WorldWideScience

Sample records for wide-angle neutron diffraction

  1. Wide Angle Polarization Analysis with Neutron Spin Filters

    Science.gov (United States)

    Ye, Q.; Gentile, T. R.; Anderson, J.; Broholm, C.; Chen, W. C.; DeLand, Z.; Erwin, R. W.; Fu, C. B.; Fuller, J.; Kirchhoff, A.; Rodriguez-Rivera, J. A.; Thampy, V.; Walker, T. G.; Watson, S.

    We report substantial improvements in a compact wide angle neutron spin filter system that was recently employed on the Multi- Axis Crystal Spectrometer at the Center for Neutron Research at the U.S. National Institute of Standards and Technology. The apparatus consists of a cylindrical 3He polarizer cell and wide-angle 3He analyzer cells, a vertical solenoid to provide a uniform magnetic field, and a shielded radio-frequency solenoid for the polarizer cell. Nuclear magnetic resonance is employed to reverse the polarization in the polarizer cell and monitor the 3He polarization in all cells. The first experiment using this apparatus was carried out with cylindrical analyzer cells with limited angular coverage due to low polarizations in fused quartz cells. We present results for aluminosilicate glass analyzer cells that cover 110 ∘ and have long relaxation times (100 h to 400 h). Using two 100 W diode bars spectrally narrowed with chirped volume Bragg gratings, we have obtained 65% - 80% 3He polarization in these cells. The 3He polarization has been measured by neutron transmission and electron paramagnetic resonance. Additional progress includes an improved holding field solenoid and decreased spin-flip losses.

  2. Graphical method for analyzing wide-angle x-ray diffraction

    Science.gov (United States)

    Chen, XiaoHui; Xue, Tao; Liu, DongBing; Yang, QingGuo; Luo, BinQiang; Li, Mu; Li, XiaoYa; Li, Jun

    2018-01-01

    Wide-angle X-ray diffraction on large-scale laser facility is a well-established experimental method, which is used to study the shock response of single crystal materials by recording X-rays diffracted from numerous lattice planes. We present a three-dimensional graphical method for extracting physical understanding from the raw diffraction data in shocked experiments. This method advances beyond the previous iterative process by turning abstract diffraction theories in shock physics into mathematic issues, providing three-dimensional visualization and quick extraction of data characteristics. The capability and versatility of the method are exhibited by identifying lattice planes for single crystal samples with different orientations and quantitatively measuring the lattice compression and rotation under dynamic loading.

  3. Neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Heger, G. [Rheinisch-Westfaelische Technische Hochschule Aachen, Inst. fuer Kristallographie, Aachen (Germany)

    1996-12-31

    X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (author) 15 figs., 1 tab., 10 refs.

  4. Design and experimental tests of a novel neutron spin analyzer for wide angle spin echo spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, Peter; Farago, Bela; Andersen, Ken H.; Bentley, Phillip M.; Pastrello, Gilles; Sutton, Iain; Thaveron, Eric; Thomas, Frederic [Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France); Moskvin, Evgeny [Helmholtzzentrum Berlin, Glienicker Strasse 100, D-14109 Berlin (Germany); Pappas, Catherine [Helmholtzzentrum Berlin, Glienicker Strasse 100, D-14109 Berlin (Germany); Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2009-09-15

    This paper describes the design and experimental tests of a novel neutron spin analyzer optimized for wide angle spin echo spectrometers. The new design is based on nonremanent magnetic supermirrors, which are magnetized by vertical magnetic fields created by NdFeB high field permanent magnets. The solution presented here gives stable performance at moderate costs in contrast to designs invoking remanent supermirrors. In the experimental part of this paper we demonstrate that the new design performs well in terms of polarization, transmission, and that high quality neutron spin echo spectra can be measured.

  5. Ewald: an extended wide-angle Laue diffractometer for the second target station of the Spallation Neutron Source.

    Science.gov (United States)

    Coates, Leighton; Robertson, Lee

    2017-08-01

    Visualizing hydrogen atoms in biological materials is one of the biggest remaining challenges in biophysical analysis. While X-ray techniques have unrivaled capacity for high-throughput structure determination, neutron diffraction is uniquely sensitive to hydrogen atom positions in crystals of biological materials and can provide a more complete picture of the atomic and electronic structures of biological macromolecules. This information can be essential in providing predictive understanding and engineering control of key biological processes, for example, in catalysis, ligand binding and light harvesting, and to guide bioengineering of enzymes and drug design. One very common and large capability gap for all neutron atomic resolution single-crystal diffractometers is the weak flux of available neutron beams, which results in limited signal-to-noise ratios giving a requirement for sample volumes of at least 0.1 mm3. The ability to operate on crystals an order of magnitude smaller (0.01 mm3) will open up new and more complex systems to studies with neutrons which will help in our understanding of enzyme mechanisms and enable us to improve drugs against multi resistant bacteria. With this is mind, an extended wide-angle Laue diffractometer, 'Ewald', has been designed, which can collect data using crystal volumes below 0.01 mm3.

  6. A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817

    Science.gov (United States)

    Mooley, K. P.; Nakar, E.; Hotokezaka, K.; Hallinan, G.; Corsi, A.; Frail, D. A.; Horesh, A.; Murphy, T.; Lenc, E.; Kaplan, D. L.; de, K.; Dobie, D.; Chandra, P.; Deller, A.; Gottlieb, O.; Kasliwal, M. M.; Kulkarni, S. R.; Myers, S. T.; Nissanke, S.; Piran, T.; Lynch, C.; Bhalerao, V.; Bourke, S.; Bannister, K. W.; Singer, L. P.

    2018-02-01

    GW170817 was the first gravitational-wave detection of a binary neutron-star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 megaparsecs. It has been proposed that the observed γ-ray, X-ray and radio emission is due to an ultra-relativistic jet being launched during the merger (and successfully breaking out of the surrounding material), directed away from our line of sight (off-axis). The presence of such a jet is predicted from models that posit neutron-star mergers as the drivers of short hard-γ-ray bursts. Here we report that the radio light curve of GW170817 has no direct signature of the afterglow of an off-axis jet. Although we cannot completely rule out the existence of a jet directed away from the line of sight, the observed γ-ray emission could not have originated from such a jet. Instead, the radio data require the existence of a mildly relativistic wide-angle outflow moving towards us. This outflow could be the high-velocity tail of the neutron-rich material that was ejected dynamically during the merger, or a cocoon of material that breaks out when a jet launched during the merger transfers its energy to the dynamical ejecta. Because the cocoon model explains the radio light curve of GW170817, as well as the γ-ray and X-ray emission (and possibly also the ultraviolet and optical emission), it is the model that is most consistent with the observational data. Cocoons may be a ubiquitous phenomenon produced in neutron-star mergers, giving rise to a hitherto unidentified population of radio, ultraviolet, X-ray and γ-ray transients in the local Universe.

  7. X-ray diffraction study with small- and wide-angle simultaneous measurement of polymorphic crystallization of triacylglycerols

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Satoru [Hiroshima Univ., Faculty of Applied Biological Science, Higashi-Hiroshima, Hiroshima (Japan)

    2002-01-01

    Polymorphism of triacylglycerols (TAGs) is an important phenomenon which influences the physical chemical properties of fats employed in foods, pharmaceuticals, cosmetics etc. In particular, precise analysis of kinetic properties of polymorphic crystallization is closely related to technical control of fat crystallization in confectionery and food industry. In the melt-mediated crystallization, which is one of the typical methods of crystallizing the more stable form for industrial use, the more stable form is induced by rapidly melting the less stable forms. Recently, X-ray diffraction spectroscopy using a synchrotron radiation source has been used in study of dynamic processes of polymorphic transformations of many TAGs. This approach has allowed us to gain a better understanding of the kinetics of processes occurring during the polymorphic crystallization and transformations of TAGs at the molecular level. In the present study, polymorphic crystallization of TAG has been examined with the time-resolved X-ray diffraction method with small- and wide-angle simultaneous measurement using synchrotron radiation. The main result is as follows: the melt mediation gave rise to the formation of a liquid crystalline structure having long spacing values of 5.1 nm and 4.6 nm in SOS (sn-1,3-distearoyl-2-oleoyl glycerol). Consequently, the use of the time-resolved X-ray diffraction method with small- and wide-angle simultaneous measurement using synchrotron radiation unveiled quite newer aspects of the polymorphic crystallization of the triacylglycerols from neat liquid, which were not detectable in conventional XRD techniques. (author)

  8. Carbon Fiber Morphology. 2. Expanded Wide-Angle X-Ray Diffraction Studies of Carbon Fibers

    Science.gov (United States)

    1991-02-01

    X- Ray Diffraction," JPS. Polym. Phys. Ed., 16, 939 (1978). 17. Rosalind E. Franklin , "The Structure of Graphitic Carbons," Acta Cryst., 4, 253 (1951...18. Rosalind E. Franklin , "The Interpretation of Diffuse X-ray Diagrams of Carbon," Acta CrL, 3, 107 (1950). 19. K. Jain and A. S. Abhiraman...been generally mentioned much earlier by Franklin [17,18]. Jain and Abhiraman [19] demonstrated that these corrections can make significant differences

  9. SINGLE CRYSTAL NEUTRON DIFFRACTION.

    Energy Technology Data Exchange (ETDEWEB)

    KOETZLE,T.F.

    2001-03-13

    Single-crystal neutron diffraction measures the elastic Bragg reflection intensities from crystals of a material, the structure of which is the subject of investigation. A single crystal is placed in a beam of neutrons produced at a nuclear reactor or at a proton accelerator-based spallation source. Single-crystal diffraction measurements are commonly made at thermal neutron beam energies, which correspond to neutron wavelengths in the neighborhood of 1 Angstrom. For high-resolution studies requiring shorter wavelengths (ca. 0.3-0.8 Angstroms), a pulsed spallation source or a high-temperature moderator (a ''hot source'') at a reactor may be used. When complex structures with large unit-cell repeats are under investigation, as is the case in structural biology, a cryogenic-temperature moderator (a ''cold source'') may be employed to obtain longer neutron wavelengths (ca. 4-10 Angstroms). A single-crystal neutron diffraction analysis will determine the crystal structure of the material, typically including its unit cell and space group, the positions of the atomic nuclei and their mean-square displacements, and relevant site occupancies. Because the neutron possesses a magnetic moment, the magnetic structure of the material can be determined as well, from the magnetic contribution to the Bragg intensities. This latter aspect falls beyond the scope of the present unit; for information on magnetic scattering of neutrons see Unit 14.3. Instruments for single-crystal diffraction (single-crystal diffractometers or SCDs) are generally available at the major neutron scattering center facilities. Beam time on many of these instruments is available through a proposal mechanism. A listing of neutron SCD instruments and their corresponding facility contacts is included in an appendix accompanying this unit.

  10. Phonons from neutron powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrov, D.A.; Louca, D.; Roeder, H. (Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States))

    1999-09-01

    The spherically averaged structure function S([vert bar][bold q][vert bar]) obtained from pulsed neutron powder diffraction contains both elastic and inelastic scattering via an integral over energy. The Fourier transformation of S([vert bar][bold q][vert bar]) to real space, as is done in the pair density function (PDF) analysis, regularizes the data, i.e., it accentuates the diffuse scattering. We present a technique which enables the extraction of off-center ([vert bar][bold q][vert bar][ne]0) phonon information from powder diffraction experiments by comparing the experimental PDF with theoretical calculations based on standard interatomic potentials and the crystal symmetry. This procedure [dynamics from powder diffraction] has been [ital successfully] implemented as demonstrated here for two systems, a simple metal fcc Ni and an ionic crystal CaF[sub 2]. Although computationally intensive, this data analysis allows for a phonon based modeling of the PDF, and additionally provides off-center phonon information from neutron powder diffraction. [copyright] [ital 1999] [ital The American Physical Society

  11. Neutron diffraction from superparamagnetic colloidal crystals

    Science.gov (United States)

    Ličen, M.; Drevenšek-Olenik, I.; Čoga, L.; Gyergyek, S.; Kralj, S.; Fally, M.; Pruner, C.; Geltenbort, P.; Gasser, U.; Nagy, G.; Klepp, J.

    2017-11-01

    We fabricated a superparamagnetic ordered structure via self-assembly of a colloidal crystal from a suspension of maghemite nanoparticles and polystyrene beads. Such crystals are potential candidates for novel polarizing beam-splitters for cold neutrons, complementing the available methods of neutron polarization. Different bead sizes and nanoparticle concentrations were tested to obtain a crystal of reasonable quality. Neutron diffraction experiments in the presence of an external magnetic field were performed on the most promising sample. We demonstrate that the diffraction efficiency of such crystals can be controlled by the magnetic field. Our measurements also indicate that the Bragg diffraction regime can be reached with colloidal crystals.

  12. Feasibility study neutron diffraction at IRI

    Energy Technology Data Exchange (ETDEWEB)

    Haan, V.O. de

    1995-06-01

    Although neutron diffraction is a basic and relatively simple technique and should be available at a neutron source, it is not possible to perform neutron diffraction measurements at IRI at this moment. Until recently a neutron diffractometer with a relatively small flux at the sample position and a relaxed resolution (designed for liquid diffraction) was operated at IRI. Due to the modest neutron source intensity and the relatively old design (flat monochromator and single detector) this diffractometer was outdated. However, at a contemporary reactor source an instrument to perform neutron diffraction experiments cannot be missed. This study shows that thanks to recent developments in neutron diffraction optics it is possible to increase the flux, to enhance the resolution and to get a better flexibility. If also the number of detectors is increased or a position-sensitive detector is used to performance can be increased at least a thousand fold. A preliminary design is given to indicate how this gain can be realized. (orig.).

  13. Neutron forward diffraction by single crystal prisms

    Indian Academy of Sciences (India)

    Abstract. We have derived analytic expressions for the deflection as well as transmitted fraction of monochromatic neutrons forward diffracted by a single crystal prism. In the vicinity of a Bragg reflection, the neutron deflection deviates sharply from that for an amorphous prism, exhibiting three orders of magnitude greater ...

  14. Quantitative phase analysis by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Song, Su Ho; Lee, Jin Ho; Shim, Hae Seop [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-06-01

    This study is to apply quantitative phase analysis (QPA) by neutron diffraction to the round robin samples provided by the International Union of Crystallography(IUCr). We measured neutron diffraction patterns for mixed samples which have several different weight percentages and their unique characteristic features. Neutron diffraction method has been known to be superior to its complementary methods such as X-ray or Synchrotron, but it is still accepted as highly reliable under limited conditions or samples. Neutron diffraction has strong capability especially on oxides due to its scattering cross-section of the oxygen and it can become a more strong tool for analysis on the industrial materials with this quantitative phase analysis techniques. By doing this study, we hope not only to do one of instrument performance tests on our HRPD but also to improve our ability on the analysis of neutron diffraction data by comparing our QPA results with others from any advanced reactor facilities. 14 refs., 4 figs., 6 tabs. (Author)

  15. Neutron Powder Diffraction and Constrained Refinement

    DEFF Research Database (Denmark)

    Pawley, G. S.; Mackenzie, Gordon A.; Dietrich, O. W.

    1977-01-01

    The first use of a new program, EDINP, is reported. This program allows the constrained refinement of molecules in a crystal structure with neutron diffraction powder data. The structures of p-C6F4Br2 and p-C6F4I2 are determined by packing considerations and then refined with EDINP. Refinement...

  16. Applications of TOF neutron diffraction in archaeometry

    Science.gov (United States)

    Kockelmann, W.; Siano, S.; Bartoli, L.; Visser, D.; Hallebeek, P.; Traum, R.; Linke, R.; Schreiner, M.; Kirfel, A.

    2006-05-01

    Neutron radiation meets the demand for a versatile diagnostic probe for collecting information from the interior of large, undisturbed museum objects or archaeological findings. Neutrons penetrate through coatings and corrosion layers deep into centimetre-thick materials, a property that makes them ideal for non-destructive examination of objects for which sampling is impractical or unacceptable. A particular attraction of neutron techniques for archaeologists and conservation scientists is the prospect of locating hidden materials and structures inside objects. Time-of-flight (TOF) neutron diffraction allows for the examination of mineral and metal phase contents, crystal structures, grain orientations, and microstructures as well as micro- and macro strains. A promising application is texture analysis which may provide clues to the deformation history of the material, and hence to specific working processes. Here we report on instructive examples of TOF neutron diffraction, including phase analyses of medieval Dutch tin-lead spoons, texture analyses of bronze specimens as well as of 16th-century silver coins.

  17. Data processing method for neutron diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Palomino, L.A. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Centro Atomico Bariloche, Instituto Balseiro, Comision Nacional de Energia Atomica, Universidad Nacional de Cuyo, 8400 Bariloche (Argentina); Dawidowski, J. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Centro Atomico Bariloche, Instituto Balseiro, Comision Nacional de Energia Atomica, Universidad Nacional de Cuyo, 8400 Bariloche (Argentina)]. E-mail: javier@cab.cnea.gov.ar; Blostein, J.J. [Consejo Nacional de Investigaciones Cientificas y Tecnicas, Centro Atomico Bariloche, Instituto Balseiro, Comision Nacional de Energia Atomica, Universidad Nacional de Cuyo, 8400 Bariloche (Argentina); Cuello, G.J. [Institut Laue Langevin, Boite Postale 156, F-38042 Grenoble Cedex 9 (France)

    2007-05-15

    We present a procedure to perform multiple scattering, attenuation and efficiency corrections in reactor neutron diffraction experiments, based on a Monte Carlo code applied iteratively. We discuss the application of two procedures, the first based on Granada's synthetic model, useful for incoherent scatterers, and the second, based on the measured experimental distributions for coherent scatterers. Experiments on samples of polyethylene, light water, heavy water and Teflon of different sizes were performed and the correction procedures are tested. The problem of normalization in an absolute scale in diffraction experiments is addressed and results obtained from the present procedure are shown.

  18. DNA hydration studied by neutron fiber diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, W.; Forsyth, V.T.; Mahendrasingam, A.; Langan, P.; Pigram, W.J. [Keele Univ. (United Kingdom)] [and others

    1994-12-31

    The development of neutron high angle fiber diffraction to investigate the location of water around the deoxyribonucleic acid (DNA) double-helix is described. The power of the technique is illustrated by its application to the D and A conformations of DNA using the single crystal diffractometer, D19, at the Institute Laue-Langevin, Grenoble and the time of flight diffractometer, SXD, at the Rutherford Appleton ISIS Spallation Neutron Source. These studies show the existence of bound water closely associated with the DNA. The patterns of hydration in these two DNA conformations are quite distinct and are compared to those observed in X-ray single crystal studies of two-stranded oligodeoxynucleotides. Information on the location of water around the DNA double-helix from the neutron fiber diffraction studies is combined with that on the location of alkali metal cations from complementary X-ray high angle fiber diffraction studies at the Daresbury Laboratory SRS using synchrotron radiation. These analyses emphasize the importance of viewing DNA, water and ions as a single system with specific interactions between the three components and provide a basis for understanding the effect of changes in the concentration of water and ions in inducing conformations] transitions in the DNA double-helix.

  19. Workshop on industrial application of neutron diffraction. Stress measurement by neutron diffraction

    CERN Document Server

    Minakawa, N; Morii, Y; Oyama, Y

    2002-01-01

    This workshop was planned to make use of the neutron from the reactor and the pulse neutron source JSNS for the industrial world. Especially, this workshop focused on the stress measurement by the neutron diffraction and it was held on the Tokai JAERI from October 15 to 16, 2001. The participant total was 93 and 40 participated from the industrial world. The introduction of the residual stress development of measurement technique by the neutron diffraction method and a research of the measurement of the residual stress such as the nuclear reactor material, the ordinary structure material, the composite material, the quenching steel, the high strength material were presented and discussed in this workshop. Moreover, it was introduced for the industrial world that an internal stress measurement is important for development of new product or an improvement of a manufacturing process. The question from the industrial world about which can be measured the product form, the size, the measurement precision, the reso...

  20. Pulsed Neutron Powder Diffraction for Materials Science

    Science.gov (United States)

    Kamiyama, T.

    2008-03-01

    The accelerator-based neutron diffraction began in the end of 60's at Tohoku University which was succeeded by the four spallation neutron facilities with proton accelerators at the High Energy Accelerator Research Organization (Japan), Argonne National Laboratory and Los Alamos Laboratory (USA), and Rutherford Appleton Laboratory (UK). Since then, the next generation source has been pursued for 20 years, and 1MW-class spallation neutron sources will be appeared in about three years at the three parts of the world: Japan, UK and USA. The joint proton accelerator project (J-PARC), a collaborative project between KEK and JAEA, is one of them. The aim of the talk is to describe about J-PARC and the neutron diffractometers being installed at the materials and life science facility of J-PARC. The materials and life science facility of J-PARC has 23 neutron beam ports and will start delivering the first neutron beam of 25 Hz from 2008 May. Until now, more than 20 proposals have been reviewed by the review committee, and accepted proposal groups have started to get fund. Those proposals include five polycrystalline diffractometers: a super high resolution powder diffractometer (SHRPD), a 0.2%-resolution powder diffractometer of Ibaraki prefecture (IPD), an engineering diffractometers (Takumi), a high intensity S(Q) diffractometer (VSD), and a high-pressure dedicated diffractometer. SHRPD, Takumi and IPD are being designed and constructed by the joint team of KEK, JAEA and Ibaraki University, whose member are originally from the KEK powder group. These three instruments are expected to start in 2008. VSD is a super high intensity diffractometer with the highest resolution of Δd/d = 0.3%. VSD can measure rapid time-dependent phenomena of crystalline materials as well as glass, liquid and amorphous materials. The pair distribution function will be routinely obtained by the Fourier transiformation of S(Q) data. Q range of VSD will be as wide as 0.01 Å-1science and

  1. Neutron diffraction studies of thin film multilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Majkrzak, C.F.

    1985-01-01

    The application of neutron diffraction methods to the study of the microscopic chemical and magnetic structures of thin film multilayers is reviewed. Multilayer diffraction phenomena are described in general and in particular for the case in which one of the materials of a bilayer is ferromagnetic and the neutron beam polarized. Recent neutron diffraction measurements performed on some interesting multilayer systems are discussed. 70 refs., 5 figs.

  2. A new bridge technique for neutron tomography and diffraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Burca, G., E-mail: G.Burca@open.ac.uk [Materials Engineering, Open University, Milton Keynes, MK7 6AA (United Kingdom); James, J.A. [Materials Engineering, Open University, Milton Keynes, MK7 6AA (United Kingdom); Kockelmann, W. [ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, OX11 0QX (United Kingdom); Fitzpatrick, M.E. [Materials Engineering, Open University, Milton Keynes, MK7 6AA (United Kingdom); Zhang, S.Y. [ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, OX11 0QX (United Kingdom); Hovind, J. [Paul Scherrer Institute (PSI), CH-5232, Villigen (Switzerland); Langh, R. van [Delft University of Technology, Department of Materials Science, Faculty 3mE, Mekelweg 2, 2628 CD Delft (Netherlands); Rijksmuseum Amsterdam, P.O. Box 74888, 1070 DN Amsterdam (Netherlands)

    2011-09-21

    An attractive feature of neutron techniques is the ability to identify hidden materials and structures inside engineering components and objects of art and archaeology. Bearing this in mind we are investigating a new technique, 'Tomography Driven Diffraction' (TDD), that exploits tomography data to guide diffraction experiments on samples with complex structures and shapes. The technique can be used utilising combinations of individual tomography and diffraction instruments, such as NEUTRA (PSI, CH) and ENGIN-X (ISIS, UK), but is also suitable for new combined imaging and diffraction instruments such as the JEEP synchrotron engineering instrument (DIAMOND, UK) and the proposed IMAT neutron imaging and diffraction instrument (ISIS, UK).

  3. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    Science.gov (United States)

    Ikeda, Yoshimasa; Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki; Kumagai, Masayoshi; Oba, Yojiro; Otake, Yoshie; Suzuki, Hiroshi

    2016-10-01

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  4. Prospect for application of compact accelerator-based neutron source to neutron engineering diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Yoshimasa, E-mail: yoshimasa.ikeda@riken.jp [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Taketani, Atsushi; Takamura, Masato; Sunaga, Hideyuki [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Kumagai, Masayoshi [Faculty of Engineering, Tokyo City University, Setagaya, Tokyo 158-8857 (Japan); Oba, Yojiro [Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494 (Japan); Otake, Yoshie [Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan); Suzuki, Hiroshi [Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2016-10-11

    A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by a large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 min. The minimum resolution of the 110 reflection for RANS is approximately 2.5% at 8 μs of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 μs, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time by decreasing a thickness of the moderator or by applying the decoupler system or application of the angular dispersive neutron diffraction technique are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenitic phase in the dual phase mock specimen was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS has been proved to be capable for neutron engineering diffraction aiming for the easy access

  5. Future directions in high-pressure neutron diffraction

    Science.gov (United States)

    Guthrie, M.

    2015-04-01

    The ability to manipulate structure and properties using pressure has been well known for many centuries. Diffraction provides the unique ability to observe these structural changes in fine detail on lengthscales spanning atomic to nanometre dimensions. Amongst the broad suite of diffraction tools available today, neutrons provide unique capabilities of fundamental importance. However, to date, the growth of neutron diffraction under extremes of pressure has been limited by the weakness of available sources. In recent years, substantial government investments have led to the construction of a new generation of neutron sources while existing facilities have been revitalized by upgrades. The timely convergence of these bright facilities with new pressure-cell technologies suggests that the field of high-pressure (HP) neutron science is on the cusp of substantial growth. Here, the history of HP neutron research is examined with the hope of gleaning an accurate prediction of where some of these revolutionary capabilities will lead in the near future. In particular, a dramatic expansion of current pressure-temperature range is likely, with corresponding increased scope for extreme-conditions science with neutron diffraction. This increase in coverage will be matched with improvements in data quality. Furthermore, we can also expect broad new capabilities beyond diffraction, including in neutron imaging, small angle scattering and inelastic spectroscopy.

  6. Diffraction on disordered materials using 'neutron-like' photons

    DEFF Research Database (Denmark)

    Neuefeind, J.; Poulsen, H.F.

    1995-01-01

    In the past photon diffraction has been carried out mainly using the characteristic radiation from X-ray tubes in the energy range from about 8-20 keV. Comparison of these experiments with neutron diffraction results is difficult since in this energy range the photoelectric absorption is the pred......In the past photon diffraction has been carried out mainly using the characteristic radiation from X-ray tubes in the energy range from about 8-20 keV. Comparison of these experiments with neutron diffraction results is difficult since in this energy range the photoelectric absorption...... is the predominant process. The photoelectric absorption decreases with lambda(3), so increasing the energy to about 100 keV has a drastic effect on the absorption coefficient. Photons in the high energy rang can be obtained conveniently from modern synchrotron sources. High energy photon diffraction has additional...

  7. Maximizing Macromolecule Crystal Size for Neutron Diffraction Experiments

    Science.gov (United States)

    Judge, R. A.; Kephart, R.; Leardi, R.; Myles, D. A.; Snell, E. H.; vanderWoerd, M.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A challenge in neutron diffraction experiments is growing large (greater than 1 cu mm) macromolecule crystals. In taking up this challenge we have used statistical experiment design techniques to quickly identify crystallization conditions under which the largest crystals grow. These techniques provide the maximum information for minimal experimental effort, allowing optimal screening of crystallization variables in a simple experimental matrix, using the minimum amount of sample. Analysis of the results quickly tells the investigator what conditions are the most important for the crystallization. These can then be used to maximize the crystallization results in terms of reducing crystal numbers and providing large crystals of suitable habit. We have used these techniques to grow large crystals of Glucose isomerase. Glucose isomerase is an industrial enzyme used extensively in the food industry for the conversion of glucose to fructose. The aim of this study is the elucidation of the enzymatic mechanism at the molecular level. The accurate determination of hydrogen positions, which is critical for this, is a requirement that neutron diffraction is uniquely suited for. Preliminary neutron diffraction experiments with these crystals conducted at the Institute Laue-Langevin (Grenoble, France) reveal diffraction to beyond 2.5 angstrom. Macromolecular crystal growth is a process involving many parameters, and statistical experimental design is naturally suited to this field. These techniques are sample independent and provide an experimental strategy to maximize crystal volume and habit for neutron diffraction studies.

  8. Internal strain measurement using pulsed neutron diffraction at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Goldstone, J.A.; Bourke, M.A.M.; Shi, N. [Los Alamos National Lab., NM (United States). Manuel Lujan Jr. Neutron Scattering Center

    1994-12-01

    The presence of residual stress in engineering components can effect their mechanical properties and structural integrity. Neutron diffraction in the only technique that can make nondestructive measurements in the interior of components. By recording the change in crystalline lattice spacings, elastic strains can be measured for individual lattice reflections. Using a pulsed neutron source, all lattice reflections are recorded in each measurement, which allows for easy examination of heterogeneous materials such as metal matrix composites. Measurements made at the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) demonstrate the potential at pulsed sources for in-situ stress measurements at ambient and elevated temperatures.

  9. Phase modulation of a neutron wave and diffraction of ultracold neutrons on a moving grating

    Energy Technology Data Exchange (ETDEWEB)

    Frank, A.I.; Balashov, S.N.; Bondarenko, I.V.; Geltenbort, P.; Hoeghoej, P.; Masalovich, S.V.; Nosov, V.G

    2003-05-05

    We report the result of the experiment of UCN diffraction on a moving grating. The resulting spectrum is found to be discrete in good agreement with theory. This purely quantum effect may be interpret as a result of phase modulation of the neutron wave or as diffraction in time. Also, this experiment demonstrates the validity of the Galilean transformation of the neutron wave function in a new and very clear way.

  10. Zinc (tris) thiourea sulphate (ZTS): A single crystal neutron diffraction ...

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... The crystal structure of ZTS has been determined by neutron diffraction with a final -value of 0.026. Using the structural parameters, the contributions from the structural groups to the linear optical susceptibility and linear electro-optic coefficients have been evaluated. Results showed a significant ...

  11. Neutron Diffraction Investigation of MnAs under High Pressure

    DEFF Research Database (Denmark)

    Andresen, A.F; Fjellvag, H; Lebech, Bente

    1984-01-01

    Powdered MnAs has been investigated by neutron diffraction in a pressure cryostat, at hydrostatic pressures up to 13 kbar and temperatures down to 4.2 K. It has been found that in the orthorhombic MnP type structure, which under pressure is retained at low temperature, a spiral magnetic structure...

  12. Zinc (tris) thiourea sulphate (ZTS): A single crystal neutron diffraction ...

    Indian Academy of Sciences (India)

    tal which is used for electro-optical (EO) applications and frequency doubling of near IR laser radiations. In this study, the crystal structure of ZTS has been ob- tained in detail by single crystal neutron diffraction technique. Using the structural parameters and an existing formalism [1] based on the theory of bond polarizability,.

  13. High-speed neutron Laue diffraction comes of age

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Garry J. [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France)]. E-mail: mcintyre@ill.fr; Lemee-Cailleau, Marie-Helene [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Wilkinson, Clive [Institut Laue-Langevin, BP 156, 38042 Grenoble Cedex 9 (France): Department of Chemistry, University of Durham, Durham DH1 3LE (United Kingdom)

    2006-11-15

    The first years of operation of the Laue diffractometer VIVALDI at the ILL are reviewed. Neutron Laue diffraction with image-plate detection on a thermal beam is now a high-performance technique especially well suited to small crystals, rapid chemical crystallography, reciprocal-space surveys and studies of structural and magnetic phase transitions.

  14. A preliminary neutron diffraction study of γ-­chymotrypsin

    Science.gov (United States)

    Novak, Walter R. P.; Moulin, Aaron G.; Blakeley, Matthew P.; Schlichting, Ilme; Petsko, Gregory A.; Ringe, Dagmar

    2009-01-01

    The crystal preparation and preliminary neutron diffraction analysis of γ-­chymotrypsin are presented. Large hydrogenated crystals of γ-chymotrypsin were exchanged into deuterated buffer via vapor diffusion in a capillary and neutron Laue diffraction data were collected from the resulting crystal to 2.0 Å resolution on the LADI-III diffractometer at the Institut Laue–Langevin (ILL) at room temperature. The neutron structure of a well studied protein such as γ-­chymotrypsin, which is also amenable to ultrahigh-resolution X-ray crystallo­graphy, represents the first step in developing a model system for the study of H atoms in protein crystals. PMID:19255494

  15. Neutron Diffraction Studies of Nuclear Magnetic Ordering in Copper

    DEFF Research Database (Denmark)

    Jyrkkiö, T.A.; Huiku, M.T.; Siemensmeyer, K.

    1989-01-01

    to depend strongly on the external magnetic field between zero and the critical fieldB c=0.25 mT, indicating the existence of at least two antiferromagnetic phases. The results are compared to previous measurements of the magnetic susceptibility. Theoretical calculations do not provide a full explanation......We have constructed a two-stage nuclear demagnetization cryostat for neutron diffraction studies of nuclear magnetism in copper. The cryostat is combined with a two-axis neutron spectrometer which can use both polarized and unpolarized neutrons. By demagnetizing highly polarized copper nuclear...... for measurements in the ordered state; both our calculations and the experiments yield 1 nW beam heating. Polarized neutron experiments show that the scattered intensities from the strong fcc reflections are severely reduced by extinction. This makes the sample not very suitable for further studies with polarized...

  16. Wide-angle energy-momentum spectroscopy

    CERN Document Server

    Dodson, Christopher M; Li, Dongfang; Zia, Rashid

    2014-01-01

    Light emission is defined by its distribution in energy, momentum, and polarization. Here, we demonstrate a method that resolves these distributions by means of wide-angle energy-momentum spectroscopy. Specifically, we image the back focal plane of a microscope objective through a Wollaston prism to obtain polarized Fourier-space momentum distributions, and disperse these two-dimensional radiation patterns through an imaging spectrograph without an entrance slit. The resulting measurements represent a convolution of individual radiation patterns at adjacent wavelengths, which can be readily deconvolved using any well-defined basis for light emission. As an illustrative example, we use this technique with the multipole basis to quantify the intrinsic emission rates for electric and magnetic dipole transitions in europium-doped yttrium oxide (Eu$^{3+}$:Y$_{2}$O$_{3}$) and chromium-doped magnesium oxide (Cr$^{3+}$:MgO). Once extracted, these rates allow us to reconstruct the full, polarized, two-dimensional radi...

  17. Oxides neutron and synchrotron X-ray diffraction studies

    CERN Document Server

    Sosnowska, I M

    1999-01-01

    We review some results from several areas of oxide science in which neutron scattering and X-ray synchrotron scattering exercise a complementary role to high-resolution transmission electron microscopy. The very high-resolution time-of-flight neutron diffraction technique and its role in studies of the magnetic structure of oxides is especially reviewed. The selected topics of structural studies for the chosen oxides are: crystal and magnetic structure of the so-called cellular random systems, magnetic structure and phase transitions in ferrites and the behaviour of water in non-stoichiometric protonic conductors and in the opal silica-water system. (40 refs).

  18. 3DXRD microscopy - a comparison with neutron diffraction

    DEFF Research Database (Denmark)

    Poulsen, H.F.

    2002-01-01

    3DXRD microscopy is a novel tool for fast and non-destructive characterisation of the individual grains and sub-grains inside bulk materials (powders or polycrystals). The method is based on diffraction with hard X-rays (E > 50 keV), enabling 3D studies of millimeter to centimeter-thick specimens...... of the technique is presented and the potential for in situ processing studies illustrated. The hard-X-ray method is compared to conventional neutron-diffraction techniques: texture and strain measurements, small-angle scattering, and in situ powder diffraction.......3DXRD microscopy is a novel tool for fast and non-destructive characterisation of the individual grains and sub-grains inside bulk materials (powders or polycrystals). The method is based on diffraction with hard X-rays (E > 50 keV), enabling 3D studies of millimeter to centimeter-thick specimens...

  19. Investigation of Methacrylic Acid at High Pressure Using Neutron Diffraction

    DEFF Research Database (Denmark)

    Marshall, William G.; Urquhart, Andrew; Oswald, Iain D. H.

    2015-01-01

    This article shows that pressure can be a low-intensity route to the synthesis of polymethacrylic acid. The exploration of perdeuterated methacrylic acid at high pressure using neutron diffraction reveals that methacrylic acid exhibits two polymorphic phase transformations at relatively low...... pressures. The first is observed at 0.39 GPa, where both phases were observed simultaneously and confirm our previous observations. This transition is followed by a second transition at 1.2 GPa to a new polymorph that is characterized for the first time. On increasing pressure, the diffraction pattern...

  20. Investigation of Acrylic Acid at High Pressure using Neutron Diffraction

    DEFF Research Database (Denmark)

    Johnston, Blair F.; Marshall, William G.; Parsons, Simon

    2014-01-01

    This article details the exploration of perdeuterated acrylic acid at high pressure using neutron diffraction. The structural changes that occur in acrylic acid-d4 are followed via diffraction and rationalised using the Pixel method. Acrylic acid undergoes a reconstructive phase transition to a new...... phase at ~0.8 GPa and remains molecular to 7.2 GPa before polymerising on decompression to ambient pressure. The resulting product is analysed via Raman, FT-IR spectroscopy and Differential Scanning Calorimetry and found to possess a different molecular structure compared with polymers produced via...

  1. Structure of amorphous selenium studied by neutron diffraction

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Knudsen, Torben Steen; Carneiro, K.

    1975-01-01

    Neutron diffraction measurements on amorphous selenium have been performed at 293 and 80 K. Careful analyses of the instrumental corrections were made to avoid systematic errors in the measured structure factor S (kappa) in the wave vector region 0 ? kappa ? 12 Å−1. As a result of the data...... treatment, the neutron scattering cross sections of selenium are determined to be sigmacoh = 8.4±0.1 b and sigmainc = 0.1±0.1 b. Using the fact that S (kappa) for large kappa's is determined by the short distances in the sample, a new method for extrapolation of the experimental S (kappa) until convergence....... Finally, we give a brief discussion of the different models for the structure of amorphous selenium, taking both diffraction measurements and thermodynamic considerations into account. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....

  2. Magnetization and neutron diffraction studies on FeCrP

    Indian Academy of Sciences (India)

    thorhombic FeZrP type structure (Pnma space group, Z = 4) in which Cr atoms occupy ... Magnetization measurements have been made on a vibrating sample ... Results of profile refinement of neutron diffraction data on FeCrP at 300 K. Space group = Pnma; a = 5.833(1) Å, b = 3.569(1) Å and c = 6.658(1) Å. Atom. Position.

  3. Engineering related neutron diffraction measurements probing strains, texture and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Bjorn [Los Alamos National Laboratory; Brown, Donald W [Los Alamos National Laboratory; Tome, Carlos N [Los Alamos National Laboratory; Balogh, Levente [Los Alamos National Laboratory; Vogel, Sven C [Los Alamos National Laboratory

    2010-01-01

    Neutron diffraction has been used for engineering applications for nearly three decades. The basis of the technique is powder diffraction following Bragg's Law. From the measured diffraction patterns information about internal, or residual, strain can be deduced from the peak positions, texture information can be extracted from the peak intensities, and finally the peak widths can provide information about the microstructure, e.g. dislocation densities and grain sizes. The strains are measured directly from changes in lattice parameters, however, in many cases it is non-trivial to determine macroscopic values of stress or strain from the measured data. The effects of intergranular strains must be considered, and combining the neutron diffraction measurements with polycrystal deformation modeling has proven invaluable in determining the overall stress and strain values of interest in designing and dimensioning engineering components. Furthelmore, the combined use of measurements and modeling has provided a tool for elucidating basic material properties, such as critical resolved shear stresses for the active deformation modes and their evolution as a function of applied deformation.

  4. Stabilized voltage sources for a slow neutron diffraction analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Plyusnin, N.I.; Lobachev, S.A.; Galkin, N.G.

    An unified voltage source (UVS) and filament voltage source (FVS) are described' The sources are used for a slow neutron diffraction analyzer. FVS supplies the filament of a gun cathode and provides beam currents upto 2 mA at electric currents upto 5A and voltages upto 8V. FVS is built by a compensation scheme with continuous control. It possesses a control element with high output power and trigger protection. The range of the EVS protection circuit operation threshold control is 1-5 A, instability of output voltage doesn't exceed 1 mV, the load power consumption doesn't exceed 40 W. UVS is also built according to compensation principle with continuous control and non-regulated power supply of a negative feedback amplifier. The output voltage is controlled within the limits of 5-250 V, maximum load current is 5 mA, instability of output voltage doesn't exceed 50 mV, maximum power consumption is 1.5 W. Simplicity of the UVS circuit is reached by application of the minimum number of active and passive elements, and reliability - by the circuit protection from overloads. Operation of the slow neutron diffraction analyzer, a control unit of which is built on the base of the above voltage sources, proves their reliability and convenience. Diffraction patterns of good quality are obtained.

  5. Crystal structure of human tooth enamel studied by neutron diffraction

    Science.gov (United States)

    Ouladdiaf, Bachir; Rodriguez-Carvajal, Juan; Goutaudier, Christelle; Ouladdiaf, Selma; Grosgogeat, Brigitte; Pradelle, Nelly; Colon, Pierre

    2015-02-01

    Crystal structure of human tooth enamel was investigated using high-resolution neutron powder diffraction. Excellent agreement between observed and refined patterns is obtained, using the hexagonal hydroxyapatite model for the tooth enamel, where a large hydroxyl deficiency ˜70% is found in the 4e site. Rietveld refinements method combined with the difference Fourier maps have revealed, however, that the hydroxyl ions are not only disordered along the c-axis but also within the basal plane. Additional H ions located at the 6h site and forming HPO42- anions were found.

  6. Neutron diffraction characterization of Japanese artworks of Tokugawa age.

    Science.gov (United States)

    Grazzi, F; Bartoli, L; Civita, F; Zoppi, M

    2009-12-01

    Neutron time-of-flight diffraction technique has been used to characterize some Japanese historical artifacts. With this method, metal samples can be analyzed in their bulk properties without need of sampling. Results shown here were obtained at the Italian Neutron Experimental Station (INES@ISIS) located at the pulsed neutron source ISIS (UK). The parallel use of a scanning electron microscope equipped with an energy-dispersive X-ray fluorescence device (SEM-EDX) permitted a full quantitative characterization of the investigated samples, namely four hand-guards (Tsubas) of Japanese swords attributed to the Tokugawa age. In particular, we were able to obtain, in a totally non-invasive non-destructive way, a full quantitative phase characterization of the samples, a detailed Bragg peak broadening analysis, and a quantitative texture determination. These results, complemented with those obtained via the traditional analysis method of SEM-EDX, allowed a full characterization of both the bulk and the surface of the artifacts.

  7. Magnetostructural transition in Fe5SiB2 observed with neutron diffraction

    Czech Academy of Sciences Publication Activity Database

    Cedervall, J.; Kontos, S.; Hansen, T. C.; Balmes, O.; Martinez-Casado, F. J.; Matěj, Z.; Beran, Přemysl; Svedlindh, P.; Gunnarsson, K.; Sahlberg, M.

    2016-01-01

    Roč. 235, MAR (2016), s. 113-118 ISSN 0022-4596 Institutional support: RVO:61389005 Keywords : magnetism * X-ray diffraction * neutron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.299, year: 2016

  8. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, J.P.; Gilchrist, P.J. [Univ. of Edinburgh (United Kingdom); Duff, K.C. [Univ. of Edinburgh Medical School (United Kingdom); Saxena, A.M. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein.

  9. Principles of the measurement of residual stress by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Webster, G.A.; Ezeilo, A.N. [Imperial Coll. of Science and Technology, London (United Kingdom). Dept. of Mechanical Engineering

    1996-11-01

    The presence of residual stresses in engineering components can significantly affect their load carrying capacity and resistance to fracture. In order to quantify their effect it is necessary to know their magnitude and distribution. Neutron diffraction is the most suitable method of obtaining these stresses non-destructively in the interior of components. In this paper the principles of the technique are described. A monochromatic beam of neutrons, or time of flight measurements, can be employed. In each case, components of strain are determined directly from changes in the lattice spacings between crystals. Residual stresses can then be calculated from these strains. The experimental procedures for making the measurements are described and precautions for achieving reliable results discussed. These include choice of crystal planes on which to make measurements, extent of masking needed to identify a suitable sampling volume, type of detector and alignment procedure. Methods of achieving a stress free reference are also considered. A selection of practical examples is included to demonstrate the success of the technique. (author) 14 figs., 1 tab., 18 refs.

  10. Neutrons in studies of phospholipid bilayers and bilayer–drug interaction. I. Basic principles and neutron diffraction

    Directory of Open Access Journals (Sweden)

    Belička M.

    2014-12-01

    Full Text Available In our paper, we demonstrate several possibilities of using neutrons in pharmaceutical research with the help of examples of scientific results achieved at our University. In this first part, basic properties of neutrons and elementary principles of elastic scattering of thermal neutrons are described. Results of contrast variation neutron diffraction on oriented phospholipid bilayers with intercalated local anaesthetic or cholesterol demonstrate the potential of this method at determination of their position in bilayers. Diffraction experiments with alkan-1-ols located in the bilayers revealed their influence on bilayer thickness as a function of their alkyl chain length.

  11. Mapping residual and internal stress in materials by neutron diffraction

    Science.gov (United States)

    Withers, Philip J.

    2007-09-01

    Neutron diffraction provides one of the few means of mapping residual stresses deep within the bulk of materials and components. This article reviews the basic scientific methodology by which internal strains and stresses are inferred from recorded diffraction peaks. Both conventional angular scans and time-of-flight measurements are reviewed and compared. Their complementarity with analogous synchrotron X-ray methods is also highlighted. For measurements to be exploited in structural integrity calculations underpinning the safe operation of engineering components, measurement standards have been defined and the major findings are summarised. Examples are used to highlight the unique capabilities of the method showing how it can provide insights ranging from the basic physics of slip mechanisms in hexagonal polycrystalline materials, through the materials optimisation of stress induced transformations in smart nanomaterials, to the industrial introduction of novel friction welding processes exploiting stress residual measurements transferred from prototype sub-scale tests to the joining of full-scale aeroengine assemblies. To cite this article: P.J. Withers, C. R. Physique 8 (2007).

  12. Three-port beam splitter for slow neutrons using holographic nanoparticle-polymer composite diffraction gratings

    Energy Technology Data Exchange (ETDEWEB)

    Klepp, J.; Fally, M. [Faculty of Physics, University of Vienna, 1090 Wien (Austria); Tomita, Y. [Department of Engineering Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182 (Japan); Pruner, C. [Department of Materials Science and Physics, University of Salzburg, 5020 Salzburg (Austria); Kohlbrecher, J. [Laboratory for Neutron Scattering, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2012-10-08

    Diffraction of slow neutrons by nanoparticle-polymer composite gratings has been observed. By carefully choosing grating parameters such as grating thickness and spacing, a three-port beam splitter operation for slow neutrons - splitting the incident neutron intensity equally into the {+-}1st and the 0th diffraction orders - has been realized. As a possible application, a Zernike three-path interferometer is briefly discussed.

  13. Neutron diffraction study of quasi-one-dimensional spin-chain ...

    Indian Academy of Sciences (India)

    Abstract. We report the results of the DC magnetization, neutron powder diffraction and neutron depolarization studies on the spin-chain compounds Ca3Co2−xFexO6 (x = 0,. 0.1, 0.2 and 0.4). Rietveld refinement of neutron powder diffraction patterns at room temperature confirms the single-phase formation for all the ...

  14. Time-of-flight 3D Neutron Diffraction for Multigrain Crystallography

    DEFF Research Database (Denmark)

    Cereser, Alberto

    This thesis presents a new technique for measuring spatially resolved microstructures in crystalline materials using pulsed neutron beams. The method, called Time-of-Flight Three Dimensional Neutron Diffraction (ToF 3DND), identifies the position, shape and crystallographic orientation of the ind......This thesis presents a new technique for measuring spatially resolved microstructures in crystalline materials using pulsed neutron beams. The method, called Time-of-Flight Three Dimensional Neutron Diffraction (ToF 3DND), identifies the position, shape and crystallographic orientation...

  15. Refractive and diffractive neutron optics with reduced chromatic aberration

    DEFF Research Database (Denmark)

    Poulsen, Stefan Othmar; Poulsen, Henning Friis; Bentley, P.M.

    2014-01-01

    Thermal neutron beams are an indispensable tool in physics research. The spatial and the temporal resolution attainable in experiments are dependent on the flux and collimation of the neutron beam which remain relatively poor, even for modern neutron sources. These difficulties may be mitigated...

  16. Neutron scattering and diffraction instrument for structural study on biology in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Ibaraki-ken (Japan)

    1994-12-31

    Neutron scattering and diffraction instruments in Japan which can be used for structural studies in biology are briefly introduced. Main specifications and general layouts of the instruments are shown.

  17. Study on Destructuring effect of trehalose on water by neutron diffraction

    CERN Document Server

    Branca, C; Migliardo, F; Magazù, V; Soper, A K

    2002-01-01

    In this work results on trehalose/water solutions by neutron diffraction are reported. The study of the partial structure factors and spatial distribution functions gives evidence of a decreasing tetrahedrality degree of water and justifies its cryoprotectant effectiveness. (orig.)

  18. High-resolution neutron diffraction studies of biological and industrial fibres

    Energy Technology Data Exchange (ETDEWEB)

    Langan, P.; Mason, S.A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Fuller, W.; Forsyth, V.T.; Mahendrasingam, A.; Shotton, M.; Simpson, L. [Keele Univ. (United Kingdom); Grimm, H. [FZ, Juelich (Germany); Leberman, R. [EMBL, (Country Unknown)

    1997-04-01

    Neutron diffraction is becoming an important tool for studying fibres due to its complementarity to X-ray diffraction. Unlike X-rays, scattering of neutrons by polymer atoms is not a function of their atomic number. In high-resolution studies (1.5-3 A) on D19 deuteration (replacing H by D) is being used to change the relative scattering power of chosen groups making them easier to locate. Recent studies on DNA and cellulose are described. (author). 6 refs.

  19. Upper wide-angle viewing system for ITER

    NARCIS (Netherlands)

    Lasnier, C.J.; McLean, A.G.; Gattuso, A.; O'Neill, R.; Smiley, M.; Vasquez, J.; Feder, R.; Smith, M.; Stratton, B.; Johnson, D.; Verlaan, A.L.; Heijmans, J.A.C.

    2016-01-01

    The Upper Wide Angle Viewing System (UWAVS) will be installed on five upper ports of ITER. This paper shows major requirements, gives an overview of the preliminary design with reasons for some design choices, examines self-emitted IR light from UWAVS optics and its effect on accuracy, and shows

  20. The Perspective Effect of Wide-Angle Lenses in Laparoscopes

    NARCIS (Netherlands)

    Wentink, M.; Fischer, H.; Dankelman, J.; Stassen, L.P.S.; Wieringa, P.A.

    2002-01-01

    Purpose: To evaluate the effect of perspective distortion of wide-angle lenses in laparoscopes on hand-eye coordination during endoscopic manipulation. Methods: Sixteen subjects repeatedly performed a standardized positioning task in a pelvi-trainer under two conditions. The subjects had no prior

  1. Wide-angle effects in future galaxy surveys

    Science.gov (United States)

    Yoo, Jaiyul; Seljak, Uroš

    2015-02-01

    Current and future galaxy surveys cover a large fraction of the entire sky with a significant redshift range, and the recent theoretical development shows that general relativistic effects are present in galaxy clustering on very large scales. This trend has renewed interest in the wide-angle effect in galaxy clustering measurements, in which the distant-observer approximation is often adopted. Using the full wide-angle formula for computing the redshift-space correlation function, we show that compared to the sample variance, the deviation in the redshift-space correlation function from the simple Kaiser formula with the distant-observer approximation is negligible in galaxy surveys such as the Sloan Digital Sky Survey, Euclid and the BigBOSS, if the theoretical prediction from the Kaiser formula is properly averaged over the survey volume. We also find corrections to the wide-angle formula and clarify the confusion in literature between the wide-angle effect and the velocity contribution in galaxy clustering. However, when the FKP method is applied, substantial deviations can be present in the power spectrum analysis in future surveys, due to the non-uniform distribution of galaxy pairs.

  2. Scientific Advancements and Technological Developments of High P-T Neutron Diffraction at LANSCE, Los Alamos

    Science.gov (United States)

    Zhao, Y.; Daemen, L. L.; Zhang, J.

    2003-12-01

    In-situ high P-T neutron diffraction experiments provide unique opportunities to study the crystal structure, hydrogen bonding, magnetism, and thermal parameters of light elements (eg. H, Li, B) and heavy elements (eg. Ta, U, Pu,), that are virtually impossible to determine with x-ray diffraction techniques. For example, thermoelasticity and Debye-Waller factor as function of pressure and temperature can be derived using in-situ high P-T neutron diffraction techniques. These applications can also be extended to a much broader spectrum of scientific problems. For instance, puzzles in Earth science such as the carbon cycle and the role of hydrous minerals for water exchange between lithosphere and biosphere can be directly addressed. Moreover, by introducing in-situ shear, texture of metals and minerals accompanied with phase transitions at high P-T conditions can also be studied by high P-T neutron diffraction. We have successfully conducted high P-T neutron diffraction experiments at LANSCE and achieved simultaneous high pressures and temperatures of 10 GPa and 1500 K. With an average 3-6 hours of data collection, the diffraction data are of sufficiently high quality for the determination of structural parameters and thermal vibrations. We have studied hydrous mineral (MgOD), perovskite (K.15,Na.85)MgF3, clathrate hydrates (CH4-, CO2-, and H2-), metals (Mo, Al, Zr), and amorphous materials (carbon black, BMG). The aim of our research is to accurately map bond lengths, bond angles, neighboring atomic environments, and phase stability in P-T-X space. Studies based on high-pressure neutron diffraction are important for multi-disciplinary science and we welcome researchers from all fields to use this advanced technique. We have developed a 500-ton toroidal press, TAP-98, to conduct simultaneous high P-T neutron diffraction experiments inside of HIPPO (High-Pressure and Preferred-Orientation diffractometer). We have also developed a large gem-crystal anvil cell, ZAP-01

  3. Longe-Range Order in beta-Brass Studied by Neutron Diffraction

    DEFF Research Database (Denmark)

    Rathmann, Ole; Als-Nielsen, Jens Aage

    1974-01-01

    The long-range order, M(T), in β-brass has been measured by neutron diffraction from a small extinction-free crystal. The results agree with those obtained recently by x-ray diffraction. Near Tc our data are in accordance with a power law M(T)=D(1-T/Tc)β with the critical exponent β=0...

  4. Wide-angle display developments by computer graphics

    Science.gov (United States)

    Fetter, William A.

    1989-01-01

    Computer graphics can now expand its new subset, wide-angle projection, to be as significant a generic capability as computer graphics itself. Some prior work in computer graphics is presented which leads to an attractive further subset of wide-angle projection, called hemispheric projection, to be a major communication media. Hemispheric film systems have long been present and such computer graphics systems are in use in simulators. This is the leading edge of capabilities which should ultimately be as ubiquitous as CRTs (cathode-ray tubes). These assertions are not from degrees in science or only from a degree in graphic design, but in a history of computer graphics innovations, laying groundwork by demonstration. The author believes that it is timely to look at several development strategies, since hemispheric projection is now at a point comparable to the early stages of computer graphics, requiring similar patterns of development again.

  5. Work hardening mechanism in high nitrogen austenitic steel studied by in situ neutron diffraction and in situ electron backscattering diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, M., E-mail: 07nd602g@hcs.ibaraki.ac.jp [Graduate School of Science and Engineering, Ibaraki University, Nakanarusawa, 316-8511 Hitachi, Ibaraki (Japan); Adachi, Y. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Tomota, Y. [Graduate School of Science and Engineering, Ibaraki University, Nakanarusawa, 316-8511 Hitachi, Ibaraki (Japan); Ikeda, K. [Sumitomo Metal Industries, Ltd., Hikari, Kashima, Ibaraki 314-0014 (Japan); Kamiyama, T. [Institute of Material Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Katada, Y. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2009-12-15

    With a focus on microstructural hierarchy, work hardening behaviour in high nitrogen-bearing austenitic steel (HNS) was investigated mainly by a combined technique of in situ neutron diffraction and in situ electron backscattering diffraction (EBSD). Stress partitioning due to difference in deformability among grains is enhanced in HNS. The larger stress partitioning among [h k l]-oriented family grains seems to realize high work hardening at a small strain. At a larger strain, dislocation density is higher in HNS than in low nitrogen austenitic steel (LNS), which is a possible reason for high work hardening after straining proceeds, resulting in large uniform elongation.

  6. Wide-angle fundus imaging through the Boston keratoprosthesis.

    Science.gov (United States)

    Sayegh, Rony R; Dohlman, Claes H

    2013-06-01

    To explore the feasibility and compare the outcomes of three wide-angle fundus cameras for imaging the peripheral retina through the Type 1 Boston keratoprosthesis. The noncontact Optos and the contact RetCam and Panoret wide-angle imaging systems were used to image the retina of eyes implanted with a keratoprosthesis. The failure-to-image rate, ease of acquisition, and quality of the images were noted, and the field of view was compared. Limitations and complications were recorded. Optos was then performed on patients referred for ultrasound B-scan evaluation, and the imaging findings were correlated. Retinal images with all three cameras were obtained on four eyes. Optos could be performed on all four eyes, RetCam on three, and Panoret on two. The field of view was comparable between the three different cameras. The best quality images were obtained with Optos. The external illumination of the Panoret made it impossible to image the only darkly pigmented individual in the series. Both contact devices failed to image another patient who was too agitated. Two patients had some ocular irritation from the coupling agent that resolved with replacement of the contact lens. Optos images were obtained on an additional six eyes, and findings correlated well with those on B-scan. Optos was superior to B-scan in an eye with silicone oil filling. Wide-angle fundus imaging through the keratoprosthesis is possible, and all three cameras performed similarly. The good quality of pictures obtained with the noncontact Optos, as well as its ease of use, comfort, and safety make it a preferred choice. Optos complements B-scan in the examination of the peripheral retina through the keratoprosthesis, and it may even be superior in certain settings.

  7. The use of pulsed neutron diffraction to measure strain in composites

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, M.A.M.; Goldstone, J.A.; Shi, N.; Gray, G.T. III [Los Alamos National Lab., NM (United States); James, M.R. [Rockwell Intl., Thousand Oaks, CA (United States). Science Center; Todd, R.I. [Oxford Univ. (United Kingdom)

    1994-03-01

    Neutron diffraction is a technique for measuring strain in crystalline materials. It is non destructive, phase discriminatory and more penetrating than X rays. Pulsed neutron sources (in contrast with steady state reactor sources) are particularly appropriate for examining heterogeneous materials or for recording the polycrystalline response of all lattice reflections. Several different aspects of composite behavior can be characterized and examples are given of residual strain measurements, strain relaxation during heating, applied loading, and determination of the strain distribution function.

  8. In situ neutron diffraction study of the nickel oxihydroxide electrode upon discharge

    Energy Technology Data Exchange (ETDEWEB)

    Barde, F.; Palacin, M.R.; Chabre, Y.; Isnard, O.; Tarascon, J.-M

    2004-07-15

    The redox discharge process of the nickel oxihydroxide electrode (NOE) were followed by in situ neutron diffraction with the aim of getting a deeper insight into the phases and mechanisms involved, paying special attention to the second plateau. A set of deuterated samples was prepared to be used as a reference for the interpretation of the in situ patterns. Neutron diffraction experiments indicate that redox process is the same over both the first and second plateaus and corresponds to a phase transformation over the main part of the oxidation/reduction range and hence indicates that this phenomenon should not be associated to a structural transformation.

  9. Region of Interest Selection Interface for Wide-Angle Arthroscope

    Directory of Open Access Journals (Sweden)

    Jung Kyunghwa

    2015-01-01

    Full Text Available We have proposed a new interface for an wide-angle endoscope for solo surgery. The wide-angle arthroscopic view and magnified region of interest (ROI within the wide view were shown simultaneously. With a camera affixed to surgical instruments, the position of the ROI could be determined by manipulating the surgical instrument. Image features acquired by the A-KAZE approach were used to estimate the change of position of the surgical instrument by tracking the features every time the camera moved. We examined the accuracy of ROI selection using three different images, which were different-sized square arrays and tested phantom experiments. When the number of ROIs was twelve, the success rate was best, and the rate diminished as the size of ROIs decreased. The experimental results showed that the method of using a camera without additional sensors satisfied the appropriate accuracy required for ROI selection, and this interface was helpful in performing surgery with fewer assistants.

  10. Real Structure and Resudal Stresses in Advanced Welds Determined by X-ray and Neutron Diffraction

    Czech Academy of Sciences Publication Activity Database

    Trojan, K.; Hervoches, Charles; Ganev, N.; Mikula, Pavol; Čapek, J.

    2017-01-01

    Roč. 9, SEP (2017), s. 32-38 E-ISSN 2336-5382 R&D Projects: GA MŠk LM2015056; GA ČR GB14-36566G Institutional support: RVO:61389005 Keywords : laser and MAG welding * residual stresses * X-ray diffraction * neutron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism https://ojs.cvut.cz/ojs/index.php/APP/article/view/4401/4298

  11. Broadband and wide-angle negative reflection at a phononic crystal boundary

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Degang; Zhu, Xuefeng, E-mail: ernestzhu.nju@gmail.com; Yi, Lin [Department of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Ye, Yangtao; Xu, Shengjun [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2014-01-27

    We have theoretically and experimentally demonstrated the anomalous negative reflection at the boundary of a well-designed two-dimensional phononic crystal. This exotic phenomenon is attributed to the selective enhancement of −1st order diffraction mode with the zero-order diffraction mode being dramatically suppressed. After material and structural optimization, the negative reflection can be maintained in a broadband of frequencies and for a wide incident angle range. Our system can be employed to design Littrow configuration to realize perfect broadband and wide-angle blazing. The study gives a possibility to achieve greater flexibility and stronger effects in manipulating reflected acoustic waves, which has potential applications in underwater communication, medical ultrasonics, etc.

  12. Neutron Powder Diffraction Analysis and Constrained Refinement of Per-Fluorodiphenyl

    DEFF Research Database (Denmark)

    Mackenzie, Gordon A.; Pawley, G. S.; Dietrich, O. W.

    1975-01-01

    It is shown that with the small amount of data available in the neutron powder diffraction method, it is possible, by means of reasonable constraints, to refine a molecular structure involving a large number of atoms. The method has been used to refine the crystal structure of perfluorodiphenyl...

  13. Localization of ferrocene in NaY zeolite by powder x-ray and neutron diffraction

    NARCIS (Netherlands)

    Kemner, E.; Overweg, A.R.; Van Eijck, L.; Fitch, A.N.; Suard, E.; De Schepper, I.M.; Kearley, G.J.

    2002-01-01

    We study the inclusion of the metallocene ferrocene Fe(C5H5)2 molecules in the supercages of NaY zeolite. To find the exact location of the ferrocene molecules within the supercages we perform neutron and powder x-ray diffraction on bare NaY zeolite, and on NaY zeolite loaded with one or two

  14. Neutron diffraction study of the magnetic structure of HoCu2

    DEFF Research Database (Denmark)

    Smetana, Z.; Sima, V.; Lebech, Bente

    1986-01-01

    Neutron diffraction measurements show that in the temperature range from 7.4 to TN=10.4 K the magnetic structure of HoCu2 is a commensurably modulated a-axis collinear structure with a wave vector q1=1/3a*. Below 7.4 K an additional structure component develops and the low temperature magnetic...

  15. Neutron diffraction investigation of liquid alkali metal-gallium alloys. Giant cluster formation?

    NARCIS (Netherlands)

    Alvarez, M; Lomba, E; Verkerk, P; van der Aart, SA; Bionducci, M; Mirebeau, [No Value; van der Lugt, W

    Neutron diffraction experiments were performed on the liquid alloys NaGa, NaGa3, KGa3 and CsGa3. The structure factors of KGa3 and CsGa3 display prepeaks at small wavenumbers (0.64 and 0.61 (A) over circle -1, respectively). This may indicate the existence of extremely large aggregates of atoms in

  16. Neutron diffraction studies of the magnetic structures of TbRu2Si2

    DEFF Research Database (Denmark)

    Kawano, S.; Lebech, B.; Shigeoka, T.

    2000-01-01

    We have confirmed by neutron diffraction that the high-temperature phase of TbRu2Si2 exhibits a magnetic one-dimensional modulation with Q=(3/13 0 0), while for the intermediate phase the modulation becomes two-dimensional with many satellites. At low-temperature the magnetic structure changes...

  17. Neutron diffraction studies of Ho1-xYxNi2B2C compounds

    DEFF Research Database (Denmark)

    Chang, L.J.; Tomy, C.V.; Paul, D.M.K.

    1996-01-01

    Neutron diffraction measurements have been carried out to investigate the nature of magnetic ordering in Ho(1-x)Y(x)Ni(2)B(2)C (x = 0, 0.1 and 0.2) compounds. HoNi(2)B(2)C shows a complex type of magnetic ordering below the superconducting transition, with a commensurate antiferromagnetic ordering...

  18. Neutron Diffraction Studies of Dilute Cr-Re Single Crystal Alloys

    DEFF Research Database (Denmark)

    Lebech, Bente; Mikke, K.

    1972-01-01

    Neutron diffraction studies have been performed on five Cr-Re single crystal alloys with a Re content from 0 to 0·8 at. %. It was found that the wave vector of the sinusoidally modulated spin arrangement increases uniformly with temperature and concentration until a critical value of about 0·97. (2...

  19. Neutron diffraction from the vortex lattice in the heavy-fermion superconductor UPt3

    DEFF Research Database (Denmark)

    Kleiman, R.N.; Broholm, C.; Aeppli, G.

    1992-01-01

    We have used neutron diffraction to observe the vortex lattice of UPt3. This is the first such measurement in a heavy-fermion system, a superconductor below 1 K, or in a system with such a long magnetic penetration depth (6000 +/- 75 angstrom). It also provides the first value for the pair...

  20. A single crystal neutron diffraction study on mixed crystal (K)0.25 ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... https://doi.org/10.1007/s12034-017-1514-x. A single crystal neutron diffraction study on mixed crystal. (K)0.25(NH4)0.75H2PO4: tuning of short strong hydrogen bonds by ionic interactions. RAJUL RANJAN CHOUDHURY. ∗ and R CHITRA. Solid State Physics Division, Bhabha Atomic Research Center, ...

  1. Recrystallization kinetics in copper investigated by in situ texture measurements by neutron diffraction

    DEFF Research Database (Denmark)

    Leffers, Torben; Hansen, Niels; Kjems, Jørgen

    1981-01-01

    The potential of neutron-diffraction texture measurement as a tool for accurate investigations of recrystallization kinetics is demonstrated by the application of the method to the recrystallization of heavily rolled copper (99.98% purity). The present investigation demonstrates that this technique...

  2. Experimental evaluation of a polycrystal deformation modeling scheme using neutron diffraction measurements

    DEFF Research Database (Denmark)

    Clausen, Bjørn; Lorentzen, Torben

    1997-01-01

    The uniaxial behavior of aluminum polycrystals is simulated using a rate-independent incremental self-consistent elastic-plastic polycrystal deformation model, and the results are evaluated by neutron diffraction measurements. The elastic strains deduced from the model show good agreement with th...

  3. Optimization of spring exchange coupled ferrites, studied by in situ neutron diffraction

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Christensen, Mogens; Granados-Miralles, Cecilia

    ) is reduced to a metallic alloy CoFe (soft magnet) by heating the sample and flowing it with hydrogen gas. It is studied in situ using neutron powder diffraction with a time resolution of 12 min. The transition from spinel to pure metal goes through an intermediate step of a metal oxide before being fully...... reduced. These metal oxides are antiferromagnetically ordered an is therefore considered a parasitic phase. However by fine-tuning the reaction temperature and hydrogen flow rate the occurrence of the phase can be minimized. In order to distinguish between Co and Fe Neutrons are chosen. Since neutrons...... have a spin it will also be possible to measure a magnetic signal and investigate the exchange-coupling. After the reduction the samples was furthermore investigated using powder x-ray diffraction and VSM (vibrating sample magnetometer). To understand the reaction mechanism, a series of experiments...

  4. Neutron diffraction and gravimetric study of the iron nitriding reaction under ammonia decomposition conditions.

    Science.gov (United States)

    Wood, Thomas J; Makepeace, Joshua W; David, William I F

    2017-10-18

    Ammonia decomposition over iron catalysts is known to be affected by whether the iron exists in elemental form or as a nitride. In situ neutron diffraction studies with simultaneous gravimetric analysis were performed on the nitriding and denitriding reactions of iron under ammonia decomposition conditions. The gravimetric analysis agrees well with the Rietveld analysis of the neutron diffraction data, both of which confirm that the form of the iron catalyst is strongly dependent on ammonia decomposition conditions. Use of ammonia with natural isotopic abundance as the nitriding agent means that the incoherent neutron scattering of any hydrogen within the gases present is able to be correlated to how much ammonia had decomposed. This novel analysis reveals that the nitriding of the iron occurred at exactly the same temperature as ammonia decomposition started. The iron nitriding and denitriding reactions are shown to be related to steps that take place during ammonia decomposition and the optimum conditions for ammonia decomposition over iron catalysts are discussed.

  5. A wide-angle camera module for disposable endoscopy

    Science.gov (United States)

    Shim, Dongha; Yeon, Jesun; Yi, Jason; Park, Jongwon; Park, Soo Nam; Lee, Nanhee

    2016-08-01

    A wide-angle miniaturized camera module for disposable endoscope is demonstrated in this paper. A lens module with 150° angle of view (AOV) is designed and manufactured. All plastic injection-molded lenses and a commercial CMOS image sensor are employed to reduce the manufacturing cost. The image sensor and LED illumination unit are assembled with a lens module. The camera module does not include a camera processor to further reduce its size and cost. The size of the camera module is 5.5 × 5.5 × 22.3 mm3. The diagonal field of view (FOV) of the camera module is measured to be 110°. A prototype of a disposable endoscope is implemented to perform a pre-clinical animal testing. The esophagus of an adult beagle dog is observed. These results demonstrate the feasibility of a cost-effective and high-performance camera module for disposable endoscopy.

  6. Two wide-angle imaging neutral-atom spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    McComas, D.J.

    1997-12-31

    The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a new capability for stereoscopically imaging the magnetosphere. By imaging the charge exchange neutral atoms over a broad energy range (1 < E , {approximately} 100 keV) using two identical instruments on two widely-spaced high-altitude, high-inclination spacecraft, TWINS will enable the 3-dimensional visualization and the resolution of large scale structures and dynamics within the magnetosphere for the first time. These observations will provide a leap ahead in the understanding of the global aspects of the terrestrial magnetosphere and directly address a number of critical issues in the ``Sun-Earth Connections`` science theme of the NASA Office of Space Science.

  7. Wide angle view of MOCR activity during STS-3 mission

    Science.gov (United States)

    1982-01-01

    Wide angle view of Mission Operation Control Room (MOCR) activity during Day 2 of STS-3 mission. This view shows many of th consoles, tracking map, and Eidophor-controlled data screens. Flight controllers in the foreground are (l.r.) R. John Rector and Chares L. Dumie. They are seated at the EECOM console. The 'thermodillo' contraption, used by flight controllers to indicate the Shuttle's position in relation to the sun for various tests, can be seen at right (28732); closeup view of the 'thermodillo'. The position of the armadillo's tail indicates position of the orbiter in relation to sun (28733); Mission Specialist/Astronaut Sally K. Ride, STS-3 orbit team spacecraft communicator (CAPCOM), talks to flight director during mission control center activity. Mission Specialist/Astronaut George D. Nelson, backup orbit team CAPCOM, watches the monitor at his console (28734).

  8. In-Situ Neutron Diffraction Study of the Deformation Mechanisms in Solutionized Mg-Zn Alloys

    Science.gov (United States)

    Mulay, R. P.; Agnew, S. R.; Caceres, C. H.

    In-situ neutron diffraction experiments were carried out on solutionized and randomly textured Mg-Zn alloy castings with similar grain sizes but variation in Zn content from 1.7 to 6.6 wt %. The evolution in internal elastic strains and diffraction peak intensities with increasing load were analyzed. The macroscopic stress strain curve shows an increase in yield strength with an increase in zinc content. Neutron diffraction results indicate that the strength of basal slip, tension twinning and slip/compression twinning modes increases with increase in zinc content. However, the strength of prismatic slip appears to be unaffected by zinc content at lower concentrations and increases with zinc content only at higher concentrations. These results are discussed in light of prior work on the Mg-Zn system.

  9. High-resolution neutron powder-diffraction in CMR manganates

    Energy Technology Data Exchange (ETDEWEB)

    Suard, E.; Radaelli, P.G. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Manganese-oxide materials have recently been the subject of renewed attention, due to the `colossal` magnetoresistance (CMR) displayed near the spin-ordering temperature T{sub c} by some of these compounds. CMR has been evidenced in at least three families of manganese oxides. In most cases, the CMR compounds behave as paramagnetic semiconductors at high temperatures, and as ferromagnetic metals below T{sub c}. The study of this metallization process has lead some theorists to challenge its traditional interpretation in terms of the so-called double-exchange mechanism, and to propose alternative scenarios in which the coupling of the charge carriers with the lattice plays a paramount role. Powder diffraction method, being at the forefront of CMR research is presented. (author). 4 refs.

  10. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, N. A., E-mail: namauro@noctrl.edu [Department of Physics, North Central College, Naperville, Illinois 60540 (United States); Vogt, A. J. [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Derendorf, K. S. [Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri 63130 (United States); Johnson, M. L.; Kelton, K. F. [Department of Physics and Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130 (United States); Rustan, G. E.; Quirinale, D. G.; Goldman, A. I. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Kreyssig, A. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Division of Materials Sciences and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Lokshin, K. A. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Neuefeind, J. C.; An, Ke [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Wang, Xun-Li [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Ave., Kowloon (Hong Kong); Egami, T. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Department of Physics and Astronomy, Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2016-01-15

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr{sub 64}Ni{sub 36} measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg)

  11. Final Technical Report: Application of in situ Neutron Diffraction to Understand the Mechanism of Phase Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Chandran, Ravi

    2018-02-09

    In this research, phase transitions in the bulk electrodes for Li-ion batteries were investigated using neutron diffraction (ND) as well as neutron imaging techniques. The objectives of this research is to design of a novel in situ electrochemical cell to obtain Rietveld refinable neutron diffraction experiments using small volume electrodes of various laboratory/research-scale electrodes intended for Li-ion batteries. This cell is also to be used to investigate the complexity of phase transitions in Li(Mg) alloy electrodes, either by diffraction or by neutron imaging, which occur under electrochemical lithiation and delithiation, and to determine aspects of phase transition that enable/limit energy storage capacity. Additional objective is to investigate the phase transitions in electrodes made of etched micro-columns of silicon and investigate the effect of particle/column size on phase transitions and nonequilibrium structures. An in situ electrochemical cell was designed successfully and was used to study the phase transitions under in-situ neutron diffraction in both the electrodes (anode/cathode) simultaneously in graphite/LiCoO2 and in graphite/LiMn2O4 cells each with two cells. The diffraction patterns fully validated the working of the in situ cell. Additional experimental were performed using the Si micro-columnar electrodes. The results revealed new lithiation phenomena, as evidenced by mosaicity formation in silicon electrode. These experiments were performed in Vulcan diffractometer at SNS, Oak Ridge National Laboratory. In parallel, the spatial distribution of Li during lithiation and delithiation processes in Li-battery electrodes were investigated. For this purpose, neutron tomographic imaging technique has been used for 3D mapping of Li distribution in bulk Li(Mg) alloy electrodes. It was possible to observe the phase boundary of Li(Mg) alloy indicating phase transition from Li-rich BCC β-phase to Li-lean

  12. Wide-Angle-Scanning Reflectarray Antennas Actuated by MEMS

    Science.gov (United States)

    Fang, Houfei; Huang, John; Thomson, Mark W.

    2009-01-01

    An effort to develop large-aperture, wide-angle-scanning reflectarray antennas for microwave radar and communication systems is underway. In an antenna of this type as envisioned, scanning of the radiated or incident microwave beam would be effected through mechanical rotation of the passive (reflective) patch antenna elements, using microelectromechanical systems (MEMS) stepping rotary actuators typified by piezoelectric micromotors. It is anticipated that the cost, mass, and complexity of such an antenna would be less than, and the reliability greater than, those of an electronically scanned phased-array antenna of comparable beam-scanning capability and angular resolution. In the design and operation of a reflectarray, one seeks to position and orient an array of passive patch elements in a geometric pattern such that, through constructive interference of the reflections from them, they collectively act as an efficient single reflector of radio waves within a desired frequency band. Typically, the patches lie in a common plane and radiation is incident upon them from a feed horn.

  13. Wide Angle Compton Scattering within the SCET factorization Framework

    Directory of Open Access Journals (Sweden)

    Kivel Nikolay

    2016-01-01

    Full Text Available Existing data for the electromagnetic proton form factors and for the cross section of the wide angle Compton scattering (WACS show that the hard two-gluon exchange mechanism (collinear factorization is still not applicable in the kinematical region where Mandelstam variables s ~ −t ~ −u are about few GeV2. On the other hand these observables can be described in phenomenological models where spectator quarks are soft which assumes a large contribution due to the soft-overlap mechanism. It turns out that the simple QCD factorization picture is not complete and must also include the soft-overlap contribution which can be described as a certain matrix element in the soft collinear effective theory (SCET. Then the leading power contribution to WACS amplitude is described as a sum of the hard- and soft-spectator contributions. The existing experimental data allows one to check certain conclusions based on the assumption about dominant role of the soft-spectator mechanism.

  14. Neutron diffraction study of LnBaCuFeO5+#delta#, (Ln=Y,Pr)

    DEFF Research Database (Denmark)

    Ruiz-Aragón, M.J.; Amador, U.; Morán, E.

    1994-01-01

    Neutron diffraction studies of the title materials have been performed at 600K, R.T. and 8K. Copper and iron ions are randomly distributed in two equivalent MO2 planes being the symmetry P4/mmm for all the samples and temperatures. Some extra oxygen has been found in PrBaCuFeO5+δ destroying the AF...... ordering, present at R. T. in YBaCuFeO5. Besides this, at low temperature a magnetic phase transition has been found. On the other hand, both materials show a complex micro-structure as determined by electron diffraction....

  15. Neutron diffraction measurements and modeling of residual strains in metal matrix composites

    Science.gov (United States)

    Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.

    1996-01-01

    Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.

  16. Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures

    DEFF Research Database (Denmark)

    Cereser, Alberto; Strobl, Markus; Hall, Stephen A.

    2017-01-01

    -of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure...... constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND...... enables studies of samples that can be both larger in size and made of heavier elements. Moreover, ToF 3DND facilitates the use of complicated sample environments. The basic ToF 3DND setup, utilizing an imaging detector with high spatial and temporal resolution, can easily be implemented at a time...

  17. In Situ Studies of Intercritically Austempered Ductile Iron Using Neutron Diffraction

    Science.gov (United States)

    Druschitz, Alan P.; Aristizabal, Ricardo E.; Druschitz, Edward; Hubbard, C. R.; Watkins, Thomas R.; Walker, L.; Ostrander, Mel

    2012-05-01

    Intercritically austempered ductile irons hold promise for applications requiring fatigue durability, excellent castability, low production energy requirements, reduced greenhouse gas emissions, and excellent machinability. In the present study, four different ductile iron alloys, containing manganese and nickel as the primary austenite-stabilizing elements, were heat treated to obtain different quantities of austenite in the final microstructure. This article reports the microstructures and phases present in these alloys. Furthermore, lattice strains and diffraction elastic constants in various crystallographic directions and the transformation characteristics of the austenite were determined as a function of applied stress using in situ loading during neutron diffraction at the second generation Neutron Residual Stress Facility at the High Flux Isotope Reactor at Oak Ridge National Laboratory.

  18. Neutron Diffraction from the Second Layer of 4He on Graphite

    DEFF Research Database (Denmark)

    da Costa Carneiro, Kim; Passell, L.; Thomlinson, W.

    1981-01-01

    Neutron diffraction has been used to study the second atomic layer of **4He adsorbed on graphite. As the **4He-coverage exceeds the first layer, the second initially forms a fluid phase. But when there is enough **4He in the third layer to compress the second, this layer solidifies. The structure...... of the second layer as well as the distances between layers are discussed.......Neutron diffraction has been used to study the second atomic layer of **4He adsorbed on graphite. As the **4He-coverage exceeds the first layer, the second initially forms a fluid phase. But when there is enough **4He in the third layer to compress the second, this layer solidifies. The structure...

  19. Time-of-Flight Three Dimensional Neutron Diffraction in Transmission Mode for Mapping Crystal Grain Structures

    DEFF Research Database (Denmark)

    Cereser, Alberto; Strobl, Markus; Hall, Stephen A.

    2017-01-01

    constituting the material. This article presents a new non-destructive 3D technique to study centimeter-sized bulk samples with a spatial resolution of hundred micrometers: time-of-flight three-dimensional neutron diffraction (ToF 3DND). Compared to existing analogous X-ray diffraction techniques, ToF 3DND...... enables studies of samples that can be both larger in size and made of heavier elements. Moreover, ToF 3DND facilitates the use of complicated sample environments. The basic ToF 3DND setup, utilizing an imaging detector with high spatial and temporal resolution, can easily be implemented at a time......-of-flight neutron beamline. The technique was developed and tested with data collected at the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Complex (J-PARC) for an iron sample. We successfully reconstructed the shape of 108 grains and developed an indexing procedure...

  20. Neutron diffraction on CeMnAlD{sub x} (0{<=}x{<=}2.5)

    Energy Technology Data Exchange (ETDEWEB)

    Spatz, P.; Gross, K.; Schlapbach, L. [Fribourg Univ. (Switzerland); Fischer, P.; Fauth, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    CeMnAl was found to absorb considerable amounts of hydrogen. Part of the totally stored hydrogen is absorbed at low pressures (< 10 mbar). Additional hydrogen can be absorbed and desorbed reversible in a wide pressure range (10 mbar to 10 bar) at room temperature. In order to a better understanding of this new metal-hydride system, we performed neutron diffraction on deuterated CeMnAl samples with different D-concentrations. (author) 1 fig., 2 refs.

  1. Optimisation of post-drawing treatments by means of neutron diffraction

    OpenAIRE

    Ruiz Hervías, Jesús; Atienza Riera, José Miguel; Elices Calafat, Manuel; Oliver, E.C

    2008-01-01

    The mechanical properties and the durability of cold-drawn eutectoid wires (especially in aggressive environments) are influenced by the residual stresses generated during the drawing process. Steelmakers have devised procedures (thermomechanical treatments after drawing) attempting to relieve them in order to improve wire performance. In thiswork neutron diffraction measurements have been used to ascertain the role of temperature and applied force – during post-drawing treatments – on the re...

  2. Neutron Diffraction Study of Magnetic Ordering in Cd1-xMnxTe

    DEFF Research Database (Denmark)

    Giebultowicz, T.; Kepa, H.; Buras, B.

    1981-01-01

    Neutron diffraction experiments were performed on Cd1−xMnxTe crystals for x=0.40, 0.60, 0.63, 0.65 and 0.70. Magnetic Bragg scattering was observed at low temperatures for xgreater-or-equal, slanted0.60 corresponding to the Type III antiferromagnetic ordering of a f.c.c. sub-lattice. The Néel...

  3. Neutron Diffraction Evaluation of Near Surface Residual Stresses at Welds in 1300 MPa Yield Strength Steel

    Science.gov (United States)

    Harati, Ebrahim; Karlsson, Leif; Svensson, Lars-Erik; Pirling, Thilo; Dalaei, Kamellia

    2017-01-01

    Evaluation of residual stress in the weld toe region is of critical importance. In this paper, the residual stress distribution both near the surface and in depth around the weld toe was investigated using neutron diffraction, complemented with X-ray diffraction. Measurements were done on a 1300 MPa yield strength steel welded using a Low Transformation Temperature (LTT) consumable. Near surface residual stresses, as close as 39 µm below the surface, were measured using neutron diffraction and evaluated by applying a near surface data correction technique. Very steep surface stress gradients within 0.5 mm of the surface were found both at the weld toe and 2 mm into the heat affected zone (HAZ). Neutron results showed that the LTT consumable was capable of inducing near surface compressive residual stresses in all directions at the weld toe. It is concluded that there are very steep stress gradients both transverse to the weld toe line and in the depth direction, at the weld toe in LTT welds. Residual stress in the base material a few millimeters from the weld toe can be very different from the stress at the weld toe. Care must, therefore, be exercised when relating the residual stress to fatigue strength in LTT welds. PMID:28772953

  4. Neutron Diffraction Evaluation of Near Surface Residual Stresses at Welds in 1300 MPa Yield Strength Steel

    Directory of Open Access Journals (Sweden)

    Ebrahim Harati

    2017-05-01

    Full Text Available Evaluation of residual stress in the weld toe region is of critical importance. In this paper, the residual stress distribution both near the surface and in depth around the weld toe was investigated using neutron diffraction, complemented with X-ray diffraction. Measurements were done on a 1300 MPa yield strength steel welded using a Low Transformation Temperature (LTT consumable. Near surface residual stresses, as close as 39 µm below the surface, were measured using neutron diffraction and evaluated by applying a near surface data correction technique. Very steep surface stress gradients within 0.5 mm of the surface were found both at the weld toe and 2 mm into the heat affected zone (HAZ. Neutron results showed that the LTT consumable was capable of inducing near surface compressive residual stresses in all directions at the weld toe. It is concluded that there are very steep stress gradients both transverse to the weld toe line and in the depth direction, at the weld toe in LTT welds. Residual stress in the base material a few millimeters from the weld toe can be very different from the stress at the weld toe. Care must, therefore, be exercised when relating the residual stress to fatigue strength in LTT welds.

  5. Neutron diffraction and quasielastic neutron scattering studies of films of intermediate-length alkanes adsorbed on a graphite surface

    Science.gov (United States)

    Diama, Armand

    Over the past several years, we have conducted a variety of elastic neutron diffraction and quasielastic neutron scattering experiments to study the structure and the dynamics of films of two intermediate-length alkane molecules (C nH2n+2), adsorbed on a graphite basal-plane surface. The two molecules are the normal alkane n-tetracosane [n-CH 3(CH2)22CH3] and the branched alkane squalane (C30H62 or 2, 6, 10, 15, 19, 23-hexamethyltetracosane) whose carbon backbone is the same length as teteracosane. The temperature dependence of the monolayer structure of tetracosane and squalane was investigated using elastic neutron diffraction and evidence of two phase transitions was observed. Both the low-coverage tetracosane (C 24H50) and squalane (C30H62) monolayers have crystalline-to-"smectic" and "smectic"-to-isotropic fluid phase transitions upon heating. The diffusive motion in the tetracosane and squalane monolayers has been investigated by quasielastic neutron scattering. Two different quasielastic neutron scattering spectrometers at the Center for Neutron Research, National Institute of Standards and Technology (NIST) have been used. The spectrometers differ in both their dynamic range and energy resolution allowing molecular motions to be investigated on time scales in the range 10-13--10 -9 s. On these time scales, we observe evidence of translational, rotational, and intermolecular diffusive motions in the tetracosane and squalane monolayers. We conclude that the molecular diffusive motion in the two monolayers is qualitatively similar. Thus, despite the three methyl sidegroups at each end of the squalane molecule, its monolayer structure, phase transitions, and dynamics are qualitatively similar to that of a monolayer of the unbranched tetracosane molecules. With the higher resolution spectrometer at NIST, we have also investigated the molecular diffusive motion in multilayer tetracosane films. The analysis of our measurements indicates slower diffusive motion in

  6. Inorganic pyrophosphatase crystals from Thermococcus thioreducens for X-ray and neutron diffraction.

    Science.gov (United States)

    Hughes, Ronny C; Coates, Leighton; Blakeley, Matthew P; Tomanicek, Steve J; Langan, Paul; Kovalevsky, Andrey Y; García-Ruiz, Juan M; Ng, Joseph D

    2012-12-01

    Inorganic pyrophosphatase (IPPase) from the archaeon Thermococcus thioreducens was cloned, overexpressed in Escherichia coli, purified and crystallized in restricted geometry, resulting in large crystal volumes exceeding 5 mm3. IPPase is thermally stable and is able to resist denaturation at temperatures above 348 K. Owing to the high temperature tolerance of the enzyme, the protein was amenable to room-temperature manipulation at the level of protein preparation, crystallization and X-ray and neutron diffraction analyses. A complete synchrotron X-ray diffraction data set to 1.85 Å resolution was collected at room temperature from a single crystal of IPPase (monoclinic space group C2, unit-cell parameters a=106.11, b=95.46, c=113.68 Å, α=γ=90.0, β=98.12°). As large-volume crystals of IPPase can be obtained, preliminary neutron diffraction tests were undertaken. Consequently, Laue diffraction images were obtained, with reflections observed to 2.1 Å resolution with I/σ(I) greater than 2.5. The preliminary crystallographic results reported here set in place future structure-function and mechanism studies of IPPase.

  7. Sample positioning in neutron diffraction experiments using a multi-material fiducial marker

    Energy Technology Data Exchange (ETDEWEB)

    Marais, D., E-mail: Deon.Marais@necsa.co.za [Research and Development Division, South African Nuclear Energy Corporation (Necsa) SOC Limited, PO Box 582, Pretoria 0001 (South Africa); School of Mechanical and Nuclear Engineering, North-West University, Potchefstroom 2520 (South Africa); Venter, A.M., E-mail: Andrew.Venter@necsa.co.za [Research and Development Division, South African Nuclear Energy Corporation (Necsa) SOC Limited, PO Box 582, Pretoria 0001 (South Africa); Faculty of Agriculture Science and Technology, North-West University, Mahikeng 2790 (South Africa); Markgraaff, J., E-mail: Johan.Markgraaff@nwu.ac.za [School of Mechanical and Nuclear Engineering, North-West University, Potchefstroom 2520 (South Africa); James, J., E-mail: Jon.James@open.ac.uk [Faculty of Mathematics, Computing and Technology, The Open University, Milton Keynes, MK76AA England (United Kingdom)

    2017-01-01

    An alternative sample positioning method is reported for use in conjunction with sample positioning and experiment planning software systems deployed on some neutron diffraction strain scanners. In this approach, the spherical fiducial markers and location trackers used with optical metrology hardware are replaced with a specifically designed multi-material fiducial marker that requires one diffraction measurement. In a blind setting, the marker position can be determined within an accuracy of ±164 µm with respect to the instrument gauge volume. The scheme is based on a pre-determined relationship that links the diffracted peak intensity to the absolute positioning of the fiducial marker with respect to the instrument gauge volume. Two methods for establishing the linking relationship are presented, respectively based on fitting multi-dimensional quadratic functions and a cross-correlation artificial neural network.

  8. Sample positioning in neutron diffraction experiments using a multi-material fiducial marker

    Science.gov (United States)

    Marais, D.; Venter, A. M.; Markgraaff, J.; James, J.

    2017-01-01

    An alternative sample positioning method is reported for use in conjunction with sample positioning and experiment planning software systems deployed on some neutron diffraction strain scanners. In this approach, the spherical fiducial markers and location trackers used with optical metrology hardware are replaced with a specifically designed multi-material fiducial marker that requires one diffraction measurement. In a blind setting, the marker position can be determined within an accuracy of ±164 μm with respect to the instrument gauge volume. The scheme is based on a pre-determined relationship that links the diffracted peak intensity to the absolute positioning of the fiducial marker with respect to the instrument gauge volume. Two methods for establishing the linking relationship are presented, respectively based on fitting multi-dimensional quadratic functions and a cross-correlation artificial neural network.

  9. Methane storage mechanism in the metal-organic framework Cu3(btc)2: An in situ neutron diffraction study

    NARCIS (Netherlands)

    Getzschmann, J.; Senkovska, I.; Wallacher, D.; Tovar, M.; Fairen-Jimenez, D.; Düren, T.; van Baten, J.M.; Krishna, R.; Kaskel, S.

    2010-01-01

    The adsorption of deutero-methane (CD4) in Cu3(btc)2 (HKUST-1) was investigated at 77 K using high-resolution neutron powder diffraction. Rietveld refinement of the neutron data revealed a sequential filling of the rigid framework at distinct preferred adsorption sites, and showed the importance of

  10. X-ray Diffraction and Neutron Scattering Analysis of Natural and Synthetic Spider Silk Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Randolph [Utah State Univ., Logan, UT (United States)

    2013-11-11

    Spider silks have the potential to provide new bio-inspired materials for numerous applications in bioenergetics and products ranging from protective clothing to artificial ligaments and tendons. A number of spider silk genes have been cloned and sequenced by the Lewis laboratory revealing the basis for understanding the key elements of spider silk proteins with respect to their materials performance. In particular, specific amino acid motifs have been identified which have been conserved for over 125 million years in all spiders that use their silk to physically trap prey. The key element in taking the next step toward generating bio-based materials from spider silks will be to move from the current descriptive data to predictive knowledge. Current efforts are focused on mimicking spider silk through synthetic proteins. In developing synthetic silk fibers, we first need to understand the complete secondary and tertiary structure of natural silk so that we can compare synthetic constructs to the natural material. Being able to compare the structure on a single fiber level is critical to the future of molecular directed mimic development because we can vary mechanical properties by different spinning methods. The new generation of synchrotron x-ray diffraction and neutron beamlines will allow, for the first time, determination of the molecular structure of silk fibers and synthetic mimics. We propose an exciting new collaborative research team working jointly between Argonne National Laboratory, Arizona State U. and the University of Wyoming to address the ?characterization of synthetic and natural spider silk fibers using x-ray and neutron diffraction.? Thus these new methodologies will provide understanding of current fibers and determine changes needed to produce fibers with specific properties. The following specific aims are proposed: ? Synthesize spider silk fibers with molecular structures mimicking that of natural silks. Test the mechanic properties of these

  11. Production, crystallization and neutron diffraction of fully deuterated human myelin peripheral membrane protein P2.

    Science.gov (United States)

    Laulumaa, Saara; Blakeley, Matthew P; Raasakka, Arne; Moulin, Martine; Härtlein, Michael; Kursula, Petri

    2015-11-01

    The molecular details of the formation of the myelin sheath, a multilayered membrane in the nervous system, are to a large extent unknown. P2 is a peripheral membrane protein from peripheral nervous system myelin, which is believed to play a role in this process. X-ray crystallographic studies and complementary experiments have provided information on the structure-function relationships in P2. In this study, a fully deuterated sample of human P2 was produced. Crystals that were large enough for neutron diffraction were grown by a ten-month procedure of feeding, and neutron diffraction data were collected to a resolution of 2.4 Å from a crystal of 0.09 mm(3) in volume. The neutron crystal structure will allow the positions of H atoms in P2 and its fatty-acid ligand to be visualized, as well as shedding light on the fine details of the hydrogen-bonding networks within the P2 ligand-binding cavity.

  12. Structure of deuterated liquid n-butanol by neutron diffraction and molecular dynamics simulations

    Science.gov (United States)

    Cristiglio, Viviana; Gonzalez, Miguel Angel; Cuello, Gabriel Julio; Cabrillo, Carlos; Pardo, Luis Carlos; Silva-Santisteban, Alvaro

    Aliphatic alcohols are the simpler molecular liquids possessing a polar hydroxylic group and a nonpolar alkyl tail. While the structure of the smallest alcohols has been relatively well studied, no much attention has been paid to the temperature dependence of the pre-peak observed before the main diffraction peak. The role of H-bonding in causing this feature and the direct relation between the number of C atoms and their distance were discovered very early, suggesting a liquid picture constituted of straight chains joined by H-bonds with the formation of mesoscopic size clusters. X-rays and neutron diffraction measurements showed that the height of the pre-peak associated with the formation of H-bonds increases with temperature. To explain this counterintuitive effect, a complete diffraction study using two neutron diffractometers D4 and D16 (ILL, Grenoble, France) allowing to cover the range 0.01-23 Å t1 and exploring a temperature range from 100 K (glassy butanol) to 400 K (moderately supercritical conditions) has been conducted. Molecular Dynamics simulations using the OPLS-AA potential were also carried out as a function of temperature and compared to experiment. Experimental and numerical results of liquid n-butanol and its glassy transition will be presented.

  13. Neutron diffraction analysis of residual strain/stress distribution in the vicinity of high strength welds

    Directory of Open Access Journals (Sweden)

    Hamák I.

    2010-06-01

    Full Text Available Residual stresses resulting from non homogeneous heat distribution during welding process belong to most significant factor influencing behavior of welded structures. These stresses are responsible for defect occurrence during welding and they are also responsible for crack initiation and propagation at the either static or dynamic load. The significant effect of weld metal chemical composition as well as the effect of fatigue load and local plastic deformation on residual stress distribution and fatigue life have been recognized for high strength steels welds. The changes in residual stress distribution have then positive effect on cold cracking behavior and also on fatigue properties of the welds [1-3]. Several experimental methods, both destructive and non-destructive, such as hole drilling method, X-ray diffraction, neutron diffraction and others, have been used to examine residual stress distribution in all three significant orientations in the vicinity of the welds. The present contribution summarizes the results of neutron diffraction measurements of residual stress distribution in the vicinity of single-pass high-strength-steel welds having different chemical composition as well as the influence of fatigue load and local plastic deformation. It has been observed that the chemical composition of the weld metal has a significant influence on the stress distribution around the weld. Similarly, by aplying both cyclic load or pre-stress load on the specimens, stress relaxation was observed even in the region of approximately 40 mm far from the weld toe.

  14. Structural characterization of substituted lanthanum tungstates with X-ray and neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fantin, Andrea; Scherb, Tobias; Schumacher, Gerhard [Helmholtz-Zentrum Berlin fuer Materialen und Energie (Germany); Seeger, Janka; Meulenberg, Wilhelm A. [Forschungszentrum Juelich (Germany)

    2015-07-01

    Our work on proton conducting materials deals with structural characterization of two different series of substituted lanthanum tungstates: La5.4W(1-x)MxO12-delta with M=Mo,Re and 0<=x<=0.2. The main methods used to understand their crystal structure are Neutron Diffraction (ND) and High-Resolution X-Ray Diffraction (HRXRD). Experiments were carried at ILL (Grenoble, France) and PSI (Villigen, Switzerland). Different elemental contrast is reached with these complementary diffraction techniques. Our specimens consist of three cations (La, W, Mo or Re) and oxygen anions. In order to distinguish W (Z=74, b=4.86fm) and Re (Z=75, b=9.2fm) neutrons are needed, while for La (Z=57, b=8.2fm), W(Z=74, b=4.86fm) and Mo (Z=42, b=6.7fm) good contrast is also given by X-Rays. Combined refinements to model accurately anti-site disorder, position of the substituted elements and oxygen (Z=8, b=5.8fm) positions in this highly disordered material are mandatory. Measurements in dependence of temperature down to 1.5K confirm the structural model suggested by one of the coauthors without any unmodeled static disorder. Substitution and deuteration/humidification show no relevant structural changes.

  15. First experimental implementation of pulse shaping for neutron diffraction on pulsed sources

    Energy Technology Data Exchange (ETDEWEB)

    Russina, M. [Helmholtz-Zentrum-Berlin, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Kali, Gy.; Santa, Zs. [HAS Research Institute for Solid State Physics, Konkoly Thege ut. 29-33, 1121 Budapest (Hungary); Mezei, F., E-mail: f.mezei@esshungary.eu [HAS Research Institute for Solid State Physics, Konkoly Thege ut. 29-33, 1121 Budapest (Hungary); European Spallation Source ESS AB, P.O. Box 176, 22100 Lund (Sweden)

    2011-10-21

    One of the central issues in the design and the use of pulsed neutron sources is the control of pulse length in elastic scattering experiments, most significantly diffraction on crystalline matter. On the existing short pulse spallation sources the strongly wavelength dependent source pulse length that determines the resolution is permanently fixed on each beam line by the type of the moderator it faces. We have experimentally implemented for the first time the wavelength frame multiplication (WFM) multiplexing chopper method, an earlier proposed variant of the by now fully tested repetition rate multiplication technique for inelastic scattering spectroscopy on pulsed neutron sources. We have operated the time-of-flight diffractometer at the continuous reactor source at BNC in an unconventional multiplexing mode that emulates a pulsed source. As a full proof of principle of the WFM method we have experimentally demonstrated the extraction from each source pulse a series of polychromatic, chopper shaped neutron pulses, which can continuously cover any wavelength band. The achieved 25 {mu}s FWHM pulse length is shorter than that can be obtained at all at short pulse spallation sources for cold neutrons. The method allows us to build efficient, high and variable resolution diffractometers at long pulse spallation sources.

  16. Residual stress determination in an overlay dissimilar welded pipe by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Wan Chuck [ORNL; Em, Vyacheslav [Korea Atomic Energy Research Institute; Hubbard, Camden R [ORNL; Lee, Ho-Jin [Korea Atomic Energy Research Institute; Park, Kwang Soo [Doosan Heavy Industries & Construction

    2011-01-01

    Residual stresses were determined through the thickness of a dissimilar weld overlay pipe using neutron diffraction. The specimen has a complex joining structure consisting of a ferritic steel (SA508), austenitic steel (F316L), Ni-based consumable (Alloy 182), and overlay of Ni-base superalloy (Alloy 52M). It simulates pressurized nozzle components, which have been a critical issue under the severe crack condition of nuclear power reactors. Two neutron diffractometers with different spatial resolutions have been utilized on the identical specimen for comparison. The macroscopic 'stress-free' lattice spacing (d{sub o}) was also obtained from both using a 2-mm width comb-like coupon. The results show significant changes in residual stresses from tension (300-400 MPa) to compression (-600 MPa) through the thickness of the dissimilar weld overlay pipe specimen.

  17. High-pressure studies on Ba-doped cobalt perovskites by neutron diffraction

    Science.gov (United States)

    Cao, Huibo; Garlea, Vasile; Wang, Fangwei; Dos Santos, Antonio; Cheng, Zhaohua

    2012-02-01

    Cobalt perovskite possess rich structural, magnetic and electrical properties depending on the subtle balance of the interactions among the spin, charge, and orbital degrees of freedom. Divalent hole-doped cobalt perovskites LaA^2+CoO3 exhibit structural phase transitions, metal-insulator transitions, and multi-magnetic phase transitions. High-pressure measurement is believed to mimic the size effects of the doped ions. We performed neutron diffraction experiments on selected Ba-doped LaCoO3 under pressures up to 6.3 GPa at SNAP at Spallation Neutron Source of ORNL. This work focuses on the high-pressure effects of the selected Ba-doped samples and the change of the phase diagram with pressure.

  18. Neutron Diffraction Characterization of C–H···Li Interactions in a Lithium Aluminate Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jacqueline M.; Waddell, Paul G.; Wheatley, Andrew E. H.; McIntyre, Garry J.; Peel, Andrew J.; Tate, Christopher W.; Linton, David J.

    2014-08-11

    The reaction of AlMe3 with tBuLi in the presence of trimethylacetonitrile affords the bimetallic complex [tBu(Me)Al(μ-Me)2Li·NC(tBu)]∞ (1). Pseudotetrahedral Al centers form by the nucelophilic addition of tBuLi to AlMe3.The alkali-metal center is stabilized through coordination of the unreacted nitrile and polymer formation via the construction of Al(μ-Me)nLi (n = 1, 2) motifs. Neutron diffraction evidences agostic interactions in the bridging methyl group to give further stabilization. There is only one previous report of a neutron structure of a lithium aluminate compound. This work therefore offers an important structural example of agostic interactions and the precise nature of Al(μ-Me)2Li bridging.

  19. Neutron diffraction studies on a system with a 4-coordinate hydrogen atom in an yttrium cluster

    Energy Technology Data Exchange (ETDEWEB)

    Yousufuddin, Muhammed [Department of Chemistry, University of Southern California, Los Angeles, CA 90089 (United States); Baldamus, Jens [RIKEN - Institute of Physical and Chemical Research, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Tardif, Olivier [RIKEN - Institute of Physical and Chemical Research, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Hou Zhaomin [RIKEN - Institute of Physical and Chemical Research, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Mason, Sax A. [Institut Laue Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France); McIntyre, Garry J. [Institut Laue Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France); Bau, Robert [Department of Chemistry, University of Southern California, Los Angeles, CA 90089 (United States)]. E-mail: bau@usc.edu

    2006-11-15

    A 4-coordinate H atom has been unambiguously located, by single-crystal neutron diffraction for the first time, in the center of the tetrahedral metal complex Y{sub 4}H{sub 8}(Cp''){sub 4}(THF) [Cp''=C{sub 5}Me{sub 4}(SiMe{sub 3})]. The core of the molecule consists of a tetranuclear cluster with one interstitial, one face-bridging and six edge-bridging hydride ligands. The four individual Y-H distances to the unique interstitial hydride ligand are 2.184(16), 2.189(16), 2.221(13) and 2.168(12) A. Neutron data were collected on a 4-mm{sup 3} crystal at the Quasi-Laue diffractometer VIVALDI at ILL (Grenoble), and the present agreement factor is R=12.2% for 3566 reflections.

  20. Assessment of Shape Memory Alloys - From Atoms To Actuators - Via In Situ Neutron Diffraction

    Science.gov (United States)

    Benafan, Othmane

    2014-01-01

    As shape memory alloys (SMAs) become an established actuator technology, it is important to identify the fundamental mechanisms responsible for their performance by understanding microstructure performance relationships from processing to final form. Yet, microstructural examination of SMAs at stress and temperature is often a challenge since structural changes occur with stress and temperature and microstructures cannot be preserved through quenching or after stress removal, as would be the case for conventional materials. One solution to this dilemma is in situ neutron diffraction, which has been applied to the investigation of SMAs and has offered a unique approach to reveal the fundamental micromechanics and microstructural aspects of bulk SMAs in a non-destructive setting. Through this technique, it is possible to directly correlate the micromechanical responses (e.g., internal residual stresses, lattice strains), microstructural evolutions (e.g., texture, defects) and phase transformation properties (e.g., phase fractions, kinetics) to the macroscopic actuator behavior. In this work, in situ neutron diffraction was systematically employed to evaluate the deformation and transformation behavior of SMAs under typical actuator conditions. Austenite and martensite phases, yield behavior, variant selection and transformation temperatures were characterized for a polycrystalline NiTi (49.9 at. Ni). As the alloy transforms under thermomechanical loading, the measured textures and lattice plane-level variations were directly related to the cyclic actuation-strain characteristics and the dimensional instability (strain ratcheting) commonly observed in this alloy. The effect of training on the shape memory characteristics of the alloy and the development of two-way shape memory effect (TWSME) were also assessed. The final conversion from a material to a useful actuator, typically termed shape setting, was also investigated in situ during constrained heatingcooling and

  1. Neutron powder diffraction studies as a function of temperature of structure II hydrate formed from propane

    Science.gov (United States)

    Rawn, C.J.; Rondinone, A.J.; Chakoumakos, B.C.; Circone, S.; Stern, L.A.; Kirby, S.H.; Ishii, Y.

    2003-01-01

    Neutron powder diffraction data confirm that hydrate samples synthesized with propane crystallize as structure type II hydrate. The structure has been modeled using rigid-body constraints to describe C3H8 molecules located in the eight larger polyhedral cavities of a deuterated host lattice. Data were collected at 12, 40, 100, 130, 160, 190, 220, and 250 K and used to calculate the thermal expansivity from the temperature dependence of the lattice parameters. The data collected allowed for full structural refinement of atomic coordinates and the atomic-displacement parameters.

  2. Residual stress measurements via neutron diffraction of additive manufactured stainless steel 17-4 PH

    OpenAIRE

    Mohammad Masoomi; Nima Shamsaei; Winholtz, Robert A.; Milner, Justin L.; Thomas Gnäupel-Herold; Alaa Elwany; Mohamad Mahmoudi; Thompson, Scott M.

    2017-01-01

    Neutron diffraction was employed to measure internal residual stresses at various locations along stainless steel (SS) 17-4 PH specimens additively manufactured via laser-powder bed fusion (L-PBF). Of these specimens, two were rods (diameter=8 mm, length=80 mm) built vertically upward and one a parallelepiped (8×80×9 mm3) built with its longest edge parallel to ground. One rod and the parallelepiped were left in their as-built condition, while the other rod was heat treated. Data presented pr...

  3. The structure of polyunsaturated lipid bilayers important for rhodopsin function: a neutron diffraction study.

    Science.gov (United States)

    Mihailescu, Mihaela; Gawrisch, Klaus

    2006-01-01

    The structure of oriented 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine bilayers with perdeuterated stearoyl- or docosahexaenoyl hydrocarbon chains was investigated by neutron diffraction. Experiments were conducted at two different relative humidities, 66 and 86%. At both humidities we observed that the polyunsaturated docosahexaenoyl chain has a preference to reside near the lipid water interface. That leaves voids in the bilayer center that are occupied by saturated stearoyl chain segments. This uneven distribution of saturated- and polyunsaturated chain densities is likely to result in membrane elastic stress that modulates function of integral receptor proteins like rhodopsin.

  4. Neutron diffraction studies of structural phase transformations for water-ice in confined geometry

    OpenAIRE

    Dore, John C.; J. Beau W. WEBBER; Hartl, Monika; Behrens, Peter; Hansen, Thomas

    2002-01-01

    Neutron diffraction measurements have been made for D2O water in\\ud the confined geometry of various mesoporous silicas over a wide temperature range. The data have been taken for cooling and heating runs incorporating the nucleation and melting of the crystalline phases and the super-cooled liquid phase. The crystalline forms and the temperatures at which they change are shown to be strongly dependent on the pore size and type of silica used as the confining medium and relate to the phase re...

  5. Neutron diffraction measurements for the determination of residual stresses in MMC tensile and fatigue specimens

    DEFF Research Database (Denmark)

    Fiori, F.; Girardin, E.; Giuliani, A.

    2000-01-01

    The experiments here described have been carried out in the framework of a more general research, aiming to develop a set of complementary models to predict the in-service performances of particle reinforced MMC automotive and aeronautical components. As MMCs are highly heterogeneous materials......, residual stresses are present in both the matrix and the particles microstructure, prior to any macroscopic loading. They vary with the temperature and with the type and level of loading imposed to the material, having a strong influence on the mechanical behaviour of MMCs. Neutron diffraction measurements...

  6. Neutron-Diffraction Study of the Phase Transition in Stannous Chloride Dihydrate

    DEFF Research Database (Denmark)

    Youngblood, R.; Kjems, Jørgen

    1979-01-01

    of the system does not change. We present neutron-diffraction results which show that the temperature dependence of the hydrogen-site occupancies is also highly symmetric around the phase-transition temperature. These results are discussed in terms of a lattice statistical model which was proposed and solved......The order-disorder phase transition in two-dimensional hydrogen-bonded layers of water molecules in SnCl2·2D2O is remarkable in several respects. It has been shown that the peak in the specific heat is highly symmetric around the phase-transition temperature, and that the crystallographic symmetry...

  7. 5-A Fourier map of gramicidin A phased by deuterium-hydrogen solvent difference neutron diffraction

    OpenAIRE

    Koeppe 2nd, R.E.; Schoenborn, B. P.

    1984-01-01

    Crystals of ion-free gramicidin A (P212121: a = 24.61, b = 32.28, c = 32.52) have been investigated using neutron diffraction. A difference analysis of crystals soaked in ethanol/H2O as opposed to ethanol-d6/D2O has led to single isomorphous replacement Fourier projections of the structure at 5-A resolution. The gramicidin dimer appears to be a 32-A-long cylinder oriented parallel to the c-axis in these crystals.

  8. 5-A Fourier map of gramicidin A phased by deuterium-hydrogen solvent difference neutron diffraction.

    Science.gov (United States)

    Koeppe, R E; Schoenborn, B P

    1984-03-01

    Crystals of ion-free gramicidin A (P212121: a = 24.61, b = 32.28, c = 32.52) have been investigated using neutron diffraction. A difference analysis of crystals soaked in ethanol/H2O as opposed to ethanol-d6/D2O has led to single isomorphous replacement Fourier projections of the structure at 5-A resolution. The gramicidin dimer appears to be a 32-A-long cylinder oriented parallel to the c-axis in these crystals.

  9. Residual stress in sprayed Ni+5%Al coatings determined by neutron diffraction

    CERN Document Server

    Matejicek, J; Gnaeupel-Herold, T; Prask, H J

    2002-01-01

    Coatings of nickel-based alloys are used in numerous high-performance applications. Their properties and lifetimes are influenced by factors such as residual stress. Neutron diffraction is a powerful tool for nondestructive residual stress determination. In this study, through-thickness residual stress profiles in Ni+5%Al coatings on steel substrates were determined. Two examples of significantly different spraying techniques - plasma spraying and cold spraying - are highlighted. Different stress-generation mechanisms are discussed with respect to process parameters and material properties. (orig.)

  10. One picture says it all-high-pressure cells for neutron Laue diffraction on VIVALDI

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, G J [Institut Laue-Langevin, BP156, 38042 Grenoble Cedex 9 (France); Melesi, L [Institut Laue-Langevin, BP156, 38042 Grenoble Cedex 9 (France); Guthrie, M [CSEC, School of Physics, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Tulk, C A [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Xu, J [Geophysical Laboratory, Carnegie Institute of Washington, 5251 Broad Branch Rd, NW, Washington, DC 20015 (United States); Parise, J B [Department of Geosciences, State University of New York, Stony Brook, NY 11749-2100 (United States); Department of Chemistry, State University of New York, Stony Brook, NY 11749-2100 (United States)

    2005-10-12

    Possible applications of the neutron single-crystal Laue diffraction technique with a large image-plate detector to high-pressure studies are examined. One opposed-piston cell with a Ti-Zr casing is shown to be acceptable for medium pressures. For higher pressures a moissanite-anvil cell with reasonably large accessibility is shown to offer impressive gains in data collection rate as compared to the monochromatic technique. Moreover, the projected forms of the reflections from the sample and anvils facilitate alignment, and the wide wavelength band of the Laue technique allows recovery of reflections masked by the cell pillars, simply by rotation of the cell.

  11. Neutron Diffraction Study on the Magnetic Structure of Pr6Fe13Sn

    Directory of Open Access Journals (Sweden)

    Suharyana

    2010-04-01

    Full Text Available We have successfully prepared a Pr6Fe13Sn sample by employing argon arc melting. The crystal structure of the sample has been examined by an x-ray diffraction. The x-ray pattern reveals that the sample crystallize in the tetragonal Nd6Fe13Si structure type with space group I4/mcm. Neutron diffraction at 150K performed on a powder sample shows a collinear antiferromagnetic ordering of the Fe and Pr sublattices with the wave vector (0, 0, 1 and an Ip type magnetic lattice with anti-centering translation. The main axis of antiferromagnetism is restricted to the (0 0 1 plane. The average refined Fe moments at 150 K is (2.0±0.4 µB whereas the Pr moments are (2.1±0.4 and (1.9±0.4 µB for the 8f and 16l sites, respectively

  12. Real-time observations of lithium battery reactions—operando neutron diffraction analysis during practical operation

    Science.gov (United States)

    Taminato, Sou; Yonemura, Masao; Shiotani, Shinya; Kamiyama, Takashi; Torii, Shuki; Nagao, Miki; Ishikawa, Yoshihisa; Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei; Naka, Takahiro; Morishima, Makoto; Ukyo, Yoshio; Adipranoto, Dyah Sulistyanintyas; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji

    2016-01-01

    Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries. PMID:27357605

  13. Real-time observations of lithium battery reactions—operando neutron diffraction analysis during practical operation

    Science.gov (United States)

    Taminato, Sou; Yonemura, Masao; Shiotani, Shinya; Kamiyama, Takashi; Torii, Shuki; Nagao, Miki; Ishikawa, Yoshihisa; Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei; Naka, Takahiro; Morishima, Makoto; Ukyo, Yoshio; Adipranoto, Dyah Sulistyanintyas; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi; Suzuki, Kota; Hirayama, Masaaki; Kanno, Ryoji

    2016-06-01

    Among the energy storage devices for applications in electric vehicles and stationary uses, lithium batteries typically deliver high performance. However, there is still a missing link between the engineering developments for large-scale batteries and the fundamental science of each battery component. Elucidating reaction mechanisms under practical operation is crucial for future battery technology. Here, we report an operando diffraction technique that uses high-intensity neutrons to detect reactions in non-equilibrium states driven by high-current operation in commercial 18650 cells. The experimental system comprising a time-of-flight diffractometer with automated Rietveld analysis was developed to collect and analyse diffraction data produced by sequential charge and discharge processes. Furthermore, observations under high current drain revealed inhomogeneous reactions, a structural relaxation after discharge, and a shift in the lithium concentration ranges with cycling in the electrode matrix. The technique provides valuable information required for the development of advanced batteries.

  14. X-ray, synchrotron, and neutron diffraction analysis of Roman cavalry parade helmet fragment

    Energy Technology Data Exchange (ETDEWEB)

    Smrcok, L' . [Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 84536 Bratislava (Slovakia); Petrik, I. [Geological Institute, Slovak Academy of Sciences, Dubravska cesta 9, 84005 Bratislava (Slovakia); Langer, V. [Environmental Inorganic Chemistry, Chalmers University of Technology, 412 96 Gothenburg (Sweden); Filinchuk, Y. [Swiss-Norwegian Beam Lines, European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP-220, 38043 Grenoble CEDEX (France); Beran, P. [Nuclear Physics Institute ASCR v.v.i. and Research Centre Rez Ltd., 25068 Rez (Czech Republic)

    2010-10-15

    A partially corroded fragment of the neck guard of a Roman cavalry helmet excavated in the former military camp of Gerulata, a part of the Limes Romanus on the River Danube, was analysed by laboratory X-ray, synchrotron and neutron powder diffraction. The approximate phase composition determined by the neutron diffraction of the bulk, 82% (wt) of the copper alloy phase, 12 % (wt) of cuprite and 6% of nantokite indicate a significant degree of corrosion of the artefact. Elemental EDX analysis of cleaned surface showed that the chemical composition of the original alloy is 78 to 82 % (wt) of Cu and 21.4 to 16.5 % of Zn with minute amounts of Sn, Si and S. High contents of Cu and Zn with the negligible amount of Sn showed that the body of the helmet was made of brass and not of bronze as expected before. The amount of zinc in the copper alloy calculated from the refined lattice parameter agrees fairly well with the value determined by EDX. The most abundant phase in the synchrotron powder diffraction pattern of the corrosion products scrapped from the artefact is cuprite, but presence of atacamite, malachite, brochantite, nantokite, mixed Cu-Zn hydroxyl carbonates and probably also of simonkolleite (Zn{sub 5}(OH){sub 8}Cl{sub 2}.H{sub 2}O) have been detected. In contrast, the X-ray pattern taken directly from the surface of the artefact is dominated by atacamite with some traces of malachite and quartz. Because the penetration depth of laboratory X-rays is in order of tens of microns, the phase analysis based only on a diffraction pattern taken from a surface can lead to erroneous conclusions concerning the phase composition of the patina. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Cage occupancies in the high pressure structure H methane hydrate: a neutron diffraction study.

    Science.gov (United States)

    Tulk, C A; Klug, D D; dos Santos, A M; Karotis, G; Guthrie, M; Molaison, J J; Pradhan, N

    2012-02-07

    A neutron diffraction study was performed on the CD(4) : D(2)O structure H clathrate hydrate to refine its CD(4) fractional cage occupancies. Samples of ice VII and hexagonal (sH) methane hydrate were produced in a Paris-Edinburgh press and in situ neutron diffraction data collected. The data were analyzed with the Rietveld method and yielded average cage occupancies of 3.1 CD(4) molecules in the large 20-hedron (5(12)6(8)) cages of the hydrate unit cell. Each of the pentagonal dodecahedron (5(12)) and 12-hedron (4(3)5(6)6(3)) cages in the sH unit cell are occupied with on average 0.89 and 0.90 CD(4) molecules, respectively. This experiment avoided the co-formation of Ice VI and sH hydrate, this mixture is more difficult to analyze due to the proclivity of ice VI to form highly textured crystals, and overlapping Bragg peaks of the two phases. These results provide essential information for the refinement of intermolecular potential parameters for the water-methane hydrophobic interaction in clathrate hydrates and related dense structures.

  16. Neutron diffraction study of unusual phase separation in the antiperovskite nitride Mn3ZnN.

    Science.gov (United States)

    Sun, Ying; Wang, Cong; Huang, Qingzhen; Guo, Yanfeng; Chu, Lihua; Arai, Masao; Yamaura, Kazunari

    2012-07-02

    The antiperovskite Mn(3)ZnN is studied by neutron diffraction at temperatures between 50 and 295 K. Mn(3)ZnN crystallizes to form a cubic structure at room temperature (C1 phase). Upon cooling, another cubic structure (C2 phase) appears at around 177 K. Interestingly, the C2 phase disappears below 140 K. The maximum mass concentration of the C2 phase is approximately 85% (at 160 K). The coexistence of C1 and C2 phase in the temperature interval of 140-177 K implies that phase separation occurs. Although the C1 and C2 phases share their composition and lattice symmetry, the C2 phase has a slightly larger lattice parameter (Δa ≈ 0.53%) and a different magnetic structure. The C2 phase is further investigated by neutron diffraction under high-pressure conditions (up to 270 MPa). The results show that the unusual appearance and disappearance of the C2 phase is accompanied by magnetic ordering. Mn(3)ZnN is thus a valuable subject for study of the magneto-lattice effect and phase separation behavior because this is rarely observed in nonoxide materials.

  17. Perdeuteration, purification, crystallization and preliminary neutron diffraction of an ocean pout type III antifreeze protein

    Science.gov (United States)

    Petit-Haertlein, Isabelle; Blakeley, Matthew P.; Howard, Eduardo; Hazemann, Isabelle; Mitschler, Andre; Haertlein, Michael; Podjarny, Alberto

    2009-01-01

    The highly homologous type III antifreeze protein (AFP) subfamily share the capability to inhibit ice growth at subzero temperatures. Extensive studies by X-­ray crystallography have been conducted, mostly on AFPs from polar fishes. Although interactions between a defined flat ice-binding surface and a particular lattice plane of an ice crystal have now been identified, the fine structural features underlying the antifreeze mechanism still remain unclear owing to the intrinsic difficulty in identifying H atoms using X-ray diffraction data alone. Here, successful perdeuteration (i.e. complete deuteration) for neutron crystallo­graphic studies of the North Atlantic ocean pout (Macrozoarces americanus) AFP in Escherichia coli high-density cell cultures is reported. The perdeuterated protein (AFP D) was expressed in inclusion bodies, refolded in deuterated buffer and purified by cation-exchange chromatography. Well shaped perdeuterated AFP D crystals have been grown in D2O by the sitting-drop method. Preliminary neutron Laue diffraction at 293 K using LADI-III at ILL showed that with a few exposures of 24 h a very low background and clear small spots up to a resolution of 1.85 Å were obtained using a ‘radically small’ perdeuterated AFP D crystal of dimensions 0.70 × 0.55 × 0.35 mm, corresponding to a volume of 0.13 mm3. PMID:19342793

  18. The chemical reactivity and structure of collagen studied by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wess, T.J.; Wess, L.; Miller, A. [Univ. of Stirling (United Kingdom)

    1994-12-31

    The chemical reactivity of collagen can be studied using neutron diffraction (a non-destructive technique), for certain reaction types. Collagen contains a number of lysine and hydroxylysine side chains that can react with aldehydes and ketones, or these side chains can themselves be converted to aldehydes by lysyl oxidase. The reactivity of these groups not only has an important role in the maintenance of mechanical strength in collagen fibrils, but can also manifest pathologically in the cases of aging, diabetes (reactivity with a variety of sugars) and alcoholism (reactivity with acetaldehyde). The reactivity of reducing groups with collagen can be studied by neutron diffraction, since the crosslink formed in the adduction process is initially of a Schiff base or keto-imine nature. The nature of this crosslink allows it to be deuterated, and the position of this relatively heavy scattering atom can be used in a process of phase determination by multiple isomorphous replacement. This process was used to study the following: the position of natural crosslinks in collagen; the position of adducts in tendon from diabetic rats in vivo and the in vitro position of acetaidehyde adducts in tendon.

  19. A flow-through hydrothermal cell for in situ neutron diffraction studies of phase transformations

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Brian [School of Chemical Engineering, The University of Adelaide, South Australia 5005 (Australia); Tenailleau, Christophe [Department of Mineralogy, South Australian Museum, North Terrace, Adelaide, South Australia 5000 (Australia); Nogthai, Yung [School of Chemical Engineering, The University of Adelaide, South Australia 5005 (Australia); Studer, Andrew [Bragg Institute, ANSTO, PMB 1 Menai, New South Wales 2234 (Australia); Brugger, Joel [Department of Mineralogy, South Australian Museum, North Terrace, Adelaide, South Australia 5000 (Australia): Department of Geology and Geophysics, The University of Adelaide, North Terrace, Adelaide, South Australia 5005 (Australia); Pring, Allan [Department of Mineralogy, South Australian Museum, North Terrace, Adelaide, South Australia 5000 (Australia): Department of Geology and Geophysics, The University of Adelaide, North Terrace, Adelaide, South Australia 5005 (Australia)]. E-mail: pring.allan@saugov.sa.gov.au

    2006-11-15

    A flow-through hydrothermal cell for the in situ neutron diffraction study of crystallisation and phase transitions has been developed. It can be used for kinetic studies on materials that exhibit structural transformations under hydrothermal conditions. It is specifically designed for use on the medium-resolution powder diffractometer (MRPD) at ANSTO, Lucas Heights, Sydney. But it is planned to adapt the design for the Polaris beamline at ISIS and the new high-intensity powder diffractometer (Wombat) at the new Australian reactor Opal. The cell will operate in a flow-through mode over the temperature range from 25-300 deg. C and up to pressures of 100 bar. The first results of a successful transformation of pentlandite (Fe,Ni){sub 9}S{sub 8} to violarite (Fe,Ni){sub 3}S{sub 4} under mild conditions (pH{approx}4) at 120 deg. C and 3 bar using in situ neutron diffraction measurements are presented.

  20. Neutron diffraction and micro-Raman scattering studies on rare-earth carbide halides

    Science.gov (United States)

    Henn, R. W.; Strach, T.; Kremer, R. K.; Simon, A.

    1998-12-01

    Neutron-diffraction experiments on powder samples and micro-Raman scattering investigations on single crystals of the layered compounds R2CxHal2, (R=Y, Gd, x=1,2, and Hal=Br, I) have been performed in order to study their static and dynamic lattice properties. For the superconductors Y2C2I2 (Tc=9.97 K) and Y2C2Br2 (Tc=5.04 K), the C-C atomic distances were obtained with high accuracy from neutron-diffraction experiments between T=1.5 and 270 K. The expected Raman-active phonons were determined from a factor-group analysis of the crystal structures. In the monocarbide Y2CBr2, the Raman-active phonons of the heavy-ion sublattices have been observed. In the dicarbide compounds R2C2Hal2, additionally, the stretching and tilting modes of the dimeric C2 units were clearly identified by analyzing spectra from natC and 13C substituted samples. The influence of the quasimolecular C2 unit on the electronic properties in the R2C2Hal2 compounds and its interaction with the surrounding metal atom octahedra is discussed.

  1. Diffraction des neutrons : principe, dispositifs expérimentaux et applications

    Science.gov (United States)

    Muller, C.

    2003-02-01

    La diffraction de neutrons, sur monocristal ou sur échantillon polycristallin (ou poudre), est une technique très largement utilisée, en science des matériaux comme en biologie, lorsque l'on souhaite déterminer la structure cristalline d'un composé ou d'une molécule. Toutefois, le degré de précision de la détermination structurale est très corrélé au choix de l'instrument utilisé. Il s'en suit que la question “comment choisir l'instrument le mieux adapté au composé et à la problématique ?" apparaît comme fondamentale. L'objectif de ce cours est de tenter de répondre à cette question en décrivant brièvement les caractéristiques instrumentales de différents diffractomètres, en exposant les avantages spécifiques des expériences de diffraction de neutrons et en donnant quelques exemples d'application.

  2. Probing the Hydrogen Sublattice of FeHx with High-Pressure Neutron Diffraction

    Science.gov (United States)

    Murphy, C. A.; Guthrie, M.; Boehler, R.; Somayazulu, M.; Fei, Y.; Molaison, J.; dos Santos, A. M.

    2013-12-01

    The combination of seismic, cosmochemical, and mineral physics observations have revealed that Earth's iron-rich core must contain some light elements, such as hydrogen, carbon, oxygen, silicon, and/or sulfur. Therefore, understanding the influence of these light elements on the structural, thermoelastic, and electronic properties of iron is important for constraining the composition of this remote layer of the Earth and, in turn, providing constraints on planetary differentiation and core formation models. The high-pressure structural and magnetic properties of iron hydride (FeHx) have previously been studied using synchrotron x-ray diffraction and Mössbauer spectroscopy. Such experiments revealed that the double hexagonal close-packed (dhcp) structure of FeHx is stable above a pressure of ~5 GPa and up to at least 80 GPa at 300 K [1]. In addition, dhcp-FeHx is ferromagnetic at low-pressures, but undergoes a magnetic collapse around 22 GPa [2]. X-ray experiments provide valuable insight into the properties of FeHx, but such techniques are largely sensitive to the iron component because it is difficult to detect the hydrogen sublattice with x-rays. Therefore, neutron diffraction has been used to investigate metastable FeHx, which is formed by quenching the high-pressure phase to liquid nitrogen temperatures and probing the sample at ambient pressure [3]. However, such neutron experiments have been limited to formation pressures below 10 GPa, and cannot be performed at ambient temperature. Here we present the first in-situ investigation of FeHx at 300 K using high-pressure neutron diffraction experiments performed at the Spallation Neutrons and Pressure Diffractometer (SNAP) instrument at the Spallation Neutron Source, Oak Ridge National Laboratory. In order to achieve pressures of ~50 GPa, we loaded iron samples with a hydrogen gas pressure medium into newly designed large-volume panoramic diamond-anvil cells (DACs) for neutron diffraction experiments [4; 5]. We

  3. A single-layer wide-angle negative-index metamaterial at visible frequencies

    Science.gov (United States)

    Burgos, Stanley P.; de Waele, Rene; Polman, Albert; Atwater, Harry A.

    2010-05-01

    Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/-50∘ angular range, yielding a wide-angle NIM at visible frequencies.

  4. In situ neutron diffraction study of twin reorientation and pseudoplastic strain in Ni-Mn-Ga single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, Alexandru Dan [ORNL

    2011-01-01

    Twin variant reorientation in single-crystal Ni-Mn-Ga during quasi-static mechanical compression was studied using in situ neutron diffraction. The volume fraction of reoriented twin variants for different stress amplitudes were obtained from the changes in integrated intensities of high-order neutron diffraction peaks. It is shown that, during compressive loading, {approx}85% of the twins were reoriented parallel to the loading direction resulting in a maximum pseudoplasticstrain of {approx}5.5%, which is in agreement with measured macroscopic strain.

  5. Neutron Scattering and Diffraction Studies of Fluids and Fluid-Solid Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cole, David R [ORNL; Herwig, Kenneth W [ORNL; Mamontov, Eugene [ORNL; Larese, John Z [ORNL

    2006-01-01

    There can be no disputing the fact that neutron diffraction and scattering have made a clear contribution to our current understanding of the structural and dynamical characteristics of liquid water and water containing dissolved ions at ambient conditions and to a somewhat lesser degree other state conditions involving a change in temperature and pressure. Indeed, a molecular-level understanding of how fluids (e.g., water, CO{sub 2}, CH{sub 4}, higher hydrocarbons, etc.) interact with and participate in reactions with other solid earth materials are central to the development of predictive models that aim to quantify a wide array of geochemical processes. In the context of natural systems, interrogation of fluids and fluid-solid interactions at elevated temperatures and pressures is an area requiring much more work, particularly for complex solutions containing geochemically relevant cations, anions, and other important dissolved species such as CO{sub 2} or CH{sub 4}. We have tried to describe a series of prototypical interfacial and surface problems using neutron scattering to stimulate the thinking of earth scientists interested applying some of these approaches to confined systems of mineralogical importance. Our ability to predict the molecular-level properties of fluids and fluid-solid interactions relies heavily on the synergism between experiments such as neutron diffraction or inelastic neutron scattering and molecular-based simulations. Tremendous progress has been made in closing the gap between experimental observations and predicted behavior based on simulations due to improvements in the experimental methodologies and instrumentation on the one hand, and the development of new potential models of water and other simple and complex fluids on the other. For example there has been an emergence of studies taking advantage of advanced computing power that can accommodate the demands of ab initio molecular dynamics. On the neutron instrumentation side

  6. Graded index and randomly oriented core-shell silicon nanowires for broadband and wide angle antireflection

    Directory of Open Access Journals (Sweden)

    P. Pignalosa

    2011-09-01

    Full Text Available Antireflection with broadband and wide angle properties is important for a wide range of applications on photovoltaic cells and display. The SiOx shell layer provides a natural antireflection from air to the Si core absorption layer. In this work, we have demonstrated the random core-shell silicon nanowires with both broadband (from 400nm to 900nm and wide angle (from normal incidence to 60º antireflection characteristics within AM1.5 solar spectrum. The graded index structure from the randomly oriented core-shell (Air/SiOx/Si nanowires may provide a potential avenue to realize a broadband and wide angle antireflection layer.

  7. Neutron-diffraction measurement of the evolution of strain for non-uniform plastic deformation

    CERN Document Server

    Rogge, R B; Boyce, D

    2002-01-01

    Neutrons are particularly adept for the validation of modeling predictions of stress and strain. In recent years, there has been a significant effort to model the evolution of both the macroscopic stresses and the intergranular stress during plastic deformation. These have had broad implications with regard to understanding the evolution of residual stress and to diffraction-based measurements of strain. Generally the modeling and associated measurements have been performed for simple uniaxial tension, leaving questions with regard to plastic deformation under multi-axial stress and non-uniform stress. Extensive measurements of the strain profile across a plastic hinge for each of a series of loading and unloading cycles to progressively higher degrees of plastic deformation are presented. These measurements are used to assess multiple-length-scale finite-element modeling (FEM) of the plastic hinge, in which the elements will range in size from single crystallites (as used in successful simulations of uniaxia...

  8. Determination of the Crystal Structure of Lead Tungstate by Neutron Diffraction

    CERN Document Server

    Cousson, A; Paulus, W

    1999-01-01

    The crystal structure of lead tungstate, PbWO4, is tetragonal, scheelite type, space group I4/a. This compound, due to the difference in the vapour pressure of the two raw oxides, WO3 and PbO, used in the crystal growth, is frequently subjected to lead deficiency. It has been reported by one group that lead vacancies can order in a crystal structure derived from the scheelite type, but of lower symmetry and described by the space group P4/nnc or P-4. We report here on neutron diffraction measurements performed on three different single crystals, two of them being presented to us as possibly presenting the lead deficient phase. Our measurements do not show any indication of structural distortion, even at 70 K for one of the samples. The existence of a lead deficient structure remains unconfirmed.

  9. Neutron diffraction stress determination in W-laminates for structural divertor applications

    Directory of Open Access Journals (Sweden)

    R. Coppola

    2015-07-01

    Full Text Available Neutron diffraction measurements have been carried out to develop a non-destructive experimental tool for characterizing the crystallographic structure and the internal stress field in W foil laminates for structural divertor applications in future fusion reactors. The model sample selected for this study had been prepared by brazing, at 1085 °C, 13 W foils with 12 Cu foils. A complete strain distribution measurement through the brazed multilayered specimen and determination of the corresponding stresses has been obtained, assuming zero stress in the through-thickness direction. The average stress determined from the technique across the specimen (over both ‘phases’ of W and Cu is close to zero at −17 ± 32 MPa, in accordance with the expectations.

  10. Neutron diffraction study of the magnetic-field-induced transition in Mn3GaC

    Science.gov (United States)

    Ćakιr, Ö.; Acet, M.; Farle, M.; Senyshyn, A.

    2014-01-01

    The antiperovskite Mn3GaC undergoes an isostructural cubic-cubic first order transition from a low-temperature, large-cell-volume antiferromagnetic state to a high-temperature, small-cell-volume ferromagnetic state at around 160 K. The transition can also be induced by applying a magnetic field. We study here the isothermal magnetic-field-evolution of the transition as ferromagnetism is stabilized at the expense of antiferromagnetism. We make use of the presence of the two distinct cell volumes of the two magnetic states as a probe to observe by neutron diffraction the evolution of the transition, as the external magnetic field carries the system from the antiferromagnetic to the ferromagnetic state. We show that the large-volume antiferromagnetic and the small-volume ferromagnetic states coexist in the temperature range of the transition. The ferromagnetic state is progressively stabilized as the field increases.

  11. Neutron diffraction studies of the low-temperature magnetic structure of hexagonal FeGe

    DEFF Research Database (Denmark)

    Bernhard, J.; Lebech, Bente; Beckman, O.

    1984-01-01

    The magnetic structure of the hexagonal polymorph of FeGe has been investigated by means of neutron diffraction on single crystals at low temperature and for magnetic fields applied perpendicular to the c axis. Between 410 and approximately 55K the magnetic structure is collinear c......-axis antiferromagnetic. Below approximately 55K the structure changes to c-axis double-cone antiferromagnetic with an inter-layer turn angle for the basal-plane moment component of 194.4 degrees , independent of temperature and applied field. The cone half-angle increases with decreasing temperature to approximately 14...... degrees at 4.2K, but its temperature dependence shows a pronounced kink at 30K, indicating a phase change at this temperature. At 4.2K the authors observe an anomalous decrease of the basal-plane moment component at a critical field (B perpendicular to c) of 1.4 T. As the temperature is increased...

  12. Neutron diffraction investigation of water on MgO(001) surfaces, from monolayer to bulk condensation

    Science.gov (United States)

    Demirdjian, B.; Suzanne, J.; Ferry, D.; Coulomb, J. P.; Giordano, L.

    2000-08-01

    The structure of D 2O molecules adsorbed on MgO(001) surfaces has been studied by neutron diffraction within the 200-273 K temperature range and at coverages ( θ) of 0.93, 1.5, 4 and 20 monolayers (ML). At low coverage ( θ≤1.5 ML) and whatever the temperature, the two-dimensional (2D) analysis of the monolayer structure is compatible with the previously observed p(3×2) commensurate phase, but presenting a short coherence length of 35±5 Å. At higher coverages, we show that this 2D ordered phase coexists with the bulk phase. These results confirm the outstanding stability of the water monolayer adsorbed on MgO(001) found by recent molecular dynamics calculations.

  13. Residual stress measurements via neutron diffraction of additive manufactured stainless steel 17-4 PH

    Directory of Open Access Journals (Sweden)

    Mohammad Masoomi

    2017-08-01

    Full Text Available Neutron diffraction was employed to measure internal residual stresses at various locations along stainless steel (SS 17-4 PH specimens additively manufactured via laser-powder bed fusion (L-PBF. Of these specimens, two were rods (diameter=8 mm, length=80 mm built vertically upward and one a parallelepiped (8×80×9 mm3 built with its longest edge parallel to ground. One rod and the parallelepiped were left in their as-built condition, while the other rod was heat treated. Data presented provide insight into the microstructural characteristics of typical L-PBF SS 17-4 PH specimens and their dependence on build orientation and post-processing procedures such as heat treatment. Data have been deposited in the Data in Brief Dataverse repository (doi:10.7910/DVN/T41S3V.

  14. Characterisation of polycrystal deformation by numerical modelling and neutron diffraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B.

    1997-09-01

    The deformation of polycrystals are modelled using three micron mechanic models; the Taylor model, the Sachs model and Hutchinson`s self-consistent (SC) model. The predictions of the rigid plastic Taylor and Sachs models are compared with the predictions of the SC model. As expected, the results of the SC model is about half-way between the upper- and lower-bound models. The influence of the elastic anisotropy is investigated by comparing the SC predictions for aluminium, copper and a hypothetical material (Hybrid) with the elastic anisotropy of copper and the Young`s modulus and hardening behaviour of aluminium. It is concluded that the effect of the elastic anisotropy is limited to the very early stages of plasticity, as the deformation pattern is almost identical for the three materials at higher strains. The predictions of the three models are evaluated by neutron diffraction measurements of elastic lattice strains in grain sub-sets within the polycrystal. The two rigid plastic models do not include any material parameters and therefore the predictions of the SC model is more accurate and more detailed than the predictions of the Taylor and Sachs models. The SC model is used to determine the most suitable reflection for technological applications of neutron diffraction, where focus is on the volume average stress state in engineering components. To be able to successfully to convert the measured elastic lattice strains for a specific reflection into overall volume average stresses, there must be a linear relation between the lattice strain of the reflection and the overall stress. According to the model predictions the 311-reflection is the most suitable reflection as it shows the smallest deviations from linearity and thereby also the smallest build-up of residual strains. The model predictions have pin pointed that the selection of the reflection is crucial for the validity of stresses calculated from the measured elastic lattice strains. (au) 14 tabs., 41

  15. Study of phase development in alumina-spodumene ceramics by high temperature neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gan, B.K. [University of Technology, Sydney, NSW (Australia). Microstructural Analysis Unit; Latella, B.A.; Hunter, B.A. [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia); O`Connor, B.H. [Curtin University of Technology, Perth, WA (Australia). Department of Applied Physics

    1999-12-01

    Full text: Melting and crystallisation of minor phases are important in many material systems which contain impurities and/or grain boundary liquid phases. Grain boundary glassy phases are generally not thermodynamically stable, and can devitrify during the sintering process or from other high temperature exposure. Characterising the minor phase assemblage in these types of materials has implications in processing, microstructural design and in-service use, particularly fluctuating thermal environments. An in situ high temperature neutron diffraction (ND) technique was used to follow the phase dynamics on sintering an alumina-spodumene ceramic as well as the crystallisation kinetics of the evolving crystalline phase in real time. The main benefit of using ND analysis in the present work is that it provides bulk specimen character of the material which is important in quantitatively extracting phase composition information. Likewise, most diffraction measurements are conducted with ambient or static temperature data, collected after specimens have been heat-treated and then cooled. Such data may yield misleading information particularly in relation to non-equilibrium phases. Hence dynamic measurements are clearly preferable as a direct means of confirming sintering processes. ND measurements were performed using the High Flux Australian Reactor (HIFAR) neutron source operated by the Australian Nuclear Science and Technology Organisation (ANSTO) at Lucas Heights, NSW, Australia. The ND patterns collected on heating the compacts provided relevant information for optimising materials processing and sintering protocols. Similarly, the ND patterns collected for three specific cooling schemes yielded significant details of evolution and crystallisation of the minor phase. The principal aim was to demonstrate the fundamental influence of the minor crystalline phase (and hence glassy phase) on properties and to manipulate and tailor the phase structure by controlled

  16. Polymorphism in Photoluminescent KNdW2O8: Synthesis, Neutron Diffraction, and Raman Study

    Energy Technology Data Exchange (ETDEWEB)

    S. M. Bhat, Swetha [Materials Science Division, Poornaprajna Institute of Scientific Research, Bidalur Near Devanahalli,; Swain, Diptikanta [CPMU, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, India; Feygenson, Mikhail [ORNL; Neuefeind, Joerg C [ORNL; Sundaram, Nalini [Materials Science Division, Poornaprajna Institute of Scientific Research, Bidalur Near Devanahalli,

    2014-01-01

    Polymorphs of KNdW2O8 ( -KNdW2O8 and -KNdW2O8) phosphors were synthesized by an efficient solution combustion technique for the first time. The crystal structure of the polymorphs analyzed from Rietveld refinement of neutron diffraction data confirms that -KNdW2O8 crystallizes in the tetragonal system (space group I4 ), and -KNdW2O8 crystallizes in the monoclinic system (space group C2/m). The local structure of both polymorphs was elucidated using combined neutron pair distribution function (PDF) and Raman scattering techniques. Photoluminescence measurements of the polymorphs showed broadened emission line width and increased intensity for -KNdW2O8 in the visible region compared to -KNdW2O8. This phenomenon is attributed to the increased distortion in the coordination environment of the luminescing Nd3+ ion. Combined PDF, Rietveld, and Raman measurements reveal distortions of the WO6 octahedra and NdO8 polyhedra in -KNdW2O8. This crystal structure photoluminescence study suggests that this class of tungstates can be exploited for visible light emitting devices by tuning the crystal symmetry.

  17. Residual stress determination in a dissimilar weld overlay pipe by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Wanchuck, E-mail: chuckwoo@kaeri.re.kr [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Em, Vyacheslav [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Hubbard, Camden R. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Lee, Ho-Jin [Nuclear Materials Research Center, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Park, Kwang Soo [Corporate R and D Institute, Doosan Heavy Industries and Construction, Changwon 641-792 (Korea, Republic of)

    2011-10-15

    Highlights: {yields} Determined residual stress distribution in a dissimilar weld overlay pipe. {yields} Consists of a ferritic (SA508), austenitic (F316L) steels, Alloy 182 consumable. {yields} Measured significant compression (-600 MPa) near the inner wall of overlay. {yields} Validate integrity of the inner wall for the pressurized nozzle nuclear structure. - Abstract: Residual stresses were determined through the thickness of a dissimilar weld overlay pipe using neutron diffraction. The specimen has a complex joining structure consisting of a ferritic steel (SA508), austenitic steel (F316L), Ni-based consumable (Alloy 182), and overlay of Ni-base superalloy (Alloy 52M). It simulates pressurized nozzle components, which have been a critical issue under the severe crack condition of nuclear power reactors. Two neutron diffractometers with different spatial resolutions have been utilized on the identical specimen for comparison. The macroscopic 'stress-free' lattice spacing (d{sub o}) was also obtained from both using a 2-mm width comb-like coupon. The results show significant changes in residual stresses from tension (300-400 MPa) to compression (-600 MPa) through the thickness of the dissimilar weld overlay pipe specimen.

  18. Magnetostructural transition in Fe{sub 5}SiB{sub 2} observed with neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cedervall, Johan, E-mail: johan.cedervall@kemi.uu.se [Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala (Sweden); Kontos, Sofia [Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala (Sweden); Hansen, Thomas C. [Institut Laue-Langevin, B.P. 156, 38042 Grenoble Cedex 9 (France); Balmes, Olivier; Martinez-Casado, Francisco Javier; Matej, Zdenek [MAX IV Laboratory, Lund University, Box 118, 221 00 Lund (Sweden); Beran, Premysl [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 25068 Rez (Czech Republic); Svedlindh, Peter; Gunnarsson, Klas [Department of Engineering Sciences, Uppsala University, Box 534, 751 21 Uppsala (Sweden); Sahlberg, Martin [Department of Chemistry - Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala (Sweden)

    2016-03-15

    The crystal and magnetic structure of Fe{sub 5}SiB{sub 2} has been studied by a combination of X-ray and neutron diffraction. Also, the magnetocrystalline anisotropy energy constant has been estimated from magnetisation measurements. High quality samples have been prepared using high temperature synthesis and subsequent heat treatment protocols. The crystal structure is tetragonal within the space group I4/mcm and the compound behaves ferromagnetically with a Curie temperature of 760 K. At 172 K a spin reorientation occurs in the compound and the magnetic moments go from aligning along the c-axis (high T) down to the ab-plane (low T). The magnetocrystalline anisotropy energy constant has been estimated to 0.3 MJ/m{sup 3} at 300 K. - Highlights: • The crystal and magnetic structure of Fe{sub 5}SiB{sub 2} has been studied by diffraction. • At 172 K a spin reorientation occurs in the compound. • The magnetic moments are aligned along the c-axis at high T. • The magnetic moments are aligned in the ab-plane at low T. • The magnetocrystalline anisotropy energy constant has been estimated to 0.3 MJ/m{sup 3}.

  19. Structure of naturally hydrated ferrihydrite revealed through neutron diffraction and first-principles modeling

    Science.gov (United States)

    Chappell, Helen F.; Thom, William; Bowron, Daniel T.; Faria, Nuno; Hasnip, Philip J.; Powell, Jonathan J.

    2017-08-01

    Ferrihydrite, with a ``two-line'' x-ray diffraction pattern (2L-Fh), is the most amorphous of the iron oxides and is ubiquitous in both terrestrial and aquatic environments. It also plays a central role in the regulation and metabolism of iron in bacteria, algae, higher plants, and animals, including humans. In this study, we present a single-phase model for ferrihydrite that unifies existing analytical data while adhering to fundamental chemical principles. The primary particle is small (20-50 Å) and has a dynamic and variably hydrated surface, which negates long-range order; collectively, these features have hampered complete characterization and frustrated our understanding of the mineral's reactivity and chemical/biochemical function. Near and intermediate range neutron diffraction (NIMROD) and first-principles density functional theory (DFT) were employed in this study to generate and interpret high-resolution data of naturally hydrated, synthetic 2L-Fh at standard temperature. The structural optimization overcomes transgressions of coordination chemistry inherent within previously proposed structures, to produce a robust and unambiguous single-phase model.

  20. Potassium Disorder in the Defect Pyrochlore KSbTeO6: A Neutron Diffraction Study

    Directory of Open Access Journals (Sweden)

    José Antonio Alonso

    2017-01-01

    Full Text Available KSbTeO6 defect pyrochlore has been prepared from K2C2O4, Sb2O3, and 15% excess TeO2 by solid-state reaction at 850 °C. Direct methods implemented in the software EXPO2013 allowed establishing the basic structural framework. This was followed by a combined Rietveld refinement from X-ray powder diffraction (XRD and neutron powder diffraction (NPD data, which unveiled additional structural features. KSbTeO6 is cubic, a = 10.1226(7 Å, space group F d 3 ¯ m , Z = 8 and it is made of a mainly covalent framework of corner-sharing (Sb,TeO6 octahedra, with weakly bonded K+ ions located within large cages. The large K-O distances, 3.05(3–3.07(3 Å, and quite large anisotropic atomic displacement parameters account for the easiness of K+ exchange for other cations of technological importance.

  1. The storage degradation of an 18650 commercial cell studied using neutron powder diffraction

    Science.gov (United States)

    Lee, Po-Han; Wu, She-huang; Pang, Wei Kong; Peterson, Vanessa K.

    2018-01-01

    Commercial 18650 lithium ion cells containing a blended positive electrode of layered LiNi0.5Mn0.3Co0.2O2 and spinel Li1.1Mn1.9O4 alongside a graphite negative electrode were stored at various depth-of-discharge (DoD) at 60 °C for 1, 2, 4, and 6 months. After storage, the cells were cycled at C/25 at 25 °C between 2.75 and 4.2 V for capacity determination and incremental capacity analysis (ICA). In addition to ICA analysis, the mechanism for capacity fade was investigated by combining the results of neutron powder diffraction under in-situ and operando conditions, in conjunction with post-mortem studies of the electrodes using synchrotron X-ray powder diffraction and inductively-coupled plasma optical emission spectroscopy. Among the cells, those stored at 25% DoD suffered the highest capacity fade due to their higher losses of active Li, NMC, and LMO than cells stored at other DoD. The cells stored at 0% DoD shows second high capacity fade because they exhibit the highest of active LMO and graphite anode among the stored cells and higher losses of active Li and NMC than cells stored at 50% DoD.

  2. Magnetic ordering in electronically phase-separated La2-xSrxCuO4+y: Neutron diffraction experiments

    DEFF Research Database (Denmark)

    Udby, Linda; Andersen, Niels Hessel; Chou, F.C.

    2009-01-01

    We present results of magnetic neutron diffraction experiments on the codoped superoxygenated La2-xSrxCuO4+y (LSCO+O) system with x=0.09. We find that the magnetic phase is long-range ordered incommensurate antiferromagnetic with a Neacuteel temperature T-N coinciding with the superconducting...

  3. Investigation of ground target detection methods in fully polarimetric wide angle synthetic aperture radar images

    Science.gov (United States)

    Laggan, Wayne B.

    1995-03-01

    Target detection is a high priority of the Air Force for the purpose of reconnaissance and bombardment. This research investigates and develops methods to distinguish ground targets from clutter (i.e. foliage, landscape etc.) in Wide Angle Synthetic Aperture Radar (WASAR) images. WASAR uses multiple aspect angle SAR images of the same target scene. The WASAR data was generated from a pre-release software package (XPATCH-ES) provided by the sponsor (WL-AARA). A statistical analysis and feature extraction is performed on the XPATCH-ES data. Polarimetric and wide angle covariance matrices are estimated and analyzed. From an analysis of the wide angle covariance matrix it is shown that natural clutter has in general a uniform radar return for changing aspect angles, whereas the radar return for a target varies. Based on this analysis, two new wide angle algorithms, the WASAR Whitening Filter and the Adaptive WASAR Whitening Filter (AWWF) are developed. The target detection performance of polarimetric and multi aspect angle image combining algorithms are quantified using Receiver Operating Characteristic curves and target to clutter ratios. It is shown that wide angle processing provides superior target detection performance over polarimetric processing. Combinations of wide angle and polarimetric algorithms were used to achieve a 13.7 dB processing gain in target to clutter ratio when compared to unprocessed images of the target scene. This represents a significant improvement in target detection capabilities.

  4. Non-destructive Quantitative Phase Analysis and Microstructural Characterization of Zirconium Coated U-10Mo Fuel Foils via Neutron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, Dustin Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hollis, Kendall Jon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dombrowski, David E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    This report uses neutron diffraction to investigate the crystal phase composition of uranium-molybdenum alloy foils (U-10Mo) for the CONVERT MP-1 Reactor Conversion Project, and determines the effect on alpha-uranium contamination following the deposition of a Zr metal diffusion layer by various methods: plasma spray deposition of Zr powders at LANL and hot co-rolling with Zr foils at BWXT. In summary, there is minimal decomposition of the gamma phase U-10Mo foil to alpha phase contamination following both plasma spraying and hot co-rolling. The average unit cell volume, i.e. lattice spacing, of the Zr layer can be mathematically extracted from the diffraction data; co-rolled Zr matches well with literature values of bulk Zr, while plasma sprayed Zr shows a slight increase in the lattice spacing, indicative of interstitial oxygen in the lattice. Neutron diffraction is a beneficial alternative to conventional methods of phase composition, i.e. x ray diffraction (XRD) and destructive metallography. XRD has minimal penetration depth in high atomic number materials, particularly uranium, and can only probe the first few microns of the fuel plate; neutrons pass completely through the foil, allowing for bulk analysis of the foil composition and no issues with addition of cladding layers, as in the final, aluminum-clad reactor fuel plates. Destructive metallography requires skilled technicians, cutting of the foil into small sections, hazardous etching conditions, long polishing and microscopy times, etc.; the neutron diffraction system has an automated sample loader and can fit larger foils, so there is minimal analysis preparation; the total spectrum acquisition time is ~ 1 hour per sample. The neutron diffraction results are limited by spectra refinement/calculation times and the availability of the neutron beam source. In the case of LANSCE at Los Alamos, the beam operates ~50% of the year. Following the lessons learned from these preliminary results, optimizations to

  5. Neutron diffraction study of La 4LiAuO 8: Understanding Au 3+ in an oxide environment

    Science.gov (United States)

    Kurzman, Joshua A.; Moffitt, Stephanie L.; Llobet, Anna; Seshadri, Ram

    2011-06-01

    Owing to gold's oxophobicity, its oxide chemistry is rather limited, and elevated oxygen pressures are usually required to prepare ternary and quaternary oxide compounds with gold ions. The Au 3+ oxide, La 4LiAuO 8, is remarkable both because it can be prepared at ambient pressure in air, and because of its unusual stability toward thermal decomposition and reduction. The structure of La 4LiAuO 8 was established by Pietzuch et al. using single crystal X-ray diffraction [1]. The compound adopts an ordered modification of the Nd 2CuO 4 structure, containing two-dimensional sheets in which AuO 4 square planes are separated from one another by LiO 4 square planes. In light of the meager X-ray scattering factors of Li and O, relative to La and Au, we report here a neutron powder diffraction study of La 4LiAuO 8, definitively confirming the structure. To our knowledge, this is the first reported neutron diffraction study of any stoichiometric oxide compound of gold. X- N maps, which make use of nuclear positions obtained from Rietveld refinement of time-of-flight neutron diffraction data and electron densities obtained from synchrotron X-ray powder diffraction data, point to the highly covalent nature of the Au-O bonding in La 4LiAuO 8. This is in good agreement with charge densities and Bader charges obtained from full density functional relaxation of the structure.

  6. Carbonado revisited: Insights from neutron diffraction, high resolution orientation mapping and numerical simulations

    Science.gov (United States)

    Piazolo, Sandra; Kaminsky, Felix V.; Trimby, Patrick; Evans, Lynn; Luzin, V.

    2016-11-01

    One of the most controversial diamond types is carbonado, as its origin and geological history are still under debate. Here, we investigate selected carbonado samples using neutron diffraction and high resolution orientation mapping in combination with numerical simulations. Neutron diffraction analyses show that fine grained carbonado samples exhibit a distinct lack of crystallographic preferred orientation. Quantitative crystallographic orientation analyses performed on transmission electron microscope (TEM) sections reveal that the 2-10 μm grains exhibit locally significant internal deformation. Such features are consistent with crystal plastic deformation of a grain aggregate that initially formed by rapid nucleation, characterized by a high number of nucleation sites and no crystallographic preferred orientation. Crystal plastic deformation resulted in high stress heterogeneities close to grain boundaries, even at low bulk strains, inducing a high degree of lattice distortion without significant grain size reduction and the development of a crystallographic preferred orientation. Observed differences in the character of the grain boundary network and internal deformation structures can be explained by significant post-deformation annealing occurring to variable degrees in the carbonado samples. Differences in intensity of crystal bending and subgrain boundary sharpness can be explained by dislocation annihilation and rearrangement, respectively. During annealing grain energy is reduced resulting in distinct changes to the grain boundary geometry. Grain scale numerical modelling shows that anisotropic grain growth, where grain boundary energy is determined by the orientation of a boundary segment relative to the crystallographic orientation of adjacent grains results in straight boundary segments with abrupt changes in orientation even if the boundary is occurring between two triple junctions forming a ;zigzag; pattern. In addition, in diamond anisotropic

  7. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Sano-Furukawa, A., E-mail: sano.asami@jaea.go.jp; Hattori, T. [Quantum Beam Science Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Arima, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Yamada, A. [The University of Shiga Prefecture, Shiga 522-8533 (Japan); Tabata, S.; Kondo, M.; Nakamura, A. [Sumitomo Heavy Industries Co., Ltd., Ehime 792-0001 (Japan); Kagi, H.; Yagi, T. [Geochemical Research Center, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan)

    2014-11-15

    We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm{sup 3}. Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use the aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.

  8. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments.

    Science.gov (United States)

    Sano-Furukawa, A; Hattori, T; Arima, H; Yamada, A; Tabata, S; Kondo, M; Nakamura, A; Kagi, H; Yagi, T

    2014-11-01

    We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm(3). Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use the aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.

  9. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal-organic framework material HKUST-1

    Science.gov (United States)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I. F.; Millange, Franck; Walton, Richard I.

    2013-12-01

    We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal-organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal-organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host.

  10. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal–organic framework material HKUST-1

    Energy Technology Data Exchange (ETDEWEB)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I.F. [ISIS Facility, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0QX (United Kingdom); Millange, Franck [Institut Lavoisier Versailles (CNRS UMR 8180), Université de Versailles, 78035 Versailles (France); Walton, Richard I., E-mail: r.i.walton@warwick.ac.uk [Department of Chemistry, University of Warwick, CV4 7AL, Coventry (United Kingdom)

    2013-12-12

    Highlights: • Binding sites for dihydrogen in a metal–organic framework have been identified. • The combination of diffraction and spectroscopy shows competitive filling of various adsorption sites. • Inelastic neutron scattering over wide-momentum transfer reveals new models for hydrogen-framework interactions. - Abstract: We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal–organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal–organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host.

  11. Neutron diffraction studies of magnetic ordering in Ni-doped LaCoO3

    Science.gov (United States)

    Rajeevan, N. E.; Kumar, Vinod; Kumar, Rajesh; Kumar, Ravi; Kaushik, S. D.

    2015-11-01

    Research in rare earth cobaltite has recently been intensified due to its fascinating magnetic properties. LaCoO3, an important cobaltite, exhibits two prominent susceptibility features at 90 K and 500 K in low field measurement. The magnetic behavior below 100 K is predominantly antiferromagnetic (AFM), but absence of pure AFM ordering and emergence of ferromagnetic coupling on further decreasing temperature made situation more intricate. The present work of studying the effect of Ni substitution at Co site in polycrystalline LaCo1-xNixO3 (0≤x≤0.3) is motivated by the interesting changes in magnetic and electronic properties. For lucid understanding, temperature dependent neutron diffraction (ND) study was carried out. ND patterns fitted with rhombohedral structure in perovskite form with R-3c space group, elucidated information on phase purity. Further temperature dependent cell parameter, Co-O bond-length and Co-O-Co bond angle were calculated for the series of Ni doped LaCoO3. The results are explained in terms of decrease in the crystal field energy which led to the transition of cobalt from low Spin (LS) state to intermediate spin state (IS).

  12. Structural refinement of delithiated LiVO/sub 2/ by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Thackeray, M.M.; de Picciotto, L.A.; David, W.I.F.; Bruce, P.G.; Goodenough, J.B.

    1987-04-01

    Lithium has been extracted from the layered compound LiVO/sub 2/ by chemical oxidation with bromine. Previous X-ray data have shown that in Li/sub 1-x/VO/sub 2/ lithium extraction beyond x approx. = 0.33 is accompanied by migration of one-third of the vanadium ions into the lithium-deficient layer to stabilize the structure; little information about the location of the lithium ions could be gathered from this data. The neutron diffraction data presented in this paper show that at a composition Li/sub 0.22/VO/sub 2/, determined by atomic absorption spectroscopy, the residual lithium ions are distributed over the octahedral sites of the original lithium layer; the possibility that a small fraction of the lithium ions partially occupy the tetrahedral istes in this layer cannot be discounted. No significant occupation by lithium of the tetrahedral or octahedral vacancies in the vanadium-rich layer could be detected.

  13. Structure and dynamics of cholesterol-containing polyunsaturated lipid membranes studied by neutron diffraction and NMR.

    Science.gov (United States)

    Mihailescu, Mihaela; Soubias, Olivier; Worcester, David; White, Stephen H; Gawrisch, Klaus

    2011-01-01

    A direct and quantitative analysis of the internal structure and dynamics of a polyunsaturated lipid bilayer composed of 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0-22:6n3-PC) containing 29 mol% cholesterol was carried out by neutron diffraction, (2)H-NMR and (13)C-MAS NMR. Scattering length distribution functions of cholesterol segments as well as of the sn-1 and sn-2 hydrocarbon chains of 18:0-22:6n3-PC were obtained by conducting experiments with specifically deuterated cholesterol and lipids. Cholesterol orients parallel to the phospholipids, with the A-ring near the lipid glycerol and the terminal methyl groups 3 Å away from the bilayer center. Previously, we reported that the density of polyunsaturated docosahexaenoic acid (DHA, 22:6n3) chains was higher near the lipid-water interface. Addition of cholesterol partially redistributes DHA density from near the lipid-water interface to the center of the hydrocarbon region. Cholesterol raises chain-order parameters of both stearic acid and DHA chains. The fractional order increase for stearic acid methylene carbons C(8)-C(18) is larger, reflecting the redistribution of DHA chain density toward the bilayer center. The correlation times of DHA chain isomerization are short and mostly unperturbed by the presence of cholesterol. The uneven distribution of saturated and polyunsaturated chain densities and the cholesterol-induced balancing of chain distributions may have important implications for the function and integrity of membrane receptors, such as rhodopsin.

  14. In situ observation of the reaction of scandium and carbon by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Juarez-Arellano, Erick A., E-mail: eajuarez@unpa.edu.m [Institut fuer Geowissenschaften, Universitaet Frankfurt, Altenhoeferallee 1, 60438 Frankfurt a.M. (Germany); Universidad del Papaloapan, Circuito Central 200, Parque Industrial, Tuxtepec 68301 (Mexico); Winkler, Bjorn [Institut fuer Geowissenschaften, Universitaet Frankfurt, Altenhoeferallee 1, 60438 Frankfurt a.M. (Germany); Vogel, Sven C. [Los Alamos National Laboratory, Lujan Center. Mail Stop H805, Los Alamos, NM 87545 (United States); Senyshyn, Anatoliy [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universitaet Muenchen, Lichtenbergstr. 1, D-85747 Garching (Germany); Materialwissenschaft, TU Darmstadt, Petersensstr. 23, D-64287 Darmstadt (Germany); Kammler, Daniel R. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Avalos-Borja, Miguel [CNyN, UNAM, A. Postal 2681, Ensenada, B.C. (Mexico)

    2011-01-05

    Research highlights: {yields} Exist two ScC cubic phases with B1-structure type differing in site occupancy of C. {yields} A new orthorhombic scandium carbide phase is formed at 1473(50) K. {yields} The recrystallization of alpha-Sc occurs between 1000 and 1223 K. - Abstract: The formation of scandium carbides by reaction of the elements has been investigated by in situ neutron diffraction up to 1823 K. On heating, the recrystallization of {alpha}-Sc occurs between 1000 and 1223 K. The formation of Sc{sub 2}C and ScC (NaCl-B1 type structure) phases has been detected at 1323 and 1373 K, respectively. The formation of a new orthorhombic scandium carbide phase was observed at 1473(50) K. Once the scandium carbides are formed they are stable upon heating or cooling. No other phases were detected in the present study, in which the system was always carbon saturated. The thermal expansion coefficients of all phases have been determined, they are constant throughout the temperature interval studied.

  15. Distribution of Drug Molecules in Lipid Membranes: Neutron Diffraction and MD Simulations.

    Science.gov (United States)

    Boggara, Mohan; Mihailescu, Ella; Krishnamoorti, Ramanan

    2009-03-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) e.g. Aspirin and Ibuprofen, with chronic usage cause gastro intestinal (GI) toxicity. It has been shown experimentally that NSAIDs pre-associated with phospholipids reduce the GI toxicity and also increase the therapeutic activity of these drugs compared to the unmodified ones. In this study, using neutron diffraction, the DOPC lipid bilayer structure (with and without drug) as well as the distribution of a model NSAID (Ibuprofen) as a function of its position along the membrane normal was obtained at sub-nanometer resolution. It was found that the bilayer thickness reduces as the drug is added. Further, the results are successfully compared with atomistic Molecular Dynamics simulations. Based on this successful comparison and motivated by atomic details from MD, quasi-molecular modeling of the lipid membrane is being carried out and will be presented. The above study is expected to provide an effective methodology to design drug delivery nanoparticles based on a variety of soft condensed matter such as lipids or polymers.

  16. Neutron diffraction studies of the interaction between amphotericin B and lipid-sterol model membranes

    Science.gov (United States)

    Foglia, Fabrizia; Lawrence, M. Jayne; Demeė, Bruno; Fragneto, Giovanna; Barlow, David

    2012-10-01

    Over the last 50 years or so, amphotericin has been widely employed in treating life-threatening systemic fungal infections. Its usefulness in the clinic, however, has always been circumscribed by its dose-limiting side-effects, and it is also now compromised by an increasing incidence of pathogen resistance. Combating these problems through development of new anti-fungal agents requires detailed knowledge of the drug's molecular mechanism, but unfortunately this is far from clear. Neutron diffraction studies of the drug's incorporation within lipid-sterol membranes have here been performed to shed light on this problem. The drug is shown to disturb the structures of both fungal and mammalian membranes, and co-localises with the membrane sterols in a manner consistent with trans-membrane pore formation. The differences seen in the membrane lipid ordering and in the distributions of the drug-ergosterol and drug-cholesterol complexes within the membranes are consistent with the drug's selectivity for fungal vs. human cells.

  17. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-05-25

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane.

  18. Neutron-diffraction studies of the nuclear magnetic phase diagram of copper

    DEFF Research Database (Denmark)

    Annila, A.J.; Clausen, Kurt Nørgaard; Oja, A.S.

    1992-01-01

    -field phase and the intermediate-field structure is of first order. The change from (0 2/3 2/3) at intermediate fields to (100) at zero field is associated with a large region (0.02 less-than-or-equal-to B less-than-or-equal-to 0.06 mT) of coexisting-(100) and (0 2/3 2/3)-type Bragg peaks, and can......We have studied the spontaneous antiferromagnetic (AF) order in the nuclear spin system of copper by use of neutron-diffraction experiments at nanokelvin temperatures. Copper is an ideal model system as a nearest-neighbor-dominated spin-3/2 fcc antiferromagnet. The phase diagram has been...... investigated by measuring the magnetic-field dependence of the (100) reflection, characteristic of a type-I AF structure, and of a Bragg peak at (0 2/3 2/3). The results suggest the presence of high-field (100) phases at 0.12 less-than-or-equal-to B less-than-or-equal-to B(c) almost-equal-to 0.26 mT, for B...

  19. Neutron Powder Diffraction Study on the Magnetic Structure of NdPd5Al2

    Science.gov (United States)

    Metoki, Naoto; Yamauchi, Hiroki; Kitazawa, Hideaki; Suzuki, Hiroyuki S.; Hagihala, Masato; Frontzek, Matthias D.; Matsuda, Masaaki; Fernandez-Baca, Jaime A.

    2017-03-01

    The magnetic structure of NdPd5Al2 has been studied by neutron powder diffraction. We observed the magnetic reflections with the modulation vector q = (1/2,0,0) below the ordering temperature TN. We found a collinear magnetic structure with a Nd moment of 2.7(3) μB at 0.5 K parallel to the c-axis, where the ferromagnetically ordered a-planes stack with a four-Nd-layer period having a ++- sequence along the a-direction with the distance between adjacent Nd layers equal to a/2 (magnetic space group Panma). This "stripe"-like modulation is very similar to that in CePd5Al2 with q = (0.235,0.235,0) with the Ce moment parallel to the c-axis. These structures with in-plane modulation are a consequence of the two-dimensional nature of the Fermi surface topology in this family, originating from the unique crystal structure with a very long tetragonal unit cell and a large distance of >7 Å between the rare-earth layers separated by two Pd and one Al layers.

  20. Thermal expansion and decomposition of jarosite: a high-temperature neutron diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwu [Los Alamos National Laboratory; Zhao, Yusheng [Los Alamos National Laboratory; Vogel, Sven C [Los Alamos National Laboratory; Hickmott, Donald D [Los Alamos National Laboratory; Daemen, Luke L [Los Alamos National Laboratory; Hartl, Monika A [Los Alamos National Laboratory

    2009-01-01

    The structure of deuterated jarosite, KFe{sub 3}(SO{sub 4}){sub 2}(OD){sub 6}, was investigated using time-of-flight neutron diffraction up to its dehydroxylation temperature. Rietveld analysis reveals that with increasing temperature, its c dimension expands at a rate {approx}10 times greater than that for a. This anisotropy of thermal expansion is due to rapid increase in the thickness of the (001) sheet of [Fe(O,OH){sub 6}] octahedra and [SO{sub 4}] tetrahedra with increasing temperature. Fitting of the measured cell volumes yields a coefficient of thermal expansion, a = a{sub 0} + a{sub 1} T, where a{sub 0} = 1.01 x 10{sup -4} K{sup -1} and a{sub 1} = -1.15 x 10{sup -7} K{sup -2}. On heating, the hydrogen bonds, O1{hor_ellipsis}D-O3, through which the (001) octahedral-tetrahedral sheets are held together, become weakened, as reflected by an increase in the D{hor_ellipsis}O1 distance and a concomitant decrease in the O3-D distance with increasing temperature. On further heating to 575 K, jarosite starts to decompose into nanocrystalline yavapaiite and hematite (as well as water vapor), a direct result of the breaking of the hydrogen bonds that hold the jarosite structure together.

  1. X-Ray and Neutron Diffraction Study of CaBi 2O 4

    Science.gov (United States)

    Sora, I. Natali; Wong-Ng, W.; Huang, Q.; Roth, R. S.; Rawn, C. J.; Burton, B. P.; Santoro, A.

    1994-04-01

    The crystal structure of the 1:1 CaO-Bi 2O 3 compound (CaBi 2O 4) has been determined by single crystal X-ray and neutron powder diffraction techniques. The compound crystallizes with the symmetry of the monoclinic space group C2/ c and lattice parameters a = 16.6130(5) Å, b = 11.5900(4) Å, c = 13.9939(4) Å, β = 134.048(1)°. The structure consists of sheets parallel to the b-c plane and connected by Ca-O bonds. There is a structural unit in each layer consisting of four Bi atoms, ten oxygen atoms, and two calcium atoms. The Bi atoms are fourfold coordinated and the coordination polyhedron may be described as a short distorted pyramid, open on one end to accommodate the lone-pair electrons of the bismuth atoms. Calcium is seven-coordinated and the coordination polyhedron may be described as a monocapped trigonal prism.

  2. Single crystal polarized neutron diffraction study of the magnetic structure of HoFeO3

    Science.gov (United States)

    Chatterji, T.; Stunault, A.; Brown, P. J.

    2017-09-01

    Polarised neutron diffraction measurements have been made on HoFeO3 single crystals magnetised in both the [0 0 1] and [1 0 0] directions (Pbnm setting). The polarisation dependencies of Bragg reflection intensities were measured both with a high field of H = 9 T parallel to [0 0 1] at T = 70 K and with the lower field H = 0.5 T parallel to [1 0 0] at T = 5, 15, 25 K. A Fourier projection of magnetization induced parallel to [0 0 1], made using the hk0 reflections measured in 9 T, indicates that almost all of it is due to alignment of Ho moments. Further analysis of the asymmetries of general reflections in these data showed that although, at 70 K, 9 T applied parallel to [0 0 1] hardly perturbs the antiferromagnetic order of the Fe sublattices, it induces significant antiferromagnetic order of the Ho sublattices in the x-y plane, with the antiferromagnetic components of moment having the same order of magnitude as the induced ferromagnetic ones. Strong intensity asymmetries measured in the low temperature Γ2 structure with a lower field, 0.5 T \\Vert [1 0 0] allowed the variation of the ordered components of the Ho and Fe moments to be followed. Their absolute orientations, in the \

  3. Neutron diffraction residual stress analysis of Al2O3/Y-TZP ceramic composites

    Directory of Open Access Journals (Sweden)

    Kunyang Fan

    2016-01-01

    Full Text Available Residual stress measurements were conducted by time-of-flight neutron diffraction and Rietveld analysis method in Al2O3/Y-TZP ceramic composites fabricated by different green processing techniques (a novel tape casting and conventional slip casting and with different Y-TZP content (5 and 40 vol.% Y-TZP. The results show that the residual stresses in Y-TZP particulates are tensile and the ones in Al2O3 matrix are compressive, with almost flat through-thickness residual stress profiles in all bulk samples. As Y-TZP content increased, tension in Y-TZP phase was decreased but compression in Al2O3 matrix was increased (in absolute value. The values of residual stresses for both phases were mainly dependent on the Y-TZP content in the studied Al2O3/Y-TZP composites, irrespective of sample orientation and fabrication processes (a novel tape casting and conventional slip casting.

  4. Optimization of spring exchange coupled ferrites, studied by in situ neutron diffraction

    DEFF Research Database (Denmark)

    Ahlburg, Jakob; Christensen, Mogens; Granados-Miralles, Cecilia

    the 3d orbitals but these can only contain up to 10 electrons. This means that other measures have to be done in order to compete with the REM magnets. One prominent method is mixing a hard and a soft magnetic phase, on the nanoscale, to achieve an exchange coupling between the phases and enhancing...... the magnetic energy product. For the exchange coupling to happen it is crucial to have the right ratio between the hard and the soft phase but also to control the size of the particles since exchange coupling is a very small range effect. In this study, nanoparticles of the spinel CoFe2O4 (hard magnet......) is reduced to a metallic alloy CoFe (soft magnet) by heating the sample and flowing it with hydrogen gas. It is studied in situ using neutron powder diffraction with a time resolution of 12 min. The transition from spinel to pure metal goes through an intermediate step of a metal oxide before being fully...

  5. Determination of crystallographic young’s modulus for sheet metals by in situ neutron diffraction

    Science.gov (United States)

    Vitzthum, S. J.; Hartmann, C.; Weiss, H. A.; Baumgartner, G.; Hofmann, M.; Volk, W.

    2017-09-01

    Elastic recovery is an important issue in sheet metal forming, especially in the context of the upcoming use of high strength steels due to shifted relations between Young’s modulus and strength. One important factor when it comes to elastic recovery prediction is a deep understanding for the elasto-plastic characteristics of the material. Today in general simple elastic behavior with constant Young’s modulus and Poisson’s ratio is assumed. Macroscopic analysis in standard tests shows that these assumptions are insufficient for an appropriate prediction of elastic recovery in sheet metal forming, which is why different phenomenological correlation models are derived. An experimental setup and microscopic investigation to further prove these models and to verify the approaches on another scale for sheet metals is presented within this paper. In the study microscopic deformation behavior of loading and unloading of a HC260LA sheet metal is analysed using in-situ neutron diffraction. Based on the lattice plane strains an orientation specific crystallographic Young’s modulus for different rolling directions is determined.

  6. Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction

    Directory of Open Access Journals (Sweden)

    Jack Binns

    2016-05-01

    Full Text Available The first high-pressure neutron diffraction study in a miniature diamond-anvil cell of a single crystal of size typical for X-ray diffraction is reported. This is made possible by modern Laue diffraction using a large solid-angle image-plate detector. An unexpected finding is that even reflections whose diffracted beams pass through the cell body are reliably observed, albeit with some attenuation. The cell body does limit the range of usable incident angles, but the crystallographic completeness for a high-symmetry unit cell is only slightly less than for a data collection without the cell. Data collections for two sizes of hexamine single crystals, with and without the pressure cell, and at 300 and 150 K, show that sample size and temperature are the most important factors that influence data quality. Despite the smaller crystal size and dominant parasitic scattering from the diamond-anvil cell, the data collected allow a full anisotropic refinement of hexamine with bond lengths and angles that agree with literature data within experimental error. This technique is shown to be suitable for low-symmetry crystals, and in these cases the transmission of diffracted beams through the cell body results in much higher completeness values than are possible with X-rays. The way is now open for joint X-ray and neutron studies on the same sample under identical conditions.

  7. Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction.

    Science.gov (United States)

    Binns, Jack; Kamenev, Konstantin V; McIntyre, Garry J; Moggach, Stephen A; Parsons, Simon

    2016-05-01

    The first high-pressure neutron diffraction study in a miniature diamond-anvil cell of a single crystal of size typical for X-ray diffraction is reported. This is made possible by modern Laue diffraction using a large solid-angle image-plate detector. An unexpected finding is that even reflections whose diffracted beams pass through the cell body are reliably observed, albeit with some attenuation. The cell body does limit the range of usable incident angles, but the crystallographic completeness for a high-symmetry unit cell is only slightly less than for a data collection without the cell. Data collections for two sizes of hexamine single crystals, with and without the pressure cell, and at 300 and 150 K, show that sample size and temperature are the most important factors that influence data quality. Despite the smaller crystal size and dominant parasitic scattering from the diamond-anvil cell, the data collected allow a full anisotropic refinement of hexamine with bond lengths and angles that agree with literature data within experimental error. This technique is shown to be suitable for low-symmetry crystals, and in these cases the transmission of diffracted beams through the cell body results in much higher completeness values than are possible with X-rays. The way is now open for joint X-ray and neutron studies on the same sample under identical conditions.

  8. Residual stress in a laser welded EUROFER blanket module assembly using non-destructive neutron diffraction techniques

    CERN Document Server

    Hughes, D J; Heeley, E L

    2014-01-01

    Whilst the structural integrity and lifetime considerations in welded joints for blanket modules can be predicted using finite element software, it is essential to prove the validity of these simulations. This paper provides detailed analysis for the first time, of the residual stress state in a laser-welded sample with integral cooling channels. State-of-the-art non-destructive neutron diffraction was employed to determine the triaxial stress state and to understand microstructural changes around the heat affected zone. Synchrotron X-ray diffraction was used to probe the variation of strain-free lattice reference parameter around the weld zone allowing correction of the neutron measurements. This paper details an important experimental route to validation of predicted stresses in complex safety-critical reactor components for future applications.

  9. Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings

    Energy Technology Data Exchange (ETDEWEB)

    Stegemann, Robert, E-mail: Robert.Stegemann@bam.de [Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12200 Berlin (Germany); Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas [Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12200 Berlin (Germany); Wimpory, Robert; Boin, Mirko [HZB Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Kreutzbruck, Marc [Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12200 Berlin (Germany); IKT, University of Stuttgart, Pfaffenwaldring 32, 70569 Stuttgart (Germany)

    2017-03-15

    The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth. - Highlights: • Comparison of magnetic microstructure with neutron diffraction stress analysis. • High spatial resolution magnetic stray field images of hypereutectoid TIG welds. • Spatial variations of the stray fields are below the magnetic field of the earth. • GMR spin valve gradiometer arrays adapted for the evaluation of magnetic microstructures. • Magnetic stray fields are closely linked to microstructure of the material.

  10. Fluid bilayer structure determination: Joint refinement in composition space using X-ray and neutron diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    White, S.H. [Univ. of California, Irvine, CA (United States); Wiener, M.C. [Univ. of California, San Francisco, CA (United States)

    1994-12-31

    Experimentally-determined structural models of fluid lipid bilayers are essential for verifying molecular dynamics simulations of bilayers and for understanding the structural consequences of peptide interactions. The extreme thermal motion of bilayers precludes the possibility of atomic-level structural models. Defining {open_quote}the structure{close_quote} of a bilayer as the time-averaged transbilayer distribution of the water and the principal lipid structural groups such as the carbonyls and double-bonds (quasimolecular fragments), one can represent the bilayer structure as a sum of Gaussian functions referred to collectively as the quasimolecular structure. One method of determining the structure is by neutron diffraction combined with exhaustive specific deuteration. This method is impractical because of the expense of the chemical syntheses and the limited amount of neutron beam time currently available. We have therefore developed the composition space refinement method for combining X-ray and minimal neutron diffraction data to arrive at remarkably detailed and accurate structures of fluid bilayers. The composition space representation of the bilayer describes the probability of occupancy per unit length across the width of the bilayer of each quasimolecular component and permits the joint refinement of X-ray and neutron lamellar diffraction data by means of a single quasimolecular structure that is fitted simultaneously to both data sets. Scaling of each component by the appropriate neutron or X-ray scattering length maps the composition-space profile to the appropriate scattering length space for comparison to experimental data. The difficulty with the method is that fluid bilayer structures are generally only marginally determined by the experimental data. This means that the space of possible solutions must be extensively explored in conjunction with a thorough analysis of errors.

  11. High pressure behavior of phlogopite using neutron diffraction and first principle simulations

    Science.gov (United States)

    Chheda, T. D.; Mookherjee, M.; dos Santos, A. M.; Molaison, J.; Manthilake, G. M.; Chantel, J.; Mainprice, D.

    2013-12-01

    Hydrous phases play an important role in the deep water cycle by transporting water into the Earth's interior. Upon, reaching their thermodynamic stability, these hydrous phases decompose and release the water. A part of the water is cycled back to the arc, thus completing the deep water cycle, the remaining water is partitioned into dense hydrous phases and nominally anhydrous phases. Hence, in order to understand the role the hydrous phases in the deep water cycle, it is important to constrain the effect of pressure, temperature, and chemistry on the thermodynamic stability of the hydrous phases. In addition, it is important to constrain the elasticity of these hydrous phases to test whether they can explain the distinct geophysical observations such as lower bulk sound velocities and elastic anisotropy. Phlogopite is a potassium bearing mica that is stable in the hydrated crust and metasomatized mantle up to pressures of ~9 GPa, i.e., base of the upper mantle. We investigated the response of the crystal structure, lattice parameters and unit-cell volume of a natural phlogopite upon compression. We conducted in situ neutron diffraction studies at high-pressures using Paris-Edinburgh press at the Spallation Neutrons and Pressure Diffractometer (SNAP), Oak Ridge National Laboratory. All the experiments were conducted at room temperatures and pressures up to 10 GPa were explored. The equation of state parameters from our experiments could be explained by a finite strain formulation with V0= 487 Å3, K0 = 49 GPa, K' = 4.1. In addition, we have used first principle simulations based on density functional theory to calculate the equation of state and elasticity. The predicted equation of state is in good agreement with the experiments, with V0= 519 Å3, K0 = 45.8 GPa and K'= 6.9. The full elastic constant tensor shows significant anisotropy with the principal elastic constants at theoretical V0: C11= 181 GPa, C22= 185 GPa, C33= 62 GPa, the shear elastic constants- C44

  12. Neutron Diffraction and Electrical Transport Studies on Magnetic Transition in Terbium at High Pressures and Low Temperatures

    Science.gov (United States)

    Thomas, Sarah; Montgomery, Jeffrey; Tsoi, Georgiy; Vohra, Yogesh; Weir, Samuel; Tulk, Christopher; Moreira Dos Santos, Antonio

    2013-06-01

    Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate its transition from a helical antiferromagnetic to a ferromagnetic ordered phase as a function of pressure. The electrical resistance measurements using designer diamonds show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of the ferromagnetic transition decreases at a rate of -16.7 K/GPa till 3.6 GPa, where terbium undergoes a structural transition from hexagonal close packed (hcp) to an α-Sm phase. Above this pressure, the electrical resistance measurements no longer exhibit a change in slope. In order to confirm the change in magnetic phase suggested by the electrical resistance measurements, neutron diffraction measurements were conducted at the SNAP beamline at the Oak Ridge National Laboratory. Measurements were made at pressures to 5.3 GPa and temperatures as low as 90 K. An abrupt increase in peak intensity in the neutron diffraction spectra signaled the onset of magnetic order below the Curie temperature. A magnetic phase diagram of rare earth metal terbium will be presented to 5.3 GPa and 90 K based on these studies.

  13. Diamagneto-Dielectric Anisotropic Wide Angle Impedance Matching Layers for Active Phased Arrays

    NARCIS (Netherlands)

    Silvestri, F.; Cifola, L.; Gerini, G.

    2016-01-01

    In this paper, we present the full process of designing anisotropic metamaterial (MM) wide angle impedance matching (WAIM) layers. These layers are used to reduce the scan losses that occur in active phased arrays for large scanning angles. Numerical results are provided to show the improvement in

  14. GMRT Detection of a New Wide-Angle Tail (WAT) Radio Source ...

    Indian Academy of Sciences (India)

    We report the serendipitous detection of a Wide-Angle Tail (WAT) radio galaxy at 240 and 610 MHz, using the Giant Metrewave Radio Telescope (GMRT). This WAT is hosted by a cD galaxy PGC 1519010 whose photometric redshift given in the SDSS DR6 catalogue is close to the spectroscopic redshifts (0.105, 0.106 and ...

  15. Focusing, imaging, and ATR for the Gotcha 2008 wide angle SAR collection

    Science.gov (United States)

    Gianelli, Christopher D.; Xu, Luzhou

    2013-05-01

    The following work discusses IAA's approach to tackling the wide angle, circular spotlight, synthetic aperture radar (SAR) problem from the 2008 Gotcha wide angle SAR data set, which is publicly released, with unlimited distribution. This data set comes with a MATLAB image formation routine and attendant graphical user inter- face (GUI). We begin by introducing a simple approach to focusing the collected phase history data that utilizes point targets (quadrahedral targets) present in the scene. Two SAR imaging algorithms are then presented, namely, the data-independent backprojection (BP) algorithm and the data-adaptive sparse learning via itera- tive minimization (SLIM) algorithm. These imaging approaches are compared using the 2008 Gotcha wide angle SAR data to perform both a clutter discrimination experiment, as well as an automatic target recognition (ATR) experiment. The ATR system is composed of a target pose and target center estimation preprocessing system, and includes a novel target feature for the final classification stage. Empirical results obtained by applying the focusing approach and imaging algorithms to the 2008 Gotcha wide angle SAR data set are presented and described. The results presented highlight the benefit of applying the SLIM algorithm over its data-independent counterpart, as well as the utility of the novel target feature.

  16. ITER-like wide-angle infrared thermography and visible observation diagnostic using reflective optics

    NARCIS (Netherlands)

    Gauthier, E.; Roche, H.; Thomas, E.; Droineau, S.; Bertrand, B.; Migozzi, J.B.; Vliegenthart, W.A.; Dague, L.; Andrew, P.; Tiscornia, T.; Sands, D.

    2007-01-01

    Control of the plasma-wall interaction during transient events will be a critical issue in ITER. A new ITER-like wide-angle infrared and visible diagnostic, allowing to observe plasma wall interaction in the main chamber, has been installed on JET. The design and the manufacture of the diagnostic

  17. Temperature evolution of magnetic structure of HoFeO3 by single crystal neutron diffraction

    Directory of Open Access Journals (Sweden)

    T. Chatterji

    2017-04-01

    Full Text Available We have investigated the temperature evolution of the magnetic structures of HoFeO3 by single crystal neutron diffraction. The three different magnetic structures werevfound as a function of temperature for HoFeO3. In all three phases the fundamental coupling between the Fe sub-lattices remains the same and only their orientation and the degree of canting away from the ideal axial direction varies. The magnetic polarisation of the Ho sub-lattices in these two higher temperature regions, in which the major components of the Fe moment lie along x and y, is very small. The canting of the moments from the axial directions is attributed to the antisymmetric interactions allowed by the crystal symmetry. In the low temperature phase two further structural transitions are apparent in which the spontaneous magnetisation changes sign with respect to the underlying antiferromagnetic configuration. In this temperature range the antisymmetric exchange energy varies rapidly as the the Ho sub-lattices begin to order. So long as the ordered Ho moments are small the antisymmetric exchange is due only to Fe-Fe interactions, but as the degree of Ho order increases the Fe-Ho interactions take over whilst at the lowest temperatures, when the Ho moments approach saturation the Ho-Ho interactions dominate. The reversals of the spontaneous magnetisation found in this study suggest that in HoFeO3 the sums of the Fe-Fe and Ho-Ho antisymmetric interactions have the same sign as one another, but that of the Ho-Fe terms is opposite.

  18. Antiferroelastic structural transitions in PrAlO{sub 3} by means of neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S. [Department of Physics, Graduate School of Sciences, Kyushu University, 33, Fukuoka 812-8581 (Japan); Neutron Scattering Laboratory, ISSP, University of Tokyo, Tokai, Ibaraki, 319-1106 (Japan); Hidaka, M. [Department of Physics, Graduate School of Sciences, Kyushu University, 33, Fukuoka 812-8581 (Japan); Yoshizawa, H. [Neutron Scattering Laboratory, ISSP, University of Tokyo, Tokai, Ibaraki, 319-1106 (Japan); Wanklyn, B.M. [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU (United Kingdom)

    2006-02-01

    Structural phase transitions of the perovskite-type PrAlO{sub 3} have been studied by using neutron diffraction. The results show that, on cooling, the structures are successively transformed from R anti 3c (Phase II) to Imma (Phase III), Imma (Phase IV), I4/mcm (Phase V) by the 215-K, 153-K, and 122-K transitions. The tilting schemes in Phase III, IV and V are mainly characterized by ({psi}{sub a} = {psi}{sub c}, {psi}{sub b} = 0), ({psi}{sub a} {ne} {psi}{sub c}, {psi}{sub b} = 0), and ({psi}{sub c}, {psi}{sub a} = {psi}{sub b} = 0), respectively, where {psi}{sub a}, {psi}{sub b} and {psi}{sub c} are rotational angles around a-, b-, and c-primitive axes of the AlO{sub 6} octahedron. The refreezes of the condensed R{sub 25} {sub {sup y}} and R {sub 25} {sub {sup x}} optical soft modes occurring at about 215 K and 122 K are interpreted by correlation with the cooperative Jahn-Teller distortion (JTD) of the Pr {sup 3+}-4f orbitals in the PrO {sub 12} polyhedra. The phase IV is characterized as an intermediate state, in which the {psi}{sub a} tilts are continuously reduced by the JTD and disappear just above the 122-K transition. The easy mobility of the domain walls suggests the PrAlO {sub 3} crystal to be of antiferroelastic nature, an unusual property that results from the cooperative displacements of O ions induced by the correlation between the antiphase tilts along primitive axes of the AlO {sub 6} octahedra and the JTD around Pr {sup +3} ions in PrO {sub 12} polyhedra. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Neutron diffraction reveals the existence of confined water in triangular and hexagonal channels of modified YPO4 at elevated temperatures

    Science.gov (United States)

    Mishra, S. K.; Ningthoujam, R. S.; Mittal, R.; Vatsa, R. K.; Zbiri, M.; Sharma, K. Shitaljit; Singh, B. P.; Sastry, P. U.; Hansen, T.; Schober, H.; Chaplot, S. L.

    2017-09-01

    We provide experimental evidence for confinement of water molecules in the pores of hexagonal structure of YPO4 at elevated temperatures up to 600 K using powder neutron diffraction. In order to avoid the large incoherent scattering from the hydrogen, deuterated samples of doped YPO4:Ce-Eu were used for diffraction measurements. The presence of water molecules in the triangular and hexagonal pores in the hexagonal structure was established by detailed simulation of the diffraction pattern and Rietveld refinement of the experimental data. It was observed that the presence of water leads specifically to suppression of the intensity of a peak around Q = 1.04 Å-1 while the intensity of peaks around Q = 1.83 Å-1 is enhanced in the neutron-diffraction pattern. We estimate the number of water molecules as 2.36 (6) per formula units at 300 K and the sizes of the hexagonal and triangular pores as 7.2 (1) and 4.5 (1) Å, respectively. With an increase in temperature, the water content in both pores decreases above 450 K and vanishes around 600 K. Analysis of the powder-diffraction data reveals that the hexagonal structure with the pores persist up to 1273 K, and transforms to another structure at 1323 K. The high-temperature phase is not found to have the zircon- or monazite-type structure, but a monoclinic structure (space group P 2 /m ) with lattice parameters am= 6.826 (4 ) Å ,bm= 6.645 (4 ) Å ,cm= 10.435 (9 ) Å , and β = 107.21 (6) ∘ . The monoclinic structure has about 14% smaller volume than the hexagonal structure which essentially reflects the collapse of the pores. The phase transition and the change in the volume are also confirmed by x-ray-diffraction measurements. The hexagonal-to-monoclinic phase transition is found to be irreversible on cooling to room temperature.

  20. Neutron diffraction and μ SR studies of two polymorphs of nickel niobate NiNb2O6

    Science.gov (United States)

    Munsie, T. J. S.; Wilson, M. N.; Millington, A.; Thompson, C. M.; Flacau, R.; Ding, C.; Guo, S.; Gong, Z.; Aczel, A. A.; Cao, H. B.; Williams, T. J.; Dabkowska, H. A.; Ning, F.; Greedan, J. E.; Luke, G. M.

    2017-10-01

    Neutron diffraction and muon spin relaxation (μ SR ) studies are presented for the newly characterized polymorph of NiNb2O6 (β -NiNb2O6) with space group P4 2/n and μ SR data only for the previously known columbite structure polymorph with space group P b c n . The magnetic structure of the P4 2/n form was determined from neutron diffraction using both powder and single-crystal data. Powder neutron diffraction determined an ordering wave vector k ⃗=(1/2 ,1/2 ,1/2 ) . Single-crystal data confirmed the same k ⃗ vector and showed that the correct magnetic structure consists of antiferromagnetically coupled chains running along the a or b axis in adjacent Ni2 + layers perpendicular to the c axis, which is consistent with the expected exchange interaction hierarchy in this system. The refined magnetic structure is compared with the known magnetic structures of the closely related trirutile phases, NiSb2O6 and NiTa2O6 . μ SR data finds a transition temperature of TN˜15 K for this system, while the columbite polymorph exhibits a lower TN=5.7 (3 ) K. Our μ SR measurements also allowed us to estimate the critical exponent of the order parameter β for each polymorph. We found β =0.25 (3 ) and 0.16(2) for the β and columbite polymorphs, respectively. The single-crystal neutron scattering data give a value for the critical exponent β =0.28 (3 ) for β -NiNb2O6 , in agreement with the μ SR value. While both systems have β values less than 0.3, which is indicative of reduced dimensionality, this effect appears to be much stronger for the columbite system. In other words, although both systems appear to be well described by S =1 spin chains, the interchain interactions in the β polymorph are likely much larger.

  1. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids

    Science.gov (United States)

    Nguyen, Hung T.; Pabit, Suzette A.; Meisburger, Steve P.; Pollack, Lois; Case, David A.

    2014-12-01

    A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb+ and Sr2+) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein-Zernike equations, with results from the Kovalenko-Hirata closure being closest to experiment for the cases studied here.

  2. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids.

    Science.gov (United States)

    Nguyen, Hung T; Pabit, Suzette A; Meisburger, Steve P; Pollack, Lois; Case, David A

    2014-12-14

    A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb(+) and Sr(2+)) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein-Zernike equations, with results from the Kovalenko-Hirata closure being closest to experiment for the cases studied here.

  3. Cu-Zn disorder in Cu2ZnGeSe4: A complementary neutron diffraction and Raman spectroscopy study

    Science.gov (United States)

    Gurieva, G.; Többens, D. M.; Valakh, M. Ya.; Schorr, S.

    2016-12-01

    The crystal structure of the quaternary compound semiconductor Cu2ZnGeSe4 (CZGSe) was investigated by the complementary use of neutron diffraction, and Raman spectroscopy. The powder sample, which resulting from wavelength dispersive X-ray spectroscopy (WDX) turned out to be single phase Cu-rich CZGSe, was synthesized by solid state reaction of the pure elements in an evacuated silica tube at 700 °C. Raman spectroscopy confirmed the homogeneity and phase purity of the sample, in addition, the kesterite type structure was suggested. Rietveld analysis of the neutron diffraction data confirmed that the compound crystallizes in the tetragonal kesterite type structure. The refined site occupancy factors were used to determine the average neutron scattering lengths of the cation sites, giving insights into cation distribution and finally point defect types. Thus it has been shown, that additional to the CuZn-ZnCu anti-site defects in the lattice planes at z=¼ and ¾ (Cu-Zn disorder) also the off-stoichiometry type related point defects like Cui and CuZn occur in Cu-rich CZGSe.

  4. Hemoglobin redux: combining neutron and X-ray diffraction with mass spectrometry to analyse the quaternary state of oxidized hemoglobins

    Energy Technology Data Exchange (ETDEWEB)

    Mueser, Timothy C., E-mail: timothy.mueser@utoledo.edu; Griffith, Wendell P. [Department of Chemistry, University of Toledo, Toledo, OH 43606 (United States); Kovalevsky, Andrey Y. [Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Guo, Jingshu; Seaver, Sean [Department of Chemistry, University of Toledo, Toledo, OH 43606 (United States); Langan, Paul [Department of Chemistry, University of Toledo, Toledo, OH 43606 (United States); Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hanson, B. Leif [Department of Chemistry, University of Toledo, Toledo, OH 43606 (United States)

    2010-11-01

    X-ray and neutron diffraction studies of cyanomethemoglobin are being used to evaluate the structural waters within the dimer–dimer interface involved in quaternary-state transitions. Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence. X-ray crystal studies of Tibetan snow leopard CNmetHb have shown that this protein crystallizes in the B state, a structure with a more open dyad, which possibly has relevance to RBC band 3 protein binding and erythrocyte senescence. R-state equine CNmetHb crystal studies elaborate the solvent differences in the switch and hinge region compared with a human deoxyhemoglobin T-state neutron structure. Lastly, comparison of histidine protonation between the T and R state should enumerate the Bohr-effect protons.

  5. Liquid-metal-based metasurface for terahertz absorption material: Frequency-agile and wide-angle

    Science.gov (United States)

    Song, Q. H.; Zhu, W. M.; Wu, P. C.; Zhang, W.; Wu, Q. Y. S.; Teng, J. H.; Shen, Z. X.; Chong, P. H. J.; Liang, Q. X.; Yang, Z. C.; Tsai, D. P.; Bourouina, T.; Leprince-Wang, Y.; Liu, A. Q.

    2017-06-01

    Terahertz metasurface absorption materials, which absorb terahertz wave through subwavelength artificial structures, play a key role in terahertz wave shielding and stealth technology, etc. However, most of the metasurface absorption materials in terahertz suffer from limited tuning range and narrow incident angle characteristics. Here, we demonstrate a liquid-metal-based metasurface through microfluidic technology, which functions as a terahertz absorption material with broadband tunability and wide-angle features. The proposed terahertz metasurface absorption material exhibits an experimental tuning range from 0.246 THz to 0.415 THz (the tuning range of central frequency reaches 51.1%), and the tuning range maintains at high level with wide-angle response up to 60°.

  6. Synthetic aperture double exposure digital holographic interferometry for wide angle measurement and monitoring of mechanical displacements

    Science.gov (United States)

    Kujawinska, M.; Makowski, P.; Finke, G.; Zak, J.; Józwik, M.; Kozacki, T.

    2015-08-01

    A novel approach for wide angle registration and display of double exposure digital holograms of 3D objects under static or step-wise load is presented. The registration setup concept combines digital Fourier holography with synthetic aperture (SA) technique, which is equivalent to usage of a wide angle, spherically curved detector. The coherent object wavefields extracted from a pair of acquisitions collected in the synthetic aperture double exposure digital holographic interferometry scheme (SA DEDH) are utilized as the input for two different scenarios of investigation, which include (i) numerical determination of 2D phase difference fringes representing deformation of an object and (ii) physical displaying of a 3D image resulting from interference of two object (slightly different) wavefronts registered at the SA double exposure hologram. The capture and display processes are analyzed and implemented. The applicability of both numerical and experimental approach to SA DEDH for testing engineering objects is discussed.

  7. A three-dimensional wide-angle BPM for optical waveguide structures.

    Science.gov (United States)

    Ma, Changbao; Van Keuren, Edward

    2007-01-22

    Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.

  8. Structural studies of lithium zinc borohydride by neutron powder diffraction, Raman and NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ravnsbaek, D.B. [Center for Materials Crystallography (CMC), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark); Frommen, C. [Institute for Energy Technology, P.O. Box 40, N-2027 Kjeller (Norway); Reed, D. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Filinchuk, Y. [Center for Materials Crystallography (CMC), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark); Swiss-Norwegian Beam Lines at ESRF, BP-220, 38043 Grenoble (France); Institute of Condensed Matter and Nanosciences, Universite Catholique de Louvain, 1 Place L. Pasteur, B-1348, Louvain-la-Neuve (Belgium); Sorby, M.; Hauback, B.C. [Institute for Energy Technology, P.O. Box 40, N-2027 Kjeller (Norway); Jakobsen, H.J. [Instrument Centre for Solid-State NMR Spectroscopy and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark); Book, D. [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Besenbacher, F. [Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Skibsted, J. [Instrument Centre for Solid-State NMR Spectroscopy and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark); Jensen, T.R., E-mail: trj@chem.au.dk [Center for Materials Crystallography (CMC), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C (Denmark)

    2011-09-15

    Research highlights: > Structural study of the first interpenetrated framework hydride, LiZn{sub 2}(BH{sub 4}){sub 5} > Determination of deuterium positions and revision of crystal structure by PND. > Raman spectroscopy confirms the presence of isolated [Zn{sub 2}(BD{sub 4}){sub 5}]-bar complex anions. > Determination of quadrupole coupling parameters and chemical shifts by {sup 11}B MAS NMR. - Abstract: The crystal structure of LiZn{sub 2}(BH{sub 4}){sub 5} is studied in detail using a combination of powder neutron diffraction (PND), Raman spectroscopy, and {sup 11}B MAS NMR spectroscopy on LiZn{sub 2}(BH{sub 4}){sub 5} and LiZn{sub 2}({sup 11}BD{sub 4}){sub 5}. The aim is to obtain detailed structural knowledge of the first interpenetrated framework hydride compound, LiZn{sub 2}(BD{sub 4}){sub 5} which consists of doubly interpenetrated 3D frameworks built from dinuclear complex ions [Zn{sub 2}(BD{sub 4}){sub 5}]{sup -} and lithium ions. The positions of the deuterium atoms are determined using Rietveld refinement of the PND data and the orientation of one of the four independent BD{sub 4}{sup -} groups is revised. The current data reveal that the structure of [Zn{sub 2}(BD{sub 4}){sub 5}]{sup -} is more regular than previously reported, as are also the coordinations around the Zn and Li atoms. Both Zn and Li atoms are found to coordinate to the BD{sub 4}{sup -} units via the tetrahedral edges. Some distortion of the angles within the BD{sub 4} units is observed, relative to the expected angles of 109.4 for the ideal tetrahedral coordination. Raman spectroscopy confirms bending and stretching modes from the expected terminal and bridging bidentate BH{sub 4}{sup -} and BD{sub 4}{sup -} units. The {sup 11}B MAS NMR spectrum of the satellite transitions resolves two distinct manifolds of spinning sidebands, which allows estimation of the {sup 11}B quadrupole coupling parameters and isotropic chemical shifts for the four distinct {sup 11}B sites of [Zn{sub 2}(BD

  9. EVALUATION OF THE QUALITY OF ACTION CAMERAS WITH WIDE-ANGLE LENSES IN UAV PHOTOGRAMMETRY

    OpenAIRE

    H. Hastedt; T. Ekkel; T. Luhmann

    2016-01-01

    The application of light-weight cameras in UAV photogrammetry is required due to restrictions in payload. In general, consumer cameras with normal lens type are applied to a UAV system. The availability of action cameras, like the GoPro Hero4 Black, including a wide-angle lens (fish-eye lens) offers new perspectives in UAV projects. With these investigations, different calibration procedures for fish-eye lenses are evaluated in order to quantify their accuracy potential in UAV photogrammetry....

  10. Wide-angle beam splitting by use of positive-negative refraction in photonic crystals.

    Science.gov (United States)

    Luo, Ye; Zhang, Wei; Huang, Yidong; Zhao, Jianhui; Peng, Jiangde

    2004-12-15

    We present a positive-negative refraction effect in which, under certain conditions, an incident plane wave launched into a photonic crystal excites a positive-refracted Bloch wave and a negative-refracted Bloch wave simultaneously, both of which maintain the polarization. By utilizing this phenomenon, wide-angle beam splitting can be realized at the microscale level. Numerical simulations are employed to demonstrate this anomalous refraction behavior.

  11. Wide-angle infrared absorber based on negative index plasmonic metamaterial

    OpenAIRE

    Avitzour, Yoav; Urzhumov, Yaroslav A.; Shvets, Gennady

    2008-01-01

    A metamaterials-based approach to making a wide-angle absorber of infrared radiation is described. The technique is based on an anisotropic Perfectly Impedance Matched Negative Index Material (PIMNIM). It is shown analytically that a sub-wavelength in all three dimensions PIMNIM enables absorption of close to 100% for incidence angles up to $45\\deg$ to the normal. A specific implementation of such frequency-tunable PIMNIM based on plasmonic metamaterials is presented. Applications to infrared...

  12. Residual stress in a laser welded EUROFER blanket module assembly using non-destructive neutron diffraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, D.J., E-mail: d.hughes@warwick.ac.uk [WMG, University of Warwick, Coventry CV4 7AL (United Kingdom); Koukovini-Platia, E. [CERN, CH-1211 Geneva 23 (Switzerland); Heeley, E.L. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2014-02-15

    Highlights: • Residual stresses were determined in a welded EUROFER blanket assembly with integrated cooling channels. • Good agreement was seen between experimentally determined and predicted stresses. • We show that microstructure changes that occur in EUROFER steels during welding must be considered for residual stress determination. • An experimental route is proposed for validation of predicted stresses in reactor components using non-destructive diffraction techniques. - Abstract: Whilst the structural integrity and lifetime considerations in welded joints for blanket modules can be predicted using finite element software, it is essential to prove the validity of these simulations. This paper provides detailed analysis for the first time, of the residual stress state in a laser-welded sample with integral cooling channels. State-of-the-art non-destructive neutron diffraction was employed to determine the triaxial stress state and to understand microstructural changes around the heat affected zone. Synchrotron X-ray diffraction was used to probe the variation of strain-free lattice reference parameter around the weld zone allowing correction of the neutron measurements. This paper details an important experimental route to validation of predicted stresses in complex safety-critical reactor components for future applications.

  13. Detection of Clinically Significant Retinopathy of Prematurity Using Wide-angle Digital Retinal Photography

    Science.gov (United States)

    Chiang, Michael F.; Melia, Michele; Buffenn, Angela N.; Lambert, Scott R.; Recchia, Franco M.; Simpson, Jennifer L.; Yang, Michael B.

    2013-01-01

    Objective To evaluate the accuracy of detecting clinically significant retinopathy of prematurity (ROP) using wide-angle digital retinal photography. Methods Literature searches of PubMed and the Cochrane Library databases were conducted last on December 7, 2010, and yielded 414 unique citations. The authors assessed these 414 citations and marked 82 that potentially met the inclusion criteria. These 82 studies were reviewed in full text; 28 studies met inclusion criteria. The authors extracted from these studies information about study design, interventions, outcomes, and study quality. After data abstraction, 18 were excluded for study deficiencies or because they were superseded by a more recent publication. The methodologist reviewed the remaining 10 studies and assigned ratings of evidence quality; 7 studies were rated level I evidence and 3 studies were rated level III evidence. Results There is level I evidence from ≥5 studies demonstrating that digital retinal photography has high accuracy for detection of clinically significant ROP. Level III studies have reported high accuracy, without any detectable complications, from real-world operational programs intended to detect clinically significant ROP through remote site interpretation of wide-angle retinal photographs. Conclusions Wide-angle digital retinal photography has the potential to complement standard ROP care. It may provide advantages through objective documentation of clinical examination findings, improved recognition of disease progression by comparing previous photographs, and the creation of image libraries for education and research. Financial Disclosure(s) Proprietary or commercial disclosure may be found after the references. PMID:22541632

  14. Neutron diffraction study of the inverse spinels Co2TiO4 and Co2SnO4

    Science.gov (United States)

    Thota, S.; Reehuis, M.; Maljuk, A.; Hoser, A.; Hoffmann, J.-U.; Weise, B.; Waske, A.; Krautz, M.; Joshi, D. C.; Nayak, S.; Ghosh, S.; Suresh, P.; Dasari, K.; Wurmehl, S.; Prokhnenko, O.; Büchner, B.

    2017-10-01

    We report a detailed single-crystal and powder neutron diffraction study of Co2TiO4 and Co2SnO4 between the temperature 1.6 and 80 K to probe the spin structure in the ground state. For both compounds the strongest magnetic intensity was observed for the (111)M reflection due to ferrimagnetic ordering, which sets in below TN=48.6 and 41 K for Co2TiO4 and Co2SnO4 , respectively. An additional low intensity magnetic reflection (200)M was noticed in Co2TiO4 due to the presence of an additional weak antiferromagnetic component. Interestingly, from both the powder and single-crystal neutron data of Co2TiO4 , we noticed a significant broadening of the magnetic (111)M reflection, which possibly results from the disordered character of the Ti and Co atoms on the B site. Practically, the same peak broadening was found for the neutron powder data of Co2SnO4 . On the other hand, from our single-crystal neutron diffraction data of Co2TiO4 , we found a spontaneous increase of particular nuclear Bragg reflections below the magnetic ordering temperature. Our data analysis showed that this unusual effect can be ascribed to the presence of anisotropic extinction, which is associated to a change of the mosaicity of the crystal. In this case, it can be expected that competing Jahn-Teller effects acting along different crystallographic axes can induce anisotropic local strain. In fact, for both ions Ti3 + and Co3 +, the 2 tg levels split into a lower dx y level yielding a higher twofold degenerate dx z/dy z level. As a consequence, one can expect a tetragonal distortion in Co2TiO4 with c /a work.

  15. A Neutron Diffraction Study of the Nuclear and Magnetic Structure of MnNb2O6

    DEFF Research Database (Denmark)

    Nielsen, Oliver Vindex; Lebech, Bente; Krebs Larsen, F.

    1976-01-01

    A neutron diffraction study was made of the nuclear and the magnetic structure of MnNb2O6 single crystals. The thirteen nuclear parameters (space group Pbcn) were determined from 304 reflections at room temperature. The antiferromagnetic structure (Neel temperature=4.4K), determined at 1.2K......, is a superposition of G- and A-type structures of the form 0.90 Gx+0.34 Gy+0.28 Az. The corresponding magnetic space group is P2'1/c....

  16. Baromagnetic Effect in Antiperovskite Mn3 Ga0.95 N0.94 by Neutron Powder Diffraction Analysis.

    Science.gov (United States)

    Shi, Kewen; Sun, Ying; Yan, Jun; Deng, Sihao; Wang, Lei; Wu, Hui; Hu, Pengwei; Lu, Huiqing; Malik, Muhammad Imran; Huang, Qingzhen; Wang, Cong

    2016-05-01

    A baromagnetic effect in a novel tetragonal magnetic structure is introduced by vacancies in Mn3 Ga0.95 N0.94 , due to the change of the Mn-Mn distance and their spin re-orientation induced by a pressure field. This effect is proven for the first time in antiperovskite compounds by neutron powder diffraction analysis. This feature will enable wide applications in magnetoelectric devices and intelligent instruments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings

    Science.gov (United States)

    Stegemann, Robert; Cabeza, Sandra; Lyamkin, Viktor; Bruno, Giovanni; Pittner, Andreas; Wimpory, Robert; Boin, Mirko; Kreutzbruck, Marc

    2017-03-01

    The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction (ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth.

  18. Neutron and high-pressure X-ray diffraction study of hydrogen-bonded ferroelectric rubidium hydrogen sulfate.

    Science.gov (United States)

    Binns, Jack; McIntyre, Garry J; Parsons, Simon

    2016-12-01

    The pressure- and temperature-dependent phase transitions in the ferroelectric material rubidium hydrogen sulfate (RbHSO4) are investigated by a combination of neutron Laue diffraction and high-pressure X-ray diffraction. The observation of disordered O-atom positions in the hydrogen sulfate anions is in agreement with previous spectroscopic measurements in the literature. Contrary to the mechanism observed in other hydrogen-bonded ferroelectric materials, H-atom positions are well defined and ordered in the paraelectric phase. Under applied pressure RbHSO4 undergoes a ferroelectric transition before transforming to a third, high-pressure phase. The symmetry of this phase is revised to the centrosymmetric space group P21/c, resulting in the suppression of ferroelectricity at high pressure.

  19. Neutron and X-ray diffraction and empirical potential structure refinement modelling of magnesium stabilised amorphous calcium carbonate

    DEFF Research Database (Denmark)

    Cobourne, G.; Mountjoy, G.; Rodriguez Blanco, Juan Diego

    2014-01-01

    Amorphous calcium carbonate (ACC) plays a key role in biomineralisation processes in sea organisms. Neutron and X-ray diffraction have been performed for a sample of magnesium-stabilised ACC, which was prepared with a Mg:Ca ratio of 0.05:1 and 0.25 H2O molecules per molecule of CO3. The empirical...... potential structure refinement method has been used to make a model of magnesium-stabilised ACC and the results revealed a fair agreement with the experimental diffraction data. The model has well-defined CO3 and H2O molecules. The average coordination number of Ca is 7.4 and is composed of 6.8 oxygen atoms...

  20. Neutron powder diffraction study on Mg sup 1 sup 1 B sub 2 synthesized by different procedures

    CERN Document Server

    Oikawa, K; Arai, M; Mochiku, T; Takeya, H; Furuyama, M; Kamisawa, S; Kadowaki, K

    2002-01-01

    The crystal structure of a new superconducting material, MgB sub 2 , was studied by high-resolution neutron powder diffraction as a function of temperature from 8K to 305K. Two samples of Mg sup 1 sup 1 B sub 2 were measured; one was synthesized for 2d at 1050degC, and the other one was done for 1d at 1100degC. All of the diffraction data were precisely refined by the Rietveld method, and we confirmed that there was no clear anomaly on the temperature dependence of the lattice constants around T sub c for both samples. The difference in sample synthesis procedures affects the profile shapes of the 001 reflections, whereas the hh0 lines are almost the same.

  1. Thermo-mechanical analysis of ITER first mirrors and its use for the ITER equatorial visible/infrared wide angle viewing system optical design

    Energy Technology Data Exchange (ETDEWEB)

    Joanny, M.; Salasca, S.; Dapena, M.; Cantone, B.; Travere, J. M. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Thellier, C.; Ferme, J. J. [THALES SESO, 13593 Aix-en-Provence Cedex 3 (France); Marot, L. [Department of Physics, University of Basel, 4056 Basel (Switzerland); Buravand, O. [Institut d' Optique Graduate School, 91127 Palaiseau (France); Perrollaz, G. [AMETRA, 13770 Venelles (France); Zeile, C. [INR, KIT, D-76344 Eggenstein-Leopoldshafen (Germany)

    2012-10-15

    ITER first mirrors (FMs), as the first components of most ITER optical diagnostics, will be exposed to high plasma radiation flux and neutron load. To reduce the FMs heating and optical surface deformation induced during ITER operation, the use of relevant materials and cooling system are foreseen. The calculations led on different materials and FMs designs and geometries (100 mm and 200 mm) show that the use of CuCrZr and TZM, and a complex integrated cooling system can limit efficiently the FMs heating and reduce their optical surface deformation under plasma radiation flux and neutron load. These investigations were used to evaluate, for the ITER equatorial port visible/infrared wide angle viewing system, the impact of the FMs properties change during operation on the instrument main optical performances. The results obtained are presented and discussed.

  2. In situ Neutron Diffraction during Casting: Determination of Rigidity Point in Grain Refined Al-Cu Alloys

    Directory of Open Access Journals (Sweden)

    Jean-Marie Drezet

    2014-02-01

    Full Text Available The rigidity temperature of a solidifying alloy is the temperature at which the solid plus liquid phases are sufficiently coalesced to transmit long range tensile strains and stresses. It determines the point at which thermally induced deformations start to generate internal stresses in a casting. As such, it is a key parameter in numerical modelling of solidification processes and in studying casting defects such as solidification cracking. This temperature has been determined in Al-Cu alloys using in situ neutron diffraction during casting in a dog bone shaped mould. In such a setup, the thermal contraction of the solidifying material is constrained and stresses develop at a hot spot that is irradiated by neutrons. Diffraction peaks are recorded every 11 s using a large detector, and their evolution allows for the determination of the rigidity temperatures. We measured rigidity temperatures equal to 557 °C and 548 °C, depending on cooling rate, for a grain refined Al-13 wt% Cu alloy. At high cooling rate, rigidity is reached during the formation of the eutectic phase and the solid phase is not sufficiently coalesced, i.e., strong enough, to avoid hot tear formation.

  3. In situ Neutron Diffraction during Casting: Determination of Rigidity Point in Grain Refined Al-Cu Alloys

    Science.gov (United States)

    Drezet, Jean-Marie; Mireux, Bastien; Szaraz, Zoltan; Pirling, Thilo

    2014-01-01

    The rigidity temperature of a solidifying alloy is the temperature at which the solid plus liquid phases are sufficiently coalesced to transmit long range tensile strains and stresses. It determines the point at which thermally induced deformations start to generate internal stresses in a casting. As such, it is a key parameter in numerical modelling of solidification processes and in studying casting defects such as solidification cracking. This temperature has been determined in Al-Cu alloys using in situ neutron diffraction during casting in a dog bone shaped mould. In such a setup, the thermal contraction of the solidifying material is constrained and stresses develop at a hot spot that is irradiated by neutrons. Diffraction peaks are recorded every 11 s using a large detector, and their evolution allows for the determination of the rigidity temperatures. We measured rigidity temperatures equal to 557 °C and 548 °C, depending on cooling rate, for a grain refined Al-13 wt% Cu alloy. At high cooling rate, rigidity is reached during the formation of the eutectic phase and the solid phase is not sufficiently coalesced, i.e., strong enough, to avoid hot tear formation. PMID:28788507

  4. A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes

    Science.gov (United States)

    Li, Long; Yang, Yang; Liang, Changhong

    2011-09-01

    In this paper, we report the design, fabrication, and measurement of a metamaterial absorber that is constructed of a periodic array of tetra-arrow resonators (TARs) printed on a dielectric material backed by a metal ground. The TAR absorber can operate at three different resonant modes. By adjusting geometry parameters of the structure, we can obtain a dual-band, polarization-insensitive, wide-angle thin absorber or a single band but ultra-miniature absorber that corresponds to three different resonant modes. Waveguide experiments are conducted to verify the proposed designs effectively. The measurement results show that all three absorptivity peaks come near to perfection.

  5. Broadband and wide-angle nonreciprocity with a non-Hermitian metamaterial

    Science.gov (United States)

    Barton, David R.; Alaeian, Hadiseh; Lawrence, Mark; Dionne, Jennifer

    2018-01-01

    We theoretically demonstrate a non-Hermitian metamaterial exhibiting broadband and wide-angle nonreciprocity. The metamaterial consists of planar metal-dielectric layers with a parity-time (PT ) symmetric distribution of loss and gain. With increasing loss and gain, the band structure and band gap are strongly modified; further, the PT potential leads to distinct internal field distributions when illuminated from different sides. Including nonlinearities arising from natural loss and gain saturation leads to nonreciprocal transmission in the visible over a 50-nm wavelength and ±60∘ angular range.

  6. Wide-angle infrared metamaterial absorber with near-unity absorbance

    Science.gov (United States)

    Guo, Linyang; Ma, Xiaohui; Zou, Yonggang; Zhang, Ran; Wang, Jia'an; Zhang, Da

    2018-01-01

    A wide-angle infrared perfect metamaterial absorber is experimentally verified. The perfect metamaterial absorber shows polarization-independent at normal incidence and displays high absorption rate at a large angle of incidence. The absorption property of the proposed metamaterial absorber is sensitive to the change of refractive index of environmental mediums. An absorption sensor scheme is proposed by combining the concept of the perfect metamaterial absorber and the variation of the refractive index of the environmental medium. Measured results indicate that the proposed absorption sensor scheme achieves high FOM values with different surrounding mediums (air, water, and glucose solution).

  7. Wide-angle X-ray scattering study of heat-treated PEEK and PEEK composite

    Science.gov (United States)

    Cebe, Peggy; Lowry, Lynn; Chung, Shirley Y.; Yavrouian, Andre; Gupta, Amitava

    1987-01-01

    Samples of poly(etheretherketone) (PEEK) neat resin and APC-2 carbon fiber composite were subjected to various heat treatments, and the effect of quenching and annealing treatments was studied by wide-angle X-ray scattering. It is found that high-temperature treatments may introduce disorder into neat resin and composite PEEK when followed by rapid cooling. The disorder is metastable and can revert to ordered state when the material is heated above its glass transition temperature and then cooled slowly. The disorder may result from residual thermal stresses.

  8. Studying sub-crustal reflectors in SW-Spain with wide-angle profiles

    Science.gov (United States)

    Palomeras, Imma; Ayarza, Puy; Carbonell, Ramon; Afonso, JuanCarlos; Diaz, Jordi

    2017-04-01

    It is nowadays widely accepted that the mantle is highly heterogeneous and has lithologies that are capable of giving impedance enough to be observed in seismic data. Nevertheless, observing those impedance contrasts at mantle depths is a challenging problem. SW Iberia has been sampled by different deep vertical reflection and wide-angle reflection/refraction experiments ILIHA, IBERSEIS, and ALCUDIA, and hence provide a good opportunity to study seismically sub-crustal reflectors. These datasets have imaged a conspicuous sub-crustal reflector. This mantle reflector was first identified on the IBERSEIS wide angle reflection shot-gathers at large offsets (above 180 km). It was modeled as a boundary located between 61-72 km depth with a Vp increase from 8.2 km/s to 8.3 km/s. The fact that this reflector was not identified in the coincident vertical incidence dataset led us to interpret it as a gradient zone. A correlation with the 'Hales gradient zone', i.e. the boundary between spinel and garnet peridotites, was our preferred interpretation. The ALCUDIA experiment also shows prominent sub-crustal arrivals with the same characteristics as those observed in the IBERSEIS wide-angle data. However, these reflections also appear, locally and at 19 s TWT, in the vertical incidence dataset. In addition, the ALCUDIA wide-angle dataset shows a deeper reflector that maybe preliminarily associated with mantle anisotropy or even with the lithosphere-asthenosphere boundary. Both upper mantle reflectors are modeled at 65 km and 100 km depth, respectively, shallowing to the north to 55 km and 90 km depth. Integration of the information provided by the IBERSEIS and ALCUDIA datasets with older and lower resolution data from the ILIHA project, where three sub-crustal phases were identified in SW Iberia, allows us to conclude that, in this area, mantle reflectivity is outstanding. Also, modeling of all the datasets contributes to map, at a regional scale, the Hales discontinuity or

  9. Photonic crystals with broadband, wide-angle, and polarization-insensitive transparency.

    Science.gov (United States)

    Yao, Zhongqi; Luo, Jie; Lai, Yun

    2016-11-01

    Photonic crystals (PhCs) are well-known band gap materials that can block the propagation of electromagnetic waves within certain frequency regimes. Here, we demonstrate that PhCs can also exhibit the contrary property: broadband, wide-angle, and polarization-insensitive transparency beyond normal dielectric solids. Such high transparency attributes to robust impedance matching between a large group of eigen-states in PhCs and propagating waves in free space. As a demonstration, a transparent wall for broadband microwaves is designed for enhancing the transmittance of WiFi and 4G signals.

  10. 5G antenna array with wide-angle beam steering and dual linear polarizations

    KAUST Repository

    Klionovski, Kirill

    2017-10-25

    In this paper, we present the design of a switched-beam antenna array at millimeter-wave frequencies for future 5G applications. The proposed antenna array is based on wideband patch antenna elements and a Butler matrix feed network. The patch antenna has a broad radiation pattern for wide-angle beam steering and allows the simultaneous operation with two orthogonal linear polarizations. A combination of two separated Butler matrices provides independent beam steering for both polarizations in the wide operating band. The antenna array has a simple multilayer construction, and it is made on a low-cost Rogers laminate.

  11. Characterisation of polycrystal deformation by numerical modelling and neutron diffraction measurements

    DEFF Research Database (Denmark)

    Clausen, Bjørn

    , that the effect of the elastic anisotropy is limited to the very early stages of plasticity (εP neutron diffraction mea-surements of elastic lattice strains...... reflections. The self-consistent model is used to determine the most suitable reflection for technological applications of neutron diffraction, where focus is on the volume av-erage stress state in engineering components. To be able to successfully convert the measured elastic lattice strains for a specific...... the smallest build-up of residual lattice strains. Below 5% deforma-tion the deviations from linearity and the residual strains are below the normal strain resolution of a neutron diffraction measurement. The model predictions have pinpointed, that the selection of the reflection is crucial for the validity...

  12. Characterisation of a neutron diffraction detector prototype based on the Trench-MWPC technology

    Science.gov (United States)

    Buffet, J. C.; Clergeau, J. F.; Cuccaro, S.; Guérard, B.; Mandaroux, N.; Marchal, J.; Pentenero, J.; Platz, M.; Van Esch, P.

    2017-12-01

    The Trench Multi-Wire-Proportional-Chamber is a new type of MWPC which has been designed to fulfill the requirements of the 2D curved neutron detector under development for the XtremeD neutron diffractometer, under construction at ILL. In this design, anode wires are mounted orthogonally to a stack of metallic cathode plates which are insulated from each other by ceramic spacers. A row of teeth is spark-eroded along the edge of the cathode plates so that anode wires appear to be stretched along trenches machined across a segmented cathode plane. This design was tested on a prototype detector module mounted in a vessel filled with a mixture of 3He-Ar-CO2 at 7 bar. The detector configuration as well as measurements performed on this prototype at ILL neutron test beam line are presented. Results show that the Trench-MWPC design provides uniform amplification gain across the detection area despite the absence of the top cathode wires used to balance the electric field in standard Cathode-Anode-Cathode MWPC configurations. The presence of cathode trench side-walls surrounding anode wires minimises the spread of neutron-induced charge across electrodes, allowing for detector operation at reduced amplification gain without compromising the signal to noise per electrode. Pulse-height spectra acquired under various neutron flux conditions demonstrated that the Trench-MWPC design minimises space-charge effects, thanks to its low amplification gain combined with the fast collection of ions by cathode trench side-walls surrounding anode wires. Measurements also showed that this space-charge effect reduction results in a high local count-rate of ~100 kHz at 10% count loss when irradiating the detector with a small 5 mm × 5 mm neutron beam.

  13. First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments

    Directory of Open Access Journals (Sweden)

    Maxime Deutsch

    2014-05-01

    Full Text Available Since the 1980s it has been possible to probe crystallized matter, thanks to X-ray or neutron scattering techniques, to obtain an accurate charge density or spin distribution at the atomic scale. Despite the description of the same physical quantity (electron density and tremendous development of sources, detectors, data treatment software etc., these different techniques evolved separately with one model per experiment. However, a breakthrough was recently made by the development of a common model in order to combine information coming from all these different experiments. Here we report the first experimental determination of spin-resolved electron density obtained by a combined treatment of X-ray, neutron and polarized neutron diffraction data. These experimental spin up and spin down densities compare very well with density functional theory (DFT calculations and also confirm a theoretical prediction made in 1985 which claims that majority spin electrons should have a more contracted distribution around the nucleus than minority spin electrons. Topological analysis of the resulting experimental spin-resolved electron density is also briefly discussed.

  14. Development of a prompt gamma activation analysis facility using diffracted polychromatic neutron beam

    CERN Document Server

    Byun, S H; Choi, H D

    2002-01-01

    A prompt gamma activation analysis facility has recently been developed at Hanaro, the 24 MW research reactor in the Korea Atomic Energy Research Institute. Polychromatic thermal neutrons are extracted by setting pyrolytic graphite crystals at a Bragg angle of 45 deg. . The detection system comprises a large single n-type HPGe detector, signal electronics and a fast ADC. Neutron beam characterization was performed both theoretically and experimentally. The neutron flux was measured to be 7.9x10 sup 7 n/cm sup 2 s in a 1x1 cm sup 2 beam area at the sample position with a uniformity of 12%. The corresponding Cd-ratio for gold was found to be 266. The beam quality was compared with other representative thermal neutron prompt gamma activation analysis. The detection efficiency was calibrated up to 11 MeV using a set of radionuclides and the (n,gamma) reactions of N and Cl. Finally, the sensitivities and the detection limits were obtained for several elements.

  15. The effect of experimental resolution on crystal reflectivity and secondary extinction in neutron diffraction

    DEFF Research Database (Denmark)

    Dietrich, O.W.; Als-Nielsen, Jens Aage

    1965-01-01

    The reflectivity for neutrons of a plane slab crystal is calculated in the transmission case when the crystal is placed between two Seller collimators. The calculations indicate that the crystal reflectivity, as well as the secondary extinction coefficient, depends signicantly on the angular...... resolution of the collimators. Curves are given for the extinction of the crystal with different crystal and collimator parameters....

  16. Pair-correlation function in disordered β-brass as studied by neutron diffraction

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Dietrich, O.W.

    1967-01-01

    Critical neutron scattering around a superlattice reflection above Tc yields information on the pair correlation function for occupation of lattice sites. The Ornstein-Zernike correlation function e-k 1 r/r is proved to fit the data excellently, and at 8.9deg K above Tc the inverse correlation...

  17. Magnetic Structure of Tb-Tm Alloys Studied by Neutron Diffraction

    DEFF Research Database (Denmark)

    Hansen, P.; Lebech, Bente

    1976-01-01

    Single crystals of Tb-Tm alloys with Tm contents of 12%, 40%, 55% and 65% were investigated by neutron diffractometry over the temperature range 4.2-300K. All these alloys order magnetically to a basal plane spiral below the Neel temperature. Below the Curie temperature the magnetic ordering...

  18. A novel digital shearography with wide angle of view for nondestructive inspection

    Science.gov (United States)

    Wu, Sijin; Yang, Lianxiang

    2011-05-01

    Digital shearography is widely accepted in non-destructive inspection of honeycomb sandwich structures due to its advantages of validity, non-contact, simple setup and robustness. In digital shearography, Michelson shear interferometer (MSI) is a dominant shearing device because it is easy to change the shearing amount and direction. However, the conventional digital shearography based on MSI suffers from the small angle of view which limits its employments in full field inspection of a big size sample at a short working distance. A novel structure digital shearography with wide angle of view introduced in this paper is developed to overcome the disadvantage. In the new shearography optical arrangement, the image lens is separated with the camera and locates at the front of system. A 4f imaging system is used to transmit the image of object from the imaging lens to the camera. The shearing device, MSI, locates between the imaging lens and camera. The angle of view in this shearography has no limit to the setup but it is based on several parameters, such as the focus length of the imaging lens and the size of the imaging device inside the camera. Thus wide angle of view can be easily achieved by changing those parameters. Using this novel digital shearography, full field inspection of the big size honeycomb sandwich structure can be rapidly conducted at a short working distance.

  19. Neutron diffraction studies on La2−xDyxCa2xBa2Cu4+2xOz ...

    Indian Academy of Sciences (India)

    Abstract. Structural studies on Dy-substituted La-2125 type superconductors have been carried out by neutron diffraction experiments at room temperature using a monochromatic neutron beam of wavelength (λ) = 1.249 Å. A series of samples with. La2−xDyxCa2xBa2Cu4+2xOz stoichiometric composition, for x = 0.1–0.5, ...

  20. The structure of NH4F as determined by neutron and X-ray diffraction

    NARCIS (Netherlands)

    Adrian, H.W.W.; Feil, D.

    1969-01-01

    Neutron and X-ray intensities of NH4F were measured at -196°C and -155°C respectively. The wurtzite type structure and space group P63mc were confirmed. The displacement of the two h.c.p. sublattices, formed by each of the F-- and NH+4- ions, is such that all bond-distances are equivalent. The N-H

  1. Thermodynamic properties and neutron diffraction studies of silver ferrite AgFeO2

    Science.gov (United States)

    Vasiliev, A.; Volkova, O.; Presniakov, I.; Baranov, A.; Demazeau, G.; Broto, J.-M.; Millot, M.; Leps, N.; Klingeler, R.; Büchner, B.; Stone, M. B.; Zheludev, A.

    2010-01-01

    We present thermodynamic and neutron scattering data on silver ferrite AgFeO2. The data imply that strong magnetic frustration Θ/TN~10 and magnetic ordering arise via two successive phase transitions at T2 = 7 K and T1 = 16 K. At Tdelafossite CuFeO2, the wavevector of the magnetic structure is independent of temperature both at T

  2. Investigation on subduction erosion of the Central Costa Rica margin with seismic wide- angle data

    Science.gov (United States)

    Zhu, J.; Flueh, E. R.; Kopp, H.; Klaeschen, D.

    2007-12-01

    Seismic wide-angle investigations along the Pacific margin off Central Costa Rica were carried out using closely spaced ocean bottom hydrophones and seismometers along two parallel strike and two parallel dip lines, intersecting at the mid slope. The structure and the P-wave velocities of the subducted oceanic Cocos Plate and overriding Carribean Plate were determined by modeling the wide-angle seismic data combined with the analysis of coincident reflection seismic data and the use of synthetic seismograms. Detailed velocity-depth distributions of two dip-lines and two strike-lines on the continental slope will be presented. Below the slope sediment, a wedge-shaped body, the margin wedge is defined by high velocities (4.3-6.1 km/s). This wedge shows a high velocity gradient zone in the uppermost one to two km, underlain by a low velocity gradient to the plate boundary. Between the subducted plate and overriding plate the low velocity zone including a lense-type structure is seen. This Megalens (4.0-4.3 km/s) and the subducted sediment comprise a low velocity zone (LVZ) all along the plate boundary. This LVZ is constrained by joint analysis of reflection seismic data and wide-angle data. The thickness of the wedge varies along the strike, this is associated with the subduction of the extension of Quepos Plateau, which also resulted in uplift of the margin. The extensional forearc environment is manifested by the normal faults indicated on the the multi-channel seismic (MCS) data. The Megalens is most probably comprised of material transferred from upper margin wedge at the tip of the wedge. The velocity structure within the Megalense resembles the velocities at the tip of the wedge, and is clearly lower than the oceanic crust, but higher thn subducted sediment. If this interpretation is valid, this material has been transported 16 km landward, which implies it was detached from the upper plate 0.2 Ma ago.

  3. Correlation of Magnetic Properties and Residual Stress Distribution Monitored by X-Ray and Neutron Diffraction in Welded AISI 1008 Steel Sheets

    Czech Academy of Sciences Publication Activity Database

    Vourna, P.; Hervoches, Charles; Vrána, Miroslav; Ktena, A.; Hristoforou, E.

    2015-01-01

    Roč. 51, č. 1 (2015), s. 6200104 ISSN 0018-9464 R&D Projects: GA ČR GB14-36566G; GA MŠk LM2011019 EU Projects: European Commission(XE) 283883 - NMI3-II Institutional support: RVO:61389005 Keywords : Magnetic Barkhausen noise (MBN) * neutron diffraction (ND) * residual stress * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.277, year: 2015

  4. A gas microstrip wide angle X-ray detector for application in synchrotron radiation experiments

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Lipp, J; Mir, J A; Simmons, J E; Spill, E J; Stephenson, R; Dobson, B R; Farrow, R C; Helsby, W I; Mutikainen, R; Suni, I

    2002-01-01

    The Gas Microstrip Detector has counting rate capabilities several orders of magnitude higher than conventional wire proportional counters while providing the same (or better) energy resolution for X-rays. In addition the geometric flexibility provided by the lithographic process combined with the self-supporting properties of the substrate offers many exciting possibilities for X-ray detectors, particularly for the demanding experiments carried out on Synchrotron Radiation Sources. Using experience obtained in designing detectors for Particle Physics we have developed a detector for Wide Angle X-ray Scattering studies. The detector has a fan geometry which makes possible a gas detector with high detection efficiency, sub-millimetre spatial resolution and good energy resolution over a wide range of X-ray energy. The detector is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  5. Polarization-independent wide-angle triple-band metamaterial absorber.

    Science.gov (United States)

    Shen, Xiaopeng; Cui, Tie Jun; Zhao, Junming; Ma, Hui Feng; Jiang, Wei Xiang; Li, Hui

    2011-05-09

    We report the design, fabrication, and measurement of a microwave triple-band absorber. The compact single unit cell consists of three nested electric closed-ring resonators and a metallic ground plane separated by a dielectric layer. Simulation and experimental results show that the absorber has three distinctive absorption peaks at frequencies 4.06 GHz, 6.73 GHz, and 9.22 GHz with the absorption rates of 0.99, 0.93, and 0.95, respectively. The absorber is valid to a wide range of incident angles for both transverse electric (TE) and transverse magnetic (TM) polarizations. The triple-band absorber is a promising candidate as absorbing elements in scientific and technical applications because of its multiband absorption, polarization insensitivity, and wide-angle response. © 2011 Optical Society of America

  6. A wide-angle high Mach number modal expansion for infrasound propagation.

    Science.gov (United States)

    Assink, Jelle; Waxler, Roger; Velea, Doru

    2017-03-01

    The use of modal expansions to solve the problem of atmospheric infrasound propagation is revisited. A different form of the associated modal equation is introduced, valid for wide-angle propagation in atmospheres with high Mach number flow. The modal equation can be formulated as a quadratic eigenvalue problem for which there are simple and efficient numerical implementations. A perturbation expansion for the treatment of attenuation, valid for stratified media with background flow, is derived as well. Comparisons are carried out between the proposed algorithm and a modal algorithm assuming an effective sound speed, including a real data case study. The comparisons show that the effective sound speed approximation overestimates the effect of horizontal wind on sound propagation, leading to errors in traveltime, propagation path, trace velocity, and absorption. The error is found to be dependent on propagation angle and Mach number.

  7. Water metamaterial for ultra-broadband and wide-angle absorption.

    Science.gov (United States)

    Xie, Jianwen; Zhu, Weiren; Rukhlenko, Ivan D; Xiao, Fajun; He, Chong; Geng, Junping; Liang, Xianling; Jin, Ronghong; Premaratne, Malin

    2018-02-19

    A subwavelength water metamaterial is proposed and analyzed for ultra-broadband perfect absorption at microwave frequencies. We experimentally demonstrate that this metamaterial shows over 90% absorption within almost the entire frequency band of 12-29.6 GHz. It is also shown that the proposed metamaterial exhibits a good thermal stability with its absorption performance almost unchanged for the temperature range from 0 to 100°C. The study of the angular tolerance of the metamaterial absorber shows its ability of working at wide angles of incidence. Given that the proposed water metamaterial absorber is low-cost and easy for manufacture, we envision it may find numerous applications in electromagnetics such as broadband scattering reduction and electromagnetic energy harvesting.

  8. The GPD H and spin correlations in wide-angle Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, P. [Universitaet Wuppertal, Fachbereich Physik, Wuppertal (Germany)

    2017-06-15

    Wide-angle Compton scattering (WACS) is discussed within the handbag approach in which the amplitudes are given by products of hard subprocess amplitudes and form factors, specific to Compton scattering, which represent 1/x-moments of generalized parton distributions (GPDs). The quality of our present knowledge of these form factors and of the underlying GPDs is examined. As will be discussed in some detail the form factor R{sub A} and the underlying GPD H are poorly known. It is argued that future data on the spin correlations A{sub LL} and/or K{sub LL} will allow for an extraction of R{sub A} which can be used to constrain the large -t behavior of H. (orig.)

  9. Ultra-broadband and wide-angle perfect absorber based on composite metal-semiconductor grating

    Science.gov (United States)

    Li, Xu; Wang, Zongpeng; Hou, Yumin

    2018-01-01

    In this letter, we present an ultra-broadband and wide-angle perfect absorber based on composite Ge-Ni grating. Near perfect absorption above 90% is achieved in a wide frequency range from 150 nm to 4200 nm, which covers almost the full spectrum of solar radiation. The absorption keeps robust in a wide range of incident angle from 0º to 60º. The upper triangle Ge grating works as an antireflection coating. The lower Ni grating works as a reflector and an effective energy trapper. The guided modes inside Ge grating are excited due to reflection of the lower Ni grating surface. In longer wavelength band, gap surface plasmons (GSPs) in the Ni grating are excited and couple with the guided modes inside the Ge grating. The coupled modes extend the perfect absorption band to the near-infrared region (150 nm-4200 nm). This design has potential application in photovoltaic devices and thermal emitters.

  10. Fabrication of multi-focal microlens array on curved surface for wide-angle camera module

    Science.gov (United States)

    Pan, Jun-Gu; Su, Guo-Dung J.

    2017-08-01

    In this paper, we present a wide-angle and compact camera module that consists of microlens array with different focal lengths on curved surface. The design integrates the principle of an insect's compound eye and the human eye. It contains a curved hexagonal microlens array and a spherical lens. Compared with normal mobile phone cameras which usually need no less than four lenses, but our proposed system only uses one lens. Furthermore, the thickness of our proposed system is only 2.08 mm and diagonal full field of view is about 100 degrees. In order to make the critical microlens array, we used the inkjet printing to control the surface shape of each microlens for achieving different focal lengths and use replication method to form curved hexagonal microlens array.

  11. Efficient Terahertz Wide-Angle NUFFT-Based Inverse Synthetic Aperture Imaging Considering Spherical Wavefront

    Directory of Open Access Journals (Sweden)

    Jingkun Gao

    2016-12-01

    Full Text Available An efficient wide-angle inverse synthetic aperture imaging method considering the spherical wavefront effects and suitable for the terahertz band is presented. Firstly, the echo signal model under spherical wave assumption is established, and the detailed wavefront curvature compensation method accelerated by 1D fast Fourier transform (FFT is discussed. Then, to speed up the reconstruction procedure, the fast Gaussian gridding (FGG-based nonuniform FFT (NUFFT is employed to focus the image. Finally, proof-of-principle experiments are carried out and the results are compared with the ones obtained by the convolution back-projection (CBP algorithm. The results demonstrate the effectiveness and the efficiency of the presented method. This imaging method can be directly used in the field of nondestructive detection and can also be used to provide a solution for the calculation of the far-field RCSs (Radar Cross Section of targets in the terahertz regime.

  12. A polarization-dependent wide-angle three-dimensional metamaterial absorber

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiafu [College of Science, Air Force Engineering University, Xi' an 710051, Shaanxi (China)], E-mail: haomeijuan@126.com; Qu Shaobo [College of Science, Air Force Engineering University, Xi' an 710051, Shaanxi (China); Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Xu Zhuo [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049, Shaanxi (China); Ma Hua; Yang Yiming; Gu Chao; Wu Xiang [College of Science, Air Force Engineering University, Xi' an 710051, Shaanxi (China)

    2009-09-15

    In this paper, a polarization-dependent wide-angle three-dimensional metamaterial absorber with a near-unity absorbance was presented. The metamaterial absorber structure is composed of coplanar electric and magnetic resonators. By carefully adjusting the structural dimensions, less-than-unity {epsilon} and/or {mu} can be realized. To match the impedance of free space, the structural dimensions were adjusted so that {epsilon}={mu}, which guarantees minimum reflection. Since the resonance-based structure is made of metallic resonators and lossy substrates, the imaginary part of refractive index is large, which guarantees strong absorption of transmitted waves. Full-wave simulations confirmed the effectiveness of the proposed three-dimensional metamaterial absorber.

  13. Wide angle scattering study of nanolayered clay/gelatin electrorheological elastomer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B; Rozynek, Z; Zhou, M; Fossum, J O [Department of Physics, Norwegian University of Science and Technology, Hoegskoleringen 5, NO-7491, Trondheim (Norway)], E-mail: baoxiang.wang@ntnu.no, E-mail: jon.fossum@ntnu.no

    2009-02-01

    In the general context of self-assembly of nanolayered clay, we have studied both kaolinite and montmorillonite guided assembly into chain-like structures in gelatin hydrogel. The electrorheological (ER) elastomers, containing clay particles which dispersed in gelatin/water matrix, were prepared with or without the applied DC electric field and cross-linked polymerized with the help of formaldehyde. The experimental techniques include synchrotron X-ray scattering, atomic force microscopy, optical microscopy. The aim is to produce a water-based, low-cost and environmentally friendly ER hydrogel. The wide-angle x-ray scattering (WAXS) patterns observed from clay/gelatin ER elastomers curing in the DC field are highly anisotropic and show differences clearly compared to that without curing in the field. Both clay nanolayers have preferential orientation in gelatine hydrogel along the direction of electric field.

  14. Sizing aerosolized fractal nanoparticle aggregates through Bayesian analysis of wide-angle light scattering (WALS) data

    Science.gov (United States)

    Huber, Franz J. T.; Will, Stefan; Daun, Kyle J.

    2016-11-01

    Inferring the size distribution of aerosolized fractal aggregates from the angular distribution of elastically scattered light is a mathematically ill-posed problem. This paper presents a procedure for analyzing Wide-Angle Light Scattering (WALS) data using Bayesian inference. The outcome is probability densities for the recovered size distribution and aggregate morphology parameters. This technique is applied to both synthetic data and experimental data collected on soot-laden aerosols, using a measurement equation derived from Rayleigh-Debye-Gans fractal aggregate (RDG-FA) theory. In the case of experimental data, the recovered aggregate size distribution parameters are generally consistent with TEM-derived values, but the accuracy is impaired by the well-known limited accuracy of RDG-FA theory. Finally, we show how this bias could potentially be avoided using the approximation error technique.

  15. VLA observations of the wide-angle tailed radio source 1313+073

    Energy Technology Data Exchange (ETDEWEB)

    Patnaik, A.R.; Banhatti, D.G.; Subrahmanya, C.R. (Tata Inst. of Fundamental Research, Bangalore (India). Radio Astronomy Centre)

    1984-12-15

    VLA observations at 20 and 6 cm of the wide-angle tailed source 1313+073 are presented. It has an asymmetric structure with a sharp bend in the eastern tail and a gradual bend in the western. Both tails become diffuse after the bends. Several models are explored to explain this structure and it is concluded that the tails bend because of the motion of the parent cD galaxy through the ICM, which is possible if the cluster containing the source is dynamically young. Examination of the optical fields of 26 similar sources shows that in 20 of them the parent galaxies have a fainter companion (by approx. 2 mag), or are D, cD or db. This indicates that cannibalism may be important in the formation and powering of such sources.

  16. Note: Grazing incidence small and wide angle x-ray scattering combined with imaging ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Koerstgens, V.; Meier, R.; Ruderer, M. A.; Guo, S.; Chiang, H.-Y.; Mueller-Buschbaum, P. [Technische Universitaet Muenchen, Physik-Department, Lehrstuhl fuer Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching (Germany); Perlich, J.; Roth, S. V.; Gehrke, R. [HASYLAB, DESY, Notkestr. 85, 22607, Hamburg (Germany)

    2012-07-15

    The combination of grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) with optical imaging ellipsometry is presented as an upgrade of the available measurement techniques at the wiggler beamline BW4 of the Hamburger Synchrotronstrahlungslabor. The instrument is introduced with the description of the alignment procedure to assure the measurement of imaging ellipsometry and GISAXS/GIWAXS on the same sample spot. To demonstrate the possibilities of the new instrument examples of morphological investigation on films made of poly(3-hexylthiophene) and [6,6]-phenyl-C{sub 61} butyric acid methyl ester as well as textured poly(9,9-dioctylfluorene-alt-benzo-thia-diazole) are shown.

  17. In-situ neutron diffraction of LaCoO3 perovskite under uniaxial compression. II. Elastic properties

    Science.gov (United States)

    Lugovy, Mykola; Aman, Amjad; Chen, Yan; Orlovskaya, Nina; Kuebler, Jakob; Graule, Thomas; Reece, Michael J.; Ma, Dong; Stoica, Alexandru D.; An, Ke

    2014-07-01

    Calculations of elastic constants and development of elastic anisotropy under uniaxial compression in originally isotropic polycrystalline LaCoO3 perovskite are reported. The lattice strains in individual (hkl) planes as well as average lattice strain were determined both for planes oriented perpendicular and parallel to the loading direction using in-situ neutron diffraction. Utilizing average lattice strains as well as lattice strains along the a and c crystallographic directions, an attempt was made to determine Poisson's ratio of LaCoO3, which was then compared with that measured using an impulse excitation technique. The elastic constants were calculated and Young's moduli of LaCoO3 single crystal in different crystallographic directions were estimated.

  18. Neutron diffraction and thermal studies of amorphous CS{sub 2} realised by low-temperature vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yamamuro, O.; Matsuo, T. [Osaka Univ., Dept. of Chemistry, Graduate School of Sciences (Japan); Onoda-Yamamuro, N. [Tokyo Denki Univ., College of Sciences and Technology (Japan); Takeda, K. [Naruto Univ., Dept. of Chemistry, Tokushima (Japan); Munemura, H.; Tanaka, S.; Misawa, M. [Niigata Univ. (Japan). Faculty of Science

    2003-08-01

    We have succeeded in preparing amorphous carbon disulphide (CS{sub 2}) by depositing its vapour on a cold substrate at 10 K. Complete formation of the amorphous state has been confirmed by neutron diffraction and differential thermal analysis (DTA). The amorphous sample crystallized at ca. 70 K, which is lower than the hypothetical glass transition temperature (92 K) estimated from the DTA data of the (CS{sub 2}){sub x}(S{sub 2}Cl{sub 2}){sub 1-x} binary mixture. CS{sub 2}, a symmetric linear tri-atomic molecule, is the simplest of the amorphized molecular substances whose structural and thermal information has been reported so far. Comparison of the static structure factors S(Q) has shown that the orientational correlation of CS{sub 2} molecules may be much stronger in the amorphous state than in the liquid state at higher temperature. (authors)

  19. FEA predictions of residual stress in stainless steel compared to neutron and x-ray diffraction measurements. [Finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Flower, E.C.; MacEwen, S.R.; Holden, T.M.

    1987-05-01

    Residual stresses in a body arise from nonuniform plastic deformation and continue to be an important consideration in the design and the fabrication of metal components. The finite element method offers a potentially powerful tool for predicting these stresses. However, it is important to first verify this method through careful analysis and experimentation. This paper describes experiments using neutron and x-ray diffraction to provide quantitative data to compare to finite element analysis predictions of deformation induced residual stress in a plane stress austenitic stainless steel ring. Good agreement was found between the experimental results and the numerical predictions. Effects of the formulation of the finite element model on the analysis, constitutive parameters and effects of machining damage in the experiments are addressed.

  20. Structure Refinement of (Sr,BaNb2O6 Ceramic Powder from Neutron and X-Rays Diffraction Data

    Directory of Open Access Journals (Sweden)

    J.G. Carrio

    2002-03-01

    Full Text Available The structure of polycrystalline strontium barium niobate at room temperature was refined by the Rietveld method. Sintered ceramic samples were used to collect powder neutron and X-ray diffraction data. The ratio Sr/Ba ~ 64/36 was found from the initial batch composition Sr0.61Ba0.39Nb2O6, corroborating with the quantitative X-ray dispersive spectroscopy (EDS measurements. The structure is tetragonal with cell parameters a, b = 12.4504(3 Å and c = 3.9325(1 Å and space group P4bm. It was not necessary to introduce any positional disorder for the oxygen atoms. Cation Nb+5 displacements not parallel to the c direction are presented, which can influence the behavior of the ferroelectric properties.

  1. In-situ neutron diffraction of LaCoO{sub 3} perovskite under uniaxial compression. II. Elastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Lugovy, Mykola [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Institute for Problems of Materials Science, Kiev 03142 (Ukraine); Aman, Amjad; Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Chen, Yan [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, Florida 32816 (United States); Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Kuebler, Jakob; Graule, Thomas [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Reece, Michael J. [The School of Engineering and Materials Science, Queen Mary, University of London, London E1 4NS (United Kingdom); Ma, Dong; Stoica, Alexandru D.; An, Ke [Chemical and Engineering Materials Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-07-07

    Calculations of elastic constants and development of elastic anisotropy under uniaxial compression in originally isotropic polycrystalline LaCoO{sub 3} perovskite are reported. The lattice strains in individual (hkl) planes as well as average lattice strain were determined both for planes oriented perpendicular and parallel to the loading direction using in-situ neutron diffraction. Utilizing average lattice strains as well as lattice strains along the a and c crystallographic directions, an attempt was made to determine Poisson's ratio of LaCoO{sub 3}, which was then compared with that measured using an impulse excitation technique. The elastic constants were calculated and Young's moduli of LaCoO{sub 3} single crystal in different crystallographic directions were estimated.

  2. Neutron diffraction study of the magnetic-field-induced transition in Mn{sub 3}GaC

    Energy Technology Data Exchange (ETDEWEB)

    Çakir, Ö. [Physics Department, Yildiz Technical University, TR-34220 Esenler, Istanbul (Turkey); Physics Engineering Department, Ankara University, TR-06100 Ankara (Turkey); Acet, M.; Farle, M. [Faculty of Physics and CENIDE, Universität Duisburg-Essen, D-47048 Duisburg (Germany); Senyshyn, A. [Forschungsneutronenquelle Heinz Maier-Leibnitz FRM-II, Technische Universität München, D-85747 Garching bei München (Germany)

    2014-01-28

    The antiperovskite Mn{sub 3}GaC undergoes an isostructural cubic–cubic first order transition from a low-temperature, large-cell-volume antiferromagnetic state to a high-temperature, small-cell-volume ferromagnetic state at around 160 K. The transition can also be induced by applying a magnetic field. We study here the isothermal magnetic-field-evolution of the transition as ferromagnetism is stabilized at the expense of antiferromagnetism. We make use of the presence of the two distinct cell volumes of the two magnetic states as a probe to observe by neutron diffraction the evolution of the transition, as the external magnetic field carries the system from the antiferromagnetic to the ferromagnetic state. We show that the large-volume antiferromagnetic and the small-volume ferromagnetic states coexist in the temperature range of the transition. The ferromagnetic state is progressively stabilized as the field increases.

  3. In situ neutron diffraction studies of a commercial, soft lead zirconate titanate ceramic: Response to electric fields and mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Pramanick, Abhijit [University of Florida; Prewitt, Anderson [University of Florida; Cottrell, Michelle [University of Florida; Lee, Wayne [ITT Corporation Acoustic Sensors; Studer, Andrew J. [Bragg Institute, ANSTO; An, Ke [ORNL; Hubbard, Camden R [ORNL; Jones, Jacob [University of Florida

    2010-01-01

    Structural changes in commercial lead zirconate titanate (PZT) ceramics (EC-65) under the application of electric fields and mechanical stress were measured using neutron diffraction instruments at the Australian Nuclear Science and Technology Organisation (ANSTO) and the Oak Ridge National Laboratory (ORNL). The structural changes during electric-field application were measured on the WOMBAT beamline at ANSTO and include non-180{sup o} domain switching, lattice strains and field-induced phase transformations. Using time-resolved data acquisition capabilities, lattice strains were measured under cyclic electric fields at times as short as 30 {mu}s. Structural changes including the (002) and (200) lattice strains and non-180{sup o} domain switching were measured during uniaxial mechanical compression on the NRSF2 instrument at ORNL. Contraction of the crystallographic polarization axis, (002), and reorientation of non-180{sup o} domains occur at lowest stresses, followed by (200) elastic strains at higher stresses.

  4. Synthesis and Neutron Powder Diffraction Structural Analysis of Oxidized Delafossite YCuO2.5

    Energy Technology Data Exchange (ETDEWEB)

    Garlea, Vasile O [ORNL; Darie, Celine [Laboratoire of Cristallographie, Grenoble; Isnard, Olivier [Laboratoire of Cristallographie, Grenoble; Bordet, Pierre [Laboratoire of Cristallographie, Grenoble

    2006-01-01

    We report a study of the evolution of the structure of the delafossite-derived compounds YCuO{sub 2+{delta}} as a function of oxygen stoichiometry. The structural details of the oxygenated material YCuO{sub 2.5} were examined by means of high-resolution neutron powder diffraction. We confirmed that YCuO{sub 2.5} adopts an orthorhombic superstructure (a = {radical}3a{sub H}, b=c{sub H}, c=2a{sub H}) in which the anions are located at the center of corner-sharing triangles to form undulating chains of Cu{sup 2+} (s=1/2), running along a-axis direction.

  5. The metal-insulator transition of RNiO{sub 3} perovskites. What can we learn from neutron diffraction?

    Energy Technology Data Exchange (ETDEWEB)

    Medarde, M.L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    RNiO{sub 3} perovskites (R = rare earth) provide a remarkable opportunity to study the relationship between structural and physical properties since by moving along the 4f rare earth series, the evolution of several transport and magnetic properties can be nicely correlated to the steric effects associated with the lanthanide contraction. The most appealing example is probably the metal-insulator transition discovered for the compounds with R{ne}La, whose critical temperature T{sub M-I} increases with decreasing size of the rare earth ion. In this lecture, a summary of the most relevant neutron diffraction results on this system is presented. Moreover, the nickelates are used as an example to illustrate the performance of the diffractometers HRPT and DMCG to be installed at the SINQ. (author) 12 figs., 2 tabs., 17 refs.

  6. Anomalous magnetic ordering phenomena in tetragonal TbB sub 2 C sub 2 observed by neutron diffraction

    CERN Document Server

    Kaneko, K; Onodera, H; Yamaguchi, Y; Katano, S; Matsuda, M

    2002-01-01

    Detailed neutron diffraction measurements on a single crystalline TbB sub 2 C sub 2 in which magnetic field induced antiferroquadrupolar orderings are realised have been performed to understand characteristics of the transition under zero magnetic field. The results indicate that the magnetic transition phenomena consist of development of at least three magnetic components: (1) a dominant antiferromagentic component which develops below T sub N = 21.7 K, (2) a weak long periodic component which develops below about 18 K, and (3) anomalous components with broad magnetic scatterings which develop below about 50 K, which can not be understood by only a short range magnetic ordering. Since these three components develop independently, the transition phenomena in TbB sub 2 C sub 2 are much more complicated than expected from a typical lambda-type anomaly at T sub N in the temperature dependence of magnetic specific heat. (author)

  7. Resolution of crystal structures by X-ray and neutrons powder diffraction using global optimisation methods; Resolution des structures cristallines par diffraction des rayons X et neutrons sur poudres en utilisant les methodes d'optimisation globale

    Energy Technology Data Exchange (ETDEWEB)

    Palin, L

    2005-03-15

    We have shown in this work that X-ray diffraction on powder is a powerful tool to analyze crystal structure. The purpose of this thesis is the resolution of crystal structures by X-ray and neutrons diffraction on powder using global optimisation methods. We have studied 3 different topics. The first one is the order-disorder phenomena observed in some globular organic molecular solids. The second is the opiate family of neuropeptides. These neurotransmitters regulate sensory functions including pain and control of respiration in the central nervous system. The aim of our study was to try to determine the crystal structure of Leu-enkephalin and some of its sub-fragments. The determination of the crystal structures has been done performing Monte Carlo simulations. The third one is the location of benzene in a sodium-X zeolite. The zeolite framework was already known and the benzene has been localized by simulated annealing and by the use of maximum entropy maps.

  8. Crustal structure of the North Iberian continental margin from seismic refraction/wide-angle reflection profiles

    Science.gov (United States)

    Ruiz, M.; Díaz, J.; Pedreira, D.; Gallart, J.; Pulgar, J. A.

    2017-10-01

    The structure and geodynamics of the southern margin of the Bay of Biscay have been investigated from a set of 11 multichannel seismic reflection profiles, recorded also at wide angle offsets in an onshore-offshore network of 24 OBS/OBH and 46 land sites. This contribution focuses on the analysis of the wide-angle reflection/refraction data along representative profiles. The results document strong lateral variations of the crustal structure along the margin and provide an extensive test of the crustal models previously proposed for the northern part of the Iberian Peninsula. Offshore, the crust has a typical continental structure in the eastern tip of the bay, which disappears smoothly towards the NW to reach crustal thickness close to 10 km at the edge of the studied area ( 45°N, 6°W). The analysis of the velocity-depth profiles, altogether with additional information provided by the multichannel seismic data and magnetic surveys, led to the conclusion that the crust in this part of the bay should be interpreted as transitional from continental to oceanic. Typical oceanic crust has not been imaged in the investigated area. Onshore, the new results are in good agreement with previous results and document the indentation of the Bay of Biscay crust into the Iberian crust, forcing its subduction to the North. The interpreted profiles show that the extent of the southward indentation is not uniform, with an Alpine root less developed in the central and western sector of the Basque-Cantabrian Basin. N-S to NE-SW transfer structures seem to control those variations in the indentation degree.

  9. Small angle neutron diffraction studies of vortex structures in high temperature superconductors

    DEFF Research Database (Denmark)

    Cubitt, R.; Forgan, E.M.; Wylie, M.T.

    1994-01-01

    We have used neutron scattering to provide direct information about flux structures in the bulk of crystals of the superconductor Bi2Sr2CaCu2O8. Its extremely high effective mass anisotropy, makes the flux lattice susceptable to melting and also to decomposition into 'pancake' vortices, which would...... give a more two-dimensional vortex structure. At low temperatures and fields the scattered intensity is consistent with a three dimensional flux-line structure. At higher fields and temperatures, the scattering from the flux lattice dissapears well below T-c. We can associate this dissappearance...

  10. Structure of Calcium Aluminate Decahydrate (CaAl2O4.10D2O) from Neutron and X-ray Powder Diffraction Data

    Energy Technology Data Exchange (ETDEWEB)

    Christensen,A.; Lebech, B.; Sheptyakov, D.; Hanson, J.

    2007-01-01

    Calcium aluminate decahydrate is hexagonal with the space group P63/m and Z = 6. The compound has been named CaAl2O4{center_dot}10H2O (CAH10) for decades and is known as the product obtained by hydration of CaAl2O4 (CA) in the temperature region 273-288 K - one of the main components in high-alumina cements. The lattice constants depend on the water content. Several sample preparations were used in this investigation: one CAH10, three CAD10 and one CA(D/H)10, where the latter is a zero-matrix sample showing no coherent scattering contribution from the D/H atoms in a neutron diffraction powder pattern. The crystal structure including the positions of the H/D atoms was determined from analyses of four neutron diffraction powder patterns by means of the ab initio crystal structure determination program FOX and the FULLPROF crystal structure refinement program. Additionally, eight X-ray powder diffraction patterns (Cu K[alpha]1 and synchrotron X-rays) were used to establish phase purity. The analyses of these combined neutron and X-ray diffraction data clearly show that the previously published positions of the O atoms in the water molecules are in error. Thermogravimetric analysis of the CAD10 sample preparation used for the neutron diffraction studies gave the composition CaAl2(OD)8(D2O)2{center_dot}2.42D2O. Neutron and X-ray powder diffraction data gave the structural formula CaAl2(OX)8(X2O)2{center_dot}[gamma]X2O (X = D, H and D/H), where the [gamma] values are sample dependent and lie between 2.3 and 3.3.

  11. Investigation on the Residual Stress State of Drawn Tubes by Numerical Simulation and Neutron Diffraction Analysis

    Directory of Open Access Journals (Sweden)

    Adele Carradò

    2013-11-01

    Full Text Available Cold drawing is widely applied in the industrial production of seamless tubes, employed for various mechanical applications. During pre-processing, deviations in tools and their adjustment lead to inhomogeneities in the geometry of the tubes and cause a gradient in residuals. In this paper a three dimensional finite element (3D-FE-model is presented which was developed to calculate the change in wall thickness, eccentricity, ovality and residual macro-stress state of the tubes, produced by cold drawing. The model simulates the drawing process of tubes, drawn with and without a plug. For finite element modelling, the commercial software package Abaqus was used. To validate the model, neutron strain imaging measurements were performed on the strain imaging instrument SALSA at the Institute Laue Langevin (ILL, Grenoble, France on a series of SF-copper tubes, drawn under controlled laboratory conditions, varying the drawing angle and the plug geometry. It can be stated that there is sufficient agreement between the finite element method (FEM-calculation and the neutron stress determination.

  12. Investigation on the Residual Stress State of Drawn Tubes by Numerical Simulation and Neutron Diffraction Analysis.

    Science.gov (United States)

    Palkowski, Heinz; Brück, Sebastian; Pirling, Thilo; Carradò, Adele

    2013-11-08

    Cold drawing is widely applied in the industrial production of seamless tubes, employed for various mechanical applications. During pre-processing, deviations in tools and their adjustment lead to inhomogeneities in the geometry of the tubes and cause a gradient in residuals. In this paper a three dimensional finite element (3D-FE)-model is presented which was developed to calculate the change in wall thickness, eccentricity, ovality and residual macro-stress state of the tubes, produced by cold drawing. The model simulates the drawing process of tubes, drawn with and without a plug. For finite element modelling, the commercial software package Abaqus was used. To validate the model, neutron strain imaging measurements were performed on the strain imaging instrument SALSA at the Institute Laue Langevin (ILL, Grenoble, France) on a series of SF-copper tubes, drawn under controlled laboratory conditions, varying the drawing angle and the plug geometry. It can be stated that there is sufficient agreement between the finite element method (FEM)-calculation and the neutron stress determination.

  13. Evolution of magnetic phases in SmCrO3: A neutron diffraction and magnetometric study

    Science.gov (United States)

    Tripathi, Malvika; Choudhary, R. J.; Phase, D. M.; Chatterji, T.; Fischer, H. E.

    2017-11-01

    The classical belief about the mechanism of spin reorientation phase transition (SRPT) and ground-state magnetic structure in SmCrO3 has become intriguing because of inconsistent bulk magnetization observations. The presence of highly neutron-absorbing Sm atom has so far evaded the determination of microscopic magnetic structure. In the present report, we have utilized very high-energy "hot neutrons" to overcome the Sm absorption and to determine the thermal evolution of magnetic configurations. Unambiguously, three distinct phases are observed: the uncompensated canted antiferromagnetic structure Γ4(Gx,Ay,Fz;FzR) occurring below the Néel temperature (TN=191 K), the collinear antiferromagnetic structure Γ1(Ax,Gy,Cz;CzR) occurring below 10 K, and a nonequilibrium configuration with cooccurring Γ1 and Γ4 phases in the neighborhood of the SRPT (10 K ≤T ≤ 40 K). In differing to the earlier predictions, we divulge the SRPT to be a discontinuous transition where chromium spins switch from the a -b crystallographic plane to the b -c crystallographic plane in a discrete manner with no allowed intermediate configuration. The canting angle of chromium ions in the a -b plane is unusually not a thermal constant, rather it is empirically discerned to follow exponential behavior. The competition between magnetocrystalline anisotropy and free energy derived by isotropic and antisymmetric exchange interactions between different pairs of magnetic ions is observed to govern the mechanism of SRPT.

  14. Glycine zinc sulfate pentahydrate: redetermination at 10 K from time-of-flight neutron Laue diffraction

    Directory of Open Access Journals (Sweden)

    A. Dominic Fortes

    2016-10-01

    Full Text Available Single crystals of glycine zinc sulfate pentahydrate [systematic name: hexaaquazinc tetraaquadiglycinezinc bis(sulfate], [Zn(H2O6][Zn(C2H5NO22(H2O4](SO42, have been grown by isothermal evaporation from aqueous solution at room temperature and characterized by single-crystal neutron diffraction. The unit cell contains two unique ZnO6 octahedra on sites of symmetry -1 and two SO4 tetrahedra with site symmetry 1; the octahedra comprise one [tetraaqua-diglycine zinc]2+ ion (centred on one Zn atom and one [hexaaquazinc]2+ ion (centred on the other Zn atom; the glycine zwitterion, NH3+CH2COO−, adopts a monodentate coordination to the first Zn atom. All other atoms sit on general positions of site symmetry 1. Glycine forms centrosymmetric closed cyclic dimers due to N—H...O hydrogen bonds between the amine and carboxylate groups of adjacent zwitterions and exhibits torsion angles varying from ideal planarity by no more than 1.2°, the smallest values for any known glycine zwitterion not otherwise constrained by a mirror plane. This work confirms the H-atom locations estimated in three earlier single-crystal X-ray diffraction studies with the addition of independently refined fractional coordinates and Uij parameters, which provide accurate internuclear X—H (X = N, O bond lengths and consequently a more accurate and precise depiction of the hydrogen-bond framework.

  15. Work Hardening, Dislocation Structure, and Load Partitioning in Lath Martensite Determined by In Situ Neutron Diffraction Line Profile Analysis

    Science.gov (United States)

    Harjo, Stefanus; Kawasaki, Takuro; Tomota, Yo; Gong, Wu; Aizawa, Kazuya; Tichy, Geza; Shi, Zengmin; Ungár, Tamas

    2017-09-01

    A lath martensite steel containing 0.22 mass pct carbon was analyzed in situ during tensile deformation by high-resolution time-of-flight neutron diffraction to clarify the large work-hardening behavior at the beginning of plastic deformation. The diffraction peaks in plastically deformed states exhibit asymmetries as the reflection of redistributions of the stress and dislocation densities/arrangements in two lath packets: soft packet, where the dislocation glides are favorable, and hard packet, where they are unfavorable. The dislocation density was as high as 1015 m-2 in the as-heat-treated state. During tensile straining, the load and dislocation density became different between the two lath packets. The dislocation character and arrangement varied in the hard packet but hardly changed in the soft packet. In the hard packet, dislocations that were mainly screw-type in the as-heat-treated state became primarily edge-type and rearranged towards a dipole character related to constructing cell walls. The hard packet played an important role in the work hardening in martensite, which could be understood by considering the increase in dislocation density along with the change in dislocation arrangement.

  16. Neutron diffraction study of quadruple perovskite SrCu{sub 3}Fe{sub 3}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Ikuya, E-mail: i-yamada@21c.osakafu-u.ac.jp [Nanoscience and Nanotechnology Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan); Murakami, Makoto; Mori, Shigeo [Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531 (Japan); Irifune, Tetsuo [Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan)

    2016-08-26

    The magnetic structure of the quadruple perovskite SrCu{sub 3}Fe{sub 4}O{sub 12} is studied by means of neutron powder diffraction. The magnetic diffraction peaks are observed at low temperatures below 200 K. The Rietveld refinement result suggests an antiferromagnetic alignment of Fe spin magnetic moments for SrCu{sub 3}Fe{sub 4}O{sub 12} at low temperature. The refined magnetic moment at 4 K is ∼3.5 µ{sub B}, which is larger than that of that of CeCu{sub 3}Fe{sub 4}O{sub 12} (2.3 µ{sub B}). The increase in the magnetic moment is attributed to the larger Fe{sup 3+}:Fe{sup 5+} ratio for SrCu{sub 3}Fe{sub 4}O{sub 12} (∼4:1) compared with that of CeCu{sub 3}Fe{sub 4}O{sub 12} (∼3:1).

  17. Atomic structure of glassy Mg60Cu30Y10 investigated with EXAFS, x-ray and neutron diffraction, and reverse Monte Carlo simulations

    DEFF Research Database (Denmark)

    Jovari, P.; Saksl, K.; Pryds, Nini

    2007-01-01

    Short range order of amorphous Mg60Cu30Y10 was investigated by x-ray and neutron diffraction, Cu and Y K-edge x-ray absorption fine structure measurements, and the reverse Monte Carlo simulation technique. We found that Mg-Mg and Mg-Cu nearest neighbor distances are very similar to values found...

  18. In situ shape and distance measurements in neutron scattering and diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Satoru; Mendelson, R.A. [Univ. of California, San Francisco, CA (United States)

    1994-12-31

    Neutron scattering combined with selective isotopic labeling and contrast matching is useful for obtaining in situ structural information about a selected particle, or particles, in a macromolecular complex. The observed intensities, however, may be distorted by inter-complex interference and by scattering-length-density fluctuations of the (otherwise) contrast-matched portions. Methods have been proposed to cancel out such distortions (Hoppe`s method, the Statistical Labeling Method, and the Triple Isotopic Substitution Method). With these methods as well as related unmixed-sample methods, structural information about the selected particles can be obtained without these distortions. We have generalized these methods so that, in addition to globular particles in solution, they can be applied to in situ structures of systems having underlying symmetry and/or net orientation as well. The information obtainable from such experiments is discussed.

  19. Charge localization in oxidized Pb2Sr2Y0.5Cu308+8 studies by electron and neutron powder diffraction

    DEFF Research Database (Denmark)

    Iversen, M.H.; Jørgensen, J.E.; Andersen, N.H.

    1998-01-01

    Oxidized Pb2Sr2Y0.5Ca0.5Cu3O8+delta was studied by electron diffraction and neutron powder diffraction. The electron diffraction diagrams showed a doubling along the b-axis and a quadruplication along the a-axis indicating that the excess oxygen is incorporated into the structure in an ordered way....... The oxygen content was determined from refinement of the neutron data and delta = 1.2(1) was obtained. Calculation of bond valency sums for the cations shows that the bond valency sum for Cu in the CuO2 layers in Pb2Sr2Y0.5Ca0.5Cu3O8 decreases when the compound is oxidized, thereby explaining the lack...

  20. Flexible and conformable broadband metamaterial absorber with wide-angle and polarization stability for radar application

    Science.gov (United States)

    Chen, Huijie; Yang, Xiaoqing; Wu, Shiyue; Zhang, Di; Xiao, Hui; Huang, Kama; Zhu, Zhanxia; Yuan, Jianping

    2018-01-01

    In this work, a type of flexible, broadband electromagnetic microwave absorber is designed, fabricated and experimentally characterized. The absorber is composed of lumped resistors loaded frequency selective surface which is mounted on flexible substrate using silicone rubber and in turn backed by copper film. The simulated results show that an effective absorption (over 90%) bandwidth spans from 7.6 to 18.3 GHz, which covers both X (8–12 GHz) and Ku (12–18 GHz) bands, namely a 82.6% fraction bandwidth. And the bandwidth performs a good absorption response by varying the incident angle up to 60° for both TE and TM polarization. Moreover, the flexibility of the substrate enables the absorber conformably to bend and attach to cylinders of various radius without breakdown of the absorber. The designed structure has been fabricated and measured for both planar and conformable cases, and absorption responses show a good agreement of the broadband absorption feature with the simulated ones. This work has demonstrated specifically that proposed structure provides polarization-insensitive, wide-angle, flexible and conformable wideband absorption, which extends the absorber’s application to practical radar cross section reductions for radars and warships.

  1. Broadband, polarization-insensitive, and wide-angle microwave absorber based on resistive film

    Science.gov (United States)

    Dan-Dan, Bu; Chun-Sheng, Yue; Guang-Qiu, Zhang; Yong-Tao, Hu; Sheng, Dong

    2016-06-01

    A simple design of broadband metamaterial absorber (MA) based on resistive film is numerically presented in this paper. The unit cell of this absorber is composed of crossed rectangular rings-shaped resistive film, dielectric substrate, and continuous metal film. The simulated results indicate that the absorber obtains a 12.82-GHz-wide absorption from about 4.75 GHz to 17.57 GHz with absorptivity over 90% at normal incidence. Distribution of surface power loss density is illustrated to understand the intrinsic absorption mechanism of the structure. The proposed structure can work at wide polarization angles and wide angles of incidence for both transverse electric (TE) and transverse magnetic (TM) waves. Finally, the multi-reflection interference theory is involved to analyze and explain the broadband absorption mechanism at both normal and oblique incidence. Moreover, the polarization-insensitive feature is also investigated by using the interference model. It is seen that the simulated and calculated absorption rates agree fairly well with each other for the absorber.

  2. Broadband polarization-independent wide-angle and reconfigurable phase transition hybrid metamaterial absorber

    Science.gov (United States)

    Yahiaoui, Riad; Ouslimani, Habiba Hafdallah

    2017-09-01

    We report the simulation, fabrication, and experimental characterization of a single-layer broadband, polarization-insensitive and wide-angle near perfect metamaterial absorber (MA) in the microwave regime. The topology of the resonators is chosen in such a way that is capable of supporting simultaneously multiple plasmon resonances at adjacent frequencies, which lead to a broadband operation of the MA. Absorption larger than 80% at normal incidence covering a broad frequency range (between 7.4 GHz and 10.4 GHz) is demonstrated experimentally and through numerical simulations. Furthermore, the performance of the metamaterial absorber is kept constant up to an incident angle of 30°, for both TE and TM-polarizations. In addition, a hybrid model of the MA is proposed and implemented numerically in order to dynamically tune the absorption window. The hybrid MA is controlled by incorporating vanadium dioxide (VO2) temperature-driven metal-insulator phase transition material, which enables the transition from broadband (80% absorption and 3 GHz bandwidth) to narrowband (80% absorption and 0.7 GHz bandwidth) absorption window. Our proposed single-layer MA offers substantial advantages due to its low-cost and simplicity of fabrication. The results are very promising, suggesting a potential use of the MA in wide variety of applications including solar energy harvesting, biosensing, imaging, and stealth technology.

  3. Ultrathin triple-band polarization-insensitive wide-angle compact metamaterial absorber

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Shuai; Yang, Shizhong; Tao, Lu; Yang, Lisheng; Cao, Hailin, E-mail: hailincao@cqu.edu.cn [Key Laboratory of Aerocraft Tracking, Telemetering & Command and Communication Ministry of Education, Chongqing University, Chongqing, 400044 (China)

    2016-07-15

    In this study, the design, realization, and characterization of an ultrathin triple-band polarization-insensitive wide-angle metamaterial absorber are reported. The metamaterial absorber comprises a periodic array of modified six-fold symmetric snowflake-shaped resonators with strip spiral line load, which is printed on a dielectric substrate backed by a metal ground plane. It is shown that the absorber exhibits three distinct near-unity absorption peaks, which are distributed across C, X, Ku bands, respectively. Owing to the six-fold symmetry, the absorber is insensitive to the polarization of the incident radiation. In addition, the absorber shows excellent absorption performance over wide oblique incident angles for both transverse electric and transverse magnetic polarizations. Simulated surface current and field distributions at the three absorption peaks are demonstrated to understand the absorption mechanism. Particularly, the absorption modes come from the fundamental and high-order dipole resonances. Furthermore, the experimental verification of the designed absorber is conducted, and the measured results are in reasonable agreement with the simulated ones. The proposed ultrathin (∼0.018λ{sub 0}, λ{sub 0} corresponding to the lowest peak absorption frequency) compact (0.168λ{sub 0}×0.168λ{sub 0} corresponding to the area of a unit cell) absorber enables potential applications such as stealth technology, electromagnetic interference and spectrum identification.

  4. Evaluation of the Quality of Action Cameras with Wide-Angle Lenses in Uav Photogrammetry

    Science.gov (United States)

    Hastedt, H.; Ekkel, T.; Luhmann, T.

    2016-06-01

    The application of light-weight cameras in UAV photogrammetry is required due to restrictions in payload. In general, consumer cameras with normal lens type are applied to a UAV system. The availability of action cameras, like the GoPro Hero4 Black, including a wide-angle lens (fish-eye lens) offers new perspectives in UAV projects. With these investigations, different calibration procedures for fish-eye lenses are evaluated in order to quantify their accuracy potential in UAV photogrammetry. Herewith the GoPro Hero4 is evaluated using different acquisition modes. It is investigated to which extent the standard calibration approaches in OpenCV or Agisoft PhotoScan/Lens can be applied to the evaluation processes in UAV photogrammetry. Therefore different calibration setups and processing procedures are assessed and discussed. Additionally a pre-correction of the initial distortion by GoPro Studio and its application to the photogrammetric purposes will be evaluated. An experimental setup with a set of control points and a prospective flight scenario is chosen to evaluate the processing results using Agisoft PhotoScan. Herewith it is analysed to which extent a pre-calibration and pre-correction of a GoPro Hero4 will reinforce the reliability and accuracy of a flight scenario.

  5. EVALUATION OF THE QUALITY OF ACTION CAMERAS WITH WIDE-ANGLE LENSES IN UAV PHOTOGRAMMETRY

    Directory of Open Access Journals (Sweden)

    H. Hastedt

    2016-06-01

    Full Text Available The application of light-weight cameras in UAV photogrammetry is required due to restrictions in payload. In general, consumer cameras with normal lens type are applied to a UAV system. The availability of action cameras, like the GoPro Hero4 Black, including a wide-angle lens (fish-eye lens offers new perspectives in UAV projects. With these investigations, different calibration procedures for fish-eye lenses are evaluated in order to quantify their accuracy potential in UAV photogrammetry. Herewith the GoPro Hero4 is evaluated using different acquisition modes. It is investigated to which extent the standard calibration approaches in OpenCV or Agisoft PhotoScan/Lens can be applied to the evaluation processes in UAV photogrammetry. Therefore different calibration setups and processing procedures are assessed and discussed. Additionally a pre-correction of the initial distortion by GoPro Studio and its application to the photogrammetric purposes will be evaluated. An experimental setup with a set of control points and a prospective flight scenario is chosen to evaluate the processing results using Agisoft PhotoScan. Herewith it is analysed to which extent a pre-calibration and pre-correction of a GoPro Hero4 will reinforce the reliability and accuracy of a flight scenario.

  6. Plasma near Venus from the Venera 9 and 10 wide-angle analyzer data

    Energy Technology Data Exchange (ETDEWEB)

    Verigin, M.I.; Gringauz, K.I.; Gombosi, T.; Breus, T.K.; Bezrukikh, V.V.; Remizov, A.P.; Volkov, G.I.

    1978-08-01

    Preliminary results of ion and electron plasma measurements near Venus are presented and discussed. The data were obtained with wide-angle plasma analyzers carried on the Venera 9 and 10 spacecraft. On the basis of 33 bow shock crossings the position of the shock is quite stable and agrees well with theoretical predictions of Spreiter et al. with H/r/sub 0/=0.01 and a stagnation point altitude of approx.500 km. This observation lends strong support to the assumption that the solar wind interacts with the upper ionosphere of Venus and not with a planetary magnetic field. These spacecraft are the first to explore the optical umbra of Venus. Close to the planet a stable population of electrons and an ill-defined population of positive ions were found; this region is called the corpuscular umbra. The corpuscular umbra and the transition region are separated by a zone which contains both positive ions and electrons and is characterized by a flow velocity reduced in comparison with that of the transition region. This zone is called the corpuscular penumbra. The distribution of plasma density behind the bow shock (including the optical umbra of the planet) is given, and the existence of a Venusian plasma magnetic til is revealed.

  7. Ultrathin triple-band polarization-insensitive wide-angle compact metamaterial absorber

    Science.gov (United States)

    Shang, Shuai; Yang, Shizhong; Tao, Lu; Yang, Lisheng; Cao, Hailin

    2016-07-01

    In this study, the design, realization, and characterization of an ultrathin triple-band polarization-insensitive wide-angle metamaterial absorber are reported. The metamaterial absorber comprises a periodic array of modified six-fold symmetric snowflake-shaped resonators with strip spiral line load, which is printed on a dielectric substrate backed by a metal ground plane. It is shown that the absorber exhibits three distinct near-unity absorption peaks, which are distributed across C, X, Ku bands, respectively. Owing to the six-fold symmetry, the absorber is insensitive to the polarization of the incident radiation. In addition, the absorber shows excellent absorption performance over wide oblique incident angles for both transverse electric and transverse magnetic polarizations. Simulated surface current and field distributions at the three absorption peaks are demonstrated to understand the absorption mechanism. Particularly, the absorption modes come from the fundamental and high-order dipole resonances. Furthermore, the experimental verification of the designed absorber is conducted, and the measured results are in reasonable agreement with the simulated ones. The proposed ultrathin (˜0.018λ0, λ0 corresponding to the lowest peak absorption frequency) compact (0.168λ0×0.168λ0 corresponding to the area of a unit cell) absorber enables potential applications such as stealth technology, electromagnetic interference and spectrum identification.

  8. Wide-angle seismic constraints on hyper-extended crust at the Deep Galicia Margin

    Science.gov (United States)

    Minshull, Tim; Davy, Richard; Bayrakci, Gaye; Morgan, Joanna; Reston, Tim; Sawyer, Dale; Bull, Jon; Klaeschen, Dirk; Papenberg, Cord

    2017-04-01

    During the Galicia3D experiment in 2013, we acquired coincident normal-incidence and wide-angle seismic data covering a 64 by 20 km region of hyper-extended continental crust and exhumed mantle on the Deep Galicia Margin west of Spain. The hyper-extended crust is characterised by steeply dipping normal faults soling out onto the low-angle S detachment. Using three-dimensional first-arrival seismic tomography across this region and two-dimensional reflection-refraction tomography along a densely sampled region through this region, we have previously shown that uppermost mantle velocities are reduced where the normal faults intersect with the S detachment, interpreted as the result of hydration. Here we present further analysis of these data using two-dimensional time-domain full-waveform inversion (FWI) and three-dimensional reflection-refraction tomography. These techniques allow us to reduce ambiguities in interpretation of syn-rift sediment, pre-rift sediment and crystalline crust above S, and provide enhanced resolution of variations in hydration beneath S.

  9. Frustrated magnetic structure of Y-substituted CePdAl studied by powder neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cermak, Petr; Javorsky, Pavel [Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Hofmann, Tommy, E-mail: cermak@mag.mff.cuni.cz [Helmholtz-Zentrum Berlin, Lise-Meitner Campus, Glienicker Str. 100, 14109 Berlin (Germany)

    2011-07-06

    CePdAl is a heavy-fermion antiferromagnet with T{sub N} = 2.7 K, crystallizing in the ZrNiAl-type structure. The magnetic structure is described by the propagation vector k = (1/2, 0, {tau}), {tau} = 0.35, with the cerium magnetic moments aligned along the c-axis. One third of magnetic moments remains disordered due to the geometrical frustration. Specific heat measurements on substituted Ce{sub 1-x}Y{sub x}PdAl compounds revealed strong reduction of T{sub N} with Y substitution and the antiferromagnetic order vanishes around x = 0.2. To investigate the microscopic details of the changes in the magnetic structure evoked by nonmagnetic ion substitution, we have performed an experiment on the powder neutron diffractometer E6 at HZB on the samples with x = 0.02, 0.06 and 0.1. Measurements showed the magnitude reduction of the ordered cerium moments with Y substitution while the propagation vector and other magnetic structure characteristics remain unchanged.

  10. Laue diffraction: The key to neutron crystallography from submillimetric-volume single crystals

    Science.gov (United States)

    Lemée-Cailleau, M.-H.; McIntyre, G. J.; Wilkinson, C.

    2005-12-01

    For several decades, chemists and physicists have been fascinated by molecular compounds rich in delocalized electrons. In the solid state these compounds may offer a very rich fan of properties: optical, conduction and dielectric, magneticldots Each state is the result of a delicate balance amongst intra- and/or intermolecular interactions which can be controlled, not just by direct chemical substitution, but also by external parameters such as temperature, pressure, continuous electric or magnetic fields, or by light. The recent evolution of this field of science towards more and more sophisticated materials makes also more and more difficult their crystal growth. While neutron scattering is an extremely powerful technique to get precise structural information, it is also often disregarded in this field because usually large single crystals are required. With the recent renaissance of Laue techniques using the very intense flux provided by the reactor of the Institut Laue-Langevin (ILL), accurate structural and/or magnetic information can be now extracted routinely from molecular crystals of volume 0.1 mm3 or smaller, with easy possibilities of high pressure (up to 3 GPa) down to 0.2 K. A general survey of these new possibilities is illustrated by an example taken from the field of low-dimensional organic complexes.

  11. Exploring Pore Formation of Atomic Layer-Deposited Overlayers by in Situ Small- and Wide-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tao; Karwal, Saurabh; Aoun, Bachir; Zhao, Haiyan; Ren, Yang; Canlas, Christian P.; Elam, Jeffrey W.; Winans, Randall E.

    2016-10-11

    In this work, we explore the pore structure of overcoated materials by in situ synchrotron small- and wide-angle X-ray scattering (SAXS)/(WAXS). Thin films of aluminum oxide (Al2O3) and titanium dioxide (TiO2) with thicknesses of 4.9 and 2.5 nm, respectively, are prepared by atomic layer deposition (ALD) on non-porous nanoparticles. In situ X-ray measurements reveal that porosity is induced in the ALD films by annealing the samples at high temperature. Moreover, this pore formation can be attributed to densification resulting from an amorphous to crystalline phase transition of the ALD films as confirmed by high resolution X-ray diffraction (XRD) and pair distribution function (PDF). Simultaneous SAXS/WAXS results not only show the porosity is formed by the phase transition but also that the pore size increases with temperature.

  12. Exploring Pore Formation of Atomic Layer-Deposited Overlayers by in Situ Small- and Wide-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tao; Karwal, Saurabh; Aoun, Bachir; Zhao, Haiyan; Ren, Yang; Canlas, Christian P.; Elam, Jeffrey W.; Winans, Randall E.

    2016-10-11

    In this work, we explore the pore structure of overcoated materials by in situ synchrotron small- and wide-angle X-ray scattering (SAXS)/(WAXS). Thin films of aluminum oxide (Al2O3) and titanium dioxide (TiO2) with thicknesses of 4.9 and 2.5 nm, respectively, are prepared by atomic layer deposition (ALD) on non-porous nanoparticles. In situ X-ray measurements reveal that porosity is induced in the ALD films by annealing the samples at high temperature. Moreover, this pore formation can be attributed to densification resulting from an amorphous to crystalline phase transition of the ALD films as confirmed by high resolution X-ray diffraction (XRD) and pair distribution function (PDF). Simultaneous SAXS/WAXS results not only show that the porosity is formed by this phase transition but also that the pore size increases with temperature.

  13. Polarized neutron powder diffraction studies of antiferromagnetic order in bulk and nanoparticle NiO

    DEFF Research Database (Denmark)

    Brok, Erik; Lefmann, Kim; Deen, Pascale P.

    2015-01-01

    NiO and platelet-shaped NiO nanoparticles with thickness from greater than 200 nm down to 2.0 nm. The advantage of the applied method is that it is able to clearly separate the structural, the magnetic, and the spin-incoherent scattering signals for all particle sizes. For platelet-shaped particles...... with thickness from greater than 200 nm down to 2.2 nm we find that the spin orientation deviates about 16° from the primary (111) plane of the platelet-shaped particles. In the smallest particles (2.0 nm thick) we find the spins are oriented with a 30° average angle to the primary (111) plane of the particles...... at the particle surfaces and by the broadening of diffraction peaks due to the finite crystallite size. Moreover, the spin structure in magnetic nanoparticles may deviate significantly from that of the corresponding bulk material because of the low-symmetry surroundings of surface atoms and the large relative...

  14. Glycine zinc sulfate penta-hydrate: redetermination at 10 K from time-of-flight neutron Laue diffraction.

    Science.gov (United States)

    Fortes, A Dominic; Howard, Christopher M; Wood, Ian G; Gutmann, Matthias J

    2016-10-01

    Single crystals of glycine zinc sulfate penta-hydrate [systematic name: hexa-aqua-zinc tetra-aquadiglycinezinc bis-(sulfate)], [Zn(H2O)6][Zn(C2H5NO2)2(H2O)4](SO4)2, have been grown by isothermal evaporation from aqueous solution at room temperature and characterized by single-crystal neutron diffraction. The unit cell contains two unique ZnO6 octa-hedra on sites of symmetry -1 and two SO4 tetra-hedra with site symmetry 1; the octa-hedra comprise one [tetra-aqua-diglycine zinc]2+ ion (centred on one Zn atom) and one [hexa-aqua-zinc]2+ ion (centred on the other Zn atom); the glycine zwitterion, NH3+CH2COO-, adopts a monodentate coordination to the first Zn atom. All other atoms sit on general positions of site symmetry 1. Glycine forms centrosymmetric closed cyclic dimers due to N-H⋯O hydrogen bonds between the amine and carboxyl-ate groups of adjacent zwitterions and exhibits torsion angles varying from ideal planarity by no more than 1.2°, the smallest values for any known glycine zwitterion not otherwise constrained by a mirror plane. This work confirms the H-atom locations estimated in three earlier single-crystal X-ray diffraction studies with the addition of independently refined fractional coordinates and Uij parameters, which provide accurate inter-nuclear X-H (X = N, O) bond lengths and consequently a more accurate and precise depiction of the hydrogen-bond framework.

  15. Single-crystal neutron diffraction study of Nd magnetic ordering in NdFeO{sub 3} at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bartolome, J.; Palacios, E.; Kuzmin, M.D.; Bartolome, F. [Instituto de Ciencia de Materiales de Aragon, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Sosnowska, I.; Przenioslo, R. [Institute of Experimental Physics, Warsaw University, PL-00 681 Warsaw (Poland); Sonntag, R. [Hahn-Meitner-Institut, D-14109 Berlin (Germany); Lukina, M.M. [Department of Physics, Moscow State University, Leninskie Gory, 119899 Moscow (Russia)

    1997-05-01

    The temperature variation of the (100) and (010) neutron diffraction peak intensities, related only to the Nd magnetic moments, have been measured on a NdFeO{sub 3} single crystal, at temperatures down to 70 mK. The (100) peak becomes noticeable below 25 K while the (010) peak only gives an appreciable contribution below 1 K. Above T{sub N2}{approx}1K the (100) peak intensity is accounted for by the electronic magnetic moments polarized by the Nd-Fe exchange field. Near T{sub N2} a change of slope is observed in the temperature dependence of the (100) reflection intensity, demonstrating the crossover from the above polarization of Nd under the Nd-Fe exchange to proper long-range ordering due to Nd-Nd interaction. Below {approximately}0.4K another mechanism, polarization of Nd nuclear moments by hyperfine field, contributes to the intensity of the (100) and (010) peaks. A simple mean-field model explains consistently the observed temperature dependence of the diffraction intensities as well as earlier specific-heat data. The main feature of this model is allowance for Van Vleck susceptibility, which appears to play an important role in the overall polarization of Nd. The values of the hyperfine field at the Nd nuclei H{sub hf}=1.0{plus_minus}0.15MOe and of the Nd electronic magnetic moment {mu}{sub Nd}=0.9{mu}{sub B} are deduced, the ratio H{sub hf}/{mu}{sub Nd} being the same as in other Nd compounds. {copyright} {ital 1997} {ital The American Physical Society}

  16. A Novel In-situ Electrochemical Cell for Neutron Diffraction Studies of Phase Transitions in Small Volume Electrodes of Li-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vadlamani, Bhaskar S [ORNL; An, Ke [ORNL; Jagannathan, M. [University of Utah; Ravi Chandran, K. [University of Utah

    2014-01-01

    The design and performance of a novel in-situ electrochemical cell that greatly facilitates the neutron diffraction study of complex phase transitions in small volume electrodes of Li-ion cells, is presented in this work. Diffraction patterns that are Rietveld-refinable could be obtained simultaneously for all the electrodes, which demonstrates that the cell is best suited to explore electrode phase transitions driven by the lithiation and delithiation processes. This has been facilitated by the use of single crystal (100) Si sheets as casing material and the planar cell configuration, giving improved signal-to-noise ratio relative to other casing materials. The in-situ cell has also been designed for easy assembly and to facilitate rapid experiments. The effectiveness of cell is demonstrated by tracking the neutron diffraction patterns during the charging of graphite/LiCoO2 and graphite/LiMn2O4 cells. It is shown that good quality neutron diffraction data can be obtained and that most of the finer details of the phase transitions, and the associated changes in crystallographic parameters in these electrodes, can be captured.

  17. Analyze of phase's mechanical behaviour of a multiphase polycrystalline alloy by X-ray and neutron diffraction; Analyse du comportement mecanique des constituants d'un alliage polycristallin multiphase par diffraction des rayons X et neutronique

    Energy Technology Data Exchange (ETDEWEB)

    Dakhlaoui, R

    2006-12-15

    The aim of this work is to propose a methodology using diffraction methods and theoretical approaches of self-consistent modeling in order to analyze and better understand the mechanical behavior of each phase of hot-rolled duplex stainless steel. The purpose of the experimental study is to characterize the local mechanical behavior of phases under uniaxial loading. X-ray and neutron diffraction which enable to measure strains in each phase separately were used in this aim. Austenitic and ferritic phase stresses are determined by X-ray diffraction during tensile tests. Evolution of the elastic strains in each phase was measured by neutron diffraction using 'time-of-flight' method during tensile and compression tests. Elastic constants were given using the self-consistent model for a purely elastic deformation. To reproduce the mechanical behaviour of the studied material, self-consistent polycrystalline micro-mechanical model for elastoplastic deformation has been adapted and confronted to experimental results. Crystallographic texture and initial residual stresses were considered in this analysis. Critical shear stresses and hardening parameters of each phase of the studied duplex steel have been identified. Results of this study showed that the austenitic phase represents the softest and the most hardenable phase. Taking into account in calculations the initial residual stresses in the non deformed sample leads to the conclusion that the initial stresses modify considerably the values of phase's yield stresses. Good agreement has been noted comparing results obtained by XRD to those obtained by neutron diffraction. The problem of relaxation of normal stresses in the analysed layer by X-rays was analysed and discussed. Using XRD and self-consistent modelling, the effect of the chemical composition of the duplex stainless steel and the influence of ageing at 400 C degrees for 1000 h on the mechanical behaviour of austenitic and ferritic phases have

  18. Geant4 simulations of a wide-angle x-ray focusing telescope

    Science.gov (United States)

    Zhao, Donghua; Zhang, Chen; Yuan, Weimin; Zhang, Shuangnan; Willingale, Richard; Ling, Zhixing

    2017-06-01

    The rapid development of X-ray astronomy has been made possible by widely deploying X-ray focusing telescopes on board many X-ray satellites. Geant4 is a very powerful toolkit for Monte Carlo simulations and has remarkable abilities to model complex geometrical configurations. However, the library of physical processes available in Geant4 lacks a description of the reflection of X-ray photons at a grazing incident angle which is the core physical process in the simulation of X-ray focusing telescopes. The scattering of low-energy charged particles from the mirror surfaces is another noteworthy process which is not yet incorporated into Geant4. Here we describe a Monte Carlo model of a simplified wide-angle X-ray focusing telescope adopting lobster-eye optics and a silicon detector using the Geant4 toolkit. With this model, we simulate the X-ray tracing, proton scattering and background detection. We find that: (1) the effective area obtained using Geant4 is in agreement with that obtained using Q software with an average difference of less than 3%; (2) X-rays are the dominant background source below 10 keV; (3) the sensitivity of the telescope is better by at least one order of magnitude than that of a coded mask telescope with the same physical dimensions; (4) the number of protons passing through the optics and reaching the detector by Firsov scattering is about 2.5 times that of multiple scattering for the lobster-eye telescope.

  19. Discovery of an Extremely Wide-angle Bipolar Outflow in AFGL 5142

    Science.gov (United States)

    Liu, Tie; Zhang, Qizhou; Kim, Kee-Tae; Wu, Yuefang; Lee, Chang-Won; Goldsmith, Paul F.; Li, Di; Liu, Sheng-Yuan; Chen, Huei-Ru; Tatematsu, Ken'ichi; Wang, Ke; Lee, Jeong-Eun; Qin, Sheng-Li; Mardones, Diego; Cho, Se-Hyung

    2016-06-01

    Most bipolar outflows are associated with individual young stellar objects and have small opening angles. Here we report the discovery of an extremely wide-angle (˜180°) bipolar outflow (“EWBO”) in a cluster forming region AFGL 5142 from low-velocity emission of the HCN (3-2) and HCO+ (3-2) lines. This bipolar outflow is along a north-west to south-east direction with a line of sight flow velocity of about 3 km s-1 and is spatially connected to the high-velocity jet-like outflows. It seems to be a collection of low-velocity material entrained by the high-velocity outflows due to momentum feedback. The total ejected mass and mass loss rate due to both high-velocity jet-like outflows and the “EWBO” are ˜24.5 M ⊙ and ˜1.7 × 10-3 M ⊙ yr-1, respectively. Global collapse of the clump is revealed by the “blue profile” in the HCO+ (1-0) line. A hierarchical network of filaments was identified in NH3 (1, 1) emission. Clear velocity gradients of the order of 10 km s-1 pc-1 are found along filaments, indicating gas inflow along the filaments. The sum of the accretion rate along filaments and mass infall rate along the line of sight is ˜3.1 × 10-3 M ⊙ yr-1, which exceeds the total mass loss rate, indicating that the central cluster is probably still gaining mass. The central cluster is highly fragmented and 22 condensations are identified in 1.1 mm continuum emission. The fragmentation process seems to be determined by thermal pressure and turbulence. The magnetic field may not play an important role in fragmentation.

  20. Detecting blind building façades from highly overlapping wide angle aerial imagery

    Science.gov (United States)

    Burochin, Jean-Pascal; Vallet, Bruno; Brédif, Mathieu; Mallet, Clément; Brosset, Thomas; Paparoditis, Nicolas

    2014-10-01

    This paper deals with the identification of blind building façades, i.e. façades which have no openings, in wide angle aerial images with a decimeter pixel size, acquired by nadir looking cameras. This blindness characterization is in general crucial for real estate estimation and has, at least in France, a particular importance on the evaluation of legal permission of constructing on a parcel due to local urban planning schemes. We assume that we have at our disposal an aerial survey with a relatively high stereo overlap along-track and across-track and a 3D city model of LoD 1, that can have been generated with the input images. The 3D model is textured with the aerial imagery by taking into account the 3D occlusions and by selecting for each façade the best available resolution texture seeing the whole façade. We then parse all 3D façades textures by looking for evidence of openings (windows or doors). This evidence is characterized by a comprehensive set of basic radiometric and geometrical features. The blindness prognostic is then elaborated through an (SVM) supervised classification. Despite the relatively low resolution of the images, we reach a classification accuracy of around 85% on decimeter resolution imagery with 60 × 40 % stereo overlap. On the one hand, we show that the results are very sensitive to the texturing resampling process and to vegetation presence on façade textures. On the other hand, the most relevant features for our classification framework are related to texture uniformity and horizontal aspect and to the maximal contrast of the opening detections. We conclude that standard aerial imagery used to build 3D city models can also be exploited to some extent and at no additional cost for facade blindness characterisation.

  1. Bandwidth-enhanced and Wide-angle-of-incidence Metamaterial Absorber using a Hybrid Unit Cell.

    Science.gov (United States)

    Nguyen, Toan Trung; Lim, Sungjoon

    2017-11-01

    In this paper, a bandwidth-enhanced and wide-angle-of-incidence metamaterial absorber is proposed using a hybrid unit cell. Owing to symmetric unit cells, high absorptivity is maintained for all polarization angles. A circular-sector unit cell enables high absorptivity under the oblique incidence of both transverse electric (TE) and transverse magnetic (TM) modes. To enhance the bandwidth, we introduced a hybrid unit cell comprising four circular sectors. Two sectors resonate at 10.38 GHz, and two resonate at 10.55 GHz. Since the two absorption frequencies are near each other, the bandwidth increases. The proposed idea is demonstrated with both full-wave simulations and measurements. The simulated absorptivity exceeds 91% around 10.45 GHz at an angle of incidence up to 70° in both TM and TE polarizations. The measured absorptivity at 10.45 GHz is close to 96.5% for all polarization angles under normal incidence. As the angle of incidence changes from 0° to 70°, the measured absorptivity at 10.45 GHz remains above 90% in the TE mode and higher than 94% in the TM mode. Under an oblique incidence, the measured 90% absorption bandwidth is 1.95% from 10.1-10.2 GHz and 10.4-10.5 GHz up to 70° at the TE mode, and 3.39% from 10.15-10.5 GHz up to 70° at the TM mode.

  2. Neutron diffraction residual stress analysis of Al{sub 2}O{sub 3}/Y-TZP ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K.; Ruiz-Hervias, J.; Gurauskis, J.; Sanchez-Herencia, A. J.; Baudin, C.

    2016-05-01

    Residual stress measurements were conducted by time-of-flight neutron diffraction and Rietveld analysis method in Al{sub 2}O{sub 3}/Y-TZP ceramic composites fabricated by different green processing techniques (a novel tape casting and conventional slip casting) and with different Y-TZP content (5 and 40 vol.% Y-TZP). The results show that the residual stresses in Y-TZP particulates are tensile and the ones in Al{sub 2}O{sub 3} matrix are compressive, with almost flat through-thickness residual stress profiles in all bulk samples. As Y-TZP content increased, tension in Y-TZP phase was decreased but compression in Al{sub 2}O{sub 3} matrix was increased (in absolute value). The values of residual stresses for both phases were mainly dependent on the Y-TZP content in the studied Al{sub 2}O{sub 3}/Y-TZP composites, irrespective of sample orientation and fabrication processes (a novel tape casting and conventional slip casting). (Author)

  3. The application of neutron diffraction to a study of phases in type 316 stainless steel weld metals

    Science.gov (United States)

    Slattery, G. F.; Windsor, C. G.

    1983-10-01

    Neutron diffraction techniques have been utilised to study the phases in type 316 austenitic stainless steel weld metal, both in the as-welded condition and after stress-relieving and ageing heat-treatments. The amounts of the principal crystallographic phases present in bulk specimens have been measured. Two compositions of weld metal were selected to provide a "low" (6%) and "high" (16%) initial ferrite level and the subsequent volume fractions of transformation products were measured after heat-treatment. Some retained ferrite was observed in all the heat-treated specimens, ranging from 4% for specimens of both initial ferrite levels treated at 625°C for 1000 h, to around 1% for the specimens treated at 850°C for 6 h. The high initial ferrite specimen produced 0.9% of sigma phase after the 850°C treatment and 0.2% sigma after the 625°C treatment. The low initial ferrite specimen produced 1.5% M 23C 6 carbide after both heat-treatments. The results compare well with previous findings on similar samples of weld metal using optical and electron microscopy.

  4. The crystal structure of superconducting FeSe{sub 1-x}Te{sub x} by pulsed neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, M C; Llobet, A; Horigane, K; Louca, D, E-mail: mcl4v@virginia.edu

    2010-11-01

    A transition to a superconducting state was recently observed in the binary alloy of FeSe{sub 1-x}Te{sub x} system where TC rises with increasing x. The substitution of the larger Te for Se ion results in no additional charges but increases the internal chemical pressure. Earlier studies suggested that the crystal structure maintains the tetragonal P4/nmm symmetry with the substitution of Te where the average bond angle, {alpha}, decreases considerably from {approx} 104{sup 0} in FeSe to 100.5{sup 0} in the mixed phase of FeSe{sub 0.5}Te{sub 0.5}. With the use of pulsed neutron power diffraction and the Rietveld analysis, the crystal structure refinement for FeSe{sub 0.5}Te{sub 0.5} yielded very large thermal factors in the superconducting phase indicative of the presence of structural distortions that may be significant in understanding the electronic and magnetic properties of this system.

  5. Comparison between Neutron Diffraction measurements and numerical simulation of residual stresses of a Wire-Drawing process

    Directory of Open Access Journals (Sweden)

    Tomaz Fantin de Souza

    2013-04-01

    Full Text Available In this work, a drawing processed was simulated to calculate forces and the resulting residual stresses in the material. The calculated residual stresses were compared with experimentally measured residual stresses by the Neutron Diffraction Method. The modeled process was the Wire Drawing. The necessary parameters to model the process were taken from an industrial currently used process. Rods of an AISI 1045 steel with nominal diameters of 21.46 mm were reduced to 20.25 mm by drawing with an drawing angle of 15°. Compression tests were used to determinate flow curves of the real material an used in the simulation models. The possibility to estimate drawing forces by numerical simulation was evaluated by comparing simulated results with values from empirical equations given by the literature. The results have shown a sufficient accuracy for the calculation of forces, but the comparison of residual stresses has shown differences to the experimentally determined ones that can be minimized by the consideration of high strain rates in the compression tests, anisotropy of the material and kinematic hardening.

  6. Crustal thickness variations across the Blue Ridge mountains, southern Appalachians: an alternative procedure for migrating wide-angle reflection data

    Science.gov (United States)

    Robert B. Hawman

    2008-01-01

    Migration of wide-angle reflections generated by quarry blasts suggests that crustal thickness increases from 38 km beneath the Carolina Terrane to 47–51 km along the southeastern flank of the Blue Ridge. The migration algorithm, developed for generating single-fold images from explosions and earthquakes recorded with isolated, short-aperture arrays, uses the localized...

  7. An iterative method for the computation of nonlinear, wide-angle, pulsed acoustic fields of medical diagnostic transducers

    NARCIS (Netherlands)

    Huijssen, J.; Verweij, M.D.

    2010-01-01

    The development and optimization of medical ultrasound transducers and imaging modalities require a computational method that accurately predicts the nonlinear acoustic pressure field. A prospective method should provide the wide-angle, pulsed field emitted by an arbitrary planar source distribution

  8. Nanoscale uniformity of pore architecture in diatomaceous silica : A combined small and wide angle X-ray scattering study

    NARCIS (Netherlands)

    Vrieling, EG; Beelen, TPM; van Santen, RA; Gieskes, WWC

    Combined small and wide angle IZ-ray scattering (SAXS and WAXS) analysis was applied to purified biogenic silica of cultured diatom frustules and of natural populations sampled on marine tidal flats. The overall WAXS patterns did not reveal crystalline phases (WAXS domain between 0.07 to 0.5 nm) in

  9. Characterizing Geometric Distortion of the Lunar Reconnaissance Orbiter Wide Angle Camera

    Science.gov (United States)

    Speyerer, E.; Wagner, R.; Robinson, M. S.; Becker, K. J.; Anderson, J.; Thomas, P. C.

    2011-12-01

    Each month the Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) provides 100 m scale images of nearly the entire Moon, each month with different range of lighting conditions [1]. Pre-flight calibration efforts provided a baseline for correcting the geometric distortion present in the WAC. However, residual errors of 1-2 pixels existed with this original model. In-flight calibration enables the derivation of a precise correction for geometric distortion to provide sub-pixel map projection accuracy. For the in-flight calibration, we compared WAC images to high-resolution (0.5 - 2.0 meter scale) images provided by the Narrow Angle Camera (NAC). Since the NAC has very narrow field of view (2.86°) its geometric accuracy is well characterized. The additions of the WAC-derived 100 m/pixel digital terrain model (GLD100) [2] and refined ephemeris provided by LOLA [3] have improved our efforts to remove small distortion artifacts in the WAC camera model. Since the NAC field of view is always in the same cross-track location in the WAC frame, NAC and WAC images of the same regions, under similar lighting conditions, were map projected. Hundreds of NAC (truth image) and WAC images were then co-registered using an automatic registration algorithm in ISIS [4]. This output was fed into a second ISIS program (fplanemap) that converted the registration offsets to focal plane coordinates for the distorted (original) and undistorted (corrected location derived from the truth image) pixel [4]. With this dataset, offsets in the WAC distortion model were identified and accounted for with a new 2D Taylor series function that has been added to the existing radial model. This technique improves the accurate placement of each pixel across the sensor in target space. We have applied this correction to the 643 nm band and will derive the coefficients for the remaining bands. Once this study is complete, a new camera model, instrument kernel (IK), and frames kernel (FK) will be

  10. A Wide-Angle Seismic Reflection Transect across the Moroccan Atlas (SIMA)

    Science.gov (United States)

    Carbonell, R.; Harnafi, M.; Teixell, A.; Gallart, J.; Levander, A.; Ayarza, P.; Kchikach, A.; Amrhar, M.; Charroud, M.

    2010-12-01

    The plate boundary between Africa and Europe is a diffuse feature that includes a very young intra-continental Cenozoic orogenic belt, the Atlas Orogen. The Atlas is characterized by a topographic relief which can reach 4000 m; less than 20% shortening has been reported by geologic studies. The small amount of shortening does not explain the high topographic relief. Furthermore, potential field geophysical studies and previous low resolution refraction experiments report a maximum crustal thickness of 40 km. These suggesting that the orogen is out of isostatic equilibrium and that asthenospheric upwelling is needed to support the mountain load. A 700 km long deep seismic wide-angle reflection transect has been acquired by an international team to constrain the crustal thickness, topography of the Moho and the seismic velocity structure. The north-south oriented transect extends from the Sahara Desert south of Merzouga near the Algeria border, to Ceuta at the Gibraltar arc (on the north coast of Morocco) crossing the High and Middle Atlas and the Rif mountain ranges. Seismic energy released at 6 shot points generated by detonating approximately, 1 TM of explosives was recorded by ~ 900 Reftek-125a (TEXAN) seismic recorders from the IRIS-PASSCAL pool. The seismic stations were deployed with an average station spacing of 650-750 m. The 6 shot points were located within the southern part of the transect with a shot spacing of ~60-70 km. The preliminary analysis of this high resolution data reveals: a relatively high signal-to-noise ratio; and interpreted PmP reflected phase which samples the crust mantle boundary. SIMA is one component of the PICASSO research initiative. This multinational research programme that includes a series of multi-disciplinary geophysical projects (The Spanish TopoIberia and Siberia Projects; the US-Spanish-Irish PICASSO project, with participation from Germany and France). These studies are designed to develop new understanding of the

  11. Crustal Structure across The Southwest Longmenshan Fault Zone from Seismic Wide Angle Reflection/Refraction Profile

    Science.gov (United States)

    Tian, Xiaofeng; Wang, Fuyun; Wang, Shuaijun; Duan, Yonghong

    2014-05-01

    The Lushan eathquake, which epicenter and focal depth were at 30.308° N, 102.888° E, and 14.0 km, is the latest intense earthquake occurring in the southwest section of the Longmenshan fault zone after the Ms 8.0 Wenchuan earthquake in 2008. According to the emergency field observations, the slip distribution of the Lushan earthquake was concentrated at the hypocenter, and did not rupture to the surface(Chen et al, 2013). The rupture history constrained by inverting waveforms showed that the causative fault plane of the Lushan event is apparently not a simple extension of either the Pengguan fault or the Beichuan fault that ruptured during the 2008 Mw 8.0 Wenchuan earthquake. The focal mechanism using the Cut and Paste algorithm showed this event occurred on a high dip-angle fault, but its dip angle is not steep enough to rupture the surface. All these research is not independent on the heterogeneous crust structure of the Longmenshan fault zone. A 450 km-long wide-angle reflection/refraction profile executed during September and October 2013. This experiment have provided the best opportunities to obtain better knowledge of seismic structure and properties of crust and uppermost mantle beneath the Southwest Longmenshan fault zone. This seismic profile extends from the west Sichuan Plain, through the Longmenshan Fault zone, and into the west Sichuan Plateau. We observed clear Pg, refraction Phase from the upper crust, Pi1/Pi2/Pi3, reflection/refraction Phase from intra-crust, PmP, reflection from the Moho boundary, and the Pn phase, refraction Phase from uppermost mantle. We present a hybrid tomographic and layered velocity model of the crust and uppermost mantle along the profile. The final velocity model reveals large variations both in structure and velocity, and is demonstrated that a particular model has minimum structure. The model shows the crustal thickness of the region is very variable. The Moho topography varies more than 10km in the southwest

  12. Earth's crust model of the South-Okhotsk Basin by wide-angle OBS data

    Science.gov (United States)

    Kashubin, Sergey N.; Petrov, Oleg V.; Rybalka, Alexander V.; Milshtein, Evgenia D.; Shokalsky, Sergey P.; Verba, Mark L.; Petrov, Evgeniy O.

    2017-07-01

    Deep seismic studies of the Sea of Okhotsk region started in late 1950s. Since that time, wide-angle reflection and refraction data on more than two dozen profiles were acquired. Only five of those profiles either crossed or entered the deep-water area of the South-Okhotsk Basin (also known as the Kuril Basin or the South-Okhotsk Deep-Water Trough). Only P-waves were used to develop velocity-interface models in all the early research. Thus, all seismic and geodynamic models of the Okhotsk region were based only on the information on compressional waves. Nevertheless, the use of Vp/Vs ratio in addition to P-wave velocity allows discriminating felsic and mafic crustal layers with similar Vp values. In 2007 the Russian seismic service company Sevmorgeo acquired multi-component data with ocean bottom seismometers (OBS) along the 1700-km-long north-south 2-DV-M Profile. Only P-wave information was used previously to develop models for the entire profile. In this study, a multi-wave processing, analysis, and interpretation of the OBS data are presented for the 550-km-long southern segment of this Profile that crosses the deep-water South-Okhotsk Basin. Within this segment 50 seismometers were deployed with nominal OBS station spacing of 10-12 km. Shot point spacing was 250 m. Not only primary P-waves and S-waves but also multiples and P-S, S-P converted waves were analyzed in this study to constrain velocity-interface models by means of travel time forward modeling. In offshore deep seismic studies, thick water layer hinders an estimation of velocities in the sedimentary cover and in the upper consolidated crust. Primarily, this is due to the fact that refracted waves propagating in low-velocity solid upper layers interfere with high-amplitude direct water wave. However, in multi-component measurements with ocean bottom seismometers, it is possible to use converted and multiple waves for velocity estimations in these layers. Consequently, one can obtain P- and S

  13. High-level expression and deuteration of sperm whale myoglobin: A study of its solvent structure by X-ray and neutron diffraction methods

    Energy Technology Data Exchange (ETDEWEB)

    Shu, F. [State Univ. of New York, Stony Brook, NY (United States); Ramakrishnan, V. [Brookhaven National Laboratory, Upton, NY (United States); Schoenborn, B.P. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Neutron diffraction has become one of the best ways to study light atoms, such as hydrogens. Hydrogen however has a negative coherent scattering factor, and a large incoherent scattering factor, while deuterium has virtually no incoherent scattering, but a large positive coherent scattering factor. Beside causing high background due to its incoherent scattering, the negative coherent scattering of hydrogen tends to cancel out the positive contribution from other atoms in a neutron density map. Therefore a fully deuterated sample will yield better diffraction data with stronger density in the hydrogen position. On this basis, a sperm whale myoglobin gene modified to include part of the A cII protein gene has been cloned into the T7 expression system. Milligram amounts of fully deuterated holo-myoglobin have been obtained and used for crystallization. The synthetic sperm whale myoglobin crystallized in P2{sub 1} space group isomorphous with the native protein crystal. A complete X-ray diffraction dataset at 1.5{Angstrom} has been collected. This X-ray dataset, and a neutron data set collected previously on a protonated carbon-monoxymyoglobin crystal have been used for solvent structure studies. Both X-ray and neutron data have shown that there are ordered hydration layers around the protein surface. Solvent shell analysis on the neutron data further has shown that the first hydration layer behaves differently around polar and apolar regions of the protein surface. Finally, the structure of per-deuterated myoglobin has been refined using all reflections to a R factor of 17%.

  14. Assessment of firing conditions in old fired-clay bricks. The contribution of X-ray powder diffraction with the Rietveld method and small angle neutron scattering

    Czech Academy of Sciences Publication Activity Database

    Viani, Alberto; Sotiriadis, Konstantinos; Len, A.; Šašek, Petr; Ševčík, Radek

    2016-01-01

    Roč. 116, June (2016), s. 33-43 ISSN 1044-5803 R&D Projects: GA MŠk(CZ) LO1219 Keywords : fired- clay brick * Rietveld method * small angle neutron scattering * X-ray diffraction * firing temperature Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.714, year: 2016 http://www.sciencedirect.com/science/article/pii/S1044580316300870

  15. A new wide-angle arthroscopic system: a comparative study with a conventional 30° arthroscopic system.

    Science.gov (United States)

    Jung, Kyunghwa; Kang, Dong-Ju; Kekatpure, Aashay L; Adikrishna, Arnold; Hong, Jaesung; Jeon, In-Ho

    2016-05-01

    To compare users' hand movements in performing validated shoulder arthroscopic tasks between a 30° and a wide-angle arthroscopic system, using phantom models with an optical motion analysis system. Twelve orthopaedic residents were enrolled and randomly allocated into two groups. In order to compensate for any learning effect, a Latin square counterbalancing technique was used. An optical motion analysis system was used with markers affixed to pre-designed sites; each participant conducted four validated shoulder arthroscopic tasks using both arthroscopic systems. Each participant was instructed to perform the experiment three times with each arthroscope. The time taken, total path length, number of movements, and average acceleration were analysed. Significant differences were observed for the time taken, number of movements, and average acceleration between the two arthroscopic systems (P arthroscope, while the mean with the wide-angle arthroscope was significantly shorter, at 36 ± 22 cm. The mean number of movements with the 30° and wide-angle arthroscopes were 1974 ± 1305 and 1233 ± 990, respectively, while the average accelerations were 2.6 ± 1.3 and 1.2 ± 0.6 cm/s(2), respectively. The mean time taken was 13 % faster when using the wide-angle arthroscopic system, although this was not statistically significant. The wide-angle arthroscopic system improved the arthroscope manoeuvre in terms of the total path length, number of movements, and average acceleration required for experimental arthroscopy. This system may help surgeons triangulate the arthroscope and surgical instruments during surgery by expanding the field of view.

  16. Wide-angle NSE and TOF the spectrometer SPAN at BENSC

    CERN Document Server

    Pappas, C; Kischnik, R; Mezei, F

    2002-01-01

    The cylindrical symmetry of the magnetic field configuration of SPAN allows for simultaneous neutron spin echo (NSE) measurements over the whole range of scattering angles accessible by a spectrometer. The open construction also allows for time-of-flight (TOF) measurements, which can be performed under the same conditions as NSE, in particular with polarization analysis. TOF and NSE spectra are then directly comparable with each other, without any adjustable parameters, covering a dynamic range of more than four orders of magnitude at a single wavelength. (orig.)

  17. Wide-angle and high-efficiency achromatic metasurfaces for visible light

    CERN Document Server

    Deng, Zi-Lan; Wang, Guo Ping

    2016-01-01

    Recently, an achromatic metasurface was successfully demonstrated to deflect light of multiple wavelengths in the same direction and it was further applied to the design of planar lenses without chromatic aberrations [Science, 347, 1342(2015)]. However, such metasurface can only work for normal incidence and exhibit low conversion efficiency. Here, we present an ultrawide-angle and high-efficiency metasurface without chromatic aberration for wavefront shaping in visible range. The metasurface is constructed by multiple metallic nano-groove gratings, which support enhanced diffractions for an ultrawide incident angle range from 10o to 80o due to the excitations of localized gap plasmon modes at different resonance wavelengths. Incident light at these resonance wavelengths can be efficiently diffracted into the same direction with complete suppression of the specular reflection. This approach is applied to the design of an achromatic flat lens for focusing light of different wavelengths into the same position. ...

  18. Neutron powder thermo-diffraction in mechanically alloyed Fe{sub 64}Ni{sub 36} invar alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gorria, Pedro, E-mail: pgorria@uniovi.e [Departamento de Fisica, Universidad de Oviedo, Avda. Calvo Sotelo s/n, Oviedo 33007, Asturias (Spain); Martinez-Blanco, David [Unidad de Magnetometria, SCT' s, Universidad de Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo, Avda. Calvo Sotelo s/n, Oviedo 33007, Asturias (Spain); Smith, Ronald I. [ISIS Facility, RAL, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2010-04-16

    Nanostructured Fe{sub 64}Ni{sub 36} alloy has been obtained using high-energy ball milling for 35 h of milling time, Fe{sub 64}Ni{sub 36} MA-35 h. The initial as-milled Fe{sub 64}Ni{sub 36} MA-35 h powders are inhomogeneous, showing a majority phase with a face-centred cubic (fcc) crystal structure [88(2)%] and a minority phase with body-centred cubic (bcc) crystal structure [7(2)%]. The evolution of the microstructure with temperature between 300 K and 1100 K has been followed by means of in situ neutron powder thermo-diffraction experiments. The room temperature values for the mean crystalline size and the mechanical-induced microstrain of the fcc phase in the as-milled sample are {approx}10 nm and {approx}0.7%, respectively. Moreover, after heating the Fe{sub 64}Ni{sub 36} MA-35 h powders up to 1100 K, an increase of around 65 K in the Curie temperature respect to that of the commercial coarse-grained alloy of the same composition is observed. The latter together with the observed temperature dependence of the lattice parameter suggests that the Fe{sub 64}Ni{sub 36} MA-35 h sample subjected to the heating process exhibits invar behaviour. On heating up to 1100 K thermal relaxation of the microstructure occurs giving rise to grain growth above 100 nm, nearly vanishing values for the maximum strain, and the transformation of the bcc phase into the fcc one above 800 K, being the latter stable in subsequent heating-cooling processes.

  19. X-Ray and Neutron Diffraction Measurements of Dislocation Density and Subgrain Size in a Friction-Stir-Welded Aluminum Alloy

    Science.gov (United States)

    Woo, Wanchuck; Ungár, Tamás; Feng, Zhili; Kenik, Edward; Clausen, Bjørn

    2010-05-01

    The dislocation density and subgrain size were determined in the base material and friction-stir welds of 6061-T6 aluminum alloy. High-resolution X-ray diffraction measurement was performed in the base material. The result of the line profile analysis of the X-ray diffraction peak shows that the dislocation density is about 4.5 × 1014 m-2 and the subgrain size is about 200 nm. Meanwhile, neutron diffraction measurements have been performed to observe the diffraction peaks during friction-stir welding (FSW). The deep penetration capability of the neutron enables us to measure the peaks from the midplane of the Al plate underneath the tool shoulder of the friction-stir welds. The peak broadening analysis result using the Williamson-Hall method shows the dislocation density of about 3.2 × 1015 m-2 and subgrain size of about 160 nm. The significant increase of the dislocation density is likely due to the severe plastic deformation during FSW. This study provides an insight into understanding the transient behavior of the microstructure under severe thermomechanical deformation.

  20. Environmental Challenges Related to the Acquisition of the Trans Carpathian Wide Angle Reflection and Refraction Line

    Science.gov (United States)

    Dragut, Dorina-Alina; Schultz, Gehrig; Mocanu, Victor; Stephenson, Randell; Janik, Tomasz; Starostenko, Vitaly

    2015-04-01

    Complex structures like the Carpathian Orogen and its neighbouring platforms and related inter-orogenic basin system can be understood only by complex integration of complementary investigative tools. Most of regional geoscientific investigations in Romania have targeted the very intricate, high intermediate-depth seismicity, clustered Carpathian Bend Zone: Vrancea. Despite huge geological and geophysical efforts, the area remains a matter of robust debate, at least from the point of view of geodynamic driving mechanisms. However, other areas outside Vrancea remained somehow "orphaned". However, a large wide angle refraction and reflection (WARR) survey was carried out in the summer of 2014 by a large international partnership in order to study the transition from the East European Platform to the northern part of the Romanian Eastern Carpathians, Transylvanian Basin and the Apuseni Mountains. The main scientific objectives of the WARR project relate to three main investigation domains: crustal architecture; affinity of crystalline basement and sedimentary basins architecture. The profile is about 700 km in total, in Ukraine and Romania. Recorders were placed at 1.75 - 2.0 km intervals along an alignment forming the Romanian segment. Recorders used were stand-alone DSS Cubes from the Helmholz Center of GFZ Potsdam and from the Institute of Geophysics of the Polish Academy of Sciences. The seismic sources were explosives ("Riogel" and "Riodet" by Maxam), with shotpoints spaced at 20 - 65 km with a total of 800 - 1200 kg explosives/site in clusters of drill-holes loaded with 50 kg explosive/hole, average depth of 25 m. Very complicated and legally-challenging environmental permitting requirements represented a real issue for successful implementation of the project. The main concern of local and central authorities related to potential pollution of sensitive components. Here, we present the strategy, actions and results concluded in order to reach the scientific and

  1. A Neutron-Diffraction Study of the Solid Layers at the Liquid Solid Boundary in 4He-Films Adsorbed on Graphite

    DEFF Research Database (Denmark)

    da Costa Carneiro, Kim; Passell, L.; Thomlinson, W.

    1981-01-01

    A neutron scattering study of the structure of 4He films adsorbed on graphite is reported. Diffraction from helium monolayers at a temperature of 1.2K shows the formation of an incommensurate, triangular-lattice solid of high density. As the coverage is increased above two layers, the diffraction...... precise identification. A measurement of the height of the first helium layer above the graphite basal plane was also made. This was done by determining the coverage-dependent shift in the position of the graphite (002) diffraction peak (assumed to arise from interference between film and substrate...... scattering) and fitting it to a simple structural model. Values for the monolayer height above the graphite plane and for the lattice constants of the possible bilayer structures are given....

  2. NEUTRON POWDER DIFFRACTION TECHNIQUE '

    African Journals Online (AJOL)

    2006-05-04

    May 4, 2006 ... (paramagnetic), whereas it varies irregularly with temperature in the low temperature region, due to the small Co moment. Thetefpte, in our model, the value of BCO at low temperature is estimated by extrapolating thatj in iicubic structure. Then 8Tb can be deriveciirandshows an almost linear variation.

  3. Wide-angle, polarization-insensitive and broadband absorber based on eight-fold symmetric SRRs metamaterial

    Science.gov (United States)

    Wu, Dong; Liu, Yumin; Yu, Zhongyuan; Chen, Lei; Ma, Rui; Li, Yutong; Li, Ruifang; Ye, Han

    2016-12-01

    In this paper, we propose a novel three dimensional metamaterial design with eight-fold rotational symmetry that shows a polarization-insensitive, wide-angle and broadband perfect absorption in the microwave band. By simulation, the polarization-insensitive absorption is over 90% between 26.9 GHz to 32.9 GHz, and the broadband absorption remains a good absorption performance to a wide incident angles for both TE and TM polarizations. The magnetic field distribution are investigated to interpret the physical mechanism of broadband absorption. The broadband absorption is based on overlapping the multiple magnetic resonances at the neighboring frequencies by coupling effects of multiple metallic split-ring resonators (SRRs). Moreover, it is demonstrate that the designed structure can be extended to other frequencies by scale down the size of the unit cell, such as the visible frequencies. The simulated results show that the absorption of the smaller absorber is above 90% in the frequency range from 467 THz to 765 THz(392-642 nm), which include orange to purple light in visible region(400-760nm). The wide-angle and polarization-insensitive stabilities of the smaller absorber is also demonstrated at visible region. The proposed work provides a new design of realization of a polarization-insensitive, wide-angle and broadband absorber ranging different frequency bands, and such a structure has potential application in the fields of solar cell, imaging and detection.

  4. 25G compared with 20G vitrectomy under Resight non-contact wide-angle lenses for Terson syndrome.

    Science.gov (United States)

    Mao, Xinbang; You, Zhipeng

    2017-08-01

    The aim of the present study was to compare the effectiveness of 25G vitrectomy to standard 20G vitrectomy for treatment of Terson syndrome under Resight non-contact wide-angle lenses. This was a case-control study of 20 patients with Terson syndrome (study group) that underwent 25G vitrectomy under Resight non-contact wide-angle lenses, with those of 20 matched patients that underwent 20G vitrectomy (control group). Medical records were reviewed from between July 2011 and October 2013. Data included results of the Early Treatment Diabetic Retinopathy Study examination, ophthalmology B-scan ultrasonography and fundus photography. The mean age, follow-up time, the preoperative visual acuity of LogMAR and the preoperative intraocular pressure (IOP) were all comparable in the two groups (all P>0.05). There were statistically significant differences in postoperative visual acuity of LogMAR compared with preoperative visual acuity (PTerson syndrome under Resight non-contact wide-angle lenses can achieve a significantly shorter operative time and lower post-operative IOP compared with 20G Vitrectomy.

  5. Quantum interferences revealed by neutron diffraction accord with a macroscopic-scale quantum-theory of ferroelectrics KH2(1- ρ)D2 ρ PO4

    Science.gov (United States)

    Fillaux, François; Cousson, Alain

    2016-03-01

    Neutron diffraction by single-crystals KH2(1- ρ)D2 ρ PO4 at 293 K reveal quantum interferences consistent with a static lattice of entangled proton-deuteron scatterers. These crystals are represented by a macroscopic-scale condensate of phonons with continuous space-time-translation symmetry and zero-entropy. This state is energetically favored and decoherence-free over a wide temperature-range. Projection of the crystal state onto a basis of four electrically- and isotopically-distinct state-vectors accounts for isotope and pressure effects on the temperature of the ferroelectric-dielectric transition, as well as for the latent heat. At the microscopic level, an incoming wave realizes a transitory state either in the space of static positional parameters (elastic scattering) or in that of the symmetry species (energy transfer). Neutron diffraction, vibrational spectroscopy, relaxometry and neutron Compton scattering support the conclusion that proton and deuteron scatterers are separable exclusively through resonant energy-transfer.

  6. Two-dimensional position-sensitive gaseous detectors for high-resolution neutron and X-ray diffraction

    CERN Document Server

    Marmotti, M; Kampmann, R

    2002-01-01

    Two-dimensional position-sensitive gaseous detectors have been developed at the Geesthacht Neutron Facility (GeNF) for high-resolution neutron and X-ray diffractometry. They are multi-wire proportional counters with delay-line readout and sensitive areas of 300 mm x 300 mm or 500 mm x 500 mm. For detecting X-rays, neutrons and hard X-rays the counters are filled with Ar/CO sub 2 , sup 3 He/CF sub 4 and Xe/CO sub 2 , respectively. One neutron detector is used at the ARES diffractometer at GKSS, which is dedicated to the analysis of residual stresses. Further ones are used for analysing textures and residual stresses at the hard-X-ray beamline PETRA-2 at HASYLAB, and one detector is being developed for the neutron reflectometer REFSANS at the research reactor FRM-II in Munich, Germany. (orig.)

  7. Texture Analysis using The Neutron Diffraction Method on The Non Standardized Austenitic Steel Process by Machining,Annealing, and Rolling

    Directory of Open Access Journals (Sweden)

    Tri Hardi Priyanto

    2016-04-01

    Full Text Available Austenitic steel is one type of stainless steel which is widely used in the industry. Many studies on  austenitic stainless steel have been performed to determine the physicalproperties using various types of equipment and methods. In this study, the neutron diffraction method is used to characterize the materials which have been made from  minerals extracted from the mines in Indonesia. The materials consist of a granular ferro-scrap, nickel, ferro-chrome, ferro-manganese, and ferro-silicon added with a little titanium. Characterization of the materials was carried out in threeprocesses, namely: machining, annealing, and rolling. Experimental results obtained from the machining process generally produces a texture in the 〈100〉direction. From the machining to annealing process, the texture index decreases from 3.0164 to 2.434.Texture strength in the machining process (BA2N sample is  8.13 mrd and it then decreases to 6.99 in the annealing process (A2DO sample. In the annealing process the three-component texture appears, cube-on-edge type texture{110}〈001〉, cube-type texture {001}〈100〉, and brass-type {110}〈112〉. The texture is very strong leading to the direction of orientation {100}〈001〉, while the {011}〈100〉is weaker than that of the {001}, and texture withorientation {110}〈112〉is weak. In the annealing process stress release occurred, and this was shown by more randomly pole compared to stress release by the machining process. In the rolling process a brass-type texture{110}〈112〉with a spread towards the goss-type texture {110}〈001〉 appeared,  and  the  brass  component  is markedly  reinforced  compared  to  the undeformed state (before rolling. Moreover, the presence of an additional {110} component was observed at the center of the (110 pole figure. The pole density of three components increases withthe increasing degree of thickness reduction. By increasing degrees

  8. An in situ powder neutron diffraction study of nano-precipitate formation during processing of oxide-dispersion-strengthened ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongtao, E-mail: hongtao.zhang@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Gorley, Michael J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Chong, Kok Boon; Fitzpatrick, Michael E. [Materials Engineering, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Roberts, Steve G.; Grant, Patrick S. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2014-01-05

    Highlights: • In situ powder neutron diffraction to study precipitate formation in ODS steel. • First real time observation of nano-precipitate formation during processing. • Y{sub 2}O{sub 3} particles were fully dissolved into steel matrix during mechanical alloy. • The precipitation occurred during annealing of as-milled powder above 900 °C. -- Abstract: The evolution of phases in a Fe–14Cr–10Y{sub 2}O{sub 3} (wt%) oxide-dispersion-strengthened ferritic steel during mechanical alloying (MA) and subsequent annealing was studied by high resolution powder neutron diffraction, with emphasis on the kinetics of oxide-based nano-precipitate formation. Y{sub 2}O{sub 3} particles were completely dissolved into the ferritic matrix during MA. The formation of nano-precipitates was then observed by in situ thermo-diffraction experiments during annealing of as-milled powder above 900 °C, supported by scanning electron microscopy. This revealed nano-precipitate coarsening with increasing annealing temperature. Powder microhardness was measured at various processing stages, and hardness changes are discussed in terms of the measured phase fractions, crystallite size and lattice strain at different temperatures and times.

  9. Structural study of the apatite Nd₈Sr₂Si₆O₂₆ by Laue neutron diffraction and single-crystal Raman spectroscopy.

    Science.gov (United States)

    An, Tao; Orera, Alodia; Baikie, Tom; Herrin, Jason S; Piltz, Ross O; Slater, Peter R; White, Tim J; Sanjuán, María L

    2014-09-02

    A single-crystal structure determination of Nd8Sr2Si6O26 apatite, a prototype intermediate-temperature electrolyte for solid oxide fuel cells grown by the floating-zone method, was completed using the combination of Laue neutron diffraction and Raman spectroscopy. While neutron diffraction was in good agreement with P6₃/m symmetry, the possibility of P6₃ could not be convincingly excluded. This ambiguity was removed by the collection of orientation-dependent Raman spectra that could only be consistent with P6₃/m. The composition of Nd8Sr2Si6O26 was independently verified by powder X-ray diffraction in combination with electron probe microanalysis, with the latter confirming a homogeneous distribution of Sr and the absence of chemical zonation commonly observed in apatites. This comprehensive crystallochemical description of Nd8Sr2Si6O26 provides a baseline to quantify the efficacy of cation vacancies, oxygen superstoichiometry, and symmetry modification for promoting oxygen-ion mobility.

  10. Formation of incommensurate long-range magnetic order in the Dzyaloshinskii-Moriya antiferromagnet Ba2CuGe2O7 studied by neutron diffraction

    Science.gov (United States)

    Mühlbauer, S.; Brandl, G.; Mânsson, M.; Garst, M.

    2017-10-01

    Neutron diffraction on a triple-axis spectrometer and a small-angle neutron scattering instrument is used to study the magnetic phase transition in tetragonal Ba2CuGe2O7 at zero magnetic field. In addition to the incommensurate cycloidal antiferromagnetic (AFM) long-range order, we establish that weak incommensurate ferromagnetism (FM) also arises below the transition temperature TN identified by sharp Bragg peaks close to the Γ point. The intensities of both the incommensurate AFM and FM Bragg peaks vanish abruptly at TN, which is indicative of a weak first-order transition. Above TN, evidence is presented that the magnetic intensity within the tetragonal (a ,b ) plane is distributed on a ring in momentum space whose radius is determined by the incommensurate wave vector of the cycloidal order. We speculate that the associated soft fluctuations are at the origin of the weak first-order transition in the spirit of a scenario proposed by Brazovskii.

  11. Towards doubling solar harvests using wide-angle, broad-band microfluidic beam steering arrays.

    Science.gov (United States)

    DiDomenico, Leo D

    2015-11-30

    This paper introduces Microfluidic Beam Steering (MBS), which is a new technique for electronically steering light having multiple octaves of bandwidth, any polarization state and incidence from any direction of the sky without significant restrictions due to physical area, optical loss and power handling capacity. It is based on optical elements comprising both transparent solids and electronically controllable fluids to control Total Internal Reflection (TIR), refraction and/or diffraction from micro-structured surfaces within a transparent solid. A TIR-based MBS is discussed in the context of solar energy and its potential to significantly increase annual energy harvests from solar arrays situated on fixed areas like roofs. The advantages and challenges associated with analog and digital MBS systems are discussed and early-stage MBS hardware is demonstrated. Finally, an analytic model of sun-tracking is provided to formally establish the potential for MBS to increase annual solar energy harvests by approximately 45% more than conventional 0-Degree Of Freedom (0-DOF) solar arrays, 62% more than 1-DOF arrays and 233% more than 2-DOF arrays, all at 20% atmospheric aerosol scattering.

  12. Weld residual stresses near the bimetallic interface in clad RPV steel: A comparison between deep-hole drilling and neutron diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    James, M.N., E-mail: mjames@plymouth.ac.uk [School of Marine Science and Engineering, University of Plymouth, Drake Circus, Plymouth (United Kingdom); Department of Mechanical Engineering, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Newby, M.; Doubell, P. [Eskom Holdings SOC Ltd, Lower Germiston Road, Rosherville, Johannesburg (South Africa); Hattingh, D.G. [Department of Mechanical Engineering, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Serasli, K.; Smith, D.J. [Department of Mechanical Engineering, University of Bristol, Queen' s Building, University Walk, Bristol (United Kingdom)

    2014-07-01

    Highlights: • Identification of residual stress trends across bimetallic interface in stainless clad RPV. • Comparison between deep hole drilling (DHD – stress components in two directions) and neutron diffraction (ND – stress components in three directions). • Results indicate that both techniques can assess the trends in residual stress across the interface. • Neutron diffraction gives more detailed information on transient residual stress peaks. - Abstract: The inner surface of ferritic steel reactor pressure vessels (RPV) is clad with strip welded austenitic stainless steel primarily to increase the long-term corrosion resistance of the ferritic vessel. The strip welding process used in the cladding operation induces significant residual stresses in the clad layer and in the RPV steel substrate, arising both from the thermal cycle and from the very different thermal and mechanical properties of the austenitic clad layer and the ferritic RPV steel. This work measures residual stresses using the deep hole drilling (DHD) and neutron diffraction (ND) techniques and compares residual stress data obtained by the two methods in a stainless clad coupon of A533B Class 2 steel. The results give confidence that both techniques are capable of assessing the trends in residual stresses, and their magnitudes. Significant differences are that the ND data shows greater values of the tensile stress peaks (∼100 MPa) than the DHD data but has a higher systematic error associated with it. The stress peaks are sharper with the ND technique and also differ in spatial position by around 1 mm compared with the DHD technique.

  13. Anomalous Depletion of Pore-Confined Carbon Dioxide upon Cooling below the Bulk Triple Point: An In Situ Neutron Diffraction Study

    Science.gov (United States)

    Stefanopoulos, K. L.; Katsaros, F. K.; Steriotis, Th. A.; Sapalidis, A. A.; Thommes, M.; Bowron, D. T.; Youngs, T. G. A.

    2016-01-01

    The phase behavior of sorbed CO2 in an ordered mesoporous silica sample (SBA-15) was studied by neutron diffraction. Surprisingly, upon cooling our sample below the bulk critical point, confined CO2 molecules neither freeze nor remain liquid as expected, but escape from the pores. The phenomenon has additionally been confirmed gravimetrically. The process is reversible and during heating CO2 refills the pores, albeit with hysteresis. This depletion was for the first time observed in an ordered mesoporous molecular sieve and provides new insight on the phase behavior of nanoconfined fluids.

  14. Strain Mapping and Nanocrystallite Size Determination by Neutron Diffraction in an Aluminum Alloy (AA5083 Severely Plastically Deformed through Equal Channel Angular Pressing

    Directory of Open Access Journals (Sweden)

    P. A. González Crespo

    2013-01-01

    Full Text Available Six specimens of an aluminum alloy (AA-5083 extruded by Equal Channel Angular Pressing following two different routes plus a blank sample were examined with a neutron radiation of 1.5448 Å. Macrostrain maps from the (311 reflection were obtained. A clear difference about accumulated macrostrain with the extrusion cycles between the two routes is shown. The diffraction data of annealed specimens did permit to estimate crystallite sizes that range between 89 nm and 115 nm depending on the routes.

  15. In-situ neutron diffraction study of martensitic variant redistribution in polycrystalline Ni-Mn-Ga alloy under cyclic thermo-mechanical treatment

    Science.gov (United States)

    Li, Zongbin; Zhang, Yudong; Esling, Claude; Gan, Weimin; Zou, Naifu; Zhao, Xiang; Zuo, Liang

    2014-07-01

    The influences of uniaxial compressive stress on martensitic transformation were studied on a polycrystalline Ni-Mn-Ga bulk alloy prepared by directional solidification. Based upon the integrated in-situ neutron diffraction measurements, direct experimental evidence was obtained on the variant redistribution of seven-layered modulated (7M) martensite, triggered by external uniaxial compression during martensitic transformation. Large anisotropic lattice strain, induced by the cyclic thermo-mechanical treatment, has led to the microstructure modification by forming martensitic variants with a strong ⟨0 1 0⟩7M preferential orientation along the loading axis. As a result, the saturation of magnetization became easier to be reached.

  16. Neutron diffraction studies of Ho sub 2 Fe sub 9 Ga sub 8 sub - sub x Al sub x (x=2, 4) at 50 K and 300 K

    CERN Document Server

    Chen, D F; Sun, K; Ridwan; Mujamilah, A; Marsongkohadi; Yan, Q W; Zhang, P L; Shen, B G; Gong, H Y

    1998-01-01

    The crystallographic and magnetic structures of Ho sub 2 Fe sub 9 Ga sub 8 sub - sub x Al sub x (x=2, 4) were studied by powder neutron diffraction at 50 K and 300 K. The atom fractional occupancies of gallium and aluminium and the magnetic moments of Ho and Fe atoms were obtained by a Rietveld analysis program. The gallium atoms occupy preferentially 18f sites, but aluminium atoms prefer to occupy 6c sites. The magnetic moments of the phase with the x=2, 4 at 50 K and x=2 at 300 K show uniaxial anisotropy. A qualitative explanation for this result is given. (author)

  17. Twin-domain size and bulk oxygen in-diffusion kinetics of YBa2Cu3O6+x studied by neutron powder diffraction and gas volumetry

    DEFF Research Database (Denmark)

    Poulsen, H.F.; Andersen, N.H.; Lebech, B.

    1991-01-01

    We report experimental results of twin-domain size and bulk oxygen in-diffusion kinetics of YBa2Cu3O6+x, which supplement a previous and simultaneous study of the structural phase diagram and oxygen equilibrium partial pressure. Analysis of neutron powder diffraction peak broadening show features...... which are identified to result from temperature independent twin-domain formation in to different orthorhombic phases with domain sizes 250 and 350 angstrom, respectively. The oxygen in-diffusion flow shows simple relaxation type behaviour J = J0 exp(-t/tau) despite a rather broad particle size...

  18. Neutron diffraction investigation for possible anisotropy within monolithic Al{sub 2}O{sub 3}/Y-TZP composites fabricated by stacking together cast tapes

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Hervias, J. [Departamento de Ciencia de Materiales, UPM, E.T.S.I. Caminos, Canales y Puertos, C/Profesor Aranguren s/n, E-28040 Madrid (Spain); Bruno, G. [Institut Max von Laue-Paul Langevin, BP 156, F-38042 Grenoble (France); Gurauskis, J. [Instituto de Ceramica y Vidrio (CSIC), Department of Ceramics, C/Kelsen 5, E-28049 Madrid (Spain); Sanchez-Herencia, A.J. [Instituto de Ceramica y Vidrio (CSIC), Department of Ceramics, C/Kelsen 5, E-28049 Madrid (Spain); Baudin, C. [Instituto de Ceramica y Vidrio (CSIC), Department of Ceramics, C/Kelsen 5, E-28049 Madrid (Spain)]. E-mail: cbaudin@icv.csic.es

    2006-03-15

    development of residual stresses in two Al{sub 2}O{sub 3} + 5 vol.% yttria-tetragonal zirconia polycrystal (Y-TZP) ceramic composites fabricated by conventional slip casting and by joining green cast tapes was investigated. Neutron diffraction profiles revealed compressive microstresses (-200 MPa) in the Al{sub 2}O{sub 3} matrix and tensile ones (2200 MPa) in the Y-TZP particles, irrespective of the processing route and the direction of measurement, which demonstrates the lack of residual macrostresses due to the joining procedure.

  19. The asymmetric interface structure of bcc Fe{sub 82}Ni{sub 18}/Co superlattices as revealed by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, M. [Department of Physics, Uppsala Universitet, Box 530, SE-751 21 Uppsala (Sweden)]. E-mail: Matts.Bjorck@fysik.uu.se; Soroka, I.L. [Department of Physics, Uppsala Universitet, Box 530, SE-751 21 Uppsala (Sweden); Atomic Physics Department, Stockholm University, AlbaNova University Centrum, 106 91 Stockholm (Sweden); Chacon-Carillo, C. [Department of Physics, Uppsala Universitet, Box 530, SE-751 21 Uppsala (Sweden); Laboratoire Materiaux et Phenomenes Quantiques, Universite Paris 7, CNRS, UMR 7162, 2 Place Jussieu, 75251 Paris Cedex (France); Andersson, G. [Department of Physics, Uppsala Universitet, Box 530, SE-751 21 Uppsala (Sweden)

    2007-02-26

    The interface structure of Fe{sub 82}Ni{sub 18}/Co (001) superlattices has been studied with a combination of X-ray and neutron diffraction. The analysis reveals highly asymmetric interfaces with total interface widths of 10 {+-} 1 ML(monolayers) for Fe{sub 82}Ni{sub 18} on Co and a maximum interface width of 1 ML for Co on Fe{sub 82}Ni{sub 18}. In addition it is concluded that there is no detectable long range B2-type chemical order occurring in the interface region. These results are also discussed in the context of previously measured magnetic moments of the same system.

  20. Resonant x-ray and neutron diffraction study of USb0.8Te0.2

    DEFF Research Database (Denmark)

    Nuttall, W.J.; Langridge, S.; Stirling, W.G.

    1995-01-01

    Complementary neutron and magnetic x-ray scattering experiments have been performed on the pseudobinary compound USb0.8Te0.2. Both techniques reveal a succession of magnetic phases on cooling. On passing through the Neel temperature (T-N similar to 205 K), the system enters an antiferromagnetic (AF...... in the neutron and x-ray experiments are compared and discussed....

  1. Synchrotron radiation small- and wide- angle scattering study of dispergation of Equoral, a novel drug delivery system with cyclosporine A.

    Science.gov (United States)

    Uhríková, D; Andrýsek, T; Funari, S S; Balgavý, P

    2004-08-01

    Equoral oral solution is a novel drug delivery system for cyclosporine consisting mainly of non-ionic surfactants, polyglycerol esters and polyoxyethylated fatty acids aggregates, and gives microdispersions in the aqueous enviroment. To simulate dispergation, Equoral was mixed with varying amounts of water. Changes in the structure of the prepared aggregates were studied using synchrotron x-ray small- and wide-angle scattering. A lamellar phase is the most probable structure, arising spontaneously after dispergation of Equoral in the region of 30-70 wt% H2O.

  2. Imaging the Moho and V(p)/V(s) ratio in the western Superior Archean craton with wide angle reflections

    Science.gov (United States)

    Kay, I.; Musacchio, G.; White, D.; Asudeh, I.; Roberts, B.; Forsyth, D.; Hajnal, Z.; Koperwhats, B.; Farrell, D.

    1999-01-01

    A refraction/wide-angle reflection survey in northwestern Ontario investigated the Archean Superior Province of the Canadian Shield. Images of apparent Moho topography were produced from both the PmP and SmS Moho wide angle reflections. The average Moho depth is 41 km, and average P- and S-wave velocities 6.6 and 3.8 (??0.05) km/s respectively. The Moho dips southward from 39.5 to 42 km depth over roughly 400 km. From ratios of S and P travel times to the Moho, profiles of V(p)/V(s) were constructed. The average V(p)/V(s) ratios are 1.74 and 1.76 for on the E-W and N-S lines (Poisson's ratio ?? = 0.253 and 0.262 respectively). V(p)/V(s) profiles show a sharp increase from west to east and a gradual increase from north to south, correlating with the distribution of more felsic continental crust and composite crust in the Western Superior.A refraction/wide-angle reflection survey in northwestern Ontario investigated the Archean Superior Province of the Canadian Shield. Images of apparent Moho topography were produced from both the PmP and SmS Moho wide angle reflections. The average Moho depth is 41 km, and average P- and S-wave velocities 6.6 and 3.8 (?? 0.05) km/s respectively. The Moho dips southward from 39.5 to 42 km depth over roughly 400 km. From ratios of S and P travel times to the Moho, profiles of Vp/Vs were constructed. The average Vp/Vs ratios are 1.74 and 1.76 for on the E-W and N-S lines (Poisson's ratio ?? = 0.253 and 0.262 respectively). Vp/Vs profiles show a sharp increase from west to east and a gradual increase from north to south, correlating with the distribution of more felsic continental crust and composite crust in the Western Superior.

  3. In-situ neutron diffraction of LaCoO3 perovskite under uniaxial compression. I. Crystal structure analysis and texture development

    Science.gov (United States)

    Aman, Amjad; Chen, Yan; Lugovy, Mykola; Orlovskaya, Nina; Reece, Michael J.; Ma, Dong; Stoica, Alexandru D.; An, Ke

    2014-07-01

    The dynamics of texture formation, changes in crystal structure, and stress accommodation mechanisms have been studied in perovskite-type R3¯c rhombohedral LaCoO3 during uniaxial compression using in-situ neutron diffraction. The in-situ neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in the LaCoO3 perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However, in the second loading/unloading cycle, the hysteresis loop was closed and no further irrecoverable strain appeared after deformation. The significant texture formation is responsible for an increase in the Young's modulus of LaCoO3 at high compressive stresses, ranging from 76 GPa at the very beginning of the loading to 194 GPa at 900 MPa at the beginning of the unloading curve.

  4. In-situ neutron diffraction of LaCoO3 perovskite under uniaxial compression. I. Crystal structure analysis and texture development

    Energy Technology Data Exchange (ETDEWEB)

    Aman, Amjad [ORNL; Chen, Yan [ORNL; Lugovy, Mykola [University of Central Florida; Orlovskaya, Nina [ORNL; Reece, Michael John [University of London; Ma, Dong [ORNL; Stoica, Alexandru Dan [ORNL; An, Ke [ORNL

    2014-01-01

    The dynamics of texture formation, changes in crystal structure and stress accommodation mechanisms are studied in R3c rhombohedral LaCoO3 perovskite during in-situ uniaxial compression experiment by neutron diffraction. The neutron diffraction revealed the complex crystallographic changes causing the texture formation and significant straining along certain crystallographic directions during in-situ compression, which are responsible for the appearance of hysteresis and non-linear ferroelastic deformation in LaCoO3 perovskite. The irreversible strain after the first loading was connected with the appearance of non-recoverable changes in the intensity ratio of certain crystallographic peaks, causing non-reversible texture formation. However in the second loading/unloading cycle the hysteresis loop was closed and no irreversible strain appears after deformation. The significant texture formation is responsible for increase in the Young s modulus of LaCoO3 at high compressive loads, where the reported values of Young s modulus increase from 76 GPa measured at the very beginning of the loading to 194 GPa at 900 MPa applied compressive stress measured at the beginning of the unloading curve.

  5. Crystal structure relation between tetragonal and orthorhombic CsAlD{sub 4}: DFT and time-of-flight neutron powder diffraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Bernert, Thomas; Krech, Daniel; Felderhoff, Michael; Weidenthaler, Claudia [Department of Heterogeneous Catalysis, Max-Planck-Institut fuer Kohlenforschung, Muelheim/Ruhr (Germany); Kockelmann, Winfried [Rutherford Appleton Laboratory, Harwell Oxford, Didcot (United Kingdom); Frankcombe, Terry J. [Research School of Chemistry, The Australian National University, Canberra, ACT (Australia); School of Physical, Environmental and Mathematic Sciences, The University of New South Wales, Canberra, ACT (Australia)

    2015-11-15

    The crystal structures of orthorhombic and tetragonal CsAlD{sub 4} were refined from time-of-flight neutron powder diffraction data starting from atomic positions predicted from DFT calculations. The earlier proposed crystal structure of orthorhombic CsAlH{sub 4} is confirmed. For tetragonal CsAlH{sub 4}, DFT calculations predicted a crystal structure in I4{sub 1}/amd as potential minimum structure, while from neutron diffraction studies of CsAlD{sub 4} best refinement is obtained for a disordered structure in the space group I4{sub 1}/a, with a = 5.67231(9) Aa, c = 14.2823(5) Aa. While the caesium atoms are located on the Wyckoff position 4b and aluminium at Wyckoff position 4a, there are two distinct deuterium positions at the Wyckoff position 16f with occupancies of 50 % each. From this structure, the previously reported phase transition between the orthorhombic and tetragonal polymorphs could be explained. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Combined X-ray and neutron diffraction study of vacancies and disorder in the dimorphic clathrate Ba8Ga16Sn30 of type I and VIII.

    Science.gov (United States)

    Christensen, Sebastian; Avila, Marcos A; Suekuni, Koichiro; Piltz, Ross; Takabatake, Toshiro; Christensen, Mogens

    2013-10-01

    We report detailed structural investigations of the dimorphic clathrate Ba8Ga16Sn30 that crystallizes in both type I and VIII clathrate structures. Single crystals of type I and VIII have been examined using single crystal X-ray and Laue neutron diffraction in the temperature range T = 10 K-500 K. The utilization of both X-ray and neutron diffraction gives a unique ability to reveal the occurrence of minute vacancy occupancies in the host structure. The vacancies are shown to be located on the 6c (type I) and 24g (type VIII) framework sites. Largest vacancy densities are observed for type I p-Ba8Ga16Sn30, 1.3(4)%, and type VIII n-Ba8Ga16Sn30, 0.7(2)%. The relation between guest atom disorder and occurrence of glasslike thermal conductivity in intermetallic clathrates was also investigated. In type VIII Ba8Ga16Sn30 neither n-type (crystalline thermal conductivity) nor p-type (glasslike thermal conductivity) showed any significant disorder of the guest atoms; they do however show anharmonic motion. The glasslike thermal conductivity of p-type Ba8Ga16Sn30 is interpretable as a result of higher effective mass of p-type charge-carriers affecting phonon scattering. In type I Ba8Ga16Sn30 guest atoms are highly disordered for both carrier types and samples of both charge carrier types have glasslike thermal conductivity.

  7. In-Situ High Temperature Neutron Diffraction Study of Bi,Pb(2223) Phase Formation in Ag-Sheathed Monofilamentary Tapes

    Science.gov (United States)

    Giannini, E.; Bellingeri, E.; Passerini, R.; Flükiger, R.

    High temperature neutron diffraction measurements were performed on Bi(2223)/Ag-sheathed monofilamentary tapes at the ILL high-flux reactor in Grenoble. Reactions leading to the conversion from Bi(2212) to Bi,Pb(2223), as well as other transformations involving secondary phases, were directly observed during the reaction heat treatment. The heating ramp and annealing conditions were exactly the same as those used for standard high-performance tapes processing. A quantitative analysis was carried out by means of a full-pattern profile refinement technique: up to 7 phases were simultaneously detected and successfully refined. An increase of the Bi(2212) phase during a slow cooling was found not to be related to a decomposition of Bi,Pb(2223), which remained stable during cooling. The role of secondary cuprates, in particular (Ca,Sr)14Cu24 O41, was investigated. Since neutron diffraction allows for an absolute measurement of the weight of crystalline matter inside the sample, it was possible to measure the total crystalline matter amount as a function of temperature and time during processing. Evidence of partial melting at high temperature was found strongly supporting the Bi,Pb(2223) formation via a nucleation-and-growth mechanism at the early stage of the process.

  8. Application of neutron diffraction in characterization of texture evolution during high-temperature creep in magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Sven C [Los Alamos National Laboratory; Sediako, Dimitry [CANADIAN NEUTRON BEAM; Shook, S [APPLIED MAGNESIUM INTERNATIONAL; Sediako, A [MCGILL UNIV

    2010-01-01

    A good combination of room-temperature and elevated temperature strength and ductility, good salt-spray corrosion resistance and exceUent diecastability are frequently among the main considerations in development of a new alloy. Unfortunately, there has been much lesser effort in development of wrought-stock alloys for high temperature applications. Extrudability and high temperature performance of wrought material becomes an important factor in an effort to develop new wrought alloys and processing technologies. This paper shows some results received in creep testing and studies of in-creep texture evolution for several wrought magnesium alloys developed for use in elevated-temperature applications. These studies were performed using E3 neutron spectrometer of the Canadian Neutron Beam Centre in Chalk River, ON, and HIPPO time-of-flight (TOF) spectrometer at Los Alamos Neutron Science Center, NM.

  9. Neutron diffraction and TSDC on Ba1−xUxF2+2x solid electrolytes

    DEFF Research Database (Denmark)

    Ouwerkerk, M.; Andersen, N. H.; Veldkamp, F. F.

    1986-01-01

    The defect structure of fluorite-type Ba1−xUxF2+2x solid solutions, which exhibit fast fluoride ion conductivity, has been investigated by quasi-elastic diffuse neutron scattering (QDNS) experiments, and thermally stimulated depolarisation current (TSDC) measurements. A comparison with model...

  10. Crystallization of a fungal lytic polysaccharide monooxygenase expressed from glycoengineered Pichia pastoris for X-ray and neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    O; Dell, William B.; Swartz, Paul D.; Weiss, Kevin L.; Meilleur, Flora (ORNL); (NCSU)

    2017-01-19

    Lytic polysaccharide monooxygenases (LPMOs) are carbohydrate-disrupting enzymes secreted by bacteria and fungi that break glycosidic bondsviaan oxidative mechanism. Fungal LPMOs typically act on cellulose and can enhance the efficiency of cellulose-hydrolyzing enzymes that release soluble sugars for bioethanol production or other industrial uses. The enzyme PMO-2 fromNeurospora crassa(NcPMO-2) was heterologously expressed inPichia pastoristo facilitate crystallographic studies of the fungal LPMO mechanism. Diffraction resolution and crystal morphology were improved by expressingNcPMO-2 from a glycoengineered strain ofP. pastorisand by the use of crystal seeding methods, respectively. These improvements resulted in high-resolution (1.20 Å) X-ray diffraction data collection at 100 K and the production of a largeNcPMO-2 crystal suitable for room-temperature neutron diffraction data collection to 2.12 Å resolution.

  11. Suppression of magnetic order in CaCo1.86As2 with Fe substitution: Magnetization, neutron diffraction, and x-ray diffraction studies of Ca (Co1-xFex) yAs2

    Science.gov (United States)

    Jayasekara, W. T.; Pandey, Abhishek; Kreyssig, A.; Sangeetha, N. S.; Sapkota, A.; Kothapalli, K.; Anand, V. K.; Tian, W.; Vaknin, D.; Johnston, D. C.; McQueeney, R. J.; Goldman, A. I.; Ueland, B. G.

    2017-02-01

    Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca (Co1-xFex) yAs2 , 0 ≤x ≤1 , 1.86 ≤y ≤2 , are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the c axis, persists for x ≲0.12 (1 ) . The antiferromagnetic order is smoothly suppressed with increasing x , with both the ordered moment and Néel temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for x ≤0.25 , nor does ferromagnetic order for x up to at least x =0.104 , and a smooth crossover from the collapsed-tetragonal (cT) phase of CaCo1.86As2 to the tetragonal (T) phase of CaFe2As2 occurs. These results suggest that hole doping CaCo1.86As2 has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.

  12. Polarization-insensitive wide-angle multiband metamaterial absorber with a double-layer modified electric ring resonator array

    Directory of Open Access Journals (Sweden)

    Wangchang Li

    2015-06-01

    Full Text Available In this letter, we report the design, demonstration and discussion of a multi- and broad- band metamaterial absorber (MMA with wide angle polarization insensitive at microwave region. The MMA consisting of double layered electric ring resonator (ERR with four fold rotational symmetry structure is used to realize a desirable absorption. Strong triple absorption peaks in 2∼8 GHz and broadband microwave absorption in 10∼18 GHz are demonstrated. The absorption can be reached as high as 0.73, 0.73 and 0.94 at 4.41, 5.15, 6.37 GHz, respectively. The multiband absorbing features originate from the synergetic effects of dipole resonance and Fabry-Pérot interference between two or three metasurfaces. This design is of high practical for constructing broad band and multiband absorber for electromagnetic intereference/compatibility (EMI/EMC applications.

  13. Polarization-insensitive wide-angle multiband metamaterial absorber with a double-layer modified electric ring resonator array

    Science.gov (United States)

    Li, Wangchang; Zhou, Xiang; Ying, Yao; Qiao, Xiaojing; Qin, Faxiang; Li, Qian; Che, Shenglei

    2015-06-01

    In this letter, we report the design, demonstration and discussion of a multi- and broad- band metamaterial absorber (MMA) with wide angle polarization insensitive at microwave region. The MMA consisting of double layered electric ring resonator (ERR) with four fold rotational symmetry structure is used to realize a desirable absorption. Strong triple absorption peaks in 2˜8 GHz and broadband microwave absorption in 10˜18 GHz are demonstrated. The absorption can be reached as high as 0.73, 0.73 and 0.94 at 4.41, 5.15, 6.37 GHz, respectively. The multiband absorbing features originate from the synergetic effects of dipole resonance and Fabry-Pérot interference between two or three metasurfaces. This design is of high practical for constructing broad band and multiband absorber for electromagnetic intereference/compatibility (EMI/EMC) applications.

  14. Time-Resolving Study of Stress-Induced Transformations of Isotactic Polypropylene through Wide Angle X-ray Scattering Measurements

    Directory of Open Access Journals (Sweden)

    Finizia Auriemma

    2018-02-01

    Full Text Available The development of a highly oriented fiber morphology by effect of tensile deformation of stereodefective isotactic polypropylene (iPP samples, starting from the unoriented γ form, is studied by following the transformation in real time during stretching through wide angle X-ray scattering (WAXS measurements. In the stretching process, after yielding, the initial γ form transforms into the mesomorphic form of iPP through mechanical melting and re-crystallization. The analysis of the scattering invariant measured in the WAXS region highlights that the size of the mesomorphic domains included in the well oriented fiber morphology obtained at high deformations increases through a process which involves the coalescence of the small fragments formed by effect of tensile stress during lamellar destruction with the domain of higher dimensions.

  15. Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial.

    Science.gov (United States)

    Bai, Yang; Zhao, Li; Ju, Dongquan; Jiang, Yongyuan; Liu, Linhua

    2015-04-06

    We propose a wide-angle, polarization-independent and dual-band infrared perfect metamaterial absorber made of double L-shaped gold patches on a dielectric spacer and opaque gold ground layer. Numerical and experimental results demonstrate that the absorber has two near-unity absorption peaks, which are result from magnetic polariton modes generated at two different resonant wavelengths. In addition, the proposed structure also shows good absorption stability in a wide range of incident anglesθfor both TE and TM incidences at azimuthal angle φ = 0°. Moreover, we demonstrate that such structure has good absorption stability for a wide range of azimuthal angles due to the excitation of perpendicular magnetic polariton modes within the asymmetric double L-shaped structure. Such structure will assist in designing magnetic polaritons absorbing element for infrared spectroscopy and imaging.

  16. Wide angle pinhole camera

    Science.gov (United States)

    Franke, J. M.

    1978-01-01

    Hemispherical refracting element gives pinhole camera 180 degree field-of-view without compromising its simplicity and depth-of-field. Refracting element, located just behind pinhole, bends light coming in from sides so that it falls within image area of film. In contrast to earlier pinhole cameras that used water or other transparent fluids to widen field, this model is not subject to leakage and is easily loaded and unloaded with film. Moreover, by selecting glass with different indices of refraction, field at film plane can be widened or reduced.

  17. Radio Galaxy Zoo: discovery of a poor cluster through a giant wide-angle tail radio galaxy

    Science.gov (United States)

    Banfield, J. K.; Andernach, H.; Kapińska, A. D.; Rudnick, L.; Hardcastle, M. J.; Cotter, G.; Vaughan, S.; Jones, T. W.; Heywood, I.; Wing, J. D.; Wong, O. I.; Matorny, T.; Terentev, I. A.; López-Sánchez, Á. R.; Norris, R. P.; Seymour, N.; Shabala, S. S.; Willett, K. W.

    2016-08-01

    We have discovered a previously unreported poor cluster of galaxies (RGZ-CL J0823.2+0333) through an unusual giant wide-angle tail radio galaxy found in the Radio Galaxy Zoo project. We obtained a spectroscopic redshift of z = 0.0897 for the E0-type host galaxy, 2MASX J08231289+0333016, leading to Mr = -22.6 and a 1.4 GHz radio luminosity density of L1.4 = 5.5 × 1024 W Hz-1. These radio and optical luminosities are typical for wide-angle tailed radio galaxies near the borderline between Fanaroff-Riley classes I and II. The projected largest angular size of ≈8 arcmin corresponds to 800 kpc and the full length of the source along the curved jets/trails is 1.1 Mpc in projection. X-ray data from the XMM-Newton archive yield an upper limit on the X-ray luminosity of the thermal emission surrounding RGZ J082312.9+033301 at 1.2-2.6 × 1043 erg s-1 for assumed intracluster medium temperatures of 1.0-5.0 keV. Our analysis of the environment surrounding RGZ J082312.9+033301 indicates that RGZ J082312.9+033301 lies within a poor cluster. The observed radio morphology suggests that (a) the host galaxy is moving at a significant velocity with respect to an ambient medium like that of at least a poor cluster, and that (b) the source may have had two ignition events of the active galactic nucleus with 107 yr in between. This reinforces the idea that an association between RGZ J082312.9+033301 and the newly discovered poor cluster exists.

  18. The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) NASA Mission-of- Opportunity - Up and Operational

    Science.gov (United States)

    McComas*, D. J.

    2008-12-01

    *Presented on behalf of the entire TWINS Team Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a NASA Explorer Mission-of-Opportunity to stereoscopically image the Earth's magnetosphere for the first time [McComas et al., 2008]. TWINS extends our understanding of magnetospheric structure and processes by providing simultaneous Energetic Neutral Atom (ENA) imaging from two widely separated locations. TWINS observes ENAs from 1-100 keV with high angular (~4° x 4°) and time (~1-minute) resolution. The TWINS Ly-α monitor measures the geocoronal hydrogen density to aid in ENA analysis while environmental sensors provide contemporaneous measurements of the local charged particle environments. By imaging ENAs with identical instruments from two widely spaced, high-altitude, high-inclination spacecraft, TWINS enables three-dimensional visualization of the large-scale structures and dynamics within the magnetosphere for the first time. As of the summer of 2008, both TWINS instruments are finally on orbit and operational and stereo imaging of the magnetosphere has begun. This talk briefly summarizes the TWINS mission and instruments and shows some of the 'first-light' observations. More information about TWINS and access to these data are available at http://twins.swri.edu. Reference: McComas, D.J., F. Allegrini, J. Baldonado, B. Blake, P. C. Brandt, J. Burch, J. Clemmons, W. Crain, D. Delapp, R. DeMajistre, D. Everett, H. Fahr, L. Friesen, H. Funsten, J. Goldstein, M. Gruntman, R. Harbaugh, R. Harper, H. Henkel, C. Holmlund, G. Lay, D. Mabry, D. Mitchell, U. Nass, C. Pollock, S. Pope, M. Reno, S. Ritzau, E. Roelof, E. Scime, M. Sivjee, R. Skoug, T. S. Sotirelis, M. Thomsen, C. Urdiales, P. Valek, K. Viherkanto, S. Weidner, T. Ylikorpi, M. Young, J. Zoennchen, The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) NASA Mission-of-Opportunity, Submitted to Space Science Reviews, 2008.

  19. An In Vitro Study of a New Device: Evaluation of Novel Wide-Angle Lens Flexible Cystoscope Using Phantom Bladder Model.

    Science.gov (United States)

    Yamaguchi, Kunihisa; Inoue, Takamitsu; Habuchi, Tomonori; Inokuchi, Junichi; Yokomizo, Akira; Eto, Masatoshi; Kanayama, Hiro-Omi

    2017-10-01

    The features and usefulness of a novel wide-angle lens flexible cystoscope were assessed with a view to its practical application. A phantom bladder model, on which a total of 12 markers that resemble lesions were arranged, was created for this study. Twenty-six urologists at three institutions observed this phantom bladder model using a conventional flexible cystoscope and a novel wide-angle lens flexible cystoscope, and they compared the observation time, marker detection rate, number of misidentified marker locations, overlooked locations, and misidentified location sites of both devices. Specific observation procedures that make use of the features of a wide-angle lens flexible cystoscope were also investigated. The observation time tended to be shorter with the wide-angle lens cystoscope than with a conventional cystoscope (104.9 seconds vs 113.6 seconds, p = 0.123). The marker detection rate was higher with the wide-angle lens cystoscope (90.2% vs 85.1%, p = 0.005). The number of marker location misidentifications did not differ between the two devices. Using a specifically designed observation procedure with the wide-angle lens cystoscope tended to further improve the marker detection rate (91.4% vs 88.1%, p = 0.157). Compared with a conventional cystoscope, a wide-angle lens cystoscope improved the lesion detection rate and has the potential to reduce observation time. The novel wide-angle lens flexible cystoscope is regarded as a useful device that offers advantages not available with a conventional cystoscope.

  20. Temperature induced phase transformations and microstructural changes in nanostructured FeCu solid solutions using in situ neutron powder thermo-diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Blanco, D. [Unidad de Magnetometria, SCT' s, Universidad de Oviedo, Julian Claveria, 8, 33006 Oviedo (Spain); Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo s/n, Oviedo 33007 (Spain); Gorria, P., E-mail: pgorria@uniovi.e [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo s/n, Oviedo 33007 (Spain); Blanco, J.A. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo s/n, Oviedo 33007 (Spain); Smith, R.I. [ISIS facility, RAL, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2009-08-26

    In situ neutron powder thermo-diffraction experiments in the temperature range from 300 K to 1170 K have been carried out in nanostructured and metastable Fe{sub 15}Cu{sub 85} and Fe{sub 85}Cu{sub 15} solid solutions, which were synthesized by means of a mechanical alloying technique. We report on the microstructural changes and the phase transformations that take place during controlled heating and cooling processes. The average crystalline grain size is similar for both samples in the as-milled state (approx16-20 nm) while the induced strain is 2.5 times higher in the Fe-rich powders, reaching 1%. Moreover, the alpha-gamma transformation for Fe{sub 15}Cu{sub 85} starts at temperatures lower (approx900 K) than that expected for pure Fe (1183 K) due likely to the existence of local inhomogeneities in the composition of the ball milled material.

  1. Neutron diffraction study of the formation kinetics of ordered antiphase domains in titanium carbohydride TiC{sub x}H{sub y}

    Energy Technology Data Exchange (ETDEWEB)

    Khidirov, I., E-mail: khidirov@inp.uz [Uzbekistan Academy of Sciences, Institute of Nuclear Physics (Uzbekistan)

    2015-09-15

    The kinetics of formation and growth of ordered antiphase domains (APDs) in titanium carbohydride TiC{sub 0.50}H{sub 0.21} has been investigated by neutron diffraction. A model of ordered APDs is proposed. It is established that the pronounced ordering of interstitial atoms and APDs begin at 450°C. It is shown that the period of ordered APDs (P ≈ 10–12) is independent of the exposure time at a constant temperature. It is found that the temperature of ordered APDs, T{sub OAPD}, increases nonlinearly with an increase in the carbon concentration in the range 0.50 ≤ C/Ti ≤ 0.70. The formation temperature of ordered APDs is found to correlate with the concentration dependence of the order–disorder transition temperature and be 0.60 of the order–disorder transition temperature: T{sub APD} = 0.60Τ{sub C}.

  2. Local Jahn-Teller distortion in La{sub 1{minus}x}Sr{sub x}MnO{sub 3} observed by pulsed neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Louca, D.; Egami, T. [Department of Materials Science and Engineering and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Brosha, E.L.; Roeder, H.; Bishop, A.R. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1997-10-01

    The atomic pair-density function of La{sub 1{minus}x}Sr{sub x}MnO{sub 3} (0{le}x{le}0.4) obtained by pulsed neutron diffraction indicates that their local atomic structure significantly deviates from the average structure, and that the local Jahn-Teller (JT) distortion persists even when the crystallographic structure shows no JT distortion. In the paramagnetic insulating phase doped holes form one-site small polarons, represented by the local absence of JT distortion. The polarons become more extended at low temperatures, but local distortions are found even in the metallic phase. The role of polarons in the phase transitions in transport and magnetic properties are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  3. Evidence for incomplete martensitic transformation in Ni{sub 0.62}Al{sub 0.38} by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Darren [Department of Physics, University of Virginia, 382 McCormick Road, P.O. Box 400714, Charlottesville, VA 22904 (United States); Louca, Despina [Department of Physics, University of Virginia, 382 McCormick Road, P.O. Box 400714, Charlottesville, VA 22904 (United States)]. E-mail: louca@virginia.edu

    2005-09-15

    High-resolution neutron powder diffraction was used to investigate the evolution of the crystal structure of Ni{sub 0.62}Al{sub 0.38} with a martensitic transformation temperature, M {sub S}, of 65 K as a function of temperature. Although the {beta}{sub 2} parent phase has the propensity to nucleation instability, no precursor effects are observed until {approx}40 deg. above M {sub S}. Below M {sub S}, the transition does not occur homogeneously and it is shown that the martensite coexists with the austenite over a wide temperature range. The low temperature phase seems to be largely described by the 7R structure that accomodates the transition from the parent to the martensite and minimizes the lattice mismatch between the two.

  4. In Situ Neutron Diffraction Study of the Influence of Microstructure on the Mechanical Response of Additively Manufactured 304L Stainless Steel

    Science.gov (United States)

    Brown, D. W.; Adams, D. P.; Balogh, L.; Carpenter, J. S.; Clausen, B.; King, G.; Reedlunn, B.; Palmer, T. A.; Maguire, M. C.; Vogel, S. C.

    2017-12-01

    In situ neutron diffraction measurements were completed during tensile and compressive deformation of stainless steel 304L additively manufactured (AM) using a high power directed energy deposition process. Traditionally produced wrought 304L material was also studied for comparison. The AM material exhibited roughly 200 MPa higher flow stress relative to the wrought material. Crystallite size, crystallographic texture, dislocation density, and lattice strains were all characterized to understand the differences in the macroscopic mechanical behavior. The AM material's initial dislocation density was about 10 times that of the wrought material, and the flow strength of both materials obeyed the Taylor equation, indicating that the AM material's increased yield strength was primarily due to greater dislocation density. Also, a 50 MPa flow strength tension/compression asymmetry was observed in the AM material, and several potential causes were examined.

  5. Sodium Ion Transport Mechanisms in Antiperovskite Electrolytes Na3OBr and Na4OI2: An in Situ Neutron Diffraction Study.

    Science.gov (United States)

    Zhu, Jinlong; Wang, Yonggang; Li, Shuai; Howard, John W; Neuefeind, Jörg; Ren, Yang; Wang, Hui; Liang, Chengdu; Yang, Wenge; Zou, Ruqiang; Jin, Changqing; Zhao, Yusheng

    2016-06-20

    Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-state battery. In this work, the sodium ionic transport pathways of the parent compound Na3OBr, as well as the modified layered antiperovskite Na4OI2, were studied and compared through temperature-dependent neutron diffraction combined with the maximum entropy method. In the cubic Na3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions hop within and among oxygen octahedra, and Br(-) ions are not involved. In the tetragonal Na4OI2 antiperovskite, Na ions, which connect octahedra in the ab plane, have the lowest activation energy barrier. The transport of sodium ions along the c axis is assisted by I(-) ions.

  6. Novel Pr-Cu magnetic phase at low temperature in PrBa2Cu3O6+x observed by neutron diffraction

    DEFF Research Database (Denmark)

    Boothroyd, A.T.; Longmore, A.; Andersen, N.H.

    1997-01-01

    We have studied by neutron diffraction the magnetic ordering in Al-free crystals of PrBa2Cu3O6+x (x = 0.35 and 0.92) that do not display the AFII Cu magnetic phase. Wt find that the Pr ordering below 20 K is accompanied by a counterrotation of the Cu antiferromagnetism on each plane of the bilayer....... The maximum turn angle between the two planes is 60 degrees +/- 9 degrees for the x = 0.92 crystal, and 40 degrees +/- 11 degrees for the x = 0.35 crystal. This is the first observation of a noncollinear ordering of Cu moments in the bilayer, and is evidence for significant magnetic coupling between the Cu...

  7. In Situ Neutron Diffraction Study of the Influence of Microstructure on the Mechanical Response of Additively Manufactured 304L Stainless Steel

    Science.gov (United States)

    Brown, D. W.; Adams, D. P.; Balogh, L.; Carpenter, J. S.; Clausen, B.; King, G.; Reedlunn, B.; Palmer, T. A.; Maguire, M. C.; Vogel, S. C.

    2017-10-01

    In situ neutron diffraction measurements were completed during tensile and compressive deformation of stainless steel 304L additively manufactured (AM) using a high power directed energy deposition process. Traditionally produced wrought 304L material was also studied for comparison. The AM material exhibited roughly 200 MPa higher flow stress relative to the wrought material. Crystallite size, crystallographic texture, dislocation density, and lattice strains were all characterized to understand the differences in the macroscopic mechanical behavior. The AM material's initial dislocation density was about 10 times that of the wrought material, and the flow strength of both materials obeyed the Taylor equation, indicating that the AM material's increased yield strength was primarily due to greater dislocation density. Also, a 50 MPa flow strength tension/compression asymmetry was observed in the AM material, and several potential causes were examined.

  8. Crystal structure of acetanilide at 15 and 295 K by neutron diffraction. Lack of evidence for proton transfer along the N-H...O hydrogen bond

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, S.W.; Eckert, J. [Los Alamos National Lab., NM (United States); Barthes, M. [Universite Montpellier II (France); McMullan, R.K. [Brookhaven National Lab., Upton, NY (United States); Muller, M. [Universite Lille I, Villeneuve d`Ascq (France)

    1995-11-02

    The crystal structure of acetanilide C{sub 8}H{sub 9}NO, M{sub r} = 135.17, orthorhombic, space group Pbca, Z=8, has been determined from neutron diffraction data at 15 and 295 K. The crystal data obtained are presented. This new investigation of the structure of acetanilide has been undertaken in order to assess a recent suggestion that confirmational substates in the amide proton position may be responsible for the vibrational anomalies. We found no evidence for multiple conformations or transfer along the N-H...O hydrogen bond of the amide proton at either temperature. However the intramolecular O...H6 distance from O to the nearest phenyl ring proton is unusually short and the amide proton has relatively close contacts with one of the phenyl and one of the methyl protons, which may well affect the vibrational parameters of the respective molecular groups. 44 refs., 6 figs., 5 tabs.

  9. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Xueming [Beijing Univ. of Chemical Technology (China); Duan, Yonghao [Beijing Univ. of Chemical Technology (China); He, Lilin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Singh, Seema [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Simmons, Blake [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheng, Gang [Beijing Univ. of Chemical Technology (China); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-02-08

    A systematic study was done to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110 °C for 3 h at biomass loadings of 5, 10, 15, 20 and 25 wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ~25 to 625 Å, enabling assessment of contributions of pores with different sizes to increased porosity after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role.

  10. In-situ time-of-flight neutron diffraction of ErD2 (beta phase) formation during D2 loading.

    Energy Technology Data Exchange (ETDEWEB)

    Browning, James Frederick (Oak Ridge National Laboratory, Oak Ridge, TN); Llobet, Anna (Los Alamos National Laboratory, Los Alamos, NM); Snow, Clark Sheldon; Rodriguez, Mark Andrew; Wixom, Ryan R.

    2008-06-01

    In an effort to better understand the structural changes occurring during hydrogen loading of erbium target materials, we have performed D{sub 2} loading of erbium metal (powder) with simultaneous neutron diffraction analysis. This experiment tracked the conversion of Er metal to the {alpha} erbium deuteride (solid-solution) phase and then on to the {beta} (fluorite) phase. Complete conversion to ErD{sub 2.0} was accomplished at 10 Torr D{sub 2} pressure with deuterium fully occupying the tetrahedral sites in the fluorite lattice. Increased D{sub 2} pressure (up to 500 Torr at 450 C) revealed {approx}10 % deuterium occupation of the octahedral sites. Subsequent vacuum pumping of the sample at 450 C removed octahedral site occupancy while maintaining tetrahedral deuterium occupancy, thereby yielding stoichiometric ErD{sub 2.0} {beta} phase.

  11. Hydrogen molecule binding to unsaturated metal sites in metal-organic frameworks studied by neutron powder diffraction and inelastic neutron scattering

    Science.gov (United States)

    Liu, Yun; Brown, Craig; Neumann, Dan; Dinca, Mircea; Long, Jeffrey; Peterson, Vanessa; Kepert, Cameron

    2007-03-01

    Metal organic framework (MOF) materials have shown considerable potential for hydrogen storage arising from very large surface areas. However, the low binding energy of hydrogen molecules limits its storage capability to very low temperatures (hydrogen adsorption sites in a selected series of MOF materials with exposed unsaturated metal ions. Direct binding between the unsaturated metal ions and hydrogen molecules is observed and responsible for the enhanced initial hydrogen adsorption enthalpy. The different metals centers in these MOFs show different binding strength and interaction distances between the hydrogen molecule and metal ions. The organic linker also affects the overall H2 binding strength. Inelastic neutron scattering spectra of H2 in these MOFs are also discussed.

  12. Cation distribution and crystallographic characterization of the spinel oxides MgCr{sub x}Fe{sub 2−x}O{sub 4} by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, A.K.M., E-mail: zakaria6403@yahoo.com [Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Dhaka (Bangladesh); Nesa, Faizun [Department of Natural Science, Daffodil International University, Dhaka (Bangladesh); Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh); Saeed Khan, M.A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh); Datta, T.K.; Aktar, Sanjida; Liba, Samia Islam; Hossain, Shahzad; Das, A.K.; Kamal, I.; Yunus, S.M. [Institute of Nuclear Science & Technology, Bangladesh Atomic Energy Commission, Dhaka (Bangladesh); Eriksson, S.-G. [Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg (Sweden)

    2015-06-05

    Highlights: • MgCr{sub x}Fe{sub 2−x}O{sub 4} ferrites crystallize at 1300 °C and possess cubic symmetry. • Cation distribution and crystallographic parameters have been determined precisely. • Cell parameter decreases with increasing Cr content in the system. • Ferrimagnetic ordering was found at room temperature for all the samples. - Abstract: The spinel system MgCr{sub x}Fe{sub 2−x}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) has been prepared by solid state sintering method in air at 1573 K. X-ray and neutron powder diffraction experiments have been performed on the samples at room temperature for structural characterization. Rietveld refinement of the neutron diffraction data reveals that all the samples of the series possess cubic symmetry corresponding to the space group F d-3m. The distribution of the three cations Mg, Fe and Cr over the two sublattices and other crystallographic parameters has been determined precisely. The results reveal that Cr has been substituted for Fe selectively. Cr ions invariably occupy the octahedral (B) site for all values of x. Mg and Fe ions are distributed over both A and B sites for all x values. With increasing x the occupation of Mg increases in the A site and decreases in the B site for all the samples, while the Fe ions gradually decreases in both the sites for all values of x. The lattice constant decreases with increasing Cr content in the system. The magnetic structure at room temperature was ferrimagnetic for all the samples.

  13. Relationship between electrical properties and crystallization of indium oxide thin films using ex-situ grazing-incidence wide-angle x-ray scattering

    Science.gov (United States)

    González, G. B.; Okasinski, J. S.; Buchholz, D. B.; Boesso, J.; Almer, J. D.; Zeng, L.; Bedzyk, M. J.; Chang, R. P. H.

    2017-05-01

    Grazing-incidence, wide-angle x-ray scattering measurements were conducted on indium oxide thin films grown on silica substrates via pulsed laser deposition. Growth temperatures (TG) in this study ranged from -50 °C to 600 °C, in order to investigate the thermal effects on the film structure and its spatial homogeneity, as well as their relationship to electrical properties. Films grown below room temperature were amorphous, while films prepared at TG = 25 °C and above crystallized in the cubic bixbyite structure, and their crystalline fraction increased with deposition temperature. The electrical conductivity (σ) and electrical mobility (μ) were strongly enhanced at low deposition temperatures. For TG = 25 °C and 50 °C, a strong ⟨100⟩ preferred orientation (texture) occurred, but it decreased as the deposition temperature, and consequential crystallinity, increased. Higher variations in texture coefficients and in lattice parameters were measured at the film surface compared to the interior of the film, indicating strong microstructural gradients. At low crystallinity, the in-plane lattice spacing expanded, while the out-of-plane spacing contracted, and those values merged at TG = 400 °C, where high μ was measured. This directional difference in lattice spacing, or deviatoric strain, was linear as a function of both deposition temperature and the degree of crystallinity. The crystalline sample with TG = 100 °C had the lowest mobility, as well as film diffraction peaks which split into doublets. The deviatoric strains from these doublet peaks differ by a factor of four, supporting the presence of both a microstructure and strain gradient in this film. More isotropic films exhibit larger μ values, indicating that the microstructure directly correlates with electrical properties. These results provide valuable insights that can help to improve the desirable properties of indium oxide, as well as other transparent conducting oxides.

  14. Metal ion roles and the movement of hydrogen during the reaction catalyzed by d-xylose isomerase: a joint X-ray and neutron diffraction study

    Science.gov (United States)

    Kovalevsky, Andrey Y.; Hanson, Leif; Fisher, S. Zoe; Mustyakimov, Marat; Mason, Sax; Forsyth, Trevor; Blakeley, Matthew P.; Kean, David. A.; Wagner, Trixie; Carrell, H. L.; Katz, Amy K.; Glusker, Jenny P.; Langan, Paul

    2010-01-01

    SUMMARY Conversion of aldo to keto sugars by the metalloenzyme d-xylose isomerase (XI) is a multi-step reaction involving hydrogen transfer. We have determined the structure of this enzyme by neutron diffraction in order to locate H atoms (or their isotope D). Two studies are presented, one of XI containing cadmium and cyclic d-glucose (before sugar ring opening has occurred), and the other containing nickel and linear d-glucose (after ring opening has occurred but before isomerization). Previously we reported the neutron structures of ligand-free enzyme and enzyme with bound product. Data show that His54 is doubly protonated on the ring N in all four structures. Lys289 is neutral before ring opening, and gains a proton after this, the catalytic metal-bound water is deprotonated to hydroxyl during isomerization and O5 is deprotonated. These results lead to new suggestions as to how changes might take place over the course of the reaction. PMID:20541506

  15. Assessment of firing conditions in old fired-clay bricks: The contribution of X-ray powder diffraction with the Rietveld method and small angle neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Viani, Alberto, E-mail: viani@itam.cas.cz [Institute of Theoretical and Applied Mechanics AS CR, Centre of Excellence Telč, Batelovská 485, CZ-58856 Telč (Czech Republic); Sotiriadis, Konstantinos [Institute of Theoretical and Applied Mechanics AS CR, Centre of Excellence Telč, Batelovská 485, CZ-58856 Telč (Czech Republic); Len, Adél [Wigner Research Centre for Physics HAS, Konkoly-Thege 29-33, 1121 Budapest (Hungary); Šašek, Petr; Ševčík, Radek [Institute of Theoretical and Applied Mechanics AS CR, Centre of Excellence Telč, Batelovská 485, CZ-58856 Telč (Czech Republic)

    2016-06-15

    Full characterization of fired-clay bricks is crucial for the improvement of process variables in manufacturing and, in case of old bricks, for restoration/replacement purposes. To this aim, five bricks produced in a plant in Czech Republic in the past have been investigated with a combination of analytical techniques in order to derive information on the firing process. An additional old brick from another brickyard was also used to study the influence of different raw materials on sample microstructure. The potential of X-ray diffraction with the Rietveld method and small angle neutron scattering technique has been exploited to describe the phase transformations taking place during firing and characterize the brick microstructure. Unit-cell parameter of spinel and amount of hematite are proposed as indicators of the maximum firing temperature, although for the latter, limited to bricks produced from the same raw material. The fractal quality of the surface area of pores obtained from small angle neutron scattering is also suggested as a method to distinguish between bricks produced from different raw clays. - Highlights: • Rietveld method helps in describing microstructure and physical properties of bricks. • XRPD derived cell parameter of spinel is proposed as an indicator of firing temperature. • SANS effectively describes brick micro and nanostructure, including closed porosity. • Fractal quality of pore surface is proposed as ‘fingerprint’ of brick manufacturing.

  16. Reply to ``Comment on `Magnetic field effects on neutron diffraction in the antiferromagnetic phase of $UPt_3$'''

    OpenAIRE

    Moreno, Juana; Sauls, J A

    2002-01-01

    Fak, van Dijk and Wills (FDW) question our interpretation of elastic neutron-scattering experiments in the antiferromagnetic phase of UPt_3. They state that our analysis is incorrect because we average over magnetic structures that are disallowed by symmetry. We disagree with FDW and reply to their criticism. FDW also point out that we have mistaken the magnetic field direction in the experiment reported by N. H. van Dijk et al. [Phys. Rev. B 58, 3186 (1998)]. We correct this error and note t...

  17. Residual stress state in an induction hardened steel bar determined by synchrotron- and neutron diffraction compared to results from lab-XRD

    Energy Technology Data Exchange (ETDEWEB)

    Holmberg, Jonas, E-mail: jonas.holmberg@swerea.se [Swerea IVF AB, Argongatan 30, 431 22 Mölndal (Sweden); University West, 461 86 Trollhättan (Sweden); Steuwer, Axel [Nelson Mandela Metropolitan University, Gardham Avenue, 6031 Port Elizabeth (South Africa); Stormvinter, Albin; Kristoffersen, Hans [Swerea IVF AB, Argongatan 30, 431 22 Mölndal (Sweden); Haakanen, Merja [Stresstech OY, Tikkutehtaantie 1, 40 800 Vaajakoski (Finland); Berglund, Johan [Swerea IVF AB, Argongatan 30, 431 22 Mölndal (Sweden)

    2016-06-14

    Induction hardening is a relatively rapid heat treatment method to increase mechanical properties of steel components. However, results from FE-simulation of the induction hardening process show that a tensile stress peak will build up in the transition zone in order to balance the high compressive stresses close to the surface. This tensile stress peak is located in the transition zone between the hardened zone and the core material. The main objective with this investigation has been to non-destructively validate the residual stress state throughout an induction hardened component. Thereby, allowing to experimentally confirming the existence and magnitude of the tensile stress peak arising from rapid heat treatment. For this purpose a cylindrical steel bar of grade C45 was induction hardened and characterised regarding the microstructure, hardness, hardening depth and residual stresses. This investigation shows that a combined measurement with synchrotron/neutron diffraction is well suited to non-destructively measure the strains through the steel bar of a diameter of 20 mm and thereby making it possible to calculate the residual stress profile. The result verified the high compressive stresses at the surface which rapidly changes to tensile stresses in the transition zone resulting in a large tensile stress peak. Measured stresses by conventional lab-XRD showed however that at depths below 1.5 mm the stresses were lower compared to the synchrotron and neutron data. This is believed to be an effect of stress relaxation from the layer removal. The FE-simulation predicts the depth of the tensile stress peak well but exaggerates the magnitude compared to the measured results by synchrotron/neutron measurements. This is an important knowledge when designing the component and the heat treatment process since this tensile stress peak will have great impact on the mechanical properties of the final component.

  18. Bond lengths in organic and metal-organic compounds revisited: X-H bond lengths from neutron diffraction data.

    Science.gov (United States)

    Allen, Frank H; Bruno, Ian J

    2010-06-01

    The number of structures in the Cambridge Structural Database (CSD) has increased by an order of magnitude since the preparation of two major compilations of standard bond lengths in mid-1985. It is now of interest to examine whether this huge increase in data availability has implications for the mean bond-length values published in the late 1980s. Those compilations reported mean X-H bond lengths derived from rather sparse information and for rather few chemical environments. During the intervening years, the number of neutron studies has also increased, although only by a factor of around 2.25, permitting a new analysis of X-H bond-length distributions for (a) organic X = C, N, O, B, and (b) a variety of terminal and homometallic bridging transition metal hydrides. New mean values are reported here and are compared with earlier results. These new overall means are also complemented by an analysis of X-H distances at lower temperatures (T chemical environments for which statistically acceptable mean X-H bond lengths can be obtained, although values from individual structures are also collated to further extend the chemical range of this compilation. Updated default 'neutron-normalization' distances for use in hydrogen-bond and deformation-density studies are also proposed for C-H, N-H and O-H, and the low-temperature analysis provides specific values for certain chemical environments and hybridization states of X.

  19. Quasi-Laue neutron-diffraction study of the water arrangement in crystals of triclinic hen egg-white lysozyme.

    Science.gov (United States)

    Bon, C; Lehmann, M S; Wilkinson, C

    1999-05-01

    Triclinic crystals of lysozyme, hydrogen-deuterium exchanged in deuterated solvent, have been studied using neutron quasi-Laue techniques and a newly developed cylinder image-plate detector. The wavelength range employed was from 2.7 to 3.5 A, which gave 9426 significant reflections [F >/= 2sigma(F)] to a resolution limit of 1. 7 A. The deuteration states of the H atoms in the protein molecule were identified, followed by an extensive analysis of the water structure surrounding the protein. The final R factor was 20.4% (Rfree = 22.1%). In total, the 244 observed water molecules form approximately one layer of water around the protein with far fewer water molecules located further away. Water molecules covering the apolar patches make tangential layers at 4-5 A from the surface or form C-H...O contacts, and several water-molecule sites can be identified in the apolar cavities. Many of the water molecules are apparently orientationally disordered, and only 115 out of the 244 water molecules sit in mean single orientations. Comparison of these results with quasi-elastic neutron scattering observations of the water dynamics leads to a picture of the water molecules forming an extended constantly fluctuating network covering the protein surface.

  20. A-site order–disorder in the NdBaMn2O5+δ SOFC electrode material monitored in situ by neutron diffraction under hydrogen flow

    KAUST Repository

    Tonus, Florent

    2017-05-11

    The A-site disordered perovskite manganite, Nd0.5Ba0.5MnO3, has been obtained by heating the A-site-ordered and vacancy ordered layered double perovskite, NdBaMn2O5, in air at 1300 °C for 5 h. Combined transmission electron microscopy (TEM) images and neutron powder diffraction (NPD) analysis at 25 °C revealed that Nd0.5Ba0.5MnO3 has a pseudotetragonal unit cell with orthorhombic symmetry (space group Imma, √2ap × 2ap × √2ap) at 20 °C with the cell dimensions a = 5.503(1) Å, b = 7.7962(4) Å, c = 5.502(1) Å, in contrast to Pm[3 with combining macron]m or Cmcm that have been previously stated from X-ray diffraction studies. The in situ neutron diffraction study carried out on Nd0.5Ba0.5MnO3 in hydrogen flow up to T ∼ 900 °C, allows monitoring the A-site cation disorder–order structural phase transition of this representative member of potential SOFC anode materials between air sintering conditions and hydrogen working conditions. Oxygen loss from Nd0.5Ba0.5MnO3 proceeds with retention of A-site disorder until the oxygen content reaches the Nd0.5Ba0.5MnO2.5 composition at 600 °C. The phase transition to layered NdBaMn2O5 and localization of the oxygen vacancies in the Nd layer proceeds at 800 °C with retention of the oxygen content. Impedance spectroscopy measurements for the oxidized A-site ordered electrode material, NdBaMn2O6, screen printed on a Ce0.9Gd0.1O2−δ (CGO) electrolyte showed promising electrochemical performance in air at 700 °C with a polarization resistance of 1.09 Ω cm2 without any optimization.

  1. Neutron powder diffraction investigation of magnetic structure and spin reorientation transition of HoFe{sub 1-x}Cr{sub x}O{sub 3} solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinzhi [Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China); Hao, Lijie, E-mail: haolijie@ciae.ac.cn [Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China); Liu, Yuntao; Ma, Xiaobai; Meng, Siqin; Li, Yuqing; Gao, Jianbo; Guo, Hao; Han, Wenze; Sun, Kai; Wu, Meimei [Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China); Chen, Xiping; Xie, Lei [Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900 (China); Klose, Frank [Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234 (Australia); Department of Physics and Materials Science, The City University of Hong Kong, Hong Kong (China); Chen, Dongfeng, E-mail: dongfeng@ciae.ac.cn [Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 (China)

    2016-11-01

    Orthoferrite solid solution HoFe{sub 1−x}Cr{sub x}O{sub 3} (x=0, 0.2,…,1.0) was synthesized via solid state reaction methods. The crystal structure, magnetism and spin reorientation properties of this system were investigated by X-ray diffraction, neutron powder diffraction and magnetic measurements. For compositions of x≤0.6, the system exhibits similar magnetic properties to HoFeO{sub 3}. With increasing Cr-doping, the system adopts a Γ{sub 4}(G{sub x}A{sub y}F{sub z}) magnetic configuration with a decreased Neel temperature from 640 K to 360 K. A Γ{sub 42} spin reorientation of Fe(Cr){sup 3+} was also observed in this system with an increase in transition temperature from 56 K to about 200 K due to competition between the Fe(Cr)–Fe(Cr) and Ho–Fe(Cr) interactions. For the x≥0.8, the system behaves more like HoCrO{sub 3} which adopts a Γ{sub 2}(F{sub x}C{sub y}G{sub z}) configuration with no spin reorientation below the Neel temperature T{sub N}. Throughout the whole substitution range, we found that the saturated moment of Fe(Cr) was less than the ideal value for a free ion, which implies the existence of spin fluctuation in this system. A systematic magnetic structure variation with Cr-substitution is revealed by Rietveld refinement. A phase diagram combining the results of the magnetic measurements and neutron powder diffraction results was obtained. - Highlights: • With Cr-substitution in the HoFe{sub 1−x}Cr{sub x}O{sub 3} system, A Γ{sub 42} spin reorientation of Fe(Cr){sup 3+} was observed with an increase in transition temperature from 56 K to about 200 K for x=0−0.6. • The saturated moment of Fe(Cr) position was found to be systematically less than the ideal value of free ion, and thus implies the presence of spin quantum fluctuation. • A composition–temperature phase diagram throughout x=0–1 for HoFe{sub 1−x}Cr{sub x}O{sub 3} system was established.

  2. A search for disorder in the spin glass double perovskites Sr(2)CaReO(6) and Sr(2)MgReO(6) using neutron diffraction and neutron pair distribution function analysis.

    Science.gov (United States)

    Greedan, J E; Derakhshan, Shahab; Ramezanipour, F; Siewenie, J; Proffen, Th

    2011-04-27

    The geometrically frustrated, B-site ordered, S = 1/2, double perovskites Sr(2)CaReO(6) and Sr(2)MgReO(6), which show spin frozen magnetic ground states, have been investigated using neutron powder diffraction (ND) and neutron pair distribution function (NPDF) analysis in a search for evidence for atomic positional disorder. For both materials, data were taken above and below the spin freezing temperatures of ∼ 14 K and ∼ 45 K for the CaRe and MgRe phases, respectively. In both cases the fully B-site ordered model was in excellent agreement with the data, both ND and NPDF, at all temperatures studied. Thus, the structure of these materials, from the average and the local perspectives, is very well described by the fully B-site ordered model, which raises questions concerning the origin of the spin glass ground state. These results are compared with those for the spin glass pyrochlore Y(2)Mo(2)O(7) and other B-site ordered double perovskites.

  3. Neutron diffraction study of anomalous high-field magnetic phases in TmNi2B2C

    DEFF Research Database (Denmark)

    Toft, K.N.; Abrahamsen, A.B.; Eskildsen, M.R.

    2004-01-01

    We present a (B,T)-phase diagram of the magnetic superconductor TmNi2B2C obtained by neutron scattering. The measurements were performed in magnetic fields up to 6 T applied along the crystalline a axis. The observed phases are characterized by three ordering vectors, Q(F)=(0.094,0.094,0),Q(AI)=(0.......90Yb0.10)Ni2B2C the Q(F)-->Q(AI) phase transition is also observed but at a larger transition field compared to the undoped compound. In (Tm0.85Yb0.15)Ni2B2C the Q(F) phase persists up to at least 1.8 T. The magnetic correlation length of the Q(AI) phase in TmNi2B2C measured parallel and perpendicular...

  4. Determination of the Crystallinity of Semicrystalline Poly(3-hexyl thiophene) by Means of Wide Angle X-Ray Scattering

    Science.gov (United States)

    Balko, Jens; Lohwasser, Ruth; Thelakkat, Mukundan; Sommer, Michael; Pascui, Ovidiu; Saalwaechter, Kay; Thurn-Albrecht, Thomas

    2013-03-01

    Poly(3-hexyl thiophene) (P3HT) is a common polymer semiconductor, often used as material or component in organic field effect transistors or solar cells. The crystallinity of this semicrystalline material is among other parameters governing the electronic mobility. However, at present there is no routine method available to determine an absolute value for the crystallinity, and the values given in the literature e.g. for the enthalpy of melting vary by a factor of three. Wide Angle X-Ray Scattering (WAXS) probes the crystals as well the amorphous parts of the sample. We present an approach for the determination of the crystallinity based on the evaluation of WAXS intensities at low scattering vectors emanating from the amorphous regions. The result is used for a calibration of the melting enthalpy (34 J/g) that can serve as a reference value for more convenient calorimetric techniques and compared to the results of recent NMR investigations. We discuss the crystallinity for a number of chemically well-defined samples, with different molecular weight and a typical commercial sample with broad molecular weight distribution. Despite the high crystallinities of 60 to 80% the crystallites exhibit a large amount of disorder.

  5. Structure of an island-arc: Wide-angle seismic studies in the eastern Aleutian Islands, Alaska

    Science.gov (United States)

    Fliedner, Moritz M.; Klemperer, Simon L.

    1999-05-01

    New seismic wide-angle data from the eastern Aleutian Islands show a mafic composition and a 30-km-thick island-arc crust. Traveltimes of P and S refracted arrivals and prominent crustal and mantle reflectors observed to offsets of over 300 km were used to derive velocity models for the eastern Aleutian Arc between the islands of Atka and Unimak using a three-dimensional finite difference modeling and tomography code. We interpret the highest crustal P wave velocities of 7.2-7.4 km/s between about 12 and about 22 km depth to the south and north of the main volcanic line as remainders of preexisting oceanic crust into which arc magma is intruded. Apart from the pieces of oceanic crust, the velocities suggest an overall mafic composition for the arc, composed mainly of metabasalts, diorite and diabase in the upper crust, and garnet-granulite or amphibolite-to-hornblendite in the lower crust. Reflected arrivals from the subducting Pacific plate at depths of 45-55 km beneath the fore-arc, together with Pn, show a mantle wedge with P wave velocities as low as 7.4 km/s, increasing with depth to about 8.1 km/s with an average of about 7.7 km/s. A mantle composition that grades from mainly pyroxenite (probably ultramafic cumulates) near the Moho to dunite at greater depths best explains these observed velocities.

  6. Structural and energetical studies of the adsorption of para and meta-isomers of xylene on pre-hydrated zeolite BaX. Characterization by neutron diffraction and temperature programmed desorption; Etude structurale et energetique de l'adsorption des isomeres para- et meta- du xylene dans la zeolithe BaX prehydratee. Caracterisation par diffraction des neutrons et thermodesorption programmee

    Energy Technology Data Exchange (ETDEWEB)

    Pichon, Ch.

    1999-10-19

    The separation of p-xylene from C{sub 8} aromatics is performed industrially by selective adsorption on zeolitic materials. FAU-type zeolites are currently used for this separation and especially the partially hydrated BaX. The aim of this work is to characterize from a structural (by low temperature neutron powder diffraction) and an energetical (by temperature programmed desorption) point of view, the adsorption of para- and meta- isomers of xylene, for different fillings, as pure substances as well as mixtures, on pre-hydrated zeolite BaX. The influence of the water pre-adsorption on xylene adsorption selectivity is carefully discussed. The crystalline structure of the zeolite BaX (framework and compensation of charge cations) and of the adsorbed phase (water, p- and m-xylene molecules) are completely characterized by neutron diffraction. The location and the distribution of water and xylene molecules on their adsorption sites is especially followed as a function of the filling of the zeolite and of the composition of the adsorbed phase. Microscopic measurements were correlated to the energetical analysis (at a macroscopic level) in order to obtain a consistent description of adsorption phenomenon and to propose a possible origin for adsorption selectivity.

  7. REFRACTIVE NEUTRON LENS

    OpenAIRE

    Petrov, P. V.; Kolchevsky, N. N.

    2013-01-01

    Compound concave refractive lenses are used for focusing neutron beam. Investigations of spectral and focusing properties of a refractive neutron lens are presented. Resolution of the imaging system on the base of refractive neutron lenses depends on material properties and parameters of neutron source. Model of refractive neutron lens are proposed. Results of calculation diffraction resolution and focal depth of refractive neutron lens are discussed.

  8. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  9. Probing BL Lac and Cluster Evolution via a Wide-angle, Deep X-ray Selected Sample

    Science.gov (United States)

    Perlman, E.; Jones, L.; White, N.; Angelini, L.; Giommi, P.; McHardy, I.; Wegner, G.

    1994-12-01

    The WARPS survey (Wide-Angle ROSAT Pointed Survey) has been constructed from the archive of all public ROSAT PSPC observations, and is a subset of the WGACAT catalog. WARPS will include a complete sample of >= 100 BL Lacs at F_x >= 10(-13) erg s(-1) cm(-2) . A second selection technique will identify ~ 100 clusters at 0.15 = 0.304 +/- 0.062 for XBLs but = 0.60 +/- 0.05 for RBLs. Models of the X-ray luminosity function (XLF) are also poorly constrained. WARPS will allow us to compute an accurate XLF, decreasing the error bars above by over a factor of two. We will also test for low-luminosity BL Lacs, whose non-thermal nuclear sources are dim compared to the host galaxy. Browne and Marcha (1993) claim the EMSS missed most of these objects and is incomplete. If their predictions are correct, 20-40% of the BL Lacs we find will fall in this category, enabling us to probe the evolution and internal workings of BL Lacs at lower luminosities than ever before. By removing likely QSOs before optical spectroscopy, WARPS requires only modest amounts of telescope time. It will extend measurement of the cluster XLF both to higher redshifts (z>0.5) and lower luminosities (LX<1x10(44) erg s(-1) ) than previous measurements, confirming or rejecting the 3sigma detection of negative evolution found in the EMSS, and constraining Cold Dark Matter cosmologies. Faint NELGs are a recently discovered major contributor to the X-ray background. They are a mixture of Sy2s, starbursts and galaxies of unknown type. Detailed classification and evolution of their XLF will be determined for the first time.

  10. Deep seismic transect across the Tonankai earthquake area obtained from the onshore- offshore wide-angle seismic study

    Science.gov (United States)

    Nakanishi, A.; Obana, K.; Kodaira, S.; Miura, S.; Fujie, G.; Ito, A.; Sato, T.; Park, J.; Kaneda, Y.; Ito, K.; Iwasaki, T.

    2008-12-01

    In the Nankai Trough subduction seismogenic zone, M8-class great earthquake area can be divided into three segments; they are source regions of the Nankai, Tonankai and presumed Tokai earthquakes. The Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. Hypocenters of these great earthquakes were usually located off the cape Shiono, Kii Peninsula, and the rupture propagated westwards and eastwards, respectively. To obtain the deep structure of the down-dip limit of around the Nankai Trough seismogenic zone, the segment boundary and first break area off the Kii Peninsula, the onshore-offshore wide-angle seismic studies was conducted in the western and eastern part of the Kii Peninsula and their offshore area in 2004 and 2006, respectively. The result of the seismic study in 2004 is mainly shown here. Structural images along the onshore and offshore profiles have already been separately obtained. In this study, an onshore-offshore integrated image of the western part of the Kii Peninsula, ~400km in a total length, is obtained from first arrival tomography and traveltime mapping of reflection phases by combining dataset of 13 land explosions, 2269 land stations, 36 OBSs and 1806 offshore airgun shots. The subduction angle of the Philippine Sea plate (PSP) gradually increases landward up to ~20-25 degree. Beneath the onshore part, the subducting PSP is estimated at ~5km shallower than that previously derived from seismicity. Low frequency earthquakes (identified and picked by Japan Meteorological Agency) are relocated around the plate interface of the subducting PSP by using the deep seismic transect obtained in this study. The offshore research is part of 'Structure research on plate dynamics of the presumed rupture zone of the Tonankai-Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology (MEXT). The onshore research carried by the Kyoto University is part of 'Special Project for

  11. Magnetic ordering of Mo2NiB2-type {Gd, Tb, Dy)2Co2Al compounds by magnetization and neutron diffraction study

    Science.gov (United States)

    Morozkin, A. V.; Genchel, V. K.; Garshev, A. V.; Yapaskurt, V. O.; Isnard, O.; Yao, Jinlei; Nirmala, R.; Quezado, S.; Malik, S. K.

    2017-11-01

    The magnetic ordering of Mo2NiB2-type {Gd, Tb, Dy}2Co2Al (Immm, No. 71, oI10) compounds has been established using bulk magnetic measurements and neutron diffraction study. Polycrystalline Gd2Co2Al, Tb2Co2Al and Dy2Co2Al undergo ferrimagnetic transitions (TC) at 78 K, 98 K and 58 K, respectively, and low-temperature field induced transition (Tm) around 15 K, 20 K and 15 K, respectively. Between Tm and TC Gd2Co2Al, Tb2Co2Al and Dy2Co2Al are soft ferrimagnets. Below Tm Gd2Co2Al is soft ferrimagnet, whereas Tb2Co2Al and Dy2Co2Al exhibit permanent magnet properties with residual magnetization per rare earth of 4.95 B and 4.8 B, respectively, and large coercive field of 72 kOe and 22 kOe, respectively, at 2 K. The magnetocaloric effects of Gd2Co2Al, Tb2Co2Al and Dy2Co2Al were calculated in terms of isothermal magnetic entropy change and they reach maximum values of -10.4 J/kg K, -7.6 J/kg K and -6.6 J/kg K for a field change of 50 kOe near 75 K, 98 K and 58 K, respectively. Low-temperature transition of Gd2Co2Al is followed by the magnetic entropy change of -2.9 J/kg K in a field change of 50 kOe at 15 K. Low temperature magnetic ordering with enhanced anisotropic effects in Tb2Co2Al and Dy2Co2Al is accompanied by a positive magnetocaloric effect with isothermal magnetic entropy changes of +19.9 J/kg K at 20 K (field change 0-50 kOe) and +2.7 J/kg K at 15 K (field change 0-10 kOe), respectively. Neutron diffraction study shows that, in zero applied field, Tb2Co2Al exhibits c-axis ferrimagnetic ordering with magnetic space group Immm‧ and propagation vector K0 = [0, 0, 0] below TCND ∼ 111 K with MTb = 8.86(15) B and MCo = 0.26(2) B at 2 K.

  12. A neutron diffraction study of the crystal of benzoic acid from 6 to 293 K and a macroscopic-scale quantum theory of the lattice of hydrogen-bonded dimers

    Energy Technology Data Exchange (ETDEWEB)

    Fillaux, François, E-mail: francois.fillaux@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 8233, MONARIS, F-7505 Paris (France); Cousson, Alain, E-mail: alain-f.cousson@cea.fr [Laboratoire Léon Brillouin (CEA-CNRS), C.E. Saclay, 91191 Gif-sur-Yvette cedex (France)

    2016-11-10

    Highlights: • Proton transfer and tautomerism are revisited from quantum viewpoint. • Neutron-diffraction gives evidence for long-range correlations for protons. • We introduce a decoherence-free macroscopic-scale crystal-state. • All observations accord with the principle of complementarity. • Computational-chemistry models are inappropriate. - Abstract: Measurements via different techniques of the crystal of benzoic acid have led to conflicting conceptions of tautomerism: statistical disorder for diffraction; semiclassical jumps for relaxometry; quantum states for vibrational spectroscopy. We argue that these conflicts follow from the prejudice that nuclear positions and eigenstates are pre-existing to measurements, what is at variance with the principle of complementarity. We propose a self-contained quantum theory. First of all, new single-crystal neutron-diffraction data accord with long-range correlation for proton-site occupancies. Then we introduce a macroscopic-scale quantum-state emerging from phonon condensation, for which nuclear positions and eigenstates are indefinite. As to quantum-measurements, an incoming wave (neutron or photon) entangled with the condensate realizes a transitory state, either in the space of static nuclear-coordinates (diffraction), or in that of the symmetry coordinates (spectroscopy and relaxometry). We derive temperature-laws for proton-site occupancies and for the relaxation rate, which compare favorably with measurements.

  13. Heterolytic cleavage of hydrogen by an iron hydrogenase model: an Fe-H⋅⋅⋅H-N dihydrogen bond characterized by neutron diffraction.

    Science.gov (United States)

    Liu, Tianbiao; Wang, Xiaoping; Hoffmann, Christina; DuBois, Daniel L; Bullock, R Morris

    2014-05-19

    Hydrogenase enzymes in nature use hydrogen as a fuel, but the heterolytic cleavage of H-H bonds cannot be readily observed in enzymes. Here we show that an iron complex with pendant amines in the diphosphine ligand cleaves hydrogen heterolytically. The product has a strong Fe-H⋅⋅⋅H-N dihydrogen bond. The structure was determined by single-crystal neutron diffraction, and has a remarkably short H⋅⋅⋅H distance of 1.489(10) Å between the protic N-H(δ+) and hydridic Fe-H(δ-) part. The structural data for [Cp(C5F4N)FeH(P(tBu)2N(tBu)2H)](+) provide a glimpse of how the H-H bond is oxidized or generated in hydrogenase enzymes. These results now provide a full picture for the first time, illustrating structures and reactivity of the dihydrogen complex and the product of the heterolytic cleavage of H2 in a functional model of the active site of the [FeFe] hydrogenase enzyme. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of Extrusion Temperature on the Plastic Deformation of an Mg-Y-Zn Alloy Containing LPSO Phase Using In Situ Neutron Diffraction

    Science.gov (United States)

    Garces, G.; Perez, P.; Cabeza, S.; Kabra, S.; Gan, W.; Adeva, P.

    2017-11-01

    The evolution of the internal strains during in situ tension and compression tests has been measured in an MgY2Zn1 alloy containing long-period stacking ordered (LPSO) phase using neutron diffraction. The alloy was extruded at two different temperatures to study the influence of the microstructure and texture of the magnesium and the LPSO phases on the deformation mechanisms. The alloy extruded at 623 K (350 °C) exhibits a strong fiber texture with the basal plane parallel to the extrusion direction due to the presence of areas of coarse non-recrystallised grains. However, at 723 K (450 °C), the magnesium phase is fully recrystallised with grains randomly oriented. On the other hand, at the two extrusion temperatures, the LPSO phase orients their basal plane parallel to the extrusion direction. Yield stress is always slightly higher in compression than in tension. Independently on the stress sign and the extrusion temperature, the beginning of plasticity is controlled by the activation of the basal slip system in the dynamic recrystallized grains. Therefore, the elongated fiber-shaped LPSO phase which behaves as the reinforcement in a metal matrix composite is responsible for this tension-compression asymmetry.

  15. Electronic, spin-state, and magnetic transitions in B a2C o9O14 investigated by x-ray spectroscopies and neutron diffraction

    Science.gov (United States)

    Herrero-Martín, J.; Padilla-Pantoja, J.; Lafuerza, S.; Romaguera, A.; Fauth, F.; Reparaz, J. S.; García-Muñoz, J. L.

    2017-06-01

    The mixed B a2C o9O14C o2 +/C o3 + system undergoes an insulator-insulator transition at TSS˜567 K that arises from a spin-state transition at trivalent cobalt sites. Below this temperature, Co1, Co2, and Co4 are nonmagnetic (S =0 , low spin). Ferromagnetically aligned Co5 spins are sandwiched between antiparallel planes of Co3 spins below TN≈41 K . The successive antiferromagnetic trilayers are inverted along the c axis (compatible with Cc2 /c ,Cc2 /m , or PS-1 magnetic space groups, depending on the moment orientation in the a b plane). The origin of the resistivity drop on warming was investigated by means of neutron and x-ray diffraction, x-ray absorption and emission spectroscopies, and x-ray magnetic circular dichroism. Charge-transfer multiplet calculations confirm that the divalent Co sites are both in an S =3 /2 high spin state. Independently, the analysis of measured Co Kβ x-ray emission spectroscopy spectra agrees with this model. The magnetic moment from divalent Co5 ions is not fully ordered, likely due to the competition between magnetic anisotropy and weak supersuperexchange interactions, but not to covalency effects. Results agree with the spin blockade of electronic transport being partially removed at the octahedral trimers and also at the Co 4 O6 units within the Cd I2 -type layer.

  16. Crystal structures of spinel-type Na2MoO4 and Na2WO4 revisited using neutron powder diffraction

    Directory of Open Access Journals (Sweden)

    A. Dominic Fortes

    2015-06-01

    Full Text Available Time-of-flight neutron powder diffraction data have been collected from Na2MoO4 and Na2WO4 to a resolution of sin (θ/λ = 1.25 Å−1, which is substantially better than the previous analyses using Mo Kα X-rays, providing roughly triple the number of measured reflections with respect to the previous studies [Okada et al. (1974. Acta Cryst. B30, 1872–1873; Bramnik & Ehrenberg (2004. Z. Anorg. Allg. Chem. 630, 1336–1341]. The unit-cell parameters are in excellent agreement with literature data [Swanson et al. (1962. NBS Monograph No. 25, sect. 1, pp. 46–47] and the structural parameters for the molybdate agree very well with those of Bramnik & Ehrenberg (2004. However, the tungstate structure refinement of Okada et al. (1974 stands apart as being conspicuously inaccurate, giving significantly longer W—O distances, 1.819 (8 Å, and shorter Na—O distances, 2.378 (8 Å, than are reported here or in other simple tungstates. As such, this work represents an order-of-magnitude improvement in precision for sodium molybdate and an equally substantial improvement in both accuracy and precision for sodium tungstate. Both compounds adopt the spinel structure type. The Na+ ions have site symmetry .-3m and are in octahedral coordination while the transition metal atoms have site symmetry -43m and are in tetrahedral coordination.

  17. Magnetic-crystallographic p,T-phase diagram of Fe{sub 1.141}Te: A high-pressure neutron diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Jens-Erik [Department of Chemistry, Aarhus University (Denmark); Hansen, Thomas Christian [Institute Max von Laue-Paul Langevin, Grenoble (France)

    2016-11-15

    The crystal and magnetic structures of Fe{sub 1.141}Te have been studied by neutron powder diffraction in the temperature range from 5 to 106 K and pressures in the range from ambient to ∼2.7 GPa. The p,T-phase diagram contains three phases with monoclinic, orthorhombic, and tetragonal symmetry. The monoclinic phase was found to be stable for T 2.16 GPa. The monoclinic phase shows commensurate bicollinear antiferromagnetic order with propagation vector k = (1/2 0 1/2), while the orthorhombic phase is incommensurately antiferromagnetically ordered with propagation vector k = (1/2-δ 0 1/2). The δ-parameter increases linearly with the pressure for 0.4 or similar 2.1 GPa and temperatures less than ∝68 K, depending on the pressure. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Neutron diffraction study of the crystal structure of BaMoO{sub 4}: A suitable precursor for metallic BaMoO{sub 3} perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Nassif, V.; Carbonio, R.E. [Univ. Nacional de Cordoba (Argentina). Inst. de Investigaciones en Fisicoquimica; Alonso, J.A. [C.S.I.C., Madrid (Spain). Inst. de Ciencia de Materiales

    1999-08-01

    BaMoO{sub 3}, metallic and Pauli paramagnetic, has been prepared by controlled reduction of BaMoO{sub 4}. This precursor, containing Mo(VI), is unusually stable against reduction, due to structural factors. The crystal structure of BaMoO{sub 4} has been refined from neutron powder diffraction data: space group I4{sub 1}/a (no. 88), Z = 4, a = 5.5479(9), and c = 12.743(2) {angstrom}. A bond-valence study allowed the authors to detect the presence of slight tensile and compressive stresses in the crystal structure of BaMoO{sub 4}, in which Ba is overbonded and Mo is underbonded. However, this effect is less pronounced than in other AMO{sub 4} oxides with a scheelite structure (A = Ca, Sr, Ba; M = Mo, W): BaMoO{sub 4} contains the M cation exhibiting the closest valence to the nominal value of 6+, suggesting a large covalent contribution to the Mo-O bonds. This observation is coherent with the large thermal stability of this compound against reduction, taking place at temperatures above 920 C in H{sub 2} flow.

  19. Neutron diffraction investigation of the H -T phase diagram above the longitudinal incommensurate phase of BaCo2V2O8

    Science.gov (United States)

    Grenier, B.; Simonet, V.; Canals, B.; Lejay, P.; Klanjšek, M.; Horvatić, M.; Berthier, C.

    2015-10-01

    The quasi-one-dimensional antiferromagnetic Ising-like compound BaCo2V2O8 has been shown to be describable by the Tomonaga-Luttinger liquid theory in its gapless phase induced by a magnetic field applied along the Ising axis. Above 3.9 T, this leads to an exotic field-induced low-temperature magnetic order, made of a longitudinal incommensurate spin-density wave, stabilized by weak interchain interactions. By single-crystal neutron diffraction we explore the destabilization of this phase at a higher magnetic field. We evidence a transition at around 8.5 T towards a more conventional magnetic structure with antiferromagnetic components in the plane perpendicular to the magnetic field. The phase diagram boundaries and the nature of this second field-induced phase are discussed with respect to previous results obtained by means of nuclear magnetic resonance and electron spin resonance, and in the framework of the simple model based on the Tomonaga-Luttinger liquid theory, which obviously has to be refined in this complex system.

  20. Neutron-Diffraction Measurements of an Antiferromagnetic Semiconducting Phase in the Vicinity of the High-Temperature Superconducting State of KxFe2-ySe2

    Science.gov (United States)

    Zhao, Jun; Cao, Huibo; Bourret-Courchesne, E.; Lee, D.-H.; Birgeneau, R. J.

    2012-12-01

    The recently discovered K-Fe-Se high-temperature superconductor has caused heated debate regarding the nature of its parent compound. Transport, angle-resolved photoemission spectroscopy, and STM measurements have suggested that its parent compound could be insulating, semiconducting, or even metallic [M. H. Fang, H.-D. Wang, C.-H. Dong, Z.-J. Li, C.-M. Feng, J. Chen, and H. Q. Yuan, Europhys. Lett. 94, 27009 (2011)EULEEJ0295-507510.1209/0295-5075/94/27009; F. Chen , Phys. Rev. X 1, 021020 (2011)PRXHAE2160-330810.1103/PhysRevX.1.021020; and W. Li , Phys. Rev. Lett. 109, 057003 (2012)PRLTAO0031-900710.1103/PhysRevLett.109.057003]. Because the magnetic ground states associated with these different phases have not yet been identified and the relationship between magnetism and superconductivity is not fully understood, the real parent compound of this system remains elusive. Here, we report neutron-diffraction experiments that reveal a semiconducting antiferromagnetic (AFM) phase with rhombus iron vacancy order. The magnetic order of the semiconducting phase is the same as the stripe AFM order of the iron pnictide parent compounds. Moreover, while the 5×5 block AFM phase coexists with superconductivity, the stripe AFM order is suppressed by it. This leads us to conjecture that the new semiconducting magnetic ordered phase is the true parent phase of this superconductor.

  1. Neutron Diffraction Measurement of Residual Stresses, Dislocation Density and Texture in Zr-bonded U-10Mo ''Mini'' Fuel Foils and Plates

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Donald W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Okuniewski, M. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sisneros, Thomas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clausen, Bjorn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moore, G. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Balogh, L [Queen' s Univ., Kingston, ON (Canada)

    2014-08-07

    Aluminum clad monolithic uranium 10 weight percent molybdenum (U-10Mo) fuel plates are being considered for conversion of several research and test nuclear reactors from high-enriched to low-enriched uranium fuel due to the inherently high density of fissile material. Comprehensive neutron diffraction measurements of the evolution of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the HIP procedure significantly reduces the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stresses in the clad fuel plate do not depend strongly on the final processing step of the bare foil prior to HIP bonding. Rather, the residual stresses are dominated by the thermal expansion mismatch of the constituent materials of the fuel plate.

  2. Visualizing oxygen anion transport pathways in NdBaCo2O5+δ by in situ neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cox-Galhotra, Rosemary A. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Chemical Engineering; Huq, Ashfia [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source; Hodges, Jason P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source; Kim, Jung-Hyun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source; Yu, Chengfei [Univ. of Houston, TX (United States). Dept. of Chemistry; Wang, Xiqu [Univ. of Houston, TX (United States). Dept. of Chemistry; Jacobson, Allan J. [Univ. of Houston, TX (United States). Dept. of Chemistry; McIntosh, Steven [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Chemical Engineering; Lehigh Univ., Bethlehem, PA (United States). Dept. of Chemical Engineering

    2013-01-14

    We characterized the layered perovskite NdBaCo2O5+δ (NBCO) using neutron powder diffraction under in situ conditions from 577–852 °C and in 10-1 to 10-4 atm oxygen. The best fit to the data was obtained in the tetragonal (P4/mmm) space group. No oxygen atom vacancy ordering was observed that warranted a lowering of the symmetry to orthorhombic (Pmmm). Two P4/mmm structural models were investigated: Model 1 (no split sites) and Model 2 (split Nd and O2 sites). Furthermore, transport of oxygen through the material via the vacancy hopping mechanism will likely involve the nearest-neighbor oxygen atom sites in the Nd layer. Total oxygen stoichiometry values were in the range 5.51 ≤ δ ≤ 5.11. The tetragonal lattice parameters increased with temperature as expected. But, the a-axis expands while the c-axis contracts with decreasing pO2 at a given temperature due to increasing vacancy concentration in the Nd layer.

  3. Polarised neutron diffraction measurements of PrBa sub 2 Cu sub 3 O sub 6 sub + X and Bayesian statistical analysis of such data

    CERN Document Server

    Markvardsen, A J

    2000-01-01

    sub 2 Cu sub 3 O sub 6 sub + sub x and leaving room for more questions to be answered. The physics of the series Pr sub y Y sub 1 sub - sub y Ba sub 2 CU sub 3 O sub 6 sub + sub x , and ability of Pr to suppress superconductivity, has been a subject of frequent discussions in the literature for more than a decade. This thesis describes a polarised neutron diffraction (PND) experiment performed on PrBa sub 2 Cu sub 3 O sub 6 sub . sub 2 sub 4 designed to find out something about the electron structure. This experiment pushed the limits of what can be done using the PND technique. The problem is one of a limited number of measured Fourier components that need to be inverted to form a real space image. To accomplish this inversion the maximum entropy technique has been employed. In some cases, the maximum entropy technique has the ability to increase the resolution of 'inverted' data immensely, but this ability is found to depend critically on the choice of constants used in the method. To investigate this a Bay...

  4. 23-gauge vitrectomy assisted by combined endoscopy and a wide-angle viewing system for retinal detachment with severe penetrating corneal injury: a case report

    Directory of Open Access Journals (Sweden)

    Morishita S

    2011-12-01

    Full Text Available Seita Morishita, Mihori Kita, Shin Yoshitake, Miou Hirose, Hideyasu OhDepartment of Ophthalmology, Hyogo Prefectural Amagasaki Hospital, Amagasaki, Hyogo, JapanBackground: We report a case of traumatic retinal detachment in an eye with severe corneal opacity that was successfully treated using 23 gauge (G transconjunctival vitrectomy assisted by endoscope and a wide-angle viewing system.Case presentation: A 22-year-old Japanese man was referred to our hospital with the suspicion of traumatic retinal detachment of the right eye, 1 month after an open globe eye injury due to fireworks. At the time of his first visit, his best-corrected visual acuity was hand motion in the right eye. A 23 G three port pars plana vitrectomy was conducted in combination with ophthalmic endoscope and a wide-angle viewing system. Endoscopy revealed a retinal detachment in the inferior quadrant with tiny retinal breaks. Primary reattachment of the retina was achieved by tamponade of SF6 gas. Five months after the vitrectomy, penetrating keratoplasty was performed and visual acuity recovered to 0.02. Optical coherent tomography revealed thinning of the retina, which might be the cause of the remaining poor vision.Conclusion: 23 G vitrectomy assisted by combined endoscopy and a wide-angle viewing system could be advantageous in managing visualization constraints due to penetrating trauma.Keywords: penetrating injury, vitrectomy, endoscope, wide angle viewing system, 23 gauge vitrectomy

  5. The Crustal Structure of Beira High, Central Mozambique - Combined Investigation of Wide-angle Seismic and Potential Field Data

    Science.gov (United States)

    Müller, C. O.; Schreckenberger, B.; Heyde, I.; Jokat, W.

    2015-12-01

    Up to Jurassic times the Antarctic and African continents were part of the supercontinent Gondwana. Some 185 Ma the onset of rifting caused the dispersal of this vast continent into several minor plates. The timing and geometry of the initial break-up between Africa and Antarctica as well as the amount of volcanism connected to this Jurassic rifting are still controversial. In the southern part of the Mozambique Channel a prominent basement high, the Beira High, forms a distinct crustal anomaly along the Mozambican margin. It is still controversial if this area of shallow basement is a continental fragment or was formed during a period of enhanced magmatism and is of oceanic origin. Therefore, a wide-angle seismic profile with 37 OBS/H was acquired starting from the deep Mozambique Channel, across the Beira High and terminating on the shelf off the Zambezi River. The main objectives are to provide constraints on the crustal composition and origin of the Beira High as well as the amount of volcanism and the position of the continent-ocean transition below the Zambezi Delta. To obtain a P-wave velocity model of this area the data were forward modeled by means of the 2D-Raytracing method. Preliminary results indicate a clear thickening of the crust below the Beira High up to 20-24 km. Evidences for a high velocity body are found in the area below the Zambezi shelf with velocities of 7.2-7.4 km/s and up to 5 km thickness. Oceanic basement velocities at the very eastern part of the line start with values of 5.5 km/s, and increase to 6.9 km/s at lower crustal levels, that are typical for Jurassic oceanic crust. Across the Beira High the starting velocity and its gradient slightly change, presenting typical values for continental fragments. However, due to a sparse ray coverage of diving waves for the Beira High lower crust, these velocities still have to be proved. Thus, we will introduce the final results of a Finite Difference amplitude modeling, which will constrain

  6. Lithospheric structure along wide-angle seismic profile GEORIFT 2013 in Pripyat-Dnieper-Donets Basin (Belarus and Ukraine)

    Science.gov (United States)

    Starostenko, V.; Janik, T.; Yegorova, T.; Czuba, W.; Środa, P.; Lysynchuk, D.; Aizberg, R.; Garetsky, R.; Karataev, G.; Gribik, Y.; Farfuliak, L.; Kolomiyets, K.; Omelchenko, V.; Komminaho, K.; Tiira, T.; Gryn, D.; Guterch, A.; Legostaeva, O.; Thybo, H.; Tolkunov, A.

    2018-03-01

    The GEORIFT 2013 (GR'13) WARR (wide-angle reflection and refraction) experiment was carried out in 2013 in the territory of Belarus and Ukraine with broad international co-operation. The aim of the work is to study basin architecture and deep structure of the Pripyat-Dnieper-Donets Basin (PDDB), which is the deepest and best studied Palaeozoic rift basin in Europe. The PDDB is located in the southern part of the East European Craton (EEC) and crosses Sarmatia—one of the three segments of the EEC. The PDDB was formed by Late Devonian rifting associated with domal basement uplift and magmatism. The GR'13 extends in NW-SE direction along the PDDB strike and crosses the Pripyat Trough (PT) and Dnieper Graben (DG) separated by the Bragin Uplift (BU) of the basement. The field acquisition along the GR'13 (of 670 km total length) involved 14 shots and recorders deployed every ˜2.2 km for several shot points. The good quality of the data, with first arrivals visible up to 670 km for several shot points, allowed for construction of a velocity model extending to 80 km depth using ray-tracing modelling. The thickness of the sediments (Vp structure on the GR'13 may reflect varying intensity of rifting in the PDDB from a passive stage in the PT to active rifting in the DG. The absence of Moho uplift and relatively thick crystalline crust under the PT is explained by its tectonic position as a closing unit of the PDDB, with a gradual attenuation of rifting from the southeast to the northwest. The most active stage of rifting is evidenced in the DG by a shallower Moho and by a presence of a rift pillow caused by mafic and ultramafic intrusions during the active phase. The junction of the PT and the DG (the BU) locates just at its intersection with the NS regional tectonic zone Odessa-Gomel. Most likely, the `blocking' effect of this zone did not allow for further propagation of active rifting to the NW.

  7. Next-generation seismic experiments: wide-angle, multi-azimuth, three-dimensional, full-waveform inversion

    Science.gov (United States)

    Bell, Rebecca; Morgan, Joanna; Warner, Michael

    2016-04-01

    There are many outstanding plate-tectonic scale questions that require us to know information about sub-surface physical properties, for example ascertaining the geometry and location of magma chambers and estimating the effective stress along plate boundary faults. These important scientific targets are often too deep, impractical and expensive for extensive academic drilling. Full-waveform inversion (FWI) is an advanced seismic imaging technique that has recently become feasible in three dimensions, and has been widely adopted by the oil and gas industry to image reservoir-scale targets at shallow-to-moderate depths. In this presentation we explore the potential for 3-D FWI, when combined with appropriate marine seismic acquisition, to recover high-resolution high-fidelity P-wave velocity models for sub-sedimentary targets within the crystalline crust and uppermost mantle. Using existing geological and geophysical models, we construct P-wave velocity models over three potential sub-sedimentary targets: the Soufrière Hills Volcano on Montserrat and its associated crustal magmatic system, the downgoing oceanic plate beneath the Nankai subduction margin, and the oceanic crust-uppermost mantle beneath the East Pacific Rise mid-ocean ridge. We use these models to generate realistic multi-azimuth 3-D synthetic seismic data, and attempt to invert these data to recover the original models. We explore the resolution and accuracy, sensitivity to noise and acquisition geometry, ability to invert elastic data using acoustic inversion codes, and the trade-off between low frequencies and starting velocity model accuracy. We will show that FWI applied to multi-azimuth, refracted, wide-angle, low-frequency data can resolve features in the deep crust and uppermost mantle on scales that are significantly better than can be achieved by any other geophysical technique, and that these results can be obtained using relatively small numbers (60-90) of ocean-bottom receivers combined

  8. Oxygen stoichiometry and chemical expansion of Ba0.5Sr0.5Co0.8Fe0.2O3-d measured by in-situ neutron diffraction

    NARCIS (Netherlands)

    McIntosh, S.; McIntosh, Steven; Vente, Jaap F.; Haije, Wim G.; Blank, David H.A.; Bouwmeester, Henricus J.M.

    2006-01-01

    The structure, oxygen stoichiometry, and chemical and thermal expansion of Ba0.5Sr0.5Co0.8Fe0.2O3-ä (BSCF) between 873 and 1173 K and oxygen partial pressures of 1 10-3 to 1 atm were determined by in situ neutron diffraction. BSCF has a cubic perovskite structure, space group Pm3hm, across the whole

  9. Neutron Powder Diffraction Measurements of the Spinel MgGa 2 O 4 :Cr 3+ - A Comparative Study between the High Flux Diffractometer D2B at the ILL and the High Resolution Powder Diffractometer Aurora at IPEN

    DEFF Research Database (Denmark)

    Silva, M A F M da; Sosman, L P; Yokaichiya, F

    2012-01-01

    and MgGa 2 O 4 and relate structural changes observed in MgGa 2 O 4 -Ga 2 O 3 system to the optical properties, and secondly, to compare the neutron powder diffraction results obtained using two diffractometers: D2B located at the ILL (Grenoble, France) and Aurora located at IPEN (São Paulo, Brazil......). In the configuration chosen, Aurora shows an improved resolution, which is related to the design of its silicon focusing monochromator....

  10. Neutron diffraction and neutron depolarization study

    Indian Academy of Sciences (India)

    S Rößler, U K Rößler, K Nenkov, D Eckert, S M Yusuf, K Dörr and K-H Müller,. Phys. Rev. B70, 104417 (2004). D K Aswal, A Singh, C Thinaharan, S M Yusuf, C S Viswanatham, G L Goswami, L. C Gupta, S K Gupta, J V Yakhmi and V C Sahni, Philos. Magn. B83, 3181 (2003). Pramana – J. Phys., Vol. 71, No. 4, October 2008.

  11. A neutron diffraction study of crystal and low-temperature magnetic structures within the (Na,Li)FeGe2O6 pyroxene-type solid solution series

    Science.gov (United States)

    Redhammer, Günther J.; Senyshyn, Anatoliy; Lebernegg, Stefan; Tippelt, Gerold; Dachs, Edgar; Roth, Georg

    2017-10-01

    Solid solution compounds along the Li1- x Na x FeGe2O6 clinopyroxene series have been prepared by solid state ceramic sintering and investigated by bulk magnetic and calorimetric methods; the Na-rich samples with x(Na) > 0.7 were also investigated by low-temperature neutron diffraction experiments in a temperature range of 4-20 K. For samples with x(Na) > 0.76 the crystal structure adopts the C2/ c symmetry at all measuring temperatures, while the samples display P21/ c symmetry for smaller Na contents. Magnetic ordering is observed for all samples below 20 K with a slight decrease of T N with increasing Na content. The magnetic spin structures change distinctly as a function of chemical composition: up to x(Na) = 0.72 the magnetic structure can be described by a commensurate arrangement of magnetic spins with propagation vector k = (½, 0 0), an antiferromagnetic (AFM) coupling within the Fe3+O6 octahedra zig-zag chains and an alternating AFM and ferromagnetic (FM) interaction between the chains, depending on the nature of the tetrahedral GeO4 chains. The magnetic structure can be described in magnetic space group P a21/ c. Close to the structural phase transition for sample with x(Na) = 0.75, magnetic ordering is observed below 15 K; however, it becomes incommensurately modulated with k = (0.344, 0, 0.063). At 4 K, the magnetic spin structure best can be described by a cycloidal arrangement within the M1 chains, the spins are within the a- c plane. Around 12 K the cycloidal structure transforms to a spin density wave (SDW) structure. For the C2/ c structures, a coexistence of a simple collinear and an incommensurately modulated structure is observed down to lowest temperatures. For 0.78 ≤ x(Na) ≤ 0.82, a collinear magnetic structure with k = (0 1 0), space group P C21/ c and an AFM spin structure within the M1 chains and an FM one between the spins is dominating, while the incommensurately modulated structure becomes dominating the collinear one in the

  12. On the Sr1−xBaxFeO2F Oxyfluoride Perovskites: Structure and Magnetism from Neutron Diffraction and Mössbauer Spectroscopy

    Directory of Open Access Journals (Sweden)

    Crisanto A. García-Ramos

    2016-11-01

    Full Text Available Four oxyfluorides of the title series (x = 0.00, 0.25, 0.50, 0.75 have been stabilized by topotactic treatment of perovskite precursors Sr1−xBaxFeO3−δ prepared by soft-chemistry procedures, yielding reactive materials that can easily incorporate a substantial amount of F atoms at moderate temperatures, thus avoiding the stabilization of competitive SrF2 and BaF2 parasitic phases. XRD and Neutron Powder Diffraction (NPD measurements assess the phase purity and yield distinct features concerning the unit cell parameters’ variation, the Sr and Ba distribution, the stoichiometry of the anionic sublattice and the anisotropic displacement factors for O and F atoms. The four oxyfluorides are confirmed to be cubic in all of the compositional range, the unit cell parameters displaying Vergard’s law. All of the samples are magnetically ordered above room temperature; the magnetic structure is always G-type antiferromagnetic, as shown from NPD data. The ordered magnetic moments are substantially high, around 3.5 μB, even at room temperature (RT. Temperature-dependent Mössbauer data allow identifying Fe3+ in all of the samples, thus confirming the Sr1−xBaxFeO2F stoichiometry. The fit of the magnetic hyperfine field vs. temperature curve yields magnetic ordering TN temperatures between 740 K (x = 0.00 and 683 K (x = 0.75. These temperatures are substantially higher than those reported before for some of the samples, assessing for stronger Fe-Fe superexchange interactions for these specimens prepared by fluorination of citrate precursors in mild conditions.

  13. Crystal Structural Determination of SrAlD5 with Corner-Sharing AlD6 Octahedron Chains by X-ray and Neutron Diffraction

    Directory of Open Access Journals (Sweden)

    Toyoto Sato

    2018-02-01

    Full Text Available Aluminium-based complex hydrides (alanates composed of metal cation(s and complex anion(s, [AlH4]− or [AlH6]3− with covalent Al–H bonds, have attracted tremendous attention as hydrogen storage materials since the discovery of the reversible hydrogen desorption and absorption reactions on Ti-enhanced NaAlH4. In cases wherein alkaline-earth metals (M are used as a metal cation, MAlH5 with corner-sharing AlH6 octahedron chains are known to form. The crystal structure of SrAlH5 has remained unsolved although two different results have been theoretically and experimentally proposed. Focusing on the corner-sharing AlH6 octahedron chains as a unique feature of the alkaline-earth metal, we here report the crystal structure of SrAlD5 investigated by synchrotron radiation powder X-ray and neutron diffraction. SrAlD5 was elucidated to adopt an orthorhombic unit cell with a = 4.6226(10 Å, b = 12.6213(30 Å and c = 5.0321(10 Å in the space group Pbcm (No. 57 and Z = 4. The Al–D distances (1.77–1.81 Å in the corner-sharing AlD6 octahedra matched with those in the isolated [AlD6]3− although the D–Al–D angles in the penta-alanates are significantly more distorted than the isolated [AlD6]3−.

  14. Silicon supported lipid-DNA thin film structures at varying temperature studied by energy dispersive X-ray diffraction and neutron reflectivity.

    Science.gov (United States)

    Domenici, F; Castellano, C; Dell'Unto, F; Albinati, A; Congiu, A

    2011-11-01

    Non-viral gene transfection by means of lipid-based nanosystems, such as solid supported lipid assemblies, is often limited due to their lack of stability and the consequent loss of efficiency. Therefore not only a detailed thermo-lyotropic study of these DNA-lipid complexes is necessary to understand their interaction mechanisms, but it can also be considered as a first step in conceiving and developing new transfection biosystems. The aim of our study is a structural characterization of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC)-dimethyl-dioctadecyl-ammonium bromide (DDAB)-DNA complex at varying temperature using the energy dispersive X-ray diffraction (EDXD) and neutron reflectivity (NR) techniques. We have shown the formation of a novel thermo-lyotropic structure of DOPC/DDAB thin film self-organized in multi-lamellar planes on (100)-oriented silicon support by spin coating, thus enlightening its ability to include DNA strands. Our NR measurements indicate that the DOPC/DDAB/DNA complex forms temperature-dependent structures. At 65°C and relative humidity of 100% DNA fragments are buried between single lamellar leaflets constituting the hydrocarbon core of the lipid bilayers. This finding supports the consistency of the hydrophobic interaction model, which implies that the coupling between lipid tails and hypo-hydrated DNA single strands could be the driving force of DNA-lipid complexation. Upon cooling to 25°C, EDXD analysis points out that full-hydrated DOPC-DDAB-DNA can switch in a different metastable complex supposed to be driven by lipid heads-DNA electrostatic interaction. Thermotropic response analysis also clarifies that DOPC has a pivotal role in promoting the formation of our observed thermophylic silicon supported lipids-DNA assembly. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance.

    Science.gov (United States)

    Zhang, Changlei; Huang, Cheng; Pu, Mingbo; Song, Jiakun; Zhao, Zeyu; Wu, Xiaoyu; Luo, Xiangang

    2017-07-18

    In this article, a dual-band wide-angle metamaterial perfect absorber is proposed to achieve absorption at the wavelength where laser radar operates. It is composed of gold ring array and a Helmholtz resonance cavity spaced by a Si dielectric layer. Numerical simulation results reveal that the designed absorber displays two absorption peaks at the target wavelength of 10.6 μm and 1.064 μm with the large frequency ratio and near-unity absorptivity under the normal incidence. The wide-angle absorbing property and the polarization-insensitive feature are also demonstrated. Localized surface plasmons resonance and Helmholtz resonance are introduced to analyze and interpret the absorbing mechanism. The designed perfect absorber can be developed for potential applications in infrared stealth field.

  16. The crystal structure, electrostatic properties, and thermal vibrations of some hydrated spermine compounds using neutron and x-ray diffraction data

    Science.gov (United States)

    Cohen, Aina Elizabeth

    Spermine phosphate hexahydrate crystallizes in space group P21/a with unit cell dimensions a = 7.931(1) A, b = 23.158(5) A, c = 6.856(2) A, and b = 113.44(2)° at 125 K with unit cell contents ([C10H 30N4]2+4 4[HPO4] -2·12H2O). The packing of spermines and monohydrogen phosphates in this crystal structure has features which may be relevant to the binding of spermine to DNA. Another important structural feature is the presence of channels containing water that is H-bonded as in ice-Ih with disordered protons. The channels occur between sheets of spermine long chains and are also bordered by H-bonded monohydrogen phosphate chains. Using neutron diffraction data, the H-bonding scheme of these water chains proposed on the basis of an earlier X-ray study is now confirmed. Nuclear positions, anisotropic m.s. displacements, an overall scale factor, and two extinction parameters ( r and g) were refined using full-matrix least-squares giving values of R(Fo2) = 0.09, Rw(Fo 2) = 0.11 and S = 1.02. Thermal vibrational analysis revealed that the backbone of the spermine cation can be described as a single rigid segment with a substantial libration of 27 deg2 around the spermine molecular long axis. The charge density distribution in the crystal structure of spermine phosphate hexahydrate ([C10H30N4] +4 2[HPO4]-2·6H2O) has been determined from X-ray diffraction data MoKa at 125 K using 13,984 reflections with sin/l≤1. 51 A-1. Least-squares structure refinement assuming Stewart's rigid pseudoatom model (variables included electron populations for multipole terms extending to octapoles for C, N, O, and P and up to dipoles for H) gave R(F2) = 0.042, Rw(F2) = 0.071 and S = 1.06. The electron density and its Laplacian have been determined at the (3, -1) or bond-critical points. The crystal structure of spermine dihydrate (C10H26N 4·2H2O), or possibly sperminium dihydroxide, has been determined for the non-hydrogen atoms. Spermine dihydrate crystallizes in space group P1¯ with

  17. Determination of the cell parameters of {beta}-quartz at 1003 K by neutron multiple diffraction; Parametros de rede do quartzo-{beta} a 1003 K determinados por difracao multipla de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Luiz Carlos de

    2002-07-01

    In this work, neutron multiple diffraction (NMD) data was employed for the determination of the parameters a and c of the {beta}-quartz hexagonal cell at 1003 K. An experimental 00.1 {beta}-quartz NMD 'Umweg' pattern has been used for the determinations. During the indexing of the {beta}-quartz pattern it was verified that most of the peaks could be classified as either 'good for the determination of the parameter a' or 'good for the determination of the parameter c'. With such a classification, it became possible to employ an iterative process for the determination of both parameters. To attain this purpose, two methods were developed. The first one, named 'absolute method', used angular azimuthal positions of the peaks, related to the origin of the experimental diagram. The second method, named 'relative method', used azimuthal angular differences between two selected peaks. The values obtained for both parameters, in the two methods employed, were found by applying the angular azimuthal positions, for the first method, and the azimuthal angular differences, for the second method, upon appropriate theoretical indexing diagrams. An iterative process was applied in order to obtain the values of the parameters. In this process, the value obtained for one of the parameters was used in the determination of the other parameter. The process continues until both parameters converge. The iterative process was used in both methods. The relative method proved to be better than the absolute method. The best values of the parameters obtained by the relative method were: a 4.99638 {+-} 0.00057 angstrom and c = 5.46119 {+-} 0.00044 angstrom. (author)

  18. Properties of planetary ices in the NH3 + CO2 ± H2O ternary system using neutron diffraction and ab initio calculations

    Science.gov (United States)

    Howard, C. M.; Wood, I. G.; Fortes, A. D.; Vocadlo, L.

    2016-12-01

    BackgroundInteractions between simple molecules are of fundamental interest across diverse areas of the physical sciences, and the ternary system NH3 + CO2 ± H2O is no exception. In the outer solar system, interaction of CO2 with aqueous ammonia is likely to occur, synthesizing `rock-forming' minerals [1], with CO2 perhaps playing a role in ammonia-water oceans and cryomagmas inside icy planetary bodies - the discovery of ammonium carbonates in a crater of Pluto's moon Charon [2] adds weight to CO2 occuring in these planetary environments. In the same context, ammonium carbonates may have some astrobiological relevance, since removal of water leads to the formation of urea. On Earth, combination of CO2 with aqueous ammonia has relevance to carbon capture schemes [3], and there is interest in using such materials for hydrogen storage in fuel cells [4]. Consequently, from earthly matters of climate change to the study of extraterrestrial ices, understanding the structures and properties of ammonium carbonates are important. Despite this, our knowledge of ammonium carbonates is limited under ambient conditions of pressure and temperature and is entirely absent at the higher pressures, severely limiting our ability to model the behaviour of NH3 + CO2 ± H2O solids and fluids in planetary environments. ResultsWe report the results of several experiments using variable pressure and temperature neutron diffraction work on ammonium carbonate monohydrate, ammonium bicarbonate and ammonium carbamate, with complementary Density Functional Theory (DFT) calculations. The excellent agreement between experiments and DFT calculations obtained so far adds weight to the accuracy of calculated material properties of ammonium sesquicarbonate monohydrate and several polymorphs of urea where little empirical data exists. These experimental and computational studies provide the structural, thermoelastic and vibrational information required for accurate planetary modelling and remote

  19. Convergent beam neutron crystallography

    Science.gov (United States)

    Gibson, Walter M.; Schultz, Arthur J.; Richardson, James W.; Carpenter, John M.; Mildner, David F. R.; Chen-Mayer, Heather H.; Miller, M. E.; Maxey, E.; Prask, Henry J.; Gnaeupel-Herold, Thomas H.; Youngman, Russell

    2004-01-01

    Applications of neutron diffraction for small samples (small fiducial areas are limited by the available neutron flux density. Recent demonstrations of convergent beam electron and x-ray diffraction and focusing of cold (λ>1 Å) neutrons suggest the possibility to use convergent beam neutron diffraction for small sample crystallography. We have carried out a systematic study of diffraction of both monoenergetic and broad bandwidth neutrons at the NIST Research Reactor and at the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory. Combining convergent beams with time-of-flight Laue diffraction is particularly attractive for high efficiency small sample diffraction studies. We have studied single crystal and powder diffraction of neutrons with convergence angles as large as 15° and have observed diffracted peak intensity gains greater than 20. The convergent beam method (CBM) shows promise for crystallography on small samples of small to medium size molecules (potentially even for proteins), ultra-high pressure samples, and for mapping of strain and texture distributions in larger samples.

  20. Diffraction: Principles and application

    Directory of Open Access Journals (Sweden)

    Hansen Thomas C.

    2015-01-01

    Full Text Available We introduce here diffraction in general, as well as neutron and powder diffraction in particular as a tool to study the structure of condensed matter, crystalline solids in particular. Diffraction is a crucial experimental technique of extraordinary potential to elucidate the structure and its evolution of materials important for all domains in the production, conversion, storage and transport of energy. It allows therefore establishing structure-property relationships, which need to be understood in order to develop new and better performing materials.

  1. First results on the crustal structure of the Natal Valley from combined wide-angle and reflection seismic data (MOZ3/5 cruise), South Mozambique Margin.

    Science.gov (United States)

    Leprêtre, Angélique; Verrier, Fanny; Evain, Mikael; Schnurle, Philippe; Watremez, Louise; Aslanian, Daniel; de Clarens, Philippe; Dias, Nuno; Afilhado, Alexandra; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi; Moulin, Maryline

    2017-04-01

    The Natal valley (South Mozambique margin) is a key area for the understanding of the SW Indian Ocean history since the Gondwana break-up, and widely, the structure of a margin system at the transition between divergent and strike-slip segments. As one part of the PAMELA project (PAssive Margins Exploration Laboratories), conducted by TOTAL, IFREMER, in collaboration with Université de Bretagne Occidentale, Université Rennes 1, Université Pierre and Marie Curie, CNRS et IFPEN, the Natal Valley and the East Limpopo margin have been explored during the MOZ3/5 cruise (2016), conducted onboard the R/V Pourquoi Pas?, through the acquisition of 7 wide-angle profiles and coincident marine multichannel (720 traces) seismic as well as potential field data. Simultaneously, land seismometers were deployed in the Mozambique coastal plains, extending six of those profiles on land for about 100 km in order to provide information on the onshore-offshore transition. Wide-angle seismic data are of major importance as they can provide constrains on the crustal structure of the margin and the position of the continent-ocean boundary in an area where the crustal nature is poorly known and largely controversial. The aim of this work is to present the first results on the crustal structure from P-waves velocity modeling along two perpendicular MZ1 & MZ7 wide-angle profiles crossing the Natal Valley in an E-W and NNW-SSE direction respectively, which reveal a crust up to 30 km thick below the Natal Valley and thus raises questions of a purely oceanic origin of the Valley. The post-doc of Angélique Leprêtre is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project.

  2. A spider-like outflow in Barnard 5 - IRS 1: the transition from a collimated jet to a wide-angle outflow?

    Science.gov (United States)

    Zapata, Luis A.; Arce, Héctor G.; Brassfield, Erin; Palau, Aina; Patel, Nimesh; Pineda, Jaime E.

    2014-07-01

    We present line and continuum observations made with the Submillimeter Array of the young stellar object Barnard 5 - IRS1 located in the Perseus molecular cloud. Our 12CO(2-1) line observations resolve the high-velocity bipolar north-east-south-west outflow associated with this source. We find that the outflowing gas shows different structures at three different velocity regimes, in both lobes, resulting in a spider-like morphology. In addition to the low-velocity, cone-like (wide-angle) lobes that have previously been observed, we report the presence of intermediate-velocity parabolic shells emerging very close to the Class I protostar, as well as high-velocity molecular bullets that appear to be associated with the optical/IR jet emanating from this source. These compact high-velocity features reach radial velocities of about 50 km s-1 away from the cloud velocity. We interpret that the peculiar spider-like morphology is a result of the molecular material being entrained by a wind with both a collimated jet-like component and a wide-angle component. We suggest that the outflow is in a transitional evolutionary phase between a mostly jet-driven flow and an outflow in which the entrainment is dominated by the wide-angle wind component. We also detect 1300 μm continuum emission at the position of the protostar, which likely arises from the dusty envelope and disc surrounding the protostar. Finally, we report the detection of 13CO(2-1) and SO(65-54) emission arising from the outflow and the location of the young stellar object.

  3. Cubic-tetragonal phase transition in Ca sub 0 sub . sub 0 sub 4 Sr sub 0 sub . sub 9 sub 6 TiO sub 3 a combined specific heat and neutron diffraction study

    CERN Document Server

    Gallardo, M C; Romero, F J; Cerro, J D; Seifert, F; Redfern, S A T

    2003-01-01

    The specific heat corresponding to the tetragonal-to-cubic transition in Ca sub 0 sub . sub 0 sub 4 Sr sub 0 sub . sub 9 sub 6 TiO sub 3 perovskite has been measured by conduction calorimetry. The order parameter of the transition has been obtained by means of neutron diffraction at low temperatures. Comparison of calorimetric data with the evolution of the order parameter indicates that this transition seems to follow a mean field Landau potential as in SrTiO sub 3. The linear behaviour of the excess of entropy versus temperature suggests that a 2-4 Landau potential is sufficient to describe the transition.

  4. Neutron diffraction evidence of microscopic charge inhomogeneities in the CuO2 plane of superconducting La2-xSrxCuO4 (0

    Science.gov (United States)

    Bozin, E S; Kwei, G H; Takagi, H; Billinge, S J

    2000-06-19

    High-resolution atomic pair distribution functions have been obtained using neutron powder diffraction data from La2-xSrxCuO4 over the range of doping 0distribution as a function of doping up to optimal doping. Thereafter the peak abruptly sharpens. The peak broadening can be well explained by a local microscopic coexistence of doped and undoped material. This suggests a crossover from a charge inhomogeneous state at and below optimal doping to a homogeneous charge state above optimal doping.

  5. Neutron Diffraction Evidence of Microscopic Charge Inhomogeneities in the CuO2 Plane of Superconducting La2-xSrxCuO4 ( 0 <= x <= 0.30)

    Science.gov (United States)

    Božin, E. S.; Kwei, G. H.; Takagi, H.; Billinge, S. J. L.

    2000-06-01

    High-resolution atomic pair distribution functions have been obtained using neutron powder diffraction data from La2-xSrxCuO4 over the range of doping 0distribution as a function of doping up to optimal doping. Thereafter the peak abruptly sharpens. The peak broadening can be well explained by a local microscopic coexistence of doped and undoped material. This suggests a crossover from a charge inhomogeneous state at and below optimal doping to a homogeneous charge state above optimal doping.

  6. SiO2/bi-layer GZO/Ag structures for near-infrared broadband wide-angle perfect absorption

    Science.gov (United States)

    Zhu, Chaoting; Li, Jia; Yang, Ye; Huang, Jinhua; Lu, Yuehui; Zhao, Xunna; Tan, Ruiqin; Dai, Ning; Song, Weijie

    2016-10-01

    In this work, near-infrared (NIR) perfect absorbers with a silicon dioxide (SiO2)/gallium-doped zinc oxide (GZO)/silver (Ag) multi-layer structure were designed and experimentally demonstrated. The results show that a broadband perfect absorption (PA) from 1.24 µm to 1.49 µm was achieved by adopting bi-layer GZO thin films with different carrier concentrations. This absorption remained higher than 97% for incident angles up to 60°. The perfect NIR absorber reported here has a simple structure as well as broadband and wide-angle absorption features, which is promising for practical applications.

  7. New calculations of cross-sections and charge asymmetries for lepton pair production and wide angle Bhabha scattering in e+e- collisions near the Z-peak

    Science.gov (United States)

    Field, J. H.

    1994-03-01

    A new event generator for lepton pair production and wide angle Bhabha scattering, BHAGENE3, is presented. Both electroweak and higher order (beyond O(α) QED corrections are included. Comparisons are made with results from the programs, based on the structure function formalism, ALIBABA, TOPAZ0 and ZFITTER. For the case of the final states l+l-γγ ( l = e, μ, τ) BHAGENE3 results are compared with those of Monte Carlo generators that use the exact O( α2) amplitudes.

  8. Mapping the extent of thinned continental crust across the Orphan Basin, offshore Newfoundland, Canada, using a combination of vintage and new seismic refraction/wide-angle reflection data

    Science.gov (United States)

    Welford, J. Kim; Dehler, Sonya; Funck, Thomas

    2017-04-01

    The SIGNAL (Seismic Investigations off Greenland, Newfoundland and Labrador) 2009 cruise was undertaken by the Geological Survey of Canada (GSC) and the Geological Survey of Denmark and Greenland (GEUS), with scientific contributions from Dalhousie University, to collect refraction/wide-angle reflection (RWAR) profiles as part of each country's continental shelf program under UNCLOS (United Nations Convention on the Law of the Sea) Article 76. Line 1 extended from the Bonavista Platform off Newfoundland, across the Orphan Basin, to Orphan Knoll and beyond into oceanic crust. The line followed the same track as an earlier seismic refraction line and ocean-bottom seismometer (OBS) locations were chosen to complement and to extend the original station coverage. The final crustal velocity model across Orphan Basin shows thinned continental crust (15 to 20 km thick) beneath most of the basin with thinner crust (10 km thick) immediately outboard of the Bonavista Platform, interpreted as a failed rift zone. Seaward of the failed rift, the velocity structure of the thinned continental crust is generally uniform over 250 km toward Orphan Knoll. Immediately outboard of Orphan Knoll, the crust thins to 8 km and exhibits a velocity structure consistent with oceanic crust. The results from modelling of the combined refraction/wide-angle reflection dataset support an extension of Canada's continental shelf beyond the seaward limits of the Orphan Basin.

  9. Scalable, "Dip-and-Dry" Fabrication of a Wide-Angle Plasmonic Selective Absorber for High-Efficiency Solar-Thermal Energy Conversion.

    Science.gov (United States)

    Mandal, Jyotirmoy; Wang, Derek; Overvig, Adam C; Shi, Norman N; Paley, Daniel; Zangiabadi, Amirali; Cheng, Qian; Barmak, Katayun; Yu, Nanfang; Yang, Yuan

    2017-11-01

    A galvanic-displacement-reaction-based, room-temperature "dip-and-dry" technique is demonstrated for fabricating selectively solar-absorbing plasmonic-nanoparticle-coated foils (PNFs). The technique, which allows for facile tuning of the PNFs' spectral reflectance to suit different radiative and thermal environments, yields PNFs which exhibit excellent, wide-angle solar absorptance (0.96 at 15°, to 0.97 at 35°, to 0.79 at 80°), and low hemispherical thermal emittance (0.10) without the aid of antireflection coatings. The thermal emittance is on par with those of notable selective solar absorbers (SSAs) in the literature, while the wide-angle solar absorptance surpasses those of previously reported SSAs with comparable optical selectivities. In addition, the PNFs show promising mechanical and thermal stabilities at temperatures of up to 200 °C. Along with the performance of the PNFs, the simplicity, inexpensiveness, and environmental friendliness of the "dip-and-dry" technique makes it an appealing alternative to current methods for fabricating selective solar absorbers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms.

    Science.gov (United States)

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; Lamar Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-02-09

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future.

  11. Probabilistic estimation of reservoir properties by means of wide-angle AVA inversion and a petrophysical reformulation of the Zoeppritz equations

    Science.gov (United States)

    Aleardi, Mattia; Ciabarri, Fabio; Mazzotti, Alfredo

    2017-12-01

    We apply a target-oriented amplitude versus angle (AVA) inversion to estimate the petrophysical properties of a gas-saturated reservoir in offshore Nile Delta. A linear empirical rock-physics model derived from well log data provides the link between the petrophysical properties (porosity, shaliness and saturation) and the P-wave, S-wave velocities and density. This rock-physics model, properly calibrated for the investigated reservoir, is used to re-parameterize the exact Zoeppritz equations. The so derived equations are the forward model engine of a linearized Bayesian AVA-petrophysical inversion that, for each data gather, inverts the AVA of the target reflections to estimate the petrophysical properties of the reservoir layer, keeping fixed the cap-rock properties. We make use of the iterative Gauss-Newton method to solve the inversion problem. For each petrophysical property of interest, we discuss the benefits introduced by wide-angle reflections in constraining the inversion and we compare the posterior probability distributions (PPDs) analytically obtained via a local linearization of the inversion with the PPDs numerically computed with a Markov Chain Monte Carlo (MCMC) method. It results that the porosity is the best resolved parameter and that wide-angle reflections effectively constrain the shaliness estimates but do not guarantee reliable saturation estimates. It also results that the local linearization returns accurate PPDs in good agreement with the MCMC estimates.

  12. Neutron structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in protein which play important roles in physiological functions. However, there are relatively few examples of neutron crystallography in biology since it takes a lot of time to collect a sufficient number of Bragg reflections due to the low flux of neutrons illuminating the sample. In order to overcome the flux problem, we have successfully developed the neutron IP, where the neutron converter, {sup 6}Li or Gd, was mixed with a photostimulated luminescence material on flexible plastic support. Neutron Laue diffraction 2A data from tetragonal lysozyme were collected for 10 days with neutron imaging plates, and 960 hydrogen atoms in the molecule and 157 bound water molecules were identified. These results explain the proposed hydrolysis mechanism of the sugar by the lysozyme molecule and that lysozyme is less active at pH7.0. (author)

  13. The use of neutron diffraction for the determination of the in-depth residual stresses profile in weld coatings; A utilizacao da difracao de neutroes na determinacao do perfil de tensoes residuais em revestimentos por soldadura

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Maria Jose; Batista, A.C.; Nobre, J.P. [Universidade de Coimbra (Portugal). Dept. de Fisica. Centro de Estudos de Materiais por Difraccao de Raios X (CEMDRX); Loureiro, Altino [Universidade de Coimbra (Portugal). Dept. de Engenharia Mecanica. Centro de Engenharia Mecanica (CEMUC); Kornmeier, Joana R., E-mail: mjvaz@fe.up.pt [Technische Universitaet Muenchen, Garching (Germany). FRM II

    2013-04-15

    The neutron diffraction is a non-destructive technique, particularly suitable for the analysis of residual stress fields in welds. The technique is used in this article to study ferritic samples, coated by submerged arc welding using stainless steel filler metals. This procedure is often used for manufacturing process equipment for chemical and nuclear industries, for ease of implementation and economic reasons. The main disadvantage of that processes is the cracking phenomenon that often occurs at the interface between the base material and coatings, which can be minimized by performing post-weld stress relief heat treatments. The samples analyzed in this study were made of carbon steel plates, coated by submerged arc welding two types of stainless steel filler metals. For the first layer was used one EN 12 072 - S 2 U 23 12 electrode, while for the second and third layers were used an EN 12 072 - 19 12 3 S L electrode. After cladding, the samples were submitted to a post-weld heat treatment for 1 hour at 620 deg C. The residual stress profiles obtained by neutron diffraction evidence the relaxation of residual stress given by the heat treatment. (author)

  14. Structural study of CaMn{sub 1−x}Mo{sub x}O{sub 3} (0.08 ≤ x ≤ 0.12) system by neutron powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Supelano, G.I., E-mail: ivan.supelano@uptc.edu.co [Grupo Física de Materiales, Escuela de Física, Universidad Pedagógica y Tecnológica de Colombia, Tunja (Colombia); Parra Vargas, C.A.; Barón-González, A.J. [Grupo Física de Materiales, Escuela de Física, Universidad Pedagógica y Tecnológica de Colombia, Tunja (Colombia); Sarmiento Santos, A. [Grupo Superficies Electroquímica y Corrosión, Escuela de Física, Universidad Pedagógica y Tecnológica de Colombia, Tunja (Colombia); Frontera, C. [Institut de Ciència de Materials de Barcelona, CSIC, Campus Universitari de Bellaterra, E-08193, Bellaterra, Barcelona (Spain)

    2016-08-15

    Neutron powder diffraction experiments and magnetic measurements in polycrystalline CaMn{sub 1−x}Mo{sub x}O{sub 3} (x = 0.08, 0.10, 0.12) point towards a possible charge and orbital order in this system. The analysis of structural and magnetic data show that the samples present structural phase transformation from Pnma to P2{sub 1}/m space group and the system has a C-type antiferromagnetic configuration at low temperature. A detailed analysis of the bond distances signals a small Jahn-Teller distortion of only one (x = 0.08) or of the two Mn ions (x = 0.10, 0.12). We identify the partially occupied e{sub g} orbitals and this explains the C-type magnetic structure. - Highlights: • CaMn{sub 1−x}Mo{sub x}O{sub 3} (x = 0.08, 0.10, 0.12) is investigated by neutron powder diffraction. • Analysis of individual Mn-O distances demonstrates the apparition of orbital order. • By symmetry analysis, we find that the low temperature magnetic structure is C-type. • Magnetic interactions foreseen by the orbital order explain the magnetic structure.

  15. Data processing workflow for time of flight polarized neutrons inelastic measurements

    Energy Technology Data Exchange (ETDEWEB)

    Savici, Andrei T [ORNL; Zaliznyak, Igor [Brookhaven National Laboratory (BNL); Garlea, Vasile O [ORNL; Winn, Barry L [ORNL

    2017-01-01

    We discuss the data processing workflow for polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. The effects of the focusing Heusler crystal polarizer and the wide-angle supermirror transmission polarization analyzer are added to the data processing flow of the non-polarized case. The implementation is done using the Mantid software package.

  16. Neutron Diffraction Studies of a Class A beta-Lactamase Toho-1 E166A/R274N/R276N Triple Mutant

    Energy Technology Data Exchange (ETDEWEB)

    Blakeley, Matthew P. [Institut Laue-Langevin (ILL); Chen, Yu [ORNL; Afonine, Pavel [Lawrence Berkeley National Laboratory (LBNL)

    2010-01-01

    beta-Lactam antibiotics have been used effectively over several decades against many types of bacterial infectious diseases. However, the most common cause of resistance to the beta-lactam antibiotics is the production of beta-lactamase enzymes that inactivate beta-lactams by rapidly hydrolyzing the amide group of the beta-lactam ring. Specifically, the class A extended-spectrum beta-lactamases (ESBLs) and inhibitor-resistant enzymes arose that were capable of hydrolyzing penicillins and the expanded-spectrum cephalosporins and monobactams in resistant bacteria, which lead to treatment problems in many clinical settings. A more complete understanding of the mechanism of catalysis of these ESBL enzymes will impact current antibiotic drug discovery efforts. Here, we describe the neutron structure of the class A, CTX-M-type ESBL Toho-1 E166A/R274N/R276N triple mutant in its apo form, which is the first reported neutron structure of a beta-lactamase enzyme. This neutron structure clearly reveals the active-site protonation states and hydrogen-bonding network of the apo Toho-1 ESBL prior to substrate binding and subsequent acylation. The protonation states of the active-site residues Ser70, Lys73, Ser130, and Lys234 in this neutron structure are consistent with the prediction of a proton transfer pathway from Lys73 to Ser130 that is likely dependent on the conformation of Lys73, which has been hypothesized to be coupled to the protonation state of Glu166 during the acylation reaction. Thus, this neutron structure is in agreement with a proposed mechanism for acylation that identifies Glu166 as the general base for catalysis.

  17. Ultra-Thin Dual-Band Polarization-Insensitive and Wide-Angle Perfect Metamaterial Absorber Based on a Single Circular Sector Resonator Structure

    Science.gov (United States)

    Luo, Hao; Cheng, Yong Zhi

    2017-09-01

    We present a simple design for an ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber (PMMA) based on a single circular sector resonator structure (CSRS). Both simulation and experimental results reveal that two resonance peaks with average absorption above 99% can be achieved. The dual-band PMMA is ultra-thin with total thickness of 0.5 mm, which is cell structure reveal the physical picture of the dual-band absorption. Numerical simulations demonstrate that the PMMA could retain high absorption level at large angles of polarization and incidence for both transverse electric (TE) and transverse magnetic (TM) modes. Furthermore, the absorption properties of the PMMA can be adjusted by varying the geometric parameters of the unit-cell structure.

  18. A novel approach to electron data background treatment in an online wide-angle spectrometer for laser-accelerated ion and electron bunches

    Science.gov (United States)

    Lindner, F. H.; Bin, J. H.; Englbrecht, F.; Haffa, D.; Bolton, P. R.; Gao, Y.; Hartmann, J.; Hilz, P.; Kreuzer, C.; Ostermayr, T. M.; Rösch, T. F.; Speicher, M.; Parodi, K.; Thirolf, P. G.; Schreiber, J.

    2018-01-01

    Laser-based ion acceleration is driven by electrical fields emerging when target electrons absorb laser energy and consecutively leave the target material. A direct correlation between these electrons and the accelerated ions is thus to be expected and predicted by theoretical models. We report on a modified wide-angle spectrometer, allowing the simultaneous characterization of angularly resolved energy distributions of both ions and electrons. Equipped with online pixel detectors, the RadEye1 detectors, the investigation of this correlation gets attainable on a single shot basis. In addition to first insights, we present a novel approach for reliably extracting the primary electron energy distribution from the interfering secondary radiation background. This proves vitally important for quantitative extraction of average electron energies (temperatures) and emitted total charge.

  19. MUSIC - Multifunctional stereo imaging camera system for wide angle and high resolution stereo and color observations on the Mars-94 mission

    Science.gov (United States)

    Oertel, D.; Jahn, H.; Sandau, R.; Walter, I.; Driescher, H.

    1990-10-01

    Objectives of the multifunctional stereo imaging camera (MUSIC) system to be deployed on the Soviet Mars-94 mission are outlined. A high-resolution stereo camera (HRSC) and wide-angle opto-electronic stereo scanner (WAOSS) are combined in terms of hardware, software, technology aspects, and solutions. Both HRSC and WAOSS are push-button instruments containing a single optical system and focal plates with several parallel CCD line sensors. Emphasis is placed on the MUSIC system's stereo capability, its design, mass memory, and data compression. A 1-Gbit memory is divided into two parts: 80 percent for HRSC and 20 percent for WAOSS, while the selected on-line compression strategy is based on macropixel coding and real-time transform coding.

  20. Direct wide-angle measurement of a photonic band structure in a three-dimensional photonic crystal using infrared Fourier imaging spectroscopy.

    Science.gov (United States)

    Chen, Lifeng; Lopez-Garcia, Martin; Taverne, Mike P C; Zheng, Xu; Ho, Ying-Lung D; Rarity, John

    2017-04-15

    We propose a method to directly visualize the photonic band-structure of micrometer-sized photonic crystals using wide-angle spectroscopy. By extending Fourier imaging spectroscopy sensitivity into the infrared range, we have obtained accurate measurements of the band structures along the high-symmetry directions (X-W-K-L-U) of polymeric three-dimensional, rod-connected diamond photonic crystals. Our implementation also allows us to record single-wavelength reflectance far-field patterns showing very good agreement with simulations of the same designs. This technique is suitable for the characterization of photonic structures working in the infrared and, in particular, to obtain band-structure information of complete photonic band gap materials.

  1. Ultra-Thin Dual-Band Polarization-Insensitive and Wide-Angle Perfect Metamaterial Absorber Based on a Single Circular Sector Resonator Structure

    Science.gov (United States)

    Luo, Hao; Cheng, Yong Zhi

    2018-01-01

    We present a simple design for an ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber (PMMA) based on a single circular sector resonator structure (CSRS). Both simulation and experimental results reveal that two resonance peaks with average absorption above 99% can be achieved. The dual-band PMMA is ultra-thin with total thickness of 0.5 mm, which is

  2. A pseudo-tetragonal tungsten bronze superstructure: a combined solution of the crystal structure of K6.4(Nb,Ta)(36.3)O94 with advanced transmission electron microscopy and neutron diffraction.

    Science.gov (United States)

    Paria Sena, Robert; Babaryk, Artem A; Khainakov, Sergiy; Garcia-Granda, Santiago; Slobodyanik, Nikolay S; Van Tendeloo, Gustaaf; Abakumov, Artem M; Hadermann, Joke

    2016-01-21

    The crystal structure of the K6.4Nb28.2Ta8.1O94 pseudo-tetragonal tungsten bronze-type oxide was determined using a combination of X-ray powder diffraction, neutron diffraction and transmission electron microscopy techniques, including electron diffraction, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), annular bright field STEM (ABF-STEM) and energy-dispersive X-ray compositional mapping (STEM-EDX). The compound crystallizes in the space group Pbam with unit cell parameters a = 37.468(9) Å, b = 12.493(3) Å, c = 3.95333(15) Å. The structure consists of corner sharing (Nb,Ta)O6 octahedra forming trigonal, tetragonal and pentagonal tunnels. All tetragonal tunnels are occupied by K(+) ions, while 1/3 of the pentagonal tunnels are preferentially occupied by Nb(5+)/Ta(5+) and 2/3 are occupied by K(+) in a regular pattern. A fractional substitution of K(+) in the pentagonal tunnels by Nb(5+)/Ta(5+) is suggested by the analysis of the HAADF-STEM images. In contrast to similar structures, such as K2Nb8O21, also parts of the trigonal tunnels are fractionally occupied by K(+) cations.

  3. Reactivity, structure and physical properties of SrCo{sub 2.5+{delta}} and La{sub 2}CoO{sub 4.0+{delta}}. In situ X-ray diffraction and neutrons study; Reactivite, structure et proprietes physiques de SrCoO{sub 2.5+{delta}} et La{sub 2}CoO{sub 4.0+{delta}}. Etude par diffraction des rayons X et des neutrons in situ

    Energy Technology Data Exchange (ETDEWEB)

    Le Toquin, R.

    2003-11-15

    This work was devoted to the study of the reactivity and more specifically the influence of the intercalated oxygen amount {delta} on the structure and physical properties of SrCoO{sub 2.5+{delta}} et La{sub 2}CoO{sub 4.0+{delta}} We controlled the oxidation level by means of reversible electrochemical red ox reaction at room temperature. Structural modifications, especially disorder, and electronic properties were studied for the first time on large orientated single crystal. In the SrCoO{sub 2.5+{delta}} system, after structural and electronic characterisation of the end phases, we studied the real structure of the brownmillerite SrCoO{sub 2.5} phase using single crystal. Moreover, we investigated structural and magnetic evolution upon red ox cycle using X-ray diffraction on 6 times twinned single crystal and in situ neutron powder diffraction. Two intermediate SrCoO{sub 2.75} and SrCoO{sub 2.82} phases have been observed. The reaction on single crystal has evidenced the evolution of domain structure. For the La{sub 2}CoO{sub 4+{delta}} system, we synthesised a large variety of single crystal with stoichiometry {delta} 0.0, 0.09, 0.12, 0.16, 0.20 and 0.25. Using single crystal X-ray and neutron diffraction, we showed a disorder-order transition of the apical and interstitial oxygen for the higher {delta} values. (author)

  4. Atomic structure of glassy Mg60Cu30Y10 investigated with EXAFS, x-ray and neutron diffraction, and reverse Monte Carlo simulations

    DEFF Research Database (Denmark)

    Jovari, P.; Saksl, K.; Pryds, Nini

    2007-01-01

    studied by differential scanning calorimetry and in situ x-ray powder diffraction. The alloy shows a glass transition and three crystallization events, the first and dominant one at 456 K corresponding to eutectic crystallization of at least three phases: Mg2Cu and most likely cubic MgY and CuMgY....

  5. Neutron Scattering from 36Ar and 4He Films

    DEFF Research Database (Denmark)

    Carneiro, K.

    1977-01-01

    Scale factors for neutron diffraction and neutron inelastic scattering are presented for common adsorbates, and the feasibility of experiments is discussed together with the information gained by each type of experiment. Diffraction, coherent inelastic scattering, and incoherent scattering are tr...

  6. Neutron diffraction studies of Zr-containing intermetallic hydrides with ordered hydrogen sublattice. V. Orthorhombic Zr{sub 3}CoD{sub 6.9} with filled Re{sub 3}B-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Riabov, A.B.; Yartys, V.A. [Nat. Acad. of Sci., Lviv (Ukraine). Metal Hydrides Dept.; Fjellvaag, H.; Hauback, B.C.; Soerby, M.H. [Institute for Energy Technology, P.O. Box 40, Kjeller (Norway)

    2000-01-10

    For pt.IV see ibid., vol.290, p.157-163, 1999. Zr{sub 3}CoD{sub 6.9} deuteride (space group Cmcm; a=3.5959(1); b=10.9734(3); c=9.5961(3) A) has been studied by high resolution powder X-ray and neutron diffraction. Rietveld profile refinements showed that it is isostructural to Zr{sub 3}FeD{sub 6.7} with a filled Re{sub 3}B-type structure. D atoms occupy four types of interstitial positions. Deuterium sublattice is completely ordered and can be described as a spatial stacking of deformed cubes ZrD{sub 8} and deformed cubes with an extra ninth vertex ZrD{sub 9}. The shortest interatomic distances are: Zr-D=2.044(5); Co-D=1.727(8); D-D=2.025(6) A. (orig.)

  7. A neutron diffraction study of the superionic transition in (Ca sub 1 sub - sub x Y sub x)F sub 2 sub + sub x with x=0.06

    CERN Document Server

    Hofmann, M; Wilson, C C; McIntyre, G J

    1997-01-01

    We have investigated the high-temperature superionic transition of the anion-excess fluorite (Ca sub 1 sub - sub x Y sub x)F sub 2 sub + sub x with x=0.06 using both monochromatic and time-of-flight Laue single-crystal neutron diffraction. The measured Bragg intensities indicate that the cuboctahedral defect clusters found at ambient temperature start to break up into smaller fragments even below the superionic transition temperature, T sub c approx 1200 K. Information concerning the local defect configuration at T = 1173 K has been provided by modelling the measured distribution of the coherent elastic diffuse scattering within the (11-bar0) plane of reciprocal space. The high-temperature defects are of the 'Willis' type and strongly resemble the short-lived Frenkel clusters found in the pure fluorites such as CaF sub 2 above T sub c. (author)

  8. Disordered structure of ZrW1.8V0.2O7.9from a combined X-ray and neutron powder diffraction study at 530 K.

    Science.gov (United States)

    Chen, Xi; Tao, Juzhou; Ma, Hui; Zhao, Xinhua

    2009-10-01

    A novel compound, vanadium aliovalent substituted zirconium tungstate, ZrW1.8V0.2O7.9, was prepared with vanadium substituting tungsten rather than the common zirconium substitution. The structure of the high-temperature phase was refined from combined neutron and X-ray powder diffraction data gathered at 530 K. This phase is the disordered centric modification (space group Pa3) and the average crystal structure is similar to that of beta-ZrW2O8. The V atom occupies only a W2 site and charge compensation is achieved through oxygen vacancy, i.e. the oxygen vacancy occurs at only the O4 site. [Atom names follow the established scheme; Evans et al. (1996). Chem. Mater. 8, 2809-2823.].

  9. Sodium Ion Transport Mechanisms in Antiperovskite Electrolytes Na 3 OBr and Na 4 OI 2 : An in Situ Neutron Diffraction Study

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jinlong; Wang, Yonggang; Li, Shuai; Howard, John W.; Neuefeind, Jörg; Ren, Yang; Wang, Hui; Liang, Chengdu; Yang, Wenge; Zou, Ruqiang; Jin, Changqing; Zhao, Yusheng

    2016-06-20

    Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-state battery. In this work, the sodium ionic transport pathways of the parent compound Na3OBr, as well as the modified layered antiperovskite Na4OI2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions hop within and among oxygen octahedra, and Br- ions are not involved. In the tetragonal Na4OI2 antiperovskite, Na ions, which connect octahedra in the ab plane, have the lowest activation energy barrier. The transport of sodium ions along the c axis is assisted by I- ions.

  10. Field-induced magnetic behavior in quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8: A single-crystal neutron diffraction study

    Science.gov (United States)

    Canévet, E.; Grenier, B.; Klanjšek, M.; Berthier, C.; Horvatić, M.; Simonet, V.; Lejay, P.

    2013-02-01

    BaCo2V2O8 is a nice example of a quasi-one-dimensional quantum spin system that can be described in terms of Tomonaga-Luttinger liquid physics. This is explored in the present study where the magnetic field-temperature phase diagram is thoroughly established up to 12 T using single-crystal neutron diffraction. The transition from the Néel phase to the incommensurate longitudinal spin density wave (LSDW) phase through a first-order transition, as well as the critical exponents associated with the paramagnetic-Néel phase transition, and the magnetic order both in the Néel and in the LSDW phase are determined, thus providing a stringent test for the theory.

  11. The structural phase diagram and oxygen equilibrium partial pressure of YBa2CU3O6+x studied by neutron powder diffraction and gas volumetry

    DEFF Research Database (Denmark)

    Andersen, N.H.; Lebech, B.; Poulsen, H.F.

    1990-01-01

    An experimental technique based on neutron powder diffraction and gas volumetry is presented and used to study the structural phase diagram of YBa2Cu3O6+x under equilibrium conditions in an extended part of (x, T)-phase (0.15 < x < 0.92 and 25-degrees-C < T < 725-degrees-C). Our experimental obse...... in the basal plane of tetragonal YBCO. Our pressure data also indicate that x = 0.92 is a maximum obtainable oxygen concentration for oxygen pressures below 760 Torr......., one of which proves the thermodynamic stability of the orthorhombic OII double cell structure. Striking similarity with predictions of recent model calculations support that another anomaly may be interpreted to result from local one-dimensional fluctuations in the distribution of oxygen atoms...

  12. Study of the multipeak deuterium thermodesorption in YFe{sub 2}D{sub x} (1.3 {<=} x {<=} 4.2) by DSC, TD and in situ neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Leblond, T.; Paul-Boncour, V.; Cuevas, F. [CMTR, ICMPE, CNRS and Univ. Paris XII, 2-8 rue H. Dunant, 94320 Thiais Cedex (France); Isnard, O. [Institut Neel, CNRS - Univ. J. Fourier, B.P.166 Grenoble (France); Fernandez, J.F. [Dto. Fisica de Materiales C-IV, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2009-03-15

    The deuterium thermal desorption of various YFe{sub 2}D{sub x} (x = 1.3, 2.5, 3.5, 4.2) compounds has been studied using differential scanning calorimetry (DSC) and thermal desorption (TD) experiments. These studies show that the number of desorption peaks increases with the deuterium content. In order to understand the origin of this multipeak behaviour, in situ neutron diffraction experiments during thermal desorption have been performed from 290 K to 680 K on YFe{sub 2}D{sub 4.2}. Upon heating, a multipeak TD spectrum is observed. It relates to the existence of several YFe{sub 2}D{sub x} phases with different stabilities. The rate limiting step of this thermal desorption has been therefore attributed to several successive phase transformations rather than to different types of interstitial sites as proposed in previous TD models reported for C15-Laves phase compounds. (author)

  13. High-resolution neutron and X-ray diffraction room-temperature studies of an H-FABP–oleic acid complex: study of the internal water cluster and ligand binding by a transferred multipolar electron-density distribution

    Directory of Open Access Journals (Sweden)

    E. I. Howard

    2016-03-01

    Full Text Available Crystal diffraction data of heart fatty acid binding protein (H-FABP in complex with oleic acid were measured at room temperature with high-resolution X-ray and neutron protein crystallography (0.98 and 1.90 Å resolution, respectively. These data provided very detailed information about the cluster of water molecules and the bound oleic acid in the H-FABP large internal cavity. The jointly refined X-ray/neutron structure of H-FABP was complemented by a transferred multipolar electron-density distribution using the parameters of the ELMAMII library. The resulting electron density allowed a precise determination of the electrostatic potential in the fatty acid (FA binding pocket. Bader's quantum theory of atoms in molecules was then used to study interactions involving the internal water molecules, the FA and the protein. This approach showed H...H contacts of the FA with highly conserved hydrophobic residues known to play a role in the stabilization of long-chain FAs in the binding cavity. The determination of water hydrogen (deuterium positions allowed the analysis of the orientation and electrostatic properties of the water molecules in the very ordered cluster. As a result, a significant alignment of the permanent dipoles of the water molecules with the protein electrostatic field was observed. This can be related to the dielectric properties of hydration layers around proteins, where the shielding of electrostatic interactions depends directly on the rotational degrees of freedom of the water molecules in the interface.

  14. Quantum model of catalysis based on a mobile proton revealed by subatomic x-ray and neutron diffraction studies of h-aldose reductase.

    Science.gov (United States)

    Blakeley, Matthew P; Ruiz, Federico; Cachau, Raul; Hazemann, Isabelle; Meilleur, Flora; Mitschler, Andre; Ginell, Stephan; Afonine, Pavel; Ventura, Oscar N; Cousido-Siah, Alexandra; Haertlein, Michael; Joachimiak, Andrzej; Myles, Dean; Podjarny, Alberto

    2008-02-12

    We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 A, 100K; 0.80 A, 15K; 1.75 A, 293K), neutron Laue data (2.2 A, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes.

  15. Quantum Model of Catalysis Based on a Mobile Proton Revealed by Subatomic X-ray and Neutron Diffraction Studies of h-aldose Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Blakeley, M. P. [European Molecular Biology Laboratory (EMBL), France; Ruiz, Fredrico [Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS, ULP, INSER; Cachau, Raul [SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD; Hazemann, I. [Institut Laue-Langevin (ILL); Meilleur, Flora [Institut Laue-Langevin (ILL); Mitschler, A. [IGBMC; Ginell, Stephan [Argonne National Laboratory (ANL); Afonine, Pavel [Lawrence Berkeley National Laboratory (LBNL); Ventura, Oscar [Computational Chemical Physics Group, DETEMA, Facultad de Quimica, UdelaR, C.C.1; Cousido-Siah, Alexandra [Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS, ULP, INSER; Haertlein, M. [Institut Laue-Langevin (ILL); Joachimiak, Andrzej [Argonne National Laboratory (ANL); Myles, Dean A A [ORNL; Podjarny, A. [IGBMC

    2008-01-01

    We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 Angstroms, 100K; 0.80 Angstroms, 15K; 1.75 Angstroms, 293K), neutron Laue data (2.2 Angstroms, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes.

  16. Quantum model of catalysis based on a mobile proton revealed by subatomic x-ray and neutron diffraction studies of h-aldose reductase

    Science.gov (United States)

    Blakeley, Matthew P.; Ruiz, Federico; Cachau, Raul; Hazemann, Isabelle; Meilleur, Flora; Mitschler, Andre; Ginell, Stephan; Afonine, Pavel; Ventura, Oscar N.; Cousido-Siah, Alexandra; Haertlein, Michael; Joachimiak, Andrzej; Myles, Dean; Podjarny, Alberto

    2008-01-01

    We present results of combined studies of the enzyme human aldose reductase (h-AR, 36 kDa) using single-crystal x-ray data (0.66 Å, 100K; 0.80 Å, 15K; 1.75 Å, 293K), neutron Laue data (2.2 Å, 293K), and quantum mechanical modeling. These complementary techniques unveil the internal organization and mobility of the hydrogen bond network that defines the properties of the catalytic engine, explaining how this promiscuous enzyme overcomes the simultaneous requirements of efficiency and promiscuity offering a general mechanistic view for this class of enzymes. PMID:18250329

  17. SU-F-T-84: Measurement and Monte-Carlo Simulation of Electron Phase Spaces Using a Wide Angle Magnetic Electron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Englbrecht, F; Lindner, F; Bin, J; Wislsperger, A; Reiner, M; Kamp, F; Belka, C; Dedes, G; Schreiber, J; Parodi, K [LMU Munich, Munich, Bavaria (Germany)

    2016-06-15

    Purpose: To measure and simulate well-defined electron spectra using a linear accelerator and a permanent-magnetic wide-angle spectrometer to test the performance of a novel reconstruction algorithm for retrieval of unknown electron-sources, in view of application to diagnostics of laser-driven particle acceleration. Methods: Six electron energies (6, 9, 12, 15, 18 and 21 MeV, 40cm × 40cm field-size) delivered by a Siemens Oncor linear accelerator were recorded using a permanent-magnetic wide-angle electron spectrometer (150mT) with a one dimensional slit (0.2mm × 5cm). Two dimensional maps representing beam-energy and entrance-position along the slit were measured using different scintillating screens, read by an online CMOS detector of high resolution (0.048mm × 0.048mm pixels) and large field of view (5cm × 10cm). Measured energy-slit position maps were compared to forward FLUKA simulations of electron transport through the spectrometer, starting from IAEA phase-spaces of the accelerator. The latter ones were validated against measured depth-dose and lateral profiles in water. Agreement of forward simulation and measurement was quantified in terms of position and shape of the signal distribution on the detector. Results: Measured depth-dose distributions and lateral profiles in the water phantom showed good agreement with forward simulations of IAEA phase-spaces, thus supporting usage of this simulation source in the study. Measured energy-slit position maps and those obtained by forward Monte-Carlo simulations showed satisfactory agreement in shape and position. Conclusion: Well-defined electron beams of known energy and shape will provide an ideal scenario to study the performance of a novel reconstruction algorithm using measured and simulated signal. Future work will increase the stability and convergence of the reconstruction-algorithm for unknown electron sources, towards final application to the electrons which drive the interaction of TW-class laser

  18. Electronic and magnetic properties study of neptunium compounds: NpX{sub 3} and Np{sub 2}T{sub 2}X by Moessbauer effect, neutrons diffraction and Squid magnetometry; Etude des proprietes magnetiques et electroniques de composes de neptunium NpX{sub 3} et Np{sub 2}T{sub 2}X par spectrometrie mossbauer, diffraction de neutrons et magnetometrie squid

    Energy Technology Data Exchange (ETDEWEB)

    Colineau, E.

    1996-07-11

    This work is a contribution to the study of magnetic and electronic properties of the intermetallic compounds: NpX{sub 3} (X= Al, Ga, In, Sn) and Np{sub 2}T{sub 2}X (T= Co, Ni, Ru, Rh, Pd, Pt; X= In, Sn). These properties have been determined by Moessbauer effect, neutron diffraction and Squid magnetometry. The obtained results for NpX{sub 3} show particularly that NpAl{sub 3} orders in a type II (k= 1/2 1/2 1/2) antiferromagnetic structure at T{sub N} {approx_equal} 37 K. The antiferromagnetic phase NpGa{sub 3} orders in a type II too and the magnetic moments carried by neptunium in the ferromagnetic phase are oriented along the (111) axes. The two NpIN{sub 3} magnetic phases observed by Moessbauer effect (4.2 K-10 K and 10 K- 14 K) are identified by neutron diffraction as ferromagnetic and antiferromagnetic (k= 3/8 3/8 3/8). In this last phase the moments are oriented along the (111) axes. The magnetization measures on monocrystals show a weak anisotropy with (111) at all the temperatures and reveal the presence of a third magnetic phase between 8.2 and 10 K. At last, the fundamental state of the compounds NpAl{sub 3}, NpGa{sub 3} and NpIn{sub 3} is attributed to the {Gamma}{sub 5} crystal field and the strong reduction of the ordered moment in NpSn{sub 3} to a Kondo effect. Concerning the Np{sub 2}T{sub 2}X compounds, the Moessbauer effect measures have revealed that eight of these compounds order and three do not order. (O.M.). 239 refs.

  19. Neutron diffraction and NQR study of the intermediate turn angle phase formed during AFI to AFII recording in YBa2Cu3-xAlxO6+#delta#

    DEFF Research Database (Denmark)

    Brecht, E.; Schmahl, W.W.; Fuess, H.

    1997-01-01

    The reordering mechanism from the antiferromagnetic phase AFI to the antiferromagnetic phase AFII in an oxygen-deficient YBa2Cu2.94Al0.06O6+delta single crystal with an oxygen content delta=0.18 in the Cu(1) layer has been studied by neutron diffraction and nuclear quadrupole resonance (NQR...

  20. Neutron detectors for the ESS diffractometers

    Czech Academy of Sciences Publication Activity Database

    Stefanescu, I.; Christensen, M.; Fenske, J.; Hall-Wilton, R.; Henry, P. F.; Kirstein, O.; Muller, M.; Nowak, G.; Pooley, D.; Raspino, D.; Rhodes, N.; Šaroun, Jan; Schefer, J.; Schooneveld, E.; Sykora, J.; Schweika, W.

    2017-01-01

    Roč. 12, JAN (2017), č. článku P01019. ISSN 1748-0221 R&D Projects: GA MŠk LM2015048 Institutional support: RVO:61389005 Keywords : instrumentation for neutron sources * neutron diffraction detectors * neutron detectors (cold, thermal, fast neutrons) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.220, year: 2016

  1. Structure of Poly(dialkylsiloxane) Melts: Comparisons of Wide-Angle X-ray Scattering, Molecular Dynamics Simualations, and Integral Equation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Habenschuss, Anton {Tony} [ORNL; Tsige, Mesfin [Southern Illinois University; Curro, John G. [Sandia National Laboratories (SNL); Grest, Gary S. [Sandia National Laboratories (SNL); Nath, Shyamal [CULGI Inc, Albuquerque, NM

    2007-01-01

    Wide-angle X-ray scattering, molecular dynamics (MD) simulations, and integral equation theory are used to study the structure of poly(diethylsiloxane) (PDES), poly(ethylmethylsiloxane) (PEMS), and poly(dimethylsiloxane) (PDMS) melts. The structure functions of PDES, PEMS, and PDMS are similar, but systematic trends in the intermolecular packing are observed. The local intramolecular structure is extracted from the experimental structure functions. The bond distances and bond angles obtained, including the large Si-O-Si angle, are in good agreement with the explicit atom (EA) and united atom (UA) potentials used in the simulations and theory and from other sources. Very good agreement is found between the MD simulations using the EA potentials and the experimental scattering results. Good agreement is also found between the polymer reference interaction site model (PRISM theory) and the UA MD simulations. The intermolecular structure is examined experimentally using an appropriately weighted radial distribution function and with theory and simulation using intermolecular site/site pair correlation functions. Experiment, simulation, and theory show systematic increases in the chain/chain packing distances in the siloxanes as the number of sites in the pendant side chains is increased.

  2. Structure of Poly(dialkylsiloxane) Melts: Comparisons of Wide Angle X-ray Scattering, Molecular Dynamics Simulations, and Integral Equation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Habenschuss, Anton {Tony} [ORNL; Tsige, Mesfin [Southern Illinois University; Curro, John G. [Sandia National Laboratories (SNL); Grest, Gary S. [Sandia National Laboratories (SNL); Nath, Shyamal [CULGI Inc, Albuquerque, NM

    2007-01-01

    Wide-angle X-ray scattering, molecular dynamics (MD) simulations, and integral equation theory are used to study the structure of poly(diethylsiloxane) (PDES), poly(ethylmethylsiloxane) (PEMS), and poly(dimethylsiloxane) (PDMS) melts. The structure functions of PDES, PEMS, and PDMS are similar, but systematic trends in the intermolecular packing are observed. The local intramolecular structure is extracted from the experimental structure functions. The bond distances and bond angles obtained, including the large Si-O-Si angle, are in good agreement with the explicit atom (EA) and united atom (UA) potentials used in the simulations and theory and from other sources. Very good agreement is found between the MD simulations using the EA potentials and the experimental scattering results. Good agreement is also found between the polymer reference interaction site model (PRISM theory) and the UA MD simulations. The intermolecular structure is examined experimentally using an appropriately weighted radial distribution function and with theory and simulation using intermolecular site/site pair correlation functions. Experiment, simulation, and theory show systematic increases in the chain/chain packing distances in the siloxanes as the number of sites in the pendant side chains is increased.

  3. Three-Dimensional Morphology Control Yielding Enhanced Hole Mobility in Air-Processed Organic Photovoltaics: Demonstration with Grazing-Incidence Wide-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Levi M. J. [School of Polymers; Bhattacharya, Mithun [School of Polymers; Wu, Qi [School of Polymers; Youm, Sang Gil [Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, United States; Nesterov, Evgueni E. [Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, Louisiana 70803, United States; Morgan, Sarah E. [School of Polymers

    2017-06-28

    Polymer organic photovoltaic (OPV) device performance is defined by the three-dimensional morphology of the phase-separated domains in the active layer. Here, we determine the evolution of morphology through different stages of tailored solvent vapor and thermal annealing techniques in air-processed poly(3-hexylthiophene-2,5-diyl)/phenyl-C61-butyric acid methyl ester-based OPV blends. A comparative evaluation of the effect of solvent type used for vapor annealing was performed using grazing-incidence wide-angle X-ray scattering, atomic force microscopy, and UV–vis spectroscopy to probe the active-layer morphology. A nonhalogenated orthogonal solvent was found to impart controlled morphological features within the exciton diffusion length scales, enhanced absorbance, greater crystallinity, increased paracrystalline disorder, and improved charge-carrier mobility. Low-boiling, fast-diffusing isopropanol allowed the greatest control over the nanoscale structure of the solvents evaluated and yielded a cocontinuous morphology with narrowed domains and enhanced paths for the charge carrier to reach the anode.

  4. In-field X-ray and neutron diffraction studies of re-entrant charge-ordering and field induced metastability in La0.175Pr0.45Ca0.375MnO3-δ

    Science.gov (United States)

    Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.

    2017-11-01

    Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been

  5. Neutron diffraction study of the pressure-induced magnetic ordering in the spin gap system TlCuCl sub 3

    CERN Document Server

    Oosawa, A; Kakurai, K; Fujisawa, M; Tanaka, H

    2003-01-01

    Neutron elastic scattering measurements have been performed under a hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl sub 3. Below the ordering temperature T sub N = 16.9 K for the hydrostatic pressure P = 1.48 GPa, magnetic Bragg reflections were observed at reciprocal lattice points Q = (h, 0, l) with integer h and odd l, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap close due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P = 1.48 GPa was determined. (author)

  6. New HERA Results on Diffraction

    Science.gov (United States)

    Levonian, S.

    2017-01-01

    Four new measurements are presented in the area of diffractive and exclusive production at HERA. Preliminary results are available for isolated photons in diffractive photoproduction from ZEUS and open charm cross section in diffractive deep-inelastic scattering (DIS) regime from H1. ZEUS Collaboration has also measured the cross-section ratio σ ψ (2 S) /σ J / ψ (1 S) in exclusive DIS using full HERA data statistics. Finally, H1 Collaboration for the first time studied exclusive ρ0 meson photoproduction associated with a leading neutron at HERA.

  7. Structure of magnesium selenate enneahydrate, MgSeO4·9H2O, from 5 to 250 K using neutron time-of-flight Laue diffraction.

    Science.gov (United States)

    Fortes, A Dominic; Alfè, Dario; Hernández, Eduardo R; Gutmann, Matthias J

    2015-06-01

    The complete structure of MgSeO4·9H2O has been refined from neutron single-crystal diffraction data obtained at 5, 100, 175 and 250 K. It is monoclinic, space group P2₁/c, Z = 4, with unit-cell parameters a = 7.222 (2), b = 10.484 (3), c = 17.327 (4) Å, β = 109.57 (2)°, and V = 1236.1 (6) Å(3) [ρ(calc) = 1770 (1) kg m(-3)] at 5 K. The structure consists of isolated [Mg(H2O)6](2+) octahedra, [SeO4](2-) tetrahedra and three interstitial lattice water molecules, all on sites of symmetry 1. The positions of the H atoms agree well with those inferred on the basis of geometrical considerations in the prior X-ray powder diffraction structure determination: no evidence of orientational disorder of the water molecules is apparent in the temperature range studied. Six of the nine water molecules are hydrogen bonded to one another to form a unique centrosymmetric dodecamer, (H2O)12. Raman spectra have been acquired in the range 170-4000 cm(-1) at 259 and 78 K; ab initio calculations, using density functional theory, have been carried out in order to aid in the analysis of the Raman spectrum as well as providing additional insights into the geometry and thermodynamics of the hydrogen bonds. Complementary information concerning the thermal expansion, crystal morphology and the solubility are also presented.

  8. Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan

    2013-01-01

    In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order to ...

  9. Local and long range order in promoted iron-based Fischer–Tropsch catalysts: a combined in situ X-ray absorption spectroscopy/wide angle X-ray scattering study

    NARCIS (Netherlands)

    de Smit, E.|info:eu-repo/dai/nl/304824232; Beale, A.M.|info:eu-repo/dai/nl/325802068; Nikitenko, S.; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2009-01-01

    The structural properties of three Fe-based Fischer–Tropsch synthesis (FTS) catalysts containing different amounts of Cu, K and SiO2 additives were investigated during pretreatment and FTS in a fixed bed-like reactor using combined in situ X-ray absorption fine structure (XAFS)/wide angle X-ray

  10. In-situ time-of-flight neutron diffraction study of the structure evolution of electrode materials in a commercial battery with LiNi0.8Co0.15Al0.05O2 cathode

    Science.gov (United States)

    Bobrikov, I. A.; Samoylova, N. Yu.; Sumnikov, S. V.; Ivanshina, O. Yu.; Vasin, R. N.; Beskrovnyi, A. I.; Balagurov, A. M.

    2017-12-01

    A commercial lithium-ion battery with LiNi0.8Co0.15Al0.05O2 (NCA) cathode has been studied in situ using high-intensity and high-resolution neutron diffraction. Structure and phase composition of the battery electrodes have been probed during charge-discharge in different cycling modes. The dependence of the anode composition on the charge rate has been determined quantitatively. Different kinetics of Li (de)intercalation in the graphite anode during charge/discharge process have been observed. Phase separation of the cathode material has not been detected in whole voltage range. Non-linear dependencies of the unit cell parameters, atomic and layer spacing on the lithium content in the cathode have been observed. Measured dependencies of interatomic spacing and interlayer spacing, and unit cell parameters of the cathode structure on the lithium content could be qualitatively explained by several factors, such as variations of oxidation state of cation in oxygen octahedra, Coulomb repulsion of oxygen layers, changes of average effective charge of oxygen layers and van der Waals interactions between MeO2-layers at high level of the NCA delithiation.

  11. Neutron Powder Diffraction Measurements of the Spinel MgGa2O4:Cr3+ - A Comparative Study between the High Flux Diffractometer D2B at the ILL and the High Resolution Powder Diffractometer Aurora at IPEN

    Science.gov (United States)

    da Silva, M. A. F. M.; Sosman, L. P.; Yokaichiya, F.; Mazzocchi, V. L.; Parente, C. B. R.; Mestnik-Filho, J.; Henry, P. F.; Bordallo, H. N.

    2012-02-01

    Optical materials that emit from the visible to the near-infrared spectral region are of great interest due to their possible application as tunable radiation sources, as signal transmission, display, optoelectronics signal storage, cellulose industry as well as in dosimetry. One important family of such systems are the spinel compounds doped with Cr3+, in which the physical the properties are related to the insertion of punctual defects in the crystalline structure. The purpose of our work is two fold. First, we compare the luminescence of the MgGa2O4-Ga2O3 system with the single phase Ga2O3 and MgGa2O4 and relate structural changes observed in MgGa2O4-Ga2O3 system to the optical properties, and secondly, to compare the neutron powder diffraction results obtained using two diffractometers: D2B located at the ILL (Grenoble, France) and Aurora located at IPEN (São Paulo, Brazil). In the configuration chosen, Aurora shows an improved resolution, which is related to the design of its silicon focusing monochromator.

  12. A multitask neutron beam line for spallation neutron sources

    Science.gov (United States)

    Pietropaolo, A.; Festa, G.; Grazzi, F.; Barzagli, E.; Scherillo, A.; Schooneveld, E. M.; Civita, F.

    2011-08-01

    Here we present a new concept for a time-of-flight neutron scattering instrument allowing for simultaneous application of three different techniques: time-of-flight neutron diffraction, neutron resonance capture analysis and Bragg edge transmission analysis. The instrument can provide average resolution neutron radiography too. The potential of the proposed concept was explored by implementing the necessary equipment on INES (Italian Neutron Experimental Station) at the ISIS spallation neutron source (UK). The results obtained show the effectiveness of the proposed instrument to acquire relevant quantitative information in a non-invasive way on a historical metallurgical sample, namely a Japanese hand guard (tsuba). The aforementioned neutron techniques simultaneously exploited the extended neutron energy range available from 10 meV to 1 keV. This allowed a fully satisfactory characterization of the sample in terms of metal components and their combination in different phases, and forging and assembling methods.

  13. Neutron proton crystallography station (PCS)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Zoe [Los Alamos National Laboratory; Kovalevsky, Andrey [Los Alamos National Laboratory; Johnson, Hannah [Los Alamos National Laboratory; Mustyakimov, Marat [Los Alamos National Laboratory

    2009-01-01

    The PCS (Protein Crystallography Station) at Los Alamos Neutron Science Center (LANSCE) is a unique facility in the USA that is designed and optimized for detecting and collecting neutron diffraction data from macromolecular crystals. PCS utilizes the 20 Hz spallation neutron source at LANSCE to enable time-of-flight measurements using 0.6-7.0 {angstrom} neutrons. This increases the neutron flux on the sample by using a wavelength range that is optimal for studying macromolecular crystal structures. The diagram below show a schematic of PCS and photos of the detector and instrument cave.

  14. Concurrent determination of nanocrystal shape and amorphous phases in complex materials by diffraction scattering computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Birkbak, Mie Elholm; Nielsen, Ida Gjerlevsen; Frølich, Simon; Stock, Stuart R.; Kenesei, Peter; Almer, Jonathan D.; Birkedal, Henrik

    2017-02-01

    Advanced functional materials often contain multiple phases which are (nano)crystalline and/or amorphous. The spatial distribution of these phases and their properties, including nanocrystallite size and shape, often drives material function yet is difficult to obtain with current experimental techniques. This article describes the use of diffraction scattering computed tomography, which maps wide-angle scattering information onto sample space, to address this challenge. The wide-angle scattering signal contains information on both (nano)crystalline and amorphous phases. Rietveld refinement of reconstructed diffraction patterns is employed to determine anisotropic nanocrystal shapes. The background signal from refinements is used to identify contributing amorphous phases through multivariate curve resolution. Thus it is demonstrated that reciprocal space analysis in combination with diffraction scattering computed tomography is a very powerful tool for the complete analysis of complex multiphase materials such as energy devices.

  15. Neutron protein crystallography in JAERI

    Indian Academy of Sciences (India)

    crystals and a database of hydrogen and hydration have also been developed. In the near future, a pulsed neutron diffractometer for biological macromolecules has been proposed at J-PARC in JAERI. Keywords. Crystallization macromolecules; crystallographic databases; crystal struc- ture neutron diffraction and scattering ...

  16. Diffraction Techniques.

    Science.gov (United States)

    1983-08-30

    diffraction of electrons were recognized within a few included. A nubr of reviews exist on various aspects of surface years of the Davisson - Germer ...in our understanding of surface 1. C. J. Davisson and L. It. Germer , Phys. Rev. 30, 705 (1927). crystallography and in the development of experimental

  17. Holographic Gratings for Slow-Neutron Optics

    Science.gov (United States)

    Klepp, Juergen; Pruner, Christian; Tomita, Yasuo; Geltenbort, Peter; Drevenšek-Olenik, Irena; Gyergyek, Saso; Kohlbrecher, Joachim; Fally, Martin

    2012-01-01

    Recent progress in the development of holographic gratings for neutron-optics applications is reviewed. We summarize the properties of gratings recorded in deuterated (poly)methylmethacrylate, holographic polymer-dispersed liquid crystals and nanoparticle-polymer composites revealed by diffraction experiments with slow neutrons. Existing and anticipated neutron-optical instrumentations based on holographic gratings are discussed.

  18. Crystal structure and magnetic properties of Bi0.8A0.2FeO3 (A = La, Ca, Sr, Ba multiferroics using neutron diffraction and Mossbauer spectroscopy

    Directory of Open Access Journals (Sweden)

    Manisha Rangi

    2014-08-01

    Full Text Available Bi0.8A0.2FeO3 (A = La, Ca, Sr, Ba multiferroics were studied using x-ray, neutron diffraction and magnetization techniques. All the samples crystallized in rhombohedral structure with space group R3c. The compounds exhibit antiferromagnetic (AFM ordering at 300 K and no evidence of further structural or magnetic transition was observed on lowering of temperature below it. The magnetic structure of these substituted compounds are found to be collinear G-type AFM structure as against the non collinear incommensurate magnetic structure reported in the case of parent compound. The moments on Fe at 6 K are aligned along the a-axis in the case of Ca-doped sample. With increase in the ionic radii of dopant, the moments are found to be aligned in the ac plane and the angle of tilt away from the a-axis increases. The observed change in the magnetic structure with substitution is attributed to the intrinsic structural distortion as evidenced by the change in the bond angle (Fe-O-Fe and bond distances (Bi-O, Fe-O. It has been found that heterovalent substitution A2+ results in the formation of oxygen vacancies in the parent lattices as the possibility of Fe4+ ruled out by Mössbauer spectra recorded at room temperature. Higher value of remnant magnetization (0.4187 emu/g and coercivity (4.7554kOe is observed in Bi0.8Ba0.2FeO3 sample in comparison to other substituted samples revealing a strong correlation between ionic radii and magnetization.

  19. Neutron diffraction and magnetic study of the low-temperature transitions in SrMo{sub 1−x}Fe{sub x}O{sub 3−δ}

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Coronado, R., E-mail: rmartinez@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049 Madrid (Spain); Aguadero, A. [CIC Energigune, Albert Einstein 48, 01510 Alava (Spain); Alonso, J.A. [Instituto de Ciencia de Materiales de Madrid, C.S.I.C., Cantoblanco, E-28049 Madrid (Spain); Fernández-Díaz, M.T. [Institut Laue Langevin, BP 156X, Grenoble F-38042 (France)

    2012-09-15

    Highlights: ► SrMo{sub 1−x}Fe{sub x}O{sub 3−δ} (x = 0, 0.1, 0.2 and 0.3) were obtained as polycrystalline powders. ► Cooling, two structural transitions are identified, tetragonal and orthorhombic. ► DSC curves exhibit an endothermic peak close to 240 K. ► Magnetic behavior of the samples changes, inducing a ferromagnetic character. ► The tilt angles are appreciably high at low temperatures. -- Abstract: SrMo{sub 1−x}Fe{sub x}O{sub 3−δ} (x = 0, 0.1, 0.2 and 0.3) perovskites have recently been described as performing anode materials in solid-oxide fuel cells. In this work, we describe the structural phase transitions they undergo below room-temperature (RT), studied “in-situ” from neutron powder diffraction data and DSC measurements. At RT all the studied compositions are cubic, space group Pm-3m, with unit-cell parameters that decrease with Fe doping. Upon cooling the samples, two structural phase transitions are identified: one to a tetragonal structure with I4/mcm space group (around T{sub 1} = 240 K), and the second one to an orthorhombic Imma phase below T{sub 2} = 100 K. The magnetic properties have also been evaluated; the Fe substitution drives an evolution from a Pauli-paramagnetic state (x = 0) to a weak ferromagnetic state combined with antiferromagnetic interactions; the susceptibility and the saturation magnetization increases monotonically with increasing the Fe-doping content.

  20. Powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M.

    1995-12-31

    the importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940`s, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments.

  1. Polarized neutron scattering on HYSPEC: the HYbrid SPECtrometer at SNS

    Energy Technology Data Exchange (ETDEWEB)

    Zaliznyak, Igor [Brookhaven National Laboratory (BNL); Savici, Andrei T [ORNL; Garlea, Vasile O [ORNL; Winn, Barry L [ORNL; Schneelock, John [Brookhaven National Laboratory (BNL); Tranquada, John M. [Brookhaven National Laboratory (BNL); Gu, G. D. [Brookhaven National Laboratory (BNL); Wang, Aifeng [Brookhaven National Laboratory (BNL); Petrovic, C [Brookhaven National Laboratory (BNL)

    2017-01-01

    We describe some of the first polarized neutron scattering measurements performed at HYSPEC spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. We discuss details of the instrument setup and the experimental procedures in the mode with the full polarization analysis. Examples of the polarized neutron diffraction and the polarized inelastic neutron data obtained on single crystal samples are presented.

  2. Photon diffraction

    Science.gov (United States)

    Hodge, John

    2009-11-01

    In current light models, a particle-like model of light is inconsistent with diffraction observations. A model of light is proposed wherein photon inferences are combined with the cosmological scalar potential model (SPM). That the photon is a surface with zero surface area in the travel direction is inferred from the Michelson-Morley experiment. That the photons in slits are mathematically treated as a linear antenna array (LAA) is inferred from the comparison of the transmission grating interference pattern and the single slit diffraction pattern. That photons induce a LAA wave into the plenum is inferred from the fractal model. Similarly, the component of the photon (the hod) is treated as a single antenna radiating a potential wave into the plenum. That photons are guided by action on the surface of the hod is inferred from the SPM. The plenum potential waves are a real field (not complex) that forms valleys, consistent with the pilot waves of the Bohm interpretation of quantum mechanics. Therefore, the Afshar experiment result is explained, supports Bohm, and falsifies Copenhagen. The papers may be viewed at http://web.citcom.net/˜scjh/.

  3. Neutronic reactor

    Science.gov (United States)

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  4. Neutronic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, D.F.; Menegus, R.L.; Wende, C.W.

    1983-01-04

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  5. Heat capacity and neutron diffraction studies on the frustrated magnetic Co{sub 2}(OH)(PO{sub 4}){sub 1-x}(AsO{sub 4}){sub x} [0{<=}x{<=}1] solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Pedro, I. de, E-mail: depedrovm@unican.es [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Departamento de Quimica Inorganica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, 48080 Bilbao (Spain); Rojo, J.M. [Departamento de Quimica Inorganica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, 48080 Bilbao (Spain); Rodriguez Fernandez, J.; Sanchez Marcos, J. [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Fernandez-Diaz, M.T. [Institut Laue-Langevin, BP 156X, F-38042 Grenoble Cedex (France); Rojo, T. [Departamento de Quimica Inorganica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, 48080 Bilbao (Spain)

    2012-04-15

    The Co{sub 2}(OH)(PO{sub 4}){sub 1-x}(AsO{sub 4}){sub x} [0{<=}x{<=}1] solid solution exhibits a complex magnetic behaviour due to the bond-frustration in its magnetic structure. Heat capacity measurements of the (x=0.1-0.5) phases show a three-dimensional magnetic ordering ({lambda} anomaly) that shifts to lower temperatures and becomes broader as the AsO{sub 4}{sup 3-} content increases. For x=0.75, no significant feature was observed whereas for higher arsenate ion content, x=0.9 and 1, a small maximum was detected. The magnetic structures of solid solution are consistent with the existence of predominant antiferromagnetic superexchange interactions through the |OH| and |XO{sub 4}| (X=P and As) groups between the Co{sup +2} ions. The substitution of PO{sub 4}{sup 3-} by AsO{sub 4}{sup 3-} anions by more than 90% substantially modifies the magnetic exchange pathways in the solid solution, leading to an incommensurate antiferromagnetic structure in Co{sub 2}(OH)(PO{sub 4}){sub 1-x}(AsO{sub 4}){sub x} [x=0.9 and 1] phases. - Graphical abstract: Magnetic structures of Co{sub 2}(OH)(PO{sub 4}){sub 1-x}(AsO{sub 4}){sub x} [0{<=}x{<=}1]. The ordering of the magnetic moments of Co{sup 2+} is in c direction for the two crystallographic positions (dimers and chains) in all compounds. The unit cell is surrounded by a red line. Highlights: Black-Right-Pointing-Pointer Synthesis of a new adamite-type compounds, Co{sub 2}(OH)(PO{sub 4}){sub 1-x}(AsO{sub 4}){sub x} (0.1, 0.25, 0.5, 0.75, 0.9) phases. Black-Right-Pointing-Pointer Co{sub 2}(OH)(PO{sub 4}){sub 1-x}(AsO{sub 4}){sub x} (0-1) solid solution; magnetic frustrated system. Black-Right-Pointing-Pointer High resolution neutron powder diffraction to determine the crystal structures. Black-Right-Pointing-Pointer Incommensurate magnetic structures at low temperature. Black-Right-Pointing-Pointer Magnetostructural correlations in cobalt-based Co{sub 2}(OH)XO{sub 4} (X=P and As) insulation compounds.

  6. Preliminary results from combined wide-angle and reflection seismic data in the Natal Valley, South Mozambique margin across the Almirante Leite volcanic ridge : MZ2 profile (MOZ3/5 cruise).

    Science.gov (United States)

    Verrier, Fanny; Leprêtre, Angélique; Evain, Mikael; Schnurle, Philippe; Watremez, Louise; Aslanian, Daniel; De Clarens, Philippe; Afonso Dias, Nuno; Afilhado, Alexandra; Leroy, Sylvie; d'Acremont, Elia; Castilla, Raymi; Moulin, Maryline

    2017-04-01

    The study of South Mozambique passive margin is essential to understand its rifting evolution and better constrain kinematic reconstructions model of the Indian Ocean. MOZ3-5 oceanographic cruises (2016) is part of the PAMELA project (PAssive Margin Exploration LAboratory), conducted by TOTAL, IFREMER, in collaboration with Université de Bretagne Occidentale, Université Rennes 1, Université Pierre and Marie Curie, CNRS et IFPEN. These campaigns allowed the acquisition of wide-angle and multichannel seismic data as well as high resolution bathymetric data, dredges, magnetic and gravimetric data. This work focuses on the deep structure of the northern segment of the Natal Valley which was investigated along a 300 km long E-W seismic transect cross-cutting the Almirante Leite volcanic ridge (MZ2 profile). The wide-angle data set is composed of 23 OBS (Ocean Bottom Seismometers) and 19 LSS (Land Seismic Station) spaced by about 12 km and 4-5 km respectively. Forward modelling of the wide-angle data led to a preliminary 2D P-waves velocity model revealing the sedimentary architecture, crustal and lithospherical structures and shallow high velocity material at the volcanic ridge. The aim of this work is to present the first results on the crustal structure from P-waves velocity modeling along the profile MZ2, in order to discuss the sedimentary sequences, the geometry and nature of the crust (oceanic or continental) as well as structures associated with volcanism, and to better understand the margin's evolution. The post-doc of Fanny Verrier is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. Moulin, M., Aslanian, D., 2016. PAMELA-MOZ03 cruise, RV Pourquoi pas ?, http://dx.doi.org/10.17600/16001600 Moulin, M., Evain, M., 2016. PAMELA-MOZ05 cruise, RV Pourquoi pas ?, http://dx.doi.org/10.17600/16009500

  7. Watching Nanoparticles Form: An In Situ (Small-/Wide-Angle X-ray Scattering/Total Scattering) Study of the Growth of Yttria-Stabilised Zirconia in Supercritical Fluids

    DEFF Research Database (Denmark)

    Tyrsted, Christoffer; Pauw, Brian; Jensen, Kirsten Marie Ørnsbjerg

    2012-01-01

    Understanding nanoparticle formation reactions requires multitechnique in situ characterisation, since no single characterisation technique provides adequate information. Here, the first combined small-angle X-ray scattering (SAXS)/wide-angle X-ray scattering (WAXS)/total-scattering study of nano...... of nanoparticle formation is presented. We report on the formation and growth of yttria-stabilised zirconia (YSZ) under the extreme conditions of supercritical methanol for particles with Y2O3 equivalent molar fractions of 0, 4, 8, 12 and 25%....

  8. Neutron protein crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    X-ray diffraction of single crystal has enriched the knowledge of various biological molecules such as proteins, DNA, t-RNA, viruses, etc. It is difficult to make structural analysis of hydrogen atoms in a protein using X-ray crystallography, whereas neutron diffraction seems usable to directly determine the location of those hydrogen atoms. Here, neutron diffraction method was applied to structural analysis of hen egg-white lysozyme. Since the crystal size of a protein to analyze is generally small (5 mm{sup 3} at most), the neutron beam at the sample position in monochromator system was set to less than 5 x 5 mm{sup 2} and beam divergence to 0.4 degree or less. Neutron imaging plate with {sup 6}Li or Gd mixed with photostimulated luminescence material was used and about 2500 Bragg reflections were recorded in one crystal setting. A total of 38278 reflections for 2.0 A resolution were collected in less than 10 days. Thus, stereo views of Trp-111 omit map around the indol ring of Trp-111 was presented and the three-dimensional arrangement of 696H and 264D atoms in the lysozyme molecules was determined using the omit map. (M.N.)

  9. Crystal structure of 0.96(Na0.5Bi0.5TiO3)-0.04(BaTiO3) from combined refinement of x-ray and neutron diffraction patterns

    Energy Technology Data Exchange (ETDEWEB)

    Usher, T -M; Forrester, J S; dela Cruz, C R; Jones, J L [ORNL; (Florida)

    2012-10-12

    High-resolution x-ray and neutron diffraction of (0.96)Na0.5Bi0.5TiO3–(0.04)BaTiO3 (NBT-4BT) reveal subtle structural distortions that evidence lower symmetry than allowed in the R3c space group. The combined refinement that best models the diffraction patterns is a two phase mixture of a monoclinic Cc phase and a minor fraction of a metrically cubic Pm 3¯ m phase (13 wt. %). The cubic phase is utilized to account for nanometer-scale regions whose local deviations from the long-range symmetry are not observed, such as polar nano-regions or tetragonal platelets. This suggests that the low symmetry found in the NBT-rich phases extends from 0 at. % to at least 4 at. % BT.

  10. A history of neutrons in biology: the development of neutron protein crystallography at BNL and LANL.

    Science.gov (United States)

    Schoenborn, Benno P

    2010-11-01

    The first neutron diffraction data were collected from crystals of myoglobin almost 42 years ago using a step-scan diffractometer with a single detector. Since then, major advances have been made in neutron sources, instrumentation and data collection and analysis, and in biochemistry. Fundamental discoveries about enzyme mechanisms, biological complex structures, protein hydration and H-atom positions have been and continue to be made using neutron diffraction. The promise of neutrons has not changed since the first crystal diffraction data were collected. Today, with the developments of beamlines at spallation neutron sources and the use of the Laue method for data collection, the field of neutrons in structural biology has renewed vitality.

  11. Automation of angular movement of the arm neutron diffractometer; Automatizacion del movimiento angular del brazo del difractometro de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar H, F.; Herrera A, E.; Quintana C, G. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Torres R, C. E.; Reyes V, M., E-mail: fortunato.aguilar@inin.gob.mx [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, Metepec, Estado de Mexico (Mexico)

    2015-09-15

    A technique to determine the crystal structure of some materials is the neutron diffraction. This technique consists on placing the material in question in a monoenergetic neutron beam obtained by neutron diffraction in a monochromator crystal. The neutron energy depends of the diffraction angle. The Instituto Nacional de Investigaciones Nucleares has a neutron diffractometer and monochromator crystals of pyrolytic graphite. This crystal can be selecting the neutron energy depending on the angle of diffraction in the glass. The radiation source for the neutron diffractometer is the TRIGA Mark III reactor of the Nuclear Center Dr. Nabor Carrillo Flores. During their operation are also obtained besides neutrons, β and γ radiation. The interest is to have thermal neutrons, so fast neutrons and γ rays are removed using appropriate shielding. The average neutron fluxes of the radial port RE2 of neutron diffractometer at power 1 MW are: heat flow 2,466 x 10{sup 8} n cm{sup -2} sec{sup -1} and fast flow 1,239 x 10{sup 8} n cm{sup -2} sec{sup -1}. The neutron detector is housed in a shield mounted on a mechanical linkage with which the diffraction angle is selected, and therefore the energy of the neutrons. The movement of this joint was performed by the equipment operator manually, so that accuracy to select the diffraction angle was not good and the process rather slow. Therefore a mechanical system was designed, automated by means of a motor as an actuator, a system of force transmission and an electronic control in order that the operator will schedule the diffraction angles and allow the count in the neutrons detection system in a simple manner. (Author)

  12. Upgrades to the Polarized Neutron Reflectometer Asterix at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Pynn, Roger

    2015-03-16

    We have upgraded the polarized neutron reflectometer, Asterix, at the Lujan Neutron Scattering Center at Los Alamos for the benefit of the research communities that study magnetic and complex-fluid films, both of which play important roles in support of the DOE’s energy mission. The upgrades to the instrument include: • A secondary spectrometer that was integrated with a Huber sample goniometer purchased with other funds just prior to the start of our project. The secondary spectrometer provides a flexible length for the scattered flight path, includes a mechanism to select among 3 alternative polarization analyzers as well as a support for new neutron detectors. Also included is an optic rail for reproducible positioning of components for Spin Echo Scattering Angle Measurement (SESAME). The entire secondary spectrometer is now non-magnetic, as required for neutron Larmor labeling. • A broad-band neutron polarizer for the incident neutron beam based on the V geometry. • A wide-angle neutron polarization analyzer • A 2d position-sensitive neutron detector • Electromagnetic coils (Wollaston prisms) for SESAME plus the associated power supplies, cooling, safety systems and integration into the data acquisition system. The upgrades allowed a nearly effortless transition between configurations required to serve the polarized neutron reflectometry community, users of the 11 T cryomagnet and users of SESAME.

  13. Neutron structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Schoenborn, B.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). We investigated design concepts of neutron scattering capabilities for structural biology at spallation sources. This included the analysis of design parameters for protein crystallography as well as membrane diffraction instruments. These instruments are designed to be general user facilities and will be used by scientists from industry, universities, and other national laboratories.

  14. Toward wide-angle microvision sensors.

    Science.gov (United States)

    Koppal, Sanjeev J; Gkioulekas, Ioannis; Young, Travis; Park, Hyunsung; Crozier, Kenneth B; Barrows, Geoffrey L; Zickler, Todd

    2013-12-01

    Achieving computer vision on microscale devices is a challenge. On these platforms, the power and mass constraints are severe enough for even the most common computations (matrix manipulations, convolution, etc.) to be difficult. This paper proposes and analyzes a class of miniature vision sensors that can help overcome these constraints. These sensors reduce power requirements through template-based optical convolution, and they enable a wide field-of-view within a small form through a refractive optical design. We describe the tradeoffs between the field-of-view, volume, and mass of these sensors and we provide analytic tools to navigate the design space. We demonstrate milliscale prototypes for computer vision tasks such as locating edges, tracking targets, and detecting faces. Finally, we utilize photolithographic fabrication tools to further miniaturize the optical designs and demonstrate fiducial detection onboard a small autonomous air vehicle.

  15. A Modified Wide Angle Parabolic Wave Equation

    Science.gov (United States)

    St. Mary, Donald F.; Lee, Ding; Botseas, George

    1987-08-01

    We demonstrate the implicit finite difference discretization of a higher order parabolic-like partial differential equation approximating the reduced wave equation in the far field and show that the discretization is unconditionally stable. We discuss a method of associating an angle of dispersion with parabolic approximations, present an example which can be used to compare methods on the basis of dispersion angle, and make comparisons among well-known methods and the new method.

  16. In situ X-ray and neutron diffraction of the Ruddlesden-Popper compounds (RE2-xSrx)0.98(Fe0.8Co0.2)1-yMgyO4-δ (RE=La, Pr): Structure and CO2 stability

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Hauback, B.C.; Hendriksen, Peter Vang

    2013-01-01

    The crystal structure of the Ruddlesden-Popper compounds (La 1.0Sr1.0)0.98Fe0.8Co 0.2O4-δ and (La1.2Sr0.8) 0.98(Fe0.8Co0.2)0.8Mg 0.2O4-δ was investigated at 1000 °C in N 2 (aO2=1×10-4) by in-situ powder neutron diffraction. In-situ powder X-ray diffraction (PXD) was also employed to investigate t...

  17. A high-resolution neutron powder diffraction investigation of galena (PbS) between 10 K and 350 K: no evidence for anomalies in the lattice parameters or atomic displacement parameters in galena or altaite (PbTe) at temperatures corresponding to the saturation of cation disorder.

    Science.gov (United States)

    Knight, K S

    2014-09-24

    The temperature dependences of the unit cell parameter and the atomic displacement parameters (adp) for galena (PbS) have been measured using high resolution neutron powder diffraction in the temperature interval 10-350 K. No evidence has been found for the anomalous behaviour recently reported in a total scattering study of galena, in which the temperature variation of both the unit cell and the adp for lead are reported to undergo a dramatic reduction at a temperature of ~250 K. The linear thermal expansion coefficient calculated from the powder diffraction study is found to be in excellent agreement with literature values over the entire temperature interval studied, and approximately 25% greater at room temperature than that determined by analysis of the pair distribution function (pdf) derived from the total scattering data. This discrepancy is shown to be attributable to a linear, temperature-dependent offset from the published temperatures in the total scattering study, and has arisen from the sample temperature being significantly lower than the experimental set point temperature. Applying this correction to the adps of the lead cation removes the anomalous temperature dependence and shows the pdf results are in agreement with the neutron powder diffraction results. Application of the identical temperature offsets to the results of the pdf analysis of data collected on altaite (PbTe) eliminates the anomalous behaviour in the unit cell and the adp for lead, bringing them in line with literature values. Contrary to the conclusions of the pdf analysis, adps for the lead cation in both galena and altaite can be described in terms of Debye-like behaviour and are consistent with the partial phonon density of states.

  18. The technique of RDF of nanovolumes using electron diffraction

    Science.gov (United States)

    Cockayne, D. J. H.; Chen, Y.; Li, G.; Borisenko, K. B.

    2010-07-01

    Amorphous materials are not, as the Greek etymology suggests, "without form". Indeed, as with crystalline materials, their structure determines their properties. The overwhelming number of structural studies of amorphous materials use the diffracted intensity to give the radial distribution function, which can be used as data against which to test, or refine, structural models. Neutron and X-ray diffraction examples abound. However, neutrons and X-rays are of no use when small volumes are involved. This paper reports the current state of RDF analysis of nanovolumes using electron diffraction.

  19. The technique of RDF of nanovolumes using electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cockayne, D J H; Chen, Y; Li, G; Borisenko, K B, E-mail: david.cockayne@materials.ox.ac.u [Department of Materials, University of Oxford, Parks Road, Oxford OX13PH (United Kingdom)

    2010-07-01

    Amorphous materials are not, as the Greek etymology suggests, {sup w}ithout form{sup .} Indeed, as with crystalline materials, their structure determines their properties. The overwhelming number of structural studies of amorphous materials use the diffracted intensity to give the radial distribution function, which can be used as data against which to test, or refine, structural models. Neutron and X-ray diffraction examples abound. However, neutrons and X-rays are of no use when small volumes are involved. This paper reports the current state of RDF analysis of nanovolumes using electron diffraction.

  20. Diffraction analysis of the microstructure of materials

    CERN Document Server

    Scardi, Paolo

    2004-01-01

    Diffraction Analysis of the Microstructure of Materials provides an overview of diffraction methods applied to the analysis of the microstructure of materials. Since crystallite size and the presence of lattice defects have a decisive influence on the properties of many engineering materials, information about this microstructure is of vital importance in developing and assessing materials for practical applications. The most powerful and usually non-destructive evaluation techniques available are X-ray and neutron diffraction. The book details, among other things, diffraction-line broadening methods for determining crystallite size and atomic-scale strain due, e.g. to dislocations, and methods for the analysis of residual (macroscale) stress. The book assumes only a basic knowledge of solid-state physics and supplies readers sufficient information to apply the methods themselves.