WorldWideScience

Sample records for wide spectral range

  1. A Wide Spectral Range Reflectance and Luminescence Imaging System

    Directory of Open Access Journals (Sweden)

    Tapani Hirvonen

    2013-10-01

    Full Text Available In this study, we introduce a wide spectral range (200–2500 nm imaging system with a 250 μm minimum spatial resolution, which can be freely modified for a wide range of resolutions and measurement geometries. The system has been tested for reflectance and luminescence measurements, but can also be customized for transmittance measurements. This study includes the performance results of the developed system, as well as examples of spectral images. Discussion of the system relates it to existing systems and methods. The wide range spectral imaging system that has been developed is however highly customizable and has great potential in many practical applications.

  2. Universal dispersion model for characterization of optical thin films over wide spectral range: Application to magnesium fluoride

    Science.gov (United States)

    Franta, Daniel; Nečas, David; Giglia, Angelo; Franta, Pavel; Ohlídal, Ivan

    2017-11-01

    Optical characterization of magnesium fluoride thin films is performed in a wide spectral range from far infrared to extreme ultraviolet (0.01-45 eV) utilizing the universal dispersion model. Two film defects, i.e. random roughness of the upper boundaries and defect transition layer at lower boundary are taken into account. An extension of universal dispersion model consisting in expressing the excitonic contributions as linear combinations of Gaussian and truncated Lorentzian terms is introduced. The spectral dependencies of the optical constants are presented in a graphical form and by the complete set of dispersion parameters that allows generating tabulated optical constants with required range and step using a simple utility in the newAD2 software package.

  3. New methods of highly efficient controlled generation of radiation by liquid crystal nanostructures in a wide spectral range

    International Nuclear Information System (INIS)

    Bagayev, S N; Klementyev, V M; Nyushkov, B N; Pivtsov, V S; Trashkeev, S I

    2012-01-01

    We report the recent results of research focused on a new kind of soft matter-the liquid-crystal nanocomposites with controllable mechanical and nonlinear optical properties. These are promising media for implementation of ultra-compact photonic devices and efficient sources of coherent radiation in a wide spectral range. We overview the technology of preparation of nematic-liquid-crystal media saturated with disclination defects. The defects were formed in different ways: by embedding nanoparticles and molecular objects, by exposure to alpha-particle flux. The defect locations were controlled by applying an electric field. We also present and discuss the recently discovered features of nematic-liquid-crystal media: a thermal orientation effect leading to the fifth-order optical nonlinearity, enormous second-order susceptibility revealed by measurements, and structural changes upon exposure to laser radiation. We report on efficient generation of harmonics, sum and difference optical frequencies in nematic-liquid-crystal media. In addition, transformation of laser radiation spectra to spectral supercontinua, and filamentation of laser beams were also observed in nematic-liquid-crystal media. We conclude that most nonlinear optical effects result from changes of the orientational order in the examined nematic liquid crystals. These changes lead to the symmetry breaking and disclination appearances.

  4. Wide-spectral/dynamic-range skin-compatible phototransistors enabled by floated heterojunction structures with surface functionalized SWCNTs and amorphous oxide semiconductors.

    Science.gov (United States)

    Hwang, Insik; Kim, Jaehyun; Lee, Minkyung; Lee, Min-Wook; Kim, Hee-Joong; Kwon, Hyuck-In; Hwang, Do Kyung; Kim, Myunggil; Yoon, Haeyoung; Kim, Yong-Hoon; Park, Sung Kyu

    2017-11-09

    Purified semiconducting single-walled carbon nanotubes (sc-SWCNTs) have been researched for optoelectronic applications due to their high absorption coefficient from the visible to even the near-infrared (NIR) region. Nevertheless, the insufficient electrical characteristics and incompatibility with conventional CMOS processing have limited their wide utilization in this emerging field. Here, we demonstrate highly detective and wide spectral/dynamic range phototransistors incorporating floated heterojunction active layers which are composed of low-temperature sol-gel processed n-type amorphous indium gallium zinc oxide (a-IGZO) stacked with a purified p-type sc-SWCNT layer. To achieve a high and broad spectral/dynamic range photo-response of the heterogeneous transistors, photochemically functionalized sc-SWCNT layers were carefully implemented onto the a-IGZO channel area with a floating p-n heterojunction active layer, resulting in the suppression of parasitic charge leakage and good bias driven opto-electrical properties. The highest photosensitivity (R) of 9.6 × 10 2 A W -1 and a photodetectivity (D*) of 4 × 10 14 Jones along with a dynamic range of 100-180 dB were achieved for our phototransistor in the spectral range of 400-780 nm including continuous and minimal frequency independent behaviors. More importantly, to demonstrate the diverse application of the ultra-flexible hybrid photosensor platform as skin compatible electronics, the sc-SWCNT/a-IGZO phototransistors were fabricated on an ultra-thin (∼1 μm) polyimide film along with a severe static and dynamic electro-mechanical test. The skin-like phototransistors showed excellent mechanical stability such as sustainable good electrical performance and high photosensitivity in a wide dynamic range without any visible cracks or damage and little noise interference after being rolled-up on the 150 μm-thick optical fiber as well as more than 1000 times cycling.

  5. Wide spectral band beam analysis

    Science.gov (United States)

    Aharon, Oren

    2015-03-01

    The reality in laser beam profiling is that measurements are performed over a wide spectrum of wavelengths and power ranges. Many applications use multiple laser wavelengths with very different power levels, a fact which dictates a need for a better measuring tool. Rapid progress in the fiber laser area has increased the demand for lasers in the wavelength range of 900 - 1030 nm, while the telecommunication market has increased the demand for wavelength range of 1300nm - 1600 nm, on the other hand the silicone chip manufacturing and mass production requirements tend to lower the laser wavelength towards the 190nm region. In many cases there is a need to combine several lasers together in order to perform a specific task. A typical application is to combine one visible laser for pointing, with a different laser for material processing with a very different wavelength and power level. The visible laser enables accurate pointing before the second laser is operated. The beam profile of the intensity distribution is an important parameter that indicates how a laser beam will behave in an application. Currently a lab, where many different lasers are used, will find itself using various laser beam profilers from several vendors with different specifications and accuracies. It is the propose of this article to present a technological breakthrough in the area of detectors, electronics and optics allowing intricate measurements of lasers with different wavelength and with power levels that vary many orders of magnitude by a single beam profiler.

  6. Wide range neutron flux monitor

    International Nuclear Information System (INIS)

    Endo, Yorimasa; Fukushima, Toshiki.

    1983-01-01

    Purpose: To provide a wide range neutron-flux monitor adapted such that the flux monitoring function and alarming function can automatically by shifted from pulse counting system to cambel method system. Constitution: A wide range neutron-flux monitor comprises (la) pulse counting system and (lb) cambel-method system for inputting detection signals from neutron detectors and separating them into signals for the pulse measuring system and the cambel measuring system, (2) overlap detection and calculation circuit for detecting the existence of the overlap of two output signals from the (la) and (lb) systems, and (3) trip circuit for judging the abnormal state of neutron detectors upon input of the detection signals. (Seki, T.)

  7. Wide range neutron detection system

    International Nuclear Information System (INIS)

    Todt, W.H. Sr.

    1978-01-01

    A neutron detection system for reactor control is described which is operable over a wide range of neutron flux levels. The system includes a fission type ionization chamber neutron detector, means for gamma and alpha signal compensation, and means for operating the neutron detector in the pulse counting mode for low neutron flux levels, and in the direct current mode for high neutron flux levels

  8. Wide-range voltage modulation

    International Nuclear Information System (INIS)

    Rust, K.R.; Wilson, J.M.

    1992-06-01

    The Superconducting Super Collider's Medium Energy Booster Abort (MEBA) kicker modulator will supply a current pulse to the abort magnets which deflect the proton beam from the MEB ring into a designated beam stop. The abort kicker will be used extensively during testing of the Low Energy Booster (LEB) and the MEB rings. When the Collider is in full operation, the MEBA kicker modulator will abort the MEB beam in the event of a malfunction during the filling process. The modulator must generate a 14-μs wide pulse with a rise time of less than 1 μs, including the delay and jitter times. It must also be able to deliver a current pulse to the magnet proportional to the beam energy at any time during ramp-up of the accelerator. Tracking the beam energy, which increases from 12 GeV at injection to 200 GeV at extraction, requires the modulator to operate over a wide range of voltages (4 kV to 80 kV). A vacuum spark gap and a thyratron have been chosen for test and evaluation as candidate switches for the abort modulator. Modulator design, switching time delay, jitter and pre-fire data are presented

  9. An Empirical Template Library of Stellar Spectra for a Wide Range of Spectral Classes, Luminosity Classes, and Metallicities Using SDSS BOSS Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kesseli, Aurora Y.; West, Andrew A.; Veyette, Mark; Harrison, Brandon; Feldman, Dan [Boston University Astronomy Department, 725 Commonwealth Ave., Boston, MA 02215 (United States); Bochanski, John J., E-mail: aurorak@bu.edu [Rider University, 2083 Lawrenceville Rd., Lawrence Township, NJ 08648 (United States)

    2017-06-01

    We present a library of empirical stellar spectra created using spectra from the Sloan Digital Sky Survey’s Baryon Oscillation Spectroscopic Survey. The templates cover spectral types O5 through L3, are binned by metallicity from −2.0 dex through +1.0 dex, and are separated into main-sequence (dwarf) stars and giant stars. With recently developed M dwarf metallicity indicators, we are able to extend the metallicity bins down through the spectral subtype M8, making this the first empirical library with this degree of temperature and metallicity coverage. The wavelength coverage for the templates is from 3650 to 10200 Å at a resolution of better than R  ∼ 2000. Using the templates, we identify trends in color space with metallicity and surface gravity, which will be useful for analyzing large data sets from upcoming missions like the Large Synoptic Survey Telescope. Along with the templates, we are releasing a code for automatically (and/or visually) identifying the spectral type and metallicity of a star.

  10. Wide range neutron monitoring device

    International Nuclear Information System (INIS)

    Okido, Fumiyasu; Arita, Setsuo; Ishii, Kazuhiko; Matsumiya, Shoichi; Furusato, Ken-ichiro; Nishida, Akira.

    1994-01-01

    The present invention has a function of reliably switching measuring values between a pulse method and a Cambel method even if noise level and saturated level are fluctuated. That is, a proportional range judging means always monitors neutron flux measuring values in a start-up region and neutron flux measuring values in an intermediate power region, so that the proportional range is detected depending on whether the difference or a variation coefficient of both of the measured values is constant or not. A switching value determining means determines a switching value by the result of judgement of the proportional range judging means. A selection/output means selects and outputs measuring signals at a neutron flux level in the start-up region or the intermediate power region by the output of the switching value determining means. With such procedures, since the measuring value is switched after confirming that arrival at the proportional range where the difference or a variation coefficient of the measured value between the pulse processing method and the measured value by the Cambel method is constant, an accurate neutron flux level containing neither noise level nor saturated level can be outputted. (I.S.)

  11. Wide range radiation monitoring apparatus

    International Nuclear Information System (INIS)

    Goldstein, N.P.

    1983-01-01

    There is described a simple and rugged detector capable of measuring radiation fields over the range of 0.02 R/hr up to 10/8 R/hr or higher. The device consists of an emitter element of high atomic number material which is connected to the center conductor of a signal cable. This emitter element is positioned in a spaced-apart relationship between collector element of a low atomic number material with a gap region between the emitter element and the adjacent collector elements

  12. Analysis of the influence of the plasma thermodynamic regime in the spectrally resolved and mean radiative opacity calculations of carbon plasmas in a wide range of density and temperature

    International Nuclear Information System (INIS)

    Gil, J.M.; Rodriguez, R.; Martel, P.; Florido, R.; Rubiano, J.G.; Mendoza, M.A.; Minguez, E.

    2013-01-01

    In this work the spectrally resolved, multigroup and mean radiative opacities of carbon plasmas are calculated for a wide range of plasma conditions which cover situations where corona, local thermodynamic and non-local thermodynamic equilibrium regimes are found. An analysis of the influence of the thermodynamic regime on these magnitudes is also carried out by means of comparisons of the results obtained from collisional-radiative, corona or Saha–Boltzmann equations. All the calculations presented in this work were performed using ABAKO/RAPCAL code. -- Highlights: ► Spectrally resolved, multigroup and mean radiative opacities of carbon plasmas are calculated. ► Corona, local thermodynamic and non-local thermodynamic equilibrium regimes are analyzed. ► Simulations performed using the computational package ABAKO/RAPCAL. ► A criterion for the establishment of the thermodynamic regime is proposed.

  13. Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges

    Science.gov (United States)

    Grunert, Brice K.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2018-01-01

    Satellite remote sensing of colored dissolved organic matter (CDOM) has focused on CDOM absorption (aCDOM) at a reference wavelength, as its magnitude provides insight into the underwater light field and large-scale biogeochemical processes. CDOM spectral slope, SCDOM, has been treated as a constant or semiconstant parameter in satellite retrievals of aCDOM despite significant regional and temporal variabilities. SCDOM and other optical metrics provide insights into CDOM composition, processing, food web dynamics, and carbon cycling. To date, much of this work relies on fluorescence techniques or aCDOM in spectral ranges unavailable to current and planned satellite sensors (e.g., global variability in SCDOM and fit deviations in the aCDOM spectra using the recently proposed Gaussian decomposition method. From this, we investigate if global variability in retrieved SCDOM and Gaussian components is significant and regionally distinct. We iteratively decreased the spectral range considered and analyzed the number, location, and magnitude of fitted Gaussian components to understand if a reduced spectral range impacts information obtained within a common spectral window. We compared the fitted slope from the Gaussian decomposition method to absorption-based indices that indicate CDOM composition to determine the ability of satellite-derived slope to inform the analysis and modeling of large-scale biogeochemical processes. Finally, we present implications of the observed variability for remote sensing of CDOM characteristics via SCDOM.

  14. Directional Wide-Angle Range Finder (DWARF)

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation, the Directional Wide-Angle Range Finder (DWARF) is the creation of a laser range-finder with a wide field-of-view (FOV) and a directional...

  15. Wide dynamic range beam profile monitor

    International Nuclear Information System (INIS)

    Lee, D.M.; Brown, D.; Hardekopf, R.; Bilskie, J.R.; van Dyck, O.B.V.

    1985-01-01

    An economical harp multiplexer system has been developed to achieve a wide dynamic range. The harp system incorporates a pneumatically actuated harp detector with ceramic boards and carbon wires; a high-sensitivity multiplexer packaged in a double-wide NIM module; and flat, shielded ribbon cable consisting of individual twisted pairs. The system multiplexes 30 wires in each of the x and y planes simultaneously and operates with or without computer control. The system has operated in beams of 100 nA to 1 mA, 1- to 120-Hz repetition rate, with a signal-to-noise ratio of greater than 10/1

  16. Calibration device for wide range monitor

    International Nuclear Information System (INIS)

    Kodoku, Masaya; Sato, Toshifumi.

    1989-01-01

    The calibration device for a wide range monitor according to the present invention can continuously calibrate the entire counting regions of a wide range monitor. The wide range monitor detect the reactor power in the neutron source region by means of a pulse counting method and detects the reactor power in the intermediate region by means of a cambell method. A calibration signal outputting means is disposed for continuously outputting, as such calibration signals, pulse number varying signals in which the number of pulses per unit time varies depending on the reactor power in the neutron source region to be simulated and amplitude square means varying signal in which the mean square value of amplitude varies depending on the reactor power in the intermediate region to be simulated. By using both of the calibration signals, calibration can be conducted for the nuclear reactor power in the neutron source region and the intermediate region even if the calibration is made over two regions, further, calibration for the period present over the two region can be conducted easily as well. (I.S.)

  17. Logarithmic circuit with wide dynamic range

    Science.gov (United States)

    Wiley, P. H.; Manus, E. A. (Inventor)

    1978-01-01

    A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.

  18. Spectral long-range interaction of temporal incoherent solitons.

    Science.gov (United States)

    Xu, Gang; Garnier, Josselin; Picozzi, Antonio

    2014-02-01

    We study the interaction of temporal incoherent solitons sustained by a highly noninstantaneous (Raman-like) nonlinear response. The incoherent solitons exhibit a nonmutual interaction, which can be either attractive or repulsive depending on their relative initial distance. The analysis reveals that incoherent solitons exhibit a long-range interaction in frequency space, which is in contrast with the expected spectral short-range interaction described by the usual approach based on the Raman-like spectral gain curve. Both phenomena of anomalous interaction and spectral long-range behavior of incoherent solitons are described in detail by a long-range Vlasov equation.

  19. Precise digital integration in wide time range: theory and realization

    International Nuclear Information System (INIS)

    Batrakov, A.M.; Pavlenko, A.V.

    2017-01-01

    The digital integration method based on using high-speed precision analog-to-digital converters (ADC) has become widely used over the recent years. The paper analyzes the limitations of this method that are caused by the signal properties, ADC sampling rate and noise spectral density of the ADC signal path. This analysis allowed creating digital integrators with accurate synchronization and achieving an integration error of less than 10 −5 in the time range from microseconds to tens of seconds. The structure of the integrator is described and its basic parameters are presented. The possibilities of different ADC chips in terms of their applicability to digital integrators are discussed. A comparison with other integrating devices is presented.

  20. Wide range noble gas radiation monitor

    International Nuclear Information System (INIS)

    Kuhlman, H.S. III; Wyvill, J.R.

    1984-01-01

    The present invention contemplates providing a sample system for effluent from a nuclear process wherein the effluent in a first mode passes through a sample chamber whose noble gases are quantitatively detected. The sample of the first mode is continued until the detector count rate reaches a predetermined maximum. The detector establishes a control signal which is applied to terminate the first mode effluent flow to the chamber, evacuate the chamber to a predetermined value of vacuum and connect the effluent into the sample chamber with a predetermined mode of flow rate different from the rate of the first mode to establish a sample concentration in the chamber within the range of the detector. A subsequent predetermined minimum rate will generate a signal to reconnect the sample chamber to the first mode connection and thereby cycle the system back to its first mode of operation

  1. Detection Range Estimation of UV Spectral Band Laser Radar

    Directory of Open Access Journals (Sweden)

    V. A. Gorodnichev

    2014-01-01

    Full Text Available Recently, has come into existence an interest in the systems operating in the ultra-violet (UF band of wavelengths, which use other spectral information (coefficients of reflection or radiation in UF range about location objects, than laser systems in the visible, near or average infrared bands. Thus, a point is not only to receive additional (in another spectral range information on location objects. Laser radiation in the UF spectral band of 0.315 – 0.4 microns is safer than laser radiation with the wavelengths of 0.38 – 1.4 microns.The work presents a comparative estimation of the detection systems range of laser radars in the UV and visible spectral bands for the following wavelengths of radiation:- UF band: 0.266 microns (the fourth harmonic of YAG-laser activated by neodymium ions, 0.308 microns (the XeCl-excimer laser, 0.355 microns (the third harmonic of YAG-laser activated by neodymium ions;- visible band: 0.532 microns (the second harmonic of YAG-laser activated by neodymium ions.Results of calculations show that for the horizontal pathway in the terrestrial atmosphere at the selected radiation wavelengths a detection range is in the range of 2510m – 5690 m.The maximum range of detection corresponds to the visible spectral band. A sweep range decreases with transition to the UF band. This is caused by the fact that with transition to the UF band there is a rise of atmosphere attenuation (generally, because of absorption by ozone, this effect being smoothed by reducing background radiation.In the UF band a wavelength of 0.355 microns is the most acceptable. For this wavelength a detection range is about 1,5 times less (in comparison with the visible band of 0.532 microns. However, this is the much more eye-safe wavelength. With transition to the UV band a detection range decreases not that much and can be compensated by changing parameters of transmitting or receiving channels of laser radar.

  2. High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking

    Science.gov (United States)

    Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.

    2016-12-01

    High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera TrackingThe NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddard's AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sun/sky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS-14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a

  3. A New and Inexpensive Pyranometer for the Visible Spectral Range

    OpenAIRE

    Martínez, Miguel A.; Andújar, José M.; Enrique, Juan M.

    2009-01-01

    This paper presents the design, construction and testing of a new photodiode-based pyranometer for the visible spectral range (approx. 400 to 750 nm), whose principal characteristics are: accuracy, ease of connection, immunity to noise, remote programming and operation, interior temperature regulation, cosine error minimisation and all this at a very low cost, tens of times lower than that of commercial thermopile-based devices. This new photodiode-based pyranometer overcomes traditional prob...

  4. Soil Compressibility Models for a Wide Stress Range

    KAUST Repository

    Chong, Song-Hun; Santamarina, Carlos

    2016-01-01

    Soil compressibility models with physically correct asymptotic void ratios are required to analyze situations that involve a wide stress range. Previously suggested models and other functions are adapted to satisfy asymptotic void ratios at low

  5. Free spectral range adjustment of a silicon rib racetrack resonator

    International Nuclear Information System (INIS)

    Keča, T; Matavulj, P; Headley, W; Mashanovich, G

    2012-01-01

    One of the most important parameters that describe the quality of photonic components and devices is the free spectral range (FSR). In this paper, the measured outgoing power of a silicon rib racetrack resonator was compared with calculated transfer functions derived by coupled mode theory. The influence of geometric parameters on the FSR and resonant wavelength has been investigated. By altering the values of the coupling length and racetrack radius, derived transfer functions were adjusted to match experimental data. This procedure gives the possibility of estimating the FSR and resonant wavelength for different geometric parameters and predicting resonator functionality.

  6. A micro-controller based wide range survey meter

    International Nuclear Information System (INIS)

    Bhingare, R.R.; Bajaj, K.C.; Kannan, S.

    2004-01-01

    Wide range survey meters (1μSv/h -10 Sv/h) with the detector(s) mounted at the end of a two-to-four meter-long extendable tube are widely used for radiation protection survey of difficult to reach locations and high dose rate areas, The commercially available survey meters of this type use two GM counters to cover a wide range of dose rate measurement. A new micro-controller based wide range survey meter using two Si diode detectors has been developed. The use of solid state detectors in the survey meter has a number of advantages like low power consumption, lighter battery powered detector probe, elimination of high voltage for the operation of the detectors, etc. The design uses infrared communication between the probe and the readout unit through a light-weight collapsible extension tube for high reliability. The design details and features are discussed in detail. (author)

  7. Note: A wide temperature range MOKE system with annealing capability.

    Science.gov (United States)

    Chahil, Narpinder Singh; Mankey, G J

    2017-07-01

    A novel sample stage integrated with a longitudinal MOKE system has been developed for wide temperature range measurements and annealing capabilities in the temperature range 65 K temperatures without adversely affecting the cryostat and minimizes thermal drift in position. In this system the hysteresis loops of magnetic samples can be measured simultaneously while annealing the sample in a magnetic field.

  8. A new and inexpensive pyranometer for the visible spectral range.

    Science.gov (United States)

    Martínez, Miguel A; Andújar, José M; Enrique, Juan M

    2009-01-01

    This paper presents the design, construction and testing of a new photodiode-based pyranometer for the visible spectral range (approx. 400 to 750 nm), whose principal characteristics are: accuracy, ease of connection, immunity to noise, remote programming and operation, interior temperature regulation, cosine error minimisation and all this at a very low cost, tens of times lower than that of commercial thermopile-based devices. This new photodiode-based pyranometer overcomes traditional problems in this type of device and offers similar characteristics to those of thermopile-based pyranometers and, therefore, can be used in any installation where reliable measurement of solar irradiance is necessary, especially in those where cost is a deciding factor in the choice of a meter. This new pyranometer has been registered in the Spanish Patent and Trademark Office under the number P200703162.

  9. A New and Inexpensive Pyranometer for the Visible Spectral Range

    Directory of Open Access Journals (Sweden)

    Miguel A. Martínez

    2009-06-01

    Full Text Available This paper presents the design, construction and testing of a new photodiode-based pyranometer for the visible spectral range (approx. 400 to 750 nm, whose principal characteristics are: accuracy, ease of connection, immunity to noise, remote programming and operation, interior temperature regulation, cosine error minimisation and all this at a very low cost, tens of times lower than that of commercial thermopile-based devices. This new photodiode-based pyranometer overcomes traditional problems in this type of device and offers similar characteristics to those of thermopile-based pyranometers and, therefore, can be used in any installation where reliable measurement of solar irradiance is necessary, especially in those where cost is a deciding factor in the choice of a meter. This new pyranometer has been registered in the Spanish Patent and Trademark Office under the number P200703162.

  10. Doped silicene: Evidence of a wide stability range

    KAUST Repository

    Cheng, Yingchun; Zhu, Zhiyong; Schwingenschlö gl, Udo

    2011-01-01

    to the carrier concentration, it is stable in a wide doping range. The frequencies of the E2g-Γ and A′-K Raman modes can be used to probe the carrier concentration. In addition, the phonon dispersion displays Kohn anomalies at the Γ and K points which are reduced

  11. High voltage wide range marx generator design and construction

    International Nuclear Information System (INIS)

    Thompson, J.E.

    1976-01-01

    A wide range, long pulse, Marx generator has been designed and constructed for the purpose of exciting a thermionic electron gun utilized for quasi-cw gas laser medium ionization. The Marx generator has been specifically designed to operate over a voltage range variable from 100 kV to 200 kV into a resistive load of between 83 kΩ and open circuit. This wide operating range, both in voltage and load impedance, was obtained using interstage coupling capacitors to assure overvoltage and subsequent breakdown of the three element spark gap switches used. This paper will discuss the motivation and specific application for the Marx generator and will present the relevant design procedure with particular emphasis on the interstage coupling and triggering techniques employed. Experimental data regarding the measured Marx generator performance will also be presented

  12. Laser Meter of Atmospheric Inhomogeneity Properties in UV Spectral Range

    Directory of Open Access Journals (Sweden)

    S. E. Ivanov

    2015-01-01

    Full Text Available Development of laser systems designed to operate in conditions of the terrestrial atmosphere demands reliable information about the atmosphere condition. The aerosol lidars for operational monitoring of the atmosphere allow us to define remotely characteristics of atmospheric aerosol and cloudy formations in the atmosphere.Today the majority of aerosol lidars run in the visible range. However, in terms of safety (first of all to eyes also ultra-violet (UF range is of interest. A range of the wavelengths of the harmful effect on the eye retina is from 0.38 to 1.4 mμ. Laser radiation with the wavelengths less than 0.38 mμ and over 1.4 mμ influences the anterior ambient of an eye and is safer, than laser radiation with the wavelengths of 0.38 – 1.4 mμ.The paper describes a laser meter to measure characteristics of atmospheric inhomogeneity propertis in UF spectral range at the wavelength of 0.355 mμ.As a radiation source, the meter uses a semiconductor-pumped pulse solid-state Nd:YAG laser. As a receiving lens, Kassegren's scheme-implemented mirror lens with a socket to connect optical fibre is used in the laser meter. Radiation from the receiving lens is transported through the optical fibre to the optical block. The optical block provides spectral selection of useful signal and conversion of optical radiation into electric signal.To ensure a possibility for alignment of the optical axes of receiving lens and laser radiator the lens is set on the alignment platform that enables changing lens inclination and turn with respect to the laser.The software of the laser meter model is developed in the NI LabVIEW 2012 graphic programming environment.The paper gives the following examples: a typical laser echo signal, which is back scattered by the atmosphere and spatiotemporal distribution of variation coefficient of the volumetric factor of the back scattered atmosphere. Results of multi-day measurements show that an extent of the recorded aerosol

  13. Non-uniform sampling and wide range angular spectrum method

    International Nuclear Information System (INIS)

    Kim, Yong-Hae; Byun, Chun-Won; Oh, Himchan; Lee, JaeWon; Pi, Jae-Eun; Heon Kim, Gi; Lee, Myung-Lae; Ryu, Hojun; Chu, Hye-Yong; Hwang, Chi-Sun

    2014-01-01

    A novel method is proposed for simulating free space field propagation from a source plane to a destination plane that is applicable for both small and large propagation distances. The angular spectrum method (ASM) was widely used for simulating near field propagation, but it caused a numerical error when the propagation distance was large because of aliasing due to under sampling. Band limited ASM satisfied the Nyquist condition on sampling by limiting a bandwidth of a propagation field to avoid an aliasing error so that it could extend the applicable propagation distance of the ASM. However, the band limited ASM also made an error due to the decrease of an effective sampling number in a Fourier space when the propagation distance was large. In the proposed wide range ASM, we use a non-uniform sampling in a Fourier space to keep a constant effective sampling number even though the propagation distance is large. As a result, the wide range ASM can produce simulation results with high accuracy for both far and near field propagation. For non-paraxial wave propagation, we applied the wide range ASM to a shifted destination plane as well. (paper)

  14. Soil Compressibility Models for a Wide Stress Range

    KAUST Repository

    Chong, Song-Hun

    2016-03-03

    Soil compressibility models with physically correct asymptotic void ratios are required to analyze situations that involve a wide stress range. Previously suggested models and other functions are adapted to satisfy asymptotic void ratios at low and high stress levels; all updated models involve four parameters. Compiled consolidation data for remolded and natural clays are used to test the models and to develop correlations between model parameters and index properties. Models can adequately fit soil compression data for a wide range of stresses and soil types; in particular, models that involve the power of the stress σ\\'β display higher flexibility to capture the brittle response of some natural soils. The use of a single continuous function avoids numerical discontinuities or the need for ad hoc procedures to determine the yield stress. The tangent stiffness-readily computed for all models-should not be mistaken for the small-strain constant-fabric stiffness. © 2016 American Society of Civil Engineers.

  15. Marine: a new wide range neutron monitoring system concept

    Energy Technology Data Exchange (ETDEWEB)

    Trama, J.C.; Lescop, B.; Lefevre, J.; Nguyen, T.; Sudres, C. [CEA Saclay, 91 - Gif sur Yvette (France). Dept. d' Electronique et d' Instrumentation Nucleaire; Pasdeloup, P. [Technicatome, 13 - Les Milles (France)

    2001-07-01

    In a Nuclear Power Plant, the developed power is proportional to the emitted neutron flux. The 10 to 11 decades measurement range from source to power generally needs 3 distinct neutron measurement chains to be monitored. A wide range neutron monitoring system may cover this range with only one sensor followed by adequate electronics. In the past this concept has been developed with an analogue technology which was presenting some drawbacks (slow log amplifier, components perenniality). In this paper, we introduce a completely new design, that makes use of a recent technology, including full linear input electronics, and advanced digital signal processing. As far as the sensor is concerned, both a well known commercial fission chamber, or an innovative wide range sensor presenting a high sensitivity may be used. The basic concept is that the single signal is continuously processed by three different electronic stages, each one being dedicated to approximately one third of the full range: pulse, Campbelling and current modes. After amplification, appropriate shaping, this signal is numerically filtered by a Kalman filter algorithm to compute the neutron flux as well as the reactor period. A specifically developed test module allows the surveillance of the sensor and the electronics via stimuli injections and characteristic curves plotting. A computerised simulation of the whole chain is used to validate the signal processing algorithms evolutions. In the paper we will specifically develop the metrological performances of this chain and the general agreement that exists between simulated and measured values. (authors)

  16. Wide Range Portable Radiation Survey Meter for Emergency Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gangadharan, P.; Bhave, D. G.; Gokarn, R. S.; Khadake, R. G. [Directorate Of Radiation Protection, Bhabha Atomic Research Centre, Trombay, Bombay (India)

    1969-05-15

    The paper describes a portable battery-operated radiation survey meter for monitoring a wide range of X- and gamma-ray exposure rates from 1 mR/h to 100 R/h. The instrument Incorporates a halogen GM tube as the detector and a count-rate meter for indication. A transistorized d.c. -d.c. converter supplies the necessary high voltage to the GM counter. The instrument response has been made energy independent in the energy range 80 keV to 1.25 MeV. Further, the response is linear over the entire range of exposure rates. Suitable extension rods have been designed to provide sufficient separation between the probe and the meter in cases where remote monitoring is necessary because of high fields. (author)

  17. Wide Operating Voltage Range Fuel Cell Battery Charger

    DEFF Research Database (Denmark)

    Hernandez Botella, Juan Carlos; Mira Albert, Maria del Carmen; Sen, Gokhan

    2014-01-01

    DC-DC converters for fuel cell applications require wide voltage range operation due to the unique fuel cell characteristic curve. Primary parallel isolated boost converter (PPIBC) is a boost derived topology for low voltage high current applications reaching an efficiency figure up to 98...... by two the converter input-to-output voltage gain. This allows covering the conditions when the fuel cell stack operates in the activation region (maximum output voltage) and increases the degrees of freedom for converter optimization. The transition between operating modes is studied because represents...

  18. Doped silicene: Evidence of a wide stability range

    KAUST Repository

    Cheng, Yingchun

    2011-06-17

    The effects of doping on the lattice structure, electronic structure, phonon spectrum, and electron-phonon coupling of low-buckling silicene are studied by first-principles calculations. Although the lattice is found to be very sensitive to the carrier concentration, it is stable in a wide doping range. The frequencies of the E2g-Γ and A′-K Raman modes can be used to probe the carrier concentration. In addition, the phonon dispersion displays Kohn anomalies at the Γ and K points which are reduced by doping. This implies that the electron-phonon coupling cannot be neglected in field-effect transistor applications. Copyright © 2011 EPLA.

  19. Integration of Absorption Feature Information from Visible to Longwave Infrared Spectral Ranges for Mineral Mapping

    Directory of Open Access Journals (Sweden)

    Veronika Kopačková

    2017-09-01

    Full Text Available Merging hyperspectral data from optical and thermal ranges allows a wider variety of minerals to be mapped and thus allows lithology to be mapped in a more complex way. In contrast, in most of the studies that have taken advantage of the data from the visible (VIS, near-infrared (NIR, shortwave infrared (SWIR and longwave infrared (LWIR spectral ranges, these different spectral ranges were analysed and interpreted separately. This limits the complexity of the final interpretation. In this study a presentation is made of how multiple absorption features, which are directly linked to the mineral composition and are present throughout the VIS, NIR, SWIR and LWIR ranges, can be automatically derived and, moreover, how these new datasets can be successfully used for mineral/lithology mapping. The biggest advantage of this approach is that it overcomes the issue of prior definition of endmembers, which is a requested routine employed in all widely used spectral mapping techniques. In this study, two different airborne image datasets were analysed, HyMap (VIS/NIR/SWIR image data and Airborne Hyperspectral Scanner (AHS, LWIR image data. Both datasets were acquired over the Sokolov lignite open-cast mines in the Czech Republic. It is further demonstrated that even in this case, when the absorption feature information derived from multispectral LWIR data is integrated with the absorption feature information derived from hyperspectral VIS/NIR/SWIR data, an important improvement in terms of more complex mineral mapping is achieved.

  20. Cobalt catalyzed hydroesterification of a wide range of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Van Rensburg, H.; Hanton, M.; Tooze, R.P.; Foster, D.F. [Sasol Technology UK, St Andrews (United Kingdom)

    2011-07-01

    Petrochemical raw materials are an essential raw material for the production of detergents with a substantial portion of synthetic fatty alcohols being produced via hydroformylation of oil or coal derived olefins. Carbonylation processes other than hydroformylation have to date not been commercially employed for the production of fatty esters or alcohols. In this document we highlight the opportunities of converting olefins to esters using cobalt catalyzed alkoxycarbonylation. This process is highly versatile and applicable to a wide range of olefins, linear or branched, alpha or internal in combination with virtually any chain length primary or secondary alcohol allowing the synthesis of a diverse array of compounds such as ester ethoxylated surfactants, methyl branched detergents, lubricants and alkyl propanoates. Furthermore, alkoxycarbonylation of a broad olefin/paraffin hydrocarbon range could be used to produce the corresponding broad cut detergent alcohols. (orig.)

  1. A wide range and high speed automatic gain control

    International Nuclear Information System (INIS)

    Tacconi, E.; Christiansen, C.

    1993-05-01

    Automatic gain control (AGC) techniques have been largely used since the beginning of electronics, but in most of the applications the dynamic response is slow compared with the carrier frequency. The problem of developing an automatic gain control with high dynamic response and wide control range simultaneously is analyzed in this work. An ideal gain control law, with the property that the total loop gain remains constant independent of the carrier amplitude, is obtained. The resulting AGC behavior is compared by computer simulations with a linear multiplier AGC. The ideal gain control law can be approximated using a transconductance amplifier. A practical circuit that has been used at CERN in the radio frequency loops of the Booster Synchrotron is presented. The circuit has high speed and 80-dB gain control range

  2. Wide-Range Probing of Dzyaloshinskii-Moriya Interaction

    Science.gov (United States)

    Kim, Duck-Ho; Yoo, Sang-Cheol; Kim, Dae-Yun; Min, Byoung-Chul; Choe, Sug-Bong

    2017-03-01

    The Dzyaloshinskii-Moriya interaction (DMI) in magnetic objects is of enormous interest, because it generates built-in chirality of magnetic domain walls (DWs) and topologically protected skyrmions, leading to efficient motion driven by spin-orbit torques. Because of its importance for both potential applications and fundamental research, many experimental efforts have been devoted to DMI investigation. However, current experimental probing techniques cover only limited ranges of the DMI strength and have specific sample requirements. Thus, there are no versatile methods to quantify DMI over a wide range of values. Here, we present such an experimental scheme, which is based on the angular dependence of asymmetric DW motion. This method can be used to determine values of DMI much larger than the maximum strength of the external magnetic field strength, which demonstrates that various DMI strengths can be quantified with a single measurement setup. This scheme may thus prove essential to DMI-related emerging fields in nanotechnology.

  3. Development of a wide-range tritium-concentration detector

    Energy Technology Data Exchange (ETDEWEB)

    Jun, F.; Zhe, L.; Shicheng, L.; Jiangfeng, S.; Deli, L. [China Academy of Engineering Physics, Mianyang (China)

    2015-03-15

    According to the requirements of the tritium related systems of the TBM (Test Blanket Module) for monitoring the on-line tritium concentration, a wide-range tritium-concentration detector has been developed to measure the tritium concentration in the range of 10{sup 4} Bq/ml - 5*10{sup 8} Bq/ml. This detector is combined with a low-memory helium ionization chamber. The weak current signal collected in the ionization chamber is converted to the voltage signal by an I-V converter. The minimum weak current which the detector could be measured is 10{sup -14} A. The performance of the background current and the current response linearity of the prototype have been tested. The test result indicates that the linear response of the current signal of the prototype without connecting the ionization chamber is good. The linear correlation coefficient is R{sup 2} = 0.998.

  4. Development of a wide-range tritium-concentration detector

    International Nuclear Information System (INIS)

    Jun, F.; Zhe, L.; Shicheng, L.; Jiangfeng, S.; Deli, L.

    2015-01-01

    According to the requirements of the tritium related systems of the TBM (Test Blanket Module) for monitoring the on-line tritium concentration, a wide-range tritium-concentration detector has been developed to measure the tritium concentration in the range of 10 4 Bq/ml - 5*10 8 Bq/ml. This detector is combined with a low-memory helium ionization chamber. The weak current signal collected in the ionization chamber is converted to the voltage signal by an I-V converter. The minimum weak current which the detector could be measured is 10 -14 A. The performance of the background current and the current response linearity of the prototype have been tested. The test result indicates that the linear response of the current signal of the prototype without connecting the ionization chamber is good. The linear correlation coefficient is R 2 = 0.998

  5. Ozone formation in pulsed SDBD in a wide pressure range

    Science.gov (United States)

    Starikovskiy, Andrey; Nudnova, Maryia; mipt Team

    2011-10-01

    Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.

  6. Simultaneous wide-range stopping power determination for several ions

    Energy Technology Data Exchange (ETDEWEB)

    Alanko, T. E-mail: tommi.alanko@phys.jyu.fi; Trzaska, W.H.; Lyapin, V.; Raeisaenen, J.; Tiourine, G.; Virtanen, A

    2002-05-01

    A new procedure to extract simultaneously continuous stopping power curves for several ions and several absorbers over a wide energy range and with statistical errors reduced to negligible level is presented. The method combines our novel time-of-flight based method with the capability of our K130 cyclotron and ECR ion-source to produce the so-called ion cocktails. The potential of the method is demonstrated with a 6.0 MeV/u cocktail consisting of {sup 16}O{sup 4+}, {sup 28}Si{sup 7+} and {sup 40}Ar{sup 10+} ions. The stopping power in polycarbonate in the energy range of 0.35-5 MeV/u has been determined with absolute uncertainty of less than 2.3% and with relative below 0.2%. The results are compared with literature data and with SRIM2000 parameterisation including cores and bonds corrections.

  7. Wide range optofluidically tunable multimode interference fiber laser

    International Nuclear Information System (INIS)

    Antonio-Lopez, J E; LiKamWa, P; Sanchez-Mondragon, J J; May-Arrioja, D A

    2014-01-01

    An optofluidically tunable fiber laser based on multimode interference (MMI) effects with a wide tuning range is proposed and demonstrated. The tunable mechanism is based on an MMI fiber filter fabricated using a special fiber known as no-core fiber, which is a multimode fiber (MMF) without cladding. Therefore, when the MMI filter is covered by liquid the optical properties of the no-core fiber are modified, which allow us to tune the peak wavelength response of the MMI filter. Rather than applying the liquid on the entire no-core fiber, we change the liquid level along the no-core fiber, which provides a highly linear tuning response. In addition, by selecting the adequate refractive index of the liquid we can also choose the tuning range. We demonstrate the versatility of the optofluidically tunable MMI filter by wavelength tuning two different gain media, erbium doped fiber and a semiconductor optical amplifier, achieving tuning ranges of 55 and 90 nm respectively. In both cases, we achieve side-mode suppression ratios (SMSR) better than 50 dBm with output power variations of less than 0.76 dBm over the whole tuning range. (paper)

  8. Chemical Markup, XML, and the World Wide Web. 7. CMLSpect, an XML vocabulary for spectral data.

    Science.gov (United States)

    Kuhn, Stefan; Helmus, Tobias; Lancashire, Robert J; Murray-Rust, Peter; Rzepa, Henry S; Steinbeck, Christoph; Willighagen, Egon L

    2007-01-01

    CMLSpect is an extension of Chemical Markup Language (CML) for managing spectral and other analytical data. It is designed to be flexible enough to contain a wide variety of spectral data. The paper describes the CMLElements used and gives practical examples for common types of spectra. In addition it demonstrates how different views of the data can be expressed and what problems still exist.

  9. Mitigating fluorescence spectral overlap in wide-field endoscopic imaging

    Science.gov (United States)

    Hou, Vivian; Nelson, Leonard Y.; Seibel, Eric J.

    2013-01-01

    Abstract. The number of molecular species suitable for multispectral fluorescence imaging is limited due to the overlap of the emission spectra of indicator fluorophores, e.g., dyes and nanoparticles. To remove fluorophore emission cross-talk in wide-field multispectral fluorescence molecular imaging, we evaluate three different solutions: (1) image stitching, (2) concurrent imaging with cross-talk ratio subtraction algorithm, and (3) frame-sequential imaging. A phantom with fluorophore emission cross-talk is fabricated, and a 1.2-mm ultrathin scanning fiber endoscope (SFE) is used to test and compare these approaches. Results show that fluorophore emission cross-talk could be successfully avoided or significantly reduced. Near term, the concurrent imaging method of wide-field multispectral fluorescence SFE is viable for early stage cancer detection and localization in vivo. Furthermore, a means to enhance exogenous fluorescence target-to-background ratio by the reduction of tissue autofluorescence background is demonstrated. PMID:23966226

  10. Modelling of monovacancy diffusion in W over wide temperature range

    International Nuclear Information System (INIS)

    Bukonte, L.; Ahlgren, T.; Heinola, K.

    2014-01-01

    The diffusion of monovacancies in tungsten is studied computationally over a wide temperature range from 1300 K until the melting point of the material. Our modelling is based on Molecular Dynamics technique and Density Functional Theory. The monovacancy migration barriers are calculated using nudged elastic band method for nearest and next-nearest neighbour monovacancy jumps. The diffusion pre-exponential factor for monovacancy diffusion is found to be two to three orders of magnitude higher than commonly used in computational studies, resulting in attempt frequency of the order 10 15 Hz. Multiple nearest neighbour jumps of monovacancy are found to play an important role in the contribution to the total diffusion coefficient, especially at temperatures above 2/3 of T m , resulting in an upward curvature of the Arrhenius diagram. The probabilities for different nearest neighbour jumps for monovacancy in W are calculated at different temperatures

  11. Quantum conductance of carbon nanotubes in a wide energy range

    International Nuclear Information System (INIS)

    Zhang, Yong

    2015-01-01

    The differential conductance of armchair and zigzag carbon nanotubes (CNTs) in a wide energy range has been numerically calculated by using the tight-binding model and the Green’s function method. The effects of the contact coupling between CNTs and electrodes on conductance have been explored. The ballistic conductance is proportional to the band numbers and has a ladder-like feature. As the increase of the contact coupling, the conductance oscillations appear and they are robust against the coupling. More importantly, on the first step of the conductance ladder, the armchair CNTs have two quasi-periodic conductance oscillations, i.e. a rapid conductance oscillation superimposed on a slow fluctuation background; while the zigzag CNTs have only one conductance oscillation. But on the second conductance step, all CNTs have two quasi-periodic conductance oscillations. The physical origin of the conductance oscillations has been revealed

  12. Modal density of rectangular structures in a wide frequency range

    Science.gov (United States)

    Parrinello, A.; Ghiringhelli, G. L.

    2018-04-01

    A novel approach to investigate the modal density of a rectangular structure in a wide frequency range is presented. First, the modal density is derived, in the whole frequency range of interest, on the basis of sound transmission through the infinite counterpart of the structure; then, it is corrected by means of the low-frequency modal behavior of the structure, taking into account actual size and boundary conditions. A statistical analysis reveals the connection between the modal density of the structure and the transmission of sound through its thickness. A transfer matrix approach is used to compute the required acoustic parameters, making it possible to deal with structures having arbitrary stratifications of different layers. A finite element method is applied on coarse grids to derive the first few eigenfrequencies required to correct the modal density. Both the transfer matrix approach and the coarse grids involved in the finite element analysis grant high efficiency. Comparison with alternative formulations demonstrates the effectiveness of the proposed methodology.

  13. Effective inactivation of a wide range of viruses by pasteurization.

    Science.gov (United States)

    Gröner, Albrecht; Broumis, Connie; Fang, Randel; Nowak, Thomas; Popp, Birgit; Schäfer, Wolfram; Roth, Nathan J

    2018-01-01

    Careful selection and testing of plasma reduces the risk of blood-borne viruses in the starting material for plasma-derived products. Furthermore, effective measures such as pasteurization at 60°C for 10 hours have been implemented in the manufacturing process of therapeutic plasma proteins such as human albumin, coagulation factors, immunoglobulins, and enzyme inhibitors to inactivate blood-borne viruses of concern. A comprehensive compilation of the virus reduction capacity of pasteurization is presented including the effect of stabilizers used to protect the therapeutic protein from modifications during heat treatment. The virus inactivation kinetics of pasteurization for a broad range of viruses were evaluated in the relevant intermediates from more than 15 different plasma manufacturing processes. Studies were carried out under the routine manufacturing target variables, such as temperature and product-specific stabilizer composition. Additional studies were also performed under robustness conditions, that is, outside production specifications. The data demonstrate that pasteurization inactivates a wide range of enveloped and nonenveloped viruses of diverse physicochemical characteristics. After a maximum of 6 hours' incubation, no residual infectivity could be detected for the majority of enveloped viruses. Effective inactivation of a range of nonenveloped viruses, with the exception of nonhuman parvoviruses, was documented. Pasteurization is a very robust and reliable virus inactivation method with a broad effectiveness against known blood-borne pathogens and emerging or potentially emerging viruses. Pasteurization has proven itself to be a highly effective step, in combination with other complementary safety measures, toward assuring the virus safety of final product. © 2017 The Authors Transfusion published by Wiley Periodicals, Inc. on behalf of AABB.

  14. Spectrum-to-Spectrum Searching Using a Proteome-wide Spectral Library*

    Science.gov (United States)

    Yen, Chia-Yu; Houel, Stephane; Ahn, Natalie G.; Old, William M.

    2011-01-01

    The unambiguous assignment of tandem mass spectra (MS/MS) to peptide sequences remains a key unsolved problem in proteomics. Spectral library search strategies have emerged as a promising alternative for peptide identification, in which MS/MS spectra are directly compared against a reference library of confidently assigned spectra. Two problems relate to library size. First, reference spectral libraries are limited to rediscovery of previously identified peptides and are not applicable to new peptides, because of their incomplete coverage of the human proteome. Second, problems arise when searching a spectral library the size of the entire human proteome. We observed that traditional dot product scoring methods do not scale well with spectral library size, showing reduction in sensitivity when library size is increased. We show that this problem can be addressed by optimizing scoring metrics for spectrum-to-spectrum searches with large spectral libraries. MS/MS spectra for the 1.3 million predicted tryptic peptides in the human proteome are simulated using a kinetic fragmentation model (MassAnalyzer version2.1) to create a proteome-wide simulated spectral library. Searches of the simulated library increase MS/MS assignments by 24% compared with Mascot, when using probabilistic and rank based scoring methods. The proteome-wide coverage of the simulated library leads to 11% increase in unique peptide assignments, compared with parallel searches of a reference spectral library. Further improvement is attained when reference spectra and simulated spectra are combined into a hybrid spectral library, yielding 52% increased MS/MS assignments compared with Mascot searches. Our study demonstrates the advantages of using probabilistic and rank based scores to improve performance of spectrum-to-spectrum search strategies. PMID:21532008

  15. THE HUBBLE WIDE FIELD CAMERA 3 TEST OF SURFACES IN THE OUTER SOLAR SYSTEM: SPECTRAL VARIATION ON KUIPER BELT OBJECTS

    International Nuclear Information System (INIS)

    Fraser, Wesley C.; Brown, Michael E.; Glass, Florian

    2015-01-01

    Here, we present additional photometry of targets observed as part of the Hubble Wide Field Camera 3 (WFC3) Test of Surfaces in the Outer Solar System. Twelve targets were re-observed with the WFC3 in the optical and NIR wavebands designed to complement those used during the first visit. Additionally, all of the observations originally presented by Fraser and Brown were reanalyzed through the same updated photometry pipeline. A re-analysis of the optical and NIR color distribution reveals a bifurcated optical color distribution and only two identifiable spectral classes, each of which occupies a broad range of colors and has correlated optical and NIR colors, in agreement with our previous findings. We report the detection of significant spectral variations on five targets which cannot be attributed to photometry errors, cosmic rays, point-spread function or sensitivity variations, or other image artifacts capable of explaining the magnitude of the variation. The spectrally variable objects are found to have a broad range of dynamical classes and absolute magnitudes, exhibit a broad range of apparent magnitude variations, and are found in both compositional classes. The spectrally variable objects with sufficiently accurate colors for spectral classification maintain their membership, belonging to the same class at both epochs. 2005 TV189 exhibits a sufficiently broad difference in color at the two epochs that span the full range of colors of the neutral class. This strongly argues that the neutral class is one single class with a broad range of colors, rather than the combination of multiple overlapping classes

  16. Characterization of advanced piezoelectric materials in the wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Burianova, L.; Kopal, A.; Nosek, J

    2003-05-25

    We report about methods and results of our measurements of piezoelectric, dielectric and elastic properties of piezoelectric materials like crystals, ceramics, composites, polymers and thin layer composites. Among the methods, used in our laboratories are: the resonance method working in the temperature range 208-358 K, hydrostatic methods, both static and dynamic in the range 273-333 K, laser interferometric methods, using single and double-beam interferometer, working at room temperature, single and double-beam micro-interferometers, working inside of optical cryostat in the range 150-330 K, and pulse echo method for measurements of elastic coefficients, using ultrasonic set, working at room temperature. In our earlier papers we reported about some of our results of piezoelectric measurements of PZT ceramics using resonance method and laser interferometric method. The results of both methods were in good agreement. Now, the measurements are realized on 0-3 ceramic-polymer composites and thin layer composites. It is well known, that both intrinsic (material) and extrinsic (domain structure) contributions to properties of ferroelectric samples have characteristic, sometimes rather strong, temperature dependence. Therefore, any extension of temperature range of the above mentioned methods is welcomed.

  17. Dielectric relaxation in solid collagen over a wide temperature range

    International Nuclear Information System (INIS)

    Khan, Muhammad Abdullah; Rizvi, Tasneem Zahra; Janjua, Khalid Mehmood; Zaheer, Muhammad Yar

    2001-07-01

    Dielectric constant ε' and loss factor ε'' have been measured in bovine tendon collagen in the frequency range 30 Hz - 3 MHz and temperature range 30 deg. C to 200 deg. C. Frequency dependence curve of ε'' shows a low frequency strong α-dispersion attributed to phonon assisted proton hopping between localized sites and a weak high frequency. α 2 - dispersion attributed to reorientation of polar components of collagen molecules. Temperature dependence of the dielectric data show release of bound moisture as a three step process with discrete peaks at 50 deg. C, 90 deg. C and 125 deg. C. These peaks have been attributed to release of adsorbed surface water, water bound to exposed polar sites and strongly bound internal moisture respectively. A peak observed at 160 deg. C has been attributed to thermally induced helix-coil transition of collagen molecules. (author)

  18. Wide-range scintillation spectrometer of fast neutrons

    International Nuclear Information System (INIS)

    Blinov, M.V.; Gavrilov, B.P.; Ivannikova, L.L.; Kozulin, Eh.M.; Mozhaev, A.N.; Saidgareev, V.M.; Tyurin, G.P.

    1984-01-01

    A spectrometer of fast neutrons developed on the base of stilbene crystas and permitting to detect neutrons simultaneously by time-of-flight and recoil protons with analysis of pulse shape in the 0.5-50 MeV energy range is described. The detecting part is performed in the CAMAC standard. The ''Minsk-32'' computer was used for data storage and preliminary processing

  19. Spectral properties of the Google matrix of the World Wide Web and other directed networks.

    Science.gov (United States)

    Georgeot, Bertrand; Giraud, Olivier; Shepelyansky, Dima L

    2010-05-01

    We study numerically the spectrum and eigenstate properties of the Google matrix of various examples of directed networks such as vocabulary networks of dictionaries and university World Wide Web networks. The spectra have gapless structure in the vicinity of the maximal eigenvalue for Google damping parameter α equal to unity. The vocabulary networks have relatively homogeneous spectral density, while university networks have pronounced spectral structures which change from one university to another, reflecting specific properties of the networks. We also determine specific properties of eigenstates of the Google matrix, including the PageRank. The fidelity of the PageRank is proposed as a characterization of its stability.

  20. The properties of ITE's silicon avalanche photodiodes within the spectral range used in scintillation detection

    CERN Document Server

    Wegrzecka, I

    1999-01-01

    The design and properties of 3 mm silicon avalanche photodiodes developed at ITE are presented. Their performance parameters within the spectral range applicable in scintillation detection (400-700 nm) are discussed and compared to those for near infrared radiation.

  1. The properties of ITE's silicon avalanche photodiodes within the spectral range used in scintillation detection

    Science.gov (United States)

    Wegrzecka, Iwona; Wegrzecki, Maciej

    1999-04-01

    The design and properties of 3 mm silicon avalanche photodiodes developed at ITE are presented. Their performance parameters within the spectral range applicable in scintillation detection (400-700 nm) are discussed and compared to those for near infrared radiation.

  2. Wide-range neutron dose determination with CR-39

    International Nuclear Information System (INIS)

    Arneja, A.R.; Waker, A.J.

    1995-01-01

    Optical density measurements of CR-30 irradiated with 252 Cf neutrons and chemically etched with 6.5 N KOH solution have been used to determine neutron absorbed doses between 0.1 and 10 Gy. Optimum etching conditions will depend upon the absorbed dose. Since it is not always possible to know the range of absorbed dose on a CR-39 dosemeter collected from personnel and area monitor stations in a criticality accident situation, a three-step two-hour chemical etch at 60 o C has been found to be appropriate. If after a total of six hours of chemical etching the optical density is found to be below 0.04 for 500 nm light (transmission > 90%) then further treatment in the form of electrochemical etching can be carried out to determine the lower absorbed dose. In this manner, absorbed doses below 0.1 Gy can be determined by counting tracks over a unit area. (author)

  3. Performance characterization of a pressure-tuned wide-angle Michelson interferometric spectral filter for high spectral resolution lidar

    Science.gov (United States)

    Seaman, Shane T.; Cook, Anthony L.; Scola, Salvatore J.; Hostetler, Chris A.; Miller, Ian; Welch, Wayne

    2015-09-01

    High Spectral Resolution Lidar (HSRL) is typically realized using an absorption filter to separate molecular returns from particulate returns. NASA Langley Research Center (LaRC) has designed and built a Pressure-Tuned Wide-Angle Michelson Interferometer (PTWAMI) as an alternate means to separate the two types of atmospheric returns. While absorption filters only work at certain wavelengths and suffer from low photon efficiency due to light absorption, an interferometric spectral filter can be designed for any wavelength and transmits nearly all incident photons. The interferometers developed at LaRC employ an air spacer in one arm, and a solid glass spacer in the other. Field widening is achieved by specific design and selection of the lengths and refractive indices of these two arms. The principal challenge in using such an interferometer as a spectral filter for HSRL aboard aircraft is that variations in glass temperature and air pressure cause changes in the interferometer's optical path difference. Therefore, a tuning mechanism is needed to actively accommodate for these changes. The pressure-tuning mechanism employed here relies on changing the pressure in an enclosed, air-filled arm of the interferometer to change the arm's optical path length. However, tuning using pressure will not adjust for tilt, mirror warpage, or thermally induced wavefront error, so the structural, thermal, and optical behavior of the device must be well understood and optimized in the design and manufacturing process. The PTWAMI has been characterized for particulate transmission ratio, wavefront error, and tilt, and shows acceptable performance for use in an HSRL instrument.

  4. [Influence of human body target's spectral characteristics on visual range of low light level image intensifiers].

    Science.gov (United States)

    Zhang, Jun-Ju; Yang, Wen-Bin; Xu, Hui; Liu, Lei; Tao, Yuan-Yaun

    2013-11-01

    To study the effect of different human target's spectral reflective characteristic on low light level (LLL) image intensifier's distance, based on the spectral characteristics of the night-sky radiation and the spectral reflective coefficients of common clothes, we established a equation of human body target's spectral reflective distribution, and analyzed the spectral reflective characteristics of different human targets wearing the clothes of different color and different material, and from the actual detection equation of LLL image intensifier distance, discussed the detection capability of LLL image intensifier for different human target. The study shows that the effect of different human target's spectral reflective characteristic on LLL image intensifier distance is mainly reflected in the average reflectivity rho(-) and the initial contrast of the target and the background C0. Reflective coefficient and spectral reflection intensity of cotton clothes are higher than polyester clothes, and detection capability of LLL image intensifier is stronger for the human target wearing cotton clothes. Experimental results show that the LLL image intensifiers have longer visual ranges for targets who wear cotton clothes than targets who wear same color but polyester clothes, and have longer visual ranges for targets who wear light-colored clothes than targets who wear dark-colored clothes. And in the full moon illumination conditions, LLL image intensifiers are more sensitive to the clothes' material.

  5. Wide-field Spatio-Spectral Interferometry: Bringing High Resolution to the Far- Infrared

    Science.gov (United States)

    Leisawitx, David

    Wide-field spatio-spectral interferometry combines spatial and spectral interferometric data to provide integral field spectroscopic information over a wide field of view. This technology breaks through a mission cost barrier that stands in the way of resolving spatially and measuring spectroscopically at far-infrared wavelengths objects that will lead to a deep understanding of planetary system and galaxy formation processes. A space-based far-IR interferometer will combine Spitzer s superb sensitivity with a two order of magnitude gain in angular resolution, and with spectral resolution in the thousands. With the possible exception of detector technology, which is advancing with support from other research programs, the greatest challenge for far-IR interferometry is to demonstrate that the interferometer will actually produce the images and spectra needed to satisfy mission science requirements. With past APRA support, our team has already developed the highly specialized hardware testbed, image projector, computational model, and image construction software required for the proposed effort, and we have access to an ideal test facility.

  6. Magnetorefractive effect in La0.7Ca0.3MnO3 in the infrared spectral range

    International Nuclear Information System (INIS)

    Sukhorukov, Yu. P.; Telegin, A. V.; Granovskii, A. B.; Gan'shina, E. A.; Naumov, S. V.; Kostromitina, N. V.; Elokhina, L. V.; Gonzalez, J.

    2010-01-01

    The reflection and magnetic reflection spectra, magnetic resistance, electrical properties, and equatorial Kerr effect in La 0.7 Ca 0.3 MnO 3 crystals have been complexly investigated. The measurements have been performed in wide temperature and spectral ranges in magnetic fields up to 3.5 kOe. It has been found that magnetic reflection is a high-frequency response in the infrared spectral range to the colossal magnetore-sistance near the Curie temperature. Correlation between the field and temperature dependences of the magnetic reflection and colossal magnetoresistance has been revealed. The previously developed theory of the magnetorefractive effect for metallic systems makes it possible to explain the experimental data at the qualitative level. Both demerits of the theory of the magnetorefractive effect in application to the magnets and possible additional mechanisms responsible for the magnetic reflection are discussed.

  7. Climate driven range divergence among host species affects range-wide patterns of parasitism

    Directory of Open Access Journals (Sweden)

    Richard E. Feldman

    2017-01-01

    Full Text Available Species interactions like parasitism influence the outcome of climate-driven shifts in species ranges. For some host species, parasitism can only occur in that part of its range that overlaps with a second host species. Thus, predicting future parasitism may depend on how the ranges of the two hosts change in relation to each other. In this study, we tested whether the climate driven species range shift of Odocoileus virginianus (white-tailed deer accounts for predicted changes in parasitism of two other species from the family Cervidae, Alces alces (moose and Rangifer tarandus (caribou, in North America. We used MaxEnt models to predict the recent (2000 and future (2050 ranges (probabilities of occurrence of the cervids and a parasite Parelaphostrongylus tenuis (brainworm taking into account range shifts of the parasite’s intermediate gastropod hosts. Our models predicted that range overlap between A. alces/R. tarandus and P. tenuis will decrease between 2000 and 2050, an outcome that reflects decreased overlap between A. alces/R. tarandus and O. virginianus and not the parasites, themselves. Geographically, our models predicted increasing potential occurrence of P. tenuis where A. alces/R. tarandus are likely to decline, but minimal spatial overlap where A. alces/R. tarandus are likely to increase. Thus, parasitism may exacerbate climate-mediated southern contraction of A. alces and R. tarandus ranges but will have limited influence on northward range expansion. Our results suggest that the spatial dynamics of one host species may be the driving force behind future rates of parasitism for another host species.

  8. Influence of temperature on the spectral characteristics of semiconductor lasers in the visible range

    Science.gov (United States)

    Adamov, A. A.; Baranov, M. S.; Khramov, V. N.

    2018-04-01

    The results of studies on the effect of temperature on the output spectral characteristics of continuous semiconductor lasers of the visible range are presented. The paper presents the results of studying the spectral-optical radiation parameters of semiconductor lasers, their coherence lengths, and the dependence of the position of the spectral peak of the wavelength on temperature. This is necessary for the selection of the most optimal laser in order to use it for medical ophthalmologic diagnosis. The experiment was carried out using semiconductor laser modules based on a laser diode. The spectra were recorded by using a two-channel automated spectral complex based on the MDR-23 monochromator. Spectral dependences on the temperature of semiconductor lasers are obtained, in the range from 300 to 370 K. The possibility of determining the internal damage to the stabilization of laser modules without opening the case is shown, but only with the use of their spectral characteristics. The obtained data allow taking into account temperature characteristics and further optimization of parameters of such lasers when used in medical practice, in particular, in ophthalmologic diagnostics.

  9. High-q microring resonator with narrow free spectral range for pulse repetition rate multiplication

    DEFF Research Database (Denmark)

    Pu, Minhao; Ji, Hua; Frandsen, Lars Hagedorn

    2009-01-01

    We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz.......We demonstrate a silicon-on-insulator microring resonator with a free-spectral-range of 0.32 nm, an extinction ratio of 27 dB, and a quality factor of ~140900 at 1550 nm that is used for pulse repetition-rate multiplication from 10 to 40 GHz....

  10. Silicon photodiode with selective Zr/Si coating for extreme ultraviolet spectral range

    International Nuclear Information System (INIS)

    Aruev, P N; Barysheva, Mariya M; Ber, B Ya; Zabrodskaya, N V; Zabrodskii, V V; Lopatin, A Ya; Pestov, Alexey E; Petrenko, M V; Polkovnikov, V N; Salashchenko, Nikolai N; Sukhanov, V L; Chkhalo, Nikolai I

    2012-01-01

    The procedure of manufacturing silicon photodiodes with an integrated Zr/Si filter for extreme ultraviolet (EUV) spectral range is developed. A setup for measuring the sensitivity profile of detectors with spatial resolution better than 100 μm is fabricated. The optical properties of silicon photodiodes in the EUV and visible spectral ranges are investigated. Some characteristics of SPD-100UV diodes with Zr/Si coating and without it, as well as of AXUV-100 diodes, are compared. In all types of detectors a narrow region beyond the operating aperture is found to be sensitive to the visible light. (photodetectors)

  11. Retrieval interval mapping, a tool to optimize the spectral retrieval range in differential optical absorption spectroscopy

    Science.gov (United States)

    Vogel, L.; Sihler, H.; Lampel, J.; Wagner, T.; Platt, U.

    2012-06-01

    Remote sensing via differential optical absorption spectroscopy (DOAS) has become a standard technique to identify and quantify trace gases in the atmosphere. The technique is applied in a variety of configurations, commonly classified into active and passive instruments using artificial and natural light sources, respectively. Platforms range from ground based to satellite instruments and trace-gases are studied in all kinds of different environments. Due to the wide range of measurement conditions, atmospheric compositions and instruments used, a specific challenge of a DOAS retrieval is to optimize the parameters for each specific case and particular trace gas of interest. This becomes especially important when measuring close to the detection limit. A well chosen evaluation wavelength range is crucial to the DOAS technique. It should encompass strong absorption bands of the trace gas of interest in order to maximize the sensitivity of the retrieval, while at the same time minimizing absorption structures of other trace gases and thus potential interferences. Also, instrumental limitations and wavelength depending sources of errors (e.g. insufficient corrections for the Ring effect and cross correlations between trace gas cross sections) need to be taken into account. Most often, not all of these requirements can be fulfilled simultaneously and a compromise needs to be found depending on the conditions at hand. Although for many trace gases the overall dependence of common DOAS retrieval on the evaluation wavelength interval is known, a systematic approach to find the optimal retrieval wavelength range and qualitative assessment is missing. Here we present a novel tool to determine the optimal evaluation wavelength range. It is based on mapping retrieved values in the retrieval wavelength space and thus visualize the consequence of different choices of retrieval spectral ranges, e.g. caused by slightly erroneous absorption cross sections, cross correlations and

  12. Evaluation of skin melanoma in spectral range 450-950 nm using principal component analysis

    Science.gov (United States)

    Jakovels, D.; Lihacova, I.; Kuzmina, I.; Spigulis, J.

    2013-06-01

    Diagnostic potential of principal component analysis (PCA) of multi-spectral imaging data in the wavelength range 450- 950 nm for distant skin melanoma recognition is discussed. Processing of the measured clinical data by means of PCA resulted in clear separation between malignant melanomas and pigmented nevi.

  13. Conjugation of fiber-coupled wide-band light sources and acousto-optical spectral elements

    Science.gov (United States)

    Machikhin, Alexander; Batshev, Vladislav; Polschikova, Olga; Khokhlov, Demid; Pozhar, Vitold; Gorevoy, Alexey

    2017-12-01

    Endoscopic instrumentation is widely used for diagnostics and surgery. The imaging systems, which provide the hyperspectral information of the tissues accessible by endoscopes, are particularly interesting and promising for in vivo photoluminescence diagnostics and therapy of tumour and inflammatory diseases. To add the spectral imaging feature to standard video endoscopes, we propose to implement acousto-optical (AO) filtration of wide-band illumination of incandescent-lamp-based light sources. To collect maximum light and direct it to the fiber-optic light guide inside the endoscopic probe, we have developed and tested the optical system for coupling the light source, the acousto-optical tunable filter (AOTF) and the light guide. The system is compact and compatible with the standard endoscopic components.

  14. Simple Wide Frequency Range Impedance Meter Based on AD5933 Integrated Circuit

    Directory of Open Access Journals (Sweden)

    Chabowski Konrad

    2015-03-01

    Full Text Available As it contains elements of complete digital impedance meter, the AD5933 integrated circuit is an interesting solution for impedance measurements. However, its use for measurements in a wide range of impedances and frequencies requires an additional digital and analogue circuitry. This paper presents the design and performance of a simple impedance meter based on the AD5933 IC. Apart from the AD5933 IC it consists of a clock generator with a programmable prescaler, a novel DC offset canceller for the excitation signal based on peak detectors and a current to voltage converter with switchable conversion ratios. The authors proposed a simple method for choosing the measurement frequency to minimalize errors resulting from the spectral leakage and distortion caused by a lack of an anti-aliasing filter in the DDS generator. Additionally, a novel method for the AD5933 IC calibration was proposed. It consists in a mathematical compensation of the systematic error occurring in the argument of the value returned from the AD5933 IC as a result. The performance of the whole system is demonstrated in an exemplary measurement.

  15. Modal spectral analysis of piping: Determination of the significant frequency range

    International Nuclear Information System (INIS)

    Geraets, L.H.

    1981-01-01

    This paper investigates the influence of the number of modes on the response of a piping system in a dynamic modal spectral analysis. It shows how the analysis can be limited to a specific frequency range of the pipe (independent of the frequency range of the response spectrum), allowing cost reduction without loss in accuracy. The 'missing mass' is taken into account through an original technique. (orig./HP)

  16. Michelson mode selector for spectral range stabilization in a self-sweeping fiber laser.

    Science.gov (United States)

    Tkachenko, A Yu; Vladimirskaya, A D; Lobach, I A; Kablukov, S I

    2018-04-01

    We report on spectral range stabilization in a self-sweeping laser by adding a narrowband fiber Bragg grating (FBG) to the output mirror in the Michelson configuration. The effects of FBG reflectivity and optical path difference in the Michelson interferometer on the laser spectral dynamics are investigated. Optimization of the interferometer allows us to demonstrate broadband (over 16 nm) self-sweeping operation and reduction of the start and stop wavelength fluctuations by two orders and one order of magnitude (∼100 and 15 times) for start and stop bounds, respectively (down to several picometers). The proposed approaches significantly improve quality of the spectral dynamics and facilitate application of the self-sweeping lasers.

  17. Radical protection by differently composed creams in the UV/VIS and IR spectral ranges.

    Science.gov (United States)

    Meinke, Martina C; Syring, Felicia; Schanzer, Sabine; Haag, Stefan F; Graf, Rüdiger; Loch, Manuela; Gersonde, Ingo; Groth, Norbert; Pflücker, Frank; Lademann, Jürgen

    2013-01-01

    Modern sunscreens are well suited to provide sufficient protection in the UV range because the filter substances absorb or scatter UV radiation. Although up to 50% of radicals are formed in the visible and infrared spectral range during solar radiation protection strategies are not provided in this range. Previous investigations of commercially available products have shown that in addition to physical filters, antioxidants (AO) are necessary to provide protective effects in the infrared range by neutralizing already formed radicals. In this study, the efficacy of filter substances and AO to reduce radical formation in both spectral ranges was investigated after UV/VIS or IR irradiation. Optical properties and radical protection were determined for the investigated creams. It was found that organic UV filters lower radical formation in the UV/VIS range to 35% compared to untreated skin, independent of the presence of AO. Further reduction to 14% was reached by addition of 2% physical filters, whereas physical filters alone were ineffective in the UV/VIS range due to the low concentration. In contrast, this filter type reduced radical formation in the IR range significantly to 65%; similar effects were aroused after application of AO. Sunscreens which contain organic UV filters, physical filters and AO ensure protection in the complete solar spectrum. © 2013 The American Society of Photobiology.

  18. Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications

    Science.gov (United States)

    Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.

    2012-01-01

    Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.

  19. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility.

    Science.gov (United States)

    Reverdin, Charles; Thais, Frédéric; Loisel, Guillaume; Busquet, M; Bastiani-Ceccotti, S; Blenski, T; Caillaud, T; Ducret, J E; Foelsner, W; Gilles, D; Gilleron, F; Pain, J C; Poirier, M; Serres, F; Silvert, V; Soullie, G; Turck-Chieze, S; Villette, B

    2012-10-01

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution ∼ 50. It has been used at the LULI-2000 laser facility at École Polytechnique (France) to measure the Δn = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  20. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility

    International Nuclear Information System (INIS)

    Reverdin, Charles; Caillaud, T.; Gilleron, F.; Pain, J. C.; Silvert, V.; Soullie, G.; Villette, B.; Thais, Frédéric; Loisel, Guillaume; Blenski, T.; Poirier, M.; Busquet, M.; Bastiani-Ceccotti, S.; Serres, F.; Ducret, J. E.; Foelsner, W.; Gilles, D.; Turck-Chieze, S.

    2012-01-01

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution ∼ 50. It has been used at the LULI-2000 laser facility at École Polytechnique (France) to measure the Δn = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  1. X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Reverdin, Charles; Caillaud, T.; Gilleron, F.; Pain, J. C.; Silvert, V.; Soullie, G.; Villette, B. [CEA, DAM, DIF, 91297 Arpajon (France); Thais, Frederic; Loisel, Guillaume; Blenski, T.; Poirier, M. [CEA, DSM, IRAMIS, Service Photons, Atomes et Molecules, 91191 Gif-sur-Yvette (France); Busquet, M. [ARTEP Inc, Ellicott City, Maryland 21042 (United States); Bastiani-Ceccotti, S.; Serres, F. [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau (France); Ducret, J. E. [CELIA, UMR5107, CEA, CNRS, Universite de Bordeaux, 33400 Talence (France); Foelsner, W. [Max Planck Instituet fuer Quantum Optik, 85748 Garching (Germany); Gilles, D.; Turck-Chieze, S. [CEA, DSM, IRFU, Service d' astrophysique, 91191 Gif-sur-Yvette (France)

    2012-10-15

    An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution {approx} 50. It has been used at the LULI-2000 laser facility at Ecole Polytechnique (France) to measure the {Delta}n = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

  2. Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Yu O; Lobintsov, A A; Shramenko, M V [OOO ' Opton' , Moscow (Russian Federation); Ladugin, M A; Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Chamorovsky, A Yu [Superlum Ltd., Unit B3, Fota Point Enterprise Park, Carrigtwohill, Co Cork (Ireland); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2015-08-31

    We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)

  3. Influence of spectral resolution, spectral range and signal-to-noise ratio of Fourier transform infra-red spectra on identification of high explosive substances

    Science.gov (United States)

    Banas, Krzysztof; Banas, Agnieszka M.; Heussler, Sascha P.; Breese, Mark B. H.

    2018-01-01

    In the contemporary spectroscopy there is a trend to record spectra with the highest possible spectral resolution. This is clearly justified if the spectral features in the spectrum are very narrow (for example infra-red spectra of gas samples). However there is a plethora of samples (in the liquid and especially in the solid form) where there is a natural spectral peak broadening due to collisions and proximity predominately. Additionally there is a number of portable devices (spectrometers) with inherently restricted spectral resolution, spectral range or both, which are extremely useful in some field applications (archaeology, agriculture, food industry, cultural heritage, forensic science). In this paper the investigation of the influence of spectral resolution, spectral range and signal-to-noise ratio on the identification of high explosive substances by applying multivariate statistical methods on the Fourier transform infra-red spectral data sets is studied. All mathematical procedures on spectral data for dimension reduction, clustering and validation were implemented within R open source environment.

  4. Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection

    Science.gov (United States)

    Xie, Yijing; Thom, Maria; Ebner, Michael; Wykes, Victoria; Desjardins, Adrien; Miserocchi, Anna; Ourselin, Sebastien; McEvoy, Andrew W.; Vercauteren, Tom

    2017-11-01

    In high-grade glioma surgery, tumor resection is often guided by intraoperative fluorescence imaging. 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) provides fluorescent contrast between normal brain tissue and glioma tissue, thus achieving improved tumor delineation and prolonged patient survival compared with conventional white-light-guided resection. However, commercially available fluorescence imaging systems rely solely on visual assessment of fluorescence patterns by the surgeon, which makes the resection more subjective than necessary. We developed a wide-field spectrally resolved fluorescence imaging system utilizing a Generation II scientific CMOS camera and an improved computational model for the precise reconstruction of the PpIX concentration map. In our model, the tissue's optical properties and illumination geometry, which distort the fluorescent emission spectra, are considered. We demonstrate that the CMOS-based system can detect low PpIX concentration at short camera exposure times, while providing high-pixel resolution wide-field images. We show that total variation regularization improves the contrast-to-noise ratio of the reconstructed quantitative concentration map by approximately twofold. Quantitative comparison between the estimated PpIX concentration and tumor histopathology was also investigated to further evaluate the system.

  5. Extending the Effective Ranging Depth of Spectral Domain Optical Coherence Tomography by Spatial Frequency Domain Multiplexing

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2016-11-01

    Full Text Available We present a spatial frequency domain multiplexing method for extending the imaging depth range of a spectral domain optical coherence tomography (SDOCT system without any expensive device. This method uses two galvo scanners with different pivot-offset distances in two independent reference arms for spatial frequency modulation and multiplexing. The spatial frequency contents corresponding to different depth regions of the sample can be shifted to different frequency bands. The spatial frequency domain multiplexing SDOCT system provides an approximately 1.9-fold increase in the effective ranging depth compared with that of a conventional full-range SDOCT system. The reconstructed images of phantom and biological tissue demonstrate the expected increase in ranging depth. The parameters choice criterion for this method is discussed.

  6. Inertial-range structure of Gross–Pitaevskii turbulence within a spectral closure approximation

    International Nuclear Information System (INIS)

    Yoshida, Kyo; Arimitsu, Toshihico

    2013-01-01

    The inertial-range structure of turbulence obeying the Gross–Pitaevskii equation, the equation of motion for quantum fluids, is analyzed by means of a spectral closure approximation. It is revealed that, for the energy-transfer range, the spectrum of the order parameter field ψ obeys k −2 law for k ≪ k * and k −1 law for k ≫ k * , where k * is the wavenumber where the characteristic timescales associated with linear and nonlinear terms are of the same order. It is also shown that, for the particle-number-transfer range, the spectrum obeys k −1 law for k ≪ k *, n and k −1/3 law for k ≫ k *,n , where k *,n is the wavenumber corresponding to k * in the particle-number-transfer range. (paper)

  7. Wide Temperature Range DC-DC Boost Converters for Command/Control/Drive Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We shall develop wide temperature range DC-DC boost converters that can be fabricated using commercial CMOS foundries. The boost converters will increase the low...

  8. GaN-based High Power High Frequency Wide Range LLC Resonant Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SET Group will design, build and demonstrate a Gallium Nitride (GaN) based High Power High Frequency Wide Range LLC Resonant Converter capable of handling high power...

  9. Development and testing of a fast Fourier transform high dynamic-range spectral diagnostics for millimeter wave characterization

    International Nuclear Information System (INIS)

    Thoen, D. J.; Bongers, W. A.; Westerhof, E.; Baar, M. R. de; Berg, M. A. van den; Beveren, V. van; Goede, A. P. H.; Graswinckel, M. F.; Schueller, F. C.; Oosterbeek, J. W.; Buerger, A.; Hennen, B. A.

    2009-01-01

    A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digital converter and a compact peripheral component interconnect computer. Frequency spectra are obtained by FFT in the time domain of the intermediate frequency signal. The scattered millimeter waves are generated during high power electron cyclotron resonance heating experiments on the TEXTOR tokamak and demonstrate the performance of the diagnostics and, in particular, the usability of direct digitizing and Fourier transformation of millimeter wave signals. The diagnostics is able to acquire 4 GHz wide spectra of signals in the range of 136-140 GHz. The rate of spectra is tunable and has been tested between 200 000 spectra/s with a frequency resolution of 100 MHz and 120 spectra/s with a frequency resolution of 25 kHz. The respective dynamic ranges are 52 and 88 dB. Major benefits of the new diagnostics are a tunable time and frequency resolution due to postdetection, near-real time processing of the acquired data. This diagnostics has a wider application in astrophysics, earth observation, plasma physics, and molecular spectroscopy for the detection and analysis of millimeter wave radiation, providing high-resolution spectra at high temporal resolution and large dynamic range.

  10. Scattering of an ultrashort electromagnetic radiation pulse by an atom in a broad spectral range

    International Nuclear Information System (INIS)

    Astapenko, V. A.

    2011-01-01

    The scattering of an ultrashort electromagnetic pulse by atomic particles is described using a consistent quantum-mechanical approach taking into account excitation of a target and nondipole electromagnetic interaction, which is valid in a broad spectral range. This approach is applied to the scattering of single- and few-cycle pulses by a multielectron atom and a hydrogen atom. Scattering spectra are obtained for ultrashort pulses of different durations. The relative contribution of “elastic” scattering of a single-cycle pulse by a hydrogen atom is studied in the high-frequency limit as a function of the carrier frequency and scattering angle.

  11. Multi-input wide dynamic range ADC system for use with nuclear detectors

    Energy Technology Data Exchange (ETDEWEB)

    Austin, R W [National Aeronautics and Space Administration, Huntsville, Ala. (USA). George C. Marshall Space Flight Center

    1976-04-15

    A wide dynamic range, eight input analog-to-digital converter system has been developed for use in nuclear experiments. The system consists of eight dual-range sample and hold modules, an eight input multiplexer, a ten-bit analog-to-digital converter, and the associated control logic.

  12. A digitized wide range channel for new instrumentation and control system of PUSPATI TRIGA Reactor (RTP)

    International Nuclear Information System (INIS)

    Zareen Khan Abdul Jalil Khan; Izhar Abu Hussin; Mohd Idris Taib; Nurfarhana Ayuni Joha; Roslan Md Dan

    2010-01-01

    Wide Range Channel is one of very important part of Reactor Instrumentation and Control system. Current system is using all analog system. The main functions of the new system are to provide Wide-log power and Multi-range linear power. The other functions are to provide Percent power and Power rate of change. The linear power level range is up to 125 % and the log power system to cover from below source level to 150 %. The main function of digital signal processor is for pulse shaping, pulse counting and root mean square signal processing. The system employs automatic on-line self diagnostics and calibration verification. (author)

  13. High speed, wide dynamic range analog signal processing for avalanche photodiode

    CERN Document Server

    Walder, J P; Pangaud, P

    2000-01-01

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented.

  14. High speed, wide dynamic range analog signal processing for avalanche photodiode

    International Nuclear Information System (INIS)

    Walder, J.P.; El Mamouni, Houmani; Pangaud, Patrick

    2000-01-01

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented

  15. High speed, wide dynamic range analog signal processing for avalanche photodiode

    Energy Technology Data Exchange (ETDEWEB)

    Walder, J.P. E-mail: walder@in2p3.fr; El Mamouni, Houmani; Pangaud, Patrick

    2000-03-11

    A wide dynamic range multi-gain analog transimpedance amplifier integrated circuit has been developed for avalanche photodiode signal processing. The 96 dB input dynamic range is divided into four ranges of 12-bits each in order to provide 40 MHz analog sampled data to a 12-bits ADC. This concept which has been integrated in both BiCMOS and full complementary bipolar technology along with fitted design techniques will be presented.

  16. Analysis of the Herschel/HIFI 1.2 THz Wide Spectral Survey of the Orion Kleinmann-Low Nebula

    Science.gov (United States)

    Crockett, Nathan R.

    This dissertation presents a comprehensive analysis of a broad band spectral line survey of the Orion Kleinmann-Low nebula (Orion KL), one of the most chemically rich regions in the Galaxy, using the HIFI instrument on board the Herschel Space Observatory. This survey spans a frequency range from 480 to 1907 GHz at a resolution of 1.1 MHz. These observations thus encompass the largest spectral coverage ever obtained toward this massive star forming region in the sub-mm with high spectral resolution, and include frequencies >1 THz where the Earth's atmosphere prevents observations from the ground. In all, we detect emission from 36 molecules (76 isotopologues). Combining this dataset with ground based mm spectroscopy obtained with the IRAM 30 m telescope, we model the molecular emission assuming local thermodynamic equilibrium (LTE). Because of the wide frequency coverage, our models are constrained over an unprecedented range in excitation energy, including states at or close to ground up to energies where emission is no longer detected. A χ2 analysis indicates that most of our models reproduce the observed emission well. In particular complex organics, some with thousands of transitions, are well fit by LTE models implying that gas densities are high (>10^6 cm^-3) and excitation temperatures and column densities are well constrained. Molecular abundances are computed using H2 column densities also derived from the HIFI survey. The rotation temperature distribution of molecules detected toward the hot core is much wider relative to the compact ridge, plateau, and extended ridge. We find that complex N-bearing species, cyanides in particular, systematically probe hotter gas than complex O-bearing species. This indicates complex N-bearing molecules may be more difficult to remove from grain surfaces or that hot gas phase formation routes are important for these species. We also present a detailed non-LTE analysis of H2S emission toward the hot core which suggests

  17. Approaches to contactless optical thermometer in the NIR spectral range based on Nd{sup 3+} doped crystalline nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kaldvee, K.; Nefedova, A.V. [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Fedorenko, S.G. [Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk 630090 (Russian Federation); Vanetsev, A.S. [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation); Orlovskaya, E.O. [Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation); Puust, L.; Pärs, M.; Sildos, I. [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Ryabova, A.V. [Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation); National Research Nuclear University Moscow Engineering Physics Institute, Kashirskoe Highway, 31, Moscow 115409 (Russian Federation); Orlovskii, Yu.V., E-mail: orlovski@Lst.gpi.ru [Institute of Physics, University of Tartu, W. Ostwaldi st. 1, Tartu 50411 (Estonia); Prokhorov General Physics Institute RAS, Vavilov st. 38, Moscow 119991 (Russian Federation)

    2017-03-15

    The fluorescence kinetics and spectral intensity ratio (FIR) methods for contactless optical temperature measurement in the NIR spectral range with Nd{sup 3+} doped YAG micro- and YPO{sub 4} nanocrystals are considered and the problems are revealed. The requirements for good temperature RE doped crystalline nanoparticles sensor are formulated.

  18. An ultrasensitive strain sensor with a wide strain range based on graphene armour scales.

    Science.gov (United States)

    Yang, Yi-Fan; Tao, Lu-Qi; Pang, Yu; Tian, He; Ju, Zhen-Yi; Wu, Xiao-Ming; Yang, Yi; Ren, Tian-Ling

    2018-06-12

    An ultrasensitive strain sensor with a wide strain range based on graphene armour scales is demonstrated in this paper. The sensor shows an ultra-high gauge factor (GF, up to 1054) and a wide strain range (ε = 26%), both of which present an advantage compared to most other flexible sensors. Moreover, the sensor is developed by a simple fabrication process. Due to the excellent performance, this strain sensor can meet the demands of subtle, large and complex human motion monitoring, which indicates its tremendous application potential in health monitoring, mechanical control, real-time motion monitoring and so on.

  19. Multi-stage LLC resonant converters designed for wide output voltage ranges

    OpenAIRE

    Tsang, C.-W.; Bingham, C. M.; Foster, M. P.; Stone, D. A.; Leech, J. M.

    2016-01-01

    The paper describes a novel multi-stage LLC resonant converter topology for facilitating wide output voltage ranges. This is achieved by combining the gain range of a capacitor-diode clamped LLC resonant converter with that of a traditional LLC resonant converter. A prototype converter is designed and commissioned to illustrate the design procedure and demonstrate resulting operational characteristics. Experimental results are used to show operational characteristics of the proposed conver...

  20. A wide range gamma monitor with digital display for remote monitoring

    International Nuclear Information System (INIS)

    Risbud, V.H.; Thiagarajan, A.; Gangadharan, P.

    1976-01-01

    A wide range gamma monitor designed for remote monitoring in nuclear facilities is described. The instrument consists of two GM detectors and pre-amplifiers connected by a long coaxial cable to the power supply, scalers and timers and display devices. Automatic selection of detectors range of exposure rate and display (nixie) are achieved with this set up, radiation levels in active areas can easily be displayed in the control room. Other advantages are also pointed out. (A.K.)

  1. A Fixed-Frequency Bidirectional Resonant DC-DC Converter Suitable for Wide Voltage Gain Range

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede

    2017-01-01

    This paper proposes a new bidirectional resonant dc-dc converter suitable for wide voltage gain range applications (e.g., energy storage systems). The proposed converter overcomes the narrow voltage gain range of conventional resonant DC-DC converters, and meanwhile achieves high efficiency...... and characteristics of the proposed converter are analyzed. Finally, a 1-kW converter prototype is built and the experimental results verify the theoretical analyses....

  2. Development of wide range charge integration application specified integrated circuit for photo-sensor

    Energy Technology Data Exchange (ETDEWEB)

    Katayose, Yusaku, E-mail: katayose@ynu.ac.jp [Department of Physics, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501 (Japan); Ikeda, Hirokazu [Institute of Space and Astronautical Science (ISAS)/Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Tanaka, Manobu [National Laboratory for High Energy Physics, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Shibata, Makio [Department of Physics, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501 (Japan)

    2013-01-21

    A front-end application specified integrated circuit (ASIC) is developed with a wide dynamic range amplifier (WDAMP) to read-out signals from a photo-sensor like a photodiode. The WDAMP ASIC consists of a charge sensitive preamplifier, four wave-shaping circuits with different amplification factors and Wilkinson-type analog-to-digital converter (ADC). To realize a wider range, the integrating capacitor in the preamplifier can be changed from 4 pF to 16 pF by a two-bit switch. The output of a preamplifier is shared by the four wave-shaping circuits with four gains of 1, 4, 16 and 64 to adapt the input range of ADC. A 0.25-μm CMOS process (of UMC electronics CO., LTD) is used to fabricate the ASIC with four-channels. The dynamic range of four orders of magnitude is achieved with the maximum range over 20 pC and the noise performance of 0.46 fC + 6.4×10{sup −4} fC/pF. -- Highlights: ► A front-end ASIC is developed with a wide dynamic range amplifier. ► The ASIC consists of a CSA, four wave-shaping circuits and pulse-height-to-time converters. ► The dynamic range of four orders of magnitude is achieved with the maximum range over 20 pC.

  3. An abundance of small exoplanets around stars with a wide range of metallicities

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Latham, David W.; Johansen, Anders

    2012-01-01

    of the host stars of 226 small exoplanet candidates discovered by NASAs Kepler mission, including objects that are comparable in size to the terrestrial planets in the Solar System. We find that planets with radii less than four Earth radii form around host stars with a wide range of metallicities (but...

  4. X-γ dose rate continuous monitor with wide range based on single-chip microcomputer

    International Nuclear Information System (INIS)

    Wu Debo; Ling Qiu; Guo Lanying; Yang Binhua

    2007-01-01

    This paper describes a concept about circuit designing of X-γ dose rate continuous monitor with wide range based on single-chip microcomputer, and also presents the design procedure of hardware and software, and gives several methods for solving the design procedure of hardware and software with emphasis. (authors)

  5. A sub-circuit MOSFET model with a wide temperature range including cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Jia Kan; Sun Weifeng; Shi Longxing, E-mail: jiakan.01@gmail.com [National ASIC System Engineering Research Center, Southeast University, Nanjing 210096 (China)

    2011-06-15

    A sub-circuit SPICE model of a MOSFET for low temperature operation is presented. Two resistors are introduced for the freeze-out effect, and the explicit behavioral models are developed for them. The model can be used in a wide temperature range covering both cryogenic temperature and regular temperatures. (semiconductor devices)

  6. Surface impedance of superconductors in wide frequency ranges for wake field calculations

    International Nuclear Information System (INIS)

    Davidovskii, V.G.

    2006-01-01

    The problem of the surface impedance of superconductors in wide frequency ranges for calculations of wake fields, generated by bunches of charged particles moving axially inside a metallic vacuum chambers, is solved. The case of specular electron reflection at the superconductor surface is considered. The expression for the surface impedance of superconductors suitable for numerical computation is derived [ru

  7. Interactions between vegetation, atmospheric turbulence and clouds under a wide range of background wind conditions

    NARCIS (Netherlands)

    Sikma, M.; Ouwersloot, H.G.; Pedruzo-Bagazgoitia, X.; Heerwaarden, van C.C.; Vilà-Guerau de Arellano, J.

    2018-01-01

    The effects of plant responses to cumulus (Cu) cloud shading are studied from free convective to shear-driven boundary-layer conditions. By using a large-eddy simulation (LES) coupled to a plant physiology embedded land-surface submodel, we study the vegetation-cloud feedbacks for a wide range (44)

  8. Motor Integrated Permanent Magnet Gear with a Wide Torque-Speed Range

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand; Matzen, Torben N.; Jahns, T. M.

    2009-01-01

    This paper present a new motor integrated permanent magnet gear with a wide torque-speed range. In the paper a 35 kW permanent magnet motor with a base speed of 4000 rpm and a top speed of 14000 rpm is integrated into a permanent magnetic gear with a gearing ratio of 8.67. The design process...

  9. Circuit model optimization of a nano split ring resonator dimer antenna operating in infrared spectral range

    International Nuclear Information System (INIS)

    Gneiding, N.; Zhuromskyy, O.; Peschel, U.; Shamonina, E.

    2014-01-01

    Metamaterials are comprised of metallic structures with a strong response to incident electromagnetic radiation, like, for example, split ring resonators. The interaction of resonator ensembles with electromagnetic waves can be simulated with finite difference or finite elements algorithms, however, above a certain ensemble size simulations become inadmissibly time or memory consuming. Alternatively a circuit description of metamaterials, a well developed modelling tool at radio and microwave frequencies, allows to significantly increase the simulated ensemble size. This approach can be extended to the IR spectral range with an appropriate set of circuit element parameters accounting for physical effects such as electron inertia and finite conductivity. The model is verified by comparing the coupling coefficients with the ones obtained from the full wave numerical simulations, and used to optimize the nano-antenna design with improved radiation characteristics.

  10. Opo lidar sounding of trace atmospheric gases in the 3 - 4 μm spectral range

    Science.gov (United States)

    Romanovskii, Oleg A.; Sadovnikov, Sergey A.; Kharchenko, Olga V.; Yakovlev, Semen V.

    2018-04-01

    The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG) is based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.

  11. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, E V; Il' chenko, S N; Lobintsov, A A; Shramenko, M V [Superlum Diodes Ltd., Moscow (Russian Federation); Ladugin, M A [' Sigm Plyus' Ltd, Moscow (Russian Federation); Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2013-11-30

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  12. Broadband semiconductor optical amplifiers of the spectral range 750 – 1100 nm

    International Nuclear Information System (INIS)

    Andreeva, E V; Il'chenko, S N; Lobintsov, A A; Shramenko, M V; Ladugin, M A; Marmalyuk, A A; Yakubovich, S D

    2013-01-01

    A line of travelling-wave semiconductor optical amplifiers (SOAs) based on heterostructures used for production of broadband superluminescent diodes is developed. The pure small-signal gains of the developed SOA modules are about 25 dB, while the gain bandwidths at a level of –10 dB reach 50 – 100 nm. As a whole, the SOA modules cover the IR spectral range from 750 to 1100 nm. The SOAs demonstrate a high reliability at a single-mode fibre-coupled cw output power up to 50 mW. Examples of application of two of the developed SOA modules as active elements of broadband fast-tunable lasers are presented. (lasers)

  13. Spectral properties of an extended Hubbard ladder with long range anti-ferromagnetic order

    Science.gov (United States)

    Yang, Chun; Feiguin, Adrian

    We study the spectral properties of a Hubbard ladder with anti-ferromagnetic long range order by introducing a staggered Heisenberg interaction that decays algebraically. Unlike an alternating field or the t -Jz model, our problem preserves both SU (2) and translational invariance. We solve the problem with the time-dependent density matrix renormalization group and analyze the binding between holons and spinons and the structure of the elementary excitations. We discuss the implications in the context of the 2D Hubbard model at, and away from half-filling by using cluster perturbation theory (CPT). AF acknowledges the U.S. Department of Energy, Office of Basic Energy Sciences, for support under Grant DE-SC0014407.

  14. Wide-field spectral imaging of human ovary autofluorescence and oncologic diagnosis via previously collected probe data

    Science.gov (United States)

    Renkoski, Timothy E.; Hatch, Kenneth D.; Utzinger, Urs

    2012-03-01

    With no sufficient screening test for ovarian cancer, a method to evaluate the ovarian disease state quickly and nondestructively is needed. The authors have applied a wide-field spectral imager to freshly resected ovaries of 30 human patients in a study believed to be the first of its magnitude. Endogenous fluorescence was excited with 365-nm light and imaged in eight emission bands collectively covering the 400- to 640-nm range. Linear discriminant analysis was used to classify all image pixels and generate diagnostic maps of the ovaries. Training the classifier with previously collected single-point autofluorescence measurements of a spectroscopic probe enabled this novel classification. The process by which probe-collected spectra were transformed for comparison with imager spectra is described. Sensitivity of 100% and specificity of 51% were obtained in classifying normal and cancerous ovaries using autofluorescence data alone. Specificity increased to 69% when autofluorescence data were divided by green reflectance data to correct for spatial variation in tissue absorption properties. Benign neoplasm ovaries were also found to classify as nonmalignant using the same algorithm. Although applied ex vivo, the method described here appears useful for quick assessment of cancer presence in the human ovary.

  15. Argus+: The Future of Wide-Field, Spectral-Line Imaging at 3-mm with the Green Bank Telescope

    Science.gov (United States)

    Maddalena, Ronald; Frayer, David; Lockman, Felix; O'Neil, Karen; White, Steven; Argus+ Collaboration

    2018-01-01

    The Robert C Byrd Green Bank Telescope has met its design goal of providing high-quality observations at 115 GHz. Observers also have access to the new, 16-pixel, 3-mm Argus receiver, which is providing high-dynamic range images over wide fields for the multitude of spectral lines between 85 and 115 GHz, including CO, 13CO, C18O, SiO, HCN, HCO+, HNC, N2H+, and CS. The small number of pixels in Argus limits its ability to map many of the most interesting objects whose extent exceeds many arc-minutes. The successful performance of Argus, and its modular design, demonstrates that receivers with many more pixels could be built for the GBT. A 12 x 12 array of the Argus design would have mapping speeds about nine times faster than Argus without suffering any degradation in performance for the outer pixels in the array. We present our plans to build the next-generation Argus instrument (Argus+) with 144-pixels, a footprint 5’x5’, and 7" resolution at 110 GHz. The project will be a collaboration between the Green Bank Observatory and university groups, who will supply key components. The key science drivers for Argus+ are studies of molecular filaments in the Milky Way, studies of molecular clouds in nearby galaxies, and the observations of rapidly evolving solar system objects.

  16. CO-ANALYSIS OF SOLAR MICROWAVE AND HARD X-RAY SPECTRAL EVOLUTIONS. I. IN TWO FREQUENCY OR ENERGY RANGES

    International Nuclear Information System (INIS)

    Song Qiwu; Huang Guangli; Nakajima, Hiroshi

    2011-01-01

    Solar microwave and hard X-ray spectral evolutions are co-analyzed in the 2000 June 10 and 2002 April 10 flares, and are simultaneously observed by the Owens-Valley Solar Array in the microwave band and by Yohkoh/Hard X-ray Telescope or RHESSI in the hard X-ray band, with multiple subpeaks in their light curves. The microwave and hard X-ray spectra are fitted by a power law in two frequency ranges of the optical thin part and two photon energy ranges, respectively. Similar to an earlier event in Shao and Huang, the well-known soft-hard-soft pattern of the lower energy range changed to the hard-soft-hard (HSH) pattern of the higher energy range during the spectral evolution of each subpeak in both hard X-ray flares. This energy dependence is actually supported by a positive correlation between the overall light curves and spectral evolution in the lower energy range, while it becomes an anti-correlation in the higher energy range. Regarding microwave data, the HSH pattern appears in the spectral evolution of each subpeak in the lower frequency range, which is somewhat similar to Huang and Nakajima. However, it returns back to the well-known pattern of soft-hard-harder for the overall spectral evolution in the higher frequency range of both events. This frequency dependence is confirmed by an anti-correlation between the overall light curves and spectral evolution in the lower frequency range, but it becomes a positive correlation in the higher frequency range. The possible mechanisms are discussed, respectively, for reasons why hard X-ray and microwave spectral evolutions have different patterns in different energy and frequency intervals.

  17. Wearable Wide-Range Strain Sensors Based on Ionic Liquids and Monitoring of Human Activities

    Directory of Open Access Journals (Sweden)

    Shao-Hui Zhang

    2017-11-01

    Full Text Available Wearable sensors for detection of human activities have encouraged the development of highly elastic sensors. In particular, to capture subtle and large-scale body motion, stretchable and wide-range strain sensors are highly desired, but still a challenge. Herein, a highly stretchable and transparent stain sensor based on ionic liquids and elastic polymer has been developed. The as-obtained sensor exhibits impressive stretchability with wide-range strain (from 0.1% to 400%, good bending properties and high sensitivity, whose gauge factor can reach 7.9. Importantly, the sensors show excellent biological compatibility and succeed in monitoring the diverse human activities ranging from the complex large-scale multidimensional motions to subtle signals, including wrist, finger and elbow joint bending, finger touch, breath, speech, swallow behavior and pulse wave.

  18. An emittance measurement system for a wide range of bunch charges

    International Nuclear Information System (INIS)

    Dunham, B.; Engwall, D.; Hofler, A.; Keesee, M.; Legg, R.

    1997-01-01

    As a part of the emittance measurements planned for the FEL injector at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), the authors have developed an emittance measurement system that covers the wide dynamic range of bunch charges necessary to fully characterize the high-DC-voltage photocathode gun. The measurements are carried out with a variant of the classical two-slit method using a slit to sample the beam in conjunction with a wire scanner to measure the transmitted beam profile. The use of commercial, ultra-low noise picoammeters makes it possible to cover the wide range of desired bunch charges, with the actual measurements made over the range of 0.25 pC to 125 pC. The entire system, including its integration into the EPICS control system, is discussed

  19. SHARPENDING OF THE VNIR AND SWIR BANDS OF THE WIDE BAND SPECTRAL IMAGER ONBOARD TIANGONG-II IMAGERY USING THE SELECTED BANDS

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2018-04-01

    Full Text Available The Tiangong-II space lab was launched at the Jiuquan Satellite Launch Center of China on September 15, 2016. The Wide Band Spectral Imager (WBSI onboard the Tiangong-II has 14 visible and near-infrared (VNIR spectral bands covering the range from 403–990 nm and two shortwave infrared (SWIR bands covering the range from 1230–1250 nm and 1628–1652 nm respectively. In this paper the selected bands are proposed which aims at considering the closest spectral similarities between the VNIR with 100 m spatial resolution and SWIR bands with 200 m spatial resolution. The evaluation of Gram-Schmidt transform (GS sharpening techniques embedded in ENVI software is presented based on four types of the different low resolution pan band. The experimental results indicated that the VNIR band with higher CC value with the raw SWIR Band was selected, more texture information was injected the corresponding sharpened SWIR band image, and at that time another sharpened SWIR band image preserve the similar spectral and texture characteristics to the raw SWIR band image.

  20. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T. [Fermi National Accelerator Lab., Batavia, IL (United States); Lindgren, M. [Univ. of California, Los Angeles, CA (United States). Physics Dept.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time.

  1. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    International Nuclear Information System (INIS)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T.; Lindgren, M.

    1994-06-01

    High energy physics experiments running at high interaction rates frequently require long record lengths for determining a level 1 trigger. The easiest way to provide a long event record is by digital means. In applications requiring wide dynamic range, however, digitization of an analog signal to obtain the digital record has been impossible due to lack of high speed, wide range FADCs. One such application is the readout of thousands of photomultiplier tubes in fixed target and colliding beam experiment calorimeters. A circuit has been designed for digitizing PMT signals over a wide dynamic range (17--18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Tests of the circuit with a PMT input and a pulsed laser have provided respectable results with little off line correction. Performance of the circuit for demanding applications can be significantly enhanced with additional off line correction. Circuit design, packaging issues, and test results of a multirange device are presented for the first time

  2. High-dynamic range compressive spectral imaging by grayscale coded aperture adaptive filtering

    Directory of Open Access Journals (Sweden)

    Nelson Eduardo Diaz

    2015-09-01

    Full Text Available The coded aperture snapshot spectral imaging system (CASSI is an imaging architecture which senses the three dimensional informa-tion of a scene with two dimensional (2D focal plane array (FPA coded projection measurements. A reconstruction algorithm takes advantage of the compressive measurements sparsity to recover the underlying 3D data cube. Traditionally, CASSI uses block-un-block coded apertures (BCA to spatially modulate the light. In CASSI the quality of the reconstructed images depends on the design of these coded apertures and the FPA dynamic range. This work presents a new CASSI architecture based on grayscaled coded apertu-res (GCA which reduce the FPA saturation and increase the dynamic range of the reconstructed images. The set of GCA is calculated in a real-time adaptive manner exploiting the information from the FPA compressive measurements. Extensive simulations show the attained improvement in the quality of the reconstructed images when GCA are employed.  In addition, a comparison between traditional coded apertures and GCA is realized with respect to noise tolerance.

  3. Robust wide-range control of nuclear reactors by using the feedforward-feedback concept

    International Nuclear Information System (INIS)

    Weng, C.K.; Edwards, R.M.; Ray, A.

    1994-01-01

    A robust feedforward-feedback controller is proposed for wide-range operations of nuclear reactors. This control structure provides (a) optimized performance over a wide operating range resulting form the feedforward element and (b) guaranteed robust stability and performance resulting from the feedback element. The feedforward control law is synthesized via nonlinear programming, which generates an optimal control sequence over a finite-time horizon under specified constraints. The feedback control is synthesized via the structured singular value μ approach to guarantee robustness in the presence of disturbances and modeling uncertainties. The results of simulation experiments are presented to demonstrate efficacy of the proposed control structure for a large rapid power reduction to avoid unnecessary plant trips

  4. Diffuse radiation models and monthly-average, daily, diffuse data for a wide latitude range

    International Nuclear Information System (INIS)

    Gopinathan, K.K.; Soler, A.

    1995-01-01

    Several years of measured data on global and diffuse radiation and sunshine duration for 40 widely spread locations in the latitude range 36° S to 60° N are used to develop and test models for estimating monthly-mean, daily, diffuse radiation on horizontal surfaces. Applicability of the clearness-index (K) and sunshine fraction (SSO) models for diffuse estimation and the effect of combining several variables into a single multilinear equation are tested. Correlations connecting the diffuse to global fraction (HdH) with K and SSO predict Hd values more accurately than their separate use. Among clearness-index and sunshine-fraction models, SSO models are found to have better accuracy if correlations are developed for wide latitude ranges. By including a term for declinations in the correlation, the accuracy of the estimated data can be marginally improved. The addition of latitude to the equation does not help to improve the accuracy further. (author)

  5. Novel methodology for wide-ranged multistage morphing waverider based on conical theory

    Science.gov (United States)

    Liu, Zhen; Liu, Jun; Ding, Feng; Xia, Zhixun

    2017-11-01

    This study proposes the wide-ranged multistage morphing waverider design method. The flow field structure and aerodynamic characteristics of multistage waveriders are also analyzed. In this method, the multistage waverider is generated in the same conical flowfield, which contains a free-stream surface and different compression-stream surfaces. The obtained results show that the introduction of the multistage waverider design method can solve the problem of aerodynamic performance deterioration in the off-design state and allow the vehicle to always maintain the optimal flight state. The multistage waverider design method, combined with transfiguration flight strategy, can lead to greater design flexibility and the optimization of hypersonic wide-ranged waverider vehicles.

  6. CFD comparison with centrifugal compressor measurements on a wide operating range

    Directory of Open Access Journals (Sweden)

    Arnou D.

    2013-04-01

    Full Text Available Centrifugal compressors are widely used in industrial applications thanks to their high efficiency. They are able to provide a wide operating range before reaching the flow barrier or surge limits. Performances and range are described by compressor maps obtained experimentally. After a description of performance test rig, this article compares measured centrifugal compressor performances with computational fluid dynamics results. These computations are performed at steady conditions with R134a refrigerant as fluid. Navier-Stokes equations, coupled with k-ε turbulence model, are solved by the commercial software ANSYS-CFX by means of volume finite method. Input conditions are varied in order to calculate several speed lines. Theoretical isentropic efficiency and theoretical surge line are finally compared to experimental data.

  7. A Wide Lock-Range Referenceless CDR with Automatic Frequency Acquisition

    OpenAIRE

    Seon-Kyoo Lee; Young-Sang Kim; Hong-June Park; Jae-Yoon Sim

    2011-01-01

    A wide lock-range referenceless CDR circuit is proposed with an automatic tracking of data rate. For efficient frequency acquisition, a DLL-based loop is used with a simple phase/frequency detector to extract 1-bit period of input data stream. The CDR, implemented in a 65 nm CMOS, shows a lock range of 650 Mb/s-to-8 Gb/s and BER of less than 10-12 at 8 Gb/s with low power consumption.

  8. A Wide Lock-Range Referenceless CDR with Automatic Frequency Acquisition

    Directory of Open Access Journals (Sweden)

    Seon-Kyoo Lee

    2011-01-01

    Full Text Available A wide lock-range referenceless CDR circuit is proposed with an automatic tracking of data rate. For efficient frequency acquisition, a DLL-based loop is used with a simple phase/frequency detector to extract 1-bit period of input data stream. The CDR, implemented in a 65 nm CMOS, shows a lock range of 650 Mb/s-to-8 Gb/s and BER of less than 10-12 at 8 Gb/s with low power consumption.

  9. An Optimized Control for LLC Resonant Converter with Wide Load Range

    Science.gov (United States)

    Xi, Xia; Qian, Qinsong

    2017-05-01

    This paper presents an optimized control which makes LLC resonant converters operate with a wider load range and provides good closed-loop performance. The proposed control employs two paralleled digital compensations to guarantee the good closed-loop performance in a wide load range during the steady state, an optimized trajectory control will take over to change the gate-driving signals immediately at the load transients. Finally, the proposed control has been implemented and tested on a 150W 200kHz 400V/24V LLC resonant converter and the result validates the proposed method.

  10. Modelling plastic deformation of metals over a wide range of strain rates using irreversible thermodynamics

    International Nuclear Information System (INIS)

    Huang Mingxin; Rivera-Diaz-del-Castillo, Pedro E J; Zwaag, Sybrand van der; Bouaziz, Olivier

    2009-01-01

    Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that there is a transitional strain rate (∼ 10 4 s -1 ) over which the phonon drag effects appear, resulting in a significant increase in the flow stress and the average dislocation density. The model is applied to pure Cu deformed at room temperature and at strain rates ranging from 10 -5 to 10 6 s -1 showing good agreement with experimental results.

  11. A high speed, wide dynamic range digitizer circuit for photomultiplier tubes

    International Nuclear Information System (INIS)

    Yarema, R.J.; Foster, G.W.; Knickerbocker, K.; Sarraj, M.; Tschirhart, R.; Whitmore, J.; Zimmerman, T.; Lindgren, M.

    1995-01-01

    A circuit has been designed for digitizing PMT signals over a wide dynamic range (17-18 bits) with 8 bits of resolution at rates up to 53 MHz. Output from the circuit is in a floating point format with a 4 bit exponent and an 8 bit mantissa. The heart of the circuit is a full custom integrated circuit called the QIE (Charge Integrator and Encoder). The design of the QIE and associated circuitry reported here permits operation over a 17 bit dynamic range. Test results of a multirange device are presented for the first time. (orig.)

  12. A Bidirectional Resonant DC-DC Converter Suitable for Wide Voltage Gain Range

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Al-Durra, Ahmed

    2018-01-01

    This paper proposes a new bidirectional resonant dc-dc converter suitable for wide voltage gain range applications (e.g., energy storage systems). The proposed converter overcomes the narrow voltage gain range of conventional resonant dc-dc converters, and meanwhile achieves high efficiency...... losses. The operation principles and characteristics of the proposed converter are firstly analyzed in this paper. Then the analytical solutions for the voltage gain, soft-switching, and rms currents are derived, which facilitates the parameters design and optimization. Finally, the proposed topology...... and analysis are verified with experimental results obtained from a 1-kW converter prototype....

  13. Development of GM tube electronic personal dosimeter with wide range and multi-purposes

    International Nuclear Information System (INIS)

    Li Jing; Weng Puyu; Chen Mingjun; Hu Zunsu; Huang Chenguang; Lei Jindian

    2003-01-01

    This paper describes the main design features and basic properties of a GM tube electronic personal dosimeter with wide range and multi-purposes. the dosimeter can display dose-rate or accumulative dose or the maximum dose-rate, record accumulative dose and the maximum dose-rate as well as the time of its appearance and at most 160 historical dose values within 8 h. All recorded data can directly be sent to PC by the infrared communication

  14. Full-range k-domain linearization in spectral-domain optical coherence tomography.

    Science.gov (United States)

    Jeon, Mansik; Kim, Jeehyun; Jung, Unsang; Lee, Changho; Jung, Woonggyu; Boppart, Stephen A

    2011-03-10

    A full-bandwidth k-domain linearization method for spectral-domain optical coherence tomography (SD-OCT) is demonstrated. The method uses information of the wavenumber-pixel-position provided by a translating-slit-based wavelength filter. For calibration purposes, the filter is placed either after a broadband source or at the end of the sample path, and the filtered spectrum with a narrowed line width (∼0.5 nm) is incident on a line-scan camera in the detection path. The wavelength-swept spectra are co-registered with the pixel positions according to their central wavelengths, which can be automatically measured with an optical spectrum analyzer. For imaging, the method does not require a filter or a software recalibration algorithm; it simply resamples the OCT signal from the detector array without employing rescaling or interpolation methods. The accuracy of k-linearization is maximized by increasing the k-linearization order, which is known to be a crucial parameter for maintaining a narrow point-spread function (PSF) width at increasing depths. The broadening effect is studied by changing the k-linearization order by undersampling to search for the optimal value. The system provides more position information, surpassing the optimum without compromising the imaging speed. The proposed full-range k-domain linearization method can be applied to SD-OCT systems to simplify their hardware/software, increase their speed, and improve the axial image resolution. The experimentally measured width of PSF in air has an FWHM of 8 μm at the edge of the axial measurement range. At an imaging depth of 2.5 mm, the sensitivity of the full-range calibration case drops less than 10 dB compared with the uncompensated case.

  15. Modifications to JLab 12 GeV Refrigerator and Wide Range Mix Mode Performance Testing Results

    Science.gov (United States)

    Knudsen, P.; Ganni, V.; Hasan, N.; Dixon, K.; Norton, R.; Creel, J.

    2017-02-01

    Analysis of data obtained during the spring 2013 commissioning of the new 4.5 K refrigeration system at Jefferson Lab (JLab) for the 12 GeV upgrade indicated a wide capacity range with good efficiency and minimal operator interaction. Testing also showed that the refrigerator required higher liquid nitrogen (LN) consumption for its pre-cooler than anticipated by the design. This does not affect the capacity of the refrigerator, but it does result in an increased LN utility cost. During the summer of 2015 the modifications were implemented by the cold box manufacturer, according to a design similar to the JLab 12 GeV cold box specification. Subsequently, JLab recommissioned the cold box and performed extensive performance testing, ranging from 20% to 100% of the design maximum capacity, and in various modes of operation, ranging from pure refrigeration, pure liquefaction, half-and-half mix mode and at selected design modes using the Floating Pressure - Ganni Cycle. The testing demonstrated that the refrigerator system has a good and fairly constant performance over a wide capacity range and different modes of operation. It also demonstrated the modifications resulted in a LN consumption that met the design for the pure refrigeration mode (which is the most demanding) and was lower than the design for the nominal and maximum capacity modes. In addition, a pulsed-load test, similar to what is expected for cryogenic systems supporting fusion experiments, was conducted to observe the response using the Floating Pressure - Ganni Cycle, which was stable and robust. This paper will discuss the results and analysis of this testing pertaining to the LN consumption, the system efficiency over a wide range of capacity and different modes and the behaviour of the system to a pulsed load.

  16. Thermotaxis of human sperm cells in extraordinarily shallow temperature gradients over a wide range.

    Directory of Open Access Journals (Sweden)

    Anat Bahat

    Full Text Available On the basis of the finding that capacitated (ready to fertilize rabbit and human spermatozoa swim towards warmer temperatures by directing their movement along a temperature gradient, sperm thermotaxis has been proposed to be one of the processes guiding these spermatozoa to the fertilization site. Although the molecular mechanism underlying sperm thermotaxis is gradually being revealed, basic questions related to this process are still open. Here, employing human spermatozoa, we addressed the questions of how wide the temperature range of thermotaxis is, whether this range includes an optimal temperature or whether spermatozoa generally prefer swimming towards warmer temperatures, whether or not they can sense and respond to descending temperature gradients, and what the minimal temperature gradient is to which they can thermotactically respond. We found that human spermatozoa can respond thermotactically within a wide temperature range (at least 29-41°C, that within this range they preferentially accumulate in warmer temperatures rather than at a single specific, preferred temperature, that they can respond to both ascending and descending temperature gradients, and that they can sense and thermotactically respond to temperature gradients as low as <0.014°C/mm. This temperature gradient is astonishingly low because it means that as a spermatozoon swims through its entire body length (46 µm it can sense and respond to a temperature difference of <0.0006°C. The significance of this surprisingly high temperature sensitivity is discussed.

  17. Wide-Range Adaptive RF-to-DC Power Converter for UHF RFIDs

    KAUST Repository

    Ouda, Mahmoud H.

    2016-07-27

    A wide-range, differential, cross-coupled rectifier is proposed with an extended dynamic range of input RF power that enables wireless powering from varying distances. The proposed architecture mitigates the reverse-leakage problem in conven- tional, cross-coupled rectifiers without degrading sensitivity. A prototype is designed for UHF RFID applications, and is imple- mented using 0.18 μ m CMOS technology. On-chip measurements demonstrate a sensitivity of − 18 dBm for 1 V output over a 100 k Ω load and a peak RF-to-DC power conversion efficiency of 65%. A conventional, fully cross-coupled rectifier is fabricated along- side for comparison and the proposed rectifier shows more than 2 × increase in dynamic range and a 25% boosting in output voltage than the conventional rectifier

  18. Transmitted spectral modulation of double-ring resonator using liquid crystals in terahertz range

    Science.gov (United States)

    Sun, Huijuan; Zhou, Qingli; Wang, Xiumin; Li, Chenyu; Wu, Ani; Zhang, Cunlin

    2013-12-01

    Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recent research on these artificial materials has been pushed forward to the terahertz region because of potential applications in biological fingerprinting, security imaging, remote sensing, and high frequency magnetic and electric resonant devices. Active control of their properties could further facilitate and open up new applications in terms of modulation and switching. Liquid crystals, which have been the subject of research for more than a century, have the unique properties for the development of many other optical components such as light valves, tunable filters and tunable lenses. In this paper, we investigated the transmitted spectral modulation in terahertz range by using liquid crystals (5CB and TEB300) covering on the fabricated double-ring resonators to realize the shift of the resonance frequency. Our obtained results indicate the low frequency resonance shows the obvious blue-shift, while the location of high frequency resonance is nearly unchanged. We believe this phenomenon is related to not only the refractive index of the covering liquid crystals but also the resonant mechanism of both resonances.

  19. Darwin: Dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, T.; Satoh, D.; Endo, A.; Yamaguchi, Y.

    2007-01-01

    A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with Wide energy ranges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high-energy accelerator facilities. DARWIN is composed of a Phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and wide response range of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. It was also found from the experiments that DARWIN enables us to monitor small fluctuations of neutron dose rates near the background level because of its high sensitivity. With these properties, DARWIN will be able to play a very important role for improving radiation safety in high-energy accelerator facilities. (authors)

  20. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  1. Wide-range stiffness gradient PVA/HA hydrogel to investigate stem cell differentiation behavior.

    Science.gov (United States)

    Oh, Se Heang; An, Dan Bi; Kim, Tae Ho; Lee, Jin Ho

    2016-04-15

    Although stiffness-controllable substrates have been developed to investigate the effect of stiffness on cell behavior and function, the use of separate substrates with different degrees of stiffness, substrates with a narrow range stiffness gradient, toxicity of residues, different surface composition, complex fabrication procedures/devices, and low cell adhesion are still considered as hurdles of conventional techniques. In this study, a cylindrical polyvinyl alcohol (PVA)/hyaluronic acid (HA) hydrogel with a wide-range stiffness gradient (between ∼20kPa and ∼200kPa) and cell adhesiveness was prepared by a liquid nitrogen (LN2)-contacting gradual freezing-thawing method that does not use any additives or specific devices to produce the stiffness gradient hydrogel. From an in vitro cell culture using the stiffness gradient PVA/HA hydrogel, it was observed that human bone marrow mesenchymal stem cells have favorable stiffness ranges for induction of differentiation into specific cell types (∼20kPa for nerve cell, ∼40kPa for muscle cell, ∼80kPa for chondrocyte, and ∼190kPa for osteoblast). The PVA/HA hydrogel with a wide range of stiffness spectrum can be a useful tool for basic studies related with the stem cell differentiation, cell reprogramming, cell migration, and tissue regeneration in terms of substrate stiffness. It is postulated that the stiffness of the extracellular matrix influences cell behavior. To prove this concept, various techniques to prepare substrates with a stiffness gradient have been developed. However, the narrow ranges of stiffness gradient and complex fabrication procedures/devices are still remained as limitations. Herein, we develop a substrate (hydrogel) with a wide-range stiffness gradient using a gradual freezing-thawing method which does not need specific devices to produce a stiffness gradient hydrogel. From cell culture experiments using the hydrogel, it is observed that human bone marrow mesenchymal stem cells have

  2. Dielectric tensor of monoclinic Ga2O3 single crystals in the spectral range 0.5–8.5 eV

    Directory of Open Access Journals (Sweden)

    C. Sturm

    2015-10-01

    Full Text Available The dielectric tensor of Ga2O3 in the monoclinic (β phase was determined by generalized spectroscopic ellipsometry in a wide spectral range from 0.5 eV to 8.5 eV as well as by density functional theory calculations combined with many-body perturbation theory including quasiparticle and excitonic effects. The dielectric tensors obtained by both methods are in excellent agreement with each other and the observed transitions in the dielectric function are assigned to the corresponding valence bands. It is shown that the off-diagonal element of the dielectric tensor reaches values up to |εxz| ≈ 0.30 and cannot be neglected. Even in the transparent spectral range where it is quite small (|εxz| < 0.02 it causes a rotation of the dielectric axes around the symmetry axis of up to 20°.

  3. Multimode simulations of a wide field of view double-Fourier far-infrared spatio-spectral interferometer

    Science.gov (United States)

    Bracken, Colm P.; Lightfoot, John; O'Sullivan, Creidhe; Murphy, J. Anthony; Donohoe, Anthony; Savini, Giorgio; Juanola-Parramon, Roser; The Fisica Consortium, On Behalf Of

    2018-01-01

    In the absence of 50-m class space-based observatories, subarcsecond astronomy spanning the full far-infrared wavelength range will require space-based long-baseline interferometry. The long baselines of up to tens of meters are necessary to achieve subarcsecond resolution demanded by science goals. Also, practical observing times command a field of view toward an arcminute (1‧) or so, not achievable with a single on-axis coherent detector. This paper is concerned with an application of an end-to-end instrument simulator PyFIInS, developed as part of the FISICA project under funding from the European Commission's seventh Framework Programme for Research and Technological Development (FP7). Predicted results of wide field of view spatio-spectral interferometry through simulations of a long-baseline, double-Fourier, far-infrared interferometer concept are presented and analyzed. It is shown how such an interferometer, illuminated by a multimode detector can recover a large field of view at subarcsecond angular resolution, resulting in similar image quality as that achieved by illuminating the system with an array of coherent detectors. Through careful analysis, the importance of accounting for the correct number of higher-order optical modes is demonstrated, as well as accounting for both orthogonal polarizations. Given that it is very difficult to manufacture waveguide and feed structures at sub-mm wavelengths, the larger multimode design is recommended over the array of smaller single mode detectors. A brief note is provided in the conclusion of this paper addressing a more elegant solution to modeling far-infrared interferometers, which holds promise for improving the computational efficiency of the simulations presented here.

  4. Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive

    Energy Technology Data Exchange (ETDEWEB)

    Cournet, Amandine [Universite de Toulouse, UPS, LU49, Adhesion Bacterienne et Formation de Biofilms, 35 chemin des Maraichers, 31 062 Toulouse cedex 09 (France); Laboratoire de Genie Chimique CNRS, Universite de Toulouse, 4 allee Emile Monso, BP 84234, 31432 Toulouse cedex 04 (France); Delia, Marie-Line; Bergel, Alain [Laboratoire de Genie Chimique CNRS, Universite de Toulouse, 4 allee Emile Monso, BP 84234, 31432 Toulouse cedex 04 (France); Roques, Christine; Berge, Mathieu [Universite de Toulouse, UPS, LU49, Adhesion Bacterienne et Formation de Biofilms, 35 chemin des Maraichers, 31 062 Toulouse cedex 09 (France)

    2010-04-15

    Most bacteria known to be electrochemically active have been harvested in the anodic compartments of microbial fuel cells (MFCs) and are able to use electrodes as electron acceptors. The reverse phenomenon, i.e. using solid electrodes as electron donors, is not so widely studied. To our knowledge, most of the electrochemically active bacteria are Gram-negative. The present study implements a transitory electrochemical technique (cyclic voltammetry) to study the microbial catalysis of the electrochemical reduction of oxygen. It is demonstrated that a wide range of aerobic and facultative anaerobic bacteria are able to catalyze oxygen reduction. Among these electroactive bacteria, several were Gram-positive. The transfer of electrons was direct since no activity was obtained with the filtrate. These findings, showing a widespread property among bacteria including Gram-positive ones, open new and interesting routes in the field of electroactive bacteria research. (author)

  5. A high linearity current mode multiplier/divider with a wide dynamic range

    International Nuclear Information System (INIS)

    Liao Pengfei; Luo Ping; Zhang Bo; Li Zhaoji

    2012-01-01

    A high linearity current mode multiplier/divider (CMM/D) with a wide dynamic range is presented. The proposed CMM/D is based on the voltage—current characteristic of the diode, thus wide dynamic range is achieved. In addition, high linearity is achieved because high accuracy current mirrors are adopted and the output current is insensitive to the temperature and device parameters of the fabrication process. Furthermore, no extra bias current for all input signals is required and thus power saving is realized. With proper selection of establishing the input terminal, the proposed circuit can perform as a multifunction circuit to be operated as a multiplier/divider, without changing its topology. The proposed circuit is implemented in a 0.25 μm BCD process and the chip area is 0.26 × 0.24 mm 2 . The simulation and measurement results show that the maximum static linearity error is ±1.8% and the total harmonic distortion is 0.4% while the input current ranges from 0 to 200 μA. (semiconductor integrated circuits)

  6. Genetically encoded ratiometric fluorescent thermometer with wide range and rapid response.

    Directory of Open Access Journals (Sweden)

    Masahiro Nakano

    Full Text Available Temperature is a fundamental physical parameter that plays an important role in biological reactions and events. Although thermometers developed previously have been used to investigate several important phenomena, such as heterogeneous temperature distribution in a single living cell and heat generation in mitochondria, the development of a thermometer with a sensitivity over a wide temperature range and rapid response is still desired to quantify temperature change in not only homeotherms but also poikilotherms from the cellular level to in vivo. To overcome the weaknesses of the conventional thermometers, such as a limitation of applicable species and a low temporal resolution, owing to the narrow temperature range of sensitivity and the thermometry method, respectively, we developed a genetically encoded ratiometric fluorescent temperature indicator, gTEMP, by using two fluorescent proteins with different temperature sensitivities. Our thermometric method enabled a fast tracking of the temperature change with a time resolution of 50 ms. We used this method to observe the spatiotemporal temperature change between the cytoplasm and nucleus in cells, and quantified thermogenesis from the mitochondria matrix in a single living cell after stimulation with carbonyl cyanide 4-(trifluoromethoxyphenylhydrazone, which was an uncoupler of oxidative phosphorylation. Moreover, exploiting the wide temperature range of sensitivity from 5°C to 50°C of gTEMP, we monitored the temperature in a living medaka embryo for 15 hours and showed the feasibility of in vivo thermometry in various living species.

  7. Low-power wide-locking-range injection-locked frequency divider for OFDM UWB systems

    Energy Technology Data Exchange (ETDEWEB)

    Yin Jiangwei; Li Ning; Zheng Renliang; Li Wei; Ren Junyan, E-mail: lining@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-05-01

    This paper describes a divide-by-two injection-locked frequency divider (ILFD) for frequency synthesizers as used in multiband orthogonal frequency division multiplexing (OFDM) ultra-wideband (UWB) systems. By means of dual-injection technique and other conventional tuning techniques, such as DCCA and varactor tuning, the divider demonstrates a wide locking range while consuming much less power. The chip was fabricated in the Jazz 0.18 mum RF CMOS process. The measurement results show that the divider achieves a locking range of 4.85 GHz (6.23 to 11.08 GHz) at an input power of 8 dBm. The core circuit without the test buffer consumes only 3.7 mA from a 1.8 V power supply and has a die area of 0.38 x 0.28 mm{sup 2}. The wide locking range combined with low power consumption makes the ILFD suitable for its application in UWB systems.

  8. Low-power wide-locking-range injection-locked frequency divider for OFDM UWB systems

    International Nuclear Information System (INIS)

    Yin Jiangwei; Li Ning; Zheng Renliang; Li Wei; Ren Junyan

    2009-01-01

    This paper describes a divide-by-two injection-locked frequency divider (ILFD) for frequency synthesizers as used in multiband orthogonal frequency division multiplexing (OFDM) ultra-wideband (UWB) systems. By means of dual-injection technique and other conventional tuning techniques, such as DCCA and varactor tuning, the divider demonstrates a wide locking range while consuming much less power. The chip was fabricated in the Jazz 0.18 μm RF CMOS process. The measurement results show that the divider achieves a locking range of 4.85 GHz (6.23 to 11.08 GHz) at an input power of 8 dBm. The core circuit without the test buffer consumes only 3.7 mA from a 1.8 V power supply and has a die area of 0.38 x 0.28 mm 2 . The wide locking range combined with low power consumption makes the ILFD suitable for its application in UWB systems.

  9. Resource selection and its implications for wide-ranging mammals of the brazilian cerrado.

    Science.gov (United States)

    Vynne, Carly; Keim, Jonah L; Machado, Ricardo B; Marinho-Filho, Jader; Silveira, Leandro; Groom, Martha J; Wasser, Samuel K

    2011-01-01

    Conserving animals beyond protected areas is critical because even the largest reserves may be too small to maintain viable populations for many wide-ranging species. Identification of landscape features that will promote persistence of a diverse array of species is a high priority, particularly, for protected areas that reside in regions of otherwise extensive habitat loss. This is the case for Emas National Park, a small but important protected area located in the Brazilian Cerrado, the world's most biologically diverse savanna. Emas Park is a large-mammal global conservation priority area but is too small to protect wide-ranging mammals for the long-term and conserving these populations will depend on the landscape surrounding the park. We employed novel, noninvasive methods to determine the relative importance of resources found within the park, as well as identify landscape features that promote persistence of wide-ranging mammals outside reserve borders. We used scat detection dogs to survey for five large mammals of conservation concern: giant armadillo (Priodontes maximus), giant anteater (Myrmecophaga tridactyla), maned wolf (Chrysocyon brachyurus), jaguar (Panthera onca), and puma (Puma concolor). We estimated resource selection probability functions for each species from 1,572 scat locations and 434 giant armadillo burrow locations. Results indicate that giant armadillos and jaguars are highly selective of natural habitats, which makes both species sensitive to landscape change from agricultural development. Due to the high amount of such development outside of the Emas Park boundary, the park provides rare resource conditions that are particularly important for these two species. We also reveal that both woodland and forest vegetation remnants enable use of the agricultural landscape as a whole for maned wolves, pumas, and giant anteaters. We identify those features and their landscape compositions that should be prioritized for conservation, arguing

  10. Resource selection and its implications for wide-ranging mammals of the brazilian cerrado.

    Directory of Open Access Journals (Sweden)

    Carly Vynne

    Full Text Available Conserving animals beyond protected areas is critical because even the largest reserves may be too small to maintain viable populations for many wide-ranging species. Identification of landscape features that will promote persistence of a diverse array of species is a high priority, particularly, for protected areas that reside in regions of otherwise extensive habitat loss. This is the case for Emas National Park, a small but important protected area located in the Brazilian Cerrado, the world's most biologically diverse savanna. Emas Park is a large-mammal global conservation priority area but is too small to protect wide-ranging mammals for the long-term and conserving these populations will depend on the landscape surrounding the park. We employed novel, noninvasive methods to determine the relative importance of resources found within the park, as well as identify landscape features that promote persistence of wide-ranging mammals outside reserve borders. We used scat detection dogs to survey for five large mammals of conservation concern: giant armadillo (Priodontes maximus, giant anteater (Myrmecophaga tridactyla, maned wolf (Chrysocyon brachyurus, jaguar (Panthera onca, and puma (Puma concolor. We estimated resource selection probability functions for each species from 1,572 scat locations and 434 giant armadillo burrow locations. Results indicate that giant armadillos and jaguars are highly selective of natural habitats, which makes both species sensitive to landscape change from agricultural development. Due to the high amount of such development outside of the Emas Park boundary, the park provides rare resource conditions that are particularly important for these two species. We also reveal that both woodland and forest vegetation remnants enable use of the agricultural landscape as a whole for maned wolves, pumas, and giant anteaters. We identify those features and their landscape compositions that should be prioritized for

  11. Modelling seasonal habitat suitability for wide-ranging species: Invasive wild pigs in northern Australia.

    Directory of Open Access Journals (Sweden)

    Jens G Froese

    Full Text Available Invasive wildlife often causes serious damage to the economy and agriculture as well as environmental, human and animal health. Habitat models can fill knowledge gaps about species distributions and assist planning to mitigate impacts. Yet, model accuracy and utility may be compromised by small study areas and limited integration of species ecology or temporal variability. Here we modelled seasonal habitat suitability for wild pigs, a widespread and harmful invader, in northern Australia. We developed a resource-based, spatially-explicit and regional-scale approach using Bayesian networks and spatial pattern suitability analysis. We integrated important ecological factors such as variability in environmental conditions, breeding requirements and home range movements. The habitat model was parameterized during a structured, iterative expert elicitation process and applied to a wet season and a dry season scenario. Model performance and uncertainty was evaluated against independent distributional data sets. Validation results showed that an expert-averaged model accurately predicted empirical wild pig presences in northern Australia for both seasonal scenarios. Model uncertainty was largely associated with different expert assumptions about wild pigs' resource-seeking home range movements. Habitat suitability varied considerably between seasons, retracting to resource-abundant rainforest, wetland and agricultural refuge areas during the dry season and expanding widely into surrounding grassland floodplains, savanna woodlands and coastal shrubs during the wet season. Overall, our model suggested that suitable wild pig habitat is less widely available in northern Australia than previously thought. Mapped results may be used to quantify impacts, assess risks, justify management investments and target control activities. Our methods are applicable to other wide-ranging species, especially in data-poor situations.

  12. Impedance Based Analysis and Design of Harmonic Resonant Controller for a Wide Range of Grid Impedance

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2014-01-01

    This paper investigates the effect of grid impedance variation on harmonic resonant current controllers for gridconnected voltage source converters by means of impedance-based analysis. It reveals that the negative harmonic resistances tend to be derived from harmonic resonant controllers...... in the closed-loop output admittance of converter. Such negative resistances may interact with the grid impedance resulting in steady state error or unstable harmonic compensation. To deal with this problem, a design guideline for harmonic resonant controllers under a wide range of grid impedance is proposed...

  13. A liquid crystalline medium for measuring residual dipolar couplings over a wide range of temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hong; Eberstadt, Matthias; Olejniczak, Edward T.; Meadows, Robert P.; Fesik, Stephen W. [Abbott Laboratories (United States)

    1998-10-15

    A mixture of dilauroyl phosphatidylcholine (DLPC) and 3-(cholamidopropyl)dimethylammonio-2-hydroxyl-1-propane sulfonate (CHAPSO) in water forms disc shaped bicelles that become ordered at high magnetic fields over a wide range of temperatures. As illustrated for the FK506 binding protein (FKBP), large residual dipolar couplings can be measured for proteins dissolved in low concentrations (5% w/v) of a DLPC/CHAPSO medium at a molar ratio of 4.2:1. This system is especially useful for measuring residual dipolar couplings for molecules that are only stable at low temperatures.

  14. Lithium-ion battery dynamic model for wide range of operating conditions

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Stroe, Daniel-Ioan; Swierczynski, Maciej Jozef

    2017-01-01

    In order to analyze the dynamic behavior of a Lithium-ion (Li-ion) battery and to determine their suitability for various applications, battery models are needed. An equivalent electrical circuit model is the most common way of representing the behavior of a Li-ion battery. There are different...... characterization tests performed for a wide range of operating conditions (temperature, load current and state-of-charge) on a commercial available 13Ah high-power lithium titanate oxide battery cell. The obtained results were used to parametrize the proposed dynamic model of the battery cell. To assess...

  15. Wide Input Range Power Converters Using a Variable Turns Ratio Transformer

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Andersen, Michael A. E.

    2016-01-01

    A new integrated transformer with variable turns ratio is proposed to enable dc-dc converters operating over a wide input voltage range. The integrated transformer employs a new geometry of magnetic core with “four legs”, two primary windings with orthogonal arrangement, and “8” shape connection...... of diagonal secondary windings, in order to make the transformer turns ratio adjustable by controlling the phase between the two current excitations subjected to the two primary windings. Full-bridge boost dc-dc converter is employed with the proposed transformer to demonstrate the feasibility of the variable...

  16. Model Study of Wave Overtopping of Marine Structure for a Wide Range of Geometric Parameters

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter

    2000-01-01

    The objective of the study described in this paper is to enable estimation of wave overtopping rates for slopes/ramps given by a wide range of geometric parameters when subjected to varying wave conditions. To achieve this a great number of model tests are carried out in a wave tank using irregul...... 2-D waves. On the basis of the first part of these tests an exponential overtopping expression for a linear slope, including the effect of limited draught and varying slope angle, is presented. The plans for further tests with other slope geometries are described....

  17. Wide-range nuclear reactor temperature control using automatically tuned fuzzy logic controller

    International Nuclear Information System (INIS)

    Ramaswamy, P.; Edwards, R.M.; Lee, K.Y.

    1992-01-01

    In this paper, a fuzzy logic controller design for optimal reactor temperature control is presented. Since fuzzy logic controllers rely on an expert's knowledge of the process, they are hard to optimize. An optimal controller is used in this paper as a reference model, and a Kalman filter is used to automatically determine the rules for the fuzzy logic controller. To demonstrate the robustness of this design, a nonlinear six-delayed-neutron-group plant is controlled using a fuzzy logic controller that utilizes estimated reactor temperatures from a one-delayed-neutron-group observer. The fuzzy logic controller displayed good stability and performance robustness characteristics for a wide range of operation

  18. Real time analysis of electromagnetic radiation in a very wide frequency range

    International Nuclear Information System (INIS)

    Peralta, J.A.; Reyes L, P.; Yepez, E.

    2001-01-01

    In this work, we present an electronic apparatus that facilitates the monitoring and analysis of electromagnetic radiation in a very wide frequency range. The device is a combination of real and virtual instruments, taking advantage of new hardware and software; the measurable range of frequencies depends on the speed of an analog/digital converter, reaching tens of Megahertz. The device has been successfully used to monitor the environmental electromagnetic radiation at very low frequency, a very useful parameter in the research of electromagnetic precursors of earthquakes. The apparatus is a new configuration and has advantages with respect to those previously used: when the attached computer is fast, Fourier analysis can be done in real time, can display simultaneously several bands, the digitized data allow a variety of methods of analysis, and the apparatus is very cheap. (Author)

  19. Subdigital setae of chameleon feet: friction-enhancing microstructures for a wide range of substrate roughness.

    Science.gov (United States)

    Spinner, Marlene; Westhoff, Guido; Gorb, Stanislav N

    2014-06-27

    Hairy adhesive systems of microscopic setae with triangular flattened tips have evolved convergently in spiders, insects and arboreal lizards. The ventral sides of the feet and tails in chameleons are also covered with setae. However, chameleon setae feature strongly elongated narrow spatulae or fibrous tips. The friction enhancing function of these microstructures has so far only been demonstrated in contact with glass spheres. In the present study, the frictional properties of subdigital setae of Chamaeleo calyptratus were measured under normal forces in the physical range on plane substrates having different roughness. We showed that chameleon setae maximize friction on a wide range of substrate roughness. The highest friction was measured on asperities of 1 μm. However, our observations of the climbing ability of Ch. calyptratus on rods of different diameters revealed that also claws and grasping feet are additionally responsible for the force generation on various substrates during locomotion.

  20. Stability diagrams for continuous wide-range control of two mutually delay-coupled semiconductor lasers

    International Nuclear Information System (INIS)

    Junges, Leandro; Gallas, Jason A C

    2015-01-01

    The dynamics of two mutually delay-coupled semiconductor lasers has been frequently studied experimentally, numerically, and analytically either for weak or strong detuning between the lasers. Here, we present a systematic numerical investigation spanning all detuning ranges. We report high-resolution stability diagrams for wide ranges of the main control parameters of the laser, as described by the Lang–Kobayashi model. In particular, we detail the parameter influence on dynamical performance and map the distribution of chaotic pulsations and self-generated periodic spiking with arbitrary periodicity. Special attention is given to the unfolding of regular pulse packages for both symmetric and non-symmetric configurations with respect to detuning. The influence of the delay –time on the self-organization of periodic and chaotic laser phases as a function of the coupling and detuning is also described in detail. (paper)

  1. Generalized weighted ratio method for accurate turbidity measurement over a wide range.

    Science.gov (United States)

    Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying

    2015-12-14

    Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.

  2. Autonomous Vehicles Have a Wide Range of Possible Energy Impacts (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.; Repac, B.; Gonder, J.

    2013-07-01

    This poster presents initial estimates of the net energy impacts of automated vehicles (AVs). Automated vehicle technologies are increasingly recognized as having potential to decrease carbon dioxide emissions and petroleum consumption through mechanisms such as improved efficiency, better routing, lower traffic congestion, and by enabling advanced technologies. However, some effects of AVs could conceivably increase fuel consumption through possible effects such as longer distances traveled, increased use of transportation by underserved groups, and increased travel speeds. The net effect on petroleum use and climate change is still uncertain. To make an aggregate system estimate, we first collect best estimates for the energy impacts of approximately ten effects of AVs. We then use a modified Kaya Identity approach to estimate the range of aggregate effects and avoid double counting. We find that depending on numerous factors, there is a wide range of potential energy impacts. Adoption of automated personal or shared vehicles can lead to significant fuel savings but has potential for backfire.

  3. Surrogate runner model for draft tube losses computation within a wide range of operating points

    International Nuclear Information System (INIS)

    Susan-Resiga, R; Ciocan, T; Muntean, S; De Colombel, T; Leroy, P

    2014-01-01

    We introduce a quasi two-dimensional (Q2D) methodology for assessing the swirling flow exiting the runner of hydraulic turbines at arbitrary operating points, within a wide operating range. The Q2D model does not need actual runner computations, and as a result it represents a surrogate runner model for a-priori assessment of the swirling flow ingested by the draft tube. The axial, radial and circumferential velocity components are computed on a conical section located immediately downstream the runner blades trailing edge, then used as inlet conditions for regular draft tube computations. The main advantage of our model is that it allows the determination of the draft tube losses within the intended turbine operating range in the early design stages of a new or refurbished runner, thus providing a robust and systematic methodology to meet the optimal requirements for the flow at the runner outlet

  4. Real time analysis of electromagnetic radiation in a very wide frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Peralta, J.A.; Reyes L, P.; Yepez, E. [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, Edificio 9, U.P. Adolfo Lopez Mateos, Zacatenco, 07738 Mexico D.F. (Mexico)

    2001-07-01

    In this work, we present an electronic apparatus that facilitates the monitoring and analysis of electromagnetic radiation in a very wide frequency range. The device is a combination of real and virtual instruments, taking advantage of new hardware and software; the measurable range of frequencies depends on the speed of an analog/digital converter, reaching tens of Megahertz. The device has been successfully used to monitor the environmental electromagnetic radiation at very low frequency, a very useful parameter in the research of electromagnetic precursors of earthquakes. The apparatus is a new configuration and has advantages with respect to those previously used: when the attached computer is fast, Fourier analysis can be done in real time, can display simultaneously several bands, the digitized data allow a variety of methods of analysis, and the apparatus is very cheap. (Author)

  5. 3He(α, γ7Be cross section in a wide energy range

    Directory of Open Access Journals (Sweden)

    Szücs Tamás

    2017-01-01

    Full Text Available The reaction rate of the 3He(α,γ7 Be reaction is important both in the Big Bang Nucleosynthesis (BBN and in the Solar hydrogen burning. There have been a lot of experimental and theoretical efforts to determine this reaction rate with high precision. Some long standing issues have been solved by the more precise investigations, like the different S(0 values predicted by the activation and in-beam measurement. However, the recent, more detailed astrophysical model predictions require the reaction rate with even higher precision to unravel new issues like the Solar composition. One way to increase the precision is to provide a comprehensive dataset in a wide energy range, extending the experimental cross section database of this reaction. This paper presents a new cross section measurement between Ecm = 2.5 − 4.4 MeV, in an energy range which extends above the 7Be proton separation threshold.

  6. Properties of Wide-dose-range GafChromic Films for Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Nariyama, Nobuteru

    2007-01-01

    GafChromic films have been used at SPring-8 to detect the intensively irradiated parts and protect them from damage by being covered with shield or moved. To extend the usable dose range more widely, a new type of sensitive film EBT was investigated for the introduction. Calibration curves were obtained irradiated with 60Co γ rays and compared with those of other GafChromic films. For the application, these films were set in the white x-ray hutch and the dose distribution was measured. Ratio of doses given by EBT and XT-R indicated the degree of the photon spectrum hardness, which depended on the positions. As a result, dose range from 50 mGy to 300 kGy became available for dose distribution measurements, and a set of films having different energy responses was found to give information of photon spectra

  7. A wide temperature range irradiation cryostat for reasearch on solid state targets

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, Scott; Dutz, Hartmut; Goertz, Stefan; Runkel, Stefan; Voge, Thomas [Physikalisches Institut, Universitaet Bonn (Germany)

    2012-07-01

    To qualitatively improve the data obtained in asymmetry measurements of scattering experiments the figure of merit (FOM) plays a major role and can reduce the data acquisition time when a certain precision in the measurement is needed. One of the defining factors for the improvement of the polarised experiment lies in the target choice and preparation, in particular the method employed to introduce the paramagnetic defects for the use of dynamic nuclear polarisation (DNP). To this end the Polarized Target Group in Bonn has developed a wide range temperature cryostat for the irradiation of potential target materials in which materials can be irradiated to varying doses at specified temperatures. The stable irradiation temperature of the materials can be controlled to within {+-}1 K over a range of 90 K

  8. Microscopic nucleon spectral function for finite nuclei featuring two- and three-nucleon short-range correlations: The model versus ab initio calculations for three-nucleon systems

    Science.gov (United States)

    Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko

    2017-04-01

    order of magnitude less than the effect of two-nucleon short-range correlations. Conclusions: The convolution model of the spectral function of the three-nucleon systems featuring both two- and three-nucleon short-range correlations and correctly depending upon the ab initio two-nucleon relative and center-of-mass momentum distributions provides in the correlation region a satisfactory approximation of the spectral function in a wide range of momentum and removal energy. The extension of the model to complex nuclei is expected to provide a realistic microscopic parameter-free model of the spectral function, whose properties are therefore governed by the features of realistic two-nucleon interactions and the momentum distributions in a given nucleus.

  9. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.

    Science.gov (United States)

    Kocun, Marta; Labuda, Aleksander; Meinhold, Waiman; Revenko, Irène; Proksch, Roger

    2017-10-24

    Tapping mode atomic force microscopy (AFM), also known as amplitude modulated (AM) or AC mode, is a proven, reliable, and gentle imaging mode with widespread applications. Over the several decades that tapping mode has been in use, quantification of tip-sample mechanical properties such as stiffness has remained elusive. Bimodal tapping mode keeps the advantages of single-frequency tapping mode while extending the technique by driving and measuring an additional resonant mode of the cantilever. The simultaneously measured observables of this additional resonance provide the additional information necessary to extract quantitative nanomechanical information about the tip-sample mechanics. Specifically, driving the higher cantilever resonance in a frequency modulated (FM) mode allows direct measurement of the tip-sample interaction stiffness and, with appropriate modeling, the set point-independent local elastic modulus. Here we discuss the advantages of bimodal tapping, coined AM-FM imaging, for modulus mapping. Results are presented for samples over a wide modulus range, from a compliant gel (∼100 MPa) to stiff materials (∼100 GPa), with the same type of cantilever. We also show high-resolution (subnanometer) stiffness mapping of individual molecules in semicrystalline polymers and of DNA in fluid. Combined with the ability to remain quantitative even at line scan rates of nearly 40 Hz, the results demonstrate the versatility of AM-FM imaging for nanomechanical characterization in a wide range of applications.

  10. Transport properties of gaseous ions over a wide energy range, IV

    International Nuclear Information System (INIS)

    Viehland, L.A.; Mason, E.A.

    1995-01-01

    This paper updates three previous papers entitled open-quotes Transport Properties of Gaseous Ions over a Wide Energy Range.close quotes. These papers referred to as Parts I, II, and III, were by H.W.Ellis, P.Y. Pai, E.W. McDaniel, E.A. Mason, and L.A. Viehland, S.L. Lin, M.G. Thackston. Part IV contains compilations of experimental data on ionic mobilities and diffusion coefficients (both longitudinal and transverse) for ions in neutral gases in an externally applied electrostatic field, at various gas temperatures; the data are tabulated as a function of the ionic energy parameter E/N, where E is the electric field strength and N is the number density of the neutral gas. Part IV also contains a locator key to ionic mobilities and diffusion coefficients compiled in Parts I-IV. The coverage of the literature extends into 1994. The criteria for selection of the data are; (1) the measurements must cover a reasonably wide range of E/N; (2) the identity of the ions must be well established; and (3) the accuracy of the data must be good. 26 refs., 6 tabs

  11. A high gain wide dynamic range transimpedance amplifier for optical receivers

    International Nuclear Information System (INIS)

    Liu Lianxi; Zou Jiao; Liu Shubin; Niu Yue; Zhu Zhangming; Yang Yintang; En Yunfei

    2014-01-01

    As the front-end preamplifiers in optical receivers, transimpedance amplifiers (TIAs) are commonly required to have a high gain and low input noise to amplify the weak and susceptible input signal. At the same time, the TIAs should possess a wide dynamic range (DR) to prevent the circuit from becoming saturated by high input currents. Based on the above, this paper presents a CMOS transimpedance amplifier with high gain and a wide DR for 2.5 Gbit/s communications. The TIA proposed consists of a three-stage cascade pull push inverter, an automatic gain control circuit, and a shunt transistor controlled by the resistive divider. The inductive-series peaking technique is used to further extend the bandwidth. The TIA proposed displays a maximum transimpedance gain of 88.3 dBΩ with the −3 dB bandwidth of 1.8 GHz, exhibits an input current dynamic range from 100 nA to 10 mA. The output voltage noise is less than 48.23 nV/√Hz within the −3 dB bandwidth. The circuit is fabricated using an SMIC 0.18 μm 1P6M RFCMOS process and dissipates a dc power of 9.4 mW with 1.8 V supply voltage. (semiconductor integrated circuits)

  12. Development of dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Yamaguchi, Yasuhiro

    2005-01-01

    A new inventive radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with WIde energy raNges), has been developed for monitoring doses in workspaces and surrounding environments of high energy accelerator facilities. DARWIN is composed of a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. Scintillations from the detector induced by thermal and fast neutrons, photons and muons were discriminated by analyzing their waveforms, and their light outputs were directly converted into the corresponding doses by applying the G-function method. Characteristics of DARWIN were studied by both calculation and experiment. The calculated results indicate that DARWIN gives reasonable estimations of doses in most radiation fields. It was found from the experiment that DARWIN has an excellent property of measuring doses from all particles that significantly contribute to the doses in surrounding environments of accelerator facilities - neutron, photon and muon with wide energy ranges. The experimental results also suggested that DARWIN enables us to monitor small fluctuation of neutron dose rates near the background-level owing to its high sensitivity. (author)

  13. /sup 210/Po in marine organisms: a wide range of natural radiation dose domains

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, F P

    1988-01-01

    Marine biota is able to concentrate /sup 210/Po to high levels, as 10/sup 3/-10/sup 5/ relative to sea water concentration. /sup 210/Po concentrations in mixed zooplankton reaches 34-51 Bq.kg/sup -1/ (fresh wt), special groups such as copepods reaching even higher concentrations /similar to/ 90 Bq.kg/sup -1/, whereas gelatinous zooplankton display /similar to/ 1 Bq.kg/sup -1/. Epipelagic teleosts feeding on plankton displayed the highest concentrations found in fish muscle, 2-21 Bq.kg/sup -1/. Contrasting with this, demersal teleosts and elasmobranchs display lower /sup 210/Po concentrations, in the ranges 0.5-7 Bq.kg/sup -1/ and 0.2-1.7 Bq.kg/sup -1/, respectively. Much higher concentrations can, however, be measured in fish liver, gonad, bone and piloric caecca, and small mesopelagic fish can reach /similar to/ 800 Bq.kg/sup -1/ on a whole-body basis. Due to these /sup 210/Po activity concentrations, dose equivalent rates delivered to biological tissues in marine organisms can vary widely, from 0.4 mSv.y/sup -1/ in gelatinous plankton up to 5.6 x 10/sup 3/ mSv.y/sup -1/ in the gut wall of sardines. It is concluded that in organisms living in the same ocean layer a wide range of internal radiation doses exists and it is essentially sustained by /sup 210/Po food-chain transfer. (author).

  14. Optimization of statistical methods for HpGe gamma-ray spectrometer used in wide count rate ranges

    Energy Technology Data Exchange (ETDEWEB)

    Gervino, G., E-mail: gervino@to.infn.it [UNITO - Università di Torino, Dipartimento di Fisica, Turin (Italy); INFN - Istituto Nazionale di Fisica Nucleare, Sez. Torino, Turin (Italy); Mana, G. [INRIM - Istituto Nazionale di Ricerca Metrologica, Turin (Italy); Palmisano, C. [UNITO - Università di Torino, Dipartimento di Fisica, Turin (Italy); INRIM - Istituto Nazionale di Ricerca Metrologica, Turin (Italy)

    2016-07-11

    The need to perform γ-ray measurements with HpGe detectors is a common technique in many fields such as nuclear physics, radiochemistry, nuclear medicine and neutron activation analysis. The use of HpGe detectors is chosen in situations where isotope identification is needed because of their excellent resolution. Our challenge is to obtain the “best” spectroscopy data possible in every measurement situation. “Best” is a combination of statistical (number of counts) and spectral quality (peak, width and position) over a wide range of counting rates. In this framework, we applied Bayesian methods and the Ellipsoidal Nested Sampling (a multidimensional integration technique) to study the most likely distribution for the shape of HpGe spectra. In treating these experiments, the prior information suggests to model the likelihood function with a product of Poisson distributions. We present the efforts that have been done in order to optimize the statistical methods to HpGe detector outputs with the aim to evaluate to a better order of precision the detector efficiency, the absolute measured activity and the spectra background. Reaching a more precise knowledge of statistical and systematic uncertainties for the measured physical observables is the final goal of this research project.

  15. Comprehensive Measurement of Atmospheric Aerosols with a Wide Range Aerosol Spectrometer

    International Nuclear Information System (INIS)

    Keck, L; Pesch, M; Grimm, H

    2011-01-01

    A wide range aerosol spectrometer (WRAS) was used for comprehensive long term measurements of aerosol size distributions. The system combines the results of an optical aerosol spectrometer with the results of a Scanning Mobility Particle Sizer (SMPS) to record essentially the full size range (5 nm - 32 μm) of atmospheric particles in 72 channels. Measurements were carried out over one year (2009) at the Global Atmospheric Watch (GAW)-Station Hohenpeissenberg, Bavaria. Total particle number concentrations obtained from the aerosol size distributions were compared to the total number concentrations measured by a Condensation Particle Counter (CPC). The comparison showed an excellent agreement of the data. The high time resolution of 5 minutes allows the combination of the measured size distributions with meteorological data and correlations to gaseous pollutants (CO, NOx and SO2). A good correlation of particle number and CO concentrations was found for long distance transported small particles, which were probably mainly soot particles. Correlations to NOx were observed for aerosols from local sources such as traffic emissions. The formation of secondary aerosols from gaseous precursors was also observed. Episodes of relatively high concentration of particles in the range of 2-3 μm were probably caused by pollen.

  16. Regional deposition of nasal sprays in adults: A wide ranging computational study.

    Science.gov (United States)

    Kiaee, Milad; Wachtel, Herbert; Noga, Michelle L; Martin, Andrew R; Finlay, Warren H

    2018-05-01

    The present work examines regional deposition within the nose for nasal sprays over a large and wide ranging parameter space by using numerical simulation. A set of 7 realistic adult nasal airway geometries was defined based on computed tomography images. Deposition in 6 regions of each nasal airway geometry (the vestibule, valve, anterior turbinate, posterior turbinate, olfactory, and nasopharynx) was determined for varying particle diameter, spray cone angle, spray release direction, particle injection speed, and particle injection location. Penetration of nasal spray particles through the airway geometries represented unintended lung exposure. Penetration was found to be relatively insensitive to injection velocity, but highly sensitive to particle size. Penetration remained at or above 30% for particles exceeding 10 μm in diameter for several airway geometries studied. Deposition in the turbinates, viewed as desirable for both local and systemic nasal drug delivery, was on average maximized for particles ranging from ~20 to 30 μm in diameter, and for low to zero injection velocity. Similar values of particle diameter and injection velocity were found to maximize deposition in the olfactory region, a potential target for nose-to-brain drug delivery. However, olfactory deposition was highly variable between airway geometries, with maximum olfactory deposition ranging over 2 orders of magnitude between geometries. This variability is an obstacle to overcome if consistent dosing between subjects is to be achieved for nose-to-brain drug delivery. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Optical performance of B-layer ultra-shallow-junction silicon photodiodes in the VUV spectral range

    NARCIS (Netherlands)

    Shi, L.; Sarubbi, F.; Nanver, L.K.; Kroth, U.; Gottwald, A.; Nihtianov, S.

    2010-01-01

    In recent work, a novel silicon-based photodiode technology was reported to be suitable for producing radiation detectors for 193 nm deep-ultraviolet light and for the extreme-ultraviolet (EUV) spectral range. The devices were developed and fabricated at the Delft Institute of Microsystems and

  18. Range-wide assessment of livestock grazing across the sagebrush biome

    Science.gov (United States)

    Veblen, Kari E.; Pyke, David A.; Jones, Christopher A.; Casazza, Michael L.; Assal, Timothy J.; Farinha, Melissa A.

    2011-01-01

    Domestic livestock grazing occurs in virtually all sagebrush habitats and is a prominent disturbance factor. By affecting habitat condition and trend, grazing influences the resources required by, and thus, the distribution and abundance of sagebrush-obligate wildlife species (for example, sage-grouse Centrocercus spp.). Yet, the risks that livestock grazing may pose to these species and their habitats are not always clear. Although livestock grazing intensity and associated habitat condition may be known in many places at the local level, we have not yet been able to answer questions about use, condition, and trend at the landscape scale or at the range-wide scale for wildlife species. A great deal of information about grazing use, management regimes, and ecological condition exists at the local level (for individual livestock management units) under the oversight of organizations such as the Bureau of Land Management (BLM). However, the extent, quality, and types of existing data are unknown, which hinders the compilation, mapping, or analysis of these data. Once compiled, these data may be helpful for drawing conclusions about rangeland status, and we may be able to identify relationships between those data and wildlife habitat at the landscape scale. The overall objective of our study was to perform a range-wide assessment of livestock grazing effects (and the relevant supporting data) in sagebrush ecosystems managed by the BLM. Our assessments and analyses focused primarily on local-level management and data collected at the scale of BLM grazing allotments (that is, individual livestock management units). Specific objectives included the following: 1. Identify and refine existing range-wide datasets to be used for analyses of livestock grazing effects on sagebrush ecosystems. 2. Assess the extent, quality, and types of livestock grazing-related natural resource data collected by BLM range-wide (i.e., across allotments, districts and regions). 3. Compile and

  19. Wide Range Vacuum Pumps for the SAM Instrument on the MSL Curiosity Rover

    Science.gov (United States)

    Sorensen, Paul; Kline-Schoder, Robert; Farley, Rodger

    2014-01-01

    Creare Incorporated and NASA Goddard Space Flight Center developed and space qualified two wide range pumps (WRPs) that were included in the Sample Analysis at Mars (SAM) instrument. This instrument was subsequently integrated into the Mars Science Laboratory (MSL) "Curiosity Rover," launched aboard an Atlas V rocket in 2011, and landed on August 6, 2012, in the Gale Crater on Mars. The pumps have now operated for more than 18 months in the Gale Crater and have been evacuating the key components of the SAM instrument: a quadrupole mass spectrometer, a tunable laser spectrometer, and six gas chromatograph columns. In this paper, we describe the main design challenges and the ways in which they were solved. This includes the custom design of a miniaturized, high-speed motor to drive the turbo drag pump rotor, analysis of rotor dynamics for super critical operation, and bearing/lubricant design/selection.

  20. Theory of mass-discrimination effects in ion extraction from a plasma of wide pressure range

    International Nuclear Information System (INIS)

    Chang, J.-S.; Kodera, K.

    1979-01-01

    Mass-discrimination effects in stagnation-point ion extraction are treated for a plasma with a wide range of Knudsen number, i.e. when the charged particle's mean free path 3 , ion Schmidt numbers, from 0 to 10 4 , the effective Knudsen number K from 0 to infinity, and the Debye ratio Rsub(p)/lambdasub(D) from 0 to 10 -1 . Numerical results show that: (1) for a non-flowing plasma, mass-discrimination effects increase with increasing effective Knudsen number (or gas pressure) and decreasing sampling potential; (2) for a non-flowing plasma, no significant effect of the Debye ratio on mass-discrimination was found; (3) for a flowing plasma, mass-discrimination effects decrease with increasing Reynolds number (or flow velocity) and ion Schmidt number, and with decreasing sampling potential and effective Knudsen number. (Auth.)

  1. Raman spectroscopic characterization of CH4 density over a wide range of temperature and pressure

    Science.gov (United States)

    Shang, Linbo; Chou, I-Ming; Burruss, Robert; Hu, Ruizhong; Bi, Xianwu

    2014-01-01

    The positions of the CH4 Raman ν1 symmetric stretching bands were measured in a wide range of temperature (from −180 °C to 350 °C) and density (up to 0.45 g/cm3) using high-pressure optical cell and fused silica capillary capsule. The results show that the Raman band shift is a function of both methane density and temperature; the band shifts to lower wavenumbers as the density increases and the temperature decreases. An equation representing the observed relationship among the CH4 ν1 band position, temperature, and density can be used to calculate the density in natural or synthetic CH4-bearing inclusions.

  2. Electrical, optical, and electronic properties of Al:ZnO films in a wide doping range

    International Nuclear Information System (INIS)

    Valenti, Ilaria; Valeri, Sergio; Benedetti, Stefania; Bona, Alessandro di; Lollobrigida, Valerio; Perucchi, Andrea; Di Pietro, Paola; Lupi, Stefano; Torelli, Piero

    2015-01-01

    The combination of photoemission spectroscopies, infrared and UV-VIS absorption, and electric measurements has allowed to clarify the mechanisms governing the conductivity and the electronic properties of Al-doped ZnO (AZO) films in a wide doping range. The contribution of defect-related in-gap states to conduction has been excluded in optimally doped films (around 4 at. %). The appearance of gap states at high doping, the disappearance of occupied DOS at Fermi level, and the bands evolution complete the picture of electronic structure in AZO when doped above 4 at. %. In this situation, compensating defects deplete the conduction band and increase the electronic bandgap of the material. Electrical measurements and figure of merit determination confirm the high quality of the films obtained by magnetron sputtering, and thus allow to extend their properties to AZO films in general

  3. A computer code simulating multistage chemical exchange column under wide range of operating conditions

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Okuno, Kenji

    1996-09-01

    A computer code has been developed to simulate a multistage CECE(Combined Electrolysis Chemical Exchange) column. The solution of basic equations can be found out by the Newton-Raphson method. The independent variables are the atom fractions of D and T in each stage for the case where H is dominant within the column. These variables are replaced by those of H and T under the condition that D is dominant. Some effective techniques have also been developed to get a set of solutions of the basic equations: a setting procedure of initial values of the independent variables; and a procedure for the convergence of the Newton-Raphson method. The computer code allows us to simulate the column behavior under a wide range of the operating conditions. Even for a severe case, where the dominant species changes along the column height, the code can give a set of solutions of the basic equations. (author)

  4. Electrical, optical, and electronic properties of Al:ZnO films in a wide doping range

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, Ilaria; Valeri, Sergio [CNR, Istituto Nanoscienze, S3, Via G. Campi 213/a, 41125 Modena (Italy); Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via G. Campi 213/a, 41125 Modena (Italy); Benedetti, Stefania, E-mail: stefania.benedetti@unimore.it; Bona, Alessandro di [CNR, Istituto Nanoscienze, S3, Via G. Campi 213/a, 41125 Modena (Italy); Lollobrigida, Valerio [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome, Italy and Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Perucchi, Andrea; Di Pietro, Paola [INSTM Udr Trieste-ST and Elettra-Sincrotrone Trieste S.C.p.A., Area Science Park, I-34012 Trieste (Italy); Lupi, Stefano [CNR-IOM and Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 2, I-00185 Roma (Italy); Torelli, Piero [Laboratorio TASC, IOM-CNR, S.S. 14 km 163.5, Basovizza, I-34149 Trieste (Italy)

    2015-10-28

    The combination of photoemission spectroscopies, infrared and UV-VIS absorption, and electric measurements has allowed to clarify the mechanisms governing the conductivity and the electronic properties of Al-doped ZnO (AZO) films in a wide doping range. The contribution of defect-related in-gap states to conduction has been excluded in optimally doped films (around 4 at. %). The appearance of gap states at high doping, the disappearance of occupied DOS at Fermi level, and the bands evolution complete the picture of electronic structure in AZO when doped above 4 at. %. In this situation, compensating defects deplete the conduction band and increase the electronic bandgap of the material. Electrical measurements and figure of merit determination confirm the high quality of the films obtained by magnetron sputtering, and thus allow to extend their properties to AZO films in general.

  5. Electron response of some low-Z scintillators in wide energy range

    International Nuclear Information System (INIS)

    Swiderski, L; Marcinkowski, R; Moszynski, M; Czarnacki, W; Szawlowski, M; Szczesniak, T; Pausch, G; Plettner, C; Roemer, K

    2012-01-01

    Light yield nonproportionality and the intrinsic resolution of some low atomic number scintillators were studied by means of the Wide Angle Compton Coincidence (WACC) technique. The plastic and liquid scintillator response to Compton electrons was measured in the energy range of 10 keV up to 4 MeV, whereas a CaF 2 :Eu sample was scanned from 3 keV up to 1 MeV. The nonproportionality of the CaF 2 :Eu light yield has characteristics typical for inorganic scintillators of the multivalent halides group, whereas tested organic scintillators show steeply increasing nonproportionality without saturation point. This is in contrast to the behavior of all known inorganic scintillators having their nonproportionality curves at saturation above energies between tens and several hundred keV.

  6. Electron response of some low-Z scintillators in wide energy range

    Science.gov (United States)

    Swiderski, L.; Marcinkowski, R.; Moszynski, M.; Czarnacki, W.; Szawlowski, M.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K.

    2012-06-01

    Light yield nonproportionality and the intrinsic resolution of some low atomic number scintillators were studied by means of the Wide Angle Compton Coincidence (WACC) technique. The plastic and liquid scintillator response to Compton electrons was measured in the energy range of 10 keV up to 4 MeV, whereas a CaF2:Eu sample was scanned from 3 keV up to 1 MeV. The nonproportionality of the CaF2:Eu light yield has characteristics typical for inorganic scintillators of the multivalent halides group, whereas tested organic scintillators show steeply increasing nonproportionality without saturation point. This is in contrast to the behavior of all known inorganic scintillators having their nonproportionality curves at saturation above energies between tens and several hundred keV.

  7. Development of a wide range vortex shedding flowmeter for high temperature helium gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S.P.; Ennis, R.M. Jr.; Herndon, P.G.

    1981-07-01

    A flowmeter was required to measure recirculating helium gas flow over a wide range of conditions in a gas-cooled fast reactor (GCFR) core flow simulator, the ORNL Core Flow Test Loop (CFTL). The flow measurement requirements of the CFTL exceeded the proven performance of any single conventional flowmeter. Therefore, a special purpose vortex shedding flowmeter (VSFM) was developed. A single flowmeter capable of meeting all the CFTL requirements would provide significant economic and performance advantages in the operation of the loop. The development, conceptual design, and final design of a modified VSFM are described. The results of extensive flow calibration of the flowmeter at the Colorado Engineering Experiment Station (CEES) are presented. The report closes with recommendations for application of the VSFM to the CFTL and for future development work.

  8. Dosimetric properties of the 'Pille' portable, wide dose range TLD reader

    International Nuclear Information System (INIS)

    Szabo, P.P.; Feher, I.; Deme, S.; Szabo, B.; Vagvoelgyi, J.

    1986-01-01

    The dosimetric properties of a portable TLD reader are described. The TLD system named 'Pille' or 'moth' consists of a lightweight battery-operated portable TLD reader and its CaSO 4 :Dy bulb dosemeters. The reproducibility of the TLD system at constant temperature was found to be better than + -2%, and the mean time between failures exceeded 5 years. The dose range of the system is wide, covering more than 6 orders of magnitude, from 5 μGy to 10 Gy. The energy dependence of the CaSO 4 :Dy bulb dosemeters is less than + - 20% above 100 keV in the energy compensation capsules. Without additional annealing, the bulb dosemeters can be re-used at least 100 times, which is an important aspect during in situ measurements. (author)

  9. Solar tri-diurnal variation of cosmic rays in a wide range of rigidity

    Science.gov (United States)

    Mori, S.; Ueno, H.; Fujii, Z.; Morishita, I.; Nagashima, K.

    1985-01-01

    Solar tri-diurnal variations of cosmic rays have been analyzed in a wide range of rigidity, using data from neutron monitors, and the surface and underground muon telescopes for the period 1978-1983. The rigidity spectrum of the anisotropy in space is assumed to be of power-exponential type as (P/gamma P sub o) to the gamma exp (gamma-P/P sub o). By means of the best-fit method between the observed and the expected variations, it is obtained that the spectrum has a peak at P (=gamma P sub o) approx = 90 GV, where gamma=approx 3.0 and P sub o approx. 30 GV. The phase in space of the tri-diurnal variation is also obtained as 7.0 hr (15 hr and 23 hr LT), which is quite different from that of approx. 1 hr. arising from the axisymmetric distribution of cosmic rays with respect to the IMF.

  10. A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel

    Science.gov (United States)

    Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-12-01

    In the present study we report the fabrication and characterization of no-core fiber sensor (NCFS) using smart hydrogel coating for pH measurement. The no-core fiber (NCF) is stubbed between two single-mode fibers with SMA connector before immobilizing of smart hydrogel. The wavelength interrogation technique is used to calculate the sensitivity of the proposed sensor. The result shows a high sensitivity of 1.94 nm/pH for a wide range of pH values varied from 3 to 10 with a good linear response. In addition to high sensitivity, the fabricated sensor provides a fast response time with a good stability, repeatability and reproducibility.

  11. Transport properties of gaseous ions over a wide energy range. Part III

    International Nuclear Information System (INIS)

    Ellis, H.W.; Thackston, M.G.; McDaniel, E.W.; Mason, E.A.

    1984-01-01

    This paper updates and extends in scope our two previous papers entitled ''Transport Properties of Gaseous Ions over a Wide Energy Range.'' The references to the earlier publications (referred to as ''Part I'' and ''Part II'') are I, H. W. Ellis, R. Y. Pai, E. W. McDonald, E. A. Mason, and L. A. Viehland, ATOMIC DATA AND NUCLEAR DATA TABLES 17, 177--210 (19876); and II, H. W. Ellis, E. W. McDaniel, D. L. Albritton, L. A. Veihland, S. L. Lin, and E. A. Mason, ATOMIC DATA AND NUCLEAR DATA TABLES 22, 179--217 (1978). Parts I and II contained compilations of experimental data on ionic mobilities and diffusion coefficients (both longitudinal and transverse) for ions in neutral gase (almost exclusively at room temperature) in an externally applied electric field

  12. Lipophilic polyelectrolyte gel derived from phosphonium borate can absorb a wide range of organic solvents.

    Science.gov (United States)

    Sunaga, Sokuro; Kokado, Kenta; Sada, Kazuki

    2018-01-24

    Herein, we demonstrate a polyelectrolyte gel which can absorb a wide range of organic solvents from dimethylsulfoxide (DMSO, permittivity: ε = 47.0) to tetrahydrofuran (ε = 5.6). The gel consists of polystyrene chains with small amounts (∼5 mol%) of lipophilic electrolytes derived from triphenylphosphonium tetraaryl borate. The swelling ability of the polyelectrolyte gel was higher than that of the alkyl ammonium tetraaryl borate previously reported by us, and this is attributed to the higher compatibility with organic solvents, as well as the higher dissociating ability, of the triphenyl phosphonium salt. The role of the ionic moieties was additionally confirmed by post modification of the polyelectrolyte gel via a conventional Wittig reaction, resulting in a nonionic gel. Our findings introduced here will lead to a clear-cut molecular design for polyelectrolyte gels which absorb all solvents.

  13. A study on the excore neutron flux monitoring system for the wide range measurement

    International Nuclear Information System (INIS)

    Han, Sang Jun; Jeong, Dae Won; Baek, Kwang Il; Lee, Jeong Yang; Ha, Jae Hong

    1995-11-01

    This paper describes a study in which only one kind of neutron detector were used in the advanced ENFMS. The conceptual design was performed for overall system with unified fission chamber. The system consists of detector, junction box, wide-range amplifier and signal processing device. Also the requirements of 10CFR50 App. R were considered in design. On the other hand, through computer simulation, the characteristics of pulse-count mode and MSV mode was scrutinized and each noise withstanding capability was analyzed. The results say that 3rd moment has the more stable characteristics to background noise than MSV method. Also, to remain the integrity of information against noise, during installation and operation, the overall system of KSNP was analyzed from a view of noise. By administration for the cause of noise and noise-coupling paths, through the full understanding of noise characteristics, the transfer of the noise source can be minimized. (Author)

  14. Gamma compensated pulsed ionization chamber wide range neutron/reactor power measurement system

    International Nuclear Information System (INIS)

    Ellis, W.H.

    1975-01-01

    An improved method and system of pulsed mode operation of ionization chambers is described in which a single sensor system with gamma compensation is provided by sampling, squaring, automatic gate selector, and differential amplifier circuit means, employed in relation to chambers sensitized to neutron plus gamma and gamma only to subtract out the gamma component, wherein squaring functions circuits, a supplemental high performance pulse rate system, and operational and display mode selection and sampling gate circuits are utilized to provide automatic wide range linear measurement capability for neutron flux and reactor power. Neon is employed as an additive in the ionization chambers to provide independence of ionized gas kinetics temperature effects, and the pulsed mode of operation provide independence of high temperature insulator leakage effects. (auth)

  15. Adaptive and freeze-tolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range

    Science.gov (United States)

    Gao, Hainan; Zhao, Ziguang; Cai, Yudong; Zhou, Jiajia; Hua, Wenda; Chen, Lie; Wang, Li; Zhang, Jianqi; Han, Dong; Liu, Mingjie; Jiang, Lei

    2017-06-01

    Many biological organisms with exceptional freezing tolerance can resist the damages to cells from extra-/intracellular ice crystals and thus maintain their mechanical stability at subzero temperatures. Inspired by the freezing tolerance mechanisms found in nature, here we report a strategy of combining hydrophilic/oleophilic heteronetworks to produce self-adaptive, freeze-tolerant and mechanically stable organohydrogels. The organohydrogels can simultaneously use water and oil as a dispersion medium, and quickly switch between hydrogel- and organogel-like behaviours in response to the nature of the surrounding phase. Accordingly, their surfaces display unusual adaptive dual superlyophobic in oil/water system (that is, they are superhydrophobic under oil and superoleophobic under water). Moreover, the organogel component can inhibit the ice crystallization of the hydrogel component, thus enhancing the mechanical stability of organohydrogel over a wide temperature range (-78 to 80 °C). The organohydrogels may have promising applications in complex and harsh environments.

  16. Development of a Piezoelectric Vacuum Sensing Component for a Wide Pressure Range

    Directory of Open Access Journals (Sweden)

    Bing-Yu Wang

    2014-11-01

    Full Text Available In this study, we develop a clamped–clamped beam-type piezoelectric vacuum pressure sensing element. The clamped–clamped piezoelectric beam is composed of a PZT layer and a copper substrate. A pair of electrodes is set near each end. An input voltage is applied to a pair of electrodes to vibrate the piezoelectric beam, and the output voltage is measured at the other pair. Because the viscous forces on the piezoelectric beam vary at different air pressures, the vibration of the beam depends on the vacuum pressure. The developed pressure sensor can sense a wide range of pressure, from 6.5 × 10−6 to 760 Torr. The experimental results showed that the output voltage is inversely proportional to the gas damping ratio, and thus, the vacuum pressure was estimated from the output voltage.

  17. Development of dose monitoring system applicable to various radiations with wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira

    2006-01-01

    A new radiation dose monitor, designated as DARWIN (Dose monitoring system Applicable to various Radiations with WIde energy raNges), has been developed for real-time monitoring of doses in workspaces and surrounding environments of high energy accelerator facilities. DARWIN is composed of a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6 Li, and a data acquisition system based on a Digital-Storage-Oscilloscope. DARWIN has the following features: (1) capable of monitoring doses from neutrons, photons and muons with energies from thermal energy to 1 GeV, 150 keV to 100 MeV, and 1 MeV to 100 GeV, respectively, (2) highly sensitive with precision, and (3) easy to operate with a simple graphical user-interface. The performance of DARWIN was examined experimentally in several radiation fields. The results of the experiments indicated the accuracy and rapid response of DARWIN for measuring dose rates from neutrons, photons and muons with wide energies. With these properties, we conclude that DARWIN will be able to play a very important role for improving radiation safety in high energy accelerator facilities. (author)

  18. Assessment of ecological risks to wide-ranging wildlife species on the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Sample, B.

    1995-01-01

    Ecological risk assessment at CERCLA sites generally focuses on species that may be definitively associated with a contaminated area. While appropriate for sites with single, discrete areas of contamination, this approach is not adequate for sites with multiple, spatially separated contaminated areas such as the Oak Ridge Reservation (ORR). Wide-ranging wildlife species may travel between and use multiple contaminated sites. These species may therefore be exposed to and be at risk from contaminants from multiple locations. Use of a site (and therefore exposure and risk) by wildlife is dependent upon the availability of habitat. Availability and distribution of habitat on the ORR was determined using satellite imagery. The proportion of habitat within contaminated areas was then determined by overlaying boundaries of contaminated areas (Operable Units or OUs) on the ORR habitat map. The likelihood of contaminant exposure was estimated by comparing the habitat requirements for wildlife species to the proportion of suitable habitat within OUs. OU-specific contaminant concentrations in surface water, soil, or biota were used to estimate the magnitude of risk presented by each DU. The proportion of ORR-wide population likely to be exposed was estimated using literature-derived population density data for each endpoint. At present, due to major data gaps (i.e., lack of data for all OUs, site-specific population density or habitat use data, etc.) uncertainty associated with conclusions is high. Results of this assessment must therefore be considered to be preliminary

  19. Natural selection constrains neutral diversity across a wide range of species.

    Science.gov (United States)

    Corbett-Detig, Russell B; Hartl, Daniel L; Sackton, Timothy B

    2015-04-01

    The neutral theory of molecular evolution predicts that the amount of neutral polymorphisms within a species will increase proportionally with the census population size (Nc). However, this prediction has not been borne out in practice: while the range of Nc spans many orders of magnitude, levels of genetic diversity within species fall in a comparatively narrow range. Although theoretical arguments have invoked the increased efficacy of natural selection in larger populations to explain this discrepancy, few direct empirical tests of this hypothesis have been conducted. In this work, we provide a direct test of this hypothesis using population genomic data from a wide range of taxonomically diverse species. To do this, we relied on the fact that the impact of natural selection on linked neutral diversity depends on the local recombinational environment. In regions of relatively low recombination, selected variants affect more neutral sites through linkage, and the resulting correlation between recombination and polymorphism allows a quantitative assessment of the magnitude of the impact of selection on linked neutral diversity. By comparing whole genome polymorphism data and genetic maps using a coalescent modeling framework, we estimate the degree to which natural selection reduces linked neutral diversity for 40 species of obligately sexual eukaryotes. We then show that the magnitude of the impact of natural selection is positively correlated with Nc, based on body size and species range as proxies for census population size. These results demonstrate that natural selection removes more variation at linked neutral sites in species with large Nc than those with small Nc and provides direct empirical evidence that natural selection constrains levels of neutral genetic diversity across many species. This implies that natural selection may provide an explanation for this longstanding paradox of population genetics.

  20. An operating principle of the turtle utricle to detect wide dynamic range.

    Science.gov (United States)

    Nam, Jong-Hoon

    2018-03-01

    The utricle encodes both static information such as head orientation, and dynamic information such as vibrations. It is not well understood how the utricle can encode both static and dynamic information for a wide dynamic range (from 2 times the gravitational acceleration; from DC to > 1000 Hz vibrations). Using computational models of the hair cells in the turtle utricle, this study presents an explanation on how the turtle utricle encodes stimulations over such a wide dynamic range. Two hair bundles were modeled using the finite element method-one representing the striolar hair cell (Cell S), and the other representing the medial extrastriolar hair cell (Cell E). A mechano-transduction (MET) channel model was incorporated to compute MET current (i MET ) due to hair bundle deflection. A macro-mechanical model of the utricle was used to compute otoconial motions from head accelerations (a Head ). According to known anatomical data, Cell E has a long kinocilium that is embedded into the stiff otoconial layer. Unlike Cell E, the hair bundle of Cell S falls short of the otoconial layer. Considering such difference in the mechanical connectivity between the hair cell bundle and the otoconial layer, three cases were simulated: Cell E displacement-clamped, Cell S viscously-coupled, and Cell S displacement-clamped. Head accelerations at different amplitude levels and different frequencies were simulated for the three cases. When a realistic head motion was simulated, Cell E was responsive to head orientation, while the viscously-coupled Cell S was responsive to fast head motion imitating the feeding strike of a turtle. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Practice of building production planning system of company with a wide range of products - case study

    Directory of Open Access Journals (Sweden)

    Łukasz Hadaś

    2012-09-01

    Full Text Available Background: The complexity of the manufacturing environments of today's mechanical engineering companies and the number of both internal and external restrictions affecting to need of building tailored production planning and control systems. This statement is particularly important in conditions of companies with a wide range of products and different customer service strategies (different locations of the logistics decoupling point otherwise called "order penetration point". Streams of materials in these conditions require different management what is the main reason for carrying out research in business conditions by the authors. Material and methods: The research was carried out in industrial engineering in complex environmental conditions of production. This was a specializing in technology, multi-departments environment, with multiple streams of values and a wide range of products (about 500 items. The work was carried out under the transformation of the production system from the "push" logic of flow to "pull" logic of flow and building a dedicated system based on the best practice approach. Results: The paper describes the process of building tailored hybrid systems in the area of planning and shop flow control of production. The authors present the theoretical considerations on the issue and practical experiences. The authors present factors of selection of the transformation path and its road map. The article describes the part of the authors' own experience in the work on the methodology of transformation of Polish companies in the running business condition. Conclusions: Establishing the methodology of transformation of the production system is not a simple task. This paper presents only selected aspects of complex decision-making process. However, the authors presented work shows the important aspect of the transformation of production systems for these organizational conditions.

  2. Exploration of Integrated Visible to Near-, Shortwave-, and Longwave-Infrared (Full-Range) Spectral Analysis

    Science.gov (United States)

    2014-09-01

    wavelength region .................................... 67 Table 7. Description of comparison locations...concentration and characteristics of the silicate bonds. Sulfates, phosphates, oxides, and hydroxides also exhibit strong features in the LWIR. Because...authors suggested that full spectral coverage would provide complementary information about the mineralogical and mineral chemistry patterns. The

  3. Wide-Range Highly-Efficient Wireless Power Receivers for Implantable Biomedical Sensors

    KAUST Repository

    Ouda, Mahmoud

    2016-11-01

    Wireless power transfer (WPT) is the key enabler for a myriad of applications, from low-power RFIDs, and wireless sensors, to wirelessly charged electric vehicles, and even massive power transmission from space solar cells. One of the major challenges in designing implantable biomedical devices is the size and lifetime of the battery. Thus, replacing the battery with a miniaturized wireless power receiver (WPRx) facilitates designing sustainable biomedical implants in smaller volumes for sentient medical applications. In the first part of this dissertation, we propose a miniaturized, fully integrated, wirelessly powered implantable sensor with on-chip antenna, designed and implemented in a standard 0.18μm CMOS process. As a batteryless device, it can be implanted once inside the body with no need for further invasive surgeries to replace batteries. The proposed single-chip solution is designed for intraocular pressure monitoring (IOPM), and can serve as a sustainable platform for implantable devices or IoT nodes. A custom setup is developed to test the chip in a saline solution with electrical properties similar to those of the aqueous humor of the eye. The proposed chip, in this eye-like setup, is wirelessly charged to 1V from a 5W transmitter 3cm away from the chip. In the second part, we propose a self-biased, differential rectifier with enhanced efficiency over an extended range of input power. A prototype is designed for the medical implant communication service (MICS) band at 433MHz. It demonstrates an efficiency improvement of more than 40% in the rectifier power conversion efficiency (PCE) and a dynamic range extension of more than 50% relative to the conventional cross-coupled rectifier. A sensitivity of -15.2dBm input power for 1V output voltage and a peak PCE of 65% are achieved for a 50k load. In the third part, we propose a wide-range, differential RF-to-DC power converter using an adaptive, self-biasing technique. The proposed architecture doubles

  4. A Range-Wide Experiment to Investigate Nutrient and Soil Moisture Interactions in Loblolly Pine Plantations

    Directory of Open Access Journals (Sweden)

    Rodney E. Will

    2015-06-01

    Full Text Available The future climate of the southeastern USA is predicted to be warmer, drier and more variable in rainfall, which may increase drought frequency and intensity. Loblolly pine (Pinus taeda is the most important commercial tree species in the world and is planted on ~11 million ha within its native range in the southeastern USA. A regional study was installed to evaluate effects of decreased rainfall and nutrient additions on loblolly pine plantation productivity and physiology. Four locations were established to capture the range-wide variability of soil and climate. Treatments were initiated in 2012 and consisted of a factorial combination of throughfall reduction (approximate 30% reduction and fertilization (complete suite of nutrients. Tree and stand growth were measured at each site. Results after two growing seasons indicate a positive but variable response of fertilization on stand volume increment at all four sites and a negative effect of throughfall reduction at two sites. Data will be used to produce robust process model parameterizations useful for simulating loblolly pine growth and function under future, novel climate and management scenarios. The resulting improved models will provide support for developing management strategies to increase pine plantation productivity and carbon sequestration under a changing climate.

  5. Neural network for adapting nuclear power plant control for wide-range operation

    International Nuclear Information System (INIS)

    Ku, C.C.; Lee, K.Y.; Edwards, R.M.

    1991-01-01

    A new concept of using neural networks has been evaluated for optimal control of a nuclear reactor. The neural network uses the architecture of a standard backpropagation network; however, a new dynamic learning algorithm has been developed to capture the underlying system dynamics. The learning algorithm is based on parameter estimation for dynamic systems. The approach is demonstrated on an optimal reactor temperature controller by adjusting the feedback gains for wide-range operation. Application of optimal control to a reactor has been considered for improving temperature response using a robust fifth-order reactor power controller. Conventional gain scheduling can be employed to extend the range of good performance to accommodate large changes in power where nonlinear characteristics significantly modify the dynamics of the power plant. Gain scheduling is developed based on expected parameter variations, and it may be advantageous to further adapt feedback gains on-line to better match actual plant performance. A neural network approach is used here to adapt the gains to better accommodate plant uncertainties and thereby achieve improved robustness characteristics

  6. The French 35-hour workweek: a wide-ranging social change.

    Science.gov (United States)

    Prunier-Poulmaire, S; Gadbois, C

    2001-12-01

    The reduction of the legal working week to 35 hours in France has generated wide-ranging social change. We examine the resulting changes in working-time patterns as well as their repercussions on the use of the time gained and on the quality of life and health. To compensate the reduction in the length of the working week, companies have modified the working-time patterns, by extending operation time (shiftwork, atypical schedules) and by matching the on-site workforce to production requirements (flexible working hours). They have sought to make more efficient use of working time: job intensification or job compression. The effects on the off-the-job life and health are linked to the shiftwork and atypical schedules designed to increase the company's operating time, and adjustments to the company's need for flexibilization impose working time/free time patterns that are at odds with biological rhythms and social life patterns. Changes to working-time patterns have unexpected consequences for work organization: heightened difficulties for the individual and the crew. These changes may generate a range of health problems related to overwork and stress. The way some companies have adapted may call into question the usefulness of work done by employees, thus damaging their social identity and mental well-being.

  7. Structure and ionic conductivity of block copolymer electrolytes over a wide salt concentration range

    Science.gov (United States)

    Chintapalli, Mahati; Le, Thao; Venkatesan, Naveen; Thelen, Jacob; Rojas, Adriana; Balsara, Nitash

    Block copolymer electrolytes are promising materials for safe, long-lasting lithium batteries because of their favorable mechanical and ion transport properties. The morphology, phase behavior, and ionic conductivity of a block copolymer electrolyte, SEO mixed with LiTFSI was studied over a wide, previously unexplored salt concentration range using small angle X-ray scattering, differential scanning calorimetry and ac impedance spectroscopy, respectively. SEO exhibits a maximum in ionic conductivity at twice the salt concentration that PEO, the homopolymer analog of the ion-containing block, does. This finding is contrary to prior studies that examined a more limited range of salt concentrations. In SEO, the phase behavior of the PEO block and LiTFSI closely resembles the phase behavior of homopolymer PEO and LiTFSI. The grain size of the block copolymer morphology was found to decrease with increasing salt concentration, and the ionic conductivity of SEO correlates with decreasing grain size. Structural effects impact the ionic conductivity-salt concentration relationship in block copolymer electrolytes. SEO: polystyrene-block-poly(ethylene oxide); also PS-PEO LiTFSI: lithium bis(trifluoromethanesulfonyl imide

  8. Recommended methods for range-wide monitoring of prairie dogs in the United States

    Science.gov (United States)

    McDonald, Lyman L.; Stanley, Thomas R.; Otis, David L.; Biggins, Dean E.; Stevens, Patricia D.; Koprowski, John L.; Ballard, Warren

    2011-01-01

    One of the greatest challenges for conserving grassland, prairie scrub, and shrub-steppe ecosystems is maintaining prairie dog populations across the landscape. Of the four species of prairie dogs found in the United States, the Utah prairie dog (Cynomys parvidens) is listed under the Endangered Species Act (ESA) as threatened, the Gunnison's prairie dog (C. gunnisoni) is a candidate for listing in a portion of its range, and the black-tailed prairie dog (C. ludovicianus) and white-tailed prairie dog (C. leucurus) have each been petitioned for listing at least once in recent history. Although the U.S. Fish and Wildlife Service (USFWS) determined listing is not warranted for either the black-tailed prairie dog or white-tailed prairie dog, the petitions and associated reviews demonstrated the need for the States to monitor and manage for self-sustaining populations. In response to these findings, a multi-State conservation effort was initiated for the nonlisted species which included the following proposed actions: (1) completing an assessment of each prairie dog species in each State, (2) developing a range-wide monitoring protocol for each species using a statistically valid sampling procedure that would allow comparable analyses across States, and (3) monitoring prairie dog status every 3-5 years depending upon the species. To date, each State has completed an assessment and currently is monitoring prairie dog status; however, for some species, the inconsistency in survey methodology has made it difficult to compare data year-to-year or State-to-State. At the Prairie Dog Conservation Team meeting held in November 2008, there was discussion regarding the use of different methods to survey prairie dogs. A recommendation from this meeting was to convene a panel in a workshop-type forum and have the panel review the different methods being used and provide recommendations for range-wide monitoring protocols for each species of prairie dog. Consequently, the Western

  9. Characterization of motor units in behaving adult mice shows a wide primary range.

    Science.gov (United States)

    Ritter, Laura K; Tresch, Matthew C; Heckman, C J; Manuel, Marin; Tysseling, Vicki M

    2014-08-01

    The mouse is essential for genetic studies of motor function in both normal and pathological states. Thus it is important to consider whether the structure of motor output from the mouse is in fact analogous to that recorded in other animals. There is a striking difference in the basic electrical properties of mouse motoneurons compared with those in rats, cats, and humans. The firing evoked by injected currents produces a unique frequency-current (F-I) function that emphasizes recruitment of motor units at their maximum force. These F-I functions, however, were measured in anesthetized preparations that lacked two key components of normal synaptic input: high levels of synaptic noise and neuromodulatory inputs. Recent studies suggest that the alterations in the F-I function due to these two components are essential for recreating firing behavior of motor units in human subjects. In this study we provide the first data on firing patterns of motor units in the awake mouse, focusing on steady output in quiet stance. The resulting firing patterns did not match the predictions from the mouse F-I behaviors but instead revealed rate modulation across a remarkably wide range (10-60 Hz). The low end of the firing range may be due to changes in the F-I relation induced by synaptic noise and neuromodulatory inputs. The high end of the range may indicate that, unlike other species, quiet standing in the mouse involves recruitment of relatively fast-twitch motor units. Copyright © 2014 the American Physiological Society.

  10. SCPS: a fast implementation of a spectral method for detecting protein families on a genome-wide scale

    Directory of Open Access Journals (Sweden)

    Paccanaro Alberto

    2010-03-01

    Full Text Available Abstract Background An important problem in genomics is the automatic inference of groups of homologous proteins from pairwise sequence similarities. Several approaches have been proposed for this task which are "local" in the sense that they assign a protein to a cluster based only on the distances between that protein and the other proteins in the set. It was shown recently that global methods such as spectral clustering have better performance on a wide variety of datasets. However, currently available implementations of spectral clustering methods mostly consist of a few loosely coupled Matlab scripts that assume a fair amount of familiarity with Matlab programming and hence they are inaccessible for large parts of the research community. Results SCPS (Spectral Clustering of Protein Sequences is an efficient and user-friendly implementation of a spectral method for inferring protein families. The method uses only pairwise sequence similarities, and is therefore practical when only sequence information is available. SCPS was tested on difficult sets of proteins whose relationships were extracted from the SCOP database, and its results were extensively compared with those obtained using other popular protein clustering algorithms such as TribeMCL, hierarchical clustering and connected component analysis. We show that SCPS is able to identify many of the family/superfamily relationships correctly and that the quality of the obtained clusters as indicated by their F-scores is consistently better than all the other methods we compared it with. We also demonstrate the scalability of SCPS by clustering the entire SCOP database (14,183 sequences and the complete genome of the yeast Saccharomyces cerevisiae (6,690 sequences. Conclusions Besides the spectral method, SCPS also implements connected component analysis and hierarchical clustering, it integrates TribeMCL, it provides different cluster quality tools, it can extract human-readable protein

  11. SCPS: a fast implementation of a spectral method for detecting protein families on a genome-wide scale.

    Science.gov (United States)

    Nepusz, Tamás; Sasidharan, Rajkumar; Paccanaro, Alberto

    2010-03-09

    An important problem in genomics is the automatic inference of groups of homologous proteins from pairwise sequence similarities. Several approaches have been proposed for this task which are "local" in the sense that they assign a protein to a cluster based only on the distances between that protein and the other proteins in the set. It was shown recently that global methods such as spectral clustering have better performance on a wide variety of datasets. However, currently available implementations of spectral clustering methods mostly consist of a few loosely coupled Matlab scripts that assume a fair amount of familiarity with Matlab programming and hence they are inaccessible for large parts of the research community. SCPS (Spectral Clustering of Protein Sequences) is an efficient and user-friendly implementation of a spectral method for inferring protein families. The method uses only pairwise sequence similarities, and is therefore practical when only sequence information is available. SCPS was tested on difficult sets of proteins whose relationships were extracted from the SCOP database, and its results were extensively compared with those obtained using other popular protein clustering algorithms such as TribeMCL, hierarchical clustering and connected component analysis. We show that SCPS is able to identify many of the family/superfamily relationships correctly and that the quality of the obtained clusters as indicated by their F-scores is consistently better than all the other methods we compared it with. We also demonstrate the scalability of SCPS by clustering the entire SCOP database (14,183 sequences) and the complete genome of the yeast Saccharomyces cerevisiae (6,690 sequences). Besides the spectral method, SCPS also implements connected component analysis and hierarchical clustering, it integrates TribeMCL, it provides different cluster quality tools, it can extract human-readable protein descriptions using GI numbers from NCBI, it interfaces with

  12. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Yohai [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel); Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States)

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  13. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    International Nuclear Information System (INIS)

    Kaspi, Yohai; Showman, Adam P.

    2015-01-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate

  14. A wide-range model of two-group gross sections in the dynamics code HEXTRAN

    International Nuclear Information System (INIS)

    Kaloinen, E.; Peltonen, J.

    2002-01-01

    In dynamic analyses the thermal hydraulic conditions within the reactor core may have a large variation, which sets a special requirement on the modeling of cross sections. The standard model in the dynamics code HEXTRAN is the same as in the static design code HEXBU-3D/MODS. It is based on a linear and second order fitting of two-group cross sections on fuel and moderator temperature, moderator density and boron density. A new, wide-range model of cross sections developed in Fortum Nuclear Services for HEXBU-3D/MOD6 has been included as an option into HEXTRAN. In this model the nodal cross sections are constructed from seven state variables in a polynomial of more than 40 terms. Coefficients of the polynomial are created by a least squares fitting to the results of a large number of fuel assembly calculations. Depending on the choice of state variables for the spectrum calculations, the new cross section model is capable to cover local conditions from cold zero power to boiling at full power. The 5. dynamic benchmark problem of AER is analyzed with the new option and results are compared to calculations with the standard model of cross sections in HEXTRAN (Authors)

  15. A flexible piezoresistive carbon black network in silicone rubber for wide range deformation and strain sensing

    Science.gov (United States)

    Zhu, Jianxiong; Wang, Hai; Zhu, Yali

    2018-01-01

    This work presents the design, fabrication, and measurement of a piezoresistive device with a carbon black (CB) particle network in a highly flexible silicone rubber for large deformation and wide range strain sensing. The piezoresistive composite film was fabricated with a mixture of silicone rubber and CB filler particles. The test results showed that the CB particle network in the silicone rubber strongly affected the resistance of the device during the process of drawing and its recovery. We found that the 50% volume ratio of CB filler particles showed a lower relative resistance than the 33.3% volume ratio of CB filler particles, but with an advantage of good resistance recovery stability and a smaller perturbation error (smaller changed resistance) during the periodic back and forth linear motor test. With both having a 50% volume ratio of CB filler particles and a 33.3% volume ratio of CB filler particles, one can reach up to 200% strain with resistances 18 kΩ and 110 kΩ, respectively. We also found that the relative resistance increased in an approximately linear relationship corresponding to the value of step-increased instantaneous length for the reported device. Moreover, an application test through hand drawing was used to demonstrate the piezoresistive performance of the device, which showed that the reported device was capable of measuring the instantaneous length with large deformation.

  16. Wide-range particle characterization and elemental concentration in Beijing aerosol during the 2013 Spring Festival.

    Science.gov (United States)

    Jing, Hui; Li, Yu-Feng; Zhao, Jiating; Li, Bai; Sun, Jialong; Chen, Rui; Gao, Yuxi; Chen, Chunying

    2014-09-01

    The number and mass concentration, size distribution, and the concentration of 16 elements were studied in aerosol samples during the Spring Festival celebrations in 2013 in Beijing, China. Both the number and mass concentration increased sharply in a wide range from 10 nm to 10 μm during the firecrackers and fireworks activities. The prominent increase of the number concentration was in 50 nm-500 nm with a peak of 1.7 × 10(5)/cm(3) at 150 nm, which is 8 times higher than that after 1.5 h. The highest mass concentration was in 320-560 nm, which is 4 times higher than the control. K, Mg, Sr, Ba and Pb increased sharply during the firework activities in PM10. Although the aerosol emission from firework activities is a short-term air quality degradation event, there may be a substantial hazard arising from the chemical composition of the emitted particles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Photopolarimetric properties of leaf and vegetation covers over a wide range of measurement directions

    Science.gov (United States)

    Sun, Zhongqiu; Peng, Zhiyan; Wu, Di; Lv, Yunfeng

    2018-02-01

    The optical scattering property of the target is the essential signal for passive remote sensing applications. To deepen our understanding of the light reflected from vegetation, we present results of photopolarimetric laboratory measurements from single leaf and two vegetation covers (planophile and erectophile) over a wide range of viewing directions. The bidirectional polarized reflectance factor (BPRF) was used to characterize the polarization property of our samples. We observed positive and negative polarization (-BPRFQ) of all samples in the forward scattering and backward scattering directions, respectively. Based on the comparison of the BPRF among single leaf, planophile vegetation and erectophile vegetation, our measurements demonstrate that the orientation of the leaf is a key factor in describing the amount of polarization in the forward scattering direction. Our measurements also validated certain model results stating that (1) specular reflection generates a portion of polarization in the forward scattering direction and diffuses scattering of polarized light in all hemisphere directions, (2) BPRFU is anti-symmetric in the principal plane from a recent study in which the authors simulated the polarized reflectance of vegetation cover using the vector radiative transfer theory. These photopolarimetric measurement results, which can be completely explained by the theoretical results, are useful in remote sensing applications to vegetation.

  18. A “twisted” microfluidic mixer suitable for a wide range of flow rate applications

    KAUST Repository

    Sivashankar, Shilpa

    2016-06-27

    This paper proposes a new “twisted” 3D microfluidic mixer fabricated by a laser writing/microfabrication technique. Effective and efficient mixing using the twisted micromixers can be obtained by combining two general chaotic mixing mechanisms: splitting/recombining and chaotic advection. The lamination of mixer units provides the splitting and recombination mechanism when the quadrant of circles is arranged in a two-layered serial arrangement of mixing units. The overall 3D path of the microchannel introduces the advection. An experimental investigation using chemical solutions revealed that these novel 3D passive microfluidic mixers were stable and could be operated at a wide range of flow rates. This micromixer finds application in the manipulation of tiny volumes of liquids that are crucial in diagnostics. The mixing performance was evaluated by dye visualization, and using a pH test that determined the chemical reaction of the solutions. A comparison of the tornado-mixer with this twisted micromixer was made to evaluate the efficiency of mixing. The efficiency of mixing was calculated within the channel by acquiring intensities using ImageJ software. Results suggested that efficient mixing can be obtained when more than 3 units were consecutively placed. The geometry of the device, which has a length of 30 mm, enables the device to be integrated with micro total analysis systems and other lab-on-chip devices.

  19. ZnO core spike particles and nano-networks and their wide range of applications

    Science.gov (United States)

    Wille, S.; Mishra, Y. K.; Gedamu, D.; Kaps, S.; Jin, X.; Koschine, T.; Bathnagar, A.; Adelung, R.

    2011-05-01

    In our approach we are producing a polymer composite material with ZnO core spike particles as concave fillers. The core spike particles are synthesized by a high throughput method. Using PDMS (Polydimethylsiloxane) as a matrix material the core spike particles achieve not only a high mechanical reinforcement but also influence other material properties in a very interesting way, making such a composite very interesting for a wide range of applications. In a very similar synthesis route a nanoscopic ZnO-network is produced. As a ceramic this network can withstand high temperatures like 1300 K. In addition this material is quite elastic. To find a material with these two properties is a really difficult task, as polymers tend to decompose already at lower temperatures and metals melt. Especially under ambient conditions, often oxygen creates a problem for metals at these temperatures. If this material is at the same time a semiconductor, it has a high potential as a multifunctional material. Ceramic or classical semiconductors like III-V or IIVI type are high temperature stable, but typically brittle. This is different on the nanoscale. Even semiconductor wires like silicon with a very small diameter do not easily built up enough stress that leads to a failure while being bent, because in a first order approximation the maximum stress of a fiber scales with its diameter.

  20. Screening variability and change of soil moisture under wide-ranging climate conditions: Snow dynamics effects.

    Science.gov (United States)

    Verrot, Lucile; Destouni, Georgia

    2015-01-01

    Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950-2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.

  1. Complexity and wide range of neuromyelitis optica spectrum disorders: more than typical manifestations

    Science.gov (United States)

    Han, Jinming; Yang, Meng-ge; Zhu, Jie; Jin, Tao

    2017-01-01

    Neuromyelitis optica (NMO), considered to be mediated by autoantibodies, often cause severely disabling disorders of the central nervous system, and predominantly cause optic nerve damage and longitudinally extensive transverse myelitis. Remarkable progress has been made in deciphering NMO pathogenesis during the past decade. In 2015, the International Panel for NMO Diagnosis proposed the unifying term “NMO spectrum disorders” (NMOSD) and the updated NMOSD criteria reflects a wide range of disease and maintains reasonable specificity. Moreover, cumulative findings have indicated that NMOSD are frequently associated with multiple autoimmune diseases, thereby presenting complex clinical symptoms that make this disease more difficult to recognize. Notably, most neurologists do not heed these symptoms or comorbid conditions in patients with NMOSD. Whereas previous reviews have focused on pathogenesis, treatment, and prognosis in NMOSD, we summarize the present knowledge with particular emphasis on atypical manifestations and autoimmune comorbidities in patients with NMOSD. Furthermore, we emphasized the identification of these atypical characteristics to enable a broader and better understanding of NMOSD, and improve early accurate diagnosis and therapeutic decision making. PMID:29118581

  2. Constitutive modeling of polycarbonate over a wide range of strain rates and temperatures

    Science.gov (United States)

    Wang, Haitao; Zhou, Huamin; Huang, Zhigao; Zhang, Yun; Zhao, Xiaoxuan

    2017-02-01

    The mechanical behavior of polycarbonate was experimentally investigated over a wide range of strain rates (10^{-4} to 5× 103 s^{-1}) and temperatures (293 to 353 K). Compression tests under these conditions were performed using a SHIMADZU universal testing machine and a split Hopkinson pressure bar. Falling weight impact testing was carried out on an Instron Dynatup 9200 drop tower system. The rate- and temperature-dependent deformation behavior of polycarbonate was discussed in detail. Dynamic mechanical analysis (DMA) tests were utilized to observe the glass (α ) transition and the secondary (β ) transition of polycarbonate. The DMA results indicate that the α and β transitions have a dramatic influence on the mechanical behavior of polycarbonate. The decompose/shift/reconstruct (DSR) method was utilized to decompose the storage modulus into the α and β components and extrapolate the entire modulus, the α-component modulus and the β-component modulus. Based on three previous models, namely, Mulliken-Boyce, G'Sell-Jonas and DSGZ, an adiabatic model is proposed to predict the mechanical behavior of polycarbonate. The model considers the contributions of both the α and β transitions to the mechanical behavior, and it has been implemented in ABAQUS/Explicit through a user material subroutine VUMAT. The model predictions are proven to essentially coincide with the experimental results during compression testing and falling weight impact testing.

  3. Novel Cross-Type Network for Wide-Tuning-Range Reconfigurable Multiband Antennas

    Directory of Open Access Journals (Sweden)

    Chieh-Sen Lee

    2014-01-01

    Full Text Available This paper presents a cross-type network design with a novel reconfigurable functionality to realize a tunable multiband antenna. By attaching a reconfigurable network at the feeding port of a broadband antenna, multi-input impedance adjustment enables the production of multimatching operating bands. Each band can be independently controlled by a single component with a considerably wide tuning range and high selectivity. The experiments in this study involved using an ultra-wideband (UWB antenna connected to the proposed cross-type network. The tunable antenna operates in a dual band of fL (1.39 to 2.34 GHz and fH (2.1 to 3.6 GHz with tunable frequency ratios of 168% and 132%, respectively. The average bandwidths at fL and fH are approximately 50 MHz and 148 MHz, respectively, implying narrowband operation. The measured radiation pattern revealed that the tunable antenna exhibits a nearly omnidirectional radiation pattern at both 1.8 and 3.5 GHz. The network circuit architecture can be extended to the multiband function type by adopting this matching approach. The amount of shunt matches determines the number of operation bands.

  4. The wide range in-core neutron measurement system used in the Windscale AGR concluding experiments

    International Nuclear Information System (INIS)

    Goodings, A.; Budd, J.; Wilson, I.

    1982-06-01

    The Windscale AGR Concluding Experiments included a comparison of theoretical and experimental power transients and required measurements of neutron flux as a function of position and time within the reactor core. These measurements were specified to cover as wide as possible working range and had to be made against the in-core gamma background of up to 4 x 10 7 R(hr) - 1 . The detectors were required to operate in special, channels cooled by reactor inlet carbon dioxide and the overall system needed a response time such that it could follow transients with doubling times down to 2s with an accuracy of 2 or 3%. These problems were solved by the use of gas ion fission chambers operating in the current fluctuation or Campbelling mode with unusually low filling pressures and fitted with special trilaminax mineral insulated cables. Ten detectors were built and nine were installed in the reactor, three in each of three special stringers at different radial positions. The paper describes the specification against which this system was built, the design process for the detectors, and commissioning experiments together with some of the problems which were encountered. (U.K.)

  5. Rapid response and wide range neutronic power measuring systems for fast pulsed reactors

    International Nuclear Information System (INIS)

    Sumita, Kenji; Iida, Toshiyuki; Wakayama, Naoaki.

    1976-01-01

    This paper summarizes our investigation on design principles of the rapid, stable and wide range neutronic power measuring system for fast pulsed reactors. The picoammeter, the logarithmic amplifier, the reactivity meter and the neutron current chamber are the items of investigation. In order to get a rapid response, the method of compensation for the stray capacitance of the feedback circuits and the capacitance of signal cables is applied to the picoammeter, the logarithmic amplifier and the reactivity meter with consideration for the stability margin of a whole detecting system. The response of an ionization current chamber and the method for compensating the ion component of the chamber output to get optimum responses high pass filters are investigated. Statistical fluctuations of the current chamber output are also considered in those works. The optimum thickness of the surrounding moderator of the neutron detector is also discussed from the viewpoint of the pulse shape deformation and the neutron sensitivity increase. The experimental results are reported, which were observed in the pulse operations of the one shot fast pulsed reactor ''YAYOI'' and the one shot TRIGA ''NSRR'' with the measuring systems using those principles. (auth.)

  6. Involvement of TRPM2 in a wide range of inflammatory and neuropathic pain mouse models

    Directory of Open Access Journals (Sweden)

    Kanako So

    2015-03-01

    Full Text Available Recent evidence suggests a role of transient receptor potential melastatin 2 (TRPM2 in immune and inflammatory responses. We previously reported that TRPM2 deficiency attenuated inflammatory and neuropathic pain in some pain mouse models, including formalin- or carrageenan-induced inflammatory pain, and peripheral nerve injury-induced neuropathic pain models, while it had no effect on the basal mechanical and thermal nociceptive sensitivities. In this study, we further explored the involvement of TRPM2 in various pain models using TRPM2-knockout mice. There were no differences in the chemonociceptive behaviors evoked by intraplantar injection of capsaicin or hydrogen peroxide between wildtype and TRPM2-knockout mice, while acetic acid-induced writhing behavior was significantly attenuated in TRPM2-knockout mice. In the postoperative incisional pain model, no difference in mechanical allodynia was observed between the two genotypes. By contrast, mechanical allodynia in the monosodium iodoacetate-induced osteoarthritis pain model and the experimental autoimmune encephalomyelitis model were significantly attenuated in TRPM2-knockout mice. Furthermore, mechanical allodynia in paclitaxel-induced peripheral neuropathy and streptozotocin-induced painful diabetic neuropathy models were significantly attenuated in TRPM2-knockout mice. Taken together, these results suggest that TRPM2 plays roles in a wide range of pathological pain models based on peripheral and central neuroinflammation, rather than physiological nociceptive pain.

  7. Linearity improvement on wide-range log signal of neutron measurement system for HANARO

    International Nuclear Information System (INIS)

    Kim, Young-Ki; Tuetken, Jeffrey S.

    1998-01-01

    This paper discusses engineering activities for improving the linearity characteristics of the Log Power signal from the neutron measurement system for HANARO. This neutron measurement system uses a fission chamber based detector which covers 10.3 decade-wide range from 10 -8 % full power(FP) up to 200%FP, The Log Power signal is designed to control the reactor at low power levels where most of the reactor physics tests are carried out. Therefore, the linearity characteristics of the Log Power signal is the major factor for accurate reactor power control. During the commissioning of the neutron measurement system, it was found that the linearity characteristics of the Log Power signal, especially near 10 -2 %FP, were not accurate enough for controlling the reactor during physics testing. Analysis of the system linearity data directly measured with reactor operating determined that the system was not operating per the design characteristics established from previous installations. The linearity data, which were taken as the reactor was increased in power, were sent to manufacturer's engineering group and a follow-up measures based on the analysis were then fed back to the field. Through step by step trouble-shooting activities, which included minor circuit modifications and alignment procedure changes, the linearity characteristics have been successfully improved and now exceed minimum performance requirements. This paper discusses the trouble-shooting techniques applied, the changes in the linearity characteristics, special circumstances in the HANARO application and the final resolution. (author)

  8. A range-wide synthesis and timeline for phylogeographic events in the red fox (Vulpes vulpes).

    Science.gov (United States)

    Kutschera, Verena E; Lecomte, Nicolas; Janke, Axel; Selva, Nuria; Sokolov, Alexander A; Haun, Timm; Steyer, Katharina; Nowak, Carsten; Hailer, Frank

    2013-06-05

    Many boreo-temperate mammals have a Pleistocene fossil record throughout Eurasia and North America, but only few have a contemporary distribution that spans this large area. Examples of Holarctic-distributed carnivores are the brown bear, grey wolf, and red fox, all three ecological generalists with large dispersal capacity and a high adaptive flexibility. While the two former have been examined extensively across their ranges, no phylogeographic study of the red fox has been conducted across its entire Holarctic range. Moreover, no study included samples from central Asia, leaving a large sampling gap in the middle of the Eurasian landmass. Here we provide the first mitochondrial DNA sequence data of red foxes from central Asia (Siberia), and new sequences from several European populations. In a range-wide synthesis of 729 red fox mitochondrial control region sequences, including 677 previously published and 52 newly obtained sequences, this manuscript describes the pattern and timing of major phylogeographic events in red foxes, using a Bayesian coalescence approach with multiple fossil tip and root calibration points. In a 335 bp alignment we found in total 175 unique haplotypes. All newly sequenced individuals belonged to the previously described Holarctic lineage. Our analyses confirmed the presence of three Nearctic- and two Japan-restricted lineages that were formed since the Mid/Late Pleistocene. The phylogeographic history of red foxes is highly similar to that previously described for grey wolves and brown bears, indicating that climatic fluctuations and habitat changes since the Pleistocene had similar effects on these highly mobile generalist species. All three species originally diversified in Eurasia and later colonized North America and Japan. North American lineages persisted through the last glacial maximum south of the ice sheets, meeting more recent colonizers from Beringia during postglacial expansion into the northern Nearctic. Both brown

  9. THE SECOND STAGE OF FERMI at ELETTRA: A SEEDED FEL IN THE SOFT X-RAY SPECTRAL RANGE

    International Nuclear Information System (INIS)

    Allaria, E.; DeNinno, G.; Fawley, W.M.

    2009-01-01

    The second stage of the FERMI FEL, named FEL-2, is based on the principle of high-gain harmonic generation and relies on a double-seeded cascade. Recent developments stimulated a revision of the original setup, which was designed to cover the spectral range between 40 and 10 nm. The numerical simulations we present here show that the nominal (expected) electron-beam performance allows extension of the FEL spectral range down to 4 nm. A significant amount of third harmonic power can be also expected. We also show that the proposed setup is flexible enough for exploiting future developments of new seed sources, e.g., high harmonic generation in gases.

  10. Passive mode locking at harmonics of the free spectral range of the intracavity filter in a fiber ring laser.

    Science.gov (United States)

    Zhang, Shumin; Lu, Fuyun; Dong, Xinyong; Shum, Ping; Yang, Xiufeng; Zhou, Xiaoqun; Gong, Yandong; Lu, Chao

    2005-11-01

    We report the passive mode-locking at harmonics of the free spectral range (FSR) of the intracavity multi-channel filter in a fiber ring laser. The laser uses a sampled fiber Bragg grating (SFBG) with a free spectral range (FSR) of 0.8 nm, or 99 GHz at 1555 nm, and a length of highly nonlinear photonic crystal fiber with low and flat dispersion. Stable picosecond soliton pulse trains with twofold to sevenfold enhancement in the repetition rate, relative to the FSR of the SFBG, have been achieved. The passive mode-locking mechanism that is at play in this laser relies on a dissipative four-wave mixing process and switching of repetition rate is realized simply by adjustment of the intracavity polarization controllers.

  11. Herschel observations of extraordinary sources: Analysis of the HIFI 1.2 THz wide spectral survey toward orion KL. I. method

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, Nathan R.; Bergin, Edwin A.; Neill, Justin L.; Favre, Cécile [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Schilke, Peter [Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln (Germany); Lis, Dariusz C.; Emprechtinger, Martin; Phillips, Thomas G. [Cahill Center for Astronomy and Astrophysics 301-17, California Institute of Technology, Pasadena, CA 91125 (United States); Bell, Tom A.; Cernicharo, José; Esplugues, Gisela B. [Centro de Astrobiología (CSIC/INTA), Laboratiorio de Astrofísica Molecular, Ctra. de Torrejón a Ajalvir, km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Blake, Geoffrey; Kleshcheva, Maria [Division of Geological and Planetary Sciences, California Institute of Technology, MS 150-21, Pasadena, CA 91125 (United States); Gupta, Harshal; Pearson, John [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lord, Steven [Infrared Processing and Analysis Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125 (United States); Marcelino, Nuria [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); McGuire, Brett A. [Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, CA 91125 (United States); Plume, Rene [Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4 (Canada); Van der Tak, Floris [SRON Netherlands Institute for Space Research, P.O. Box 800, 9700 AV Groningen (Netherlands); and others

    2014-06-01

    We present a comprehensive analysis of a broadband spectral line survey of the Orion Kleinmann-Low nebula (Orion KL), one of the most chemically rich regions in the Galaxy, using the HIFI instrument on board the Herschel Space Observatory. This survey spans a frequency range from 480 to 1907 GHz at a resolution of 1.1 MHz. These observations thus encompass the largest spectral coverage ever obtained toward this high-mass star-forming region in the submillimeter with high spectral resolution and include frequencies >1 THz, where the Earth's atmosphere prevents observations from the ground. In all, we detect emission from 39 molecules (79 isotopologues). Combining this data set with ground-based millimeter spectroscopy obtained with the IRAM 30 m telescope, we model the molecular emission from the millimeter to the far-IR using the XCLASS program, which assumes local thermodynamic equilibrium (LTE). Several molecules are also modeled with the MADEX non-LTE code. Because of the wide frequency coverage, our models are constrained by transitions over an unprecedented range in excitation energy. A reduced χ{sup 2} analysis indicates that models for most species reproduce the observed emission well. In particular, most complex organics are well fit by LTE implying gas densities are high (>10{sup 6} cm{sup –3}) and excitation temperatures and column densities are well constrained. Molecular abundances are computed using H{sub 2} column densities also derived from the HIFI survey. The distribution of rotation temperatures, T {sub rot}, for molecules detected toward the hot core is significantly wider than the compact ridge, plateau, and extended ridge T {sub rot} distributions, indicating the hot core has the most complex thermal structure.

  12. TESIS experiment on study of solar corona in EUV spectral range (CORONAS-PHOTON project)

    International Nuclear Information System (INIS)

    Kuzin, S.V.; Zhitnik, I.A.; Ignat'ev, A.P.; Mitrofanov, A.V.; Pertsov, A.A.; Bugaenko, O.I.

    2005-01-01

    A new orbital station, namely: the CORONAS-PHOTON one (to be launched in 2006) equipped with systems to explore Sun at the intensification period of the solar activity 24-th cycle and at its peak is being designed within the framework of the CORONAS National Sun Space Exploration Program. The station equipment consists of systems to observe Sun within the spectral soft X-ray and vacuum ultraviolet bands. Paper lists and describes the TESIS experiment tools designed for the CORONAS-PHOTON Project to ensure the Sun atmospheric research within short-wave band [ru

  13. Broadband superluminescent diodes and semiconductor optical amplifiers for the spectral range 750 - 800 nm

    International Nuclear Information System (INIS)

    Il'chenko, S N; Kostin, Yu O; Kukushkin, I A; Ladugin, M A; Lapin, P I; Lobintsov, A A; Marmalyuk, Aleksandr A; Yakubovich, S D

    2011-01-01

    We have studied superluminescent diodes (SLDs) and semiconductor optical amplifiers (SOAs) based on an (Al x Ga 1-x )As/GaAs single quantum well structure with an Al content x ∼ 0.1 in a 10-nm-thick active layer. Depending on the length of the active channel, the single-mode fibre coupled cw output power of the SLDs is 1 to 30 mW at a spectral width of about 50 nm. The width of the optical gain band in the active channel exceeds 40 nm. Preliminary operating life tests have demonstrated that the devices are sufficiently reliable. (lasers)

  14. Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range.

    Science.gov (United States)

    Shuvaev, A M; Astakhov, G V; Pimenov, A; Brüne, C; Buhmann, H; Molenkamp, L W

    2011-03-11

    We report the observation of a giant Faraday effect, using terahertz (THz) spectroscopy on epitaxial HgTe thin films at room temperature. The effect is caused by the combination of the unique band structure and the very high electron mobility of HgTe. Our observations suggest that HgTe is a high-potential material for applications as optical isolator and modulator in the THz spectral range.

  15. A wide-range embrittlement trend curve for western RPV steels

    International Nuclear Information System (INIS)

    Kirk, M.T.

    2011-01-01

    Embrittlement trend curves (ETCs) are used to estimate neutron irradiation embrittlement as a function of both exposure (fluence, flux, temperature, ...) and composition variables. ETCs provide information needed to assess the structural integrity of operating nuclear reactors, and to determine their suitability for continued safe operation. Past efforts on ETC development in the United States have used data drawn from domestic licensees. While this approach has addressed past needs well, future needs such as power up-rates, license extensions to 60 years and beyond, and the use of low copper materials in new reactors produce future operating conditions for the US reactor fleet that may differ from past experience, suggesting that data from sources other than licensee surveillance programs may be needed. In this paper we draw together embrittlement data expressed in terms of ΔT41J and ΔYS from a wide variety of data sources as a first step in examining future embrittlement trends. We develop a 'wide range' ETC based on a collection of over 2500 data. We assess how well this ETC models the whole database, as well as significant data subsets. Comparisons presented herein indicate that a single algebraic model, denoted WR-C(5), represents reasonably well both the trends evident in the data overall as well as trends exhibited by four special data subsets. The WR-C(5) model indicates the existence of trends in high fluence data (Φ > 2-3*10 19 n/cm 2 , E > 1 MeV) that are not as apparent in the US surveillance data due to the limited quantity of ΔT30 data measured at high fluence in this dataset. Additionally, WR-C(5) models well the trends in both test and power reactor data despite the fact it has not term to account for flux. It is suggested that one appropriate use of the WR-C(5) trend curve may include the design irradiation studies to validate or refute the findings presented herein. Additionally, WR-C(5) could be used, along with other information (e.g., other

  16. Predicting sorption of organic acids to a wide range of carbonized sorbents

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model

  17. Evaluating the impact of a wide range of vegetation densities on river channel pattern

    Science.gov (United States)

    Pattison, Ian; Roucou, Ron

    2016-04-01

    develop a simple conceptual model to explain the observations along the wide range of vegetation densities investigated. At low plant densities, each plant acted independently and caused flow separation and convergence around each plant, similar to in the Coulthard (2005] experiment. At medium densities, individual plants start to interact together with narrow channels developing longitudinally between vegetative bars. Finally at very high densities, there was both lateral and longitudinal interaction between plants meaning that flow was diverted around them forming wandering, meandering channels. In summary, the relationship between vegetation density and channel braiding is more complex than previous thought, taking a parabolic shape, with maximum braiding occurring at medium vegetation densities.

  18. Spectral Unmixing of Forest Crown Components at Close Range, Airborne and Simulated Sentinel-2 and EnMAP Spectral Imaging Scale

    Directory of Open Access Journals (Sweden)

    Anne Clasen

    2015-11-01

    Full Text Available Forest biochemical and biophysical variables and their spatial and temporal distribution are essential inputs to process-orientated ecosystem models. To provide this information, imaging spectroscopy appears to be a promising tool. In this context, the present study investigates the potential of spectral unmixing to derive sub-pixel crown component fractions in a temperate deciduous forest ecosystem. However, the high proportion of foliage in this complex vegetation structure leads to the problem of saturation effects, when applying broadband vegetation indices. This study illustrates that multiple endmember spectral mixture analysis (MESMA can contribute to overcoming this challenge. Reference fractional abundances, as well as spectral measurements of the canopy components, could be precisely determined from a crane measurement platform situated in a deciduous forest in North-East Germany. In contrast to most other studies, which only use leaf and soil endmembers, this experimental setup allowed for the inclusion of a bark endmember for the unmixing of components within the canopy. This study demonstrates that the inclusion of additional endmembers markedly improves the accuracy. A mean absolute error of 7.9% could be achieved for the fractional occurrence of the leaf endmember and 5.9% for the bark endmember. In order to evaluate the results of this field-based study for airborne and satellite-based remote sensing applications, a transfer to Airborne Imaging Spectrometer for Applications (AISA and simulated Environmental Mapping and Analysis Program (EnMAP and Sentinel-2 imagery was carried out. All sensors were capable of unmixing crown components with a mean absolute error ranging between 3% and 21%.

  19. A CMOS frontend chip for implantable neural recording with wide voltage supply range

    International Nuclear Information System (INIS)

    Liu Jialin; Zhang Xu; Hu Xiaohui; Li Peng; Liu Ming; Chen Hongda; Guo Yatao; Li Bin

    2015-01-01

    A design for a CMOS frontend integrated circuit (chip) for neural signal acquisition working at wide voltage supply range is presented in this paper. The chip consists of a preamplifier, a serial instrumental amplifier (IA) and a cyclic analog-to-digital converter (CADC). The capacitive-coupled and capacitive-feedback topology combined with MOS-bipolar pseudo-resistor element is adopted in the preamplifier to create a −3 dB upper cut-off frequency less than 1 Hz without using a ponderous discrete device. A dual-amplifier instrumental amplifier is used to provide a low output impedance interface for ADC as well as to boost the gain. The preamplifier and the serial instrumental amplifier together provide a midband gain of 45.8 dB and have an input-referred noise of 6.7 μV rms integrated from 1 Hz to 5 kHz. The ADC digitizes the amplified signal at 12-bits precision with a highest sampling rate of 130 kS/s. The measured effective number of bits (ENOB) of the ADC is 8.7 bits. The entire circuit draws 165 to 216 μA current from the supply voltage varied from 1.34 to 3.3 V. The prototype chip is fabricated in the 0.18-μm CMOS process and occupies an area of 1.23 mm 2 (including pads). In-vitro recording was successfully carried out by the proposed frontend chip. (paper)

  20. A CMOS frontend chip for implantable neural recording with wide voltage supply range

    Science.gov (United States)

    Jialin, Liu; Xu, Zhang; Xiaohui, Hu; Yatao, Guo; Peng, Li; Ming, Liu; Bin, Li; Hongda, Chen

    2015-10-01

    A design for a CMOS frontend integrated circuit (chip) for neural signal acquisition working at wide voltage supply range is presented in this paper. The chip consists of a preamplifier, a serial instrumental amplifier (IA) and a cyclic analog-to-digital converter (CADC). The capacitive-coupled and capacitive-feedback topology combined with MOS-bipolar pseudo-resistor element is adopted in the preamplifier to create a -3 dB upper cut-off frequency less than 1 Hz without using a ponderous discrete device. A dual-amplifier instrumental amplifier is used to provide a low output impedance interface for ADC as well as to boost the gain. The preamplifier and the serial instrumental amplifier together provide a midband gain of 45.8 dB and have an input-referred noise of 6.7 μVrms integrated from 1 Hz to 5 kHz. The ADC digitizes the amplified signal at 12-bits precision with a highest sampling rate of 130 kS/s. The measured effective number of bits (ENOB) of the ADC is 8.7 bits. The entire circuit draws 165 to 216 μA current from the supply voltage varied from 1.34 to 3.3 V. The prototype chip is fabricated in the 0.18-μm CMOS process and occupies an area of 1.23 mm2 (including pads). In-vitro recording was successfully carried out by the proposed frontend chip. Project supported by the National Natural Science Foundation of China (Nos. 61474107, 61372060, 61335010, 61275200, 61178051) and the Key Program of the Chinese Academy of Sciences (No. KJZD-EW-L11-01).

  1. The wide range in-core neutron measurement system used in the Windscale AGR concluding experiments

    International Nuclear Information System (INIS)

    Goodings, A.; Budd, J.; Wilson, I.

    1982-06-01

    The Windscale AGR concluding experiments included a comparison of theoretical and experimental power transients and required measurements of neutron flux as a function of position and time within the reactor core. These measurements were specified to cover a working range as wide as possible and had to be made against the in-core gamma background of up to 4 x 10 7 R(hr) - 1 . The detectors were required to operate in special channels cooled by reactor inlet CO 2 and the overall system needed a response time such that it could follow transients with doubling times down to 2s with an accuracy of 2 or 3%. These problems were solved by the use of gas ion fission chambers operating in the current fluctuation or ''Campbelling'' mode. Their neutron to gamma sensitivity ratio was optimised by the use of unusually low filling pressures and they were fitted with special ''trilaminax'' mineral insulated cables to minimise the effects of electrical interference at the 100 kHz channel centre frequency. Ten detectors were built and nine were installed in the reactor, three in each of three special stringers at different radial positions. All were processed and tested for operation at 350 deg. C and their fissile coatings (430 μg cm - 1 of natural uranium) were matched to give individual neutron sensitivities with a population spread better than +- 6% about the mean. The mean absolute sensitivities were determined to about +- 5% against manganese foils in the NESTOR reactor at AEE Winfrith. The detectors were complemented by special signal processing channels which provided current fluctuation sensitivity and appropriate output signals to the experiment data acquisition system. These channels also permitted dc measurement of chamber current for more precise flux determination near reactor full power

  2. Wide-ranging phylogeographic structure of invasive red lionfish in the Western Atlantic and Greater Caribbean

    Science.gov (United States)

    Butterfield, John S.; Díaz-Ferguson, Edgardo; Silliman, Brian R.; Saunders, Jonathan W.; Buddo, Dayne; Mignucci-Giannoni, Antonio A.; Searle, Linda; Allen, Aarin Conrad; Hunter, Margaret E.

    2015-01-01

    The red lionfish (Pterois volitans) is an invasive predatory marine fish that has rapidly expanded its presence in the Western Hemisphere. We collected 214 invasive red lionfish samples from nine countries and territories, including seven unpublished locations. To more comprehensively evaluate connectivity, we compiled our d-loop sequence data with 846 published sequences, resulting in 1,060 samples from 14 locations. We found low nucleotide diversity (π = 0.003) and moderate haplotype diversity (h = 0.59). Using haplotype population pairwise ΦST tests, we analyzed possible phylogeographic breaks that were previously proposed based on other reef organisms. We found support for the Bahamas/Turks/Caicos versus Caribbean break (ΦST = 0.12) but not for the Northwestern Caribbean, Eastern Caribbean, or US East Coast versus Bahamas breaks. The Northern Region had higher variation and more haplotypes, supporting introductions of at least five haplotypes to the region. Our wide-ranging samples showed that a lower-frequency haplotype in the Northern Region dominated the Southern Region and suggested multiple introductions, possibly to the south. We tested multiple scenarios of phylogeographic structure with analyses of molecular variance and found support for a Northern and Southern Region split at the Bahamas/Turks/Caicos versus Caribbean break (percentage of variation among regions = 8.49 %). We found that Puerto Rico clustered with the Southern Region more strongly than with the Northern Region, as opposed to previous reports. We also found the rare haplotype H03 for the first time in the southern Caribbean (Panama), indicating that either secondary releases occurred or that the low-frequency haplotypes have had time to disperse to extreme southern Caribbean locations.

  3. Wide-range screening of psychoactive substances by FIA-HRMS: identification strategies.

    Science.gov (United States)

    Alechaga, Élida; Moyano, Encarnación; Galceran, Maria Teresa

    2015-06-01

    Recreational drugs (illicit drugs, human and veterinary medicines, legal highs, etc.) often contain lacing agents and adulterants which are not related to the main active ingredient. Serious side effects and even the death of the consumer have been related to the consumption of mixtures of psychoactive substances and/or adulterants, so it is important to know the actual composition of recreational drugs. In this work, a method based on flow injection analysis (FIA) coupled with high-resolution mass spectrometry (HRMS) is proposed for the fast identification of psychoactive substances in recreational drugs and legal highs. The FIA and HRMS working conditions were optimized in order to detect a wide range of psychoactive compounds. As most of the psychoactive substances are acid-base compounds, methanol-0.1 % aqueous formic acid (1:1 v/v) as a carrier solvent and electrospray in both positive ion mode and negative ion mode were used. Two data acquisition modes, full scan at high mass resolution (HRMS) and data-dependent tandem mass spectrometry (ddMS/HRMS) with a quadrupole-Orbitrap mass analyzer were used, resulting in sufficient selectivity for identification of the components of the samples. A custom-made database containing over 450 substances, including psychoactive compounds and common adulterants, was built to perform a high-throughput target and suspect screening. Moreover, online accurate mass databases and mass fragmenter software were used to identify unknowns. Some examples, selected among the analyzed samples of recreational drugs and legal highs using the FIA-HRMS(ddMS/HRMS) method developed, are discussed to illustrate the screening strategy used in this study. The results showed that many of the analyzed samples were adulterated, and in some cases the sample composition did not match that of the supposed marketed substance.

  4. Radiation-induced polymerization of water-saturated styrene in a wide range of dose rate

    International Nuclear Information System (INIS)

    Takezaki, J.; Okada, T.; Sakurada, I.

    1978-01-01

    Radiation-induced polymerization of water-saturated styrene (water content 3.5 x 10 -2 mole/liter) was carried out in a wide range of dose rate between 1.2 x 10 3 and 1.8 x 10 7 rad/sec, and compared with the polymerization of the moderately dried styrene (water content 3.2 x 10 -3 mole/liter). Molecular weight distribution curves of the polymerization products showed that they were generally consisted of four parts, namely, oligomers, radical, cationic, and super polymers. Contributions of the four constituents to the polymerization and the number average degrees of polymerization (DP) of the four kinds of polymers were calculated by the graphical analysis of the curves. The rate of radical polymerization and DP of radical polymers are independent of the water content; the dose rate dependences of the polymerization rate and DP agree with the well known square root and inverse square root laws, respectively, of the radical polymerization of styrene. The rate of ionic polymerization is directly proportional to the dose rate, but it decreases, at a given dose rate, inversely proportional to the water content of styrene. DP of ionic polymer is independent of the dose rate but decreases with increasing water content. The super polymer of DP about 10 4 is not formed in the case of the moderately dried styrene. G values for the initiating radical and ion formation are calculated to be independently of the dose rate and water content, 0.66 and 0.027, respectively. It was suggested that oligomer was formed in the early stage by the interaction of cation with anion and only those cations which had survived underwent polymerization. 10 figures, 4 tables

  5. GOME-2A retrievals of tropospheric NO2 in different spectral ranges – influence of penetration depth

    Directory of Open Access Journals (Sweden)

    L. K. Behrens

    2018-05-01

    Full Text Available In this study, we present a novel nitrogen dioxide (NO2 differential optical absorption spectroscopy (DOAS retrieval in the ultraviolet (UV spectral range for observations from the Global Ozone Monitoring Instrument 2 on board EUMETSAT's MetOp-A (GOME-2A satellite. We compare the results to those from an established NO2 retrieval in the visible (vis spectral range from the same instrument and investigate how differences between the two are linked to the NO2 vertical profile shape in the troposphere.As expected, radiative transfer calculations for satellite geometries show that the sensitivity close to the ground is higher in the vis than in the UV spectral range. Consequently, NO2 slant column densities (SCDs in the vis are usually higher than in the UV if the NO2 is close to the surface. Therefore, these differences in NO2 SCDs between the two spectral ranges contain information on the vertical distribution of NO2 in the troposphere. We combine these results with radiative transfer calculations and simulated NO2 fields from the TM5-MP chemistry transport model to evaluate the simulated NO2 vertical distribution.We investigate regions representative of both anthropogenic and biomass burning NO2 pollution. Anthropogenic air pollution is mostly located in the boundary layer close to the surface, which is reflected by large differences between UV and vis SCDs of  ∼  60 %. Biomass burning NO2 in contrast is often uplifted into elevated layers above the boundary layer. This is best seen in tropical Africa south of the Equator, where the biomass burning NO2 is well observed in the UV, and the SCD difference between the two spectral ranges is only  ∼  36 %. In tropical Africa north of the Equator, however, the biomass burning NO2 is located closer to the ground, reducing its visibility in the UV.While not enabling a full retrieval of the vertical NO2 profile shape in the troposphere, our results can help to constrain the vertical

  6. Photophysics of GaN single-photon emitters in the visible spectral range

    Science.gov (United States)

    Berhane, Amanuel M.; Jeong, Kwang-Yong; Bradac, Carlo; Walsh, Michael; Englund, Dirk; Toth, Milos; Aharonovich, Igor

    2018-04-01

    In this work, we present a detailed photophysical analysis of recently discovered, optically stable single-photon emitters (SPEs) in gallium nitride (GaN). Temperature-resolved photoluminescence measurements reveal that the emission lines at 4 K are three orders of magnitude broader than the transform-limited width expected from excited-state lifetime measurements. The broadening is ascribed to ultrafast spectral diffusion. The photophysical study on several emitters at room temperature (RT) reveals an average brightness of (427 ±215 )kCounts /s . Finally, polarization measurements from 14 emitters are used to determine visibility as well as dipole orientation of defect systems within the GaN crystal. Our results underpin some of the fundamental properties of SPEs in GaN both at cryogenic and RT, and define the benchmark for future work in GaN-based single-photon technologies.

  7. Improved Models and Tools for Prediction of Radiation Effects on Space Electronics in Wide Temperature Range, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — All NASA exploration systems operate in the extreme environments of space and require reliable electronics capable of handling a wide temperature range (-180ºC to...

  8. A parameterization of momentum roughness length and displacement height for a wide range of canopy densities

    Directory of Open Access Journals (Sweden)

    A. Verhoef

    1997-01-01

    occurring in the d-data across 16 selected canopies can be explained, whereas the analogous value for the z0-data (24 datapoints available is 81%. This makes the R94 model, with only two coefficients and its relatively simple equations, a useful universal tool for predicting z0 and d values for all kinds of canopies. For comparison, a similar fitting exercise is made using simple linear equations based on obstacle height only (e.g. Brutsaert, 1982 and another formula involving canopy height as well as roughness density (Lettau, 1969. The fitted Brutsaert equations explain 98% and 62% of the variance in the d and z0-data, respectively. Lettau's equation for prediction of z0 performs unsatisfactorily (r2 values <0, even after fitting of the coefficient and so it is concluded that the drag partition model is definitely the most effective for prediction of the momentum roughness lengths for a wide rang of canopy densities.

  9. Using dogs to find cats: detection dogs as a survey method for wide-ranging cheetah

    OpenAIRE

    Becker, M. S.; Durant, S. M.; Watson, F. G. R.; Parker, M.; Gottelli, D.; M Soka, J.; Droge, E.; Nyirenda, M.; Schuette, P.; Dunkley, P.; Brummer, R.

    2017-01-01

    Rapid global large carnivore declines make evaluations of remaining populations critical. Yet landscape-scale evaluations of presence, abundance and distribution are difficult, as many species are wide-ranging, occur only at low densities and are elusive. Insufficient information-gathering tools for many large carnivore species compounds these challenges. Specially trained detection dogs have demonstrated effectiveness for carnivore surveys, but are untested on extremely sparse, wide-ranging ...

  10. Spectral optical properties of long-range transport Asian dust and pollution aerosols over Northeast Asia in 2007 and 2008

    Directory of Open Access Journals (Sweden)

    J. Jung

    2010-06-01

    Full Text Available As a part of the IGAC (International Global Atmospheric Chemistry Mega-cities program, aerosol physical and optical properties were continuously measured from March 2007 to March 2008 at an urban site (37.57° N, 126.94° E in Seoul, Korea. Spectral optical properties of long-range transported Asian dust and pollution aerosols have been investigated based on the year long measurement data. Optically measured black carbon/thermally measured elemental carbon (BC/EC ratio showed clear monthly variation with high values in summer and low values in winter mainly due to the enhancement of light attenuation by the internal mixing of EC. Novel approach has been suggested to retrieve the spectral light absorption coefficient (babs from Aethalometer raw data by using BC/EC ratio. Mass absorption efficiency, σabs (=babs/EC at 550 nm was determined to be 9.0±1.3, 8.9±1.5, 9.5±2.0, and 10.3±1.7 m2 g−1 in spring, summer, fall, and winter, respectively with an annual mean of 9.4±1.8 m2 g−1. Threshold values to classify severe haze events were suggested in this study. Increasing trend of aerosol single scattering albedo (SSA with wavelength was observed during Asian dust events while little spectral dependence of SSA was observed during long-range transport pollution (LTP events. Satellite aerosol optical thickness (AOT and Hysplit air mass backward trajectory analyses as well as chemical analysis were performed to characterize the dependence of spectral optical properties on aerosol type. Results from this study can provide useful information for studies on regional air quality and aerosol's effects on climate change.

  11. Infrared normal spectral emissivity of Ti-6Al-4V alloy in the 500-1150 K temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Risueno, E. [CIC Energigune, Parque Tecnologico, Albert Einstein 48, 01510 Minano, Alava, Spain. (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.es [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644,48080 Bilbao, Spain. (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644,48080 Bilbao, Spain. (Spain)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer First heating cycle acts as a annealing, relieving the surface stresses. Black-Right-Pointing-Pointer Stress relieving occurs mainly above 900 K. Black-Right-Pointing-Pointer Emissivity decreases between 0.35 and 0.10 in the 2.5-22 {mu}m spectral range. Black-Right-Pointing-Pointer Emissivity increases linearly with temperature, with the same slope for {lambda} > 10 {mu}m. Black-Right-Pointing-Pointer Good agreement between resistivity and emissivity by means of Hagen-Rubens relation. - Abstract: Thermal radiative emissivity is related to the optical and electrical properties of materials, and it is a key parameter required in a large number of industrial applications. In the case of Ti-6Al-4V, spectral emissivity experimental data are not available for the range of temperatures between 400 and 1200 K, where almost all industrial applications take place. The experimental results in this paper show that the normal spectral emissivity decreases with wavelength from a value of about 0.35 at 2.5 {mu}m to about 0.10 at 22 {mu}m. At the same time, the spectral emissivity shows a slight linear increase with temperature between 500 and 1150 K, with approximately the same slope for all wavelengths. Additionally, the influence of the samples thermal history on the emissivity is studied. A strong decrease in the emissivity values appears due to the effect of surface stress relaxation processes. This means that the radiative properties of this alloy strongly depend on the surface stress state. A thermal treatment to relieve the surface stress should be carried out to achieve a steady state of the radiative properties. In addition, a good qualitative agreement is found between the temperature dependence of the electrical resistivity obtained using conventional measurements and the one obtained from the emissivity experimental results by using the Hagen-Rubens equation.

  12. Infrared normal spectral emissivity of Ti–6Al–4V alloy in the 500–1150 K temperature range

    International Nuclear Information System (INIS)

    González-Fernández, L.; Risueño, E.; Pérez-Sáez, R.B.; Tello, M.J.

    2012-01-01

    Highlights: ► First heating cycle acts as a annealing, relieving the surface stresses. ► Stress relieving occurs mainly above 900 K. ► Emissivity decreases between 0.35 and 0.10 in the 2.5–22 μm spectral range. ► Emissivity increases linearly with temperature, with the same slope for λ > 10 μm. ► Good agreement between resistivity and emissivity by means of Hagen–Rubens relation. - Abstract: Thermal radiative emissivity is related to the optical and electrical properties of materials, and it is a key parameter required in a large number of industrial applications. In the case of Ti–6Al–4V, spectral emissivity experimental data are not available for the range of temperatures between 400 and 1200 K, where almost all industrial applications take place. The experimental results in this paper show that the normal spectral emissivity decreases with wavelength from a value of about 0.35 at 2.5 μm to about 0.10 at 22 μm. At the same time, the spectral emissivity shows a slight linear increase with temperature between 500 and 1150 K, with approximately the same slope for all wavelengths. Additionally, the influence of the samples thermal history on the emissivity is studied. A strong decrease in the emissivity values appears due to the effect of surface stress relaxation processes. This means that the radiative properties of this alloy strongly depend on the surface stress state. A thermal treatment to relieve the surface stress should be carried out to achieve a steady state of the radiative properties. In addition, a good qualitative agreement is found between the temperature dependence of the electrical resistivity obtained using conventional measurements and the one obtained from the emissivity experimental results by using the Hagen–Rubens equation.

  13. Analysis of global water vapour trends from satellite measurements in the visible spectral range

    Directory of Open Access Journals (Sweden)

    S. Mieruch

    2008-02-01

    Full Text Available Global water vapour total column amounts have been retrieved from spectral data provided by the Global Ozone Monitoring Experiment (GOME flying on ERS-2, which was launched in April 1995, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY onboard ENVISAT launched in March 2002. For this purpose the Air Mass Corrected Differential Optical Absorption Spectroscopy (AMC-DOAS approach has been used. The combination of the data from both instruments provides us with a long-term global data set spanning more than 11 years with the potential of extension up to 2020 by GOME-2 data on MetOp.

    Using linear and non-linear methods from time series analysis and standard statistics the trends of H2O columns and their errors have been calculated. In this study, factors affecting the trend such as the length of the time series, the magnitude of the variability of the noise, and the autocorrelation of the noise are investigated. Special emphasis has been placed on the calculation of the statistical significance of the observed trends, which reveal significant local changes from −5% per year to +5% per year. These significant trends are distributed over the whole globe. Increasing trends have been calculated for Greenland, East Europe, Siberia and Oceania, whereas decreasing trends have been observed for the northwest USA, Central America, Amazonia, Central Africa and the Arabian Peninsular.

  14. Phototransformation of 2,4,6-trinitrotoluene: Sensitized by riboflavin under different irradiation spectral range

    International Nuclear Information System (INIS)

    Yang Xin; Zhao Xueheng; Hwang, H.-M.

    2007-01-01

    Riboflavin-sensitized phototransformation of 2,4,6-trinitrotoluene (TNT) under natural sunlight was investigated with reverse-phase high performance liquid chromatography/mass spectrometry (HPLC/MS) and gas chromatography/mass spectrometry (GC/MS). The effect of different spectral region of sunlight on TNT phototransformation in the absence or presence of riboflavin was also investigated by using optical filters with cut-off at 400 or 455 nm. The concentration of riboflavin in the phototransformation of TNT was optimized. Concentration of riboflavin and TNT was 1.0 and 50 μM, respectively. The rates of phototransformation of TNT under natural sunlight in the presence or absence of riboflavin were conformed to initial pseudo-first-order rate equation. The photolysis half life of TNT in the presence of riboflavin was 21.87 min, compared to 39 min in the absence of riboflavin under natural sunlight. Two major phototransformation products of TNT, 3,5-dinitroaniline (3,5-DNA) and 1,3,5-trinitrobenzene (1,3,5-TNB), were detected in the samples in the presence of riboflavin receiving irradiation at full wavelength or wavelength >400 nm. The results indicate that riboflavin mediates TNT sensitized-phototransfomation under natural sunlight or near-UV-vis light

  15. Data resources for range-wide assessment of livestock grazing across the sagebrush biome

    Science.gov (United States)

    Assal, T.J.; Veblen, K.E.; Farinha, M.A.; Aldridge, Cameron L.; Casazza, Michael L.; Pyke, D.A.

    2012-01-01

    The data contained in this series were compiled, modified, and analyzed for the U.S. Geological Survey (USGS) report "Range-Wide Assessment of Livestock Grazing Across the Sagebrush Biome." This report can be accessed through the USGS Publications Warehouse (online linkage: http://pubs.usgs.gov/of/2011/1263/). The dataset contains spatial and tabular data related to Bureau of Land Management (BLM) Grazing Allotments. We reviewed the BLM national grazing allotment spatial dataset available from the GeoCommunicator National Integrated Land System (NILS) website in 2007 (http://www.geocommunicator.gov). We identified several limitations in those data and learned that some BLM State and/or field offices had updated their spatial data to rectify these limitations, but maintained the data outside of NILS. We contacted appropriate BLM offices (State or field, 25 in all) to obtain the most recent data, assessed the data, established a data development protocol, and compiled data into a topologically enforced dataset throughout the area of interest for this project (that is, the pre-settlement distribution of Greater Sage-Grouse in the Western United States). The final database includes three spatial datasets: Allotments (BLM Grazing Allotments), OUT_Polygons (nonallotment polygons used to ensure topology), and Duplicate_Polygon_Allotments. See Appendix 1 of the aforementioned report for complete methods. The tabular data presented here consists of information synthesized by the Land Health Standard (LHS) analysis (Appendix 2), and data obtained from the BLM Rangeland Administration System (http://www.blm.gov/ras/). In 2008, available LHS data for all allotments in all regions were compiled by BLM in response to a Freedom of Information Act (FOIA) request made by a private organization. The BLM provided us with a copy of these data. These data provided three major types of information that were of interest: (1) date(s) (if any) of the most recent LHS evaluation for each

  16. Review of some experimental studies of turbulent mixed convection covering a wide range Prandtl number

    International Nuclear Information System (INIS)

    Jackson, J.D.

    2011-01-01

    The early experimental studies of buoyancy-influenced turbulent convective heat transfer to fluids flowing upwards and downwards in long uniformly heated vertical tubes were mainly performed using water at atmospheric pressure as the working fluid. In addition, some experiments using air were reported and even some using mercury. At that time there was also quite a lot of interest in heat transfer to water at supercritical pressure and also carbon dioxide. More recently, experimental results have been obtained using liquid sodium. The Prandtl numbers in the studies referred to above cover a wide range of values, being well in excess of unity under some conditions in the case of the supercritical pressure fluids and atmospheric pressure water, just under unity in the case of air, much less than unity in the case of mercury and even lower in the case of liquid sodium. Over the years a good general understanding has gradually been achieved of the complex manner in which buoyancy affects heat transfer in conventional fluids such as water and air. Up to a point, the behaviour in the case of a liquid metal such as mercury can be reconciled with such arguments. However, this is certainly not so in the case of liquid sodium. In the present paper results from a number of experimental studies of buoyancy-influenced heat transfer in vertical tubes are reviewed. This is done with the aim of providing a picture of observed behaviour consistent with our understanding of the basic mechanisms of convective heat transfer, taking account of the complicated manner in which the mean motion, turbulence and the heat transfer are affected by buoyancy. The starting point is to view convective heat transfer in wall shear flows in terms of the local balance between diffusion of heat (turbulent and molecular) and advection of heat by the flowing fluid. Prandtl number affects the radial temperature profile and therefore the variation of density across the shear flow and, in turn, the extent

  17. Preliminary assessment of the ecological risks to wide-ranging wildlife species on the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Sample, B.E.; Baron, L.A.; Jackson, B.L.

    1995-08-01

    Historically, ecological risk assessment at CERCLA sites [such as the Oak Ridge Reservation (ORR)], has focused on species that may be definitively associated with a contaminated area or source operable unit. Consequently the species that are generally considered are those with home ranges small enough such that multiple individuals or a distinct population can be expected to reside within the boundaries of the contaminated site. This approach is adequate for sites with single, discrete areas of contamination that only provide habitat for species with limited requirements. This approach is not adequate however for large sites with multiple, spatially separated contaminated areas that provide habitat for wide-ranging wildlife species. Because wide-ranging wildlife species may travel between and use multiple contaminated sites they may be exposed to and be at risk from contaminants from multiple locations. Use of a particular contaminated site by wide-ranging species will be dependent upon the amount of suitable habitat available at that site. Therefore to adequately evaluate risks to wide-ranging species at the ORR-wide scale, the use of multiple contaminated sites must be weighted by the amount of suitable habitat on OUs. This reservation-wide ecological risk assessment is intended to identify which endpoints are significantly at risk; which contaminants are responsible for this risk; and which OUs significantly contribute to risk.

  18. The use of new facility by means internal balance with sting support for wide range Angle of Attack aircraft

    Science.gov (United States)

    Subagyo; Daryanto, Yanto; Risnawan, Novan

    2018-04-01

    The development of facilities for the testing of wide range angle of attack aircraft in the wind tunnel at subsonic regime has done and implemented. Development required to meet the test at an angle of attack from -20 ° to 40 °. Testing the wide range angle of attack aircraft with a wide variation of the angle of attack become important needs. This can be done simply by using the sting support-equipped by internal balance to measure the forces and moments component aerodynamics. The results of development and use on the wide range angle of attack aircraft testing are aerodynamics characteristics in the form of the coefficient three components forces and the three components of the moment. A series of test aircraft was successfully carried out and the results are shown in the form of graphs of characteristic of aerodynamics at wind speed 70 m/s.

  19. Adaption of an array spectroradiometer for total ozone column retrieval using direct solar irradiance measurements in the UV spectral range

    Science.gov (United States)

    Zuber, Ralf; Sperfeld, Peter; Riechelmann, Stefan; Nevas, Saulius; Sildoja, Meelis; Seckmeyer, Gunther

    2018-04-01

    A compact array spectroradiometer that enables precise and robust measurements of solar UV spectral direct irradiance is presented. We show that this instrument can retrieve total ozone column (TOC) accurately. The internal stray light, which is often the limiting factor for measurements in the UV spectral range and increases the uncertainty for TOC analysis, is physically reduced so that no other stray-light reduction methods, such as mathematical corrections, are necessary. The instrument has been extensively characterised at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. During an international total ozone measurement intercomparison at the Izaña Atmospheric Observatory in Tenerife, the high-quality applicability of the instrument was verified with measurements of the direct solar irradiance and subsequent TOC evaluations based on the spectral data measured between 12 and 30 September 2016. The results showed deviations of the TOC of less than 1.5 % from most other instruments in most situations and not exceeding 3 % from established TOC measurement systems such as Dobson or Brewer.

  20. A new undulator for the extension of the spectral range of the CLIO FEL

    Energy Technology Data Exchange (ETDEWEB)

    Marcouille, O.; Berset, J.M.; Glotin, F. [LURE, Orsay (France)] [and others

    1995-12-31

    We built a new undulator in order to extend the lasing range of the CLIO infrared FEL. Presently, CLIO operates in the wavelength range 2 - 17 {mu}m. Beyond 14 {mu}m, the power decreases rapidly, because of the diffraction losses of the vacuum chamber (7 mm height and 2 m long). Thus, lasing at higher wavelengths implies installing a chamber with a height approximately twice. Then the minimum gap is increased and the maximum deflection parameter, K, is reduced from 2 to 1 : the laser tunability is greatly reduced. This is why a new undulator has been built.

  1. Quantum-cascade lasers in the 7-8 μm spectral range with full top metallization

    Science.gov (United States)

    Kurochkin, A. S.; Babichev, A. V.; Denisov, D. V.; Karachinsky, L. Ya; Novikov, I. I.; Sofronov, A. N.; Firsov, D. A.; Vorobjev, L. E.; Bousseksou, A.; Egorov, A. Yu

    2018-03-01

    The paper demonstrates the generation of multistage quantum-cascade lasers (QCL) in the 7-8 μm spectral range in the pulse generation mode. The active region structure we used is based on a two-phonon resonance scheme. The QCL heterostructure based on a heteropair of In0.53Ga0.47As/Al0.48In0.52As solid alloys was grown by molecular beam epitaxy and includes 50 identical stages. A waveguide geometry with top cladding with full top metallization (surface- plasmon quantum-cascade lasers) has been used. The developed QCLs have demonstrated multimodal generation in the 7-8 μm spectral range in the pulse mode in the 78-250 K temperature range. The threshold current density for a 1.6 mm long laser and a 20 μm ridge width amounted to ˜ 2.8 kA/cm2 at a temperature of 78 К. A temperature increase to 250 K causes a long-wave shift of the wavelength from 7.6 to 7.9 μm and a jth increase to 5.0 kA/cm2.

  2. Boost Half-Bridge DC-DC Converter with Reconfigurable Rectifier for Ultra-Wide Input Voltage Range Applications

    DEFF Research Database (Denmark)

    Vinnikov, Dmitri; Chub, Andrii; Liivik, Elizaveta

    2018-01-01

    This paper introduces a novel galvanically isolated boost half-bridge dc-dc converter intended for modern power electronic applications where ultra-wide input voltage regulation range is needed. A reconfigurable output rectifier stage performs a transition between the voltage doubler and the full......-bridge diode rectifiers and, by this means, extends the regulation range significantly. The converter features a low number of components and resonant soft switching of semiconductors, which result in high power conversion efficiency over a wide input voltage and load range. The paper presents the operating...

  3. Infrared Line Intensities for Formaldehyde from Simultaneous Measurements in the Infrared and Far Infrared Spectral Ranges

    Science.gov (United States)

    Fissiaux, L.; Földes, T.; Tchana, F. Kwabia; Daumont, L.; Lepère, M.; Vander Auwera, J.

    2011-06-01

    Formaldehyde (H_2CO) is an important intermediate compound in the degradation of the volatile organic compounds (VOCs), including methane, in the terrestrial troposphere. Its observation using optical remote sensing in the infrared range relies on the 3.6 and 5.7 μm absorption bands. Band and individual line intensities have been reported in both ranges. With the present work, we aim to also derive infrared line intensities for formaldehyde, however relying on pure rotation line intensities and the known electric dipole moment to determine the particle density. Indeed, because formaldehyde polymerizes or degrades easily, the gas phase may contain polymerization or degradation products. Spectra of H_2CO diluted in 10 hPa of N_2 were therefore simultaneously recorded in the 20-60 Cm-1 and 3.6 μm ranges, respectively using a Bruker IFS125HR Fourier transform spectrometer and a tunable diode laser. see A. Perrin, D. Jacquemart, F. Kwabia Tchana, N. Lacome, J. Quant. Spectrosc. Radiat. Transfer 110 (2009) 700-716, and references therein

  4. Low Friction and Wear Surface for Application over a Wide Range of Temperature

    National Research Council Canada - National Science Library

    Bhattacharya, Rabi

    1997-01-01

    ...) and Transmission electron microscopy (TEM), both before and after exposure to high temperatures (up to 700 deg C) in air. Friction measurements were performed at temperatures in the range of room temperature to 700 deg C in air...

  5. Wide-range vortex shedding flowmeter for high-temperature helium gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S.P.; Herndon, P.G.; Ennis, R.M. Jr.

    1983-01-01

    The existing design of a commercially available vortex shedding flowmeter (VSFM) was modified and optimized to produce three 4-in. and one 6-in. high-performance VSFMs for measuring helium flow in a gas-cooled fast reactor (GCFR) test loop. The project was undertaken because of the significant economic and performance advantages to be realized by using a single flowmeter capable of covering the 166:1 flow range (at 350/sup 0/C and 45:1 pressure range) of the tests. A detailed calibration in air and helium at the Colorado Engineering Experiment Station showed an accuracy of +-1% of reading for a 100:1 helium flow range and +-1.75% of reading for a 288:1 flow range in both helium and air. At an extended gas temperature of 450/sup 0/C, water cooling was necessary for reliable flowmeter operation.

  6. Natural variability of atmospheric temperatures and geomagnetic intensity over a wide range of time scales.

    Science.gov (United States)

    Pelletier, Jon D

    2002-02-19

    The majority of numerical models in climatology and geomagnetism rely on deterministic finite-difference techniques and attempt to include as many empirical constraints on the many processes and boundary conditions applicable to their very complex systems. Despite their sophistication, many of these models are unable to reproduce basic aspects of climatic or geomagnetic dynamics. We show that a simple stochastic model, which treats the flux of heat energy in the atmosphere by convective instabilities with random advection and diffusive mixing, does a remarkable job at matching the observed power spectrum of historical and proxy records for atmospheric temperatures from time scales of one day to one million years (Myr). With this approach distinct changes in the power-spectral form can be associated with characteristic time scales of ocean mixing and radiative damping. Similarly, a simple model of the diffusion of magnetic intensity in Earth's core coupled with amplification and destruction of the local intensity can reproduce the observed 1/f noise behavior of Earth's geomagnetic intensity from time scales of 1 (Myr) to 100 yr. In addition, the statistics of the fluctuations in the polarity reversal rate from time scales of 1 Myr to 100 Myr are consistent with the hypothesis that reversals are the result of variations in 1/f noise geomagnetic intensity above a certain threshold, suggesting that reversals may be associated with internal fluctuations rather than changes in mantle thermal or magnetic boundary conditions.

  7. TiO(2) doping by hydroxyurea at the nucleation stage: towards a new photocatalyst in the visible spectral range.

    Science.gov (United States)

    Azouani, R; Tieng, S; Chhor, K; Bocquet, J-F; Eloy, P; Gaigneaux, E M; Klementiev, K; Kanaev, A V

    2010-10-07

    We report an original method of preparation of OCN-doped TiO(2) for photocatalysis in the visible spectral range. The preparation is achieved by a sol-gel route using titanium tetraisopropoxide precursor. Special attention was paid to fluid micromixing, which enables homogeneous reaction conditions in the reactor bulk and monodispersity of the produced clusters/nanoparticles. The dopant hydroxyurea (HyU, CH(4)N(2)O(2)) is injected into the reactive fluid at the nucleation stage, which lasts tens of milliseconds. The doping results in a strong yellow coloration of the nanocolloids due to the absorption band in the spectral range 380-550 nm and accelerates the aggregation kinetics of both nuclei at the induction stage and sub-nuclei units (clusters) at the nucleation stage. FTIR, Raman and UV-visible absorption analyses show the formation of a stable HyU-TiO(2) complex. EXAFS spectra indicate no appreciable changes of the first-shell Ti atom environment. The doping agent takes available surface sites of TiO(2) clusters/nanoparticles attaining ∼10% molar loading. The reaction kinetics then accelerates due to a longer collisional lifetime between nanoparticles induced by the formation of a weak [double bond, length as m-dash]OTi bond. The OCN-group bonding to titanium atoms produces a weakening of the C[double bond, length as m-dash]O double bond and a strengthening of the C-N and N-O bonds.

  8. Temperature-dependent dielectric function of germanium in the UV–vis spectral range: A first-principles study

    International Nuclear Information System (INIS)

    Yang, J.Y.; Liu, L.H.; Tan, J.Y.

    2014-01-01

    The study of temperature dependence of thermophysical parameter dielectric function is key to understanding thermal radiative transfer in high-temperature environments. Limited by self-radiation and thermal oxidation, however, it is difficult to directly measure the high-temperature dielectric function of solids with present experimental technologies. In this work, we implement two first-principles methods, the ab initio molecular dynamics (AIMD) and density functional perturbation theory (DFPT), to study the temperature dependence of dielectric function of germanium (Ge) in the UV–vis spectral range in order to provide data of high-temperature dielectric function for radiative transfer study in high-temperature environments. Both the two methods successfully predict the temperature dependence of dielectric function of Ge. Moreover, the good agreement between the calculated results of the AIMD approach and experimental data at 825 K enables us to predict the high-temperature dielectric function of Ge with the AIMD method in the UV–vis spectral range. - Highlights: • The temperature dependence of dielectric function of germanium (Ge) is investigated with two first-principles methods. • The temperature effect on dielectric function of Ge is discussed. • The high-temperature dielectric function of Ge is predicted

  9. Generation of surface electromagnetic waves in terahertz spectral range by free-electron laser radiation and their refractive index determination

    International Nuclear Information System (INIS)

    Bogomolov, G.D.; Jeong, Uk Young; Zhizhin, G.N.; Nikitin, A.K.; Zavyalov, V.V.; Kazakevich, G.M.; Lee, Byung Cheol

    2005-01-01

    First experiments for observation of surface electromagnetic waves (SEW) in the terahertz spectral range generated on dense aluminum films covering the optical quality glass plates are presented in this paper. Coherent radiation of the new free-electron laser covering the frequency range from 30 to 100cm -1 was used. The interference technique employing SEW propagation in the part of one shoulder of the asymmetric interferometer was applied. From the interference pattern the real part of SEW's effective refractive index ae ' was determined for the two laser emission wavelengths: at λ=150μm-ae ' =1+5x10 -5 , at λ=110μm-ae ' =1+8x10 -4 . High sensitivity of the interference patterns to overlayers made of Ge and Si with thickness of 100nm was demonstrated as well

  10. Spontaneous ignition of methane-air mixtures in a wide range of pressures

    NARCIS (Netherlands)

    Zhukov, VP; Sechenov, VA; Starikovskii, AY

    2003-01-01

    The ignition delay in methane-air mixtures (phi = 0.5) within the range of temperatures of 1200-1700 K and pressures of 3-450 atm behind reflected shock waves in a shock tube is measured on the basis of emission of the electron-excited OH radical (transition A(2)Sigma(+) - X(2)Pi) at the wavelength

  11. Low breeding propensity and wide-ranging movements by marbled murrelets in Washington

    Science.gov (United States)

    Teresa J. Lorenz; Martin G. Raphael; Thomas D. Bloxton; Patrick G. Cunningham

    2016-01-01

    The marbled murrelet (Brachyramphus marmoratus) is a threatened seabird that forages in nearshore marine waters but nests inland, commonly in older coniferous forests. Information on ranging behavior and breeding propensity can be useful for informing management, especially when comparisons can be made between declining or threatened populations...

  12. A novel approach for assessing density and range-wide abundance of prairie dogs

    Science.gov (United States)

    Aaron N. Facka; Paulette L. Ford; Gary W. Roemer

    2008-01-01

    Habitat loss, introduced disease, and government-sponsored eradication programs have caused population declines in all 5 species of prairie dogs. Black-tailed prairie dogs (Cynomys ludovicianus) currently occupy only about 2% of an extensive geographic range (160 million hectares) and were recently considered for listing under the United States...

  13. On the Full-range β Dependence of Ion-scale Spectral Break in the Solar Wind Turbulence

    Science.gov (United States)

    Wang, Xin; Tu, Chuanyi; He, Jiansen; Wang, Linghua

    2018-04-01

    The power spectrum of magnetic fluctuations has a break at the high-frequency end of the inertial range. Beyond this break, the spectrum becomes steeper than the Kolmogorov law f ‑5/3. The break frequency was found to be associated with plasma beta (β). However, the full-range β dependence of the ion-scale spectral break has not been presented before in observational studies. Here we show the continuous variation of the break frequency on full-range β in the solar wind turbulence. By using measurements from the WIND and Ulysses spacecraft, we show the break frequency (f b ) normalized, respectively, by the frequencies corresponding to ion inertial length (f di ), ion gyroradius ({f}ρ i), and cyclotron resonance scale (f ri ) as a function of β for 1306 intervals. Their β values spread from 0.005 to 20, which nearly covers the full β range of the observed solar wind turbulence. It is found that {f}b/{f}{di} ({f}b/{f}ρ i) generally decreases (increases) with β, while {f}b/{f}{ri} is nearly a constant. We perform a linear fit on the statistical result, and obtain the empirical formulas {f}b/{f}{di}∼ {β }-1/4, {f}b/{f}ρ i∼ {β }1/4, and {f}b/{f}{ri}∼ 0.90 to describe the relation between f b and β. We also compare our observations with a numerical simulation and the prediction by ion cyclotron resonance theory. Our result favors the idea that the cyclotron resonance is an important mechanism for energy dissipation at the spectral break. When β ≪ 1 and β ≫ 1, the break at f di and {f}ρ i may also be associated with other processes.

  14. The mechanical behavior of metal alloys with grain size distribution in a wide range of strain rates

    Science.gov (United States)

    Skripnyak, V. A.; Skripnyak, V. V.; Skripnyak, E. G.

    2017-12-01

    The paper discusses a multiscale simulation approach for the construction of grain structure of metals and alloys, providing high tensile strength with ductility. This work compares the mechanical behavior of light alloys and the influence of the grain size distribution in a wide range of strain rates. The influence of the grain size distribution on the inelastic deformation and fracture of aluminium and magnesium alloys is investigated by computer simulations in a wide range of strain rates. It is shown that the yield stress depends on the logarithm of the normalized strain rate for light alloys with a bimodal grain distribution and coarse-grained structure.

  15. A wide range survey meter for estimating γ- and β-dose rates

    International Nuclear Information System (INIS)

    Jones, A.R.

    1980-09-01

    A survey meter has been developed to measure β-dose rates in the range 0.1 - 100 rad/h (1 mGy/h - 1 Gy/h) and γ-dose rates in the range 1 mrad/h - 100 rad/h (10 μGy/h-1 Gy/h). It also provides an audible warning of high γ-dose rates and an audible and visible warning when a predetermined γ-dose is exceeded. The report describes the design of the survey meter and presents data measured on the performance of an engineering prototype. Factors which affect performance and have been investigated are temperature, battery voltage (and type of battery), GM counter counting loss, direction of incident radiation, and energy of γ-rays. Finally, the application and calibration of the survey meter are discussed. (auth)

  16. A low-power wide range transimpedance amplifier for biochemical sensing.

    Science.gov (United States)

    Rodriguez-Villegas, Esther

    2007-01-01

    This paper presents a novel low voltage and low power transimpedance amplifier for amperometric potentiostats. The power is optimized by having three different gain settings for different current ranges, which can be programmed with a biasing current. The voltage ranges have been optimized by using FGMOS transistors in a second voltage amplification stage that simultaneously allow for offset calibration as well as independent biasing of the gates. The circuit operates with input currents from 1 pA to 1 microA, with a maximum power supply voltage of 1.5 V and consumes 82.5 nW, 9.825 microW, 47.325 microW for currents varying from (1 pA, 0.25 nA), (0.25 nA, 62.5 nA) and (62.5 nA, 1 microA) respectively.

  17. Computer calculation of heat capacity of natural gases over a wide range of pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dranchuk, P.M. (Alberta Univ., Edmonton, AB (Canada)); Abou-Kassem, J.H. (Pennsylvania State Univ., University Park, PA (USA))

    1992-04-01

    A method is presented whereby specific heats or heat capacities of natural gases, both sweet and sour, at elevated pressures and temperatures may be made suitable to modern-day machine calculation. The method involves developing a correlation for ideal isobaric heat capacity as a function of gas gravity and pseudo reduced temperature over the temperature range of 300 to 1500 K, and a mathematical equation for the isobaric heat capacity departure based on accepted thermodynamic principles applied to an equation of state that adequately describes the behavior of gases to which the Standing and Katz Z factor correlation applies. The heat capacity departure equation is applicable over the range of 0.2 {le} Pr {le} 15 and 1.05 {le} Tr {le} 3, where Pr and Tr refer to the reduced pressure and temperature respectively. The significance of the method presented lies in its utility and adaptability to computer applications. 25 refs., 2 figs., 4 tabs.

  18. An Efficient Topology for Wireless Power Transfer over a Wide Range of Loading Conditions

    Directory of Open Access Journals (Sweden)

    Tianqing Li

    2018-01-01

    Full Text Available Although an inductive power transfer (IPT system can transfer power efficiently in full-load conditions, its efficiency obviously decreases in light-load conditions. To solve this problem, based on a two-coil IPT system with a series-series compensation topology, a single-ended primary-inductor converter is introduced at the secondary side. By adjusting the set effective value of the current in the primary coil, the converter input voltage changes to maintain the equivalent input resistance of the converter in an optimal condition. The system can then transfer the power efficiently with the wide load conditions. Moreover, the system operates at a constant resonance frequency with a high power factor. Both the simulation and experimentation of a prototype with a 10 W IPT system demonstrate the effectiveness of the proposed topology for wireless power transfer.

  19. Permanent-magnet motor with two-part rotor for wide speed range

    International Nuclear Information System (INIS)

    Baines, G.D.; Chalmers, B.J.; Akmese, R.

    1998-01-01

    The paper describes a synchronous motor with a two-part rotor comprising a surface-magnet part and a reluctance part mounted adjacent to each other on the same axis. Machine parameters and physical design details are selected in order to obtain constant-power characteristics over a 3:1 speed range by field-weakening. Test results demonstrate the achievement of the desired characteristics, in good agreement with computed predictions. (orig.)

  20. Stability Analysis and Trigger Control of LLC Resonant Converter for a Wide Operational Range

    Directory of Open Access Journals (Sweden)

    Zhijian Fang

    2017-09-01

    Full Text Available The gain of a LLC resonant converter can vary with the loads that can be used to improve the efficiency and power density for some special applications, where the maximum gain does not apply at the heaviest loads. However, nonlinear gain characteristics can make the converters unstable during a major disturbance. In this paper, the stability of an LLC resonant converter during a major disturbance is studied and a trigger control scheme is proposed to improve the converter’s stability by extending the converter’s operational range. Through in-depth analysis of the gain curve of the LLC resonant converter, we find that the switching frequency range is one of the key factors determining the system’s stability performance. The same result is also obtained from a mathematical point of view by utilizing the mixed potential function method. Then a trigger control method is proposed to make the LLC resonant converter stable even during a major disturbance, which can be used to extend the converter’s operational range. Finally, experimental results are given to verify the analysis and proposed control scheme.

  1. Electrolytes for Low Impedance, Wide Operating Temperature Range Lithium-Ion Battery Module

    Science.gov (United States)

    Hallac, Boutros (Inventor); Krause, Frederick C. (Inventor); Jiang, Junwei (Inventor); Smart, Marshall C. (Inventor); Metz, Bernhard M. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2018-01-01

    A lithium ion battery cell includes a housing, a cathode disposed within the housing, wherein the cathode comprises a cathode active material, an anode disposed within the housing, wherein the anode comprises an anode active material, and an electrolyte disposed within the housing and in contact with the cathode and anode. The electrolyte consists essentially of a solvent mixture, a lithium salt in a concentration ranging from approximately 1.0 molar (M) to approximately 1.6 M, and an additive mixture. The solvent mixture includes a cyclic carbonate, an non-cyclic carbonate, and a linear ester. The additive mixture consists essentially of lithium difluoro(oxalato)borate (LiDFOB) in an amount ranging from approximately 0.5 weight percent to approximately 2.0 weight percent based on the weight of the electrolyte, and vinylene carbonate (VC) in an amount ranging from approximately 0.5 weight percent to approximately 2.0 weight percent based on the weight of the electrolyte.

  2. Luminescence of high density electron-hole plasma in CdS and CdSe in a wide temperature range

    International Nuclear Information System (INIS)

    Yoshida, H.; Shionoya, S.

    1983-01-01

    Time-resolved spectra of the spontaneous luminescence of the high density electron-hole plasma (EHP) in CdS and CdSe are observed in a wide range of temperature which is surely higher than the calculated critical temperature for electron-hole liquid formation, in order to carry forward discussion on dynamic nature of the EHP previously observed in 4.2 K experiments. Spectra in the late stage are analyzed, and obtained values of the reduced bandgap energy and chemical potential are compared with those theoretically calculated for higher temperatures. The aspects of the change of the spectral shape in the late stage are hard to understand. Unfortunately no clear conclusion is drawn on the nature of the EHP produced at 4.2 K. The only thing one can say is that the condensed electron-hole liquid state, which is in equilibrium with the exciton state, is not realized. (author)

  3. RF-field generation in wide frequency range by electron beam

    International Nuclear Information System (INIS)

    Bogdanovich, B.; Nesterovich, A.; Minaev, S.

    1996-01-01

    A simple device for generating powerful RF oscillations in the frequency range of 100-250 MHz is considered. The two-gaps cavity is based on the quarter-wavelength coaxial line loaded by drift tubes. Frequency tuning is accomplished by using the movable shorting plunger. A permanent electron beam being modulated at the first gap return the energy at the second one. The additional tube with the permanent decelerating potential, introduced into the main drift tube, allows to decrease the drift tube length and keep the excitation conditions in frequency tuning. Both autogeneration and amplification modes are under consideration. RF-parameters of the cavity and experimental results are described. (author)

  4. Calculation of Bremsstrahlung radiation of electrons on atoms in wide energy range of photons

    CERN Document Server

    Romanikhin, V P

    2002-01-01

    The complete spectra of the Bremsstrahlung radiation on the krypton atoms within the range of the photon energies of 10-25000 eV and lanthanum near the potential of the 4d-shell ionization is carried out. The atoms summarized polarizability is calculated on the basis of the simple semiclassical approximation of the local electron density and experimental data on the photoabsorption. The comparison with the calculational results is carried out through the method of distorted partial waves (PDWA) for Kr and with the experimental data on La

  5. Long ranging swept-source optical coherence tomography-based angiography outperforms its spectral-domain counterpart in imaging human skin microcirculations

    Science.gov (United States)

    Xu, Jingjiang; Song, Shaozhen; Men, Shaojie; Wang, Ruikang K.

    2017-11-01

    There is an increasing demand for imaging tools in clinical dermatology that can perform in vivo wide-field morphological and functional examination from surface to deep tissue regions at various skin sites of the human body. The conventional spectral-domain optical coherence tomography-based angiography (SD-OCTA) system is difficult to meet these requirements due to its fundamental limitations of the sensitivity roll-off, imaging range as well as imaging speed. To mitigate these issues, we demonstrate a swept-source OCTA (SS-OCTA) system by employing a swept source based on a vertical cavity surface-emitting laser. A series of comparisons between SS-OCTA and SD-OCTA are conducted. Benefiting from the high system sensitivity, long imaging range, and superior roll-off performance, the SS-OCTA system is demonstrated with better performance in imaging human skin than the SD-OCTA system. We show that the SS-OCTA permits remarkable deep visualization of both structure and vasculature (up to ˜2 mm penetration) with wide field of view capability (up to 18×18 mm2), enabling a more comprehensive assessment of the morphological features as well as functional blood vessel networks from the superficial epidermal to deep dermal layers. It is expected that the advantages of the SS-OCTA system will provide a ground for clinical translation, benefiting the existing dermatological practice.

  6. Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature

    OpenAIRE

    Gil de la Fe, Juan Miguel; Rodriguez Perez, Rafael; Florido, Ricardo; Garcia Rubiano, Jesus; Mendoza, M.A.; Nuez, A. de la; Espinosa, G.; Martel Escobar, Carlos; Mínguez Torres, Emilio

    2013-01-01

    In this work we present an analysis of the influence of the thermodynamic regime on the monochromatic emissivity, the radiative power loss and the radiative cooling rate for optically thin carbon plasmas over a wide range of electron temperature and density assuming steady state situations. Furthermore, we propose analytical expressions depending on the electron density and temperature for the average ionization and cooling rate based on polynomial fittings which are valid for the whole range...

  7. Application of a vortex shedding flowmeter to the wide range measurement of high temperature gas flow

    International Nuclear Information System (INIS)

    Baker, S.P.; Ennis, R.M. Jr.; Herndon, P.G.

    1981-01-01

    A single flowmeter was required for helium gas measurement in a Gas Cooled Fast Breeder Reactor loss of coolant simulator. Volumetric flow accuracy of +-1.0% of reading was required over the Reynolds Number range 6 x 10 3 to 1 x 10 6 at flowing pressures from 0.2 to 9 MPa (29 to 1305 psia) at 350 0 C (660 0 F) flowing temperature. Because of its inherent accuracy and rangeability, a vortex shedding flowmeter was selected and specially modified to provide for a remoted thermal sensor. Experiments were conducted to determine the relationship between signal attenuation and sensor remoting geometry, as well as the relationship between gas flow parameters and remoted thermal sensor signal for both compressed air and helium gas. Based upon the results of these experiments, the sensor remoting geometry was optimized for this application. The resultant volumetric flow rangeability was 155:1. The associated temperature increase at the sensor position was 9 0 C above ambient (25 0 F) at a flowing temperature of 350 0 C. The volumetric flow accuracy was measured over the entire 155:1 flow range at parametric values of flowing density. A volumetric flow accuracy of +- % of reading was demonstrated

  8. A highly selective and wide range ammonia sensor—Nanostructured ZnO:Co thin film

    International Nuclear Information System (INIS)

    Mani, Ganesh Kumar; Rayappan, John Bosco Balaguru

    2015-01-01

    Graphical abstract: - Highlights: • Cobalt doped nanostructured ZnO thin films were spray deposited on glass substrates. • Co-doped ZnO film was highly selective towards ammonia than ethanol, methanol, etc. • The range of ammonia detection was improved significantly by doping cobalt in ZnO. - Abstract: Ammonia sensing characteristics of undoped and cobalt (Co)-doped nanostructured ZnO thin films were investigated. Polycrystalline nature with hexagonal wurtzite structure and high crystalline quality with dominant (0 0 2) plane orientation of Co-doped ZnO film were confirmed by the X-ray diffractogram. Scanning electron micrographs of the undoped film demonstrated the uniform deposition of sphere-shaped grains. But, smaller particles with no clear grain boundaries were observed for Co-doped ZnO thin film. Band gap values were found to be 3.26 eV and 3.22 eV for undoped and Co-doped ZnO thin films. Ammonia sensing characteristics of Co-doped ZnO film at room temperature were investigated in the concentration range of 15–1000 ppm. Variation in the sensing performances of Co-doped and pure ZnO thin films has been analyzed and compared

  9. Comparison of physically based constitutive models characterizing armor steel over wide temperature and strain rate ranges

    International Nuclear Information System (INIS)

    Xu, Zejian; Huang, Fenglei

    2012-01-01

    Both descriptive and predictive capabilities of five physically based constitutive models (PB, NNL, ZA, VA, and RK) are investigated and compared systematically, in characterizing plastic behavior of the 603 steel at temperatures ranging from 288 to 873 K, and strain rates ranging from 0.001 to 4500 s −1 . Determination of the constitutive parameters is introduced in detail for each model. Validities of the established models are checked by strain rate jump tests performed under different loading conditions. The results show that the RK and NNL models have better performance in the description of material behavior, especially the work-hardening effect, while the PB and VA models predict better. The inconsistency that is observed between the capabilities of description and prediction of the models indicates the existence of the minimum number of required fitting data, reflecting the degree of a model's requirement for basic data in parameter calibration. It is also found that the description capability of a model is dependent to a large extent on both its form and the number of its constitutive parameters, while the precision of prediction relies largely on the performance of description. In the selection of constitutive models, the experimental data and the constitutive models should be considered synthetically to obtain a better efficiency in material behavior characterization

  10. Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters

    Directory of Open Access Journals (Sweden)

    M. Marus

    2018-03-01

    Full Text Available The effect of the diameter of randomly arranged silver nanowires on the optical haze of silver nanowire transparent conductive films was studied. Proposed simulation model behaved similarly with the experimental results, and was used to theoretically study the optical haze of silver nanowires with diameters in the broad range from 30 nm and above. Our results show that a thickening of silver nanowires from 30 to 100 nm results in the increase of the optical haze up to 8 times, while from 100 to 500 nm the optical haze increases only up to 1.38. Moreover, silver nanowires with diameter of 500 nm possess up to 5% lower optical haze and 5% higher transmittance than 100 nm thick silver nanowires for the same 10-100 Ohm/sq sheet resistance range. Further thickening of AgNWs can match the low haze of 30 nm thick AgNWs, but at higher transmittance. The results obtained from this work allow deeper analysis of the silver nanowire transparent conductive films from the perspective of the diameter of nanowires for various optoelectronic devices.

  11. Assessing range-wide habitat suitability for the Lesser Prairie-Chicken

    Science.gov (United States)

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Grisham, Blake A.; Timmer, Jennifer M.; Boal, Clint W.; Butler, Matthew; Pitman, James C.; Kyle, Sean; Klute, David; Beauprez, Grant M.; Janus, Allan; Van Pelt, William E.

    2016-01-01

    Population declines of many wildlife species have been linked to habitat loss incurred through land-use change. Incorporation of conservation planning into development planning may mitigate these impacts. The threatened Lesser Prairie-Chicken (Tympanuchus pallidicinctus) is experiencing loss of native habitat and high levels of energy development across its multijurisdictional range. Our goal was to explore relationships of the species occurrence with landscape characteristics and anthropogenic effects influencing its distribution through evaluation of habitat suitability associated with one particular habitat usage, lekking. Lekking has been relatively well-surveyed, though not consistently, in all jurisdictions. All five states in which Lesser Prairie-Chickens occur cooperated in development of a Maxent habitat suitability model. We created two models, one with state as a factor and one without state. When state was included it was the most important predictor, followed by percent of land cover consisting of known or suspected used vegetation classes within a 5000 m area around a lek. Without state, land cover was the most important predictor of relative habitat suitability for leks. Among the anthropogenic predictors, landscape condition, a measure of human impact integrated across several factors, was most important, ranking third in importance without state. These results quantify the relative suitability of the landscape within the current occupied range of Lesser Prairie-Chickens. These models, combined with other landscape information, form the basis of a habitat assessment tool that can be used to guide siting of development projects and targeting of areas for conservation.

  12. Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions

    Science.gov (United States)

    Magee, N. B.; Miller, A.; Amaral, M.; Cumiskey, A.

    2014-11-01

    Here we show high-magnification images of hexagonal ice crystals acquired by environmental scanning electron microscopy (ESEM). Most ice crystals were grown and sublimated in the water vapor environment of an FEI-Quanta-200 ESEM, but crystals grown in a laboratory diffusion chamber were also transferred intact and imaged via ESEM. All of these images display prominent mesoscopic topography including linear striations, ridges, islands, steps, peaks, pits, and crevasses; the roughness is not observed to be confined to prism facets. The observations represent the most highly magnified images of ice surfaces yet reported and expand the range of conditions in which rough surface features are known to be conspicuous. Microscale surface topography is seen to be ubiquitously present at temperatures ranging from -10 °C to -40 °C, in supersaturated and subsaturated conditions, on all crystal facets, and irrespective of substrate. Despite the constant presence of surface roughness, the patterns of roughness are observed to be dramatically different between growing and sublimating crystals, and transferred crystals also display qualitatively different patterns of roughness. Crystals are also demonstrated to sometimes exhibit inhibited growth in moderately supersaturated conditions following exposure to near-equilibrium conditions, a phenomenon interpreted as evidence of 2-D nucleation. New knowledge about the characteristics of these features could affect the fundamental understanding of ice surfaces and their physical parameterization in the context of satellite retrievals and cloud modeling. Links to supplemental videos of ice growth and sublimation are provided.

  13. Development and characterization of real-time wide-energy range personal neutron dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takashi; Tsujimura, Norio (Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center); Yamano, Toshiya; Suzuki, Toshikazu; Okamoto, Eisuke

    1994-04-01

    The authors developed a real-time personal neutron dosimeter which could give neutron dose equivalent over wide energy region from thermal to 10 odd MeV by using 2 silicon detectors, fast neutron sensor and slow neutron sensor. The energy response of this dosimeter was evaluated under thermal neutron field, monoenergetic neutron field between 200 keV and 15 MeV, and moderated [sup 252]Cf neutron field. The neutron dose equivalent was estimated by adding neutron dose equivalent below 1 MeV given by slow neutron sensor and that above 1 MeV by fast neutron sensor. It was verified from various field tests that this dosimeter is able to give neutron dose equivalent within a factor of 2 margin of accuracy in reactor, accelerator, fusion research and nuclear fuel handling facilities. This dosimeter has more than one order higher sensitivity than conventional personal neutron dosimeters and is insensitive to [gamma]-rays up to about 500 mSv/h. This dosimeter will soon be commercially available as a personal dosimeter which gives neutron and [gamma]-ray dose equivalents simultaneously by installing [gamma]-ray silicon sensor. (author).

  14. A HIGH-RESOLUTION, MULTI-EPOCH SPECTRAL ATLAS OF PECULIAR STARS INCLUDING RAVE, GAIA , AND HERMES WAVELENGTH RANGES

    International Nuclear Information System (INIS)

    Tomasella, Lina; Munari, Ulisse; Zwitter, Tomaz

    2010-01-01

    We present an Echelle+CCD, high signal-to-noise ratio, high-resolution (R = 20,000) spectroscopic atlas of 108 well-known objects representative of the most common types of peculiar and variable stars. The wavelength interval extends from 4600 to 9400 A and includes the RAVE, Gaia, and HERMES wavelength ranges. Multi-epoch spectra are provided for the majority of the observed stars. A total of 425 spectra of peculiar stars, which were collected during 56 observing nights between 1998 November and 2002 August, are presented. The spectra are given in FITS format and heliocentric wavelengths, with accurate subtraction of both the sky background and the scattered light. Auxiliary material useful for custom applications (telluric dividers, spectrophotometric stars, flat-field tracings) is also provided. The atlas aims to provide a homogeneous database of the spectral appearance of stellar peculiarities, a tool useful both for classification purposes and inter-comparison studies. It could also serve in the planning and development of automated classification algorithms designed for RAVE, Gaia, HERMES, and other large-scale spectral surveys. The spectrum of XX Oph is discussed in some detail as an example of the content of the present atlas.

  15. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS in the red spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2007-01-01

    Full Text Available A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm reflectance structures (i.e. "fingerprint" structures of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS, which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms. The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  16. Fully automated dual-frequency three-pulse-echo 2DIR spectrometer accessing spectral range from 800 to 4000 wavenumbers

    Energy Technology Data Exchange (ETDEWEB)

    Leger, Joel D.; Nyby, Clara M.; Varner, Clyde; Tang, Jianan; Rubtsova, Natalia I.; Yue, Yuankai; Kireev, Victor V.; Burtsev, Viacheslav D.; Qasim, Layla N.; Rubtsov, Igor V., E-mail: irubtsov@tulane.edu [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Rubtsov, Grigory I. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312 (Russian Federation)

    2014-08-15

    A novel dual-frequency two-dimensional infrared instrument is designed and built that permits three-pulse heterodyned echo measurements of any cross-peak within a spectral range from 800 to 4000 cm{sup −1} to be performed in a fully automated fashion. The superior sensitivity of the instrument is achieved by a combination of spectral interferometry, phase cycling, and closed-loop phase stabilization accurate to ∼70 as. The anharmonicity of smaller than 10{sup −4} cm{sup −1} was recorded for strong carbonyl stretching modes using 800 laser shot accumulations. The novel design of the phase stabilization scheme permits tuning polarizations of the mid-infrared (m-IR) pulses, thus supporting measurements of the angles between vibrational transition dipoles. The automatic frequency tuning is achieved by implementing beam direction stabilization schemes for each m-IR beam, providing better than 50 μrad beam stability, and novel scheme for setting the phase-matching geometry for the m-IR beams at the sample. The errors in the cross-peak amplitudes associated with imperfect phase matching conditions and alignment are found to be at the level of 20%. The instrument can be used by non-specialists in ultrafast spectroscopy.

  17. Natural circulation studies in a LBE loop for a wide range of temperature

    International Nuclear Information System (INIS)

    Borgohain, A.; Srivastava, A.K.; Jana, S.S.; Maheshwari, N.K.; Kulkarni, R.D.; Vijayan, P.K.; Tewari, R.; Ram, A. Maruthi; Jha, S.K.

    2016-01-01

    Highlights: • A high temperature Lead Bismuth Eutectic loop named as Kilo Temperature Loop (KTL) has been made. • Natural circulation experimental studies were carried out and reported in the range of 200–780 °C. • The experiments at high temperature were carried in inert atmosphere to avoid oxidation of the loop material. • Theoretical studies are carried out to simulate the loop with natural circulation in primary as well as in the secondary side. • The predictions of the code LeBENC used to simulate the natural circulation in the loop are compared with the experimental results. - Abstract: Lead–Bismuth Eutectic (LBE) is increasingly getting more attention as a coolant for advanced reactor systems. It is also the primary coolant of the Compact High Temperature Reactor (CHTR) being designed at Bhabha Atomic Research Centre (BARC). A high temperature liquid metal loop named as Kilo Temperature Loop (KTL) has been installed at BARC for thermal hydraulics, instrument development and material related studies. Natural circulation experimental studies were carried out for the power range of 200–1200 W in the loop. The corresponding LBE flow rate is calculated to be in the range of 0.075–0.12 kg/s. Transient studies for start-up of natural circulation in the loop, loss of heat sink and step power change have also been carried out. The maximum temperature of the loop operated so far is 1100 °C. A computer code named LeBENC has been developed at BARC to simulate the natural circulation characteristics in closed loops. The salient features of the code include ability to handle non-uniform diameter components, axial thermal conduction in fluid and heat losses from the piping to the environment. The code has been modified to take into account of two natural circulation loops in series so that the natural cooling by argon gas in the secondary side of the loop can be simulated. This paper deals with the description of the loop and its operation. The various

  18. High Precision Stokes Polarimetry for Scattering Light using Wide Dynamic Range Intensity Detector

    Directory of Open Access Journals (Sweden)

    Shibata Shuhei

    2015-01-01

    Full Text Available This paper proposes a Stokes polarimetry for scattering light from a sample surface. To achieve a high accuracy measurement two approaches of an intensity detector and analysis algorism of a Stokes parameter were proposed. The dynamic range of this detector can achieve up to 1010 by combination of change of neutral-density (ND filters having different density and photon counting units. Stokes parameters can be measured by dual rotating of a retarder and an analyzer. The algorism of dual rotating polarimeter can be calibrated small linear diattenuation and linear retardance error of the retarder. This system can measured Stokes parameters from −20° to 70° of its scattering angle. It is possible to measure Stokes parameters of scattering of dust and scratch of optical device with high precision. This paper shows accuracy of this system, checking the polarization change of scattering angle and influence of beam size.

  19. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure

    Science.gov (United States)

    Liu, Ying; Tao, Lu-Qi; Wang, Dan-Yang; Zhang, Tian-Yu; Yang, Yi; Ren, Tian-Ling

    2017-03-01

    In this paper, a flexible, simple-preparation, and low-cost graphene-silk pressure sensor based on soft silk substrate through thermal reduction was demonstrated. Taking silk as the support body, the device had formed a three-dimensional structure with ordered multi-layer structure. Through a simple and low-cost process technology, graphene-silk pressure sensor can achieve the sensitivity value of 0.4 kPa - 1 , and the measurement range can be as high as 140 kPa. Besides, pressure sensor can have a good combination with knitted clothing and textile product. The signal had good reproducibility in response to different pressures. Furthermore, graphene-silk pressure sensor can not only detect pressure higher than 100 kPa, but also can measure weak body signals. The characteristics of high-sensitivity, good repeatability, flexibility, and comfort for skin provide the high possibility to fit on various wearable electronics.

  20. Cognitive processing load across a wide range of listening conditions: insights from pupillometry.

    Science.gov (United States)

    Zekveld, Adriana A; Kramer, Sophia E

    2014-03-01

    The pupil response to speech masked by interfering speech was assessed across an intelligibility range from 0% to 99% correct. In total, 37 participants aged between 18 and 36 years and with normal hearing were included. Pupil dilation was largest at intermediate intelligibility levels, smaller at high intelligibility, and slightly smaller at very difficult levels. Participants who reported that they often gave up listening at low intelligibility levels had smaller pupil dilations in these conditions. Participants who were good at reading masked text had relatively large pupil dilation when intelligibility was low. We conclude that the pupil response is sensitive to processing load, and possibly reflects cognitive overload in difficult conditions. It seems affected by methodological aspects and individual abilities, but does not reflect subjective ratings. Copyright © 2014 Society for Psychophysiological Research.

  1. Highly Specific and Wide Range NO2 Sensor with Color Readout.

    Science.gov (United States)

    Fàbrega, Cristian; Fernández, Luis; Monereo, Oriol; Pons-Balagué, Alba; Xuriguera, Elena; Casals, Olga; Waag, Andreas; Prades, Joan Daniel

    2017-11-22

    We present a simple and inexpensive method to implement a Griess-Saltzman-type reaction that combines the advantages of the liquid phase method (high specificity and fast response time) with the benefits of a solid implementation (easy to handle). We demonstrate that the measurements can be carried out using conventional RGB sensors; circumventing all the limitations around the measurement of the samples with spectrometers. We also present a method to optimize the measurement protocol and target a specific range of NO 2 concentrations. We demonstrate that it is possible to measure the concentration of NO 2 from 50 ppb to 300 ppm with high specificity and without modifying the Griess-Saltzman reagent.

  2. A projection of lesser prairie chicken (Tympanuchus pallidicinctus) populations range-wide

    Science.gov (United States)

    Cummings, Jonathan W.; Converse, Sarah J.; Moore, Clinton T.; Smith, David R.; Nichols, Clay T.; Allan, Nathan L.; O'Meilia, Chris M.

    2017-08-09

    We built a population viability analysis (PVA) model to predict future population status of the lesser prairie-chicken (Tympanuchus pallidicinctus, LEPC) in four ecoregions across the species’ range. The model results will be used in the U.S. Fish and Wildlife Service's (FWS) Species Status Assessment (SSA) for the LEPC. Our stochastic projection model combined demographic rate estimates from previously published literature with demographic rate estimates that integrate the influence of climate conditions. This LEPC PVA projects declining populations with estimated population growth rates well below 1 in each ecoregion regardless of habitat or climate change. These results are consistent with estimates of LEPC population growth rates derived from other demographic process models. Although the absolute magnitude of the decline is unlikely to be as low as modeling tools indicate, several different lines of evidence suggest LEPC populations are declining.

  3. Designing double-gap linear accelerators for a wide mass range

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.; Rusnak, B.; Krawczyk, F.; Saadatmand, K.; Wan, Z.

    1998-01-01

    For applications like ion implantation, rf linacs using double-gap structures with external resonators can be used because they are practical at low frequencies. However, since the two gaps associated with a given resonator cannot be individually phased, it is not obvious how to build a linac that can efficiently accelerate particles having different mass/charge ratios. This paper describes the beam dynamics of double-gap rf linacs and shows how to maximize the range of mass/charge ratios. The theory also tells one how to rescale a linac tune (i.e., reset the voltages and phases) so that a new particle, having a different mass or charge, will behave similarly to the original particle

  4. Measurements and correlations of turbulent burning velocities over wide ranges of fuels and elevated pressures

    KAUST Repository

    Bradley, Derek; Lawes, Malcolm; Liu, Kexin; Mansour, Morkous S.

    2013-01-01

    The implosion technique has been used to extend measurements of turbulent burning velocities over greater ranges of fuels and pressures. Measurements have been made up to 3.5 MPa and at strain rate Markstein numbers as low as 23. The implosion technique, with spark ignition at two opposite wall positions within a fan-stirred spherical bomb is capable of measuring turbulent burning velocities, at higher pressures than is possible with central ignition. Pressure records and schlieren high speed photography define the rate of burning and the smoothed area of the flame front. The first aim of the study was to extend the previous measurements with ethanol and propane-air, with further measurements over wider ranges of fuels and equivalence ratios with mixtures of hydrogen, methane, 10% hydrogen-90% methane, toluene, and i-octane, with air. The second aim was to study further the low turbulence regime in which turbulent burning co-exists with laminar flame instabilities. Correlations are presented of turbulent burning velocity normalised by the effective rms turbulent velocity acting on the flame front, ut=u0k , with the Karlovitz stretch factor, K, for different strain rate Markstein numbers, a decrease in which increases ut=u0k . Experimental correlations are presented for the present measurements, combined with previous ones. Different burning regimes are also identified, extending from that of mixed turbulence/laminar instability at low values of K to that at high values of K, in which ut=u0k is gradually reduced due to increasing localised flame extinctions. © 2012 The Combustion Institute.

  5. Efficient Wide Range Converters (EWiRaC): A new family of high efficient AC-DC Converters

    DEFF Research Database (Denmark)

    Petersen, Lars; Andersen, Michael Andreas E.

    2006-01-01

    The performance in terms of efficiency of the existing power supplies used for PFC is very dependent on the input voltage range. The boost converter is the most commonly used PFC converter because of its simplicity and high efficiency. But, the boost converter as well as other known converters...... suffers a major penalty in efficiency when used at the low end of the voltage range (90VAC) in a universal voltage range application (90-270VAC). This paper addresses this problem by suggesting a new family of converters that effectively reduces the apparent voltage range with a factor of 2 by changing...... the converter topology according to the input voltage. This new converter type has been named: efficient wide range converter (EWiRaC). The performance of the EWiRaC is experimental verified in a universal input range (90-270VAC) application with an output voltage of 185VDC capable of 500W output power. The EWi...

  6. Intelligibility and Clarity of Reverberant Speech: Effects of Wide Dynamic Range Compression Release Time and Working Memory

    Science.gov (United States)

    Reinhart, Paul N.; Souza, Pamela E.

    2016-01-01

    Purpose: The purpose of this study was to examine the effects of varying wide dynamic range compression (WDRC) release time on intelligibility and clarity of reverberant speech. The study also considered the role of individual working memory. Method: Thirty older listeners with mild to moderately-severe sloping sensorineural hearing loss…

  7. Continuous fast focusing in trapezoidal void channel based on bidirectional isotachophoresis in wide pH range

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Šlais, Karel

    2015-01-01

    Roč. 36, č. 20 (2015), s. 2579-2586 ISSN 0173-0835 R&D Projects: GA MV VG20112015021 Institutional support: RVO:68081715 Keywords : bidirectional isotachophoresis * trapezoidal void channel * wide pH range * proteins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.482, year: 2015 http://hdl.handle.net/11104/0250164

  8. Logistic regression accuracy across different spatial and temporal scales for a wide-ranging species, the marbled murrelet

    Science.gov (United States)

    Carolyn B. Meyer; Sherri L. Miller; C. John Ralph

    2004-01-01

    The scale at which habitat variables are measured affects the accuracy of resource selection functions in predicting animal use of sites. We used logistic regression models for a wide-ranging species, the marbled murrelet, (Brachyramphus marmoratus) in a large region in California to address how much changing the spatial or temporal scale of...

  9. Practical Wide-speed-range Sensorless Control System for Permanent Magnet Reluctance Synchronous Motor Drives via Active Flux Model

    DEFF Research Database (Denmark)

    Ancuti, Mihaela Codruta; Tutelea, Lucian; Andreescu, Gheorghe-Daniel

    2014-01-01

    This article introduces a control strategy to obtain near-maximum available torque in a wide speed range with sensorless operation via the active flux concept for permanent magnet-reluctance synchronous motor drives. A new torque dq current reference calculator is proposed, with reference torque...

  10. Low-Voltage, Low-Power, and Wide-Tuning-Range Ring-VCO for Frequency ΔΣ Modulator

    DEFF Research Database (Denmark)

    Tuan Vu, Cao; Wisland, Dag T.; Lande, Tor Sverre

    A low-voltage, low-power, and wide-tuning-range VCO which converts an analog input voltage to phase information for a frequency ΔΣ modulator is proposed in this paper. The VCO is based on a differential ring oscillator, which is improved with modified symmetric load and a positive feedback...

  11. Experimental Investigation of Muon-Catalyzed $dt$ Fusion in Wide Ranges of $D/T$ Mixture Conditions

    CERN Document Server

    Bom, V R; Demin, D L; van Eijk, C W E; Faifman, M P; Filchenkov, V V; Golubkov, A N; Grafov, N N; Grishenchkin, S K; Gritsaj, K I; Klevtsov, V G; Konin, A D; Kuryakin, A V; Medved', S V; Musyaev, R K; Perevozchikov, V V; Rudenko, A I; Sadetsky, S M; Vinogradov, Yu I; Yukhimchuk, A A; Yukhimchuk, S A; Zinov, V G; Zlatoustovskii, S V

    2004-01-01

    A vast program of the experimental investigation of muon-catalyzed $dt$ fusion was performed at the JINR Phasotron. Parameters of the $dt$ cycle were obtained in a wide range of $D/T$ mixture conditions: temperatures of $20\\div 800$ K, densities of $0.2\\div1.2$ LHD and tritium concentrations of $15\\div 86\\%$. The results obtained are summarized.

  12. Ohmic heating of peaches in the wide range of frequencies (50 Hz to 1 MHz).

    Science.gov (United States)

    Shynkaryk, Mykola V; Ji, Taehyun; Alvarez, Valente B; Sastry, Sudhir K

    2010-09-01

    The ohmic heating (OH) rate of peaches was studied at fixed electric field strength of 60 V.cm⁻¹, square-shaped instant reversal bipolar pulses, and frequencies varying within 50 Hz to 1 MHz. Thermal damage of tissue was evaluated from electrical admittivity. It showed that the time for half disruption (τ(T)) of tissue was required more than 10 h at temperatures below 40 °C. However, cellular thermal disruption occurred almost instantly (τ(T) 90 °C). Electrical conductivity σ(o) and admittivity σ(o)* of tissue at T(o)= 0 °C and their temperature coefficients (m, m*) were calculated. For freeze-thawed tissues, σ and σ* as well as m and m* were nearly indifferent to the frequency. However, for the intact tissue, both σ(o), σ(o)* and m, m* were frequency dependent. For freeze-thawed product, the power factor (P) was approximately equal to 1 and indifferent to the frequency and temperature. On the other hand, strong frequency dependence was observed for intact tissue with the minimum P approximately equal to 0.68 in the range of tens of kHz. The time required to reach a target temperature t(f) was evaluated. The t(f) increased with frequency up to the middle of the range of tens of kHz and thereafter continuously decreased. Samples exposed to the low-frequency electric field demonstrated faster electro-thermal damage rates. The textural relaxation data supported more intense damage kinetics at low-frequency OH. It has been demonstrated that a combination of high-frequency OH with pasteurization at moderate temperature followed by rapid cooling minimizes texture degradation of peach tissue. In this study, we investigated the electric field frequency effect on the rate of OH of peaches. It was shown that the time required for reaching the target temperature is strongly dependent upon the frequency. Samples exposed to low-frequency OH demonstrated higher electro-thermal damage rates. It has been shown that the combination of high-frequency OH with

  13. Opo lidar sounding of trace atmospheric gases in the 3 – 4 μm spectral range

    Directory of Open Access Journals (Sweden)

    Romanovskii Oleg A.

    2018-01-01

    Full Text Available The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO generation to lidar sounding of the atmosphere in the spectral range 3–4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG is based on differential absorption lidar (DIAL method and differential optical absorption spectroscopy (DOAS. The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.

  14. Quantum efficiency of cesium iodide photocathodes in the 120-220 nm spectral range traceable to a primary detector standard

    CERN Document Server

    Rabus, H; Richter, M; Ulm, G; Friese, J; Gernhäuser, R; Kastenmüller, A; Maier-Komor, P; Zeitelhack, K

    1999-01-01

    Differently prepared CsI samples have been investigated in the 120-220 nm spectral range for their quantum efficiency, spatial uniformity and the effect of radiation aging. The experiments were performed at the PTB radiometry laboratory at the Berlin synchrotron radiation facility BESSY. A calibrated GaAsP Schottky photodiode was used as transfer detector standard to establish traceability to the primary detector standard, because this type of photodiode - unlike silicon p-on-n photodiodes - proved to be of sufficiently stable response when exposed to vacuum ultraviolet radiation. The paper reviews the experimental procedures that were employed to characterize and calibrate the GaAsP photodiode and reports the results that were obtained on the investigated CsI photocathodes.

  15. Hydrogen peroxide sensor: Uniformly decorated silver nanoparticles on polypyrrole for wide detection range

    International Nuclear Information System (INIS)

    Nia, Pooria Moozarm; Meng, Woi Pei; Alias, Y.

    2015-01-01

    Graphical abstract: - Highlights: • Electrochemical method was used for depositing silver nanoparticles and polypyrrole. • Silver nanoparticles (25 nm) were uniformly decorated on electrodeposited polypyrrole. • (Ag(NH 3 ) 2 OH) precursor showed better electrochemical performance than (AgNO 3 ). • The sensor showed superior performance toward H 2 O 2 . - Abstract: Electrochemically synthesized polypyrrole (PPy) decorated with silver nanoparticles (AgNPs) was prepared and used as a nonenzymatic sensor for hydrogen peroxide (H 2 O 2 ) detection. Polypyrrole was fabricated through electrodeposition, while silver nanoparticles were deposited on polypyrrole by the same technique. The field emission scanning electron microscopy (FESEM) images showed that the electrodeposited AgNPs were aligned along the PPy uniformly and the mean particle size of AgNPs is around 25 nm. The electrocatalytic activity of AgNPs-PPy-GCE toward H 2 O 2 was studied using chronoamperometry and cyclic voltammetry. The first linear section was in the range of 0.1–5 mM with a limit of detection of 0.115 μmol l −1 and the second linear section was raised to 120 mM with a correlation factor of 0.256 μmol l −1 (S/N of 3). Moreover, the sensor presented excellent stability, selectivity, repeatability and reproducibility. These excellent performances make AgNPs-PPy/GCE an ideal nonenzymatic H 2 O 2 sensor.

  16. Hydrogen peroxide sensor: Uniformly decorated silver nanoparticles on polypyrrole for wide detection range

    Science.gov (United States)

    Nia, Pooria Moozarm; Meng, Woi Pei; Alias, Y.

    2015-12-01

    Electrochemically synthesized polypyrrole (PPy) decorated with silver nanoparticles (AgNPs) was prepared and used as a nonenzymatic sensor for hydrogen peroxide (H2O2) detection. Polypyrrole was fabricated through electrodeposition, while silver nanoparticles were deposited on polypyrrole by the same technique. The field emission scanning electron microscopy (FESEM) images showed that the electrodeposited AgNPs were aligned along the PPy uniformly and the mean particle size of AgNPs is around 25 nm. The electrocatalytic activity of AgNPs-PPy-GCE toward H2O2 was studied using chronoamperometry and cyclic voltammetry. The first linear section was in the range of 0.1-5 mM with a limit of detection of 0.115 μmol l-1 and the second linear section was raised to 120 mM with a correlation factor of 0.256 μmol l-1 (S/N of 3). Moreover, the sensor presented excellent stability, selectivity, repeatability and reproducibility. These excellent performances make AgNPs-PPy/GCE an ideal nonenzymatic H2O2 sensor.

  17. Spontaneous otoacoustic emissions, threshold microstructure, and psychophysical tuning over a wide frequency range in humansa

    Science.gov (United States)

    Baiduc, Rachael R.; Lee, Jungmee; Dhar, Sumitrajit

    2014-01-01

    Hearing thresholds have been shown to exhibit periodic minima and maxima, a pattern known as threshold microstructure. Microstructure has previously been linked to spontaneous otoacoustic emissions (SOAEs) and normal cochlear function. However, SOAEs at high frequencies (>4 kHz) have been associated with hearing loss or cochlear pathology in some reports. Microstructure would not be expected near these high-frequency SOAEs. Psychophysical tuning curves (PTCs), the expression of frequency selectivity, may also be altered by SOAEs. Prior comparisons of tuning between ears with and without SOAEs demonstrated sharper tuning in ears with emissions. Here, threshold microstructure and PTCs were compared at SOAE frequencies ranging between 1.2 and 13.9 kHz using subjects without SOAEs as controls. Results indicate: (1) Threshold microstructure is observable in the vicinity of SOAEs of all frequencies; (2) PTCs are influenced by SOAEs, resulting in shifted tuning curve tips, multiple tips, or inversion. High frequency SOAEs show a greater effect on PTC morphology. The influence of most SOAEs at high frequencies on threshold microstructure and PTCs is consistent with those at lower frequencies, suggesting that high-frequency SOAEs reflect the same cochlear processes that lead to SOAEs at lower frequencies. PMID:24437770

  18. Design, commissioning and operational results of wide dynamic range BPM switched electrode electronics

    International Nuclear Information System (INIS)

    Powers, T.; Doolittle, L.; Ursic, R.; Wagner, J.

    1997-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a high-intensity, continuous-wave electron accelerator for nuclear physics. Total acceleration of 4 GeV is achieved by recirculating the beam through two 400-MeV linacs. The operating currents over which the linac beam position monitoring system must meet specifications are 1 μA to 1000 μA. A system was developed in 1994 and installed in the spring of 1995 that switches four electrode signals at 120 kHz through two signal-conditioning chains that use computer-controlled variable gain amplifiers with a dynamic range greater than 80 dB. The system timing was tuned to the machine recirculation period of 4.2 μs so that components of the multipass beam could be resolved in the linacs. Other features of this VME-based system include long-term stability and high-speed data acquisition, which make it suitable for use as both a time-domain diagnostic tool and as part of a variety of beam feedback systems. The computer interface has enough control over the hardware to make a thorough self-calibration and verification-of-operation routine possible. copyright 1997 American Institute of Physics

  19. A portable and wide energy range semiconductor-based neutron spectrometer

    International Nuclear Information System (INIS)

    Hoshor, C.B.; Oakes, T.M.; Myers, E.R.; Rogers, B.J.; Currie, J.E.; Young, S.M.; Crow, J.A.; Scott, P.R.; Miller, W.H.; Bellinger, S.L.; Sobering, T.J.; Fronk, R.G.; Shultis, J.K.; McGregor, D.S.; Caruso, A.N.

    2015-01-01

    Hand-held instruments that can be used to passively detect and identify sources of neutron radiation—either bare or obscured by neutron moderating and/or absorbing material(s)—in real time are of interest in a variety of nuclear non-proliferation and health physics applications. Such an instrument must provide a means to high intrinsic detection efficiency and energy-sensitive measurements of free neutron fields, for neutrons ranging from thermal energies to the top end of the evaporation spectrum. To address and overcome the challenges inherent to the aforementioned applications, four solid-state moderating-type neutron spectrometers of varying cost, weight, and complexity have been designed, fabricated, and tested. The motivation of this work is to introduce these novel human-portable instruments by discussing the fundamental theory of their operation, investigating and analyzing the principal considerations for optimal instrument design, and evaluating the capability of each of the four fabricated spectrometers to meet the application needs.

  20. Neonatal hypoglycemia: A wide range of electroclinical manifestations and seizure outcomes.

    Science.gov (United States)

    Arhan, Ebru; Öztürk, Zeynep; Serdaroğlu, Ayşe; Aydın, Kürşad; Hirfanoğlu, Tuğba; Akbaş, Yılmaz

    2017-09-01

    We examined the various types of epilepsy in children with neonatal hypoglycemia in order to define electroclinical and prognostic features of these patients. We retrospectively reviewed the medical records of patients with a history of symptomatic neonatal hypoglycaemia who have been followed at Gazi University Hospital Pediatric Neurology Department between 2006 and 2015. Patients with perinatal asphyxia were excluded. Details of each patient's perinatal history, neurological outcome, epilepsy details, seizure outcome and EEG and brain MRI findings were reviewed. Fourty five patients (range 6 mo-15 y) with a history of symptomatic neonatal hypoglycaemia were included the study. Epilepsy developed in 36 patients and 23 of them had intractable epilepsy. All patients had occipital brain injury. We observed that most of the patients, either manifesting focal or generalized seizures, further develop intractable epilepsy. This finding establishes neonatal hypoglycemia as a possible cause to be considered in any case of intractable epilepsy. Copyright © 2017 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  1. A portable and wide energy range semiconductor-based neutron spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Hoshor, C.B. [Department of Physics, University of Missouri, Kansas City, MO (United States); Oakes, T.M. [Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO (United States); Myers, E.R.; Rogers, B.J.; Currie, J.E.; Young, S.M.; Crow, J.A.; Scott, P.R. [Department of Physics, University of Missouri, Kansas City, MO (United States); Miller, W.H. [Nuclear Science and Engineering Institute, University of Missouri, Columbia, MO (United States); Missouri University Research Reactor, Columbia, MO (United States); Bellinger, S.L. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS (United States); Sobering, T.J. [Electronics Design Laboratory, Kansas State University, Manhattan, KS (United States); Fronk, R.G.; Shultis, J.K.; McGregor, D.S. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS (United States); Caruso, A.N., E-mail: carusoan@umkc.edu [Department of Physics, University of Missouri, Kansas City, MO (United States)

    2015-12-11

    Hand-held instruments that can be used to passively detect and identify sources of neutron radiation—either bare or obscured by neutron moderating and/or absorbing material(s)—in real time are of interest in a variety of nuclear non-proliferation and health physics applications. Such an instrument must provide a means to high intrinsic detection efficiency and energy-sensitive measurements of free neutron fields, for neutrons ranging from thermal energies to the top end of the evaporation spectrum. To address and overcome the challenges inherent to the aforementioned applications, four solid-state moderating-type neutron spectrometers of varying cost, weight, and complexity have been designed, fabricated, and tested. The motivation of this work is to introduce these novel human-portable instruments by discussing the fundamental theory of their operation, investigating and analyzing the principal considerations for optimal instrument design, and evaluating the capability of each of the four fabricated spectrometers to meet the application needs.

  2. Highly modular high-brightness diode laser system design for a wide application range

    Science.gov (United States)

    Fritsche, Haro; Kruschke, Bastian; Koch, Ralf; Ferrario, Fabio; Kern, Holger; Pahl, Ullrich; Ehm, Einar; Pflueger, Silke; Grohe, Andreas; Gries, Wolfgang

    2015-03-01

    For an economic production it is important to serve as many applications as possible while keeping the product variations minimal. We present our modular laser design, which is based on single emitters and various combining technics. In a first step we accept a reduction of the very high brightness of the single emitters by vertical stacking. Those emitters can be wavelength stabilized by an external resonator, providing the very same feedback to each of those laser diodes which leads to an output power of about 100W with BPP of BPP. These "500W building blocks" are consequently designed in a way that without any system change new wavelengths can be implemented by only exchanging parts but without change of the production process. This design principal offers the option to adapt the wavelength of those blocks to any applications, from UV, visible into the far IR. From laser pumping and scientific applications to materials processing such as cutting and welding of copper aluminum or steel and also medical application. Operating at wavelengths between 900 nm and 1100 nm, these systems are mainly used in cutting and welding, but the technology can also be adapted to other wavelength ranges, such as 793 nm and 1530 nm. Around 1.5 μm the diodes are already successfully used for resonant pumping of Erbium lasers.[1] Furthermore, the fully integrated electronic concept allows addressing further applications, as it is capable of very short μs pulses up to cw mode operation by simple software commands.

  3. Mechanical response of AA7075 aluminum alloy over a wide range of temperatures and strain rates

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z.; Cassada, W.A. [Reynolds Metals Co., Chester, VA (United States). Corp. Res. and Dev.; Cady, C.M.; Gray, G.T. III

    2000-07-01

    The influence of temperature and strain rate on the flow stress and work hardening rate of a 7075 aluminum alloy was studied under compressive loading over the temperature range from 23 C to 470 C, and strain rates from 0.001 s{sup -1} and 2100 s{sup -1}. While the temperature dependence of the flow stress was found to be most significant at temperatures below 300 C, the strain rate dependence of the flow stress was found to be pronounced at temperatures above 23 C. Concurrently, the work hardening rate decreases significantly with increasing temperature between 23 C and 300 C and increases slightly at higher temperatures. The minimum work hardening rate is observed to occur at temperatures between 200 C and 300 C and shift to higher temperatures with increasing strain rate. A negative strain rate dependence of work hardening rate was observed at 23 C, although a positive strain rate dependence of work hardening rate occurs at higher temperatures. Analysis of the experimental data revealed three deformation regimes. (orig.)

  4. Dynamic mechanical behaviour and dislocation substructure evolution of Inconel 718 over wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woei-Shyan, E-mail: wslee@mail.ncku.edu.tw [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Chi-Feng [National Center for High-Performance Computing, Hsin-Shi Tainan County 744, Taiwan (China); Chen, Tao-Hsing [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 807, Taiwan (China); Chen, Hong-Wei [Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2011-07-25

    A compressive split-Hopkinson pressure bar and transmission electron microscope (TEM) are used to investigate the mechanical behaviour and microstructural evolution of Inconel 718 at strain rates ranging from 1000 to 5000 s{sup -1} and temperatures between -150 and 550 deg. C. The results show that the flow stress increases with an increasing strain rate or a reducing temperature. The strain rate effect is particularly pronounced at strain rates greater than 3000 s{sup -1} and a deformation temperature of -150 deg. C. A significant thermal softening effect occurs at temperatures between -150 and 25 deg. C. The microstructural observations reveal that the strengthening effect in deformed Inconel 718 alloy is a result primarily of dislocation multiplication. The dislocation density increases with increasing strain rate, but decreases with increasing temperature. By contrast, the dislocation cell size decreases with increasing strain rate, but increases with increasing temperature. It is shown that the correlation between the flow stress, the dislocation density and the dislocation cell size is well described by the Bailey-Hirsch constitutive equations.

  5. Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms.

    Science.gov (United States)

    Mundell, Nathan A; Beier, Kevin T; Pan, Y Albert; Lapan, Sylvain W; Göz Aytürk, Didem; Berezovskii, Vladimir K; Wark, Abigail R; Drokhlyansky, Eugene; Bielecki, Jan; Born, Richard T; Schier, Alexander F; Cepko, Constance L

    2015-08-01

    Current limitations in technology have prevented an extensive analysis of the connections among neurons, particularly within nonmammalian organisms. We developed a transsynaptic viral tracer originally for use in mice, and then tested its utility in a broader range of organisms. By engineering the vesicular stomatitis virus (VSV) to encode a fluorophore and either the rabies virus glycoprotein (RABV-G) or its own glycoprotein (VSV-G), we created viruses that can transsynaptically label neuronal circuits in either the retrograde or anterograde direction, respectively. The vectors were investigated for their utility as polysynaptic tracers of chicken and zebrafish visual pathways. They showed patterns of connectivity consistent with previously characterized visual system connections, and revealed several potentially novel connections. Further, these vectors were shown to infect neurons in several other vertebrates, including Old and New World monkeys, seahorses, axolotls, and Xenopus. They were also shown to infect two invertebrates, Drosophila melanogaster, and the box jellyfish, Tripedalia cystophora, a species previously intractable for gene transfer, although no clear evidence of transsynaptic spread was observed in these species. These vectors provide a starting point for transsynaptic tracing in most vertebrates, and are also excellent candidates for gene transfer in organisms that have been refractory to other methods. © 2015 Wiley Periodicals, Inc.

  6. Spectral counting assessment of protein dynamic range in cerebrospinal fluid following depletion with plasma-designed immunoaffinity columns

    Directory of Open Access Journals (Sweden)

    Borg Jacques

    2011-06-01

    Full Text Available Abstract Background In cerebrospinal fluid (CSF, which is a rich source of biomarkers for neurological diseases, identification of biomarkers requires methods that allow reproducible detection of low abundance proteins. It is therefore crucial to decrease dynamic range and improve assessment of protein abundance. Results We applied LC-MS/MS to compare the performance of two CSF enrichment techniques that immunodeplete either albumin alone (IgYHSA or 14 high-abundance proteins (IgY14. In order to estimate dynamic range of proteins identified, we measured protein abundance with APEX spectral counting method. Both immunodepletion methods improved the number of low-abundance proteins detected (3-fold for IgYHSA, 4-fold for IgY14. The 10 most abundant proteins following immunodepletion accounted for 41% (IgY14 and 46% (IgYHSA of CSF protein content, whereas they accounted for 64% in non-depleted samples, thus demonstrating significant enrichment of low-abundance proteins. Defined proteomics experiment metrics showed overall good reproducibility of the two immunodepletion methods and MS analysis. Moreover, offline peptide fractionation in IgYHSA sample allowed a 4-fold increase of proteins identified (520 vs. 131 without fractionation, without hindering reproducibility. Conclusions The novelty of this study was to show the advantages and drawbacks of these methods side-to-side. Taking into account the improved detection and potential loss of non-target proteins following extensive immunodepletion, it is concluded that both depletion methods combined with spectral counting may be of interest before further fractionation, when searching for CSF biomarkers. According to the reliable identification and quantitation obtained with APEX algorithm, it may be considered as a cheap and quick alternative to study sample proteomic content.

  7. Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature

    International Nuclear Information System (INIS)

    Gil, J.M.; Rodriguez, R.; Florido, R.; Rubiano, J.G.; Mendoza, M.A.; Nuez, A. de la; Espinosa, G.; Martel, P.; Minguez, E.

    2013-01-01

    In this work we present an analysis of the influence of the thermodynamic regime on the monochromatic emissivity, the radiative power loss and the radiative cooling rate for optically thin carbon plasmas over a wide range of electron temperature and density assuming steady state situations. Furthermore, we propose analytical expressions depending on the electron density and temperature for the average ionization and cooling rate based on polynomial fittings which are valid for the whole range of plasma conditions considered in this work. -- Highlights: ► We compute the average ionization, cooling rates and emissivities of carbon plasmas. ► We compare LTE and NLTE calculations of these magnitudes. ► We perform a parametrization of these magnitudes in a wide range of plasma conditions. ► We provide information about where LTE regime assumption is accurate

  8. High efficiency RF amplifier development over wide dynamic range for accelerator application

    Science.gov (United States)

    Mishra, Jitendra Kumar; Ramarao, B. V.; Pande, Manjiri M.; Joshi, Gopal; Sharma, Archana; Singh, Pitamber

    2017-10-01

    Superconducting (SC) cavities in an accelerating section are designed to have the same geometrical velocity factor (βg). For these cavities, Radio Frequency (RF) power needed to accelerate charged particles varies with the particle velocity factor (β). RF power requirement from one cavity to other can vary by 2-5 dB within the accelerating section depending on the energy gain in the cavity and beam current. In this paper, we have presented an idea to improve operating efficiency of the SC RF accelerators using envelope tracking technique. A study on envelope tracking technique without feedback is carried out on a 1 kW, 325 MHz, class B (conduction angle of 180 degrees) tuned load power amplifier (PA). We have derived expressions for the efficiency and power output for tuned load amplifier operating on the envelope tracking technique. From the derived expressions, it is observed that under constant load resistance to the device (MOSFET), optimum amplifier efficiency is invariant whereas output power varies with the square of drain bias voltage. Experimental results on 1 kW PA module show that its optimum efficiency is always greater than 62% with variation less than 5% from mean value over 7 dB dynamic range. Low power amplifier modules are the basic building block for the high power amplifiers. Therefore, results for 1 kW PA modules remain valid for the high power solid state amplifiers built using these PA modules. The SC RF accelerators using these constant efficiency power amplifiers can improve overall accelerator efficiency.

  9. Hydrogen peroxide sensor: Uniformly decorated silver nanoparticles on polypyrrole for wide detection range

    Energy Technology Data Exchange (ETDEWEB)

    Nia, Pooria Moozarm, E-mail: pooriamn@yahoo.com; Meng, Woi Pei, E-mail: pmwoi@um.edu.my; Alias, Y., E-mail: yatimah70@um.edu.my

    2015-12-01

    Graphical abstract: - Highlights: • Electrochemical method was used for depositing silver nanoparticles and polypyrrole. • Silver nanoparticles (25 nm) were uniformly decorated on electrodeposited polypyrrole. • (Ag(NH{sub 3}){sub 2}OH) precursor showed better electrochemical performance than (AgNO{sub 3}). • The sensor showed superior performance toward H{sub 2}O{sub 2}. - Abstract: Electrochemically synthesized polypyrrole (PPy) decorated with silver nanoparticles (AgNPs) was prepared and used as a nonenzymatic sensor for hydrogen peroxide (H{sub 2}O{sub 2}) detection. Polypyrrole was fabricated through electrodeposition, while silver nanoparticles were deposited on polypyrrole by the same technique. The field emission scanning electron microscopy (FESEM) images showed that the electrodeposited AgNPs were aligned along the PPy uniformly and the mean particle size of AgNPs is around 25 nm. The electrocatalytic activity of AgNPs-PPy-GCE toward H{sub 2}O{sub 2} was studied using chronoamperometry and cyclic voltammetry. The first linear section was in the range of 0.1–5 mM with a limit of detection of 0.115 μmol l{sup −1} and the second linear section was raised to 120 mM with a correlation factor of 0.256 μmol l{sup −1} (S/N of 3). Moreover, the sensor presented excellent stability, selectivity, repeatability and reproducibility. These excellent performances make AgNPs-PPy/GCE an ideal nonenzymatic H{sub 2}O{sub 2} sensor.

  10. Novel method of optical image registration in wide wavelength range using matrix of piezoelectric crystals

    Science.gov (United States)

    Pigarev, Aleksey V.; Bazarov, Timur O.; Fedorov, Vladimir V.; Ryabushkin, Oleg A.

    2018-02-01

    Most modern systems of the optical image registration are based on the matrices of photosensitive semiconductor heterostructures. However, measurement of radiation intensities up to several MW/cm2 -level using such detectors is a great challenge because semiconductor elements have low optical damage threshold. Reflecting or absorbing filters that can be used for attenuation of radiation intensity, as a rule, distort beam profile. Furthermore, semiconductor based devices have relatively narrow measurement wavelength bandwidth. We introduce a novel matrix method of optical image registration. This approach doesn't require any attenuation when measuring high radiation intensities. A sensitive element is the matrix made of thin transparent piezoelectric crystals that absorb just a small part of incident optical power. Each crystal element has its own set of intrinsic (acoustic) vibration modes. These modes can be exited due to the inverse piezoelectric effect when the external electric field is applied to the crystal sample providing that the field frequency corresponds to one of the vibration mode frequencies. Such piezoelectric resonances (PR) can be observed by measuring the radiofrequency response spectrum of the crystal placed between the capacitor plates. PR frequencies strongly depend on the crystal temperature. Temperature calibration of PR frequencies is conducted in the uniform heating conditions. In the case a crystal matrix is exposed to the laser radiation the incident power can be obtained separately for each crystal element by measuring its PR frequency kinetics providing that the optical absorption coefficient is known. The operating wavelength range of such sensor is restricted by the transmission bandwidth of the applied crystals. A plane matrix constituting of LiNbO3 crystals was assembled in order to demonstrate the possibility of application of the proposed approach. The crystal elements were placed between two electrodes forming a capacitor which

  11. Clustering of quasars in a wide luminosity range at redshift 4 with Subaru Hyper Suprime-Cam Wide-field imaging

    Science.gov (United States)

    He, Wanqiu; Akiyama, Masayuki; Bosch, James; Enoki, Motohiro; Harikane, Yuichi; Ikeda, Hiroyuki; Kashikawa, Nobunari; Kawaguchi, Toshihiro; Komiyama, Yutaka; Lee, Chien-Hsiu; Matsuoka, Yoshiki; Miyazaki, Satoshi; Nagao, Tohru; Nagashima, Masahiro; Niida, Mana; Nishizawa, Atsushi J.; Oguri, Masamune; Onoue, Masafusa; Oogi, Taira; Ouchi, Masami; Schulze, Andreas; Shirasaki, Yuji; Silverman, John D.; Tanaka, Manobu M.; Tanaka, Masayuki; Toba, Yoshiki; Uchiyama, Hisakazu; Yamashita, Takuji

    2018-01-01

    We examine the clustering of quasars over a wide luminosity range, by utilizing 901 quasars at \\overline{z}_phot˜ 3.8 with -24.73 Strategic Program (HSC-SSP) S16A Wide2 date release and 342 more luminous quasars at 3.4 Digital Sky Survey that fall in the HSC survey fields. We measure the bias factors of two quasar samples by evaluating the cross-correlation functions (CCFs) between the quasar samples and 25790 bright z ˜ 4 Lyman break galaxies in M1450 < -21.25 photometrically selected from the HSC dataset. Over an angular scale of 10.0" to 1000.0", the bias factors are 5.93+1.34-1.43 and 2.73+2.44-2.55 for the low- and high-luminosity quasars, respectively, indicating no significant luminosity dependence of quasar clustering at z ˜ 4. It is noted that the bias factor of the luminous quasars estimated by the CCF is smaller than that estimated by the auto-correlation function over a similar redshift range, especially on scales below 40.0". Moreover, the bias factor of the less-luminous quasars implies the minimal mass of their host dark matter halos is 0.3-2 × 1012 h-1 M⊙, corresponding to a quasar duty cycle of 0.001-0.06.

  12. Automatic Generation of Wide Dynamic Range Image without Pseudo-Edge Using Integration of Multi-Steps Exposure Images

    Science.gov (United States)

    Migiyama, Go; Sugimura, Atsuhiko; Osa, Atsushi; Miike, Hidetoshi

    Recently, digital cameras are offering technical advantages rapidly. However, the shot image is different from the sight image generated when that scenery is seen with the naked eye. There are blown-out highlights and crushed blacks in the image that photographed the scenery of wide dynamic range. The problems are hardly generated in the sight image. These are contributory cause of difference between the shot image and the sight image. Blown-out highlights and crushed blacks are caused by the difference of dynamic range between the image sensor installed in a digital camera such as CCD and CMOS and the human visual system. Dynamic range of the shot image is narrower than dynamic range of the sight image. In order to solve the problem, we propose an automatic method to decide an effective exposure range in superposition of edges. We integrate multi-step exposure images using the method. In addition, we try to erase pseudo-edges using the process to blend exposure values. Afterwards, we get a pseudo wide dynamic range image automatically.

  13. Wide wavelength range tunable one-dimensional silicon nitride nano-grating guided mode resonance filter based on azimuthal rotation

    Directory of Open Access Journals (Sweden)

    Ryoji Yukino

    2017-01-01

    Full Text Available We describe wavelength tuning in a one dimensional (1D silicon nitride nano-grating guided mode resonance (GMR structure under conical mounting configuration of the device. When the GMR structure is rotated about the axis perpendicular to the surface of the device (azimuthal rotation for light incident at oblique angles, the conditions for resonance are different than for conventional GMR structures under classical mounting. These resonance conditions enable tuning of the GMR peak position over a wide range of wavelengths. We experimental demonstrate tuning over a range of 375 nm between 500 nm˜875 nm. We present a theoretical model to explain the resonance conditions observed in our experiments and predict the peak positions with show excellent agreement with experiments. Our method for tuning wavelengths is simpler and more efficient than conventional procedures that employ variations in the design parameters of structures or conical mounting of two-dimensional (2D GMR structures and enables a single 1D GMR device to function as a high efficiency wavelength filter over a wide range of wavelengths. We expect tunable filters based on this technique to be applicable in a wide range of fields including astronomy and biomedical imaging.

  14. Wide-range and fast thermally-tunable silicon photonic microring resonators using the junction field effect.

    Science.gov (United States)

    Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan

    2016-10-03

    Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a "pinched" p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%-90% transition time, and with efficiency of 3.2 μW/GHz.

  15. Ultra-fast Sensor for Single-photon Detection in a Wide Range of the Electromagnetic Spectrum

    Directory of Open Access Journals (Sweden)

    Astghik KUZANYAN

    2016-12-01

    Full Text Available The results of computer simulation of heat distribution processes taking place after absorption of single photons of 1 eV-1 keV energy in three-layer sensor of the thermoelectric detector are being analyzed. Different geometries of the sensor with tungsten absorber, thermoelectric layer of cerium hexaboride and tungsten heat sink are considered. It is shown that by changing the sizes of the sensor layers it is possible to obtain transducers for registration of photons within the given spectral range with required energy resolution and count rate. It is concluded that, as compared to the single layer sensor, the thee-layer sensor has a number of advantages and demonstrate characteristics that make possible to consider the thermoelectric detector as a real alternative to superconducting single photon detectors.

  16. Active thermal fine laser tuning in a broad spectral range and optical properties of cholesteric liquid crystal.

    Science.gov (United States)

    Jeong, Mi-Yun; Kwak, Keumcheol

    2016-11-20

    In this study, we achieved active fine laser tuning in a broad spectral range with dye-doped cholesteric liquid crystal wedge-type cells through temperature control. The spatial pitch gradient of each position of the wedge cell at room temperature was almost maintained after developing a temperature gradient. To achieve the maximum tuning range, the chiral dopant concentration, thickness, thickness gradient, and temperature gradient on the wedge cell should be matched properly. In order to understand the laser tuning mechanism for temperature change, we studied the temperature dependence of optical properties of the photonic bandgap of cholesteric liquid crystals. In our cholesteric liquid crystal samples, when temperature was increased, photonic bandgaps were shifted toward blue, while the width of the photonic bandgap was decreased, regardless of whether the helicity was left-handed or right-handed. This is mainly due to the combination of decreased refractive indices, higher molecular anisotropy of chiral molecules, and increased chiral molecular solubility. We envisage that this kind of study will prove useful in the development of practical active tunable CLC laser devices.

  17. Observing ice clouds in the submillimeter spectral range: the CloudIce mission proposal for ESA's Earth Explorer 8

    Directory of Open Access Journals (Sweden)

    S. A. Buehler

    2012-07-01

    Full Text Available Passive submillimeter-wave sensors are a way to obtain urgently needed global data on ice clouds, particularly on the so far poorly characterized "essential climate variable" ice water path (IWP and on ice particle size. CloudIce was a mission proposal to the European Space Agency ESA in response to the call for Earth Explorer 8 (EE8, which ran in 2009/2010. It proposed a passive submillimeter-wave sensor with channels ranging from 183 GHz to 664 GHz. The article describes the CloudIce mission proposal, with particular emphasis on describing the algorithms for the data-analysis of submillimeter-wave cloud ice data (retrieval algorithms and demonstrating their maturity. It is shown that we have a robust understanding of the radiative properties of cloud ice in the millimeter/submillimeter spectral range, and that we have a proven toolbox of retrieval algorithms to work with these data. Although the mission was not selected for EE8, the concept will be useful as a reference for other future mission proposals.

  18. Particle identification in a wide dynamic range based on pulse-shape analysis with solid-state detectors

    International Nuclear Information System (INIS)

    Pausch, G.; Hilscher, D.; Ortlepp, H.G.

    1994-04-01

    Heavy ions detected in a planar silicon detector were identified by exploiting a recently proposed combination of the pulse-shape and the time-of-flight techniques. We were able to resolve charge numbers up to Z = 16 within a wide dynamic range of ∼ 1:5, and to identify even isotopes for the elements up to Magnesium. The simple scheme of signal processing is based on conventional electronics and cheap enough to be exploited in large multidetector arrays. (orig.)

  19. Wide angular range study of the reaction /sup 16/O( pi /sup -/, 2n) /sup 14/N with stopped pions

    CERN Document Server

    Bassalleck, B; Furic, M; Klotz, W D; Lewis, C W; Takeutchi, F; Ullrich, H

    1980-01-01

    A first kinematically complete investigation of the reaction /sup 16/O ( pi /sup -/, 2n)/sup 14/N with stopped pions has been performed at the CERN SC over a wide angular range. Measured distributions in excitation energy of the residual nucleus, recoil momentum, and angle between the two neutrons are presented. They are compared with theoretical predictions on two-hole states and with detailed calculations on the quasi-free two-nucleon absorption process. (34 refs).

  20. Herschel Observations of Extraordinary Sources: Analysis of the HIFI 1.2 THz Wide Spectral Survey toward Orion KL. I. Methods

    NARCIS (Netherlands)

    Crockett, Nathan R.; Bergin, Edwin A.; Neill, Justin L.; Favre, Cécile; Schilke, Peter; Lis, Dariusz C.; Bell, Tom A.; Blake, Geoffrey; Cernicharo, José; Emprechtinger, Martin; Esplugues, Gisela B.; Gupta, Harshal; Kleshcheva, Maria; Lord, Steven; Marcelino, Nuria; McGuire, Brett A.; Pearson, John; Phillips, Thomas G.; Plume, Rene; van der Tak, Floris; Tercero, Belén; Yu, Shanshan

    We present a comprehensive analysis of a broadband spectral line survey of the Orion Kleinmann-Low nebula (Orion KL), one of the most chemically rich regions in the Galaxy, using the HIFI instrument on board the Herschel Space Observatory. This survey spans a frequency range from 480 to 1907 GHz at

  1. Spectral analysis of geological materials in the Central Volcanic Range of Costa Rica and its relationship to the remote detection of anomalies

    OpenAIRE

    Rejas, J. G.; Martínez-Frías, J.; Martínez, R.; Bonatti, J.

    2014-01-01

    The aim of this work is the comparative study of methods for calculating spectral anomalies from imaging spectrometry in several test areas of the Central Volcanic Range (CVR) of Costa Rica. In the detection of anomalous responses it is assumed no prior knowledge of the targets, so that the pixels are automatically separated according to their spectral information significantly differentiated with respect to a background to be estimated, either globally for the full scene, either locally by i...

  2. Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Abernathy, D. L.; Stone, M. B.; Loguillo, M. J.; Lucas, M. S.; Delaire, O.; Tang, X.; Lin, J. Y. Y.; Fultz, B.

    2012-01-01

    The wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source (SNS) is optimized to provide a high neutron flux at the sample position with a large solid angle of detector coverage. The instrument incorporates modern neutron instrumentation, such as an elliptically focused neutron guide, high speed magnetic bearing choppers, and a massive array of 3 He linear position sensitive detectors. Novel features of the spectrometer include the use of a large gate valve between the sample and detector vacuum chambers and the placement of the detectors within the vacuum, both of which provide a window-free final flight path to minimize background scattering while allowing rapid changing of the sample and sample environment equipment. ARCS views the SNS decoupled ambient temperature water moderator, using neutrons with incident energy typically in the range from 15 to 1500 meV. This range, coupled with the large detector coverage, allows a wide variety of studies of excitations in condensed matter, such as lattice dynamics and magnetism, in both powder and single-crystal samples. Comparisons of early results to both analytical and Monte Carlo simulation of the instrument performance demonstrate that the instrument is operating as expected and its neutronic performance is understood. ARCS is currently in the SNS user program and continues to improve its scientific productivity by incorporating new instrumentation to increase the range of science covered and improve its effectiveness in data collection.

  3. Tailoring of the free spectral range and geometrical cavity dispersion of a microsphere by a coating layer.

    Science.gov (United States)

    Ristić, Davor; Mazzola, Maurizio; Chiappini, Andrea; Rasoloniaina, Alphonse; Féron, Patrice; Ramponi, Roberta; Righini, Giancarlo C; Cibiel, Gilles; Ivanda, Mile; Ferrari, Maurizio

    2014-09-01

    The modal dispersion of a whispering gallery mode (WGM) resonator is a very important parameter for use in all nonlinear optics applications. In order to tailor the WGM modal dispersion of a microsphere, we have coated a silica microsphere with a high-refractive-index coating in order to study its effect on the WGM modal dispersion. We used Er(3+) ions as a probe for a modal dispersion assessment. We found that, by varying the coating thickness, the geometrical cavity dispersion can be used to shift overall modal dispersion in a very wide range in both the normal and anomalous dispersion regime.

  4. HESS J1427−608: AN UNUSUAL HARD, UNBROKEN γ -RAY SPECTRUM IN A VERY WIDE ENERGY RANGE

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiao-Lei; Gao, Wei-Hong [Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210046 (China); Xin, Yu-Liang; Liao, Neng-Hui; Yuan, Qiang; He, Hao-Ning; Fan, Yi-Zhong; Liu, Si-Ming, E-mail: yuanq@pmo.ac.cn, E-mail: gaoweihong@njnu.edu.cn, E-mail: liusm@pmo.ac.cn [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-01-20

    We report the detection of a GeV γ -ray source that spatially overlaps and is thus very likely associated with the unidentified very high energy (VHE) γ -ray source HESS J1427−608 with the Pass 8 data recorded by the Fermi Large Area Telescope . The photon spectrum of this source is best described by a power law with an index of 1.85 ± 0.17 in the energy range of 3–500 GeV, and the measured flux connects smoothly with that of HESS J1427−608 at a few hundred gigaelectronvolts. This source shows no significant extension and time variation. The broadband GeV to TeV emission over four decades of energies can be well fitted by a single power-law function with an index of 2.0, without obvious indication of spectral cutoff toward high energies. Such a result implies that HESS J1427−608 may be a PeV particle accelerator. We discuss the possible nature of HESS J1427−608 according to the multiwavelength spectral fittings. Given the relatively large errors, either a leptonic or a hadronic model can explain the multiwavelength data from radio to VHE γ -rays. The inferred magnetic field strength is a few micro-Gauss, which is smaller than the typical values of supernova remnants (SNRs) and is consistent with some pulsar wind nebulae (PWNe). On the other hand, the flat γ -ray spectrum is slightly different from typical PWNe but is similar to that of some known SNRs.

  5. A wide dynamic range BF3 neutron monitor with front-end electronics based on a logarithmic amplifier

    International Nuclear Information System (INIS)

    Ferrarini, M.; Varoli, V.; Favalli, A.; Caresana, M.; Pedersen, B.

    2010-01-01

    This paper describes a wide dynamic range neutron monitor based on a BF 3 neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10 6 s -1 . It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  6. A wide dynamic range BF{sub 3} neutron monitor with front-end electronics based on a logarithmic amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Ferrarini, M., E-mail: michele.ferrarini@polimi.i [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Fondazione CNAO, via Caminadella 16, 20123 Milano (Italy); Varoli, V. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Favalli, A. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Vatican City State, Holy See) (Italy); Caresana, M. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Pedersen, B. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Italy)

    2010-02-01

    This paper describes a wide dynamic range neutron monitor based on a BF{sub 3} neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10{sup 6} s{sup -1}. It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  7. Fabrication of thin ZnO films with wide-range tuned optical properties by reactive magnetron sputtering

    Science.gov (United States)

    Davydova, A.; Tselikov, G.; Dilone, D.; Rao, K. V.; Kabashin, A. V.; Belova, L.

    2018-02-01

    We report the manufacturing of thin zinc oxide films by reactive magnetron sputtering at room temperature, and examine their structural and optical properties. We show that the partial oxygen pressure in DC mode can have dramatic effect on absorption and refractive index (RI) of the films in a broad spectral range. In particular, the change of the oxygen pressure from 7% to 5% can lead to either conventional crystalline ZnO films having low absorption and characteristic descending dependence of RI from 2.4-2.7 RIU in the visible to 1.8-2 RIU in the near-infrared (1600 nm) range, or to untypical films, composed of ZnO nano-crystals embedded into amorphous matrix, exhibiting unexpectedly high absorption in the visible-infrared region and ascending dependence of RI with values varying from 1.5 RIU in the visible to 4 RIU in the IR (1600 nm), respectively. Untypical optical characteristics in the second case are explained by defects in ZnO structure arising due to under-oxidation of ZnO crystals. We also show that the observed defect-related film structure remains stable even after annealing of films under relatively high temperatures (30 min under 450 °C). We assume that both types of films can be of importance for photovoltaic (as contact or active layers, respectively), as well as for chemical or biological sensing, optoelectronics etc.

  8. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges.

    Science.gov (United States)

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-31

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  9. Preliminary assessment of the ecological risks to wide-ranging wildlife species on the Oak Ridge Reservation. 1996 update

    Energy Technology Data Exchange (ETDEWEB)

    Sample, B.E.; Hinzman, R.L.; Jackson, B.L.; Baron, L.

    1996-09-01

    More than approximately 50 years of operations, storage, and disposal of wastes generated by the three facilities on the Oak Ridge Reservation (ORR) (the Oak Ridge K-25 Site, Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant) has resulted in a mosaic of uncontaminated property and lands that are contaminated to varying degrees. This contaminated property includes source areas and the terrestrial and aquatic habitats down gradient from these source areas. Although the integrator OUs generally contain considerable habitat for biota, the source OUs provide little or no suitable habitat. Historically, ecological risk assessment at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites has focused on species that may be definitively associated with a contaminated area or source OU. Endpoints considered in source OUs include plants, soil/litter invertebrates and processes, aquatic biota found in on-OU sediments and surface waters, and small herbivorous, omnivorous, and vermivorous (i.e., feeding on ground, litter, or soil invertebrates) wildlife. All of these endpoints have limited spatial distributions or home ranges such that numerous individuals or a distinct population can be expected to reside within the boundaries of the source OU. Most analyses are not adequate for large sites with multiple, spatially separated contaminated areas such as the ORR that provide habitat for wide-ranging wildlife species. This report is a preliminary response to a plan for assessing risks to wide-ranging species.

  10. Fast negative feedback enables mammalian auditory nerve fibers to encode a wide dynamic range of sound intensities.

    Directory of Open Access Journals (Sweden)

    Mark Ospeck

    Full Text Available Mammalian auditory nerve fibers (ANF are remarkable for being able to encode a 40 dB, or hundred fold, range of sound pressure levels into their firing rate. Most of the fibers are very sensitive and raise their quiescent spike rate by a small amount for a faint sound at auditory threshold. Then as the sound intensity is increased, they slowly increase their spike rate, with some fibers going up as high as ∼300 Hz. In this way mammals are able to combine sensitivity and wide dynamic range. They are also able to discern sounds embedded within background noise. ANF receive efferent feedback, which suggests that the fibers are readjusted according to the background noise in order to maximize the information content of their auditory spike trains. Inner hair cells activate currents in the unmyelinated distal dendrites of ANF where sound intensity is rate-coded into action potentials. We model this spike generator compartment as an attenuator that employs fast negative feedback. Input current induces rapid and proportional leak currents. This way ANF are able to have a linear frequency to input current (f-I curve that has a wide dynamic range. The ANF spike generator remains very sensitive to threshold currents, but efferent feedback is able to lower its gain in response to noise.

  11. Preliminary assessment of the ecological risks to wide-ranging wildlife species on the Oak Ridge Reservation. 1996 update

    International Nuclear Information System (INIS)

    Sample, B.E.; Hinzman, R.L.; Jackson, B.L.; Baron, L.

    1996-09-01

    More than approximately 50 years of operations, storage, and disposal of wastes generated by the three facilities on the Oak Ridge Reservation (ORR) (the Oak Ridge K-25 Site, Oak Ridge National Laboratory, and the Oak Ridge Y-12 Plant) has resulted in a mosaic of uncontaminated property and lands that are contaminated to varying degrees. This contaminated property includes source areas and the terrestrial and aquatic habitats down gradient from these source areas. Although the integrator OUs generally contain considerable habitat for biota, the source OUs provide little or no suitable habitat. Historically, ecological risk assessment at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites has focused on species that may be definitively associated with a contaminated area or source OU. Endpoints considered in source OUs include plants, soil/litter invertebrates and processes, aquatic biota found in on-OU sediments and surface waters, and small herbivorous, omnivorous, and vermivorous (i.e., feeding on ground, litter, or soil invertebrates) wildlife. All of these endpoints have limited spatial distributions or home ranges such that numerous individuals or a distinct population can be expected to reside within the boundaries of the source OU. Most analyses are not adequate for large sites with multiple, spatially separated contaminated areas such as the ORR that provide habitat for wide-ranging wildlife species. This report is a preliminary response to a plan for assessing risks to wide-ranging species

  12. Calculus of the Power Spectral Density of Ultra Wide Band Pulse Position Modulation Signals Coded with Totally Flipped Code

    Directory of Open Access Journals (Sweden)

    DURNEA, T. N.

    2009-02-01

    Full Text Available UWB-PPM systems were noted to have a power spectral density (p.s.d. consisting of a continuous portion and a line spectrum, which is composed of energy components placed at discrete frequencies. These components are the major source of interference to narrowband systems operating in the same frequency interval and deny harmless coexistence of UWB-PPM and narrowband systems. A new code denoted as Totally Flipped Code (TFC is applied to them in order to eliminate these discrete spectral components. The coded signal transports the information inside pulse position and will have the amplitude coded to generate a continuous p.s.d. We have designed the code and calculated the power spectral density of the coded signals. The power spectrum has no discrete components and its envelope is largely flat inside the bandwidth with a maximum at its center and a null at D.C. These characteristics make this code suited for implementation in the UWB systems based on PPM-type modulation as it assures a continuous spectrum and keeps PPM modulation performances.

  13. Optimization of nonimaging focusing heliostat in dynamic correction of astigmatism for a wide range of incident angles.

    Science.gov (United States)

    Chong, Kok-Keong

    2010-05-15

    To overcome astigmatism has always been a great challenge in designing a heliostat capable of focusing the sunlight on a small receiver throughout the year. In this Letter, a nonimaging focusing heliostat with a dynamic adjustment of facet mirrors in a group manner has been analyzed for optimizing the astigmatic correction in a wide range of incident angles. This what is to the author's knowledge a new heliostat is not only designed to serve the purpose of concentrating sunlight to several hundreds of suns, but also to significantly reduce the variation of the solar flux distribution with the incident angle.

  14. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    OpenAIRE

    Md. Rajibur Rahaman Khan; Shin-Won Kang

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal?s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The...

  15. Combined Flux Observer With Signal Injection Enhancement for Wide Speed Range Sensorless Direct Torque Control of IPMSM Drives

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Andreescu, G.-D.; Pitic, C.I.

    2008-01-01

    voltage-current model with PI compensator for low-speed operations. As speed increases, the observer switches gradually to a PI compensated closed-loop voltage model, which is solely used at high speeds. High-frequency rotating-voltage injection with a single D-module bandpass vector filter and a phase......This paper proposes a motion-sensorless control system using direct torque control with space vector modulation for interior permanent magnet synchronous motor (IPMSM) drives, for wide speed range operation, including standstill. A novel stator flux observer with variable structure uses a combined...

  16. Using Range-Wide Abundance Modeling to Identify Key Conservation Areas for the Micro-Endemic Bolson Tortoise (Gopherus flavomarginatus.

    Directory of Open Access Journals (Sweden)

    Cinthya A Ureña-Aranda

    Full Text Available A widespread biogeographic pattern in nature is that population abundance is not uniform across the geographic range of species: most occurrence sites have relatively low numbers, whereas a few places contain orders of magnitude more individuals. The Bolson tortoise Gopherus flavomarginatus is endemic to a small region of the Chihuahuan Desert in Mexico, where habitat deterioration threatens this species with extinction. In this study we combined field burrows counts and the approach for modeling species abundance based on calculating the distance to the niche centroid to obtain range-wide abundance estimates. For the Bolson tortoise, we found a robust, negative relationship between observed burrows abundance and distance to the niche centroid, with a predictive capacity of 71%. Based on these results we identified four priority areas for the conservation of this microendemic and threatened tortoise. We conclude that this approach may be a useful approximation for identifying key areas for sampling and conservation efforts in elusive and rare species.

  17. Wide-range frequency selectivity in an acoustic sensor fabricated using a microbeam array with non-uniform thickness

    International Nuclear Information System (INIS)

    Shintaku, Hirofumi; Kotera, Hidetoshi; Kobayashi, Takayuki; Zusho, Kazuki; Kawano, Satoyuki

    2013-01-01

    In this study, we have demonstrated the fabrication of a microbeam array (MBA) with various thicknesses and investigated the suitability it for an acoustic sensor with wide-range frequency selectivity. For this, an MBA composed of 64 beams, with thicknesses varying from 2.99–142 µm, was fabricated by using single gray-scale lithography and a thick negative photoresist. The vibration of the beams in air was measured using a laser Doppler vibrometer; the resonant frequencies of the beams were measured to be from 11.5 to 290 kHz. Lastly, the frequency range of the MBA with non-uniform thickness was 10.9 times that of the MBA with uniform thickness. (paper)

  18. Accurate dew-point measurement over a wide temperature range using a quartz crystal microbalance dew-point sensor

    Science.gov (United States)

    Kwon, Su-Yong; Kim, Jong-Chul; Choi, Buyng-Il

    2008-11-01

    Quartz crystal microbalance (QCM) dew-point sensors are based on frequency measurement, and so have fast response time, high sensitivity and high accuracy. Recently, we have reported that they have the very convenient attribute of being able to distinguish between supercooled dew and frost from a single scan through the resonant frequency of the quartz resonator as a function of the temperature. In addition to these advantages, by using three different types of heat sinks, we have developed a QCM dew/frost-point sensor with a very wide working temperature range (-90 °C to 15 °C). The temperature of the quartz surface can be obtained effectively by measuring the temperature of the quartz crystal holder and using temperature compensation curves (which showed a high level of repeatability and reproducibility). The measured dew/frost points showed very good agreement with reference values and were within ±0.1 °C over the whole temperature range.

  19. Characterization of a wide dynamic-range, radiation-tolerant charge-digitizer asic for monitoring of Beam losses

    CERN Document Server

    Guido Venturini, G G; Dehning, B; Kayal, M

    2012-01-01

    An Application Specific Integrated Circuit (ASIC) has been designed and fabricated to provide a compact solution to digitize current signals from ionization chambers and diamond detectors, employed as beam loss monitors at CERN and several other high energy physics facilities. The circuit topology has been devised to accept positive and negative currents, to have a wide dynamic range (above 120 dB), withstand radiation levels over 10 Mrad and offer different modes of operation, covering a broad range of applications. Furthermore, an internal conversion reference is employed in the digitization, to provide an accurate absolute measurement. This paper discusses the detailed characterization of the first prototype: linearity, radiation tolerance and temperature dependence of the conversion, as well as implications and system-level considerations regarding its use for beam instrumentation applications in a high energy physics facility.

  20. Performance of a 100V Half-Bridge MOSFET Driver, Type MIC4103, Over a Wide Temperature Range

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad

    2011-01-01

    The operation of a high frequency, high voltage MOSFET (metal-oxide semiconductor field-effect transistors) driver was investigated over a wide temperature regime that extended beyond its specified range. The Micrel MIC4103 is a 100V, non-inverting, dual driver that is designed to independently drive both high-side and low-side N-channel MOSFETs. It features fast propagation delay times and can drive 1000 pF load with 10ns rise times and 6 ns fall times [1]. The device consumes very little power, has supply under-voltage protection, and is rated for a -40 C to +125 C junction temperature range. The floating high-side driver of the chip can sustain boost voltages up to 100 V. Table I shows some of the device manufacturer s specification.

  1. Tribological behavior and self-healing functionality of TiNbCN-Ag coatings in wide temperature range

    Energy Technology Data Exchange (ETDEWEB)

    Bondarev, A.V., E-mail: abondarev88@gmail.com; Kiryukhantsev-Korneev, Ph.V.; Levashov, E.A.; Shtansky, D.V., E-mail: shtansky@shs.misis.ru

    2017-02-28

    Highlights: • TiNbCN–Ag coatings for wide temperature range tribological applications. • Alloying with Nb and Ag improve tribological properties and oxidation resistance. • Ag-rich TiNbCN coatings show friction coefficient below 0.45 in range of 25–700 °C. • Ag-doped coatings show active oxidation protection and self-healing functionality. - Abstract: Ag- and Nb-doped TiCN coatings with about 2 at.% of Nb and Ag contents varied between 4.0 and 15.1 at.% were designed as promising materials for tribological applications in a wide temperature range. We report on the structure, mechanical, and tribological properties of TiNbCN-Ag coatings fabricated by simultaneous co-sputtering of TiC{sub 0.5} + 10%Nb{sub 2}C and Ag targets in comparison with those of Ag-free coating. The tribological characteristics were evaluated during constant-temperature tests both at room temperature and 300 °C, as well as during dynamic temperature ramp tests in the range of 25–700 °C. The coating structure and elemental composition were studied by means of X-ray diffraction, scanning and transmission electron microscopy, and glow discharge optical emission spectroscopy. The coating microstructures and elemental compositions inside wear tracks, as well as the wear products, were examined by scanning electron microscopy, energy-dispersive spectroscopy, and Raman spectroscopy. We demonstrate that simultaneous alloying with Nb and Ag permits to overcome the main drawbacks of TiCN coatings such as their relatively high values of friction coefficient at elevated temperatures and low oxidation resistance. It is shown that a relatively high amount of Ag (15 at.%) is required to provide enhanced tribological behavior in a wide temperature range of 25–700 °C. In addition, the prepared Ag-doped coatings demonstrated active oxidation protection and self-healing functionality due to the segregation of Ag metallic particles in damage areas such as cracks, pin-holes, or oxidation sites.

  2. From UV Protection to Protection in the Whole Spectral Range of the Solar Radiation: New Aspects of Sunscreen Development.

    Science.gov (United States)

    Zastrow, Leonhard; Meinke, Martina C; Albrecht, Stephanie; Patzelt, Alexa; Lademann, Juergen

    2017-01-01

    Sunscreens have been constantly improving in the past few years. Today, they provide an efficient protection not only in the UVB but also in the UVA spectral region of the solar radiation. Recently it could be demonstrated that 50% of all free radicals induced in the skin due to solar radiation are formed in the visible and infrared spectral region. The good protective efficacy of sunscreens in the UV region prompts people to stay much longer in the sun than if they had left their skin unprotected. However, as no protection in the visible and infrared spectral region is provided, high amounts of free radicals are induced here that could easily exceed the critical radical concentration. This chapter describes how the effect of sunscreens can be extended to cover also the visible and infrared spectral region of the solar radiation by adding pigments and antioxidants with high radical protection factors to the sunscreen formulations.

  3. A single-shot nonlinear autocorrelation approach for time-resolved physics in the vacuum ultraviolet spectral range

    International Nuclear Information System (INIS)

    Rompotis, Dimitrios

    2016-02-01

    In this work, a single-shot temporal metrology scheme operating in the vacuum-extreme ultraviolet spectral range has been designed and experimentally implemented. Utilizing an anti-collinear geometry, a second-order intensity autocorrelation measurement of a vacuum ultraviolet pulse can be performed by encoding temporal delay information on the beam propagation coordinate. An ion-imaging time-of-flight spectrometer, offering micrometer resolution has been set-up for this purpose. This instrument enables the detection of a magnified image of the spatial distribution of ions exclusively generated by direct two-photon absorption in the combined counter-propagating pulse focus and thus obtain the second-order intensity autocorrelation measurement on a single-shot basis. Additionally, an intense VUV light source based on high-harmonic generation has been experimentally realized. It delivers intense sub-20 fs Ti:Sa fifth-harmonic pulses utilizing a loose-focusing geometry in a long Ar gas cell. The VUV pulses centered at 161.8 nm reach pulse energies of 1.1 μJ per pulse, while the corresponding pulse duration is measured with a second-order, fringe-resolved autocorrelation scheme to be 18 ± 1 fs on average. Non-resonant, two-photon ionization of Kr and Xe and three-photon ionization of Ne verify the fifth-harmonic pulse intensity and indicate the feasibility of multi-photon VUV pump/VUV probe studies of ultrafast atomic and molecular dynamics. Finally, the extended functionally of the counter-propagating pulse metrology approach is demonstrated by a single-shot VUV pump/VUV probe experiment aiming at the investigation of ultrafast dissociation dynamics of O 2 excited in the Schumann-Runge continuum at 162 nm.

  4. Characterization of Articular Cartilage Recovery and Its Correlation with Optical Response in the Near-Infrared Spectral Range.

    Science.gov (United States)

    Afara, Isaac Oluwaseun; Singh, Sanjleena; Moody, Hayley; Zhang, Lihai; Oloyede, Adekunle

    2017-07-01

    In this study, we examine the capacity of a new parameter, based on the recovery response of articular cartilage, to distinguish between healthy and damaged tissues. We also investigate whether or not this new parameter correlates with the near-infrared (NIR) optical response of articular cartilage. Normal and artificially degenerated (proteoglycan-depleted) bovine cartilage samples were nondestructively probed using NIR spectroscopy. Subsequently they were subjected to a load and unloading protocol, and the recovery response was logged during unloading. The recovery parameter, elastic rebound ( E R ), is based on the strain energy released as the samples underwent instantaneous elastic recovery. Our results reveal positive relationship between the rebound parameter and cartilage proteoglycan content (normal samples: 2.20 ± 0.10 N mm; proteoglycan-depleted samples: 0.50 ± 0.04 N mm for 1 hour of enzymatic treatment and 0.13 ± 0.02 N mm for 4 hours of enzymatic treatment). In addition, multivariate analysis using partial least squares regression was employed to investigate the relationship between E R and NIR spectral data. The results reveal significantly high correlation ( R 2 cal = 98.35% and R 2 val = 79.87%; P cartilage in the combined NIR regions 5,450 to 6,100 cm -1 and 7,500 to 12,500 cm -1 . We conclude that E R can indicate the mechanical condition and state of health of articular cartilage. The correlation of E R with cartilage optical response in the NIR range could facilitate real-time evaluation of the tissue's integrity during arthroscopic surgery and could also provide an important tool for cartilage assessment in tissue engineering and regeneration research.

  5. A Facile Approach to Preparing Molecularly Imprinted Chitosan for Detecting 2,4,6-Tribromophenol with a Widely Linear Range

    Directory of Open Access Journals (Sweden)

    Limei Huang

    2017-04-01

    Full Text Available The environmental pollution of 2,4,6-tribromophenol (TBP has attracted attention. Based on an urgent need for the better provision of clean water, in situ determination of TBP is of great importance. Here, a facile and effective approach for detecting TBP is developed, based on coupling molecular imprinting technique with electrodeposition of chitosan (CS on the gold electrode. The TBP imprinting CS film was fabricated by using CS as functional material and TBP as template molecule. The experiments show that the morphologies and electrochemical properties of the imprinted film sensor was different from non-imprinted film electrode. The current of the imprinted film was linearly proportional to the TBP concentration, with a wide linear range of 1.0 × 10−7 mol•L−1 to 1.0 × 10−3 mol•L−1. By selecting drop-coating method as a reference for controlled trials with the same functional material, the results illustrated that the electrodeposition enjoyed a widely linear range advantage.

  6. Precise predictions of H2O line shapes over a wide pressure range using simulations corrected by a single measurement

    Science.gov (United States)

    Ngo, N. H.; Nguyen, H. T.; Tran, H.

    2018-03-01

    In this work, we show that precise predictions of the shapes of H2O rovibrational lines broadened by N2, over a wide pressure range, can be made using simulations corrected by a single measurement. For that, we use the partially-correlated speed-dependent Keilson-Storer (pcsdKS) model whose parameters are deduced from molecular dynamics simulations and semi-classical calculations. This model takes into account the collision-induced velocity-changes effects, the speed dependences of the collisional line width and shift as well as the correlation between velocity and internal-state changes. For each considered transition, the model is corrected by using a parameter deduced from its broadening coefficient measured for a single pressure. The corrected-pcsdKS model is then used to simulate spectra for a wide pressure range. Direct comparisons of the corrected-pcsdKS calculated and measured spectra of 5 rovibrational lines of H2O for various pressures, from 0.1 to 1.2 atm, show very good agreements. Their maximum differences are in most cases well below 1%, much smaller than residuals obtained when fitting the measurements with the Voigt line shape. This shows that the present procedure can be used to predict H2O line shapes for various pressure conditions and thus the simulated spectra can be used to deduce the refined line-shape parameters to complete spectroscopic databases, in the absence of relevant experimental values.

  7. Impact Response Comparison Between Parametric Human Models and Postmortem Human Subjects with a Wide Range of Obesity Levels.

    Science.gov (United States)

    Zhang, Kai; Cao, Libo; Wang, Yulong; Hwang, Eunjoo; Reed, Matthew P; Forman, Jason; Hu, Jingwen

    2017-10-01

    Field data analyses have shown that obesity significantly increases the occupant injury risks in motor vehicle crashes, but the injury assessment tools for people with obesity are largely lacking. The objectives of this study were to use a mesh morphing method to rapidly generate parametric finite element models with a wide range of obesity levels and to evaluate their biofidelity against impact tests using postmortem human subjects (PMHS). Frontal crash tests using three PMHS seated in a vehicle rear seat compartment with body mass index (BMI) from 24 to 40 kg/m 2 were selected. To develop the human models matching the PMHS geometry, statistical models of external body shape, rib cage, pelvis, and femur were applied to predict the target geometry using age, sex, stature, and BMI. A mesh morphing method based on radial basis functions was used to rapidly morph a baseline human model into the target geometry. The model-predicted body excursions and injury measures were compared to the PMHS tests. Comparisons of occupant kinematics and injury measures between the tests and simulations showed reasonable correlations across the wide range of BMI levels. The parametric human models have the capability to account for the obesity effects on the occupant impact responses and injury risks. © 2017 The Obesity Society.

  8. Bobcats (Lynx rufus) as a Model Organism to Investigate the Effects of Roads on Wide-Ranging Carnivores.

    Science.gov (United States)

    Litvaitis, John A; Reed, Gregory C; Carroll, Rory P; Litvaitis, Marian K; Tash, Jeffrey; Mahard, Tyler; Broman, Derek J A; Callahan, Catherine; Ellingwood, Mark

    2015-06-01

    We are using bobcats (Lynx rufus) as a model organism to examine how roads affect the abundance, distribution, and genetic structure of a wide-ranging carnivore. First, we compared the distribution of bobcat-vehicle collisions to road density and then estimated collision probabilities for specific landscapes using a moving window with road-specific traffic volume. Next, we obtained incidental observations of bobcats from the public, camera-trap detections, and locations of bobcats equipped with GPS collars to examine habitat selection. These data were used to generate a cost-surface map to investigate potential barrier effects of roads. Finally, we have begun an examination of genetic structure of bobcat populations in relation to major road networks. Distribution of vehicle-killed bobcats was correlated with road density, especially state and interstate highways. Collision models suggested that some regions may function as demographic sinks. Simulated movements in the context of the cost-surface map indicated that some major roads may be barriers. These patterns were supported by the genetic structure of bobcats. The sharpest divisions among genetically distinct demes occurred along natural barriers (mountains and large lakes) and in road-dense regions. In conclusion, our study has demonstrated the utility of using bobcats as a model organism to understand the variety of threats that roads pose to a wide-ranging species. Bobcats may also be useful as one of a group of focal species while developing approaches to maintain existing connectivity or mitigate the negative effects of roads.

  9. Tribological behavior and self-healing functionality of TiNbCN-Ag coatings in wide temperature range

    Science.gov (United States)

    Bondarev, A. V.; Kiryukhantsev-Korneev, Ph. V.; Levashov, E. A.; Shtansky, D. V.

    2017-02-01

    Ag- and Nb-doped TiCN coatings with about 2 at.% of Nb and Ag contents varied between 4.0 and 15.1 at.% were designed as promising materials for tribological applications in a wide temperature range. We report on the structure, mechanical, and tribological properties of TiNbCN-Ag coatings fabricated by simultaneous co-sputtering of TiC0.5 + 10%Nb2C and Ag targets in comparison with those of Ag-free coating. The tribological characteristics were evaluated during constant-temperature tests both at room temperature and 300 °C, as well as during dynamic temperature ramp tests in the range of 25-700 °C. The coating structure and elemental composition were studied by means of X-ray diffraction, scanning and transmission electron microscopy, and glow discharge optical emission spectroscopy. The coating microstructures and elemental compositions inside wear tracks, as well as the wear products, were examined by scanning electron microscopy, energy-dispersive spectroscopy, and Raman spectroscopy. We demonstrate that simultaneous alloying with Nb and Ag permits to overcome the main drawbacks of TiCN coatings such as their relatively high values of friction coefficient at elevated temperatures and low oxidation resistance. It is shown that a relatively high amount of Ag (15 at.%) is required to provide enhanced tribological behavior in a wide temperature range of 25-700 °C. In addition, the prepared Ag-doped coatings demonstrated active oxidation protection and self-healing functionality due to the segregation of Ag metallic particles in damage areas such as cracks, pin-holes, or oxidation sites.

  10. The role of environment and core-margin effects on range-wide phenotypic variation in a montane grasshopper.

    Science.gov (United States)

    Noguerales, V; García-Navas, V; Cordero, P J; Ortego, J

    2016-11-01

    The integration of genetic information with ecological and phenotypic data constitutes an effective approach to gain insight into the mechanisms determining interpopulation variability and the evolutionary processes underlying local adaptation and incipient speciation. Here, we use the Pyrenean Morales grasshopper (Chorthippus saulcyi moralesi) as study system to (i) analyse the relative role of genetic drift and selection in range-wide patterns of phenotypic differentiation and (ii) identify the potential selective agents (environment, elevation) responsible for variation. We also test the hypothesis that (iii) the development of dispersal-related traits is associated with different parameters related to population persistence/turnover, including habitat suitability stability over the last 120 000 years, distance to the species distribution core and population genetic variability. Our results indicate that selection shaped phenotypic differentiation across all the studied morphological traits (body size, forewing length and shape). Subsequent analyses revealed that among-population differentiation in forewing length was significantly explained by a temperature gradient, suggesting an adaptive response to thermoregulation or flight performance under contrasting temperature regimes. We found support for our hypothesis predicting a positive association between the distance to the species distribution core and the development of dispersal-related morphology, which suggests an increased dispersal capability in populations located at range edges that, in turn, exhibit lower levels of genetic variability. Overall, our results indicate that range-wide patterns of phenotypic variation are partially explained by adaptation in response to local environmental conditions and differences in habitat persistence between core and peripheral populations. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary

  11. Influence of the number of atomic levels on the spectral opacity of low temperature nickel and iron in the spectral range 50-300 eV

    International Nuclear Information System (INIS)

    Busquet, M.; Klapisch, M.; Gilles, D.

    2013-01-01

    Opacity is a fundamental ingredient for the secular evolution of stars. The calculation of the stellar plasma absorption coefficients is complex due to the composition of these plasmas, generally an H /He dominated mixture with a low concentration of partially ionized heavy ions (the iron group). The international collaboration OPAC recently presented extensive comparisons of spectral opacities of iron and nickel for temperatures between 15 and 40 eV and for densities of ∼ 3 mg/cm 3 , relevant to the stellar envelope conditions [1, 2]. The role of Configuration Interaction (CI) and the influence of the number of atomic levels on the opacity using the recently improved version of HULLAC atomic code [3, 4] are illustrated in this article. Comparisons with theoretical predictions already presented in [1] are discussed. (authors)

  12. Determining the bounds of skilful forecast range for probabilistic prediction of system-wide wind power generation

    Directory of Open Access Journals (Sweden)

    Dirk Cannon

    2017-06-01

    Full Text Available State-of-the-art wind power forecasts beyond a few hours ahead rely on global numerical weather prediction models to forecast the future large-scale atmospheric state. Often they provide initial and boundary conditions for nested high resolution simulations. In this paper, both upper and lower bounds on forecast range are identified within which global ensemble forecasts provide skilful information for system-wide wind power applications. An upper bound on forecast range is associated with the limit of predictability, beyond which forecasts have no more skill than predictions based on climatological statistics. A lower bound is defined at the lead time beyond which the resolved uncertainty associated with estimating the future large-scale atmospheric state is larger than the unresolved uncertainty associated with estimating the system-wide wind power response to a given large-scale state.The bounds of skilful ensemble forecast range are quantified for three leading global forecast systems. The power system of Great Britain (GB is used as an example because independent verifying data is available from National Grid. The upper bound defined by forecasts of GB-total wind power generation at a specific point in time is found to be 6–8 days. The lower bound is found to be 1.4–2.4 days. Both bounds depend on the global forecast system and vary seasonally. In addition, forecasts of the probability of an extreme power ramp event were found to possess a shorter limit of predictability (4.5–5.5 days. The upper bound on this forecast range can only be extended by improving the global forecast system (outside the control of most users or by changing the metric used in the probability forecast. Improved downscaling and microscale modelling of the wind farm response may act to decrease the lower bound. The potential gain from such improvements have diminishing returns beyond the short-range (out to around 2 days.

  13. Wide Dynamic Range Multiband Infrared Radiometer for In-Fire Measurements of Wildland Fire Radiant Flux Density

    Science.gov (United States)

    Kremens, R.; Dickinson, M. B.; Hardy, C.; Skowronski, N.; Ellicott, E. A.; Schroeder, W.

    2016-12-01

    We have developed a wide dynamic range (24-bit) data acquisition system for collection of radiant flux density (FRFD) data from wildland fires. The data collection subsystem was designed as an Arduino `shield' and incorporates a 24-bit analog-to-digital converter, precision voltage reference, real time clock, microSD card interface, audible annuciator and interface for various digital communication interfaces (RS232, I2C, SPI, etc.). The complete radiometer system consists of our custom-designed `shield', a commercially available Arduino MEGA computer circuit board and a thermopile sensor -amplifier daughter board. Software design and development is greatly assisted by the availability of a library of public-domain, user-implemented software. The daughter board houses a 5-band radiometer using thermopiles designed for this experiment (Dexter Research Corp., Dexter, MI) to allow determination of the total FRFD from the fire (using a wide band thermopile with a KRS-5 window, 0.1 - 30 um), the FRFD as would be received by an orbital asset like MODIS (3.95 um center wavelength (CWL) and 10.95 CWL, corresponding to MODIS bands 21/22 and 31, respectively) and wider bandpass (0.1-5.5 um and 8-14 um) corresponding to the FRFD recorded by `MWIR' and `LWIR' imaging systems. We required a very wide dynamic range system in order to be able to record the flux density from `cold' ground before the fire, through the `hot' flaming combustion stage, to the `cool' phase after passage of the fire front. The recording dynamic range required (with reasonable resolution at the lowest temperatures) is on the order of 106, which is not currently available in commercial instrumentation at a price point, size or feature set that is suitable for wildland fire investigations. The entire unit, along with rechargeable battery power supply is housed in a fireproof aluminum chassis box, which is then mounted on a mast at a height of 5 - 7 m above the fireground floor. We will report initial

  14. Thermal effects of an ICL-based mid-infrared CH4 sensor within a wide atmospheric temperature range

    Science.gov (United States)

    Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.; Girija, Aswathy V.; He, Qixin; Zheng, Huadan; Griffin, Robert J.; Tittel, Frank K.

    2018-03-01

    The thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ∼25 °C was measured for 5 h and its Allan deviation was ∼2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to minimize these effects. An environmental test chamber was employed to investigate the thermal effects that occur in the sensor system with variation of the test chamber temperature between 10 and 30 °C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH4 standard gas sample. Indoor/outdoor CH4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.

  15. Wide-range measurement of thermal effusivity using molybdenum thin film with low thermal conductivity for thermal microscopes

    Science.gov (United States)

    Miyake, Shugo; Matsui, Genzou; Ohta, Hiromichi; Hatori, Kimihito; Taguchi, Kohei; Yamamoto, Suguru

    2017-07-01

    Thermal microscopes are a useful technology to investigate the spatial distribution of the thermal transport properties of various materials. However, for high thermal effusivity materials, the estimated values of thermophysical parameters based on the conventional 1D heat flow model are known to be higher than the values of materials in the literature. Here, we present a new procedure to solve the problem which calculates the theoretical temperature response with the 3D heat flow and measures reference materials which involve known values of thermal effusivity and heat capacity. In general, a complicated numerical iterative method and many thermophysical parameters are required for the calculation in the 3D heat flow model. Here, we devised a simple procedure by using a molybdenum (Mo) thin film with low thermal conductivity on the sample surface, enabling us to measure over a wide thermal effusivity range for various materials.

  16. Resonance absorption measurements of atom concentrations in reacting gas mixtures. II. Calibration of microwave sources over a wide temperature range

    International Nuclear Information System (INIS)

    Chiang, C.; Lifshitz, A.; Skinner, G.B.; Wood, D.R.

    1979-01-01

    A series of experiments was carried out to calibrate three different microwave discharge lamps for analysis for D or H atoms, using Lyman-α absorption. Known concentrations of D atoms were produced in a shock tube by the reaction of 0.05--4 ppm D 2 with N 2 O in argon at 1800--3000 K. H atoms were produced by dissociation of 2,2,3,3-tetramethylbutane (10 ppm in argon) at 980--1140 K. These absorption data were compared with the absorption calculated from Lyman-α line shapes reported in an earlier paper, good agreement being found. These experiments provide a sound basis for obtaining the temperature and concentration dependence of the absorption coefficient over a wide temperature range, for H and D concentrations between 10 -12 and 10 -10 mole/cc

  17. Effects of chiral three-nucleon forces on 4He-nucleus scattering in a wide range of incident energies

    Science.gov (United States)

    Toyokawa, Masakazu; Yahiro, Masanobu; Matsumoto, Takuma; Kohno, Michio

    2018-02-01

    An important current subject is to clarify the properties of chiral three-nucleon forces (3NFs) not only in nuclear matter but also in scattering between finite-size nuclei. Particularly for elastic scattering, this study has just started and the properties are not understood for a wide range of incident energies (E_in). We investigate basic properties of chiral 3NFs in nuclear matter with positive energies by using the Brueckner-Hartree-Fock method with chiral two-nucleon forces at N3LO and 3NFs at NNLO, and analyze the effects of chiral 3NFs on 4He elastic scattering from targets ^{208}Pb, ^{58}Ni, and ^{40}Ca over a wide range of 30 ≲ E_in/A_P ≲ 200 MeV by using the g-matrix folding model, where A_P is the mass number of the projectile. In symmetric nuclear matter with positive energies, chiral 3NFs make the single-particle potential less attractive and more absorptive. The effects mainly come from the Fujita-Miyazawa 2π-exchange 3NF and become slightly larger as E_in increases. These effects persist in the optical potentials of 4He scattering. As for the differential cross sections of 4He scattering, chiral-3NF effects are large for E_in/A_P ≳ 60 MeV and improve the agreement of the theoretical results with the measured ones. Particularly for E_in/A_P ≳ 100 MeV, the folding model reproduces measured differential cross sections pretty well. Cutoff (Λ) dependence is investigated for both nuclear matter and 4He scattering by considering two cases of Λ=450 and 550 MeV. The uncertainty coming from the dependence is smaller than chiral-3NF effects even at E_in/A_P=175 MeV.

  18. Temperature dependence of the dielectric tensor of monoclinic Ga2O3 single crystals in the spectral range 1.0-8.5 eV

    Science.gov (United States)

    Sturm, C.; Schmidt-Grund, R.; Zviagin, V.; Grundmann, M.

    2017-08-01

    The full dielectric tensor of monoclinic Ga2O3 (β-phase) was determined by generalized spectroscopic ellipsometry in the spectral range from 1.0 eV up to 8.5 eV and temperatures in the range from 10 K up to 300 K. By using the oriented dipole approach, the energies and broadenings of the excitonic transitions are determined as a function of the temperature, and the exciton-phonon coupling properties are deduced.

  19. Design of a sun tracker for the automatic measurement of spectral irradiance and construction of an irradiance database in the 330-1100 nm range

    Energy Technology Data Exchange (ETDEWEB)

    Canada, J.; Maj, A. [Departamento de Termodinamica Aplicada, Universidad Politecnica de Valencia, Camino de Vera, s/n. 46022 Valencia (Spain); Utrillas, M.P.; Martinez-Lozano, J.A.; Pedros, R.; Gomez-Amo, J.L. [Departamento de Fisica de la Tierra y Termodinamica, Facultat de Fisica, Universitat de Valencia, 46100 Burjassot (Valencia) (Spain)

    2007-10-15

    An automatic global and direct solar spectral irradiance system has been designed based on two LICOR spectro radiometers equipped with fibre optics and remote cosine sensors. To measure direct irradiance a sun tracker based on step motors has been developed. The whole system is autonomous and works continuously. From the measurements provided by this system a spectral irradiance database in the 330-1100 nm range has been created. This database contains normal direct and global horizontal irradiances as well as diffuse irradiance on a horizontal plane, together with total atmospheric optical thickness and aerosol optical depth. (author)

  20. Improved spectral absorption coefficient grouping strategy of wide band k-distribution model used for calculation of infrared remote sensing signal of hot exhaust systems

    Science.gov (United States)

    Hu, Haiyang; Wang, Qiang

    2018-07-01

    A new strategy for grouping spectral absorption coefficients, considering the influences of both temperature and species mole ratio inhomogeneities on correlated-k characteristics of the spectra of gas mixtures, has been deduced to match the calculation method of spectral overlap parameter used in multiscale multigroup wide band k-distribution model. By comparison with current spectral absorption coefficient grouping strategies, for which only the influence of temperature inhomogeneity on the correlated-k characteristics of spectra of single species was considered, the improvements in calculation accuracies resulting from the new grouping strategy were evaluated using a series of 0D cases in which radiance under 3-5-μm wave band emitted by hot combustion gas of hydrocarbon fuel was attenuated by atmosphere with quite different temperature and mole ratios of water vapor and carbon monoxide to carbon dioxide. Finally, evaluations are presented on the calculation of remote sensing thermal images of transonic hot jet exhausted from a chevron ejecting nozzle with solid wall cooling system.

  1. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Khalilian, Alireza; Kang, Shin-Won

    2016-02-20

    In this paper, we proposed an interdigitated capacitor (IDC)-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt's dye (R-dye). These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC)] and N,N-Dimethylacetamide (DMAC) solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE) by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.

  2. Accurate dew-point measurement over a wide temperature range using a quartz crystal microbalance dew-point sensor

    International Nuclear Information System (INIS)

    Kwon, Su-Yong; Kim, Jong-Chul; Choi, Buyng-Il

    2008-01-01

    Quartz crystal microbalance (QCM) dew-point sensors are based on frequency measurement, and so have fast response time, high sensitivity and high accuracy. Recently, we have reported that they have the very convenient attribute of being able to distinguish between supercooled dew and frost from a single scan through the resonant frequency of the quartz resonator as a function of the temperature. In addition to these advantages, by using three different types of heat sinks, we have developed a QCM dew/frost-point sensor with a very wide working temperature range (−90 °C to 15 °C). The temperature of the quartz surface can be obtained effectively by measuring the temperature of the quartz crystal holder and using temperature compensation curves (which showed a high level of repeatability and reproducibility). The measured dew/frost points showed very good agreement with reference values and were within ±0.1 °C over the whole temperature range

  3. Experimental validation of the intrinsic spatial efficiency method over a wide range of sizes for cylindrical sources

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Ramŕez, Pablo, E-mail: rapeitor@ug.uchile.cl; Larroquette, Philippe [Departamento de Física, Facultad de Ciencias, Universidad de Chile (Chile); Camilla, S. [Departamento de Física, Universidad Tecnológica Metropolitana (Chile)

    2016-07-07

    The intrinsic spatial efficiency method is a new absolute method to determine the efficiency of a gamma spectroscopy system for any extended source. In the original work the method was experimentally demonstrated and validated for homogeneous cylindrical sources containing {sup 137}Cs, whose sizes varied over a small range (29.5 mm radius and 15.0 to 25.9 mm height). In this work we present an extension of the validation over a wide range of sizes. The dimensions of the cylindrical sources vary between 10 to 40 mm height and 8 to 30 mm radius. The cylindrical sources were prepared using the reference material IAEA-372, which had a specific activity of 11320 Bq/kg at july 2006. The obtained results were better for the sources with 29 mm radius showing relative bias lesser than 5% and for the sources with 10 mm height showing relative bias lesser than 6%. In comparison with the obtained results in the work where we present the method, the majority of these results show an excellent agreement.

  4. Sn-doped polyhedral In2O3 particles: Synthesis, characterization, and origins of luminous emission in wide visible range

    International Nuclear Information System (INIS)

    Zhu Yunqing; Chen Yiqing

    2012-01-01

    Sn-doped octahedronal and tetrakaidecahedronal In 2 O 3 particles were successfully synthesized by simple thermal evaporation of indium grains using SnO as dopant. Structural characterization results demonstrated that the Sn-doped tetrakaidecahedronal In 2 O 3 particle had additional six {001} crystal surfaces compared with the octahedronal one. The luminous properties of both samples were characterized by photoluminescence (PL) and cathodoluminescence (CL) spectroscopy. A broad visible luminous emission around 570 nm was observed. Studies revealed that the emission consisted of three peaks of 511 nm, 564 nm, and 622 nm, which were attributed to radioactive recombination centers such as single ionized oxygen vacancy, indium interstitial, and antisite oxygen, respectively. We believe that the Sn donor level plays an important role in the visible luminous emission. - Graphical abstract: With more oxygen vacancies and tin doping. ITO particles can exhibit a better CL performance. Sn donor level near the conduction band edge plays an important role in luminous emission in wide visible range. Highlights: ► Polyhedral ITO particles synthesized by thermal evaporation using SnO as dopant. ► Broad visible luminous emission around 570 nm. ► Sn donor level plays an important role in the visible emission. ► ITO particles with more oxygen vacancies have better CL performance in visible range.

  5. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-11-09

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  6. The initial magnetic susceptibility of polydisperse ferrofluids: A comparison between experiment and theory over a wide range of concentration

    International Nuclear Information System (INIS)

    Solovyova, Anna Y.; Goldina, Olga A.; Ivanov, Alexey O.; Elfimova, Ekaterina A.; Lebedev, Aleksandr V.

    2016-01-01

    Temperature dependencies of the static initial magnetic susceptibility for ferrofluids at various concentrations are studied using experiment and statistical-mechanical theories. Magnetic susceptibility measurements are carried out for twelve samples of magnetite-based fluids stabilized with oleic acid over a wide range of temperatures (210 K ≲T ≲ 390 K); all samples have the same granulometric composition but different volume ferroparticle concentrations (0.2 ≲ φ ≲ 0.5). Experimental results are analyzed using three theories: the second-order modified mean-field theory (MMF2) [A. O. Ivanov and O. B. Kuznetsova, Phys. Rev. E 64, 41405 (2001)]; its correction for polydisperse ferrofluids arising from Mayer-type cluster expansion and taking into account the first terms of the polydisperse second virial coefficient [A. O. Ivanov and E. A. Elfimova, J. Magn. Magn. Mater 374, 327 (2015)]; and a new theory based on MMF2 combined with the first terms of the polydisperse second and third virial contributions to susceptibility. It turns out that the applicability of each theory depends on the experimental sample density. If twelve ferrofluid samples are split into three groups of strong, moderate, and low concentrated fluids, the temperature dependences of the initial magnetic susceptibility in each group are very precisely described by one of the three theories mentioned above. The determination of a universal formula predicting a ferrofluid susceptibility over a broad range of concentrations and temperatures remains as a challenge.

  7. Fast, Highly-Sensitive, and Wide-Dynamic-Range Interdigitated Capacitor Glucose Biosensor Using Solvatochromic Dye-Containing Sensing Membrane

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-02-01

    Full Text Available In this paper, we proposed an interdigitated capacitor (IDC-based glucose biosensor to measure different concentrations of glucose from 1 μM to 1 M. We studied four different types of solvatochromic dyes: Auramine O, Nile red, Rhodamine B, and Reichardt’s dye (R-dye. These dyes were individually incorporated into a polymer [polyvinyl chloride (PVC] and N,N-Dimethylacetamide (DMAC solution to make the respective dielectric/sensing materials. To the best of our knowledge, we report for the first time an IDC glucose biosensing system utilizing a solvatochromic-dye-containing sensing membrane. These four dielectric or sensing materials were individually placed into the interdigitated electrode (IDE by spin coating to make four IDC glucose biosensing elements. The proposed IDC glucose biosensor has a high sensing ability over a wide dynamic range and its sensitivity was about 23.32 mV/decade. It also has fast response and recovery times of approximately 7 s and 5 s, respectively, excellent reproducibility with a standard deviation of approximately 0.023, highly stable sensing performance, and real-time monitoring capabilities. The proposed IDC glucose biosensor was compared with an IDC, potentiometric, FET, and fiber-optic glucose sensor with respect to response time, dynamic range width, sensitivity, and linearity. We observed that the designed IDC glucose biosensor offered excellent performance.

  8. Comparative Investigation of Ce3+ Doped Scintillators in a Wide Range of Photon Energies Covering X-ray CT, Nuclear Medicine and Megavoltage Radiation Therapy Portal Imaging Applications

    Science.gov (United States)

    Valais, Ioannis G.; Michail, Christos M.; David, Stratos L.; Liaparinos, Panagiotis F.; Fountos, George P.; Paschalis, Theodoros V.; Kandarakis, Ioannis S.; Panayiotakis, George S.

    2010-02-01

    The aim of the present work is to study the performance of scintillators currently used in PET and animal PET systems, under conditions met in radiation therapy and PET/CT imaging. The results of this study will be useful in applications where both CT and PET photons as well as megavoltage cone beam CT (MV CBCT) photons could be detected using a common detector unit. To this aim crystal samples of GSO, LSO, LYSO, LuYAP and YAP scintillators, doped with cerium (Ce+3) were examined under a wide energy range of photon energies. Evaluation was performed by determining the absolute luminescence efficiency (emitted light flux over incident X-ray exposure) in the energy range employed in X-ray CT, in Nuclear Medicine (70 keV up to 662 keV) and in radiotherapy 6 MV (approx. 2.0 MeV mean energy)-18 MV (approx. 4.5 MeV mean energy). Measurements were performed using an experimental set-up based on a photomultiplier coupled to a light integration sphere. The emission spectrum under X-ray excitation was measured, using an optical grating monochromator, to determine the spectral compatibility to optical photon detectors incorporated in medical imaging systems. Maximum absolute luminescence efficiency values were observed at 70 keV for YAP:Ce and LuYAP:Ce and at 140 keV for LSO:Ce, LYSO:Ce and GSO:Ce. Highest absolute efficiency between the scintillators examined was observed for LSO:Ce, followed by LYSO:Ce. The detector optical gain (DOG) exhibited a significant variation with the increase of energy between 70 keV to 2.0 MeV. All scintillators exhibited low compatibility when combined with GaAsP (G5645) photodetector.

  9. Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range

    Science.gov (United States)

    Jiménez, A.; Milde, T.; Staacke, N.; Aßmann, C.; Carpintero, G.; Sacher, J.

    2017-07-01

    Narrow-linewidth tunable diode lasers are an important tool for spectroscopic instrumentation. Conventional external cavity diode lasers offer high output power and narrow linewidth. However, most external cavity diode lasers are designed as laboratory instrument and do not allow portability. In comparison, other commonly used lasers, like distributed feedback lasers (DFB) that are capable of driving a handheld device, are limited in power and show linewidths which are not sufficiently narrow for certain applications. We present new miniaturized types of tunable external cavity diode laser which overcome the drawbacks of conventional external cavity diode lasers and which preserve the advantages of this laser concept. Three different configurations are discussed in this article. The three types of miniaturized external cavity diode laser systems achieve power values of more than 50 mW within the 1.4 μm water vapor absorption band with excellent side-mode suppression and linewidth below 100 kHz. Typical features outstand with respect to other type of laser systems which are of extended use such as DFB laser diodes. The higher output power and the lower linewidth will enable a higher sensitivity and resolution for a wide range of applications.

  10. Multicore Magnetic Nanoparticles Coated with Oligomeric Micelles: Characterization and Potential for the Extraction of Contaminants over a Wide Polarity Range.

    Science.gov (United States)

    Naous, Mohamed; García-Gómez, Diego; López-Jiménez, Francisco José; Bouanani, Farida; Lunar, María Loreto; Rubio, Soledad

    2017-01-17

    Oligomeric micelles from sodium undecylenate (oSUD) were chemisorbed to magnetic iron oxide nanoparticles (MNPs) through a single-step synthetic route involving the simultaneous nanoparticle formation and functionalization in an aqueous medium. The resulting spherical nanoparticles (MNPs-oSUD) consisted of a concatenation of iron oxide cores, with an average size of 7.7 nm, bound by oSUD micelles (particle average diameter of ca. 200 nm). Micellar coverage was ∼50% of the MNP-oSUD (by weight) and offered multiple retention mechanisms (e.g., dispersion, hydrogen bonding, polar, and ionic) for solute solubilization while keeping it intact during analyte elution. The high density of micelles and variety of interactions provided by this sorbent rendered it highly efficient for the extraction of aromatic amines in a wide polarity range (log K ow values from -0.80 to 4.05) from textiles, urine, and wastewater. Extraction took 5 min, no cleanup or evaporation of the extracts was needed and the method, based on LC-MS/MS quantitation, proved matrix-independent. Recoveries for 17 aromatic amines in samples were in the range of 93%-123% while those with negative log K ow values were in the range of 69%-87%. Detection limits for aromatic amines in textiles (0.007-2 mg kg -1 ) were well below the limits legislated by the European Union (EU) (30 mg kg -1 ) and those in urine and wastewater (0.004-1.5 μg L -1 ) were at the level usually found in real-world applications. All the analyzed samples were positive in aromatic amines. The easy synthesis and excellent extraction properties of MNPs-oSUD anticipate their high potential not only for multiresidue analysis but also in other fields such as water remediation.

  11. Depletion of eIF4G from yeast cells narrows the range of translational efficiencies genome-wide

    Directory of Open Access Journals (Sweden)

    Hinnebusch Alan G

    2011-01-01

    Full Text Available Abstract Background Eukaryotic translation initiation factor 4G (eIF4G is thought to influence the translational efficiencies of cellular mRNAs by its roles in forming an eIF4F-mRNA-PABP mRNP that is competent for attachment of the 43S preinitiation complex, and in scanning through structured 5' UTR sequences. We have tested this hypothesis by determining the effects of genetically depleting eIF4G from yeast cells on global translational efficiencies (TEs, using gene expression microarrays to measure the abundance of mRNA in polysomes relative to total mRNA for ~5900 genes. Results Although depletion of eIF4G is lethal and reduces protein synthesis by ~75%, it had small effects (less than a factor of 1.5 on the relative TE of most genes. Within these limits, however, depleting eIF4G narrowed the range of translational efficiencies genome-wide, with mRNAs of better than average TE being translated relatively worse, and mRNAs with lower than average TE being translated relatively better. Surprisingly, the fraction of mRNAs most dependent on eIF4G display an average 5' UTR length at or below the mean for all yeast genes. Conclusions This finding suggests that eIF4G is more critical for ribosome attachment to mRNAs than for scanning long, structured 5' UTRs. Our results also indicate that eIF4G, and the closed-loop mRNP it assembles with the m7 G cap- and poly(A-binding factors (eIF4E and PABP, is not essential for translation of most (if not all mRNAs but enhances the differentiation of translational efficiencies genome-wide.

  12. Combustion and emission characteristics of Multiple Premixed Compression Ignition (MPCI) fuelled with naphtha and gasoline in wide load range

    International Nuclear Information System (INIS)

    Wang, Buyu; Wang, Zhi; Shuai, Shijin; Yang, Hongqiang; Wang, Jianxin

    2014-01-01

    Highlights: • Naphtha MPCI can operate stably in wide load range from 0.4 MPa to 1.4 MPa of IMEP. • Naphtha MPCI can achieve high thermal efficiency due to low exhaust loss. • Gasoline MPCI has low heat transfer loss than CDC and naphtha MPCI. • MPCI can produce low NO x emissions (<0.4 g/kW h) with the EGR ratio less than 30%. - Abstract: This paper investigates the effect of naphtha (RON = 65.6) and commercial gasoline (RON = 94.0) on Multiple Premixed Compression Ignition (MPCI) mode. The experiment is conducted on a single cylinder research diesel engine with compression ratio of 16.7. The engine is operated at an engine speed of 1600 rpm for the IMEP from 0.4 to 1.4 MPa. Commercial diesel (CN = 56.5) is also tested in Conventional Diesel Combustion (CDC) mode as a baseline. At each operating point, the injection strategy and intake conditions are adjusted to meet with the criteria (NO x < 0.4 g/kW h, soot < 0.06 m −1 , MPRR < 1 MPa/deg and CA50 < 20 CAD ATDC). The typical two-stage combustion characteristics of MPCI are obtained in both naphtha and gasoline. Stable combustion is achieved by naphtha in wide load range, while the engine fuelled with gasoline cannot operate stably at 0.4 MPa IMEP. The COV of IMEP of gasoline MPCI is higher than that of naphtha and diesel. However, gasoline has the low MPRR and the retarded CA50 at medium and high loads due to its longest ignition delay. As a result of low exhaust loss for naphtha and low heat transfer loss for gasoline, the thermal efficiencies are higher for both naphtha and gasoline in MPCI mode than diesel in CDC mode, even though diesel has the highest combustion efficiency. The separated combustion in MPCI leads to low cylinder temperature, and moderate EGR ratio (less than 30%) is needed to control NO x emissions under the limit of EURO VI

  13. Effects of spatial and spectral frequencies on wide-field functional imaging (wifi) characterization of preclinical breast cancer models

    Science.gov (United States)

    Moy, Austin; Kim, Jae G.; Lee, Eva Y. H. P.; Choi, Bernard

    2010-02-01

    A common strategy to study breast cancer is the use of the preclinical model. These models provide a physiologically relevant and controlled environment in which to study both response to novel treatments and the biology of the cancer. Preclinical models, including the spontaneous tumor model and mammary window chamber model, are very amenable to optical imaging and to this end, we have developed a wide-field functional imaging (WiFI) instrument that is perfectly suited to studying tumor metabolism in preclinical models. WiFI combines two optical imaging modalities, spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI). Our current WiFI imaging protocol consists of multispectral imaging in the near infrared (650-980 nm) spectrum, over a wide (7 cm x 5 cm) field of view. Using SFDI, the spatially-resolved reflectance of sinusoidal patterns projected onto the tissue is assessed, and optical properties of the tissue are determined, which are then used to extract tissue chromophore concentrations in the form of oxy-, deoxy-, and total hemoglobin concentrations, and percentage of lipid and water. In the current study, we employ Monte Carlo simulations of SFDI light propagation in order to characterize the penetration depth of light in both the spontaneous tumor model and mammary window chamber model. Preliminary results suggest that different spatial frequency and wavelength combinations have different penetration depths, suggesting the potential depth sectioning capability of the SFDI component of WiFI.

  14. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    Science.gov (United States)

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865

  15. EVIDENCE FOR A WIDE RANGE OF ULTRAVIOLET OBSCURATION IN z {approx} 2 DUSTY GALAXIES FROM THE GOODS-HERSCHEL SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Kyle [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Dickinson, Mark; Dey, Arjun; Kartaltepe, Jeyhan [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Pope, Alexandra [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Magnelli, Benjamin [Max Planck Institut fuer Extraterrestrische Physik, Postfach 1312, D-85741 Garching (Germany); Pannella, Maurilio; Aussel, Herve; Daddi, Emanuele; Elbaz, David [Laboratoire AIM Paris-Saclay, CEA/DSM/Irfu-CNRS-Universite Paris Diderot, CEA-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); Altieri, Bruno; Coia, Daniela [Herschel Science Center, European Space Astronomy Center, Villanueva de la Canada, E-28691 Madrid (Spain); Buat, Veronique [Laboratoire d' Astrophysique de Marseille, OAMP, Universite Aix-marseille, CNRS, 38 rue Frederic Joliot-Curie, F-13388 Marseille Cedex 13 (France); Bussmann, Shane; Hwang, Ho Seong [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Charmandaris, Vassilis [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, GR-71003 Heraklion (Greece); Dannerbauer, Helmut [Institut fuer Astronomie, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Vienna (Austria); Lin Lihwai [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China); Magdis, Georgios [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Morrison, Glenn, E-mail: kpenner@as.arizona.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); and others

    2012-11-01

    Dusty galaxies at z {approx} 2 span a wide range of relative brightness between rest-frame mid-infrared (8 {mu}m) and ultraviolet wavelengths. We attempt to determine the physical mechanism responsible for this diversity. Dust-obscured galaxies (DOGs), which have rest-frame mid-IR to UV flux density ratios {approx}> 1000, might be abnormally bright in the mid-IR, perhaps due to prominent emission from active galactic nuclei and/or polycyclic aromatic hydrocarbons, or abnormally faint in the UV. We use far-infrared data from the GOODS-Herschel survey to show that most DOGs with 10{sup 12} L {sub Sun} {approx}< L {sub IR} {approx}< 10{sup 13} L {sub Sun} are not abnormally bright in the mid-IR when compared to other dusty galaxies with similar IR (8-1000 {mu}m) luminosities. We observe a relation between the median IR to UV luminosity ratios and the median UV continuum power-law indices for these galaxies, and we find that only 24% have specific star formation rates that indicate the dominance of compact star-forming regions. This circumstantial evidence supports the idea that the UV- and IR-emitting regions in these galaxies are spatially coincident, which implies a connection between the abnormal UV faintness of DOGs and dust obscuration. We conclude that the range in rest-frame mid-IR to UV flux density ratios spanned by dusty galaxies at z {approx} 2 is due to differing amounts of UV obscuration. Of galaxies with these IR luminosities, DOGs are the most obscured. We attribute differences in UV obscuration to either (1) differences in the degree of alignment between the spatial distributions of dust and massive stars or (2) differences in the total dust content.

  16. Simulating range-wide population and breeding habitat dynamics for an endangered woodland warbler in the face of uncertainty

    Science.gov (United States)

    Adam Duarte,; Hatfield, Jeffrey; Todd M. Swannack,; Michael R. J. Forstner,; M. Clay Green,; Floyd W. Weckerly,

    2015-01-01

    Population viability analyses provide a quantitative approach that seeks to predict the possible future status of a species of interest under different scenarios and, therefore, can be important components of large-scale species’ conservation programs. We created a model and simulated range-wide population and breeding habitat dynamics for an endangered woodland warbler, the golden-cheeked warbler (Setophaga chrysoparia). Habitat-transition probabilities were estimated across the warbler's breeding range by combining National Land Cover Database imagery with multistate modeling. Using these estimates, along with recently published demographic estimates, we examined if the species can remain viable into the future given the current conditions. Lastly, we evaluated if protecting a greater amount of habitat would increase the number of warblers that can be supported in the future by systematically increasing the amount of protected habitat and comparing the estimated terminal carrying capacity at the end of 50 years of simulated habitat change. The estimated habitat-transition probabilities supported the hypothesis that habitat transitions are unidirectional, whereby habitat is more likely to diminish than regenerate. The model results indicated population viability could be achieved under current conditions, depending on dispersal. However, there is considerable uncertainty associated with the population projections due to parametric uncertainty. Model results suggested that increasing the amount of protected lands would have a substantial impact on terminal carrying capacities at the end of a 50-year simulation. Notably, this study identifies the need for collecting the data required to estimate demographic parameters in relation to changes in habitat metrics and population density in multiple regions, and highlights the importance of establishing a common definition of what constitutes protected habitat, what management goals are suitable within those protected

  17. A wide-frequency range AC magnetometer to measure the specific absorption rate in nanoparticles for magnetic hyperthermia

    International Nuclear Information System (INIS)

    Garaio, E.; Collantes, J.M.; Garcia, J.A.; Plazaola, F.; Mornet, S.; Couillaud, F.; Sandre, O.

    2014-01-01

    Measurement of specific absorption rate (SAR) of magnetic nanoparticles is crucial to assert their potential for magnetic hyperthermia. To perform this task, calorimetric methods are widely used. However, those methods are not very accurate and are difficult to standardize. In this paper, we present AC magnetometry results performed with a lab-made magnetometer that is able to obtain dynamic hysteresis-loops in the AC magnetic field frequency range from 50 kHz to 1 MHz and intensities up to 24 kA m −1 . In this work, SAR values of maghemite nanoparticles dispersed in water are measured by AC magnetometry. The so-obtained values are compared with the SAR measured by calorimetric methods. Both measurements, by calorimetry and magnetometry, are in good agreement. Therefore, the presented AC magnetometer is a suitable way to obtain SAR values of magnetic nanoparticles. - Highlights: • We propose AC magnetometry as a method to measure the specific absorption rate (SAR) of magnetic nanoparticles suitable for magnetic hyperthermia therapy. • We have built a lab-made AC magnetometer, which is able to measure magnetic dynamic hysteresis-loops of nanoparticle dispersions. • The device works with AC magnetic field intensities up to 24 kA m −1 in a frequency range from 75 kHz to 1 MHz. • The SAR values of maghemite nanoparticles around 12 nm in magnetic diameter dispersed in water are measured by the lab-made magnetometer and different calorimetric methods. • Although all methods are in good agreement, several factors (probe location, thermal inertia, losses, etc.) make calorimetric method less accurate than AC magnetometry

  18. Wide range scaling laws for radiation driven shock speed, wall albedo and ablation parameters for high-Z materials

    Science.gov (United States)

    Mishra, Gaurav; Ghosh, Karabi; Ray, Aditi; Gupta, N. K.

    2018-06-01

    Radiation hydrodynamic (RHD) simulations for four different potential high-Z hohlraum materials, namely Tungsten (W), Gold (Au), Lead (Pb), and Uranium (U) are performed in order to investigate their performance with respect to x-ray absorption, re-emission and ablation properties, when irradiated by constant temperature drives. A universal functional form is derived for estimating time dependent wall albedo for high-Z materials. Among the high-Z materials studied, it is observed that for a fixed simulation time the albedo is maximum for Au below 250 eV, whereas it is maximum for U above 250 eV. New scaling laws for shock speed vs drive temperature, applicable over a wide temperature range of 100 eV to 500 eV, are proposed based on the physics of x-ray driven stationary ablation. The resulting scaling relation for a reference material Aluminium (Al), shows good agreement with that of Kauffman's power law for temperatures ranging from 100 eV to 275 eV. New scaling relations are also obtained for temperature dependent mass ablation rate and ablation pressure, through RHD simulation. Finally, our study reveals that for temperatures above 250 eV, U serves as a better hohlraum material since it offers maximum re-emission for x-rays along with comparable mass ablation rate. Nevertheless, traditional choice, Au works well for temperatures below 250 eV. Besides inertial confinement fusion (ICF), the new scaling relations may find its application in view-factor codes, which generally ignore atomic physics calculations of opacities and emissivities, details of laser-plasma interaction and hydrodynamic motions.

  19. An Improved Continuous-Time Model Predictive Control of Permanent Magnetic Synchronous Motors for a Wide-Speed Range

    Directory of Open Access Journals (Sweden)

    Dandan Su

    2017-12-01

    Full Text Available This paper proposes an improved continuous-time model predictive control (CTMPC of permanent magnetic synchronous motors (PMSMs for a wide-speed range, including the constant torque region and the flux-weakening (FW region. In the constant torque region, the mathematic models of PMSMs in dq-axes are decoupled without the limitation of DC-link voltage. However, in the FW region, the mathematic models of PMSMs in dq-axes are cross-coupled together with the limitation of DC-link voltage. A nonlinear PMSMs mathematic model in the FW region is presented based on the voltage angle. The solving of the nonlinear mathematic model of PMSMs in FW region will lead to heavy computation load for digital signal processing (DSP. To overcome such a problem, a linearization method of the voltage angle is also proposed to reduce the computation load. The selection of transiting points between the constant torque region and FW regions is researched to improve the performance of the driven system. Compared with the proportional integral (PI controller, the proposed CTMPC has obvious advantages in dealing with systems’ nonlinear constraints and improving system performance by restraining overshoot current under step torque changing. Both simulation and experimental results confirm the effectiveness of the proposed method in achieving good steady-state performance and smooth switching between the constant torque and FW regions.

  20. Short-range order in Fe-based metallic glasses: Wide-angle X-ray scattering studies

    International Nuclear Information System (INIS)

    Babilas, Rafał; Hawełek, Łukasz; Burian, Andrzej

    2014-01-01

    The local atomic structure of the Fe 80 B 20 , Fe 70 Nb 10 B 20 and Fe 62 Nb 8 B 30 glasses prepared in the form of ribbons has been studied by wide-angle X-ray scattering. Structural information about the amorphous ribbons has been derived from analysis of the radial distribution functions using the least-squares curve-fitting method. The obtained structural parameters indicate that Fe–Fe, Fe–B, Fe–Nb and Nb–B contributions are involved in the near-neighbor coordination spheres. The possible similarities of the local atomic arrangement in the investigated glasses and the crystalline Fe 3 B, Fe 23 B 6 and bcc Fe structures are also discussed. - Graphical abstract: Pair distribution functions (a) and best-fit model and experimental radial distribution functions for Fe 80 B 20 (b), Fe 70 Nb 10 B 20 (c) and Fe 62 Nb 8 B 30 (d) metallic glasses. - Highlights: • The short-range ordering in the Fe-based metallic glasses is presented. • The results of RDF function have been analyzed using the least-squares method. • The Fe–Fe, Fe–B, Fe–Nb or Nb–B contributions are involved in coordination spheres. • The structural unit is distorted triangular prism containing B, Fe or Nb atoms. • Similarities of atomic arrangement in glassy and crystalline structures are discussed

  1. Reactivity of chars prepared from the pyrolysis of a Victorian lignite under a wide range of conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.; Mody, D.; Li, C.; Hayashi, J.; Chiba, T. [Monash University, Vic. (Australia). CRC for Clean Power from Lignite, Dept. of Chemical Engineering

    2000-07-01

    A Loy Yang lignite sample was pyrolysed under a wide range of experimental conditions using a wire-mesh reactor, a fluidised-bed reactor, a drop-tube reformer and a thermogravimetric analyser (TGA). The reactivity of these char samples in CO{sub 2} and air was measured in the TGA as well as in the fluidised-bed reactor. A sample prepared by the physical impregnation of NaCl into the lignite was also used in order to investigate the effect of NaCl in the lignite on the reactivity of the resulting char. Our experimental results indicate that, due to the volatilisation of a substantial fraction of Na in the lignite substrate during pyrolysis, the true catalytic activity of the Na in the lignite substrate should be evaluated by measuring the sodium content in the char after pyrolysis. The char reactivity measured in situ in the fluidised-bed reactor was compared with that of the same char measured separately in the TGA after re-heating the char sample to the same temperature as that in the fluidised-bed. It was found that the re-heating of the char in the TGA reduced the char reactivity.

  2. Wide range of body composition measures are associated with cognitive function in community-dwelling older adults.

    Science.gov (United States)

    Won, Huiloo; Abdul Manaf, Zahara; Mat Ludin, Arimi Fitri; Shahar, Suzana

    2017-04-01

    Studies of the association between body composition, both body fat and body muscle, and cognitive function are rarely reported. The aim of the present study was to determine the association between a wide range of body composition measures with cognitive function in older adults. A total of 2322 Malaysian older adults aged 60 years and older were recruited using multistage random sampling in a population-based cross-sectional study. Out of 2322 older adults recruited, 2309 (48% men) completed assessments on cognitive function and body composition. Cognitive functions were assessed using the Malay version of the Mini-Mental State Examination, the Bahasa Malaysia version of Montreal Cognitive Assessment, Digit Span Test, Digit Symbol Test and Rey Auditory Verbal Learning Test. Body composition included body mass index, mid-upper arm circumference, waist circumference, calf circumference, waist-to-hip ratio, percentage body fat and skeletal muscle mass. The association between body composition and cognitive functions was analyzed using multiple linear regression. After adjustment for age, education years, hypertension, hypercholesterolemia, diabetes mellitus, depression, smoking status and alcohol consumption, we found that calf circumference appeared as a significant predictor for all cognitive tests among both men and women (P cognitive tests among women (P Cognitive Assessment among men (P older adults for optimal cognitive function. Geriatr Gerontol Int 2017; 17: 554-560. © 2016 Japan Geriatrics Society.

  3. Vertical ground reaction force in stationary running in water and on land: A study with a wide range of cadences.

    Science.gov (United States)

    de Brito Fontana, Heiliane; Ruschel, Caroline; Dell'Antonio, Elisa; Haupenthal, Alessandro; Pereira, Gustavo Soares; Roesler, Helio

    2018-04-01

    The aim of this study was to analyze the effect of cadence, immersion level as well as body density on the vertical component (Fy max ) of ground reaction force (GRF) during stationary running (SR). In a controlled, laboratory study, thirty-two subjects ran at a wide range of cadences (85-210 steps/min) in water, immersed to the hip and to the chest, and on dry land. Fy max. was verified by a waterproof force measurement system and predicted based on a statistical model including cadence, immersion ratio and body density. The effect of cadence was shown to depend on the environment: while Fy max increases linearly with increasing cadence on land; in water, Fy max reaches a plateau at both hip and chest immersions. All factors analyzed, cadence, immersion level and body density affected Fy max significantly, with immersion (aquatic × land environment) showing the greatest effect. In water, different cadences may lead to bigger changes in Fy max than the changes obtained by moving subjects from hip to chest immersion. A regression model able to predict 69% of Fy max variability in water was proposed and validated. Cadence, Immersion and body density affect Fy max in a significant and non-independent way. Besides a model of potential use in the prescription of stationary running in water, our analysis provides insights into the different responses of GRF to changes in exercise parameters between land and aquatic environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Development of a novel monoclonal antibody with reactivity to a wide range of Venezuelan equine encephalitis virus strains

    Directory of Open Access Journals (Sweden)

    Phelps Amanda L

    2009-11-01

    Full Text Available Abstract Background There is currently a requirement for antiviral therapies capable of protecting against infection with Venezuelan equine encephalitis virus (VEEV, as a licensed vaccine is not available for general human use. Monoclonal antibodies are increasingly being developed as therapeutics and are potential treatments for VEEV as they have been shown to be protective in the mouse model of disease. However, to be truly effective, the antibody should recognise multiple strains of VEEV and broadly reactive monoclonal antibodies are rarely and only coincidentally isolated using classical hybridoma technology. Results In this work, methods were developed to reliably derive broadly reactive murine antibodies. A phage library was created that expressed single chain variable fragments (scFv isolated from mice immunised with multiple strains of VEEV. A broadly reactive scFv was identified and incorporated into a murine IgG2a framework. This novel antibody retained the broad reactivity exhibited by the scFv but did not possess virus neutralising activity. However, the antibody was still able to protect mice against VEEV disease induced by strain TrD when administered 24 h prior to challenge. Conclusion A monoclonal antibody possessing reactivity to a wide range of VEEV strains may be of benefit as a generic antiviral therapy. However, humanisation of the murine antibody will be required before it can be tested in humans. Crown Copyright © 2009

  5. Upgrades of DARWIN, a dose and spectrum monitoring system applicable to various types of radiation over wide energy ranges

    Science.gov (United States)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Shigyo, Nobuhiro; Watanabe, Fusao; Sakurai, Hiroki; Arai, Yoichi

    2011-05-01

    A dose and spectrum monitoring system applicable to neutrons, photons and muons over wide ranges of energy, designated as DARWIN, has been developed for radiological protection in high-energy accelerator facilities. DARWIN consists of a phoswitch-type scintillation detector, a data-acquisition (DAQ) module for digital waveform analysis, and a personal computer equipped with a graphical-user-interface (GUI) program for controlling the system. The system was recently upgraded by introducing an original DAQ module based on a field programmable gate array, FPGA, and also by adding a function for estimating neutron and photon spectra based on an unfolding technique without requiring any specific scientific background of the user. The performance of the upgraded DARWIN was examined in various radiation fields, including an operational field in J-PARC. The experiments revealed that the dose rates and spectra measured by the upgraded DARWIN are quite reasonable, even in radiation fields with peak structures in terms of both spectrum and time variation. These results clearly demonstrate the usefulness of DARWIN for improving radiation safety in high-energy accelerator facilities.

  6. Wide-range light-harvesting donor-acceptor assemblies through specific intergelator interactions via self-assembly.

    Science.gov (United States)

    Samanta, Suman K; Bhattacharya, Santanu

    2012-12-03

    We have synthesized two new low-molecular-mass organogelators based on tri-p-phenylene vinylene derivatives, one of which could be designated as the donor whereas the other one is an acceptor. These were prepared specifically to show the intergelator interactions at the molecular level by using donor-acceptor self-assembly to achieve appropriate control over their macroscopic properties. Intermolecular hydrogen-bonding, π-stacking, and van der Waals interactions operate for both the individual components and the mixtures, leading to the formation of gels in the chosen organic solvents. Evidence for intergelator interactions was acquired from various spectroscopic, microscopic, thermal, and mechanical investigations. Due to the photochromic nature of these molecules, interesting photophysical properties, such as solvatochromism and J-type aggregation, were clearly observed. An efficient energy transfer was exhibited by the mixture of donor-acceptor assemblies. An array of four chromophores was built up by inclusion of two known dyes (anthracene and rhodamine 6G) for the energy-transfer studies. Interestingly, an energy-transfer cascade was observed in the assembly of four chromophores in a particular order (anthracene-donor-acceptor-rhodamine 6G), and if one of the components was removed from the assembly the energy transfer process was discontinued. This allowed the build up of a light-harvesting process with a wide range. Excitation at one end produces an emission at the other end of the assembly. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)

    2016-12-15

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  8. 2.5 Gbit/s Optical Receiver Front-End Circuit with High Sensitivity and Wide Dynamic Range

    Science.gov (United States)

    Zhu, Tiezhu; Mo, Taishan; Ye, Tianchun

    2017-12-01

    An optical receiver front-end circuit is designed for passive optical network and fabricated in a 0.18 um CMOS technology. The whole circuit consists of a transimpedance amplifier (TIA), a single-ended to differential amplifier and an output driver. The TIA employs a cascode stage as the input stage and auxiliary amplifier to reduce the miller effect. Current injecting technique is employed to enlarge the input transistor's transconductance, optimize the noise performance and overcome the lack of voltage headroom. To achieve a wide dynamic range, an automatic gain control circuit with self-adaptive function is proposed. Experiment results show an optical sensitivity of -28 dBm for a bit error rate of 10-10 at 2.5 Gbit/s and a maxim input optical power of 2 dBm using an external photodiode. The chip occupies an area of 1×0.9 mm2 and consumes around 30 mW from single 1.8 V supply. The front-end circuit can be used in various optical receivers.

  9. Upgrades of DARWIN, a dose and spectrum monitoring system applicable to various types of radiation over wide energy ranges

    International Nuclear Information System (INIS)

    Sato, Tatsuhiko; Satoh, Daiki; Endo, Akira; Shigyo, Nobuhiro; Watanabe, Fusao; Sakurai, Hiroki; Arai, Yoichi

    2011-01-01

    A dose and spectrum monitoring system applicable to neutrons, photons and muons over wide ranges of energy, designated as DARWIN, has been developed for radiological protection in high-energy accelerator facilities. DARWIN consists of a phoswitch-type scintillation detector, a data-acquisition (DAQ) module for digital waveform analysis, and a personal computer equipped with a graphical-user-interface (GUI) program for controlling the system. The system was recently upgraded by introducing an original DAQ module based on a field programmable gate array, FPGA, and also by adding a function for estimating neutron and photon spectra based on an unfolding technique without requiring any specific scientific background of the user. The performance of the upgraded DARWIN was examined in various radiation fields, including an operational field in J-PARC. The experiments revealed that the dose rates and spectra measured by the upgraded DARWIN are quite reasonable, even in radiation fields with peak structures in terms of both spectrum and time variation. These results clearly demonstrate the usefulness of DARWIN for improving radiation safety in high-energy accelerator facilities.

  10. Measurement of vortex velocities over a wide range of vortex age, downstream distance and free stream velocity

    Science.gov (United States)

    Rorke, J. B.; Moffett, R. C.

    1977-01-01

    A wind tunnel test was conducted to obtain vortex velocity signatures over a wide parameter range encompassing the data conditions of several previous researchers while maintaining a common instrumentation and test facility. The generating wing panel was configured with both a revolved airfoil tip shape and a square tip shape and had a semispan aspect of 4.05/1.0 with a 121.9 cm span. Free stream velocity was varied from 6.1 m/sec to 76.2 m/sec and the vortex core velocities were measured at locations 3, 6, 12, 24 and 48 chordlengths downstream of the wing trailing edge, yielding vortex ages up to 2.0 seconds. Wing pitch angles of 6, 8, 9 and 12 deg were investigated. Detailed surface pressure distributions and wing force measurements were obtained for each wing tip configuration. Correlation with vortex velocity data taken in previous experiments is good. During the rollup process, vortex core parameters appear to be dependent primarily on vortex age. Trending in the plateau and decay regions is more complex and the machanisms appear to be more unstable.

  11. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates

    Science.gov (United States)

    Osten, Julia; Milkereit, Benjamin; Schick, Christoph; Kessler, Olaf

    2015-01-01

    In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181) in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed) was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC) was used to record heating curves between 20 and 600 °C. Heating rates were studied from 0.01 K/s to 5 K/s. We paid particular attention to control baseline stability, generating flat baselines and allowing accurate quantitative evaluation of the resulting DSC curves. As the heating rate increases, the individual dissolution and precipitation reactions shift to higher temperatures. The reactions during heating are significantly superimposed and partially run simultaneously. In addition, precipitation and dissolution reactions are increasingly suppressed as the heating rate increases, whereby exothermic precipitation reactions are suppressed earlier than endothermic dissolution reactions. Integrating the heating curves allowed the enthalpy levels of the different initial microstructural conditions to be quantified. Referring to time–temperature–austenitisation diagrams for steels, continuous heating dissolution diagrams for aluminium alloys were constructed to summarise the results in graphical form. These diagrams may support process optimisation in heat treatment shops.

  12. Dissolution and Precipitation Behaviour during Continuous Heating of Al–Mg–Si Alloys in a Wide Range of Heating Rates

    Directory of Open Access Journals (Sweden)

    Julia Osten

    2015-05-01

    Full Text Available In the present study, the dissolution and precipitation behaviour of four different aluminium alloys (EN AW-6005A, EN AW-6082, EN AW-6016, and EN AW-6181 in four different initial heat treatment conditions (T4, T6, overaged, and soft annealed was investigated during heating in a wide dynamic range. Differential scanning calorimetry (DSC was used to record heating curves between 20 and 600 °C. Heating rates were studied from 0.01 K/s to 5 K/s. We paid particular attention to control baseline stability, generating flat baselines and allowing accurate quantitative evaluation of the resulting DSC curves. As the heating rate increases, the individual dissolution and precipitation reactions shift to higher temperatures. The reactions during heating are significantly superimposed and partially run simultaneously. In addition, precipitation and dissolution reactions are increasingly suppressed as the heating rate increases, whereby exothermic precipitation reactions are suppressed earlier than endothermic dissolution reactions. Integrating the heating curves allowed the enthalpy levels of the different initial microstructural conditions to be quantified. Referring to time–temperature–austenitisation diagrams for steels, continuous heating dissolution diagrams for aluminium alloys were constructed to summarise the results in graphical form. These diagrams may support process optimisation in heat treatment shops.

  13. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    International Nuclear Information System (INIS)

    Zhang, Xingyu; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chakravarty, Swapnajit; Chen, Ray T.

    2015-01-01

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB

  14. Kinetic particle simulation study of parallel heat transport in scrape-off layer plasmas over a wide range of collisionalities

    International Nuclear Information System (INIS)

    Froese, Aaron; Takizuka, Tomonori; Yagi, Masatoshi

    2010-01-01

    Fluid models are not generally applicable to fusion edge plasmas without external provision of kinetic factors: closure parameters and boundary conditions inside the sheath region. We explain the PARASOL-1D simulation, a particle-in-cell code with a binary collision Monte-Carlo model, and use it to determine four kinetic factors commonly needed in fluid codes. These are the electron and ion heat flux limiting factors, α e and α i , the ion adiabatic index, γ A , and the electron and ion temperature anisotropy, T ‖ /T ⊥ . We survey these factors over a wide range of collisionalities and find that, as predicted, the conductive heat flux is accurately described by the Spitzer-Härm expression in the collisional limit and asymptotes to a constant value in the collisionless limit. However, unique behavior occurs in the weakly collisional regime when the ratio of the mean free path to connection length is 0.1 < λ mfp /L ‖ < 10, when the SOL is between the conduction- and sheath-limited regimes. We find that α e can peak, becoming larger than the collisionless limit, γ A is less than unity, and only the ions are anisotropic. The effects of electron energy radiation and Langevin heating are explored. Finally, the strong deviations of the energy distribution function from Maxwellian in the weakly collisional and collisionless regimes are explained. (author)

  15. Hybrid feedforward and feedback controller design for nuclear steam generators over wide range operation using genetic algorithm

    International Nuclear Information System (INIS)

    Zhao, Y.; Edwards, R.M.; Lee, K.Y.

    1997-01-01

    In this paper, a simplified model with a lower order is first developed for a nuclear steam generator system and verified against some realistic environments. Based on this simplified model, a hybrid multi-input and multi-out (MIMO) control system, consisting of feedforward control (FFC) and feedback control (FBC), is designed for wide range conditions by using the genetic algorithm (GA) technique. The FFC control, obtained by the GA optimization method, injects an a priori command input into the system to achieve an optimal performance for the designed system, while the GA-based FBC control provides the necessary compensation for any disturbances or uncertainties in a real steam generator. The FBC control is an optimal design of a PI-based control system which would be more acceptable for industrial practices and power plant control system upgrades. The designed hybrid MIMO FFC/FBC control system is first applied to the simplified model and then to a more complicated model with a higher order which is used as a substitute of the real system to test the efficacy of the designed control system. Results from computer simulations show that the designed GA-based hybrid MIMO FFC/FBC control can achieve good responses and robust performances. Hence, it can be considered as a viable alternative to the current control system upgrade

  16. Plasmid integration in a wide range of bacteria mediated by the integrase of Lactobacillus delbrueckii bacteriophage mv4.

    Science.gov (United States)

    Auvray, F; Coddeville, M; Ritzenthaler, P; Dupont, L

    1997-01-01

    Bacteriophage mv4 is a temperate phage infecting Lactobacillus delbrueckii subsp. bulgaricus. During lysogenization, the phage integrates its genome into the host chromosome at the 3' end of a tRNA(Ser) gene through a site-specific recombination process (L. Dupont et al., J. Bacteriol., 177:586-595, 1995). A nonreplicative vector (pMC1) based on the mv4 integrative elements (attP site and integrase-coding int gene) is able to integrate into the chromosome of a wide range of bacterial hosts, including Lactobacillus plantarum, Lactobacillus casei (two strains), Lactococcus lactis subsp. cremoris, Enterococcus faecalis, and Streptococcus pneumoniae. Integrative recombination of pMC1 into the chromosomes of all of these species is dependent on the int gene product and occurs specifically at the pMC1 attP site. The isolation and sequencing of pMC1 integration sites from these bacteria showed that in lactobacilli, pMC1 integrated into the conserved tRNA(Ser) gene. In the other bacterial species where this tRNA gene is less or not conserved; secondary integration sites either in potential protein-coding regions or in intergenic DNA were used. A consensus sequence was deduced from the analysis of the different integration sites. The comparison of these sequences demonstrated the flexibility of the integrase for the bacterial integration site and suggested the importance of the trinucleotide CCT at the 5' end of the core in the strand exchange reaction. PMID:9068626

  17. Supercritical Fluid Chromatography of Drugs: Parallel Factor Analysis for Column Testing in a Wide Range of Operational Conditions

    Science.gov (United States)

    Al-Degs, Yahya; Andri, Bertyl; Thiébaut, Didier; Vial, Jérôme

    2017-01-01

    Retention mechanisms involved in supercritical fluid chromatography (SFC) are influenced by interdependent parameters (temperature, pressure, chemistry of the mobile phase, and nature of the stationary phase), a complexity which makes the selection of a proper stationary phase for a given separation a challenging step. For the first time in SFC studies, Parallel Factor Analysis (PARAFAC) was employed to evaluate the chromatographic behavior of eight different stationary phases in a wide range of chromatographic conditions (temperature, pressure, and gradient elution composition). Design of Experiment was used to optimize experiments involving 14 pharmaceutical compounds present in biological and/or environmental samples and with dissimilar physicochemical properties. The results showed the superiority of PARAFAC for the analysis of the three-way (column × drug × condition) data array over unfolding the multiway array to matrices and performing several classical principal component analyses. Thanks to the PARAFAC components, similarity in columns' function, chromatographic trend of drugs, and correlation between separation conditions could be simply depicted: columns were grouped according to their H-bonding forces, while gradient composition was dominating for condition classification. Also, the number of drugs could be efficiently reduced for columns classification as some of them exhibited a similar behavior, as shown by hierarchical clustering based on PARAFAC components. PMID:28695040

  18. Supercritical Fluid Chromatography of Drugs: Parallel Factor Analysis for Column Testing in a Wide Range of Operational Conditions

    Directory of Open Access Journals (Sweden)

    Ramia Z. Al Bakain

    2017-01-01

    Full Text Available Retention mechanisms involved in supercritical fluid chromatography (SFC are influenced by interdependent parameters (temperature, pressure, chemistry of the mobile phase, and nature of the stationary phase, a complexity which makes the selection of a proper stationary phase for a given separation a challenging step. For the first time in SFC studies, Parallel Factor Analysis (PARAFAC was employed to evaluate the chromatographic behavior of eight different stationary phases in a wide range of chromatographic conditions (temperature, pressure, and gradient elution composition. Design of Experiment was used to optimize experiments involving 14 pharmaceutical compounds present in biological and/or environmental samples and with dissimilar physicochemical properties. The results showed the superiority of PARAFAC for the analysis of the three-way (column × drug × condition data array over unfolding the multiway array to matrices and performing several classical principal component analyses. Thanks to the PARAFAC components, similarity in columns’ function, chromatographic trend of drugs, and correlation between separation conditions could be simply depicted: columns were grouped according to their H-bonding forces, while gradient composition was dominating for condition classification. Also, the number of drugs could be efficiently reduced for columns classification as some of them exhibited a similar behavior, as shown by hierarchical clustering based on PARAFAC components.

  19. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Sun, Xiaodong; Liu, Yang

    2016-01-01

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  20. Estimation of organic carbon deposition into forest ecosystems by determination of the spectral absorption of rainwater in range of ultraviolet radiation (SAC254)

    International Nuclear Information System (INIS)

    Bartels, U.

    1988-01-01

    Organic compounds are mostly neglected within deposition measurement programs because their determination is expensive and complicated. A very simple and rapid estimation of total organic carbon (TOC) is possible by determination of the spectral absorption coefficient in the range of ultraviolet radiation at 254 nm wave-length (SAC 254 ): TOC (mg/1) = 0,5 SAC 254 (m −1 ) - 0,15 (author) [de

  1. Absorption spectroscopy and multi-angle scattering measurements in the visible spectral range for the geographic classification of Italian exravirgin olive oils

    Science.gov (United States)

    Mignani, Anna G.; Ciaccheri, Leonardo; Cimato, Antonio; Sani, Graziano; Smith, Peter R.

    2004-03-01

    Absorption spectroscopy and multi-angle scattering measurements in the visible spectral range are innovately used to analyze samples of extra virgin olive oils coming from selected areas of Tuscany, a famous Italian region for the production of extra virgin olive oil. The measured spectra are processed by means of the Principal Component Analysis method, so as to create a 3D map capable of clustering the Tuscan oils within the wider area of Italian extra virgin olive oils.

  2. THE PLASMA ENVIRONMENT IN COMETS OVER A WIDE RANGE OF HELIOCENTRIC DISTANCES: APPLICATION TO COMET C/2006 P1 (MCNAUGHT)

    Energy Technology Data Exchange (ETDEWEB)

    Shou, Y.; Combi, M.; Gombosi, T.; Toth, G. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI (United States); Jia, Y.-D. [IGPP, and EPSS, University of California, Los Angeles, CA 90095 (United States); Rubin, M. [Physikalisches Institut, University of Bern, Sidlerstrasse. 5, CH-3012 Bern (Switzerland)

    2015-08-20

    On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006 P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses.

  3. Plasticity in reproduction and growth among 52 range-wide populations of a Mediterranean conifer: adaptive responses to environmental stress.

    Science.gov (United States)

    Santos-Del-Blanco, L; Bonser, S P; Valladares, F; Chambel, M R; Climent, J

    2013-09-01

    A plastic response towards enhanced reproduction is expected in stressful environments, but it is assumed to trade off against vegetative growth and efficiency in the use of available resources deployed in reproduction [reproductive efficiency (RE)]. Evidence supporting this expectation is scarce for plants, particularly for long-lived species. Forest trees such as Mediterranean pines provide ideal models to study the adaptive value of allocation to reproduction vs. vegetative growth given their among-population differentiation for adaptive traits and their remarkable capacity to cope with dry and low-fertility environments. We studied 52 range-wide Pinus halepensis populations planted into two environmentally contrasting sites during their initial reproductive stage. We investigated the effect of site, population and their interaction on vegetative growth, threshold size for female reproduction, reproductive-vegetative size relationships and RE. We quantified correlations among traits and environmental variables to identify allocation trade-offs and ecotypic trends. Genetic variation for plasticity was high for vegetative growth, whereas it was nonsignificant for reproduction. Size-corrected reproduction was enhanced in the more stressful site supporting the expectation for adverse conditions to elicit plastic responses in reproductive allometry. However, RE was unrelated with early reproductive investment. Our results followed theoretical predictions and support that phenotypic plasticity for reproduction is adaptive under stressful environments. Considering expectations of increased drought in the Mediterranean, we hypothesize that phenotypic plasticity together with natural selection on reproductive traits will play a relevant role in the future adaptation of forest tree species. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  4. Wide range of interacting partners of pea Gβ subunit of G-proteins suggests its multiple functions in cell signalling.

    Science.gov (United States)

    Bhardwaj, Deepak; Lakhanpaul, Suman; Tuteja, Narendra

    2012-09-01

    Climate change is a major concern especially in view of the increasing global population and food security. Plant scientists need to look for genetic tools whose appropriate usage can contribute to sustainable food availability. G-proteins have been identified as some of the potential genetic tools that could be useful for protecting plants from various stresses. Heterotrimeric G-proteins consisting of three subunits Gα, Gβ and Gγ are important components of a number of signalling pathways. Their structure and functions are already well studied in animals but their potential in plants is now gaining attention for their role in stress tolerance. Earlier we have reported that over expressing pea Gβ conferred heat tolerance in tobacco plants. Here we report the interacting partners (proteins) of Gβ subunit of Pisum sativum and their putative role in stress and development. Out of 90 transformants isolated from the yeast-two-hybrid (Y2H) screening, seven were chosen for further investigation due to their recurrence in multiple experiments. These interacting partners were confirmed using β-galactosidase colony filter lift and ONPG (O-nitrophenyl-β-D-galactopyranoside) assays. These partners include thioredoxin H, histidine-containing phosphotransfer protein 5-like, pathogenesis-related protein, glucan endo-beta-1, 3-glucosidase (acidic isoform), glycine rich RNA binding protein, cold and drought-regulated protein (corA gene) and soluble inorganic pyrophosphatase 1. This study suggests the role of pea Gβ subunit in stress signal transduction and development pathways owing to its capability to interact with a wide range of proteins of multiple functions. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  5. THE PLASMA ENVIRONMENT IN COMETS OVER A WIDE RANGE OF HELIOCENTRIC DISTANCES: APPLICATION TO COMET C/2006 P1 (MCNAUGHT)

    International Nuclear Information System (INIS)

    Shou, Y.; Combi, M.; Gombosi, T.; Toth, G.; Jia, Y.-D.; Rubin, M.

    2015-01-01

    On 2007 January 12, comet C/2006 P1 (McNaught) passed its perihelion at 0.17 AU. Abundant remote observations offer plenty of information on the neutral composition and neutral velocities within 1 million kilometers of the comet nucleus. In early February, the Ulysses spacecraft made an in situ measurement of the ion composition, plasma velocity, and magnetic field when passing through the distant ion tail and the ambient solar wind. The measurement by Ulysses was made when the comet was at around 0.8 AU. With the constraints provided by remote and in situ observations, we simulated the plasma environment of Comet C/2006 P1 (McNaught) using a multi-species comet MHD model over a wide range of heliocentric distances from 0.17 to 1.75 AU. The solar wind interaction of the comet at various locations is characterized and typical subsolar standoff distances of the bow shock and contact surface are presented and compared to analytic solutions. We find the variation in the bow shock standoff distances at different heliocentric distances is smaller than the contact surface. In addition, we modified the multi-species model for the case when the comet was at 0.7 AU and achieved comparable water group ion abundances, proton densities, plasma velocities, and plasma temperatures to the Ulysses/SWICS and SWOOPS observations. We discuss the dominating chemical reactions throughout the comet-solar wind interaction region and demonstrate the link between the ion composition near the comet and in the distant tail as measured by Ulysses

  6. Researching Complex Heat, Air and Moisture Interactions for a Wide-Range of Building Envelope Systems and Environmental Loads

    Energy Technology Data Exchange (ETDEWEB)

    Karagiozis, A.N.

    2007-05-15

    This document serves as the final report documenting work completed by Oak Ridge National Laboratory (ORNL) and the Fraunhofer Institute in Building Physics (Holzkirchen, Germany) under an international CRADA No. 0575 with Fraunhofer Institute of Bauphysics of the Federal Republic of Germany for Researching Complex Heat, Air and Moisture Interactions for a Wide Range of Building Envelope Systems and Environmental Loads. This CRADA required a multi-faceted approach to building envelope research that included a moisture engineering approach by blending extensive material property analysis, laboratory system and sub-system thermal and moisture testing, and advanced moisture analysis prediction performance. The Participant's Institute for Building physics (IBP) and the Contractor's Buildings Technology Center (BTC) identified potential research projects and activities capable of accelerating and advancing the development of innovative, low energy and durable building envelope systems in diverse climates. This allowed a major leverage of the limited resources available to ORNL to execute the required Department of Energy (DOE) directives in the area of moisture engineering. A joint working group (ORNL and Fraunhofer IBP) was assembled and a research plan was executed from May 2000 to May 2005. A number of key deliverables were produced such as adoption of North American loading into the WUFI-software. in addition the ORNL Weather File Analyzer was created and this has been used to address environmental loading for a variety of US climates. At least 4 papers have been co-written with the CRADA partners, and a chapter in the ASTM Manual 40 on Moisture Analysis and Condensation Control. All deliverables and goals were met and exceeded making this collaboration a success to all parties involves.

  7. Live cell plasma membranes do not exhibit a miscibility phase transition over a wide range of temperatures.

    Science.gov (United States)

    Lee, Il-Hyung; Saha, Suvrajit; Polley, Anirban; Huang, Hector; Mayor, Satyajit; Rao, Madan; Groves, Jay T

    2015-03-26

    Lipid/cholesterol mixtures derived from cell membranes as well as their synthetic reconstitutions exhibit well-defined miscibility phase transitions and critical phenomena near physiological temperatures. This suggests that lipid/cholesterol-mediated phase separation plays a role in the organization of live cell membranes. However, macroscopic lipid-phase separation is not generally observed in cell membranes, and the degree to which properties of isolated lipid mixtures are preserved in the cell membrane remain unknown. A fundamental property of phase transitions is that the variation of tagged particle diffusion with temperature exhibits an abrupt change as the system passes through the transition, even when the two phases are distributed in a nanometer-scale emulsion. We support this using a variety of Monte Carlo and atomistic simulations on model lipid membrane systems. However, temperature-dependent fluorescence correlation spectroscopy of labeled lipids and membrane-anchored proteins in live cell membranes shows a consistently smooth increase in the diffusion coefficient as a function of temperature. We find no evidence of a discrete miscibility phase transition throughout a wide range of temperatures: 14-37 °C. This contrasts the behavior of giant plasma membrane vesicles (GPMVs) blebbed from the same cells, which do exhibit phase transitions and macroscopic phase separation. Fluorescence lifetime analysis of a DiI probe in both cases reveals a significant environmental difference between the live cell and the GPMV. Taken together, these data suggest the live cell membrane may avoid the miscibility phase transition inherent to its lipid constituents by actively regulating physical parameters, such as tension, in the membrane.

  8. Acidic pH shock induces the expressions of a wide range of stress-response genes

    Directory of Open Access Journals (Sweden)

    Hong Soon-Kwang

    2008-12-01

    Full Text Available Abstract Background Environmental signals usually enhance secondary metabolite production in Streptomycetes by initiating complex signal transduction system. It is known that different sigma factors respond to different types of stresses, respectively in Streptomyces strains, which have a number of unique signal transduction mechanisms depending on the types of environmental shock. In this study, we wanted to know how a pH shock would affect the expression of various sigma factors and shock-related proteins in S. coelicolor A3(2. Results According to the results of transcriptional and proteomic analyses, the major number of sigma factor genes were upregulated by an acidic pH shock. Well-studied sigma factor genes of sigH (heat shock, sigR (oxidative stress, sigB (osmotic shock, and hrdD that play a major role in the secondary metabolism, were all strongly upregulated by the pH shock. A number of heat shock proteins including the DnaK family and chaperones such as GroEL2 were also observed to be upregulated by the pH shock, while their repressor of hspR was strongly downregulated. Oxidative stress-related proteins such as thioredoxin, catalase, superoxide dismutase, peroxidase, and osmotic shock-related protein such as vesicle synthases were also upregulated in overall. Conclusion From these observations, an acidic pH shock was considered to be one of the strongest stresses to influence a wide range of sigma factors and shock-related proteins including general stress response proteins. The upregulation of the sigma factors and shock proteins already found to be related to actinorhodin biosynthesis was considered to have contributed to enhanced actinorhodin productivity by mediating the pH shock signal to regulators or biosynthesis genes for actinorhodin production.

  9. Super Dual Auroral Radar Network observations of fluctuations in the spectral distribution of near range meteor echoes in the upper mesosphere and lower thermosphere

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    2001-04-01

    Full Text Available The Doppler shifts of meteor echoes measured by the SuperDARN HF radar network have been used in several studies to observe neutral winds in the upper mesosphere and lower thermosphere region. In the absence of accurate height information for individual meteors, it has been necessary to assume a statistical mean meteor layer where the variations in altitude were not correlated to changes in the horizontal winds. Observations of spectral width distribution variations made by the radars allow an independent determination of the systematic error in the height. We have investigated the dependence of this distribution on a number of factors including the radar geometry, diurnal and seasonal cycles, variations in solar UV irradiance and geomagnetic activity. Changes in the altitude of the mean meteor layer observed at different radar ranges provide us with some insight into the structure of the upper mesosphere and the lower thermosphere within which the meteors are being ablated. An examination of the spectral widths, as measured by the CUT-LASS Finland radar, in the days preceding and following a Storm Sudden Commencement in April 1997, illustrates how the spectral properties of the observed region can be affected. The variations in the widths were consistent with model calculations of the changes to the temperature profile over this interval. Further refinements in the determination of the spectral width are outlined for future experiments.Key words. Meterology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; instruments and techniques

  10. Super Dual Auroral Radar Network observations of fluctuations in the spectral distribution of near range meteor echoes in the upper mesosphere and lower thermosphere

    Directory of Open Access Journals (Sweden)

    N. F. Arnold

    Full Text Available The Doppler shifts of meteor echoes measured by the SuperDARN HF radar network have been used in several studies to observe neutral winds in the upper mesosphere and lower thermosphere region. In the absence of accurate height information for individual meteors, it has been necessary to assume a statistical mean meteor layer where the variations in altitude were not correlated to changes in the horizontal winds. Observations of spectral width distribution variations made by the radars allow an independent determination of the systematic error in the height. We have investigated the dependence of this distribution on a number of factors including the radar geometry, diurnal and seasonal cycles, variations in solar UV irradiance and geomagnetic activity. Changes in the altitude of the mean meteor layer observed at different radar ranges provide us with some insight into the structure of the upper mesosphere and the lower thermosphere within which the meteors are being ablated. An examination of the spectral widths, as measured by the CUT-LASS Finland radar, in the days preceding and following a Storm Sudden Commencement in April 1997, illustrates how the spectral properties of the observed region can be affected. The variations in the widths were consistent with model calculations of the changes to the temperature profile over this interval. Further refinements in the determination of the spectral width are outlined for future experiments.

    Key words. Meterology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; instruments and techniques

  11. Range-wide multilocus phylogeography of the red fox reveals ancient continental divergence, minimal genomic exchange and distinct demographic histories

    Science.gov (United States)

    Mark J. Statham; James Murdoch; Jan Janecka; Keith B. Aubry; Ceiridwen J. Edwards; Carl D. Soulsbury; Oliver Berry; Zhenghuan Wang; David Harrison; Malcolm Pearch; Louise Tomsett; Judith Chupasko; Benjamin N. Sacks

    2014-01-01

    Widely distributed taxa provide an opportunity to compare biogeographic responses to climatic fluctuations on multiple continents and to investigate speciation. We conducted the most geographically and genomically comprehensive study to date of the red fox (Vulpes vulpes), the world’s most widely distributed wild terrestrial carnivore. Analyses of 697 bp of...

  12. Radiometric Correction of Close-Range Spectral Image Blocks Captured Using an Unmanned Aerial Vehicle with a Radiometric Block Adjustment

    Directory of Open Access Journals (Sweden)

    Eija Honkavaara

    2018-02-01

    Full Text Available Unmanned airborne vehicles (UAV equipped with novel, miniaturized, 2D frame format hyper- and multispectral cameras make it possible to conduct remote sensing measurements cost-efficiently, with greater accuracy and detail. In the mapping process, the area of interest is covered by multiple, overlapping, small-format 2D images, which provide redundant information about the object. Radiometric correction of spectral image data is important for eliminating any external disturbance from the captured data. Corrections should include sensor, atmosphere and view/illumination geometry (bidirectional reflectance distribution function—BRDF related disturbances. An additional complication is that UAV remote sensing campaigns are often carried out under difficult conditions, with varying illumination conditions and cloudiness. We have developed a global optimization approach for the radiometric correction of UAV image blocks, a radiometric block adjustment. The objective of this study was to implement and assess a combined adjustment approach, including comprehensive consideration of weighting of various observations. An empirical study was carried out using imagery captured using a hyperspectral 2D frame format camera of winter wheat crops. The dataset included four separate flights captured during a 2.5 h time period under sunny weather conditions. As outputs, we calculated orthophoto mosaics using the most nadir images and sampled multiple-view hyperspectral spectra for vegetation sample points utilizing multiple images in the dataset. The method provided an automated tool for radiometric correction, compensating for efficiently radiometric disturbances in the images. The global homogeneity factor improved from 12–16% to 4–6% with the corrections, and a reduction in disturbances could be observed in the spectra of the object points sampled from multiple overlapping images. Residuals in the grey and white reflectance panels were less than 5% of the

  13. Radiation-Hardening of Best-In-Class SiGe Mixed-Signal and RF Electronics for Ultra-Wide Temperature Range, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Innovative, reliable, low-power, and low-noise electronics that can operate over a wide temperature range and high radiation are critical for future NASA missions....

  14. A Matrix-Based Structure for Vario-Scale Vector Representation over a Wide Range of Map Scales : The Case of River Network Data

    NARCIS (Netherlands)

    Huang, L.; Ai, Tinghua; van Oosterom, P.J.M.; Yan, Xiongfeng; Yang, Min

    2017-01-01

    The representation of vector data at variable scales has been widely applied in geographic information systems and map-based services. When the scale changes across a wide range, a complex generalization that involves multiple operations is required to transform the data. To present such complex

  15. Improved Models and Tools for Prediction of Radiation Effects on Space Electronics in Wide Temperature Range, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — All NASA exploration systems operate in the extreme environments of space (Moon, Mars, etc.) and require reliable electronics capable of handling a wide temperature...

  16. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    Energy Technology Data Exchange (ETDEWEB)

    Karcı, Özgür [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey); Dede, Münir [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Oral, Ahmet, E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey)

    2014-10-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.

  17. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    International Nuclear Information System (INIS)

    Karcı, Özgür; Dede, Münir; Oral, Ahmet

    2014-01-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ∼12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system

  18. Modeling and Simulation of - and Silicon Germanium-Base Bipolar Transistors Operating at a Wide Range of Temperatures.

    Science.gov (United States)

    Shaheed, M. Reaz

    1995-01-01

    to provide consistently accurate values for base sheet resistance for both Si- and SiGe-base transistors over a wide range of temperatures. A model for plasma-induced bandgap narrowing suitable for implementation in a numerical simulator has been developed. The appropriate method of incorporating this model in a drift -diffusion solver is described. The importance of including this model for low temperature simulation is demonstrated. With these models in place, the enhanced simulator has been used for evaluating and designing the Si- and SiGe-base bipolar transistors. Silicon-germanium heterojunction bipolar transistors offer significant performance and cost advantages over conventional technologies in the production of integrated circuits for communications, computer and transportation applications. Their high frequency performance at low cost, will find widespread use in the currently exploding wireless communication market. However, the high performance SiGe-base transistors are prone to have a low common-emitter breakdown voltage. In this dissertation, a modification in the collector design is proposed for improving the breakdown voltage without sacrificing the high frequency performance. A comprehensive simulation study of p-n-p SiGe-base transistors has been performed. Different figures of merit such as drive current, current gain, cut -off frequency and Early voltage were compared between a graded germanium profile and an abrupt germanium profile. The differences in the performance level between the two profiles diminishes as the base width is scaled down.

  19. Radical-Scavenging Activity of a Sunscreen Enriched by Antioxidants Providing Protection in the Whole Solar Spectral Range.

    Science.gov (United States)

    Souza, Carla; Maia Campos, Patrícia; Schanzer, Sabine; Albrecht, Stephanie; Lohan, Silke B; Lademann, Jürgen; Darvin, Maxim E; Meinke, Martina C

    2017-01-01

    The main reason for extrinsic skin aging is the negative action of free radicals. The formation of free radicals in the skin has been associated with ultraviolet (UV) exposure and also to visible (VIS) and near-infrared (NIR) irradiations. The aim of the present study was to evaluate the efficacy of a sunscreen in the whole solar range. The radical-scavenging activity of a sunscreen in the UV, VIS, and NIR ranges was evaluated using electron paramagnetic resonance spectroscopy. Ex vivo penetration profiles were determined using confocal Raman microscopy on porcine ear skin at different time points after application. Compared to the untreated skin, the sunscreen decreased the skin radical formation in the UV and VIS regions. Additional protection in the VIS and NIR ranges was observed for the sunscreen containing antioxidants (AO). The penetration depth of the cream was less than 11.2 ± 3.0 µm for all time points. A sunscreen containing AO improved the photoprotection in the VIS and NIR ranges. The sunscreen was retained in the stratum corneum. Therefore, these results show the possibility of the development of effective and safer sunscreen products. © 2017 S. Karger AG, Basel.

  20. Adjustment of a goniometer for X-rays optics calibration in the spectral range 1.5-20 KeV

    International Nuclear Information System (INIS)

    Legistre, S.

    1992-10-01

    The aim of this memoir is the adjustment of a (θ, 2θ) goniometer coupled to X-rays source to calibrate mirrors (single layers like C, Ni, Au, etc... and multilayers like C/W, Si/W, etc...) in the spectral range 1.5 - 20 keV. For each kind of tested optics the adjustment of the goniometer include the procedure alignment of the different components (X-ray source, collimation slits, optics, detectors) and the first reflectivity measurements. Those measurements are compared those realized at LURE, using synchrotron radiation provided by SUPER ACO storage ring, and to a theoretical simulation

  1. Effects of range-wide variation in climate and isolation on floral traits and reproductive output of Clarkia pulchella.

    Science.gov (United States)

    Bontrager, Megan; Angert, Amy L

    2016-01-01

    Plant mating systems and geographic range limits are conceptually linked by shared underlying drivers, including landscape-level heterogeneity in climate and in species' abundance. Studies of how geography and climate interact to affect plant traits that influence mating system and population dynamics can lend insight to ecological and evolutionary processes shaping ranges. Here, we examined how spatiotemporal variation in climate affects reproductive output of a mixed-mating annual, Clarkia pulchella. We also tested the effects of population isolation and climate on mating-system-related floral traits across the range. We measured reproductive output and floral traits on herbarium specimens collected across the range of C. pulchella. We extracted climate data associated with specimens and derived a population isolation metric from a species distribution model. We then examined how predictors of reproductive output and floral traits vary among populations of increasing distance from the range center. Finally, we tested whether reproductive output and floral traits vary with increasing distance from the center of the range. Reproductive output decreased as summer precipitation decreased, and low precipitation may contribute to limiting the southern and western range edges of C. pulchella. High spring and summer temperatures are correlated with low herkogamy, but these climatic factors show contrasting spatial patterns in different quadrants of the range. Limiting factors differ among different parts of the range. Due to the partial decoupling of geography and environment, examining relationships between climate, reproductive output, and mating-system-related floral traits reveals spatial patterns that might be missed when focusing solely on geographic position. © 2016 Botanical Society of America.

  2. Metamorphic distributed Bragg reflectors for the 1440–1600 nm spectral range: Epitaxy, formation, and regrowth of mesa structures

    International Nuclear Information System (INIS)

    Egorov, A. Yu.; Karachinsky, L. Ya.; Novikov, I. I.; Babichev, A. V.; Berezovskaya, T. N.; Nevedomskiy, V. N.

    2015-01-01

    It is shown that metamorphic In 0.3 Ga 0.7 As/In 0.3 Al 0.7 As distributed Bragg reflectors (DBRs) with a reflection band at 1440–1600 nm and a reflectance of no less than 0.999 can be fabricated by molecular beam epitaxy (MBE) on a GaAs substrate. It is demonstrated that mesa structures formed from metamorphic DBRs on a GaAs substrate can be regrown by MBE and microcavities can be locally formed in two separate epitaxial processes. The results obtained can find wide application in the fabrication of vertical-cavity surface-emitting lasers (VCSELs) with a buried tunnel junction

  3. Change of the spectral sensitivity range of thin-film AlGaAs/GaAs -photoreceivers under influence of ultrasonic waves

    International Nuclear Information System (INIS)

    Zaveryukhina, N. N.; Zaveryukhin, B. N.; Zaveryukhina, E. B.

    2007-01-01

    Full text: The task of controlled variation of the physical properties of semiconductor materials under the action of external factors is an important problem in the physics of semiconductors. As is well known, one such factor is ultrasonic radiation: propagating in a semiconductor crystal, acoustic (ultrasonic) waves change its properties, in particular, the optical characteristics. In the context of solving the above task, it is expedient to continue investigations of the effect of ultrasonic waves on the characteristics of semiconductor devices. This report presents the results of experimental investigations of the influence of ultrasonic waves on the spectral characteristics of photoreceivers based on AlGaAs/GaAs- heterostructures. The study showed that an exposure to ultrasonic radiation leads to a change, depending on the ultrasonic treatment (UST) parameters, in the spectral characteristics of gallium arsenide crystals, the base materials of modern semiconductor photoelectronics. Some results showed evidence of the positive character of changes in the characteristics of A 3 B 5 -based photoreceivers under the action of ultrasonic waves. The effect of ultrasonic waves on the spectral sensitivity of photoreceivers based on AlGaAs/GaAs- heterostructures has been studied. Ultrasonic treatment of a zinc-doped graded-gap Al x Ga 1-x As- film leads to the formation of a surface layer sensitive to electromagnetic radiation in the wavelength range < 0,55m. It is established that this layer is formed as a result of the acoustostimulated inward diffusion of zinc from the surface to the bulk of the graded-gap layer. The observed expansion of the short-wavelength sensitivity range and an increase in the efficiency of nonequilibrium charge carrier collection in AlGaAs/GaAs- photoreceivers are due to improvement of the crystal defect structure and the dopant redistribution under the action of ultrasound. (authors)

  4. Spectral characterisation of aperiodic normal-incidence Sb/B4C multilayer mirrors for the λ < 124 Å range

    Science.gov (United States)

    Vishnyakov, E. A.; Kopylets, I. A.; Kondratenko, V. V.; Kolesnikov, A. O.; Pirozhkov, A. S.; Ragozin, E. N.; Shatokhin, A. N.

    2018-03-01

    Three broadband aperiodic Sb/B4C multilayer mirrors were synthesised for the purposes of soft X-ray optics and spectroscopy in the wavelength range beyond the L-edge of Si (λ plasma radiation source and an electronic detector with a 2D spatial resolution (a CCD matrix with 13 × 13 μm sized pixels). The experimental spectra are compared with theoretical calculations. The effect of lower antimony and B4C layer densities on the reflection spectra is discussed.

  5. Short-range remote spectral sensor using mid-infrared semiconductor lasers with orthogonal code-division multiplexing approach

    Science.gov (United States)

    Morbi, Zulfikar; Ho, D. B.; Ren, H.-W.; Le, Han Q.; Pei, Shin Shem

    2002-09-01

    Demonstration of short-range multispectral remote sensing, using 3 to 4-micrometers mid- infrared Sb semiconductor lasers based on code-division multiplexing (CDM) architecture, is described. The system is built on a principle similar to intensity- modulated/direct-detection optical-CDMA for communications, but adapted for sensing with synchronous, orthogonal codes to distinguish different wavelength channels with zero interchannel correlation. The concept is scalable for any number of channels, and experiments with a two-wavelength system are conducted. The CDM-signal processing yielded a white-Gaussian-like system noise that is found to be near the theoretical level limited by the detector fundamental intrinsic noise. With sub-mW transmitter average power, the system was able to detect an open-air acetylene gas leak of 10-2 STP ft3/hr from 10-m away with time-varying, random, noncooperative backscatters. A similar experiment detected and positively distinguished hydrocarbon oil contaminants on water from bio-organic oils and detergents. Projection for more advanced systems suggests a multi-kilometer-range capability for watt-level transmitters, and hundreds of wavelength channels can also be accommodated for active hyperspectral remote sensing application.

  6. Lack of parental rule-setting on eating is associated with a wide range of adolescent unhealthy eating behaviour both for boys and girls

    OpenAIRE

    Holubcikova, Jana; Kolarcik, Peter; Madarasova Geckova, Andrea; van Dijk, Jitse P.; Reijneveld, Sijmen A.

    2016-01-01

    Abstract Background Unhealthy eating habits in adolescence lead to a wide variety of health problems and disorders. The aim of this study was to assess the prevalence of absence of parental rules on eating and unhealthy eating behaviour and to explore the relationships between parental rules on eating and a wide range of unhealthy eating habits of boys and girls. We also explored the association of sociodemographic characteristics such as gender, family affluence or parental education with ea...

  7. Seasonality, weather and climate affect home range size in roe deer across a wide latitudinal gradient within Europe

    Czech Academy of Sciences Publication Activity Database

    Morellet, N.; Bonenfant, Ch.; Börger, L.; Ossi, F.; Cagnacci, F.; Heurich, M.; Kjellander, P.; Linnell, J. D. C.; Nicoloso, S.; Šustr, Pavel; Urbano, F.; Mysterud, A.

    2013-01-01

    Roč. 82, č. 6 (2013), s. 1326-1339 ISSN 0021-8790 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : animal movements * day length * large herbivore * ranging behaviour * spatiotemporal variation Subject RIV: EH - Ecology, Behaviour Impact factor: 4.726, year: 2013

  8. Range-wide multilocus phylogeography of the red fox reveals ancient continental divergence, minimal genomic exchange and distinct demographic histories.

    Science.gov (United States)

    Statham, Mark J; Murdoch, James; Janecka, Jan; Aubry, Keith B; Edwards, Ceiridwen J; Soulsbury, Carl D; Berry, Oliver; Wang, Zhenghuan; Harrison, David; Pearch, Malcolm; Tomsett, Louise; Chupasko, Judith; Sacks, Benjamin N

    2014-10-01

    Widely distributed taxa provide an opportunity to compare biogeographic responses to climatic fluctuations on multiple continents and to investigate speciation. We conducted the most geographically and genomically comprehensive study to date of the red fox (Vulpes vulpes), the world's most widely distributed wild terrestrial carnivore. Analyses of 697 bp of mitochondrial sequence in ~1000 individuals suggested an ancient Middle Eastern origin for all extant red foxes and a 400 kya (SD = 139 kya) origin of the primary North American (Nearctic) clade. Demographic analyses indicated a major expansion in Eurasia during the last glaciation (~50 kya), coinciding with a previously described secondary transfer of a single matriline (Holarctic) to North America. In contrast, North American matrilines (including the transferred portion of Holarctic clade) exhibited no signatures of expansion until the end of the Pleistocene (~12 kya). Analyses of 11 autosomal loci from a subset of foxes supported the colonization time frame suggested by mtDNA (and the fossil record) but, in contrast, reflected no detectable secondary transfer, resulting in the most fundamental genomic division of red foxes at the Bering Strait. Endemic continental Y-chromosome clades further supported this pattern. Thus, intercontinental genomic exchange was overall very limited, consistent with long-term reproductive isolation since the initial colonization of North America. Based on continental divergence times in other carnivoran species pairs, our findings support a model of peripatric speciation and are consistent with the previous classification of the North American red fox as a distinct species, V. fulva. © 2014 John Wiley & Sons Ltd.

  9. Enhanced optical transmission through a star-shaped bull's eye at dual resonant-bands in UV and the visible spectral range.

    Science.gov (United States)

    Nazari, Tavakol; Khazaeinezhad, Reza; Jung, Woohyun; Joo, Boram; Kong, Byung-Joo; Oh, Kyunghwan

    2015-07-13

    Dual resonant bands in UV and the visible range were simultaneously observed in the enhanced optical transmission (EOT) through star-shaped plasmonic structures. EOTs through four types of polygonal bull's eyes with a star aperture surrounded by the concentric star grooves were analyzed and compared for 3, 4, 5, and 6 corners, using finite difference time domain (FDTD) method. In contrast to plasmonic resonances in the visible range, the UV-band resonance intensity was found to scale with the number of corners, which is related with higher order multipole interactions. Spectral positions and relative intensities of the dual resonances were analyzed parametrically to find optimal conditions to maximize EOT in UV-visible dual bands.

  10. Simulation of laser propagation through a three-layer human skin model in the spectral range from 1000 to 1900 nm

    Science.gov (United States)

    Nasouri, Babak; Murphy, Thomas E.; Berberoglu, Halil

    2014-07-01

    For understanding the mechanisms of low-level laser/light therapy (LLLT), accurate knowledge of light interaction with tissue is necessary. We present a three-dimensional, multilayer reduced-variance Monte Carlo simulation tool for studying light penetration and absorption in human skin. Local profiles of light penetration and volumetric absorption were calculated for uniform as well as Gaussian profile beams with different spreads over the spectral range from 1000 to 1900 nm. The results showed that lasers within this wavelength range could be used to effectively and safely deliver energy to specific skin layers as well as achieve large penetration depths for treating deep tissues, without causing skin damage. In addition, by changing the beam profile from uniform to Gaussian, the local volumetric dosage could increase as much as three times for otherwise similar lasers. We expect that this tool along with the results presented will aid researchers in selecting wavelength and laser power in LLLT.

  11. Wide-range bipolar pulse conductance instrument employing current and voltage modes with sampled or integrated signal acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Calhoun, R K; Holler, F J [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry; Geiger, jr, R F; Nieman, T A [Illinois Univ., Urbana, IL (United States). Dept. of Chemistry; Caserta, K J [Procter and Gamble Co., Cincinnati, OH (United States)

    1991-11-05

    An instrument for measuring solution conductance using the bipolar pulse technique is described. The instrument is capable of measuring conductances in the range of 5x10{sup -9}-10{Omega}{sup -1} with 1% accuracy or better in as little as 32 {mu}s. Accuracy of 0.001-0.01% is achievable over the range 1x10{sup -6}-1{Omega}{sup -1}. Circuitry and software are described that allow the instrument to adjust automatically the pulse height, pulse duration, excitation mode (current or voltage pulse) and data acquisition mode (sampled or integrated) to acquire data of optimum accuracy and precision. The urease-catalyzed decomposition of urea is used to illustrate the versality of the instrument, and other applications are cited. (author). 60 refs.; 7 figs.; 2 tabs.

  12. An off-on Fluorescent Sensor for Detecting a Wide Range of Water Content in Organic Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kanghyeon; Lee, Wanjin; Kim, Jae Nyoung; Kim, Hyung Jin [Chonnam National Univ., Gwangju (Korea, Republic of)

    2013-08-15

    This paper describes the synthesis and water sensing properties of a fluorescent photoinduced electron transfer (PET) sensor (5) with an extended operating sensing range. The 1,8-naphthalimide derivative (5) attached with a piperazine group and a carboxylic group was synthesized and applied as a fluorescent water sensor in water-miscible organic solvents. The fluorescence intensity of the dye 5 increased with increasing water content up to 80% (v/v) and the fluorescence intensities were enhanced 45-, 67- and 122-fold in aqueous EtOH, DMF and DMSO solutions, respectively. In aqueous acetone solution, the enhancement of the fluorescence intensities was somewhat lower (30-fold) but the response range was wider (0-90%, v/v)

  13. Effects of gamma radiation in a wide range of doses on the morphological characteristics of Lemna minor L

    International Nuclear Information System (INIS)

    Rasskazova, M.M.; Berestina, A.V.

    2011-01-01

    The effects of gamma radiation on the morphological parameters of Lemna minor L. were studied. As the sensitive parameters were invited to use chlorosis and necrosis. Significant differences between samples begin to show after 14 days of observation. The presence of effect, irrespective of the dose in the range 0,1-30 Gy, shows the efficiency of a sufficiently small dose (0,1 Gy) was revealed.

  14. A Search for Some Wide-Range Tunable Dye Laser Systems Working on the ’Exciplex’ Principle.

    Science.gov (United States)

    The ’ exciplex ’ mechanism of radiation emission from a dye affords one means of producing a broad fluorescent spectrum without adding to the...emissions from both the dye and the exciplex may appear, thereby permitting an even greater tuning range. Two mechanisms apply: the ’proton exciplex ...8217, which relates to changes in conventional acidity and basicity in the excited state; and the ’molecular exciplex ’, which relates to changes in

  15. The influence of interlayer exchange coupling in giant-magnetoresistive devices on spin diode effect in wide frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Ziętek, Sławomir, E-mail: zietek@agh.edu.pl; Skowroński, Witold; Wiśniowski, Piotr; Czapkiewicz, Maciej; Stobiecki, Tomasz [Department of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland); Ogrodnik, Piotr [Department of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland); Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa (Poland); Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Barnaś, Józef [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland)

    2015-09-21

    Spin diode effect in a giant magnetoresistive strip is measured in a broad frequency range, including resonance and off-resonance frequencies. The off-resonance dc signal is relatively strong and also significantly dependent on the exchange coupling between magnetic films through the spacer layer. The measured dc signal is described theoretically by taking into account magnetic dynamics induced by Oersted field created by an ac current flowing through the system.

  16. Ultra-wide detectable concentration range of GMR biosensors using Fe{sub 3}O{sub 4} microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jie [College of Physics, Key Laboratory of Photonics Materials and Technology in Universities of Shandong, and Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); School of Chemical Science and Engineering, Qingdao University, Qingdao 266071 (China); Li, Qiang [College of Physics, Key Laboratory of Photonics Materials and Technology in Universities of Shandong, and Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Zong, Weihua [Shandong Provincial Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao 266071 (China); Zhang, Yongcheng [College of Physics, Key Laboratory of Photonics Materials and Technology in Universities of Shandong, and Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Li, Shandong, E-mail: lishd@qdu.edu.cn [College of Physics, Key Laboratory of Photonics Materials and Technology in Universities of Shandong, and Laboratory of Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-11-01

    Exchange-biased GMR sensors were employed for biodetection using a DC in-plane measuring method and a magnetic label of Fe{sub 3}O{sub 4} microspheres. It was revealed that an ultra-wide concentration span covering five orders from 10 ng/mL to 1000 μg/mL was achieved in a home-made biodetection device. The concentration x dependence of output voltage difference |ΔV| between with and without magnetic labels, exhibits nonlinear futures, which undergoes two functions depending on the concentration region. For the low concentration region from 10 ng/mL to 10 μg/mL, a logarithmic relation of |ΔV|=26.3lgx+91.4 fits well, while for the high concentration region, a negative exponential function of |ΔV|=3113(1−e{sup −x/250}) describes the |ΔV|~x relation better. For the former, the “coffee ring” effect, formed during the solvent evaporation, was considered as the main reason for the nonlinear relation. While for the latter with high concentration, the overlap among the particles and the enhanced interaction of the magnetic dipole were responsible for the nonlinear |ΔV|~x relationship. Moreover, the calculated detectable concentration limit is agreed well with the experimental data. - Highlights: • Ultra-wide concentration span covering five orders from 0.01 to 1000 μg/mL. • A logarithmic function well describes the relation of |ΔV|~x at low concentration. • An exponential function well describes the relation of |ΔV|~x at high concentration.

  17. Analysis of the device characteristics of AlGaN/GaN HEMTs over a wide temperature range

    International Nuclear Information System (INIS)

    Zhao, M.; Liu, X.Y.; Zheng, Y.K.; Li, Yankui; Ouyang, Sihua

    2013-01-01

    Highlights: ► We report the behavior of the current–voltage characteristics of AlGaN/GaN HEMT in the temperature range of 223–398 K. ► The origin of the leakage current and the current transport behaviors are reported. ► There is a linear relationship between the barrier height and the ideality factor, which is attributed to barrier height in homogeneities. -- Abstract: In this study, we investigate the behavior of the current–voltage (I–V) characteristics of AlGaN/GaN HEMT in the temperature range of 223–398 K. Temperature dependent device characteristics and the current transport mechanism are reported. It is observed that the Schottky barrier height Φ increases and the ideality factor n decreases with temperature. There is a linear relationship between the barrier height and the ideality factor, which is attributed to barrier height inhomogeneities of AlGaN/GaN HEMT. The estimated values of the series resistances (R s ) are in the range of 144.2 Ω at 223 K to 74.3 Ω at 398 K. The Φ, n, R s , G m and Schottky leakage current values are seen to be strongly temperature dependent

  18. Mitochondrial DNA signature for range-wide populations of Bicyclus anynana suggests a rapid expansion from recent refugia.

    Directory of Open Access Journals (Sweden)

    Maaike A de Jong

    Full Text Available This study investigates the genetic diversity, population structure and demographic history of the afrotropical butterfly Bicyclus anynana using mitochondrial DNA (mtDNA. Samples from six wild populations covering most of the species range from Uganda to South Africa were compared for the cytochrome c oxidase subunit gene (COI. Molecular diversity indices show overall high mtDNA diversity for the populations, but low nucleotide divergence between haplotypes. Our results indicate relatively little geographic population structure among the southern populations, especially given the extensive distributional range and an expectation of limited gene flow between populations. We implemented neutrality tests to assess signatures of recent historical demographic events. Tajima's D test and Fu's F(S test both suggested recent population growth for the populations. The results were only significant for the southernmost populations when applying Tajima's D, but Fu's F(S indicated significant deviations from neutrality for all populations except the one closest to the equator. Based on our own findings and those from pollen and vegetation studies, we hypothesize that the species range of B. anynana was reduced to equatorial refugia during the last glacial period, and that the species expanded southwards during the past 10.000 years. These results provide crucial background information for studies of phenotypic and molecular adaptation in wild populations of B. anynana.

  19. Radiation damage resistance of AlGaN detectors for applications in the extreme-ultraviolet spectral range

    Energy Technology Data Exchange (ETDEWEB)

    Barkusky, Frank; Peth, Christian; Bayer, Armin; Mann, Klaus [Laser-Laboratorium-Goettingen e.V., Hans-Adolf-Krebs-Weg 1, D-37077 Goettingen (Germany); John, Joachim; Malinowski, Pawel E. [Interuniversity MicroElectronic Center (IMEC), Kapeldreef 75, B-3001 Leuven (Belgium)

    2009-09-15

    We report on the fabrication of aluminum gallium nitride (AlGaN) Schottky-photodiode-based detectors. AlGaN layers were grown using metal-organic chemical vapor deposition (MOCVD) on Si(111) wafers. The diodes were characterized at a wavelength of 13.5 nm using a table-top extreme-ultraviolet (EUV) radiation source, consisting of a laser-produced xenon plasma and a Schwarzschild objective. The responsivity of the diodes was tested between EUV energies ranging from 320 nJ down to several picojoules. For low fluences, a linear responsivity of 7.14 mAs/J could be determined. Saturation starts at approximately 1 nJ, merging into a linear response of 0.113 mAs/J, which could be attributed to the photoeffect on the Au electrodes on top of the diode. Furthermore, degradation tests were performed up to an absolute dose of 3.3x10{sup 19} photons/cm{sup 2}. AlGaN photodiodes were compared to commercially available silicon-based photodetectors. For AlGaN diodes, responsivity does not change even for the highest EUV dose, whereas the response of the Si diode decreases linearly to {approx}93% after 2x10{sup 19} photons/cm{sup 2}.

  20. Range-wide latitudinal and elevational temperature gradients for the world's terrestrial birds: implications under global climate change.

    Directory of Open Access Journals (Sweden)

    Frank A La Sorte

    Full Text Available Species' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world's terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species' geography (range size, shape, and orientation and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species' ranges, how and why these gradients vary among

  1. BEGA Starter/Alternator - Vector Control Implementation and Performance for Wide Speed Range at Unity Power Factor Operation

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Boldea, Ion; Coroban-Schramel, Vasile

    2008-01-01

    Biaxial Excitation Generator for Automobile (BEGA) is proposed as a solution for integrated starter/alternator systems used in hybrid electric vehicles (HEVs). This paper demonstrates through experiments and simulations that BEGA has a very large constant power speed range (CPSR), theoretically...... to infinite. A vector control structure is proposed for BEGA operation during motoring and generating, at unity power factor with zero d-axis current (id) and zero q-axis flux (Ψq) control. In such conditions BEGA behaves like a truly dc. brush machine (with zero reactance in steady state !). A high iq...

  2. BEGA Starter/Alternator—Vector Control Implementation and Performance for Wide Speed Range at Unity Power Factor Operation

    DEFF Research Database (Denmark)

    Boldea, Ion; Coroban-Schramel, Vasile; Andreescu, Gheorghe-Daniel

    2010-01-01

    The Biaxial Excitation Generator for Automobiles (BEGA) is proposed as a solution for integrated starter/alternator systems used in hybrid electric vehicles. This paper demonstrates through experiments and simulations that BEGA has a very large constant power speed range. A vector control structure...... is proposed for BEGA operation during motoring and generating, at unity power factor with zero d-axis current (id) and zero q-axis flux (Ψq) control. In such conditions, BEGA behaves like a separately excited dc brush(commutator) machine, in the sense that no stator inductance voltage drop occurs...

  3. A pressurized ion chamber monitoring system for environmental radiation measurements utilizing a wide-range temperature-compensated electrometer

    International Nuclear Information System (INIS)

    Stevenick, W. Van

    1994-01-01

    The performance of a complete pressurized ion chamber (PIC) radiation monitoring system is described. The design incorporates an improved temperature-compensated electrometer which is stable to ±3 · 10 -16 A over the environmental range of temperature (-40 to +40 C). Using a single 10 11 Ω feed-back resistor, the electrometer accurately measures currents over a range from 3 · 10 -15 A to 3 · 10 -11 A. While retaining the sensitivity of the original PIC system (the instrument responds readily to small background fluctuations on the order of 0.1 μR h -1 ), the new system measures radiation levels up to the point where the collection efficiency of the ion chamber begins to drop off, typically ∼27 pA at 1 mR h -1 . A data recorder and system controller was designed using the Tattletale trademark Model 4A computer. Digital data is stored on removable solid-state, credit-card style memory cards

  4. Seasonality in cholera dynamics: A rainfall-driven model explains the wide range of patterns in endemic areas

    Science.gov (United States)

    Baracchini, Theo; King, Aaron A.; Bouma, Menno J.; Rodó, Xavier; Bertuzzo, Enrico; Pascual, Mercedes

    2017-10-01

    Seasonal patterns in cholera dynamics exhibit pronounced variability across geographical regions, showing single or multiple peaks at different times of the year. Although multiple hypotheses related to local climate variables have been proposed, an understanding of this seasonal variation remains incomplete. The historical Bengal region, which encompasses the full range of cholera's seasonality observed worldwide, provides a unique opportunity to gain insights on underlying environmental drivers. Here, we propose a mechanistic, rainfall-temperature driven, stochastic epidemiological model which explicitly accounts for the fluctuations of the aquatic reservoir, and analyze with this model the historical dataset of cholera mortality in the Bengal region. Parameters are inferred with a recently developed sequential Monte Carlo method for likelihood maximization in partially observed Markov processes. Results indicate that the hydrological regime is a major driver of the seasonal dynamics of cholera. Rainfall tends to buffer the propagation of the disease in wet regions due to the longer residence times of water in the environment and an associated dilution effect, whereas it enhances cholera resurgence in dry regions. Moreover, the dynamics of the environmental water reservoir determine whether the seasonality is unimodal or bimodal, as well as its phase relative to the monsoon. Thus, the full range of seasonal patterns can be explained based solely on the local variation of rainfall and temperature. Given the close connection between cholera seasonality and environmental conditions, a deeper understanding of the underlying mechanisms would allow the better management and planning of public health policies with respect to climate variability and climate change.

  5. Determination of Inorganic Arsenic in a Wide Range of Food Matrices using Hydride Generation - Atomic Absorption Spectrometry.

    Science.gov (United States)

    de la Calle, Maria B; Devesa, Vicenta; Fiamegos, Yiannis; Vélez, Dinoraz

    2017-09-01

    The European Food Safety Authority (EFSA) underlined in its Scientific Opinion on Arsenic in Food that in order to support a sound exposure assessment to inorganic arsenic through diet, information about distribution of arsenic species in various food types must be generated. A method, previously validated in a collaborative trial, has been applied to determine inorganic arsenic in a wide variety of food matrices, covering grains, mushrooms and food of marine origin (31 samples in total). The method is based on detection by flow injection-hydride generation-atomic absorption spectrometry of the iAs selectively extracted into chloroform after digestion of the proteins with concentrated HCl. The method is characterized by a limit of quantification of 10 µg/kg dry weight, which allowed quantification of inorganic arsenic in a large amount of food matrices. Information is provided about performance scores given to results obtained with this method and which were reported by different laboratories in several proficiency tests. The percentage of satisfactory results obtained with the discussed method is higher than that of the results obtained with other analytical approaches.

  6. On-Board State-of-Health Estimation at a Wide Ambient Temperature Range in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Tiansi Wang

    2015-08-01

    Full Text Available A state-of-health (SOH estimation method for electric vehicles (EVs is presented with three main advantages: (1 it provides joint estimation of cell’s aging states in terms of power and energy (i.e., SOHP and SOHE—because the determination of SOHP and SOHE can be reduced to the estimation of the ohmic resistance increase and capacity loss, respectively, the ohmic resistance at nominal temperature will be taken as a health indicator, and the capacity loss is estimated based on a mechanistic model that is developed to describe the correlation between resistance increase and capacity loss; (2 it has wide applicability to various ambient temperatures—to eliminate the effects of temperature on the resistance, another mechanistic model about the resistance against temperature is presented, which can normalize the resistance at various temperatures to its standard value at the nominal temperature; and (3 it needs low computational efforts for on-board application—based on a linear equation of cell’s dynamic behaviors, the recursive least-squares (RLS algorithm is used for the resistance estimation. Based on the designed performance and validation experiments, respectively, the coefficients of the models are determined and the accuracy of the proposed method is verified. The results at different aging states and temperatures show good accuracy and reliability.

  7. Development of an intense negative hydrogen ion source with a wide-range of external magnetic filter field

    International Nuclear Information System (INIS)

    Takeiri, Y.; Ando, A.; Kaneko, O.

    1994-09-01

    An intense negative hydrogen ion source has been developed, which has a strong external magnetic filter field in the wide area of 35 cm x 62 cm produced by a pair of permanent magnet rows located with 35.4 cm separation. The filter strength is 70 G in the center and the line-integrated filter strength is 850 G cm, which keeps the low electron temperature in the extraction region. Strong cusp magnetic field, 1.8 kG on the chamber surface, is generated for improvement of the plasma confinement. These resulted in the high arc efficiency at the low operational gas pressure. A 16.2 A of the H - ion current with the energy of 47 keV was obtained at the arc efficiency of 0.1 A/kW at the gas pressure of 3.8 mTorr in the cesium-mode operation. The magnetic field in the extraction gap is also strong, 450 G, for the electron suppression. The ratio of the extraction to the negative ion currents was less than 2.2 at the gas pressure of 3 mTorr. The two-stage acceleration was tried, and a 13.6 A of the H - ion beam was accelerated to 125 keV. (author)

  8. Evaluation of the performance of MP4-based procedures for a wide range of thermochemical and kinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Li-Juan; Wan, Wenchao; Karton, Amir, E-mail: amir.karton@uwa.edu.au

    2016-11-30

    We evaluate the performance of standard and modified MPn procedures for a wide set of thermochemical and kinetic properties, including atomization energies, structural isomerization energies, conformational energies, and reaction barrier heights. The reference data are obtained at the CCSD(T)/CBS level by means of the Wn thermochemical protocols. We find that none of the MPn-based procedures show acceptable performance for the challenging W4-11 and BH76 databases. For the other thermochemical/kinetic databases, the MP2.5 and MP3.5 procedures provide the most attractive accuracy-to-computational cost ratios. The MP2.5 procedure results in a weighted-total-root-mean-square deviation (WTRMSD) of 3.4 kJ/mol, whilst the computationally more expensive MP3.5 procedure results in a WTRMSD of 1.9 kJ/mol (the same WTRMSD obtained for the CCSD(T) method in conjunction with a triple-zeta basis set). We also assess the performance of the computationally economical CCSD(T)/CBS(MP2) method, which provides the best overall performance for all the considered databases, including W4-11 and BH76.

  9. Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations.

    Directory of Open Access Journals (Sweden)

    Lorena V Escudero

    Full Text Available The presence of the arsenic oxidation, reduction, and extrusion genes arsC, arrA, aioA, and acr3 was explored in a range of natural environments in northern Chile, with arsenic concentrations spanning six orders of magnitude. A combination of primers from the literature and newly designed primers were used to explore the presence of the arsC gene, coding for the reduction of As (V to As (III in one of the most common detoxification mechanisms. Enterobacterial related arsC genes appeared only in the environments with the lowest As concentration, while Firmicutes-like genes were present throughout the range of As concentrations. The arrA gene, involved in anaerobic respiration using As (V as electron acceptor, was found in all the systems studied. The As (III oxidation gene aioA and the As (III transport gene acr3 were tracked with two primer sets each and they were also found to be spread through the As concentration gradient. Sediment samples had a higher number of arsenic related genes than water samples. Considering the results of the bacterial community composition available for these samples, the higher microbial phylogenetic diversity of microbes inhabiting the sediments may explain the increased number of genetic resources found to cope with arsenic. Overall, the environmental distribution of arsenic related genes suggests that the occurrence of different ArsC families provides different degrees of protection against arsenic as previously described in laboratory strains, and that the glutaredoxin (Grx-linked arsenate reductases related to Enterobacteria do not confer enough arsenic resistance to live above certain levels of As concentrations.

  10. Mitochondrial DNA haplotype distribution patterns in Pinus ponderosa (Pinaceae): range-wide evolutionary history and implications for conservation.

    Science.gov (United States)

    Potter, Kevin M; Hipkins, Valerie D; Mahalovich, Mary F; Means, Robert E

    2013-08-01

    Ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) exhibits complicated patterns of morphological and genetic variation across its range in western North America. This study aims to clarify P. ponderosa evolutionary history and phylogeography using a highly polymorphic mitochondrial DNA marker, with results offering insights into how geographical and climatological processes drove the modern evolutionary structure of tree species in the region. We amplified the mtDNA nad1 second intron minisatellite region for 3,100 trees representing 104 populations, and sequenced all length variants. We estimated population-level haplotypic diversity and determined diversity partitioning among varieties, races and populations. After aligning sequences of minisatellite repeat motifs, we evaluated evolutionary relationships among haplotypes. The geographical structuring of the 10 haplotypes corresponded with division between Pacific and Rocky Mountain varieties. Pacific haplotypes clustered with high bootstrap support, and appear to have descended from Rocky Mountain haplotypes. A greater proportion of diversity was partitioned between Rocky Mountain races than between Pacific races. Areas of highest haplotypic diversity were the southern Sierra Nevada mountain range in California, northwestern California, and southern Nevada. Pinus ponderosa haplotype distribution patterns suggest a complex phylogeographic history not revealed by other genetic and morphological data, or by the sparse paleoecological record. The results appear consistent with long-term divergence between the Pacific and Rocky Mountain varieties, along with more recent divergences not well-associated with race. Pleistocene refugia may have existed in areas of high haplotypic diversity, as well as the Great Basin, Southwestern United States/northern Mexico, and the High Plains.

  11. Charged-particle multiplicity distributions over a wide pseudorapidity range in proton-proton collisions at root s=0.9, 7, and 8 TeV

    NARCIS (Netherlands)

    Acharya, S.; Adamova, D.; Adolfsson, J.; Aggarwal, M. M.; AglieriRinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Alba, J. L. B.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; AlfaroMolina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves GarciaPrado, C.; Janssen, M M; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C. D.; Anticic, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshaeuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badala, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.C.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnafoldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Camejo, A. Batista; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielcik, J.; Bielcikova, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsar, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castellanos, J. Castillo; Castro, A. J.; Casula, E. A R; Ceballos Sanchez, C.; Cerello, P.; Chandra, S.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Barroso, V. Chibante; Chinellato, D. D.; Cho, Sukhee; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Balbastre, G. Conesa; Del Valle, Z. Conesa; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Morales, Y. Corrales; Cortes Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovska, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; Dasgupta, S. S.; DeCaro, A.; De Cataldo, G.; De Conti, C.; De Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. Derradi; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diakonov, I.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divia, R.; Djuvsland, O.; Dobrin, A.; Domenicis Gimenez, D.; Doenigus, B.; Dordic, O.; Doremalen, L. V. V.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; FernandezTellez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; De Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Girard, M. Fusco; Gaardhoje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Ducati, M. B. Gay; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glaessel, P.; GomezCoral, D. M.; Ramirez, A. Gomez; Gonzalez, A. S.; Gonzalez, V; Gonzalez-Zamora, P.; Gorbunov, S.; Goerlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L. C.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hasan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbaer, E.; Helstrup, H.; Herghelegiu, A.; HerreraCorral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Sorkine-Hornung, Olga; Hosokawa, R.; Hristov, P.; Hughes, C.W.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacholkowski, A.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, C.; Jena, S.; Jeric, M.; Bustamante, R. T Jimenez; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Uysal, A. Karasu; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khan, P.M.; Khan, Shfaqat A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D.-S.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C; Klein, J.; Klein-Boeing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.L.; Meethaleveedu, G. Koyithatta; Kralik, I.; Kravcakova, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kucera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, Seema; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Strunz-Lehner, Christine; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Leon Monzon, I.; Levai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; Lopez Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mares, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marin, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martinez, M. I.; Garcia, G. Martinez; Pedreira, M. Martinez; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Perez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mihaylov, D. L.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Khan, M. Mohisin; Montes, E.; De Godoy, D. A Moreira; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Muehlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Muenning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Naik, B.; Nair, Rajiv; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; daLuz, H. Natal; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; De Oliveira, R. A. Negrao; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nobuhiro, A.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paic, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Da Costa, H. Pereira; Peresunko, D.; Lezama, E. Perez; Peskov, V.; Pestov, Y.; Petracek, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Rasanen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodriguez Cahuantzi, M.; Roed, K.; Rogochaya, E.; Rohr, D.; Rohrich, D.; Rokita, P. S.; Ronchetti, F.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Russo, R.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Safarik, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Sefcik, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q. Y.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Strmen, P.; Suaide, A. A P; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Sumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Munoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, J. S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, Linda; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vyvre, P. Vande; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Doce, O. Vazquez; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limon, S.; Vernet, R.; Vertesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Baillie, O. Villalobos; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Voelkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrlakova, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C S; Willsher, E.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I. K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Zavada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, Shui

    2017-01-01

    We present the charged-particle multiplicity distributions over a wide pseudorapidity range ( −3.4<η<5.0 ) for pp collisions at s√=0.9,7 , and 8 TeV at the LHC. Results are based on information from the Silicon Pixel Detector and the Forward Multiplicity Detector of ALICE, extending the

  12. The potential for extending the spectral range accessible to the european X-ray free electron laser in the direction of longer wavelengths

    CERN Document Server

    Saldin, E L; Yurkov, M V

    2004-01-01

    The baseline specifications of European XFEL give a range of wavelengths between 0.1 nm and 2 nm. This wavelength range at fixed electron beam energy 17.5 GeV can be covered by operating the SASE FEL with three undulators which have different period and tunable gap. A study of the potential for the extending the spectral range accessible to the XFEL in the direction of longer wavelengths is presented. The extension of the wavelength range to 6 nm would be cover the water window in the VUV region, opening the facility to a new class of experiments. There are at least two possible sources of VUV radiation associated with the X-ray FEL; the "low (2.5 GeV) energy electron beam dedicated" and the " 17.5 GeV spent beam parasitic" (or "after-burner") source modes. The second alternative, "after-burner undulator" is the one we regard as most favorable. It is possible to place an undulator as long as 80 meters after 2 nm undulator. Ultimately, VUV undulator would be able to deliver output power approaching 100 GW. A b...

  13. Synthesis and characterization of wide range mesogenic esters based on asymmetrical 2,5-disubstituted 1,3,4-thiadiazole

    Science.gov (United States)

    Tomi, Ivan H. R.; Jaffer, Hamed J.; Aldhaif, Yasmeen A.

    2018-04-01

    A homologous series of new 13 esters, 4-(5-(p-tolyl)-1,3,4-thiadiazol-2-yl)-phenyl-4-alkoxybenzoate, (IVn), based on 1,3,4-thiadiazole core has been synthesized. The structures of these esters were confirmed by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance and mass techniques. Their mesophases behavior was investigated with hot-stage polarizing optical microscope and differential scanning calorimetry. The thermal stability for most of these derivatives was measured by thermal gravimetric analysis. All the target esters showed enantiotropic mesomorphic behaviors with nematic and nematic/smectic C phases. The phase transition temperatures and liquid crystalline properties were affected by the nature of heterocyclic ring and the length of the alkoxy chain. Only the nematic phase was observed in the first 10 derivatives, (n = 1-10), while the last 3, (n = 12, 16 and 18) showed nematic and smectic C phases. These compounds demonstrated high liquid crystalline ranges, both in heating and cooling cycles. The mesomorphic results obtained were compared with the reported analogs of similar constituents.

  14. Genomic Characterization of Urethritis-Associated Neisseria meningitidis Shows that a Wide Range of N. meningitidis Strains Can Cause Urethritis.

    Science.gov (United States)

    Ma, Kevin C; Unemo, Magnus; Jeverica, Samo; Kirkcaldy, Robert D; Takahashi, Hideyuki; Ohnishi, Makoto; Grad, Yonatan H

    2017-12-01

    Neisseria meningitidis , typically a resident of the oro- or nasopharynx and the causative agent of meningococcal meningitis and meningococcemia, is capable of invading and colonizing the urogenital tract. This can result in urethritis, akin to the syndrome caused by its sister species, N. gonorrhoeae , the etiologic agent of gonorrhea. Recently, meningococcal strains associated with outbreaks of urethritis were reported to share genetic characteristics with the gonococcus, raising the question of the extent to which these strains contain features that promote adaptation to the genitourinary niche, making them gonococcus-like and distinguishing them from other N. meningitidis strains. Here, we analyzed the genomes of 39 diverse N. meningitidis isolates associated with urethritis, collected independently over a decade and across three continents. In particular, we characterized the diversity of the nitrite reductase gene ( aniA ), the factor H-binding protein gene ( fHbp ), and the capsule biosynthetic locus, all of which are loci previously suggested to be associated with urogenital colonization. We observed notable diversity, including frameshift variants, in aniA and fHbp and the presence of intact, disrupted, and absent capsule biosynthetic genes, indicating that urogenital colonization and urethritis caused by N. meningitidis are possible across a range of meningococcal genotypes. Previously identified allelic patterns in urethritis-associated N. meningitidis strains may reflect genetic diversity in the underlying meningococcal population rather than novel adaptation to the urogenital tract. Copyright © 2017 American Society for Microbiology.

  15. Chiroptical methods in a wide wavelength range for obtaining Ln3+ complexes with circularly polarized luminescence of practical interest.

    Science.gov (United States)

    Górecki, Marcin; Carpita, Luca; Arrico, Lorenzo; Zinna, Francesco; Di Bari, Lorenzo

    2018-05-29

    We studied enantiopure chiral trivalent lanthanide (Ln3+ = La3+, Sm3+, Eu3+, Gd3+, Tm3+, and Yb3+) complexes with two fluorinated achiral tris(β-diketonate) ligands (HFA = hexafluoroacetylacetonate and TTA = 2-thenoyltrifluoroacetonate), incorporating a chiral bis(oxazolinyl)pyridine (PyBox) unit as a neutral ancillary ligand, by the combined use of optical and chiroptical methods, ranging from UV to IR both in absorption and circular dichroism (CD), and including circularly polarized luminescence (CPL). Ultimately, all the spectroscopic information is integrated into a total and a chiroptical super-spectrum, which allows one to characterize a multidimensional chemical space, spanned by the different Ln3+ ions, the acidity and steric demand of the diketone and the chirality of the PyBox ligand. In all cases, the Ln3+ ions endow the systems with peculiar chiroptical properties, either allied to f-f transitions or induced by the metal onto the ligand. In more detail, we found that Sm3+ complexes display interesting CPL features, which partly superimpose and partly integrate the more common Eu3+ properties. Especially, in the context of security tags, the pair Sm/Eu may be a winning choice for chiroptical barcoding.

  16. Metamemory and memory for a wide range of font sizes: What is the contribution of perceptual fluency?

    Science.gov (United States)

    Undorf, Monika; Zimdahl, Malte F

    2018-04-26

    Words printed in a larger 48-point font are judged to be more memorable than words printed in a smaller 18-point font, although font size does not affect actual memory. To clarify the basis of this font size effect on metamemory and memory, 4 experiments investigated how presenting words in 48 (Experiment 1) or 4 (Experiments 2 to 4) font sizes between 6 point and 500 point affected judgments of learning (JOLs) and recall performance. Response times in lexical decision tasks were used to measure perceptual fluency. In all experiments, perceptual fluency was lower for words presented in very small and very large font sizes than for words presented in intermediate font sizes. In contrast, JOLs increased monotonically with font size, even beyond the point where a large font impaired perceptual fluency. Assessments of people's metacognitive beliefs about font size revealed that the monotonic increase in JOLs was not due to beliefs masking perceptual fluency effects (Experiment 3). Also, JOLs still increased across the whole range of font sizes when perceptual fluency was made salient at study (Experiment 4). In all experiments but Experiment 4, recall performance increased with increasing font size, although to a lesser extent than JOLs. Overall, the current study supports the idea that metacognitive beliefs underlie font size effects in metamemory. As important, it reveals that people's font size beliefs have some accuracy. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Wide range local resistance imaging on fragile materials by conducting probe atomic force microscopy in intermittent contact mode

    Energy Technology Data Exchange (ETDEWEB)

    Vecchiola, Aymeric [Laboratoire de Génie électrique et électronique de Paris (GeePs), UMR 8507 CNRS-CentraleSupélec, Paris-Sud and UPMC Universities, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette (France); Concept Scientific Instruments, ZA de Courtaboeuf, 2 rue de la Terre de Feu, 91940 Les Ulis (France); Unité Mixte de Physique CNRS-Thales UMR 137, 1 avenue Augustin Fresnel, 91767 Palaiseau (France); Chrétien, Pascal; Schneegans, Olivier; Mencaraglia, Denis; Houzé, Frédéric, E-mail: frederic.houze@geeps.centralesupelec.fr [Laboratoire de Génie électrique et électronique de Paris (GeePs), UMR 8507 CNRS-CentraleSupélec, Paris-Sud and UPMC Universities, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette (France); Delprat, Sophie [Unité Mixte de Physique CNRS-Thales UMR 137, 1 avenue Augustin Fresnel, 91767 Palaiseau (France); UPMC, Université Paris 06, 4 place Jussieu, 75005 Paris (France); Bouzehouane, Karim; Seneor, Pierre; Mattana, Richard [Unité Mixte de Physique CNRS-Thales UMR 137, 1 avenue Augustin Fresnel, 91767 Palaiseau (France); Tatay, Sergio [Molecular Science Institute, University of Valencia, 46980 Paterna (Spain); Geffroy, Bernard [Lab. Physique des Interfaces et Couches minces (PICM), UMR 7647 CNRS-École polytechnique, 91128 Palaiseau (France); Lab. d' Innovation en Chimie des Surfaces et Nanosciences (LICSEN), NIMBE UMR 3685 CNRS-CEA Saclay, 91191 Gif-sur-Yvette (France); and others

    2016-06-13

    An imaging technique associating a slowly intermittent contact mode of atomic force microscopy (AFM) with a home-made multi-purpose resistance sensing device is presented. It aims at extending the widespread resistance measurements classically operated in contact mode AFM to broaden their application fields to soft materials (molecular electronics, biology) and fragile or weakly anchored nano-objects, for which nanoscale electrical characterization is highly demanded and often proves to be a challenging task in contact mode. Compared with the state of the art concerning less aggressive solutions for AFM electrical imaging, our technique brings a significantly wider range of resistance measurement (over 10 decades) without any manual switching, which is a major advantage for the characterization of materials with large on-sample resistance variations. After describing the basics of the set-up, we report on preliminary investigations focused on academic samples of self-assembled monolayers with various thicknesses as a demonstrator of the imaging capabilities of our instrument, from qualitative and semi-quantitative viewpoints. Then two application examples are presented, regarding an organic photovoltaic thin film and an array of individual vertical carbon nanotubes. Both attest the relevance of the technique for the control and optimization of technological processes.

  18. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.

  19. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.

  20. A transimpedance CMOS multichannel amplifier with a 50 Ω-wide output range buffer for high counting rate applications

    International Nuclear Information System (INIS)

    Haralabidis, N.; Loukas, D.; Misiakos, K.; Katsafouros, S.

    1997-01-01

    A fast transimpedance multichannel amplifier has been designed, fabricated in CMOS 1.2-microm technology and tested. Each channel consists of a current sensitive preamplifier followed by a voltage amplification stage and an on-chip buffer able to drive 50 Ω loads with an output range of ±800 mV. Measured peaking time at the output is 40 ns and the circuit recovers to baseline in 90 ns. This results in a counting capability of more than 10 7 hits/s. Signals of both polarities can be handled. The first two stages consume a total of 2 mW per channel and the 50 Ω buffer consumes another 17 mW. The equivalent noise charge (ENC) is 1,100 e - rms with a slope of 40e - /pF. The IC is intended for use in gas and solid-state detectors with high particle rate and extensive charge release as in high energy calorimetry

  1. Thermal conductivity of a wide range of alternative refrigerants measured with an improved guarded hot-plate apparatus

    International Nuclear Information System (INIS)

    Hammerschmidt, U.

    1995-01-01

    The thermal conductivity of the refrigerants R22, R123, R134a, R142b, R143a, and R152a has been determined as a function of temperature in the range from 300 to 460 K. Measurements were carried out at atmospheric pressure with an improved guarded hot-plate apparatus. The width of the instrument's gas layer and the temperature difference across the metering section were varied to detect any stray heat transfer. Radiation correction factors were derived from IR absorption spectra. The uncertainty of the measurements is estimated to be 2% at a standard deviation of less than 0.1%. Our data sets are compared with corresponding hot wire results. In contrast to the generally preferred hot wire technique, with its possible electrical and chemical interactions between the wire and the polar refrigerant, there are no such difficulties using a guarded hot-plate apparatus. Our data sets may thus contribute to the discussions on discrepancies in thermal conductivity values from various authors using hot wire as one particular method

  2. Thermostable, salt tolerant, wide pH range novel chitobiase from Vibrio parahemolyticus: isolation, characterization, molecular cloning, and expression.

    Science.gov (United States)

    Zhu, B C; Lo, J Y; Li, Y T; Li, S C; Jaynes, J M; Gildemeister, O S; Laine, R A; Ou, C Y

    1992-07-01

    A chitobiase gene from Vibrio parahemolyticus was cloned into plasmid pUC18 in Escherichia coli strain DH5 alpha. The plasmid construct, pC120, contained a 6.4 kb Vibrio DNA insert. The recombinant gene expressed chitobiase [EC 3.2.1.30] activity similar to that found in the native Vibrio. The enzyme was purified by ion exchange, hydroxylapatite and gel permeation chromatographies, and exhibited an apparent molecular weight of 80 kDa on SDS-polyacrylamide gel electrophoresis. Chitobiose and 6 more substrates, including beta-N-acetyl galactosamine glycosides, were hydrolyzed by the recombinant chitobiase, indicating its putative classification as an hexosaminidase [EC 3.2.1.52]. The enzyme was resistant to denaturation by 2 M NaCl, thermostable at 45 degrees C and active over a very unusual (for glycosyl hydrolases) pH range, from 4 to 10. The purified cloned chitobiase gave 4 closely focussed bands on an isoelectric focusing gel, at pH 4 to 6.5. The N-terminal 43 amino acid sequence shows no homology with other proteins in commercial databanks or in the literature, and from its N-terminal sequence, appears to be a novel protein, unrelated in sequence to chitobiases from other Vibrios reported and unrelated to hexosaminidases from other organisms.

  3. Climatic and geographic predictors of life history variation in Eastern Massasauga (Sistrurus catenatus: A range-wide synthesis.

    Directory of Open Access Journals (Sweden)

    Eric T Hileman

    Full Text Available Elucidating how life history traits vary geographically is important to understanding variation in population dynamics. Because many aspects of ectotherm life history are climate-dependent, geographic variation in climate is expected to have a large impact on population dynamics through effects on annual survival, body size, growth rate, age at first reproduction, size-fecundity relationship, and reproductive frequency. The Eastern Massasauga (Sistrurus catenatus is a small, imperiled North American rattlesnake with a distribution centered on the Great Lakes region, where lake effects strongly influence local conditions. To address Eastern Massasauga life history data gaps, we compiled data from 47 study sites representing 38 counties across the range. We used multimodel inference and general linear models with geographic coordinates and annual climate normals as explanatory variables to clarify patterns of variation in life history traits. We found strong evidence for geographic variation in six of nine life history variables. Adult female snout-vent length and neonate mass increased with increasing mean annual precipitation. Litter size decreased with increasing mean temperature, and the size-fecundity relationship and growth prior to first hibernation both increased with increasing latitude. The proportion of gravid females also increased with increasing latitude, but this relationship may be the result of geographically varying detection bias. Our results provide insights into ectotherm life history variation and fill critical data gaps, which will inform Eastern Massasauga conservation efforts by improving biological realism for models of population viability and climate change.

  4. Relations between stellar mass and electron temperature-based metallicity for star-forming galaxies in a wide mass range

    International Nuclear Information System (INIS)

    Shi Wei-Bin; Zhao Gang; Ruan Gui-Ping; Zhou Li; Liang Yan-Chun; Shao Xu; Liu Xiao-Wei; Hammer Francois; Flores Hector; Zhang Yong

    2014-01-01

    We select 947 star-forming galaxies from SDSS-DR7 with [O III]λ4363 emission lines detected at a signal-to-noise ratio larger than 5σ. Their electron temperatures and direct oxygen abundances are then determined. We compare the results from different methods. t 2 , the electron temperature in the low ionization region, estimated from t 3 , that in the high ionization region, is compared using three analysis relations between t 2 – t 3 . These show obvious differences, which result in some different ionic oxygen abundances. The results of t 3 , t 2 , O ++ /H + and O + /H + derived by using methods from IRAF and literature are also compared. The ionic abundances O ++ /H + are higher than O + /H + for most cases. The different oxygen abundances derived from T e and the strong-line ratios show a clear discrepancy, which is more obvious following increasing stellar mass and strong-line ratio R 23 . The sample of galaxies from SDSS with detected [O III]λ4363 have lower metallicites and higher star formation rates, so they may not be typical representatives of the whole population of galaxies. Adopting data objects from Andrews and Martini, Liang et al. and Lee et al. data, we derive new relations of stellar mass and metallicity for star-forming galaxies in a much wider stellar mass range: from 10 6 M ⊙ to 10 11 M ⊙ . (research papers)

  5. The spectral characteristics of Gd sub 2 SiO sub 5 :Eu sup 3 sup + in VUV-UV range

    CERN Document Server

    Chen Yong; Wei Ya Guang; Tao Ye

    2002-01-01

    Synchrotron radiation source was used to investigated the spectral characteristics of Gd sub 2 SiO sub 5 :Eu sup 3 sup + in VUV-UV range. The various energy transfers at room temperature and 10 K, including from host or Gd sup 3 sup + ions to Eu sup 3 sup + ions and transfer between Eu sup 3 sup + ions at two different lattice sites, were discussed. In addition the emission spectra under 186 nm and 276 nm excitation were compared from the view of quantum cutting. The results indicate that Gd sub 2 SiO sub 5 :Eu sup 3 sup + is a kind of material with potential high efficiency quantum cutting

  6. Multiple resonant absorber with prism-incorporated graphene and one-dimensional photonic crystals in the visible and near-infrared spectral range

    Science.gov (United States)

    Zou, X. J.; Zheng, G. G.; Chen, Y. Y.; Xu, L. H.; Lai, M.

    2018-04-01

    A multi-band absorber constructed from prism-incorporated one-dimensional photonic crystal (1D-PhC) containing graphene defects is achieved theoretically in the visible and near-infrared (vis-NIR) spectral range. By means of the transfer matrix method (TMM), the effect of structural parameters on the optical response of the structure has been investigated. It is possible to achieve multi-peak and complete optical absorption. The simulations reveal that the light intensity is enhanced at the graphene plane, and the resonant wavelength and the absorption intensity can also be tuned by tilting the incidence angle of the impinging light. In particular, multiple graphene sheets are embedded in the arrays, without any demand of manufacture process to cut them into periodic patterns. The proposed concept can be extended to other two-dimensional (2D) materials and engineered for promising applications, including selective or multiplex filters, multiple channel sensors, and photodetectors.

  7. Design of a Kaplan turbine for a wide range of operating head -Curved draft tube design and model test verification-

    Science.gov (United States)

    KO, Pohan; MATSUMOTO, Kiyoshi; OHTAKE, Norio; DING, Hua

    2016-11-01

    As for turbomachine off-design performance improvement is challenging but critical for maximising the performing area. In this paper, a curved draft tube for a medium head Kaplan type hydro turbine is introduced and discussed for its significant effect on expanding operating head range. Without adding any extra structure and working fluid for swirl destruction and damping, a carefully designed outline shape of draft tube with the selected placement of center-piers successfully supresses the growth of turbulence eddy and the transport of the swirl to the outlet. Also, more kinetic energy is recovered and the head lost is improved. Finally, the model test results are also presented. The obvious performance improvement was found in the lower net head area, where the maximum efficiency improvement was measured up to 20% without compromising the best efficiency point. Additionally, this design results in a new draft tube more compact in size and so leads to better construction and manufacturing cost performance for prototype. The draft tube geometry parameter designing process was concerning the best efficiency point together with the off-design points covering various water net heads and discharges. The hydraulic performance and flow behavior was numerically previewed and visualized by solving Reynolds-Averaged Navier-Stokes equations with Shear Stress Transport turbulence model. The simulation was under the assumption of steady-state incompressible turbulence flow inside the flow passage, and the inlet boundary condition was the carefully simulated flow pattern from the runner outlet. For confirmation, the corresponding turbine efficiency performance of the entire operating area was verified by model test.

  8. Fast or slow-foods? Describing natural variations in oral processing characteristics across a wide range of Asian foods.

    Science.gov (United States)

    Forde, C G; Leong, C; Chia-Ming, E; McCrickerd, K

    2017-02-22

    The structural properties of foods have a functional role to play in oral processing behaviours and sensory perception, and also impact on meal size and the experience of fullness. This study adopted a new approach by using behavioural coding analysis of eating behaviours to explore how a range of food textures manifest as the microstructural properties of eating and expectations of fullness. A selection of 47 Asian foods were served in fixed quantities to a panel of participants (N = 12) and their eating behaviours were captured via web-camera recordings. Behavioural coding analysis was completed on the recordings to extract total bites, chews and swallows and cumulative time of the food spent in the mouth. From these measurements a series of microstructural properties including average bite size (g), chews per bite, oro-sensory exposure time (seconds) and average eating rate (g min -1 ) were derived per food. The sensory and macronutrient properties of each food were correlated with the microstructure of eating to compare the differences in eating behaviour on a gram for gram basis. There were strong relationships between the perceived food textural properties and its eating behaviours and a food's total water content was the best predictor of its eating rate. Foods that were eaten at a slower eating rate, with smaller bites and more chews per bite were rated as higher in the expected fullness. These relationships are important as oral processing behaviours and beliefs about the potential satiating value of food influence portion decisions and moderate meal size. These data support the idea that naturally occurring differences in the food structure and texture could be used to design meals that slow the rate of eating and maximise fullness.

  9. Projecting range-wide sun bear population trends using tree cover and camera-trap bycatch data.

    Directory of Open Access Journals (Sweden)

    Lorraine Scotson

    Full Text Available Monitoring population trends of threatened species requires standardized techniques that can be applied over broad areas and repeated through time. Sun bears Helarctos malayanus are a forest dependent tropical bear found throughout most of Southeast Asia. Previous estimates of global population trends have relied on expert opinion and cannot be systematically replicated. We combined data from 1,463 camera traps within 31 field sites across sun bear range to model the relationship between photo catch rates of sun bears and tree cover. Sun bears were detected in all levels of tree cover above 20%, and the probability of presence was positively associated with the amount of tree cover within a 6-km2 buffer of the camera traps. We used the relationship between catch rates and tree cover across space to infer temporal trends in sun bear abundance in response to tree cover loss at country and global-scales. Our model-based projections based on this "space for time" substitution suggested that sun bear population declines associated with tree cover loss between 2000-2014 in mainland southeast Asia were ~9%, with declines highest in Cambodia and lowest in Myanmar. During the same period, sun bear populations in insular southeast Asia (Malaysia, Indonesia and Brunei were projected to have declined at a much higher rate (22%. Cast forward over 30-years, from the year 2000, by assuming a constant rate of change in tree cover, we projected population declines in the insular region that surpassed 50%, meeting the IUCN criteria for endangered if sun bears were listed on the population level. Although this approach requires several assumptions, most notably that trends in abundance across space can be used to infer temporal trends, population projections using remotely sensed tree cover data may serve as a useful alternative (or supplement to expert opinion. The advantages of this approach is that it is objective, data-driven, repeatable, and it requires that

  10. The Herschel/HIFI spectral survey of OMC-2 FIR 4 (CHESS). An overview of the 480 to 1902 GHz range

    Science.gov (United States)

    Kama, M.; López-Sepulcre, A.; Dominik, C.; Ceccarelli, C.; Fuente, A.; Caux, E.; Higgins, R.; Tielens, A. G. G. M.; Alonso-Albi, T.

    2013-08-01

    Context. Broadband spectral surveys of protostars offer a rich view of the physical, chemical and dynamical structure and evolution of star-forming regions. The Herschel Space Observatory opened up the terahertz regime to such surveys, giving access to the fundamental transitions of many hydrides and to the high-energy transitions of many other species. Aims: A comparative analysis of the chemical inventories and physical processes and properties of protostars of various masses and evolutionary states is the goal of the Herschel CHEmical Surveys of Star forming regions (CHESS) key program. This paper focusses on the intermediate-mass protostar, OMC-2 FIR 4. Methods: We obtained a spectrum of OMC-2 FIR 4 in the 480 to 1902 GHz range with the HIFI spectrometer onboard Herschel and carried out the reduction, line identification, and a broad analysis of the line profile components, excitation, and cooling. Results: We detect 719 spectral lines from 40 species and isotopologs. The line flux is dominated by CO, H2O, and CH3OH. The line profiles are complex and vary with species and upper level energy, but clearly contain signatures from quiescent gas, a broad component likely due to an outflow, and a foreground cloud. Conclusions: We find abundant evidence for warm, dense gas, as well as for an outflow in the field of view. Line flux represents 2% of the 7 L⊙ luminosity detected with HIFI in the 480 to 1250 GHz range. Of the total line flux, 60% is from CO, 13% from H2O and 9% from CH3OH. A comparison with similar HIFI spectra of other sources is set to provide much new insight into star formation regions, a case in point being a difference of two orders of magnitude in the relative contribution of sulphur oxides to the line cooling of Orion KL and OMC-2 FIR 4. Appendix A is available in electronic form at http://www.aanda.org

  11. Wide Ranging Insect Infestation of the Pioneer Mangrove Sonneratia alba by Two Insect Species along the Kenyan Coast.

    Directory of Open Access Journals (Sweden)

    Elisha Mrabu Jenoh

    Full Text Available Insect infestation of mangroves currently threatens mangrove forest health and management. In the Western Indian Ocean region, little is known about insect damage to mangroves despite the fact that numerous infestations have occurred. In Kenya, infestations of Sonneratia alba have persisted for almost two decades, yet the taxonomic identity of the infesting pest(s, the extent of infestation, the pests' biology, the impacts of infestation on host and the ecosystem, the host's defensive strategies to the infestation are poorly understood. S. alba is a ubiquitous, pioneer mangrove species of the Indo-Pacific, occurring along the waterfront in a variety of mangrove ecosystem settings. Our main objectives were to identify the pest(s responsible for the current dieback of S. alba in Kenya, and to determine the extent of infestation. To identify the pests responsible for infestation, we trapped emergent insects and reared larvae in the laboratory. To determine the overall extent of infestation within the S. alba zone, we assessed nine sites along the entire Kenyan coastline for the presence or absence of infested mangroves. Insect infestation in two mangrove embayments (Gazi and Mida was quantified in depth. Two wood-boring insects were identified: a metarbelid moth (Lepidoptera, Cossoidea of undescribed genus and the beetle Bottegia rubra (Cerambycidae, Lamiinae.The metarbelid moth infests mangroves in both northern (from Ngomeni to Kiunga and southern regions (from Vanga to Mtwapa of the Kenyan coast. B. rubra appeared in low density in Gazi, and in high density in Mida, Kilifi, and Ngomeni, with densities gradually decreasing northward. Insect infestation levels reached 18% in Gazi and 25% of S. alba stands in Mida. Our results indicate that B. rubra has the ability to infest young mangrove trees and expand its range, posing a danger to rehabilitation efforts where plantations have been established. Thus, there is great need for forest managers to

  12. A low-power tool for measuring acceleration, pressure, and temperature (APT) with wide dynamic range and bandwidth

    Science.gov (United States)

    Heesemann, Martin; Davis, Earl E.; Paros, Jerome; Johnson, Greg; Meldrum, Robert; Scherwath, Martin; Mihaly, Steven

    2017-04-01

    We present a new tool that facilitates the study of inter-related geodetic, geodynamic, seismic, and oceanographic phenomena. It incorporates a temperature compensated tri-axial accelerometer developed by Quartz Seismic Sensors, Inc., a pressure sensor built by Paroscientific Inc., and a low-power, high-precision frequency counter developed by Bennest Enterprises Ltd. and built by RBR, Ltd. The sensors are housed in a 7 cm o.d. titanium pressure case designed for use to full ocean depths (withstands more than 20 km of water pressure). Sampling intervals are programmable from 0.08 s to 1 hr; standard memory can store up to 130 million samples; total power consumption is roughly 115 mW when operating continuously and proportionately lower when operating intermittently (e.g., 2 mW average at 1 sample per min). Serial and USB communications protocols allow a variety of autonomous and cable-connection options. Measurement precision of the order of 10-8 of full scale (e.g., pressure equivalent to 4000 m water depth, acceleration = +/- 3 g) allows observations of pressure and acceleration variations of 0.4 Pa and 0.3 μm s-2. Long-term variations in vertical acceleration are sensitive to displacement through the gravity gradient down to a level of roughly 2 cm, and variations in horizontal acceleration are sensitive to tilt down to a level of 0.03 μrad. With the large dynamic ranges, high sensitivities and broad bandwidth (6 Hz to DC), ground motion associated with microseisms, strong and weak seismic ground motion, tidal loading, and slow and rapid geodynamic deformation - all normally studied using disparate instruments - can be observed with a single tool. Installation in the marine environment is accomplished by pushing the tool roughly 1 m vertically below the seafloor with a submersible or remotely operated vehicle, with no profile remaining above the seafloor to cause current-induced noise. The weight of the tool is designed to match the sediment it displaces to

  13. Dielectric function in the spectral range (0.5–8.5)eV of an (AlxGa1−x)2O3 thin film with continuous composition spread

    International Nuclear Information System (INIS)

    Schmidt-Grund, R.; Kranert, C.; Wenckstern, H. von; Zviagin, V.; Lorenz, M.; Grundmann, M.

    2015-01-01

    We determined the dielectric function of the alloy system (Al x Ga 1−x ) 2 O 3 by spectroscopic ellipsometry in the wide spectral range from 0.5 eV to 8.5 eV and for Al contents ranging from x = 0.11 to x = 0.55. For the composition range x < 0.4, we observe single phase material in the β-modification and for larger Al content also the occurrence of γ-(Al,Ga) 2 O 3 . We derived spectra of the refractive index and the absorption coefficient as well as energy parameters of electronic band-band transitions by model analysis of the dielectric function. The dependence of the dielectric functions lineshape and the energy parameters on x is highly continuous, reflecting theoretical expectations. The data presented here provide a basis for a deeper understanding of the electronic properties of this material system and may be useful for device engineering

  14. Excitation of K X-rays for a wide range of elements (25 ≤ Z ≤ 82) by direct interaction of beta particles from phosphorus-32

    International Nuclear Information System (INIS)

    LaBrecque, J.J.; Rosales, P.A.

    1989-01-01

    The relative sensitivities of low-medium and high-Z elements from manganese to lead were investigated via their K α employing 75 μCi of 32 P. This was accomplished by preparing various synthetic mixtures of elements in the range 25 ≤Z≤82, then simply introducing 32 P solution to form source-samples. The advantages of excitation with 32 P, a pure β-emitter with a β max. energy at 1709 keV, include the following: excitation of all the K α x-rays from manganese to lead; the relative sensitivities of the K x-rays are all within one order of magnitude; the source itself does not produce any spectral lines; and the background can be greatly reduced by filtering. Excitation with 32 P is compared with that of a conventional 109 Cd source and some possible applications are discussed. (author)

  15. A Wide-Range Tunable Level-Keeper Using Vertical Metal-Oxide-Semiconductor Field-Effect Transistors for Current-Reuse Systems

    Science.gov (United States)

    Tanoi, Satoru; Endoh, Tetsuo

    2012-04-01

    A wide-range tunable level-keeper using vertical metal-oxide-semiconductor field-effect transistors (MOSFETs) is proposed for current-reuse analog systems. The design keys for widening tunable range of the operation are a two-path feed-back and a vertical MOSFET with back-bias-effect free. The proposed circuit with the vertical MOSFETs shows the 1.23-V tunable-range of the input level with the 2.4-V internal-supply voltage (VDD) in the simulation. This tunable-range of the proposed circuit is 4.7 times wider than that of the conventional. The achieved current efficiency of the proposed level-keeper is 66% at the 1.2-V output with the 2.4-V VDD. This efficiency of the proposed circuit is twice higher than that of the traditional voltage down converter.

  16. Electron-impact rotationally elastic total cross sections for H2CO and HCOOH over a wide range of incident energy (0.01-2000 eV)

    International Nuclear Information System (INIS)

    Vinodkumar, Minaxi; Bhutadia, Harshad; Antony, Bobby; Mason, Nigel

    2011-01-01

    This paper reports computational results of the total cross sections for electron impact on H 2 CO and HCOOH over a wide range of electron impact energies from 0.01 eV to 2 keV. The total cross section is presented as sum of the elastic and electronic excitation cross sections for incident energies. The calculation uses two different methodologies, below the ionization threshold of the target the cross section is calculated using the UK molecular R-matrix code through the Quantemol-N software package while cross sections at higher energies are evaluated using the spherical complex optical potential formalism. The two methods are found to be consistent at the transition energy (∼15 eV). The present results are, in general, found to be in good agreement with previous experimental and theoretical results (wherever available) and, thus, the present results can serve as a benchmark for the cross section over a wide range of energy.

  17. Ab initio calculation of the shear viscosity of neon in the liquid and hypercritical state over a wide pressure and temperature range

    Science.gov (United States)

    Eggenberger, Rolf; Gerber, Stefan; Huber, Hanspeter; Searles, Debra; Welker, Marc

    1992-08-01

    The shear viscosity is calculated ab initio for the liquid and hypercritical state, i.e. a previously published potential for Ne 2, obtained from ab initio calculations including electron correlation, is used in classical equilibrium molecular dynamics simulations to obtain the shear viscosity from a Green-Kubo integral. The quality of the results is quite uniform over a large pressure range up to 1000 MPa and a wide temperature range from 26 to 600 K. In most cases the calculated shear viscosity deviates by less than 10% from the experimental value, in general the error being only a few percent.

  18. Accuracy evaluation of contour next compared with five blood glucose monitoring systems across a wide range of blood glucose concentrations occurring in a clinical research setting.

    Science.gov (United States)

    Klaff, Leslie J; Brazg, Ronald; Hughes, Kristen; Tideman, Ann M; Schachner, Holly C; Stenger, Patricia; Pardo, Scott; Dunne, Nancy; Parkes, Joan Lee

    2015-01-01

    This study evaluated the accuracy of Contour(®) Next (CN; Bayer HealthCare LLC, Diabetes Care, Whippany, NJ) compared with five blood glucose monitoring systems (BGMSs) across a wide range of clinically occurring blood glucose levels. Subjects (n=146) were ≥ 18 years and had type 1 or type 2 diabetes. Subjects' glucose levels were safely lowered or raised to provide a wide range of glucose values. Capillary blood samples were tested on six BGMSs and a YSI glucose analyzer (YSI Life Sciences, Inc., Yellow Springs, OH) as the reference. Extreme glucose values were achieved by glucose modification of the blood sample. System accuracy was assessed by mean absolute difference (MAD) and mean absolute relative difference (MARD) across several glucose ranges, with glucose range (Abbott Diabetes Care, Inc., Alameda, CA), 2.77 mg/dL; OneTouch(®) Ultra(®) 2 (LifeScan, Inc., Milpitas, CA), 10.20 mg/dL; OneTouch(®) Verio(®) Pro (LifeScan, Inc.), 4.53 mg/dL; and Truetrack(®) (Nipro Diagnostics, Inc., Fort Lauderdale, FL), 11.08 mg/dL. The lowest MAD in the low glucose range, from CN, was statistically significantly lower than those of the other BGMSs with the exception of the FSL. CN also had a statistically significantly lower MARD than all other BGMSs in the low glucose range. In the overall glucose range (21-496 mg/dL), CN yielded the lowest MAD and MARD values, which were statistically significantly lower in comparison with the other BGMSs. When compared with other BGMSs, CN demonstrated the lowest mean deviation from the reference value (by MAD and MARD) across multiple glucose ranges.

  19. Spectral emissivities at wavelengths in the range 500--653 nm, enthalpies, and heat capacities of the liquid phases of cobalt, titanium, and zirconium

    International Nuclear Information System (INIS)

    Qin, J.; Roesner-Kuhn, M.; Drewes, K.; Thiedemann, U.; Kuppermann, G.; Camin, B.; Blume, R.; Frohberg, M.G.

    1997-01-01

    A review is given of the literature data for spectral emissivities at wavelengths (λ) in the range 500--653 nm, the enthalpies, and heat capacities of the liquid phases of cobalt, titanium, and zirconium. Emissivity measurements were carried out by means of electromagnetic levitation at the solid-to-liquid transition with a partial-radiation pyrometer operating at λ = 547 and 650 nm. Considering the sensitivity of the optical properties to surface impurities, investigations on the surfaces of several titanium and zirconium samples by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) were performed that confirmed a nitrogen- and oxygen-free process atmosphere during the measurements. Liquid phase normal emissivities obtained were var-epsilon n,547 = 0.365 and var-epsilon n,650 = 0.331 for cobalt, var-epsilon n,547 = 0.409 and var-epsilon n,650 = 0.393 for titanium, and var-epsilon n,547 = 0.365 and var-epsilon n,650 = 0.355 for zirconium. Enthalpy measurements on the liquid metals were carried out by means of levitation-drop calorimetry in the range 1591--2159 K for cobalt, 1847--2430 K for titanium, and 2025--2897 K for zirconium. The resulting heat capacities (values in J·mol -1 ·K -1 ) obtained were 42.78 for cobalt, 43.79 for titanium, and 39.81 for zirconium

  20. Spectral-kinetic characteristics of Pr3+ luminescence in LiLuF4 host upon excitation in the UV-VUV range

    International Nuclear Information System (INIS)

    Stryganyuk, G.; Zimmerer, G.; Shiran, N.; Voronova, V.; Nesterkina, V.; Gektin, A.; Shimamura, K.; Villora, E.; Jing, F.; Shalapska, T.; Voloshinovskii, A.

    2008-01-01

    Spectral-kinetic study of Pr 3+ luminescence has been performed for LiLuF 4 :Pr(0.1 mol%) single crystal upon the excitation within 5-12 eV range at T=8 K. The fine-structure of Pr 3+ 4f 2 →4f 5d excitation spectra is shown for LiLuF 4 :Pr(0.1 mol%) to be affected by the efficient absorption transitions of Pr 3+ ions into 4f 5d involving 4f 1 core in the ground state. Favourable conditions have been revealed in LiLuF 4 :Pr(0.1 mol%) for the transformation of UV-VUV excitation quanta into the visible range. Lightly doped LiLuF 4 :Pr crystals are considered as the promising luminescent materials possessing the efficient Pr 3+3 P 0 visible emission upon UV-VUV excitation. The mechanism of energy transfer between Lu 3+ host ion and Pr 3+ impurity is discussed