materials with precisely controlled chemical composition, physical dimension, and heterostructure interface. Here we review the recent efforts, progress, opportunities and challenges in exploring the layered TMDs as a new class of atomically thin semiconductors.

  4. Comparative study of porosification in InAs, InP, ZnSe and ZnCdS

    International Nuclear Information System (INIS)

    Monaico, Eduard; Tiginyanu, Ion; Nielsch, Kornelius; Ursaki, Veaceslav; Colibaba, Gleb; Nedeoglo, Dmitrii; Cojocaru, Ala; Foell Helmut

    2013-01-01

    We report on a comparative study of the pore growth during anodization of a narrow-bandgap III-V compound (InAs), a medium-bandgap III-V one (InP) and wide-bandgap II-VI semiconductors (ZnSe and Zn 0,4 Cd 0,6 S). According to the obtained results, the morphology of the porous layers can be controlled by the composition of the electrolyte and the applied electrochemical parameters. It was evidenced that in the narrow bandgap semiconductor InAs it is difficult to control the mechanism of pore growth. Both current line oriented pores and crystallographically oriented pores were produced in the medium-bandgap material InP. The electrochemical nanostructuring of wide-bandgap semiconductors realized in single crystalline high conductivity samples evidenced only current-line oriented pores. This behavior is explained in terms of difference in the values of electronegativity of the constituent atoms and the degree of ionicity. (authors)

  5. Physicochemical, Spectral, and Biological Studies of Mn(II, Cu(II, Cd(II, Zr(OH2(IV, and UO2(VI Compounds with Ligand Containing Thiazolidin-4-one Moiety

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2014-01-01

    Full Text Available The Schiff base (I upon reacting with mercaptoacetic acid in dry benzene undergoes cyclization and forms N-(2-carbamoylthienyl-C-(3′-carboxy-2′-hydroxyphenylthiazolidin-4-one, LH3 (II. A MeOH solution of II reacts with Mn(II, Cu(II, Cd(II, Zr(OH2(IV, and UO2(VI ions and forms the coordination compounds, [Mn(LH(MeOH2], [Cu(LH]2, [Cd(LH], [Zr(OH2(OAc2(LH3], and [UO2(NO3(LH2(MeOH]. The compounds have been characterized on the basis of elemental analyses, molar conductance, molecular weight, spectral (IR, reflectance, and EPR studies and magnetic susceptibility measurements. LH3 behaves as a neutral tridentate ONS donor ligand in [Zr(OH2(OAc2(LH3], monobasic tridentate ONS donor ligand in [UO2(NO3(LH2(MeOH], dibasic tridentate OOS donor ligand in [Cu(LH]2 and dibasic tetradentate OONO donor ligand in [Mn(LH(MeOH2] and [Cd(LH]. [Cu(LH]2 is dimer, while all other compounds are monomers in diphenyl. A square-planar structure for [Cu(LH]2, a tetrahedral structure for [Cd(LH], an octahedral structure for [Mn(LH(MeOH2], a pentagonal-bipyramidal structure for [Zr(OH2(OAc2(LH3], and an eight-coordinate structure for [UO2(NO3(LH2(MeOH] are proposed. The ligand (II and its compounds show antibacterial activities towards E. coli. (Gram negative and S. aureus (Gram positive.

  6. Theoretical prediction and experimental confirmation of unusual ternary ordered semiconductor compounds in Sr-Pb-S system.

    Science.gov (United States)

    Hao, Shiqiang; Zhao, Li-Dong; Chen, Chang-Qiang; Dravid, Vinayak P; Kanatzidis, Mercouri G; Wolverton, Christopher M

    2014-01-29

    We examine the thermodynamics of phase separation and ordering in the ternary Ca(x)Pb(1-x)S and Sr(x)Pb(1-x)S systems by density-functional theory combined with a cluster expansion and Monte Carlo simulations. Similar to most other ternary III-V or IV-VI semiconductor alloys, we find that bulk phase separation is thermodynamically preferred for PbS-CaS. However, we predict the surprising existence of stable, ordered ternary compounds in the PbS-SrS system. These phases are previously unreported ordered rocksalt-based compounds: SrPb3S4, SrPbS2, and Sr3PbS4. The stability of these predicted ordered phases is confirmed by transmission electron microscopy observations and band gap measurements. We believe this work paves the way for a combined theory-experiment approach to decipher complex phase relations in multicomponent chalcogenide systems.

  7. Evidence of indirect gap in monolayer WSe2

    KAUST Repository

    Hsu, Wei-Ting; Lu, Li-Syuan; Wang, Dean; Huang, Jing-Kai; Li, Ming-Yang; Chang, Tay-Rong; Chou, Yi-Chia; Juang, Zhen-Yu; Jeng, Horng-Tay; Li, Lain-Jong; Chang, Wen-Hao

    2017-01-01

    Monolayer transition metal dichalcogenides, such as MoS2 and WSe2, have been known as direct gap semiconductors and emerged as new optically active materials for novel device applications. Here we reexamine their direct gap properties

  8. Study of the parameters of nanoscale layers in nanoheterostructures based on II–VI semiconductor compounds

    Energy Technology Data Exchange (ETDEWEB)

    Karavaev, M. B., E-mail: estonianchameleon@gmail.com; Kirilenko, D. A.; Ivanova, E. V.; Popova, T. B.; Sitnikova, A. A.; Sedova, I. V.; Zamoryanskaya, M. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    Wide-gap ZnSe-based nanoheterostructures grown by molecular-beam epitaxy are studied by local cathodoluminescence and X-ray microanalysis. It is shown that the used methods allow nondestructive determination of the depth, elemental composition, and geometrical parameters of the nanoscale ZnCdSe layer. The accuracy of the results is verified by transmission electron microscopy. The research techniques are based on the possibility of varying the primary electron-beam energy, which results in changes in the regions of characteristic X-ray and cathodoluminescence generation.

  9. Oxide semiconductors

    CERN Document Server

    Svensson, Bengt G; Jagadish, Chennupati

    2013-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scient

  10. Photocatalytic semiconductors synthesis, characterization, and environmental applications

    CERN Document Server

    Hernández-Ramírez, Aracely

    2014-01-01

    This critical volume examines the different methods used for the synthesis of a great number of photocatalysts, including TiO2, ZnO and other modified semiconductors, as well as characterization techniques used for determining the optical, structural and morphological properties of the semiconducting materials. Additionally, the authors discuss photoelectrochemical methods for determining the light activity of the photocatalytic semiconductors by means of measurement of properties such as band gap energy, flat band potential and kinetics of hole and electron transfer. Photocatalytic Semiconductors: Synthesis, Characterization and Environmental Applications provide an overview of the semiconductor materials from first- to third-generation photocatalysts and their applications in wastewater treatment and water disinfection. The book further presents economic and toxicological aspects in the production and application of photocatalytic materials.

  11. Conductivity-limiting bipolar thermal conductivity in semiconductors

    Science.gov (United States)

    Wang, Shanyu; Yang, Jiong; Toll, Trevor; Yang, Jihui; Zhang, Wenqing; Tang, Xinfeng

    2015-01-01

    Intriguing experimental results raised the question about the fundamental mechanisms governing the electron-hole coupling induced bipolar thermal conduction in semiconductors. Our combined theoretical analysis and experimental measurements show that in semiconductors bipolar thermal transport is in general a “conductivity-limiting” phenomenon, and it is thus controlled by the carrier mobility ratio and by the minority carrier partial electrical conductivity for the intrinsic and extrinsic cases, respectively. Our numerical method quantifies the role of electronic band structure and carrier scattering mechanisms. We have successfully demonstrated bipolar thermal conductivity reduction in doped semiconductors via electronic band structure modulation and/or preferential minority carrier scatterings. We expect this study to be beneficial to the current interests in optimizing thermoelectric properties of narrow gap semiconductors. PMID:25970560

  12. Probing dopants in wide semiconductor quantum point contacts

    International Nuclear Information System (INIS)

    Yakimenko, I I; Berggren, K-F

    2016-01-01

    Effects of randomly distributed impurities on conductance, spin polarization and electron localization in realistic gated semiconductor quantum point contacts (QPCs) have been simulated numerically. To this end density functional theory in the local spin-density approximation has been used. In the case when the donor layer is embedded far from the two-dimensional electron gas (2DEG) the electrostatic confinement potential exhibits the conventional parabolic form, and thus the usual ballistic transport phenomena take place both in the devices with split gates alone and with an additional metallic gate on the top. In the opposite case, i.e. when the randomly distributed donors are placed not far away from the 2DEG layer, there are drastic changes like the localization of electrons in the vicinity of confinement potential minima which give rise to fluctuations in conductance and resonances. The conductance as a function of the voltage applied to the top gate for asymmetrically charged split gates has been calculated. In this case resonances in conductance caused by randomly distributed donors are shifted and decrease in amplitude while the anomalies caused by interaction effects remain unmodified. It has been also shown that for a wide QPC the polarization can appear in the form of stripes. The importance of partial ionization of the random donors and the possibility of short range order among the ionized donors are emphasized. The motivation for this work is to critically evaluate the nature of impurities and how to guide the design of high-mobility devices. (paper)

  13. Social Set Visualizer (SoSeVi) II

    DEFF Research Database (Denmark)

    Flesch, Benjamin; Vatrapu, Ravi; Mukkamala, Raghava Rao

    2016-01-01

    SeVi). The development of the dashboard involved cutting-edge open source visual analytics libraries (D3.js) and creation of new visualizations such as visualizations of actor mobility across time and space, conversational comets, and more. Evaluation of the dashboard consisted of technical testing, usability testing......Current state-of-the-art in big social data analytics is largely limited to graph theoretical approaches such as social network analysis (SNA) informed by the social philosophical approach of relational sociology. This paper proposes and illustrates an alternate holistic approach to big social data...

  14. Studies on II-VI and III-V semiconductor nanostructures. Introduction of the core/shell/shell structure and development of CdSe nanocrystals in an automatized procedure; Untersuchungen an II-VI und III-V Halbleiternanostrukturen. Einfuehrung der Core/shell/shell-Struktur und Darstellung von CdSe-Nanokristallen in einem automatisierten Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Mekis, I.

    2005-11-15

    The work in this dissertation is focused on the development and characterization of fluorescent II-VI and III-V-Nanomaterials. Highly luminescent and photostable Nanocrystals with narrow size distributions were prepared. It was shown that nearly monodisperse CdSe-Nanocrystals could be prepared from Cd(Ac){sub 2} and TOPSe in a mixture of TOPO/TOP/HDA/TDPA. Nearly monodisperse CdSe/CdS-Core/shell-Nanocrystals have been prepared in a one-pot-synthesis by injection of H{sub 2}S-Gas into a freshly prepared crude solution of CdSe. The passivation of the CdSe-core with an inorganic shell of CdS resulted in the drastic improvement of the photoluminescence-efficiency of the colloidal solution. Reproducible room-temperature quantum yields reached up to a value of 85%. Photostability investigations have proved the enhanced stability of CdSe/CdS-Nanocrystals compared to CdSe-Nanocrystals under illumination with UV-Light. A novel type of luminescent semiconductor nanocrystal structure has been developed, consisting of a CdSe core and two anorganic shells. Highly fluorescent and nearly monodisperse CdSe/CdS/ZnS- and CdSe/ZnSe/ZnS-Core/shell/shell-nanocrystals have been prepared via organometallic- and acetate-precursors. The Core/she ll/shell particles reached reproducible room-temperature quantum yields up to 85%. Photostability investigations among CdSe-core, CdSe/CdS-Core/shell- and CdSe/CdS/ZnS- Core/shell/-shell-nanocrystals under illumination with UV-light have proved the highest photostability of the Core/shell/shell-particles. The photostabilities of CdSe/ZnSe/ZnS-and CdSe/ZnS-nanocrystals were compared under illumination with intense laser-beam in air. Another part of this work focused on the development of an automated synthesis procedure of CdSe-nanocrystals by constructing and implementing a flow-reactor system. The size and structure of prepared nanocrystals depended considerably on the Cd:Se-precursorratio and the flow-rate. The preparation of CdSe using Cd(Ac)2

  15. A first-principles study of II-VI (II = Zn; VI = O{,} S{,} Se{,} Te) semiconductor nanostructures

    NARCIS (Netherlands)

    Azpiroz, Jon M.; Infante, Ivan; Lopez, Xabier; Ugalde, Jesus M.; De Angelis, Filippo

    2012-01-01

    We present a systematic investigation of the structural{,} electronic and optical properties of wurtzite-like ZnX (X = O{,} S{,} Se{,} Te) nanostructures at the DFT/TDDFT level of theory. To provide a direct comparison with the experiment{,} realistic 1.0-1.5 nm quantum dots have been built up from

  16. Photoelectrochemical cell including Ga(Sb.sub.x)N.sub.1-x semiconductor electrode

    Science.gov (United States)

    Menon, Madhu; Sheetz, Michael; Sunkara, Mahendra Kumar; Pendyala, Chandrashekhar; Sunkara, Swathi; Jasinski, Jacek B.

    2017-09-05

    The composition of matter comprising Ga(Sb.sub.x)N.sub.1-x where x=0.01 to 0.06 is characterized by a band gap between 2.4 and 1.7 eV. A semiconductor device includes a semiconductor layer of that composition. A photoelectric cell includes that semiconductor device.

  17. Debye screening length effects of nanostructured materials

    CERN Document Server

    Ghatak, Kamakhya Prasad

    2014-01-01

    This monograph solely investigates the Debye Screening Length (DSL) in semiconductors and their nano-structures. The materials considered are quantized structures of non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, Bismuth, GaP, Gallium Antimonide, II-V and Bismuth Telluride respectively. The DSL in opto-electronic materials and their quantum confined counterparts is studied in the presence of strong light waves and intense electric fields on the basis of newly formulated electron dispersion laws that control the studies of such quantum effect devices. The suggestions for the experimental determination of 2D and 3D DSL and the importance of measurement of band gap in optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring photon induced physical properties) have also been discussed in this context. The influence of crossed electric and quantizing magnetic fields on the DSL and the DSL in heavily doped ...

  18. Mercury telluride as a zero-gap semiconductor

    International Nuclear Information System (INIS)

    Berchenko, N.N.; Pashkovskij, M.V.

    1976-01-01

    The paper presents a review of main properties of mercury telluride which is a representative of a new class of substances - gapless semiconductors. The causes leading to the appearance of a gapless state in mercury chalcogenides are considered; it is demonstrated that the main role in the formation of the inverse band structure belongs to relativistic corrections. The specific properties of mercury telluride are associated with the zero forbidden band, p-like nature of electron states of the conduction band and its nonparabolicity, resonance states of impurities and anomalies of dielectric permittivity. Conditions of forbidden band appearing in mercury telluride under the effect external factors are analyzed

  19. Band Gap Distortion in Semiconductors Strongly Driven by Intense Mid-Infrared Laser Fields

    Science.gov (United States)

    Kono, J.; Chin, A. H.

    2000-03-01

    Crystalline solids non-resonantly driven by intense time-periodic electric fields are predicted to exhibit unusual band-gap distortion.(e.g., Y. Yacoby, Phys. Rev. 169, 610 (1968); L.C.M. Miranda, Solid State Commun. 45, 783 (1983); J.Z. Kaminski, Acta Physica Polonica A 83, 495(1993).) Such non-perturbative effects have not been observed to date because of the unavoidable sample damage due to the very high intensity required using conventional lasers ( 1 eV photon energy). Here, we report the first clear evidence of laser-induced bandgap shrinkage in semiconductors under intense mid-infrared (MIR) laser fields. The use of long-wavelength light reduces the required intensity and prohibits strong interband absorption, thereby avoiding the damage problem. The significant sub-bandgap absorption persists only during the existence of the MIR laser pulse, indicating the virtual nature of the effect. We show that this particular example of non-perturbative behavior, known as the dynamical Franz-Keldysh effect, occurs when the effective ponderomotive potential energy is comparable to the photon energy of the applied field. This work was supported by ONR, NSF, JST and NEDO.

  20. New evidence on the motherhood wage gap

    OpenAIRE

    Amuedo-Dorantes, Catalina; Kimmel, Jean

    2008-01-01

    Using data from the 1979 National Longitudinal Survey of Youth, we assess the role of employment-based health insurance offers in explaining the motherhood wage gap. Researchers have been aware of the existence of a motherhood gap for many years; yet, the literature has failed to address the role of non-wage compensation in explaining the motherhood wage gap despite the increasing importance of non-wage benefits in total compensation packages. As hedonic wage theory suggests, mothers might vi...

  1. Synergetic effects of II-VI sensitization upon TiO{sub 2} for photoelectrochemical water splitting; a tri-layered structured scheme

    Energy Technology Data Exchange (ETDEWEB)

    Mumtaz, Asad, E-mail: asad-032@yahoo.com [Department of Fundamental and Applied Sciences, University Teknologi PETRONAS (Malaysia); Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS (Malaysia)

    2014-10-24

    World's energy demands are growing on a higher scale increasing the need of more reliable and long term renewable energy resources. Efficient photo-electrochemical (PEC) devices based on novel nano-structured designs for solar-hydrogen generation need to be developed. This study provides an insight of the tri-layered-TiO2 based nanostructures. Observing the mechanism of hydrogen production, the comparison of the structural order during the synthesis is pronounced. The sequence in the tri-layered structure affects the photogenerated electron (e{sup −}) and hole (h{sup +}) pair transfer and separation. It is also discussed that not only the semiconductors band gaps alignment is important with respect to the water redox potential but also the interfacial regions. Quasi-Fermi-level adjustment at the interfacial regions plays a key role in deciding the solar to hydrogen efficiency. More efficient multicomponent semiconductor nano-design (MCSN) could be developed with the approach given in this study.

  2. Reduction of chromium (VI) on the hetero-system CuBi2O4/TiO2 under solar light

    Science.gov (United States)

    Lahmar, H.; Benamira, M.; Akika, F. Z.; Trari, M.

    2017-11-01

    The CuBi2O4/TiO2 heterojunction was tested with success for the photo-catalytic reduction of chromate ions under sunlight. CuBi2O4, prepared by nitrate process, was characterised photo-electrochemically. The oxide is stable against photo corrosion by consumption of holes in presence of oxalic acid. The light absorption promotes electrons in the conduction band of the sensitizer (CuBi2O4) with a very negative potential (-1.74 VSCE) to participate in the exchange of the electron with HCrO4-. The enhanced activity is due to electron injection of activated CuBi2O4 into TiO2-CB (-0.97 VSCE). The band gap of the semiconductor CuBi2O4 is 1.50 eV with a direct optical transition. This compound is a p-type semiconductor with a flat band potential of -0.39 VSCE and activation energy of 0.18 eV. The electrochemical impedance spectroscopy was undertaken to study the semiconductor/electrolyte interfacial phenomena. The photoactivity on the heterojunction is strongly enhanced. A remarkable performance is obtained in less than 4 h for a concentration of 30 mg in (Cr (VI)) at pH ∼ 4 and a dose of 1 mg/mL; a 98% reduction has been obtained. The kinetic of chromate photoreduction is well described by the Langmuir-Hinshelwood model. The chromate elimination obeys to a pseudo-first order kinetic with an apparent rate constant of 0.014 min-1.

  3. Ab initio study of II-(VI){sub 2} dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, P; Vidal, J; Lincot, D, E-mail: polsson@kth.se [Institut de R and D sur l' energie photovoltaique (IRDEP), UMR 7174-EDF-CNRS-ENSCP, 6 quai Watier, 78401 Chatou Cedex (France)

    2011-10-12

    The structural stabilities of the (Zn,Cd)(S,Se,Te){sub 2} dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe{sub 2} pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications. (paper)

  4. Tailoring Mixed-Halide, Wide-Gap Perovskites via Multistep Conversion Process

    DEFF Research Database (Denmark)

    Bae, Dowon; Palmstrom, Axel; Roelofs, Katherine

    2016-01-01

    Wide-band-gap mixed-halide CH3NH3PbI3–XBrX-based solar cells have been prepared by means of a sequential spin-coating process. The spin-rate for PbI2 as well as its repetitive deposition are important in determining the cross-sectional shape and surface morphology of perovskite, and, consequently......, J–V performance. A perovskite solar cell converted from PbI2 with a dense bottom layer and porous top layer achieved higher device performance than those of analogue cells with a dense PbI2 top layer. This work demonstrates a facile way to control PbI2 film configuration and morphology simply...

  5. Some aspects of radiation resistance of wide-gap metal oxides

    International Nuclear Information System (INIS)

    Lushchik, Aleksandr; Feldbach, Eduard; Galajev, Semjon; Kaerner, Tiit; Liblik, Peeter; Lushchik, Cheslav; Maaroos, Aarne; Nagirnyi, Vitali; Vasil'chenko, Evgeni

    2007-01-01

    Wide-gap oxides drastically differ in radiation resistance against nonimpact mechanisms of defect creation depending on the ratio between the values of the energy gap E g and the formation energy of a pair of Frenkel defects (FD) E FD . Materials with E g >E FD are radiation-sensitive even at a low excitation density, while the efficiency of FD creation in the materials with E g FD is noticeable only under a high excitation density or in the presence of impurity centers serving as the promoters of radiation damage due to the nonimpact mechanisms. Novel experimental results on the FD creation in the bulk of MgO single crystals (E g FD ) irradiated by swift uranium ions at 300 K and 5 keV electrons at 6 K are presented. The prospects of luminescent protection against radiation damage as well as of the decrease of the luminescence efficiency due to the suppression of nonradiative recombination of electrons and holes (both relaxed and nonrelaxed) by doping the material with a sufficient amount of luminescent impurity ions are considered on the example of spectral transformers for plasma display panels

  6. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

    KAUST Repository

    Wu, Xue-Jun

    2016-03-14

    The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II-VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures. © 2016 Macmillan Publishers Limited. All rights reserved.

  7. Resonant inelastic scattering in dilute magnetic semiconductors by x-ray fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lawniczak-Jablonska, K. [Lawrence Berkeley National Lab., CA (United States)]|[Institute of Physics, Warsaw (Poland); Jia, J.J.; Underwood, J.H. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    As modern, technologically important materials have become more complex, element specific techniques have become invaluable in studying the electronic structure of individual components from the system. Soft x-ray fluorescence (SXF) and absorption (SXA) spectroscopies provide a unique means of measuring element and angular momentum density of electron states, respectively, for the valence and conducting bands in complex materials. X-ray absorption and the decay through x-ray emission are generally assumed to be two independent one-photon processes. Recent studies, however have demonstrated that SXF excited near the absorption threshold generate an array of spectral features that depend on nature of materials, particularly on the localization of excited states in s and d-band solids and that these two processes can no be longer treated as independent. Resonant SXF offers thus the new way to study the dynamics of the distribution of electronic valence states in the presence of a hole which is bound to the electron low lying in the conduction band. This process can simulate the interaction between hole-electron pair in wide gap semiconductors. Therefore such studies can help in understanding of transport and optics phenomena in the wide gap semiconductors. The authors report the result of Mn and S L-resonant emission in Zn{sub 1{minus}x}Mn{sub x}S (with x=0.2 and 0.3) and MnS as the energy of exciting radiation is tuned across the Mn and S L{sub 3,2} absorption edge, along with the resonant excited spectra from elemental Mn as a reference.

  8. Light-matter Interactions in Semiconductors and Metals: From Nitride Optoelectronics to Quantum Plasmonics

    Science.gov (United States)

    Narang, Prineha

    This thesis puts forth a theory-directed approach coupled with spectroscopy aimed at the discovery and understanding of light-matter interactions in semiconductors and metals. The first part of the thesis presents the discovery and development of Zn-IV nitride materials. The commercial prominence in the optoelectronics industry of tunable semiconductor alloy materials based on nitride semiconductor devices, specifically InGaN, motivates the search for earth-abundant alternatives for use in efficient, high-quality optoelectronic devices. II-IV-N2 compounds, which are closely related to the wurtzite-structured III-N semiconductors, have similar electronic and optical properties to InGaN namely direct band gaps, high quantum efficiencies and large optical absorption coefficients. The choice of different group II and group IV elements provides chemical diversity that can be exploited to tune the structural and electronic properties through the series of alloys. The first theoretical and experimental investigation of the ZnSnxGe1--xN2 series as a replacement for III-nitrides is discussed here. The second half of the thesis shows ab-initio calculations for surface plasmons and plasmonic hot carrier dynamics. Surface plasmons, electromagnetic modes confined to the surface of a conductor-dielectric interface, have sparked renewed interest because of their quantum nature and their broad range of applications. The decay of surface plasmons is usually a detriment in the field of plasmonics, but the possibility to capture the energy normally lost to heat would open new opportunities in photon sensors, energy conversion devices and switching. A theoretical understanding of plasmon-driven hot carrier generation and relaxation dynamics in the ultrafast regime is presented here. Additionally calculations for plasmon-mediated upconversion as well as an energy-dependent transport model for these non-equilibrium carriers are shown. Finally, this thesis gives an outlook on the

  9. Irradiation damage of II-VI compounds in a high-voltage electron microscope

    International Nuclear Information System (INIS)

    Yoshiie, T.; Iwanaga, H.; Shibata, N.; Suzuki, K.; Ichihara, M.; Takeuchi, S.

    1983-01-01

    Dislocation loops produced by electron irradiation in a 1 MV electron microscope have been studied above room temperature for five II-VI compounds: CdS and ZnO, with the wurtzite structure, and CdTe, ZnSe and ZnS, with the zincblende structure. For all the crystals the density of loops decreased as the irradiation temperature increased, until no loops were produced above a certain temperature which varied from crystal to crystal. However, the loop density did not depend on the electron flux intensity, suggesting the heterogeneous nucleation at some impurity complex of equilibrium concentration. Diffraction contrast analyses showed that the loops are of interstitial type in each crystal, with Burgers vectors as follows: 1/2[0001] and 1/3 for wurtzite crystals, the density ratio of the former type to the latter being increased with increasing temperature; mostly 1/3 and a few 1/2 for zincblende crystals, the latter type being presumably formed as a result of unfaulting in the former. An effect of crystal polarity on the shape of the loops in zincblende crystals has been observed. (author)

  10. Mucopolysaccharidosis VI

    Directory of Open Access Journals (Sweden)

    Harmatz Paul

    2010-04-01

    Full Text Available Abstract Mucopolysaccharidosis VI (MPS VI is a lysosomal storage disease with progressive multisystem involvement, associated with a deficiency of arylsulfatase B leading to the accumulation of dermatan sulfate. Birth prevalence is between 1 in 43,261 and 1 in 1,505,160 live births. The disorder shows a wide spectrum of symptoms from slowly to rapidly progressing forms. The characteristic skeletal dysplasia includes short stature, dysostosis multiplex and degenerative joint disease. Rapidly progressing forms may have onset from birth, elevated urinary glycosaminoglycans (generally >100 μg/mg creatinine, severe dysostosis multiplex, short stature, and death before the 2nd or 3rd decades. A more slowly progressing form has been described as having later onset, mildly elevated glycosaminoglycans (generally ARSB gene, located in chromosome 5 (5q13-5q14. Over 130 ARSB mutations have been reported, causing absent or reduced arylsulfatase B (N-acetylgalactosamine 4-sulfatase activity and interrupted dermatan sulfate and chondroitin sulfate degradation. Diagnosis generally requires evidence of clinical phenotype, arylsulfatase B enzyme activity ®, clinical management was limited to supportive care and hematopoietic stem cell transplantation. Galsulfase is now widely available and is a specific therapy providing improved endurance with an acceptable safety profile. Prognosis is variable depending on the age of onset, rate of disease progression, age at initiation of ERT and on the quality of the medical care provided.

  11. Lineage-specific serology confirms Brazilian Atlantic forest lion tamarins, Leontopithecus chrysomelas and Leontopithecus rosalia, as reservoir hosts of Trypanosoma cruzi II (TcII

    Directory of Open Access Journals (Sweden)

    Charlotte L. Kerr

    2016-11-01

    Full Text Available Abstract Background Trypanosoma cruzi, the agent of Chagas disease in humans, has a vast reservoir of mammalian hosts in the Americas, and is classified into six genetic lineages, TcI-TcVI, with a possible seventh, TcBat. Elucidating enzootic cycles of the different lineages is important for understanding the ecology of this parasite, the emergence of new outbreaks of Chagas disease and for guiding control strategies. Direct lineage identification by genotyping is hampered by limitations of parasite isolation and culture. An indirect method is to identify lineage-specific serological reactions in infected individuals; here we describe its application with sylvatic Brazilian primates. Methods Synthetic peptides representing lineage-specific epitopes of the T. cruzi surface protein TSSA were used in ELISA with sera from Atlantic Forest Leontopithecus chrysomelas (golden-headed lion tamarin, L. rosalia (golden lion tamarin, Amazonian Sapajus libidinosus (black-striped capuchin and Alouatta belzebul (red-handed howler monkey. Results The epitope common to lineages TcII, TcV and TcVI was recognised by sera from 15 of 26 L. chrysomelas and 8 of 13 L. rosalia. For 12 of these serologically identified TcII infections, the identity of the lineage infection was confirmed by genotyping T. cruzi isolates. Of the TcII/TcV/TcVI positive sera 12 of the 15 L. chrysomelas and 2 of the 8 L. rosalia also reacted with the specific epitope restricted to TcV and TcVI. Sera from one of six S. libidinous recognised the TcIV/TcIII epitopes. Conclusions This lineage-specific serological surveillance has verified that Atlantic Forest primates are reservoir hosts of at least TcII, and probably TcV and TcVI, commonly associated with severe Chagas disease in the southern cone region of South America. With appropriate reagents, this novel methodology is readily applicable to a wide range of mammal species and reservoir host discovery.

  12. Ultra-broadband and wide-angle perfect absorber based on composite metal-semiconductor grating

    Science.gov (United States)

    Li, Xu; Wang, Zongpeng; Hou, Yumin

    2018-01-01

    In this letter, we present an ultra-broadband and wide-angle perfect absorber based on composite Ge-Ni grating. Near perfect absorption above 90% is achieved in a wide frequency range from 150 nm to 4200 nm, which covers almost the full spectrum of solar radiation. The absorption keeps robust in a wide range of incident angle from 0º to 60º. The upper triangle Ge grating works as an antireflection coating. The lower Ni grating works as a reflector and an effective energy trapper. The guided modes inside Ge grating are excited due to reflection of the lower Ni grating surface. In longer wavelength band, gap surface plasmons (GSPs) in the Ni grating are excited and couple with the guided modes inside the Ge grating. The coupled modes extend the perfect absorption band to the near-infrared region (150 nm-4200 nm). This design has potential application in photovoltaic devices and thermal emitters.

  13. Flow-Solution-Liquid-Solid Growth of Semiconductor Nanowires: A Novel Approach for Controlled Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, Jennifer A. [Los Alamos National Laboratory; Palaniappan, Kumaranand [Los Alamos National Laboratory; Laocharoensuk, Rawiwan [National Science and Technology Center, Thailand; Smith, Nickolaus A. [Los Alamos National Laboratory; Dickerson, Robert M. [Los Alamos National Laboratory; Casson, Joanna L. [Los Alamos National Laboratory; Baldwin, Jon K. [Los Alamos National Laboratory

    2012-06-07

    Semiconductor nanowires (SC-NWs) have potential applications in diverse technologies from nanoelectronics and photonics to energy harvesting and storage due to their quantum-confined opto-electronic properties coupled with their highly anisotropic shape. Here, we explore new approaches to an important solution-based growth method known as solution-liquid-solid (SLS) growth. In SLS, molecular precursors are reacted in the presence of low-melting metal nanoparticles that serve as molten fluxes to catalyze the growth of the SC-NWs. The mechanism of growth is assumed to be similar to that of vapor-liquid-solid (VLS) growth, with the clear distinctions of being conducted in solution in the presence of coordinating ligands and at relatively lower temperatures (<300 C). The resultant SC-NWs are soluble in common organic solvents and solution processable, offering advantages such as simplified processing, scale-up, ultra-small diameters for quantum-confinement effects, and flexible choice of materials from group III-V to groups II-VI, IV-VI, as well as truly ternary I-III-VI semiconductors as we recently demonstrates. Despite these advantages of SLS growth, VLS offers several clear opportunities not allowed by conventional SLS. Namely, VLS allows sequential addition of precursors for facile synthesis of complex axial heterostructures. In addition, growth proceeds relatively slowly compared to SLS, allowing clear assessments of growth kinetics. In order to retain the materials and processing flexibility afforded by SLS, but add the elements of controlled growth afforded by VLS, we transformed SLS into a flow based method by adapting it to synthesis in a microfluidic system. By this new method - so-called 'flow-SLS' (FSLS) - we have now demonstrated unprecedented fabrication of multi-segmented SC-NWs, e.g., 8-segmented CdSe/ZnSe defined by either compositionally abrupt or alloyed interfaces as a function of growth conditions. In addition, we have studied growth

  14. Data requirements, availability and gaps in AEIs in Europe

    DEFF Research Database (Denmark)

    Vinther, Finn Pilgaard; Kudsk, Per Nielsen; Hutchings, Nicholas John

    covering a wide range of agricultural variables that affect the environment. The general objectives of task 1 of the DireDate project are to (i) define and describe the AEIs, with special focus on identification of data requirements, availability and gaps in AEIs and (ii) indentify the relationships...

  15. Wide gap active brazing of ceramic-to-metal-joints for high temperature applications

    Science.gov (United States)

    Bobzin, K.; Zhao, L.; Kopp, N.; Samadian Anavar, S.

    2014-03-01

    Applications like solid oxide fuel cells and sensors increasingly demand the possibility to braze ceramics to metals with a good resistance to high temperatures and oxidative atmospheres. Commonly used silver based active filler metals cannot fulfill these requirements, if application temperatures higher than 600°C occur. Au and Pd based active fillers are too expensive for many fields of use. As one possible solution nickel based active fillers were developed. Due to the high brazing temperatures and the low ductility of nickel based filler metals, the modification of standard nickel based filler metals were necessary to meet the requirements of above mentioned applications. To reduce thermally induced stresses wide brazing gaps and the addition of Al2O3 and WC particles to the filler metal were applied. In this study, the microstructure of the brazed joints and the thermo-chemical reactions between filler metal, active elements and WC particles were analyzed to understand the mechanism of the so called wide gap active brazing process. With regard to the behavior in typical application oxidation and thermal cycle tests were conducted as well as tensile tests.

  16. Metallurgy and purification of semiconductor materials

    International Nuclear Information System (INIS)

    Mughal, G.R.; Ali, M.M.; Ali, I.

    1996-01-01

    In this article the metallurgical aspects of semiconductor science and technology have been stressed here rather than of the physical and electronic aspect of the subject. Semiconductor technology has not merely presented the metallurgist with new challenges. The ease with which the semiconductor planes cleave make possible, the preparation and study of virgin surface. Semiconductor materials were being widely employed in the study of sub-boundaries and structures and can largely contribute to the study of certain aspects of nucleation and growth, precipitation phenomena, mechanical behaviour, in metallurgy. (A.B.)

  17. Adsorption-controlled growth of BiFeO3 by MBE and integration with wide band gap semiconductors.

    Science.gov (United States)

    Ihlefeld, Jon F; Tian, Wei; Liu, Zi-Kui; Doolittle, W Alan; Bernhagen, Margitta; Reiche, Peter; Uecker, Reinhard; Ramesh, Ramamoorthy; Schlom, Darrell G

    2009-08-01

    BiFeO3 thin films have been deposited on (001) SrTiO3, (101) DyScO3, (011) DyScO3, (0001) AlGaN/GaN, and (0001) 6H-SiC single crystal substrates by reactive molecular beam epitaxy in an adsorption-controlled growth regime. This is achieved by supplying a bismuth over-pressure and utilizing the differential vapor pressures between bismuth oxides and BiFeO3 to control stoichiometry in accordance with thermodynamic calculations. Four-circle x-ray diffraction and transmission electron microscopy reveal phase-pure, epitaxial films with rocking curve full width at half maximum values as narrow as 7.2 arc seconds (0.002 degrees). Epitaxial growth of (0001)-oriented BiFeO3 thin films on (0001) GaN, including AlGaN HEMT structures, and (0001) SiC has been realized using intervening epitaxial (111) SrTiO3 / (100) TiO2 buffer layers. The epitaxial BiFeO3 thin films have 2 in-plane orientations: [1120] BiFeO3 || [1120] GaN (SiC) plus a twin variant related by a 180 degrees in-plane rotation. This epitaxial integration of the ferroelectric with the highest known polarization, BiFeO3, with high bandgap semiconductors is an important step toward novel field-effect devices.

  18. Crystal structure of dilead(II oxochromate(VI oxotellurate(IV

    Directory of Open Access Journals (Sweden)

    Matthias Weil

    2017-06-01

    Full Text Available Reaction of chromium(III precursors with TeO2 in PbF2/PbO melts in air led to oxidation of chromium(III to chromium(VI, whereas tellurium remained its oxidation state of IV. In the resulting title compound, Pb2(CrO4(TeO3, the two types of anions are isolated from each other, hence a double salt is formed. The two independent Pb2+ cations exhibit coordination number nine under formation of very distorted coordination polyhedra [bond-length range = 2.363 (6–3.276 (7 Å]. The oxochromate(VI and oxotellurate(IV anions have tetrahedral and trigonal–pyramidal configurations, respectively. In the crystal structure, (001 layers of metal cations alternate with layers of TeO32− and CrO42− anions along [001], forming a three-dimensional framework structure. Pb2(CrO4(TeO3 is isotypic with its sulfate analogue Pb2(SO4(TeO3 and is comparatively discussed.

  19. Widely bandgap tunable amorphous Cd–Ga–O oxide semiconductors exhibiting electron mobilities ≥10 cm{sup 2 }V{sup −1 }s{sup −1}

    Energy Technology Data Exchange (ETDEWEB)

    Yanagi, Hiroshi, E-mail: hyanagi@yamanashi.ac.jp [Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510 (Japan); Sato, Chiyuki; Kimura, Yota [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Yamanashi 400-8510 (Japan); Suzuki, Issei; Omata, Takahisa [Division of Material and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox S2-16, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Hosono, Hideo [Materials and Structures Laboratory, Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Mailbox S2-16, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Frontier Research Center, Tokyo Institute of Technology, Mailbox S2-16, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2015-02-23

    Amorphous oxide semiconductors exhibit large electron mobilities; however, their bandgaps are either too large for solar cells or too small for deep ultraviolet applications depending on the materials system. Herein, we demonstrate that amorphous Cd–Ga–O semiconductors display bandgaps covering the entire 2.5–4.3 eV region while maintaining large electron mobilities ≥10 cm{sup 2 }V{sup −1 }s{sup −1}. The band alignment diagram obtained by ultraviolet photoemission spectroscopy and the bandgap values reveal that these semiconductors form type-II heterojunctions with p-type Cu{sub 2}O, which is suitable for solar cells and solar-blind ultraviolet sensors.

  20. Lattice dynamics of local defects in wide-gap semiconductors; Schwingungsverhalten lokaler Defekte in Breitband-Halbleitern

    Energy Technology Data Exchange (ETDEWEB)

    Kaczmarczyk, G.

    2006-07-01

    The group III-nitrides and zinc oxide are in the focus of material research because of their high application potential. The presentation of the first UV laser diode as well as blue light emitting diodes were the preliminary highlights. Although of all technological progress many physical questions are still open. In this work some of these questions are examined experimentally with Raman-scattering and theoretically with valence-force calculations. Many physical properties such as strain and doping concentration affect the lattice dynamics. As a start the phonons of the center of the Brillouin-zone in GaN, AlN, InN and ZnO are studied with first-order Raman-scattering. These results are the basis for advanced investigations. The acoustical and optical modes at the zone boundary and their combinations and overtones are determinated from the second-order Raman-scattering. Using the valence-force calculations the experimental frequencies are assigned to particular phonon branches or points of the Brillouin zone. The second part of this work treats systematically the physics of local vibrational modes. They occur due to intrinsic defects or impurities in the semiconductors. They are investigated with respect to the vibrational properties of the unperturbed crystals. In order to assign new experimentally found structures, calculations of local vibrational modes in GaN:Mg, GaN:As and ZnO:N systems were carried out. Furthermore, the calculations in Si- and C-doped hexagonal GaN suggest the frequency range for local vibrational modes. In the last section the influence of external parameters such as temperature or strain on the phonon frequency is analyzed. It is shown, that the influence on the temperature dependence of host phonons and local vibrational modes are dominated through different effects. In case of the host phonons it is mainly due to the volume effect whereas the local modes are highly affected by the anharmonic decay. Moreover, the calculations verified

  1. Thermoelectric conversion efficiency in IV-VI semiconductors with reduced thermal conductivity

    Directory of Open Access Journals (Sweden)

    Akihiro Ishida

    2015-10-01

    Full Text Available Mid-temperature thermoelectric conversion efficiencies of the IV-VI materials were calculated under the Boltzmann transport theory of carriers, taking the Seebeck, Peltier, and Thomson effects into account. The conversion efficiency was discussed with respect to the lattice thermal conductivity, keeping other parameters such as Seebeck coefficient and electrical conductivity to the same values. If room temperature lattice thermal conductivity is decreased up to 0.5W/mK, the conversion efficiency of a PbS based material becomes as high as 15% with the temperature difference of 500K between 800K and 300K.

  2. New Class of Wide Energy Gap Benzotriimidazole Optical Materials

    Directory of Open Access Journals (Sweden)

    Jianmin Shi

    2017-10-01

    Full Text Available A new class of wide energy gap benzotriimidazole materials have been synthesized by a two-step condensation reaction. All of the benzotriimidazole compounds have π-π* absorption bands in the range of 250–400 nm. The photoluminescence (PL quantum efficiency of each benzotriimidazole depends strongly on the presence of electron withdrawing groups. PL quantum efficiencies of benzotriimidazoles without electron withdrawing groups were less than desirable (40–43%, while molecules with electron withdrawing groups displayed much stronger PL with efficiencies in the range of 73–75%. The electron withdrawing groups shift the emission to a longer wavelength, towards a more “true blue” color. This new class of benzotriimidazole optical materials could be used as electron-injecting and electron-transporting blue luminescence materials for potential organic light-emitting diode (OLED applications.

  3. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites

    OpenAIRE

    Carolin M. Sutter-Fella Yanbo Li Matin Amani Joel W. Ager III Francesca M. Toma; Eli Yablonovitch Ian D. Sharp and Ali Javey

    2016-01-01

    Hybrid organic–inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low cost solution processability. Here we present a two step low pressure vapor assisted solution process to grow high quality homogeneous CH3NH3PbI3–xBrx perovskite films over the full band gap range of 1.6–2.3 eV. Photoluminescence light in versus light out charac...

  4. Pulsed laser deposition of semiconductor-ITO composite films on electric-field-applied substrates

    International Nuclear Information System (INIS)

    Narazaki, Aiko; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki; Yabe, Akira; Sasaki, Takeshi; Koshizaki, Naoto

    2002-01-01

    The DC electric-field effect on the crystallinity of II-VI semiconductor in composite systems has been investigated for CdS-ITO films fabricated via alternative pulsed laser deposition (PLD) of CdS and indium tin oxide (ITO) on electric-field-applied substrates. The alternative laser ablation was performed under irradiation of ArF excimer laser in mixture gas of helium and oxygen. The application of electric-field facilitated the preferential crystal-growth of CdS in nanometer scale at low pressure, whereas all the films grown without the field were amorphous. There is a large difference in the crystallization between the films grown on field-applied and heated substrates; the latter showed the crystal-growth with random orientations. This difference indicates that the existence of electric-field has an influence on the transformation from amorphous to crystalline phase of CdS. The driving force for the field-induced crystallization is also discussed in the light of the Joule heat

  5. Wide gap, permanent magnet biased magnetic bearing system

    Science.gov (United States)

    Boden, Karl

    1992-01-01

    The unique features and applications of the presented electrical permanent magnetic bearing system essentially result from three facts: (1) the only bearing rotor components are nonlaminated ferromagnetic steel collars or cylinders; (2) all radial and axial forces are transmitted via radial gaps; and (3) large radial bearing gaps can be provided with minimum electric power consumption. The large gaps allow for effective encapsulation and shielding of the rotors at elevated or low temperatures, corrosive or ultra clean atmosphere or vacuum or high pressure environment. Two significant applications are described: (1) a magnetically suspended x ray rotary anode was operated under high vacuum conditions at 100 KV anode potential, 600 C temperature at the rotor collars and speed 18000 rpm with 13 mm radial bearing gap; and (2) an improved Czochralski type crystal growth apparatus using the hot wall method for pulling GaAs single crystals of low dislocation density. Both crystal and crucible are carried and transported by magnetically suspended shafts inside a hermetically sealed housing at 800 C shaft and wall temperature. The radial magnetic bearing gap measures 24 mm.

  6. A Genome-wide multidimensional RNAi screen reveals pathways controlling MHC class II antigen presentation

    NARCIS (Netherlands)

    Paul, Petra; van den Hoorn, Tineke; Jongsma, Marlieke L. M.; Bakker, Mark J.; Hengeveld, Rutger; Janssen, Lennert; Cresswell, Peter; Egan, David A.; van Ham, Marieke; ten Brinke, Anja; Ovaa, Huib; Beijersbergen, Roderick L.; Kuijl, Coenraad; Neefjes, Jacques

    2011-01-01

    MHC class II molecules (MHC-II) present peptides to T helper cells to facilitate immune responses and are strongly linked to autoimmune diseases. To unravel processes controlling MHC-II antigen presentation, we performed a genome-wide flow cytometry-based RNAi screen detecting MHC-II expression and

  7. A critical review of ferrate(VI)-based remediation of soil and groundwater.

    Science.gov (United States)

    Rai, Prabhat Kumar; Lee, Jechan; Kailasa, Suresh Kumar; Kwon, Eilhann E; Tsang, Yiu Fai; Ok, Yong Sik; Kim, Ki-Hyun

    2018-01-01

    Over the past few decades, diverse chemicals and materials such as mono- and bimetallic nanoparticles, metal oxides, and zeolites have been used for soil and groundwater remediation. Ferrate (Fe VI O 4 2- ) has been widely employed due to its high-valent iron (VI) oxo compound with high oxidation/reduction potentials. Ferrate has received attention for wide environmental applications including water purification and sewage sludge treatment. Ferrate provides great potential for diverse environmental applications without any environmental problems. Therefore, this paper provides comprehensive information on the recent progress on the use of (Fe VI O 4 2- ) as a green material for use in sustainable treatment processes, especially for soil and water remediation. We reviewed diverse synthesis recipes for ferrates (Fe VI O 4 2- ) and their associated physicochemical properties as oxidants, coagulants, and disinfectants for the elimination of a diverse range of chemical and biological species from water/wastewater samples. A summary of the eco-sustainable performance of ferrate(VI) in water remediation is also provided and the future of ferrate(VI) is discussed in this review. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Ultrafast THz Saturable Absorption in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate THz saturable absorption in n-doped semiconductors GaAs, GaP, and Ge in a nonlinear THz time-domain spectroscopy experiment. Saturable absorption is caused by sample conductivity modulation due to electron heating and satellite valley scattering in the field of a strong THz pulse....

  9. Semiconductor high-energy radiation scintillation detector

    International Nuclear Information System (INIS)

    Kastalsky, A.; Luryi, S.; Spivak, B.

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability

  10. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  11. Joint density of states of wide-band-gap materials by electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Fan, X.D.; Peng, J.L.; Bursill, L.A.

    1998-01-01

    Kramers-Kronig analysis for parallel electron energy loss spectroscopy (PEELS) data is developed as a software package. When used with a JEOL 4000EX high-resolution transmission electron microscope (HRTEM) operating at 100 keV this allows us to obtain the dielectric function of relatively wide band gap materials with an energy resolution of approx 1.4 eV. The imaginary part of the dielectric function allows the magnitude of the band gap to be determined as well as the joint-density-of-states function. Routines for obtaining three variations of the joint-density of states function, which may be used to predict the optical and dielectric response for angle-resolved or angle-integration scattering geometries are also described. Applications are presented for diamond, aluminum nitride (AlN), quartz (SiO 2 ) and sapphire (Al 2 O 3 ). The results are compared with values of the band gap and density of states results for these materials obtained with other techniques. (authors)

  12. Interactions between graphene oxide and wide band gap semiconductors

    International Nuclear Information System (INIS)

    Kawa, M; Podborska, A; Szaciłowski, K

    2016-01-01

    The graphene oxide (GO) and GO@TiO 2 nanocomposite have been synthesised by using modified Hummers method and ultrasonics respectively. The materials were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy and UV-Vis absorption spectroscopy. It was found that the interaction between GO and TiO 2 affects the average interlayer spacing in carbonaceous material. The formation of bonds between various oxygen-containing functional groups and surface of titanium dioxide was investigated. One of them formed between the quinone structures (occur in graphene oxide) and titanium atoms exhibited 1.5 bond order. Furthermore the charge-transfer processes in GO@TiO 2 composite were observed. (paper)

  13. The Wide Band-Gap Semiconductors: A Brief Survey | Ottaviani ...

    African Journals Online (AJOL)

    ... the fields of power electronics, high-energy radiation detection and optoelectronics. ... Among these properties, a lower intrinsic carrier concentration than in silicon, a higher thermal conductivity, a larger saturated electron drift velocity and a ...

  14. Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy

    DEFF Research Database (Denmark)

    Gilbert, B.; Frandsen, Cathrine; Maxey, E.R.

    2009-01-01

    Chemical and photochemical processes at semiconductor surfaces are highly influenced by the size of the band gap, and ability to control the band gap by particle size in nanomaterials is part of their promise. The combination of soft x-ray absorption and emission spectroscopies provides band......-gap determination in bulk and nanoscale itinerant electron semiconductors such as CdS and ZnO, but this approach has not been established for materials such as iron oxides that possess band-edge electronic structure dominated by electron correlations. We performed soft x-ray spectroscopy at the oxygen K...

  15. The PEP-II/BaBar Project-Wide Database using World Wide Web and Oracle*Case

    International Nuclear Information System (INIS)

    Chan, A.; Crane, G.; MacGregor, I.; Meyer, S.

    1995-12-01

    The PEP-II/BaBar Project Database is a tool for monitoring the technical and documentation aspects of the accelerator and detector construction. It holds the PEP-II/BaBar design specifications, fabrication and installation data in one integrated system. Key pieces of the database include the machine parameter list, components fabrication and calibration data, survey and alignment data, property control, CAD drawings, publications and documentation. This central Oracle database on a UNIX server is built using Oracle*Case tools. Users at the collaborating laboratories mainly access the data using World Wide Web (WWW). The Project Database is being extended to link to legacy databases required for the operations phase

  16. Flow-through Column Experiments and Modeling of Microbially Mediated Cr(VI) Reduction at Hanford 100H

    Science.gov (United States)

    Yang, L.; Molins, S.; Beller, H. R.; Brodie, E. L.; Steefel, C.; Nico, P. S.; Han, R.

    2010-12-01

    Fe(II) and Mn(II) released from the sediment could account for the observed Cr(VI) removal. The biogeochemical modeling was employed to test two hypotheses that could explain the release of Fe(II) and Mn(II) from the column sediments: 1) acetate produced by lactate fermentation provided the substrate for the growth of iron(III) and manganese(IV) oxide reducers, and 2) direct reduction of iron(III) and manganese(IV) oxides by hydrogen sulfide generated during sulfate reduction. Overall, experimental and modeling results suggested that Cr(VI) reduction in the sulfate-reducing columns occurred through a complex network of microbial reactions that included fermentation, sulfate reduction, and possibly the stimulated iron-reducing communities.

  17. Controlling the emission wavelength in group III-V semiconductor laser diodes

    KAUST Repository

    Ooi, Boon S.

    2016-12-29

    Methods are provided for modifying the emission wavelength of a semiconductor quantum well laser diode, e.g. by blue shifting the emission wavelength. The methods can be applied to a variety of semiconductor quantum well laser diodes, e.g. group III-V semiconductor quantum wells. The group III-V semiconductor can include AlSb, AlAs, Aln, AlP, BN, GaSb, GaAs, GaN, GaP, InSb, InAs, InN, and InP, and group III-V ternary semiconductors alloys such as AlxGai.xAs. The methods can results in a blue shifting of about 20 meV to 350 meV, which can be used for example to make group III-V semiconductor quantum well laser diodes with an emission that is orange or yellow. Methods of making semiconductor quantum well laser diodes and semiconductor quantum well laser diodes made therefrom are also provided.

  18. Organic semiconductors in a spin

    CERN Document Server

    Samuel, I

    2002-01-01

    A little palladium can go a long way in polymer-based light-emitting diodes. Inorganic semiconductors such as silicon and gallium arsenide are essential for countless applications in everyday life, ranging from PCs to CD players. However, while they offer unrivalled computational speed, inorganic semiconductors are also rigid and brittle, which means that they are less suited to applications such as displays and flexible electronics. A completely different class of materials - organic semiconductors - are being developed for these applications. Organic semiconductors have many attractive features: they are easy to make, they can emit visible light, and there is tremendous scope for tailoring their properties to specific applications by changing their chemical structure. Research groups and companies around the world have developed a wide range of organic-semiconductor devices, including transistors, light-emitting diodes (LEDs), solar cells and lasers. (U.K.)

  19. Terapia de reposição enzimática para as mucopolissacaridoses I, II e VI: recomendações de um grupo de especialistas brasileiros Enzyme replacement therapy for mucopolysaccharidoses I, II and VI: recommendations from a group of Brazilian F experts

    Directory of Open Access Journals (Sweden)

    Roberto Giugliani

    2010-01-01

    Full Text Available As mucopolissacaridoses (MPS são doenças genéticas raras causadas pela deficiência de enzimas lisossômicas específicas que afetam o catabolismo de glicosaminoglicanos (GAG. O acúmulo de GAG em vários órgãos e tecidos nos pacientes afetados pelas MPS resulta em uma série de sinais e sintomas, integrantes de um quadro clínico multissistêmico que compromete ossos e articulações, vias respiratórias, sistema cardiovascular e muitos outros órgãos e tecidos, incluindo, em alguns casos, as funções cognitivas. Já foram identificados 11 defeitos enzimáticos que causam sete tipos diferentes de MPS. Antes do advento de terapias dirigidas para a restauração da atividade da enzima deficiente, o tratamento das MPS tinha como principal foco a prevenção e o cuidado das complicações, aspecto ainda bastante importante no manejo desses pacientes. Na década de 80 foi proposto o tratamento das MPS com transplante de medula óssea/transplante de células tronco hematopoiéticas (TMO/TCTH e na década de 90 começou o desenvolvimento da Terapia de Reposição Enzimática (TRE, que se tornou uma realidade aprovada para uso clínico nas MPS I, II e VI na primeira década do século 21. Os autores deste trabalho têm a convicção de que um melhor futuro para os pacientes afetados pelas MPS depende da identificação, compreensão e manejo adequado das manifestações multissistêmicas dessas doenças, incluindo medidas de suporte (que devem fazer parte da assistência multidisciplinar regular destes pacientes e terapias específicas. Embora a inibição da síntese de GAG e o resgate da atividade enzimática com moléculas pequenas também possam vir a ter um papel no manejo das MPS, o grande avanço disponível no momento é a TRE intravenosa. A TRE permitiu modificar radicalmente o panorama do tratamento das mucopolissacaridoses I, II e VI na última década, sendo que ainda pode estender seus benefícios em breve para a MPS IV A (cuja TRE

  20. Final Report: Rational Design of Wide Band Gap Buffer Layers for High-Efficiency Thin-Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lordi, Vincenzo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-30

    The main objective of this project is to enable rational design of wide band gap buffer layer materials for CIGS thin-film PV by building understanding of the correlation of atomic-scale defects in the buffer layer and at the buffer/absorber interface with device electrical properties. Optimized wide band gap buffers are needed to reduce efficiency loss from parasitic absorption in the buffer. The approach uses first-principles materials simulations coupled with nanoscale analytical electron microscopy as well as device electrical characterization. Materials and devices are produced by an industrial partner in a manufacturing line to maximize relevance, with the goal of enabling R&D of new buffer layer compositions or deposition processes to push device efficiencies above 21%. Cadmium sulfide (CdS) is the reference material for analysis, as the prototypical high-performing buffer material.

  1. Empirical tight-binding modeling of ordered and disordered semiconductor structures; Empirische Tight-Binding-Modellierung geordneter und ungeordneter Halbleiterstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Mourad, Daniel

    2010-11-30

    In this thesis, we investigate the electronic and optical properties of pure as well as of substitutionally alloyed II-VI and III-V bulk semiconductors and corresponding semiconductor quantum dots by means of an empirical tight-binding (TB) model. In the case of the alloyed systems of the type A{sub x}B{sub 1-x}, where A and B are the pure compound semiconductor materials, we study the influence of the disorder by means of several extensions of the TB model with different levels of sophistication. Our methods range from rather simple mean-field approaches (virtual crystal approximation, VCA) over a dynamical mean-field approach (coherent potential approximation, CPA) up to calculations where substitutional disorder is incorporated on a finite ensemble of microscopically distinct configurations. In the first part of this thesis, we cover the necessary fundamentals in order to properly introduce the TB model of our choice, the effective bond-orbital model (EBOM). In this model, one s- and three p-orbitals per spin direction are localized on the sites of the underlying Bravais lattice. The matrix elements between these orbitals are treated as free parameters in order to reproduce the properties of one conduction and three valence bands per spin direction and can then be used in supercell calculations in order to model mixed bulk materials or pure as well as mixed quantum dots. Part II of this thesis deals with unalloyed systems. Here, we use the EBOM in combination with configuration interaction calculations for the investigation of the electronic and optical properties of truncated pyramidal GaN quantum dots embedded in AlN with an underlying zincblende structure. Furthermore, we develop a parametrization of the EBOM for materials with a wurtzite structure, which allows for a fit of one conduction and three valence bands per spin direction throughout the whole Brillouin zone of the hexagonal system. In Part III, we focus on the influence of alloying on the electronic

  2. Atomistic approach for modeling metal-semiconductor interfaces

    DEFF Research Database (Denmark)

    Stradi, Daniele; Martinez, Umberto; Blom, Anders

    2016-01-01

    realistic metal-semiconductor interfaces and allows for a direct comparison between theory and experiments via the I–V curve. In particular, it will be demonstrated how doping — and bias — modifies the Schottky barrier, and how finite size models (the slab approach) are unable to describe these interfaces......We present a general framework for simulating interfaces using an atomistic approach based on density functional theory and non-equilibrium Green's functions. The method includes all the relevant ingredients, such as doping and an accurate value of the semiconductor band gap, required to model...

  3. Microbial reductive transformation of phyllosilicate Fe(III) and U(VI) in fluvial subsurface sediments.

    Science.gov (United States)

    Lee, Ji-Hoon; Fredrickson, James K; Kukkadapu, Ravi K; Boyanov, Maxim I; Kemner, Kenneth M; Lin, Xueju; Kennedy, David W; Bjornstad, Bruce N; Konopka, Allan E; Moore, Dean A; Resch, Charles T; Phillips, Jerry L

    2012-04-03

    The microbial reduction of Fe(III) and U(VI) was investigated in shallow aquifer sediments collected from subsurface flood deposits near the Hanford Reach of the Columbia River in Washington State. Increases in 0.5 N HCl-extractable Fe(II) were observed in incubated sediments and (57)Fe Mössbauer spectroscopy revealed that Fe(III) associated with phyllosilicates and pyroxene was reduced to Fe(II). Aqueous uranium(VI) concentrations decreased in subsurface sediments incubated in sulfate-containing synthetic groundwater with the rate and extent being greater in sediment amended with organic carbon. X-ray absorption spectroscopy of bioreduced sediments indicated that 67-77% of the U signal was U(VI), probably as an adsorbed species associated with a new or modified reactive mineral phase. Phylotypes within the Deltaproteobacteria were more common in Hanford sediments incubated with U(VI) than without, and in U(VI)-free incubations, members of the Clostridiales were dominant with sulfate-reducing phylotypes more common in the sulfate-amended sediments. These results demonstrate the potential for anaerobic reduction of phyllosilicate Fe(III) and sulfate in Hanford unconfined aquifer sediments and biotransformations involving reduction and adsorption leading to decreased aqueous U concentrations.

  4. TlHgInS 3 : An Indirect-Band-Gap Semiconductor with X-ray Photoconductivity Response

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hao; Malliakas, Christos D.; Han, Fei; Chung, Duck Young; Kanatzidis, Mercouri G.

    2015-08-11

    The quaternary compound TlHgInS3 crystallizes in a new structure type of space group, C2/c, with cell parameters a = 13.916(3) angstrom, b = 3.9132(8) angstrom, c = 21.403(4) angstrom, beta = 104.16(3)degrees, V = 1130.1(8) angstrom(3), and rho = 7.241 g/cm(3). The structure is a unique three-dimensional framework with parallel tunnels, which is formed by (1)(infinity)[InS33-] infinite chains bridged by linearly coordinated Hg2+ ions. TlHgInS3 is a semiconductor with a band gap of 1.74 eV and a resistivity of similar to 4.32 G Omega cm. TlHgInS3 single crystals exhibit photocurrent response when exposed to Ag X-rays. The mobility-lifetime product (mu tau) of the electrons and holes estimated from the photocurrent measurements are (mu tau)(e) approximate to 3.6 x 10(-4) cm(2)/V and (mu tau)(h) approximate to 2.0 x 10(-4) cm(2)/V. Electronic structure calculations at the density functional theory level indicate an indirect band gap and a relatively small effective mass for both electrons and holes. Based on the photoconductivity data, TlHgInS3 is a potential material for radiation detection applications.

  5. Ternary uranium(VI) carbonato humate complex studied by cryo-TRLFS

    International Nuclear Information System (INIS)

    Steudtner, R.; Sachs, S.; Schmeide, K.; Brendler, V.; Bernhard, G.

    2011-01-01

    The complex formation of U(VI) with humic acid (HA) in the presence of carbonate was studied by time-resolved laser-induced fluorescence spectroscopy at low temperature (cryo-TRLFS) at pH 8.5. In the presence of HA, a decrease of the luminescence intensity of U(VI) and no shift of the emission band maxima in comparison to the luminescence spectrum of the UO 2 (CO 3 ) 3 4- complex, the dominating U(VI) species under the applied experimental conditions in the absence of HA, was observed. The formation of a ternary U(VI) carbonato humate complex of the type UO 2 (CO 3 ) 2 HA(II) 4- starting from UO 2 (CO 3 ) 3 4- was concluded from the luminescence data. For this complex a complex stability constant of log K=2.83 ± 0.17 was determined. Slope analysis resulted in a slope of 1.12 ± 0.11, which verifies the postulated complexation reaction. The results agree very well with literature data. Speciation calculations show that the formation of the ternary U(VI) carbonato humate complex can significantly influence the U(VI) speciation under environmental conditions. (orig.)

  6. Porous and Nanoporous Semiconductors and Emerging Applications

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2006-01-01

    Full Text Available Pores in single-crystalline semiconductors can be produced in a wide range of geometries and morphologies, including the “nanometer” regime. Porous semiconductors may have properties completely different from the bulk, and metamaterials with, for example, optical properties not encountered in natural materials are emerging. Possible applications of porous semiconductors include various novel sensors, but also more “exotic” uses as, for example, high explosives or electrodes for micro-fuel cells. The paper briefly reviews pore formation (including more applied aspects of large area etching, properties of porous semiconductors, and emerging applications.

  7. Emission and Absorption Entropy Generation in Semiconductors

    DEFF Research Database (Denmark)

    Reck, Kasper; Varpula, Aapo; Prunnila, Mika

    2013-01-01

    While emission and absorption entropy generation is well known in black bodies, it has not previously been studied in semiconductors, even though semiconductors are widely used for solar light absorption in modern solar cells [1]. We present an analysis of the entropy generation in semiconductor...... materials due to emission and absorption of electromagnetic radiation. It is shown that the emission and absorption entropy generation reduces the fundamental limit on the efficiency of any semiconductor solar cell even further than the Landsberg limit. The results are derived from purely thermodynamical...

  8. Vi-CRM 197 as a new conjugate vaccine against Salmonella Typhi.

    Science.gov (United States)

    Micoli, F; Rondini, S; Pisoni, I; Proietti, D; Berti, F; Costantino, P; Rappuoli, R; Szu, S; Saul, A; Martin, L B

    2011-01-17

    An efficacious, low cost vaccine against typhoid fever, especially for young children, would make a major impact on disease burden in developing countries. The virulence capsular polysaccharide of Salmonella Typhi (Vi) coupled to recombinant mutant Pseudomonas aeruginosa exoprotein A (Vi-rEPA) has been shown to be highly efficacious. We investigated the use of carrier proteins included in infant vaccines, standardized the conjugation process and developed key assays required for routine lot release at production scale. Vi from a BSL1 organism, Citrobacter freundii, strain WR7011, was used as an alternative to Vi from S. Typhi. We showed that Vi conjugated to CRM(197), a non-toxic mutant of diphtheria toxin, widely used in commercial vaccines, was produced at high yield. Vi-CRM(197) proved immunogenic in animal studies, even without adjuvant. Thus, Vi-CRM(197) appears to be a suitable candidate for the development of a commercially viable, effective typhoid vaccine for developing countries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Ballistic superconductivity in semiconductor nanowires

    Science.gov (United States)

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P.A.M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-01-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices. PMID:28681843

  10. Measurement of the band gap by reflection electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vos, Maarten, E-mail: maarten.vos@anu.edu.au [Electronic Materials Engineering Department, Research School of Physics and Engineering, The Australian National University, Canberra 0200 (Australia); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, OR 97124 (United States); French, Benjamin L. [Ocotillo Materials Laboratory, Intel Corporation, Chandler, AZ 85248 (United States)

    2016-10-15

    Highlights: • Semiconductors are measured (without surface preparation) using REELS. • At low beam energies it is difficult to measure band gap due to surface impurities. • At very high energies it is difficult to measure band gap due to recoil effect. • At intermediate energies (around 5 keV) one obtains a good estimate of the band gap. - Abstract: We investigate the possibilities of measuring the band gap of a variety of semiconductors and insulators by reflection electron energy loss spectroscopy without additional surface preparation. The band gap is a bulk property, whereas reflection energy loss spectroscopy is generally considered a surface sensitive technique. By changing the energy of the incoming electrons, the degree of surface sensitivity can be varied. Here, we present case studies to determine the optimum condition for the determination of the band gap. At very large incoming electron energies recoil effects interfere with the band gap determination, whereas at very low energies surface effects are obscuring the band gap without surface preparation. Using an incoming energy of 5 keV a reasonable estimate of the band gap is obtained in most cases.

  11. Measurement of the band gap by reflection electron energy loss spectroscopy

    International Nuclear Information System (INIS)

    Vos, Maarten; King, Sean W.; French, Benjamin L.

    2016-01-01

    Highlights: • Semiconductors are measured (without surface preparation) using REELS. • At low beam energies it is difficult to measure band gap due to surface impurities. • At very high energies it is difficult to measure band gap due to recoil effect. • At intermediate energies (around 5 keV) one obtains a good estimate of the band gap. - Abstract: We investigate the possibilities of measuring the band gap of a variety of semiconductors and insulators by reflection electron energy loss spectroscopy without additional surface preparation. The band gap is a bulk property, whereas reflection energy loss spectroscopy is generally considered a surface sensitive technique. By changing the energy of the incoming electrons, the degree of surface sensitivity can be varied. Here, we present case studies to determine the optimum condition for the determination of the band gap. At very large incoming electron energies recoil effects interfere with the band gap determination, whereas at very low energies surface effects are obscuring the band gap without surface preparation. Using an incoming energy of 5 keV a reasonable estimate of the band gap is obtained in most cases.

  12. Stability diagrams for continuous wide-range control of two mutually delay-coupled semiconductor lasers

    International Nuclear Information System (INIS)

    Junges, Leandro; Gallas, Jason A C

    2015-01-01

    The dynamics of two mutually delay-coupled semiconductor lasers has been frequently studied experimentally, numerically, and analytically either for weak or strong detuning between the lasers. Here, we present a systematic numerical investigation spanning all detuning ranges. We report high-resolution stability diagrams for wide ranges of the main control parameters of the laser, as described by the Lang–Kobayashi model. In particular, we detail the parameter influence on dynamical performance and map the distribution of chaotic pulsations and self-generated periodic spiking with arbitrary periodicity. Special attention is given to the unfolding of regular pulse packages for both symmetric and non-symmetric configurations with respect to detuning. The influence of the delay –time on the self-organization of periodic and chaotic laser phases as a function of the coupling and detuning is also described in detail. (paper)

  13. Wide Bandgap Extrinsic Photoconductive Switches

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, James S. [State Univ. of New York (SUNY), Plattsburgh, NY (United States); Univ. of California, Davis, CA (United States)

    2012-01-20

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.

  14. Ultra-small (r1 year) copper oxide quantum dots with wide band gap

    Science.gov (United States)

    Talluri, Bhusankar; Prasad, Edamana; Thomas, Tiju

    2018-01-01

    Practical use of quantum dots (QDs) will rely on processes that enable (i) monodispersity, (ii) scalability, (iii) green approaches to manufacturing them. We demonstrate, a green, rapid, soft chemical, and industrial viable approach for obtaining quasi-spherical, ultra-small (size ∼2.4 ± 0.5 nm), stable (>1 yr), and monodispersed copper oxide QDs (r gap (Eg∼5.3 eV), this substantial band gap increase is currently inexplicable using Brus' equation, and is likely due to surface chemistry of these strongly confined QDs. Capping with triethanolamine (TEA) results in reduction in the average particle diameter from 9 ± 4 nm to 2.4 ± 0.5 nm and an increase of zeta potential (ξ) from +12 ± 2 mV to +31 ± 2 mV. XPS and electron diffraction studies indicate that capped copper oxide QDs which have TEA chemisorbed on its surface are expected to partly stabilize Cu (I) resulting in mixed phase in these QDs. This result is likely to inform efforts that involve achieving monodisperse microstructures and nano-structures, of oxides with a tendency for multivalency.

  15. Stability and band offsets between c-plane ZnO semiconductor and LaAlO3 gate dielectric

    Science.gov (United States)

    Wang, Jianli; Chen, Xinfeng; Wu, Shuyin; Tang, Gang; Zhang, Junting; Stampfl, C.

    2018-03-01

    Wurtzite-perovskite heterostructures composed of a high dielectric constant oxide and a wide bandgap semiconductor envision promising applications in field-effect transistors. In the present paper, the structural and electronic properties of LaAlO3/ZnO heterojunctions are investigated by first-principles calculations. We study the initial adsorption of La, Al, and oxygen atoms on ZnO (0001) and (000 1 ¯ ) surfaces and find that La atoms may occupy interstitial sites during the growth of stoichiometric ZnO (0001). The band gap of the stoichiometric ZnO (0001) surface is smaller than that of the stoichiometric ZnO (000 1 ¯ ) surface. The surface formation energy indicates that La or Al atoms may substitute Zn atoms at the nonstoichiometric ZnO (0001) surface. The atomic charges, electronic density of states, and band offsets are analyzed for the optimized LaAlO3/ZnO heterojunctions. There is a band gap for the LaAlO3/ZnO (000 1 ¯ ) heterostructures, and the largest variation in charge occurs at the surface or interface. Our results suggest that the Al-terminated LaAlO3/ZnO (000 1 ¯ ) interfaces are suitable for the design of metal oxide semiconductor devices because the valence and conduction band offsets are both larger than 1 eV and the interface does not produce any in-gap states.

  16. Strategies for Closing the ITRS Funding Gap

    Science.gov (United States)

    2008-08-01

    The semiconductor industry needs to find creative ways to close the $1.1 – 1.5B research gap , first noted in 2003, between the funding being...2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Strategies for Closing the ITRS Funding Gap 5a. CONTRACT...Rev. 8-98) Prescribed by ANSI Std Z39-18 STRATEGIES FOR CLOSING THE ITRS FUNDING GAP # Yaw S. Obeng, Stephen Knight, and Joaquin V. Martinez de

  17. Kinetics of chromium (VI) reduction by ferrous iron

    International Nuclear Information System (INIS)

    Batchelor, B.; Schlautman, M.; Hwang, I.; Wang, R.

    1998-09-01

    Chromium is a primary inorganic contaminant of concern at the Pantex Plant. Chromium concentrations have been found to be two orders of magnitude higher than the drinking water standards, particularly in certain wells in the perched aquifer below Zone 12. In situ reduction of a mobile form of chromium, Cr(VI) to an immobile form, Cr(III), was examined as a viable option to active soil restoration. Successfully immobilizing chromium in the vadose zone as Cr(III) will reduce the amount of chromium that reaches the groundwater table. The results from the solution experiments indicated that chromium was rapidly and stoichiometrically reduced by Fe(II) in solution. Also, the slurry experiments showed that the aquifer solids removed Fe(II) from solution, but a portion of the iron removed remained available for reaction with Cr(VI), but at a slower rate. A model to predict different amounts of iron pseudo-components was developed, which allowed prediction of iron amounts required to reduce chromium under in situ conditions

  18. Perovskites A/sub 2/sup(II)Bsub(0. 5)sup(I)Bsub(0. 5)sup(III)Wsup(VI)O/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Roller, H; Kemmler-Sack, S [Tuebingen Univ. (Germany, F.R.). Inst. fuer Chemie

    1978-05-01

    Compounds of type A/sub 2/sup(II)Bsub(0.5)sup(I)Bsub(0.5)sup(III)Wsup(VI)O/sub 6/ can be obtained with Asup(II) = Ba; Bsup(I) = Li, Na and Bsup(III) = La, Nd, Sm, Gd, Y, In, Sc just as with Asup(II) = Sr; Bsup(I) = Li and Bsup(III) = La, Nd, Sm, Gd, Y, In (all cubic ordered perovskites). For the cubic perovskites Sr/sub 2/Nasub(0.5)Lasub(0.5)WO/sub 6/ and Sr/sub 2/Nasub(0.5)Ndsub(0.5)WO/sub 6/ additional superlattice reflections are observed (a approximately equal to 16.4 A). The compounds Sr/sub 2/Nasub(0.5)Bsub(0.5)sup(III)WO/sub 6/ crystallize with Bsup(III) = Sm, Gd in a monoclinic and with Bsup(III) = Y, In in a rhombic distorted perovskite lattice. For the perovskites with A = Sr - dependent on ionic radii of the B ions - two different lattice types are present.

  19. Tantalum-based semiconductors for solar water splitting.

    Science.gov (United States)

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  20. Fluorescent silver nanoclusters for ultrasensitive determination of chromium(VI) in aqueous solution

    International Nuclear Information System (INIS)

    Zhang, Jian Rong; Zeng, Ai Lian; Luo, Hong Qun; Li, Nian Bing

    2016-01-01

    Highlights: • Fluorescent Ag nanoclusters were first applied to Cr(VI) detection. • The proposed method is simple, rapid, and environmentally friendly. • The sensor shows a wide linear range, low detection limit, and good selectivity. • The system can also be used for the indirect assay of total chromium and Cr(III). • The analyses in real water samples are satisfactory. - Abstract: In this work, a simple and sensitive Cr(VI) sensor is proposed based on fluorescent polyethyleneimine-stabilized Ag nanoclusters, which allows the determination over a wide concentration range of 0.1 nM–3.0 μM and with a detection limit as low as 0.04 nΜ and a good selectivity. The quenching mechanism was discussed in terms of the absorption and fluorescence spectra, suggesting that Cr(VI) is connected to Ag nanoclusters by hydrogen bond between the oxygen atom at the vertex of tetrahedron structure of Cr(VI) and the amino nitrogen of polyethyleneimine that surrounded Ag nanoclusters and electron transfer from Ag nanoclusters to highly electron-deficient Cr(VI) results in fluorescence quenching. Despite the failure to quench the fluorescence efficiently, Cr(III) can also be measured using the proposed Ag nanoclusters by being oxidized to Cr(VI) in alkaline solution (pH ∼9) containing H 2 O 2 . Therefore, our approach could be used to detect Cr(VI), Cr(III) and the total chromium level in aqueous solution. In addition, Cr(VI) analysis in real water samples were satisfactory, indicating this method could be practically promising for chromium measurements.

  1. Mucopolysaccharidosis I, II, and VI: Brief review and guidelines for treatment.

    Science.gov (United States)

    Giugliani, Roberto; Federhen, Andressa; Rojas, Maria Verônica Muñoz; Vieira, Taiane; Artigalás, Osvaldo; Pinto, Louise Lapagesse; Azevedo, Ana Cecília; Acosta, Angelina; Bonfim, Carmen; Lourenço, Charles Marques; Kim, Chong Ae; Horovitz, Dafne; Bonfim, Denize; Norato, Denise; Marinho, Diane; Palhares, Durval; Santos, Emerson Santana; Ribeiro, Erlane; Valadares, Eugênia; Guarany, Fábio; de Lucca, Gisele Rosone; Pimentel, Helena; de Souza, Isabel Neves; Correa, Jordão; Fraga, José Carlos; Goes, José Eduardo; Cabral, José Maria; Simionato, José; Llerena, Juan; Jardim, Laura; Giuliani, Liane; da Silva, Luiz Carlos Santana; Santos, Mara L; Moreira, Maria Angela; Kerstenetzky, Marcelo; Ribeiro, Márcia; Ruas, Nicole; Barrios, Patricia; Aranda, Paulo; Honjo, Rachel; Boy, Raquel; Costa, Ronaldo; Souza, Carolina; Alcantara, Flavio F; Avilla, Silvio Gilberto A; Fagondes, Simone; Martins, Ana Maria

    2010-10-01

    Mucopolysaccharidoses (MPS) are rare genetic diseases caused by the deficiency of one of the lysosomal enzymes involved in the glycosaminoglycan (GAG) breakdown pathway. This metabolic block leads to the accumulation of GAG in various organs and tissues of the affected patients, resulting in a multisystemic clinical picture, sometimes including cognitive impairment. Until the beginning of the XXI century, treatment was mainly supportive. Bone marrow transplantation improved the natural course of the disease in some types of MPS, but the morbidity and mortality restricted its use to selected cases. The identification of the genes involved, the new molecular biology tools and the availability of animal models made it possible to develop specific enzyme replacement therapies (ERT) for these diseases. At present, a great number of Brazilian medical centers from all regions of the country have experience with ERT for MPS I, II, and VI, acquired not only through patient treatment but also in clinical trials. Taking the three types of MPS together, over 200 patients have been treated with ERT in our country. This document summarizes the experience of the professionals involved, along with the data available in the international literature, bringing together and harmonizing the information available on the management of these severe and progressive diseases, thus disclosing new prospects for Brazilian patients affected by these conditions.

  2. Mucopolysaccharidosis I, II, and VI: brief review and guidelines for treatment

    Directory of Open Access Journals (Sweden)

    Roberto Giugliani

    2010-01-01

    Full Text Available Mucopolysaccharidoses (MPS are rare genetic diseases caused by the deficiency of one of the lysosomal enzymes involved in the glycosaminoglycan (GAG breakdown pathway. This metabolic block leads to the accumulation of GAG in various organs and tissues of the affected patients, resulting in a multisystemic clinical picture, sometimes including cognitive impairment. Until the beginning of the XXI century, treatment was mainly supportive. Bone marrow transplantation improved the natural course of the disease in some types of MPS, but the morbidity and mortality restricted its use to selected cases. The identification of the genes involved, the new molecular biology tools and the availability of animal models made it possible to develop specific enzyme replacement therapies (ERT for these diseases. At present, a great number of Brazilian medical centers from all regions of the country have experience with ERT for MPS I, II, and VI, acquired not only through patient treatment but also in clinical trials. Taking the three types of MPS together, over 200 patients have been treated with ERT in our country. This document summarizes the experience of the professionals involved, along with the data available in the international literature, bringing together and harmonizing the information available on the management of these severe and progressive diseases, thus disclosing new prospects for Brazilian patients affected by these conditions.

  3. Prevalence of Mucopolysaccharidosis Types I, II, and VI in the Pediatric and Adult Population with Carpal Tunnel Syndrome (CTS). Retrospective and Prospective Analysis of Patients Treated for CTS

    DEFF Research Database (Denmark)

    Nørmark, Mette Borch; Kjaer, Nanna; Lund, Allan Meldgaard

    2017-01-01

    BACKGROUND: We wanted to investigate whether the prevalence of mucopolysaccharidoses (MPS) I, II, and VI was higher than expected in a selected cohort of patients with carpal tunnel syndrome (CTS). CTS is a common finding in patients with MPS, and therefore we screened patients who had undergone ...

  4. Imaging the motion of electrons across semiconductor heterojunctions

    Science.gov (United States)

    Man, Michael K. L.; Margiolakis, Athanasios; Deckoff-Jones, Skylar; Harada, Takaaki; Wong, E. Laine; Krishna, M. Bala Murali; Madéo, Julien; Winchester, Andrew; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M.; Dani, Keshav M.

    2017-01-01

    Technological progress since the late twentieth century has centred on semiconductor devices, such as transistors, diodes and solar cells. At the heart of these devices is the internal motion of electrons through semiconductor materials due to applied electric fields or by the excitation of photocarriers. Imaging the motion of these electrons would provide unprecedented insight into this important phenomenon, but requires high spatial and temporal resolution. Current studies of electron dynamics in semiconductors are generally limited by the spatial resolution of optical probes, or by the temporal resolution of electronic probes. Here, by combining femtosecond pump-probe techniques with spectroscopic photoemission electron microscopy, we imaged the motion of photoexcited electrons from high-energy to low-energy states in a type-II 2D InSe/GaAs heterostructure. At the instant of photoexcitation, energy-resolved photoelectron images revealed a highly non-equilibrium distribution of photocarriers in space and energy. Thereafter, in response to the out-of-equilibrium photocarriers, we observed the spatial redistribution of charges, thus forming internal electric fields, bending the semiconductor bands, and finally impeding further charge transfer. By assembling images taken at different time-delays, we produced a movie lasting a few trillionths of a second of the electron-transfer process in the photoexcited type-II heterostructure—a fundamental phenomenon in semiconductor devices such as solar cells. Quantitative analysis and theoretical modelling of spatial variations in the movie provide insight into future solar cells, 2D materials and other semiconductor devices.

  5. Genome-Wide Analysis of Type VI System Clusters and Effectors in Burkholderia Species

    Directory of Open Access Journals (Sweden)

    Thao Thi Nguyen

    2018-02-01

    Full Text Available Type VI secretion system (T6SS has been discovered in a variety of gram-negative bacteria as a versatile weapon to stimulate the killing of eukaryotic cells or prokaryotic competitors. Type VI secretion effectors (T6SEs are well known as key virulence factors for important pathogenic bacteria. In many Burkholderia species, T6SS has evolved as the most complicated secretion pathway with distinguished types to translocate diverse T6SEs, suggesting their essential roles in this genus. Here we attempted to detect and characterize T6SSs and potential T6SEs in target genomes of plant-associated and environmental Burkholderia species based on computational analyses. In total, 66 potential functional T6SS clusters were found in 30 target Burkholderia bacterial genomes, of which 33% possess three or four clusters. The core proteins in each cluster were specified and phylogenetic trees of three components (i.e., TssC, TssD, TssL were constructed to elucidate the relationship among the identified T6SS clusters. Next, we identified 322 potential T6SEs in the target genomes based on homology searches and explored the important domains conserved in effector candidates. In addition, using the screening approach based on the profile hidden Markov model (pHMM of T6SEs that possess markers for type VI effectors (MIX motif (MIX T6SEs, 57 revealed proteins that were not included in training datasets were recognized as novel MIX T6SE candidates from the Burkholderia species. This approach could be useful to identify potential T6SEs from other bacterial genomes.

  6. Bioreduction of Uranium(VI) Complexed with Citric Acid by Clostridia Affects its Structure and Mobility

    International Nuclear Information System (INIS)

    Francis, A.; Dodge, C.

    2008-01-01

    Uranium contamination of the environment from mining and milling operations, nuclear-waste disposal, and ammunition use is a widespread global problem. Natural attenuation processes such as bacterial reductive precipitation and immobilization of soluble uranium is gaining much attention. However, the presence of naturally occurring organic ligands can affect the precipitation of uranium. Here, we report that the anaerobic spore-forming bacteria Clostridia, ubiquitous in soils, sediments, and wastes, capable of reduction of Fe(III) to Fe(II), Mn(IV) to Mn(II), U(VI) to U(IV), Pu(IV) to Pu(III), and Tc(VI) to Tc(IV); reduced U(VI) associated with citric acid in a dinuclear 2:2 U(VI):citric acid complex to a biligand mononuclear 1:2 U(IV):citric acid complex, which remained in solution, in contrast to reduction and precipitation of uranium. Our findings show that U(VI) complexed with citric acid is readily accessible as an electron acceptor despite the inability of the bacterium to metabolize the complexed organic ligand. Furthermore, it suggests that the presence of organic ligands at uranium-contaminated sites can affect the mobility of the actinide under both oxic and anoxic conditions by forming such soluble complexes.

  7. Designing Selectivity in Metal-Semiconductor Nanocrystals: Synthesis, Characterization, and Self-Assembly

    Science.gov (United States)

    Pavlopoulos, Nicholas George

    This dissertation contains six chapters detailing recent advances that have been made in the synthesis and characterization of metal-semiconductor hybrid nanocrystals (HNCs), and the applications of these materials. Primarily focused on the synthesis of well-defined II-VI semiconductor nanorod (NR) and tetrapod (TP) based constructs of interest for photocatalytic and solar energy applications, the research described herein discusses progress towards the realization of key design rules for the synthesis of functional semiconductor nanocrystals (NCs). As such, a blend of novel synthesis, advanced characterization, and direct application of heterostructured nanoparticles are presented. The first chapter is a review summarizing the design, synthesis, properties, and applications of multicomponent nanomaterials composed of disparate semiconductor and metal domains. By coupling two compositionally distinct materials onto a single nanocrystal, synergistic properties can arise that are not present in the isolated components, ranging from self-assembly to photocatalysis. For semiconductor nanomaterials, this was first realized in the ability to tune nanomaterial dimensions from 0-D quantum dot (QD) structures to cylindrical (NR) and branched (TP) structures by exploitation of advanced colloidal synthesis techniques and understandings of NC facet reactivities. The second chapter is focused on the synthesis and characterization of well-defined CdSe-seeded-CdS (CdSe CdS) NR systems synthesized by overcoating of wurtzite (W) CdSe quantum dots with W-CdS shells. 1-dimensional NRs have been interesting constructs for applications such as solar concentrators, optical gains, and photocatalysis. Through synthetic control over CdSe CdS NR systems, materials with small and large CdSe seeds were prepared, and for each seed size, multiple NR lengths were prepared. Through transient absorption studies, it was found that band alignment did not affect the efficiency of charge localization

  8. A study on selective precipitation of U(VI) by hydrophilic cyclic urea derivatives for development of a reprocessing system based on precipitation method

    International Nuclear Information System (INIS)

    Suzuki, Tomoya; Takao, Koichiro; Kawasaki, Takeshi; Harada, Masayuki; Ikeda, Yasuhisa; Nogami, Masanobu

    2014-01-01

    Selective precipitation ability of 2-imidazolidone (EU) and tetrahydro-2-pyrimidinone (PU) for U(VI) species in HNO 3 solutions containing U(VI), U(IV) (simulant of Pu(IV)), and simulated fission products (FPs) was investigated. As a result, it was found that these compounds precipitate almost quantitatively U(VI) as UO 2 (NO 3 ) 2 L 2 (L = EU, PU) from 3.0 M HNO 3 solution. In contrast, these urea derivatives form neither solid precipitates nor oily products with U(IV) in HNO 3 solutions containing only U(IV) species and even in U(VI)-U(IV) admixture system. Therefore, the separation of U(VI) from U(IV) was demonstrated to be achieved in use of EU and PU. Furthermore, EU and PU are capable to remove most of simulated FPs[Sr(II), Ru(III), Rh(III), Re(VII) La(III), Ce(III), Pr(III), Nd(III), and Sm(III)] from U(VI) to give their decontamination factors (DFs) higher than 100, while those values of Zr(IV), Mo(VI), Pd(II), and Ba(II) are necessary to be improved in both systems. From these results, it is expected that EU and PU are the promising precipitants for selective separation of U(VI) from HNO 3 solutions dissolving spent FBR fuels. (author)

  9. Chemical synthesis of Cd-free wide band gap materials for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sankapal, B.R.; Sartale, S.D.; Ennaoui, A. [Hahn-Meitner-Institut, Berlin (Germany). Department of Solar Energy Research; Lokhande, C.D. [Shivaji University, Kolhapur (India). Department of Physics

    2004-07-01

    Chemical methods are nowadays very attractive, since they are relatively simple, low cost and convenient for larger area deposition of thin films. In this paper, we outline our work related to the synthesis and characterization of some wide band gap semiconducting material thin films prepared by using solution methods, namely, chemical bath deposition and successive ionic layer adsorption and reaction (SILAR). The optimum preparative parameters are given and respective structural, surface morphological, compositional, optical, and electrical properties are described. Some materials we used in solar cells as buffer layers and achieved remarkable results, which are summarized. (author)

  10. Modelling Cr(VI) removal by a combined carbon-activated sludge system

    International Nuclear Information System (INIS)

    Orozco, A. Micaela Ferro; Contreras, Edgardo M.; Zaritzky, Noemi E.

    2008-01-01

    The combined carbon-activated sludge process has been proposed as an alternative to protect the biomass against toxic substances in wastewaters; however, the information about the effect of powdered-activated carbon (PAC) addition in activated sludge reactors for the treatment of wastewaters containing Cr(VI) is limited. The objectives of the present study were: (a) to evaluate the removal of hexavalent chromium by (i) activated sludge microorganisms in aerobic batch reactors, (ii) powdered-activated carbon, and (iii) the combined action of powdered-activated carbon and biomass; (b) to propose mathematical models that interpret the experimental results. Different Cr(VI) removal systems were tested: (S1) biomass (activated sludge), (S2) PAC, and (S3) the combined activated carbon-biomass system. A Monod-based mathematical model was used to describe the kinetics of Cr(VI) removal in the system S1. A first-order kinetics with respect to Cr(VI) and PAC respectively, was proposed to model the removal of Cr(VI) in the system S2. Cr(VI) removal in the combined carbon-biomass system (S3) was faster than both Cr(VI) removal using PAC or activated sludge individually. Results showed that the removal of Cr(VI) using the activated carbon-biomass system (S3) was adequately described by combining the kinetic equations proposed for the systems S1 and S2

  11. Advances in semiconductor lasers

    CERN Document Server

    Coleman, James J; Jagadish, Chennupati

    2012-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scien

  12. Band gaps and photocurrent responses of two novel alkaline earth metal(II) complexes based on 4,5-di(4′-carboxylphenyl)benzene

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jiang Ping; Yan, Zhi Shuo; Long, Ji Ying [Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Gong, Yun, E-mail: gongyun7211@cqu.edu.cn [Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Lin, Jian Hua, E-mail: jhlin@pku.edu.cn [Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2017-01-15

    By using a rigid dicarboxylate ligand, 4,5-di(4′-carboxylphenyl)benzene (H{sub 2}L), two complexes formulated as SrL(DMF)(H{sub 2}O)·(CH{sub 3}CN) (DMF=N,N′-dimethylformamide) (1) and BaL(H{sub 2}O){sub 2} (2) were solvothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complexes 1 and 2 display two-dimensional (2D) layer structures. The two complexes exhibit different electrochemical and photoelectrochemical properties. Their thermal stabilities, cyclic voltammograms, UV–vis absorption and diffuse reflectance spectra and photoluminescence properties have been investigated. The band structures, the total density of states (TDOS) and partial density of states (PDOS) of the two complexes were calculated by CASTEP program. Complex 2 exhibits much higher photocurrent density than complex 1. The Mott–Schottky plots reveal that complexes 1 and 2 both are p-type semiconductors, which are in agreement with their band structure calculations. - Graphical abstract: Two alkaline earth metal(II) complexes with 2D layer structures are p-type semiconductors, they possess different band structures and density of states. And the Ba(II) complex 2 exhibits much higher photocurrent density than the Sr(II) complex 1.

  13. Ternary uranium(VI) carbonato humate complex studied by cryo-TRLFS

    Energy Technology Data Exchange (ETDEWEB)

    Steudtner, R.; Sachs, S.; Schmeide, K.; Brendler, V.; Bernhard, G. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Radiochemistry

    2011-07-01

    The complex formation of U(VI) with humic acid (HA) in the presence of carbonate was studied by time-resolved laser-induced fluorescence spectroscopy at low temperature (cryo-TRLFS) at pH 8.5. In the presence of HA, a decrease of the luminescence intensity of U(VI) and no shift of the emission band maxima in comparison to the luminescence spectrum of the UO{sub 2}(CO{sub 3}){sub 3}{sup 4-} complex, the dominating U(VI) species under the applied experimental conditions in the absence of HA, was observed. The formation of a ternary U(VI) carbonato humate complex of the type UO{sub 2}(CO{sub 3}){sub 2}HA(II){sup 4-} starting from UO{sub 2}(CO{sub 3}){sub 3}{sup 4-} was concluded from the luminescence data. For this complex a complex stability constant of log K=2.83 {+-} 0.17 was determined. Slope analysis resulted in a slope of 1.12 {+-} 0.11, which verifies the postulated complexation reaction. The results agree very well with literature data. Speciation calculations show that the formation of the ternary U(VI) carbonato humate complex can significantly influence the U(VI) speciation under environmental conditions. (orig.)

  14. co-removal with nucleated Cu(II) precipitation in continuous-flow ...

    African Journals Online (AJOL)

    A compact nucleated precipitation technology using two fluidised sand columns in series was developed to pretreat model metal-plating wastewater containing high concentrations of Cu(II) and Cr(VI). Since either Cu(II) precipitation or Cr(VI) co-removal with Cu(II) precipitation was found to be highly pH dependent in batch ...

  15. Proceedings of the specialist research meetings on semiconductors with research reactors

    International Nuclear Information System (INIS)

    Kawakubo, Tetsuya; Kimura, Itsuro

    1987-01-01

    The meeting was proceeded divided five sessions, (I) structure analysis of semiconductors with neutrons, (II) structure analysis with positrons, (III) neutron transmutation doping and radiation damage, (IV) discussion on the way of research on semiconductors in the Institute. (author)

  16. Wide-band gap devices in PV systems - opportunities and challenges

    DEFF Research Database (Denmark)

    Sintamarean, Nicolae Cristian; Eni, Emanuel-Petre; Blaabjerg, Frede

    2014-01-01

    have an important role in the cost reduction. To increase the efficiency of PV systems, most of solutions for PV inverters have moved to three-level (3L) structures reaching typical efficiencies of 98% due to low switching losses of 600V Si IGBT or MOSFET and reduced core losses in the filter......The recent developments in wide band-gap devices based GaN and SiC is showing a high impact on the PV-inverter technology, which is strongly influenced by efficiency, power density and cost. Besides the high efficiency of PV inverters, also the mechanical size, the compactness and simple structure......) three-phase PV-inverter topologies in terms of efficiency, thermal loading distribution and costs. Moreover the above mentioned PV-inverters are built and tested in laboratory in order to validate the obtained results....

  17. Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene

    Science.gov (United States)

    Ang, Yee Sin; Ang, L. K.; Zubair, M.

    Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.

  18. Infrared and millimeter waves v.15 millimeter components and techniques, pt.VI

    CERN Document Server

    Button, Kenneth J

    1986-01-01

    Infrared and Millimeter Waves, Volume 15: Millimeter Components and Techniques, Part VI is concerned with millimeter-wave guided propagation and integrated circuits. This book covers low-noise receiver technology for near-millimeter wavelengths; dielectric image-line antennas; EHF satellite communications (SATCOM) terminal antennas; and semiconductor antennas for millimeter-wave integrated circuits. A scanning airborne radiometer for 30 and 90 GHz and a self-oscillating mixer are also described. This monograph is comprised of six chapters and begins with a discussion on the design of low-n

  19. Quantifying Cr(VI) Production and Export from Serpentine Soil of the California Coast Range.

    Science.gov (United States)

    McClain, Cynthia N; Fendorf, Scott; Webb, Samuel M; Maher, Kate

    2017-01-03

    Hexavalent chromium (Cr(VI)) is generated in serpentine soils and exported to surface and groundwaters at levels above health-based drinking water standards. Although Cr(VI) concentrations are elevated in serpentine soil pore water, few studies have reported field evidence documenting Cr(VI) production rates and fluxes that govern Cr(VI) transport from soil to water sources. We report Cr speciation (i) in four serpentine soil depth profiles derived from the California Coast Range serpentinite belt and (ii) in local surface waters. Within soils, we detected Cr(VI) in the same horizons where Cr(III)-minerals are colocated with biogenic Mn(III/IV)-oxides, suggesting Cr(VI) generation through oxidation by Mn-oxides. Water-extractable Cr(VI) concentrations increase with depth constituting a 7.8 to 12 kg/km 2 reservoir of Cr(VI) in soil. Here, Cr(VI) is produced at a rate of 0.3 to 4.8 kg Cr(VI)/km 2 /yr and subsequently flushed from soil during water infiltration, exporting 0.01 to 3.9 kg Cr(VI)/km 2 /yr at concentrations ranging from 25 to 172 μg/L. Although soil-derived Cr(VI) is leached from soil at concentrations exceeding 10 μg/L, due to reduction and dilution during transport to streams, Cr(VI) levels measured in local surface waters largely remain below California's drinking water limit.

  20. Gate-voltage control of equal-spin Andreev reflection in half-metal/semiconductor/superconductor junctions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiuqiang, E-mail: xianqiangzhe@126.com [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Meng, Hao, E-mail: menghao1982@shu.edu.cn [School of Physics and Telecommunication Engineering, Shanxi University of Technology, Hanzhong 723001 (China)

    2016-04-22

    With the Blonder–Tinkham–Klapwijk (BTK) approach, we investigate conductance spectrum in Ferromagnet/Semiconductor/Superconductor (FM/Sm/SC) double tunnel junctions where strong Rashba spin–orbit interaction (RSOI) is taken into account in semiconductors. For the half-metal limit, we find that the in-gap conductance becomes finite except at zero voltage when inserting a ferromagnetic insulator (FI) at the Sm/SC interface, which means that the appearance of a long-range triplet states in the half-metal. This is because of the emergence of the unconventional equal-spin Andreev reflection (ESAR). When the FI locates at the FM/Sm interface, however, we find the vanishing in-gap conductance due to the absence of the ESAR. Moreover, the non-zero in-gap conductance shows a nonmonotonic dependence on RSOI which can be controlled by applying an external gate voltage. Our results can be used to generate and manipulate the long-range spin triplet correlation in the nascent field of superconducting spintronics. - Highlights: • We study the equal-spin Andreev reflection in half-metal/semiconductor/superconductor (HM/Sm/SC) junctions. • The equal-spin Andreev reflection appearance when inserting a ferromagnetic insulator at the Sm/SC interface. • The finite in-gap conductance is attributed to the emergence of the equal-spin Andreev reflection. • The finite in-gap conductance shows a nonmonotonic dependence on Rashba spin–orbit interaction. • The finite in-gap conductance can be controlled by applying an external gate voltage.